kernel/kexec_file.c: remove some duplicated includes
[linux-2.6-block.git] / kernel / kexec_file.c
CommitLineData
a43cac0d
DY
1/*
2 * kexec: kexec_file_load system call
3 *
4 * Copyright (C) 2014 Red Hat Inc.
5 * Authors:
6 * Vivek Goyal <vgoyal@redhat.com>
7 *
8 * This source code is licensed under the GNU General Public License,
9 * Version 2. See the file COPYING for more details.
10 */
11
de90a6bc
MH
12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
a43cac0d
DY
14#include <linux/capability.h>
15#include <linux/mm.h>
16#include <linux/file.h>
17#include <linux/slab.h>
18#include <linux/kexec.h>
19#include <linux/mutex.h>
20#include <linux/list.h>
b804defe 21#include <linux/fs.h>
7b8589cc 22#include <linux/ima.h>
a43cac0d
DY
23#include <crypto/hash.h>
24#include <crypto/sha.h>
babac4a8
AT
25#include <linux/elf.h>
26#include <linux/elfcore.h>
27#include <linux/kernel.h>
a43cac0d
DY
28#include <linux/syscalls.h>
29#include <linux/vmalloc.h>
30#include "kexec_internal.h"
31
a43cac0d
DY
32static int kexec_calculate_store_digests(struct kimage *image);
33
9ec4ecef
AT
34/*
35 * Currently this is the only default function that is exported as some
36 * architectures need it to do additional handlings.
37 * In the future, other default functions may be exported too if required.
38 */
39int kexec_image_probe_default(struct kimage *image, void *buf,
40 unsigned long buf_len)
41{
42 const struct kexec_file_ops * const *fops;
43 int ret = -ENOEXEC;
44
45 for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
46 ret = (*fops)->probe(buf, buf_len);
47 if (!ret) {
48 image->fops = *fops;
49 return ret;
50 }
51 }
52
53 return ret;
54}
55
a43cac0d
DY
56/* Architectures can provide this probe function */
57int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
58 unsigned long buf_len)
59{
9ec4ecef
AT
60 return kexec_image_probe_default(image, buf, buf_len);
61}
62
63static void *kexec_image_load_default(struct kimage *image)
64{
65 if (!image->fops || !image->fops->load)
66 return ERR_PTR(-ENOEXEC);
67
68 return image->fops->load(image, image->kernel_buf,
69 image->kernel_buf_len, image->initrd_buf,
70 image->initrd_buf_len, image->cmdline_buf,
71 image->cmdline_buf_len);
a43cac0d
DY
72}
73
74void * __weak arch_kexec_kernel_image_load(struct kimage *image)
75{
9ec4ecef
AT
76 return kexec_image_load_default(image);
77}
78
79static int kexec_image_post_load_cleanup_default(struct kimage *image)
80{
81 if (!image->fops || !image->fops->cleanup)
82 return 0;
83
84 return image->fops->cleanup(image->image_loader_data);
a43cac0d
DY
85}
86
87int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
88{
9ec4ecef 89 return kexec_image_post_load_cleanup_default(image);
a43cac0d
DY
90}
91
978e30c9 92#ifdef CONFIG_KEXEC_VERIFY_SIG
9ec4ecef
AT
93static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
94 unsigned long buf_len)
95{
96 if (!image->fops || !image->fops->verify_sig) {
97 pr_debug("kernel loader does not support signature verification.\n");
98 return -EKEYREJECTED;
99 }
100
101 return image->fops->verify_sig(buf, buf_len);
102}
103
a43cac0d
DY
104int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
105 unsigned long buf_len)
106{
9ec4ecef 107 return kexec_image_verify_sig_default(image, buf, buf_len);
a43cac0d 108}
978e30c9 109#endif
a43cac0d 110
8aec395b
PR
111/*
112 * arch_kexec_apply_relocations_add - apply relocations of type RELA
113 * @pi: Purgatory to be relocated.
114 * @section: Section relocations applying to.
115 * @relsec: Section containing RELAs.
116 * @symtab: Corresponding symtab.
117 *
118 * Return: 0 on success, negative errno on error.
119 */
a43cac0d 120int __weak
8aec395b
PR
121arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section,
122 const Elf_Shdr *relsec, const Elf_Shdr *symtab)
a43cac0d
DY
123{
124 pr_err("RELA relocation unsupported.\n");
125 return -ENOEXEC;
126}
127
8aec395b
PR
128/*
129 * arch_kexec_apply_relocations - apply relocations of type REL
130 * @pi: Purgatory to be relocated.
131 * @section: Section relocations applying to.
132 * @relsec: Section containing RELs.
133 * @symtab: Corresponding symtab.
134 *
135 * Return: 0 on success, negative errno on error.
136 */
a43cac0d 137int __weak
8aec395b
PR
138arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section,
139 const Elf_Shdr *relsec, const Elf_Shdr *symtab)
a43cac0d
DY
140{
141 pr_err("REL relocation unsupported.\n");
142 return -ENOEXEC;
143}
144
145/*
146 * Free up memory used by kernel, initrd, and command line. This is temporary
147 * memory allocation which is not needed any more after these buffers have
148 * been loaded into separate segments and have been copied elsewhere.
149 */
150void kimage_file_post_load_cleanup(struct kimage *image)
151{
152 struct purgatory_info *pi = &image->purgatory_info;
153
154 vfree(image->kernel_buf);
155 image->kernel_buf = NULL;
156
157 vfree(image->initrd_buf);
158 image->initrd_buf = NULL;
159
160 kfree(image->cmdline_buf);
161 image->cmdline_buf = NULL;
162
163 vfree(pi->purgatory_buf);
164 pi->purgatory_buf = NULL;
165
166 vfree(pi->sechdrs);
167 pi->sechdrs = NULL;
168
169 /* See if architecture has anything to cleanup post load */
170 arch_kimage_file_post_load_cleanup(image);
171
172 /*
173 * Above call should have called into bootloader to free up
174 * any data stored in kimage->image_loader_data. It should
175 * be ok now to free it up.
176 */
177 kfree(image->image_loader_data);
178 image->image_loader_data = NULL;
179}
180
181/*
182 * In file mode list of segments is prepared by kernel. Copy relevant
183 * data from user space, do error checking, prepare segment list
184 */
185static int
186kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
187 const char __user *cmdline_ptr,
188 unsigned long cmdline_len, unsigned flags)
189{
190 int ret = 0;
191 void *ldata;
b804defe 192 loff_t size;
a43cac0d 193
b804defe
MZ
194 ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
195 &size, INT_MAX, READING_KEXEC_IMAGE);
a43cac0d
DY
196 if (ret)
197 return ret;
b804defe 198 image->kernel_buf_len = size;
a43cac0d 199
7b8589cc
MZ
200 /* IMA needs to pass the measurement list to the next kernel. */
201 ima_add_kexec_buffer(image);
202
a43cac0d
DY
203 /* Call arch image probe handlers */
204 ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
205 image->kernel_buf_len);
a43cac0d
DY
206 if (ret)
207 goto out;
208
209#ifdef CONFIG_KEXEC_VERIFY_SIG
210 ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
211 image->kernel_buf_len);
212 if (ret) {
213 pr_debug("kernel signature verification failed.\n");
214 goto out;
215 }
216 pr_debug("kernel signature verification successful.\n");
217#endif
218 /* It is possible that there no initramfs is being loaded */
219 if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
b804defe
MZ
220 ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
221 &size, INT_MAX,
222 READING_KEXEC_INITRAMFS);
a43cac0d
DY
223 if (ret)
224 goto out;
b804defe 225 image->initrd_buf_len = size;
a43cac0d
DY
226 }
227
228 if (cmdline_len) {
a9bd8dfa
AV
229 image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
230 if (IS_ERR(image->cmdline_buf)) {
231 ret = PTR_ERR(image->cmdline_buf);
232 image->cmdline_buf = NULL;
a43cac0d
DY
233 goto out;
234 }
235
236 image->cmdline_buf_len = cmdline_len;
237
238 /* command line should be a string with last byte null */
239 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
240 ret = -EINVAL;
241 goto out;
242 }
243 }
244
245 /* Call arch image load handlers */
246 ldata = arch_kexec_kernel_image_load(image);
247
248 if (IS_ERR(ldata)) {
249 ret = PTR_ERR(ldata);
250 goto out;
251 }
252
253 image->image_loader_data = ldata;
254out:
255 /* In case of error, free up all allocated memory in this function */
256 if (ret)
257 kimage_file_post_load_cleanup(image);
258 return ret;
259}
260
261static int
262kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
263 int initrd_fd, const char __user *cmdline_ptr,
264 unsigned long cmdline_len, unsigned long flags)
265{
266 int ret;
267 struct kimage *image;
268 bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
269
270 image = do_kimage_alloc_init();
271 if (!image)
272 return -ENOMEM;
273
274 image->file_mode = 1;
275
276 if (kexec_on_panic) {
277 /* Enable special crash kernel control page alloc policy. */
278 image->control_page = crashk_res.start;
279 image->type = KEXEC_TYPE_CRASH;
280 }
281
282 ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
283 cmdline_ptr, cmdline_len, flags);
284 if (ret)
285 goto out_free_image;
286
287 ret = sanity_check_segment_list(image);
288 if (ret)
289 goto out_free_post_load_bufs;
290
291 ret = -ENOMEM;
292 image->control_code_page = kimage_alloc_control_pages(image,
293 get_order(KEXEC_CONTROL_PAGE_SIZE));
294 if (!image->control_code_page) {
295 pr_err("Could not allocate control_code_buffer\n");
296 goto out_free_post_load_bufs;
297 }
298
299 if (!kexec_on_panic) {
300 image->swap_page = kimage_alloc_control_pages(image, 0);
301 if (!image->swap_page) {
302 pr_err("Could not allocate swap buffer\n");
303 goto out_free_control_pages;
304 }
305 }
306
307 *rimage = image;
308 return 0;
309out_free_control_pages:
310 kimage_free_page_list(&image->control_pages);
311out_free_post_load_bufs:
312 kimage_file_post_load_cleanup(image);
313out_free_image:
314 kfree(image);
315 return ret;
316}
317
318SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
319 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
320 unsigned long, flags)
321{
322 int ret = 0, i;
323 struct kimage **dest_image, *image;
324
325 /* We only trust the superuser with rebooting the system. */
326 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
327 return -EPERM;
328
329 /* Make sure we have a legal set of flags */
330 if (flags != (flags & KEXEC_FILE_FLAGS))
331 return -EINVAL;
332
333 image = NULL;
334
335 if (!mutex_trylock(&kexec_mutex))
336 return -EBUSY;
337
338 dest_image = &kexec_image;
9b492cf5 339 if (flags & KEXEC_FILE_ON_CRASH) {
a43cac0d 340 dest_image = &kexec_crash_image;
9b492cf5
XP
341 if (kexec_crash_image)
342 arch_kexec_unprotect_crashkres();
343 }
a43cac0d
DY
344
345 if (flags & KEXEC_FILE_UNLOAD)
346 goto exchange;
347
348 /*
349 * In case of crash, new kernel gets loaded in reserved region. It is
350 * same memory where old crash kernel might be loaded. Free any
351 * current crash dump kernel before we corrupt it.
352 */
353 if (flags & KEXEC_FILE_ON_CRASH)
354 kimage_free(xchg(&kexec_crash_image, NULL));
355
356 ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
357 cmdline_len, flags);
358 if (ret)
359 goto out;
360
361 ret = machine_kexec_prepare(image);
362 if (ret)
363 goto out;
364
1229384f
XP
365 /*
366 * Some architecture(like S390) may touch the crash memory before
367 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
368 */
369 ret = kimage_crash_copy_vmcoreinfo(image);
370 if (ret)
371 goto out;
372
a43cac0d
DY
373 ret = kexec_calculate_store_digests(image);
374 if (ret)
375 goto out;
376
377 for (i = 0; i < image->nr_segments; i++) {
378 struct kexec_segment *ksegment;
379
380 ksegment = &image->segment[i];
381 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
382 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
383 ksegment->memsz);
384
385 ret = kimage_load_segment(image, &image->segment[i]);
386 if (ret)
387 goto out;
388 }
389
390 kimage_terminate(image);
391
392 /*
393 * Free up any temporary buffers allocated which are not needed
394 * after image has been loaded
395 */
396 kimage_file_post_load_cleanup(image);
397exchange:
398 image = xchg(dest_image, image);
399out:
9b492cf5
XP
400 if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
401 arch_kexec_protect_crashkres();
402
a43cac0d
DY
403 mutex_unlock(&kexec_mutex);
404 kimage_free(image);
405 return ret;
406}
407
408static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
409 struct kexec_buf *kbuf)
410{
411 struct kimage *image = kbuf->image;
412 unsigned long temp_start, temp_end;
413
414 temp_end = min(end, kbuf->buf_max);
415 temp_start = temp_end - kbuf->memsz;
416
417 do {
418 /* align down start */
419 temp_start = temp_start & (~(kbuf->buf_align - 1));
420
421 if (temp_start < start || temp_start < kbuf->buf_min)
422 return 0;
423
424 temp_end = temp_start + kbuf->memsz - 1;
425
426 /*
427 * Make sure this does not conflict with any of existing
428 * segments
429 */
430 if (kimage_is_destination_range(image, temp_start, temp_end)) {
431 temp_start = temp_start - PAGE_SIZE;
432 continue;
433 }
434
435 /* We found a suitable memory range */
436 break;
437 } while (1);
438
439 /* If we are here, we found a suitable memory range */
440 kbuf->mem = temp_start;
441
442 /* Success, stop navigating through remaining System RAM ranges */
443 return 1;
444}
445
446static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
447 struct kexec_buf *kbuf)
448{
449 struct kimage *image = kbuf->image;
450 unsigned long temp_start, temp_end;
451
452 temp_start = max(start, kbuf->buf_min);
453
454 do {
455 temp_start = ALIGN(temp_start, kbuf->buf_align);
456 temp_end = temp_start + kbuf->memsz - 1;
457
458 if (temp_end > end || temp_end > kbuf->buf_max)
459 return 0;
460 /*
461 * Make sure this does not conflict with any of existing
462 * segments
463 */
464 if (kimage_is_destination_range(image, temp_start, temp_end)) {
465 temp_start = temp_start + PAGE_SIZE;
466 continue;
467 }
468
469 /* We found a suitable memory range */
470 break;
471 } while (1);
472
473 /* If we are here, we found a suitable memory range */
474 kbuf->mem = temp_start;
475
476 /* Success, stop navigating through remaining System RAM ranges */
477 return 1;
478}
479
1d2e733b 480static int locate_mem_hole_callback(struct resource *res, void *arg)
a43cac0d
DY
481{
482 struct kexec_buf *kbuf = (struct kexec_buf *)arg;
1d2e733b 483 u64 start = res->start, end = res->end;
a43cac0d
DY
484 unsigned long sz = end - start + 1;
485
486 /* Returning 0 will take to next memory range */
487 if (sz < kbuf->memsz)
488 return 0;
489
490 if (end < kbuf->buf_min || start > kbuf->buf_max)
491 return 0;
492
493 /*
494 * Allocate memory top down with-in ram range. Otherwise bottom up
495 * allocation.
496 */
497 if (kbuf->top_down)
498 return locate_mem_hole_top_down(start, end, kbuf);
499 return locate_mem_hole_bottom_up(start, end, kbuf);
500}
501
60fe3910
TJB
502/**
503 * arch_kexec_walk_mem - call func(data) on free memory regions
504 * @kbuf: Context info for the search. Also passed to @func.
505 * @func: Function to call for each memory region.
506 *
507 * Return: The memory walk will stop when func returns a non-zero value
508 * and that value will be returned. If all free regions are visited without
509 * func returning non-zero, then zero will be returned.
510 */
511int __weak arch_kexec_walk_mem(struct kexec_buf *kbuf,
1d2e733b 512 int (*func)(struct resource *, void *))
60fe3910
TJB
513{
514 if (kbuf->image->type == KEXEC_TYPE_CRASH)
515 return walk_iomem_res_desc(crashk_res.desc,
516 IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
517 crashk_res.start, crashk_res.end,
518 kbuf, func);
519 else
520 return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
521}
522
e2e806f9
TJB
523/**
524 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
525 * @kbuf: Parameters for the memory search.
526 *
527 * On success, kbuf->mem will have the start address of the memory region found.
528 *
529 * Return: 0 on success, negative errno on error.
530 */
531int kexec_locate_mem_hole(struct kexec_buf *kbuf)
532{
533 int ret;
534
535 ret = arch_kexec_walk_mem(kbuf, locate_mem_hole_callback);
536
537 return ret == 1 ? 0 : -EADDRNOTAVAIL;
538}
539
ec2b9bfa
TJB
540/**
541 * kexec_add_buffer - place a buffer in a kexec segment
542 * @kbuf: Buffer contents and memory parameters.
543 *
544 * This function assumes that kexec_mutex is held.
545 * On successful return, @kbuf->mem will have the physical address of
546 * the buffer in memory.
547 *
548 * Return: 0 on success, negative errno on error.
a43cac0d 549 */
ec2b9bfa 550int kexec_add_buffer(struct kexec_buf *kbuf)
a43cac0d
DY
551{
552
553 struct kexec_segment *ksegment;
a43cac0d
DY
554 int ret;
555
556 /* Currently adding segment this way is allowed only in file mode */
ec2b9bfa 557 if (!kbuf->image->file_mode)
a43cac0d
DY
558 return -EINVAL;
559
ec2b9bfa 560 if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
a43cac0d
DY
561 return -EINVAL;
562
563 /*
564 * Make sure we are not trying to add buffer after allocating
565 * control pages. All segments need to be placed first before
566 * any control pages are allocated. As control page allocation
567 * logic goes through list of segments to make sure there are
568 * no destination overlaps.
569 */
ec2b9bfa 570 if (!list_empty(&kbuf->image->control_pages)) {
a43cac0d
DY
571 WARN_ON(1);
572 return -EINVAL;
573 }
574
ec2b9bfa
TJB
575 /* Ensure minimum alignment needed for segments. */
576 kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
577 kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
a43cac0d
DY
578
579 /* Walk the RAM ranges and allocate a suitable range for the buffer */
e2e806f9
TJB
580 ret = kexec_locate_mem_hole(kbuf);
581 if (ret)
582 return ret;
a43cac0d
DY
583
584 /* Found a suitable memory range */
ec2b9bfa 585 ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
a43cac0d
DY
586 ksegment->kbuf = kbuf->buffer;
587 ksegment->bufsz = kbuf->bufsz;
588 ksegment->mem = kbuf->mem;
589 ksegment->memsz = kbuf->memsz;
ec2b9bfa 590 kbuf->image->nr_segments++;
a43cac0d
DY
591 return 0;
592}
593
594/* Calculate and store the digest of segments */
595static int kexec_calculate_store_digests(struct kimage *image)
596{
597 struct crypto_shash *tfm;
598 struct shash_desc *desc;
599 int ret = 0, i, j, zero_buf_sz, sha_region_sz;
600 size_t desc_size, nullsz;
601 char *digest;
602 void *zero_buf;
603 struct kexec_sha_region *sha_regions;
604 struct purgatory_info *pi = &image->purgatory_info;
605
b799a09f
AT
606 if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
607 return 0;
608
a43cac0d
DY
609 zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
610 zero_buf_sz = PAGE_SIZE;
611
612 tfm = crypto_alloc_shash("sha256", 0, 0);
613 if (IS_ERR(tfm)) {
614 ret = PTR_ERR(tfm);
615 goto out;
616 }
617
618 desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
619 desc = kzalloc(desc_size, GFP_KERNEL);
620 if (!desc) {
621 ret = -ENOMEM;
622 goto out_free_tfm;
623 }
624
625 sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
626 sha_regions = vzalloc(sha_region_sz);
627 if (!sha_regions)
628 goto out_free_desc;
629
630 desc->tfm = tfm;
631 desc->flags = 0;
632
633 ret = crypto_shash_init(desc);
634 if (ret < 0)
635 goto out_free_sha_regions;
636
637 digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
638 if (!digest) {
639 ret = -ENOMEM;
640 goto out_free_sha_regions;
641 }
642
643 for (j = i = 0; i < image->nr_segments; i++) {
644 struct kexec_segment *ksegment;
645
646 ksegment = &image->segment[i];
647 /*
648 * Skip purgatory as it will be modified once we put digest
649 * info in purgatory.
650 */
651 if (ksegment->kbuf == pi->purgatory_buf)
652 continue;
653
654 ret = crypto_shash_update(desc, ksegment->kbuf,
655 ksegment->bufsz);
656 if (ret)
657 break;
658
659 /*
660 * Assume rest of the buffer is filled with zero and
661 * update digest accordingly.
662 */
663 nullsz = ksegment->memsz - ksegment->bufsz;
664 while (nullsz) {
665 unsigned long bytes = nullsz;
666
667 if (bytes > zero_buf_sz)
668 bytes = zero_buf_sz;
669 ret = crypto_shash_update(desc, zero_buf, bytes);
670 if (ret)
671 break;
672 nullsz -= bytes;
673 }
674
675 if (ret)
676 break;
677
678 sha_regions[j].start = ksegment->mem;
679 sha_regions[j].len = ksegment->memsz;
680 j++;
681 }
682
683 if (!ret) {
684 ret = crypto_shash_final(desc, digest);
685 if (ret)
686 goto out_free_digest;
40c50c1f
TG
687 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
688 sha_regions, sha_region_sz, 0);
a43cac0d
DY
689 if (ret)
690 goto out_free_digest;
691
40c50c1f
TG
692 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
693 digest, SHA256_DIGEST_SIZE, 0);
a43cac0d
DY
694 if (ret)
695 goto out_free_digest;
696 }
697
698out_free_digest:
699 kfree(digest);
700out_free_sha_regions:
701 vfree(sha_regions);
702out_free_desc:
703 kfree(desc);
704out_free_tfm:
705 kfree(tfm);
706out:
707 return ret;
708}
709
b799a09f 710#ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
93045705
PR
711/*
712 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
713 * @pi: Purgatory to be loaded.
714 * @kbuf: Buffer to setup.
715 *
716 * Allocates the memory needed for the buffer. Caller is responsible to free
717 * the memory after use.
718 *
719 * Return: 0 on success, negative errno on error.
720 */
721static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
722 struct kexec_buf *kbuf)
a43cac0d 723{
93045705
PR
724 const Elf_Shdr *sechdrs;
725 unsigned long bss_align;
726 unsigned long bss_sz;
727 unsigned long align;
728 int i, ret;
a43cac0d 729
93045705 730 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
3be3f61d
PR
731 kbuf->buf_align = bss_align = 1;
732 kbuf->bufsz = bss_sz = 0;
93045705
PR
733
734 for (i = 0; i < pi->ehdr->e_shnum; i++) {
735 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
736 continue;
737
738 align = sechdrs[i].sh_addralign;
739 if (sechdrs[i].sh_type != SHT_NOBITS) {
740 if (kbuf->buf_align < align)
741 kbuf->buf_align = align;
742 kbuf->bufsz = ALIGN(kbuf->bufsz, align);
743 kbuf->bufsz += sechdrs[i].sh_size;
744 } else {
745 if (bss_align < align)
746 bss_align = align;
747 bss_sz = ALIGN(bss_sz, align);
748 bss_sz += sechdrs[i].sh_size;
749 }
750 }
751 kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
752 kbuf->memsz = kbuf->bufsz + bss_sz;
753 if (kbuf->buf_align < bss_align)
754 kbuf->buf_align = bss_align;
755
756 kbuf->buffer = vzalloc(kbuf->bufsz);
757 if (!kbuf->buffer)
758 return -ENOMEM;
759 pi->purgatory_buf = kbuf->buffer;
760
761 ret = kexec_add_buffer(kbuf);
762 if (ret)
763 goto out;
93045705
PR
764
765 return 0;
766out:
767 vfree(pi->purgatory_buf);
768 pi->purgatory_buf = NULL;
769 return ret;
770}
771
772/*
773 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
774 * @pi: Purgatory to be loaded.
775 * @kbuf: Buffer prepared to store purgatory.
776 *
777 * Allocates the memory needed for the buffer. Caller is responsible to free
778 * the memory after use.
779 *
780 * Return: 0 on success, negative errno on error.
781 */
782static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
783 struct kexec_buf *kbuf)
784{
93045705
PR
785 unsigned long bss_addr;
786 unsigned long offset;
93045705 787 Elf_Shdr *sechdrs;
93045705 788 int i;
a43cac0d 789
8da0b724
PR
790 /*
791 * The section headers in kexec_purgatory are read-only. In order to
792 * have them modifiable make a temporary copy.
793 */
fad953ce 794 sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
a43cac0d
DY
795 if (!sechdrs)
796 return -ENOMEM;
93045705
PR
797 memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
798 pi->ehdr->e_shnum * sizeof(Elf_Shdr));
799 pi->sechdrs = sechdrs;
a43cac0d 800
620f697c
PR
801 offset = 0;
802 bss_addr = kbuf->mem + kbuf->bufsz;
f1b1cca3 803 kbuf->image->start = pi->ehdr->e_entry;
a43cac0d
DY
804
805 for (i = 0; i < pi->ehdr->e_shnum; i++) {
93045705 806 unsigned long align;
620f697c 807 void *src, *dst;
93045705 808
a43cac0d
DY
809 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
810 continue;
811
812 align = sechdrs[i].sh_addralign;
f1b1cca3 813 if (sechdrs[i].sh_type == SHT_NOBITS) {
a43cac0d
DY
814 bss_addr = ALIGN(bss_addr, align);
815 sechdrs[i].sh_addr = bss_addr;
816 bss_addr += sechdrs[i].sh_size;
f1b1cca3
PR
817 continue;
818 }
819
620f697c 820 offset = ALIGN(offset, align);
f1b1cca3
PR
821 if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
822 pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
823 pi->ehdr->e_entry < (sechdrs[i].sh_addr
824 + sechdrs[i].sh_size)) {
825 kbuf->image->start -= sechdrs[i].sh_addr;
620f697c 826 kbuf->image->start += kbuf->mem + offset;
a43cac0d 827 }
a43cac0d 828
8da0b724 829 src = (void *)pi->ehdr + sechdrs[i].sh_offset;
620f697c
PR
830 dst = pi->purgatory_buf + offset;
831 memcpy(dst, src, sechdrs[i].sh_size);
832
833 sechdrs[i].sh_addr = kbuf->mem + offset;
8da0b724 834 sechdrs[i].sh_offset = offset;
620f697c 835 offset += sechdrs[i].sh_size;
f1b1cca3 836 }
a43cac0d 837
93045705 838 return 0;
a43cac0d
DY
839}
840
841static int kexec_apply_relocations(struct kimage *image)
842{
843 int i, ret;
844 struct purgatory_info *pi = &image->purgatory_info;
8aec395b
PR
845 const Elf_Shdr *sechdrs;
846
847 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
a43cac0d 848
a43cac0d 849 for (i = 0; i < pi->ehdr->e_shnum; i++) {
8aec395b
PR
850 const Elf_Shdr *relsec;
851 const Elf_Shdr *symtab;
852 Elf_Shdr *section;
853
854 relsec = sechdrs + i;
a43cac0d 855
8aec395b
PR
856 if (relsec->sh_type != SHT_RELA &&
857 relsec->sh_type != SHT_REL)
a43cac0d
DY
858 continue;
859
860 /*
861 * For section of type SHT_RELA/SHT_REL,
862 * ->sh_link contains section header index of associated
863 * symbol table. And ->sh_info contains section header
864 * index of section to which relocations apply.
865 */
8aec395b
PR
866 if (relsec->sh_info >= pi->ehdr->e_shnum ||
867 relsec->sh_link >= pi->ehdr->e_shnum)
a43cac0d
DY
868 return -ENOEXEC;
869
8aec395b
PR
870 section = pi->sechdrs + relsec->sh_info;
871 symtab = sechdrs + relsec->sh_link;
a43cac0d
DY
872
873 if (!(section->sh_flags & SHF_ALLOC))
874 continue;
875
876 /*
877 * symtab->sh_link contain section header index of associated
878 * string table.
879 */
880 if (symtab->sh_link >= pi->ehdr->e_shnum)
881 /* Invalid section number? */
882 continue;
883
884 /*
885 * Respective architecture needs to provide support for applying
886 * relocations of type SHT_RELA/SHT_REL.
887 */
8aec395b
PR
888 if (relsec->sh_type == SHT_RELA)
889 ret = arch_kexec_apply_relocations_add(pi, section,
890 relsec, symtab);
891 else if (relsec->sh_type == SHT_REL)
892 ret = arch_kexec_apply_relocations(pi, section,
893 relsec, symtab);
a43cac0d
DY
894 if (ret)
895 return ret;
896 }
897
898 return 0;
899}
900
3be3f61d
PR
901/*
902 * kexec_load_purgatory - Load and relocate the purgatory object.
903 * @image: Image to add the purgatory to.
904 * @kbuf: Memory parameters to use.
905 *
906 * Allocates the memory needed for image->purgatory_info.sechdrs and
907 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
908 * to free the memory after use.
909 *
910 * Return: 0 on success, negative errno on error.
911 */
912int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
a43cac0d
DY
913{
914 struct purgatory_info *pi = &image->purgatory_info;
915 int ret;
916
917 if (kexec_purgatory_size <= 0)
918 return -EINVAL;
919
65c225d3 920 pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
a43cac0d 921
3be3f61d 922 ret = kexec_purgatory_setup_kbuf(pi, kbuf);
a43cac0d
DY
923 if (ret)
924 return ret;
925
3be3f61d 926 ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
93045705
PR
927 if (ret)
928 goto out_free_kbuf;
929
a43cac0d
DY
930 ret = kexec_apply_relocations(image);
931 if (ret)
932 goto out;
933
a43cac0d
DY
934 return 0;
935out:
936 vfree(pi->sechdrs);
070c43ee 937 pi->sechdrs = NULL;
93045705 938out_free_kbuf:
a43cac0d 939 vfree(pi->purgatory_buf);
070c43ee 940 pi->purgatory_buf = NULL;
a43cac0d
DY
941 return ret;
942}
943
961d921a
PR
944/*
945 * kexec_purgatory_find_symbol - find a symbol in the purgatory
946 * @pi: Purgatory to search in.
947 * @name: Name of the symbol.
948 *
949 * Return: pointer to symbol in read-only symtab on success, NULL on error.
950 */
951static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
952 const char *name)
a43cac0d 953{
961d921a 954 const Elf_Shdr *sechdrs;
65c225d3 955 const Elf_Ehdr *ehdr;
961d921a 956 const Elf_Sym *syms;
a43cac0d 957 const char *strtab;
961d921a 958 int i, k;
a43cac0d 959
961d921a 960 if (!pi->ehdr)
a43cac0d
DY
961 return NULL;
962
a43cac0d 963 ehdr = pi->ehdr;
961d921a 964 sechdrs = (void *)ehdr + ehdr->e_shoff;
a43cac0d
DY
965
966 for (i = 0; i < ehdr->e_shnum; i++) {
967 if (sechdrs[i].sh_type != SHT_SYMTAB)
968 continue;
969
970 if (sechdrs[i].sh_link >= ehdr->e_shnum)
971 /* Invalid strtab section number */
972 continue;
961d921a
PR
973 strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
974 syms = (void *)ehdr + sechdrs[i].sh_offset;
a43cac0d
DY
975
976 /* Go through symbols for a match */
977 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
978 if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
979 continue;
980
981 if (strcmp(strtab + syms[k].st_name, name) != 0)
982 continue;
983
984 if (syms[k].st_shndx == SHN_UNDEF ||
985 syms[k].st_shndx >= ehdr->e_shnum) {
986 pr_debug("Symbol: %s has bad section index %d.\n",
987 name, syms[k].st_shndx);
988 return NULL;
989 }
990
991 /* Found the symbol we are looking for */
992 return &syms[k];
993 }
994 }
995
996 return NULL;
997}
998
999void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1000{
1001 struct purgatory_info *pi = &image->purgatory_info;
961d921a 1002 const Elf_Sym *sym;
a43cac0d
DY
1003 Elf_Shdr *sechdr;
1004
1005 sym = kexec_purgatory_find_symbol(pi, name);
1006 if (!sym)
1007 return ERR_PTR(-EINVAL);
1008
1009 sechdr = &pi->sechdrs[sym->st_shndx];
1010
1011 /*
1012 * Returns the address where symbol will finally be loaded after
1013 * kexec_load_segment()
1014 */
1015 return (void *)(sechdr->sh_addr + sym->st_value);
1016}
1017
1018/*
1019 * Get or set value of a symbol. If "get_value" is true, symbol value is
1020 * returned in buf otherwise symbol value is set based on value in buf.
1021 */
1022int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1023 void *buf, unsigned int size, bool get_value)
1024{
a43cac0d 1025 struct purgatory_info *pi = &image->purgatory_info;
961d921a
PR
1026 const Elf_Sym *sym;
1027 Elf_Shdr *sec;
a43cac0d
DY
1028 char *sym_buf;
1029
1030 sym = kexec_purgatory_find_symbol(pi, name);
1031 if (!sym)
1032 return -EINVAL;
1033
1034 if (sym->st_size != size) {
1035 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1036 name, (unsigned long)sym->st_size, size);
1037 return -EINVAL;
1038 }
1039
961d921a 1040 sec = pi->sechdrs + sym->st_shndx;
a43cac0d 1041
961d921a 1042 if (sec->sh_type == SHT_NOBITS) {
a43cac0d
DY
1043 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1044 get_value ? "get" : "set");
1045 return -EINVAL;
1046 }
1047
8da0b724 1048 sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
a43cac0d
DY
1049
1050 if (get_value)
1051 memcpy((void *)buf, sym_buf, size);
1052 else
1053 memcpy((void *)sym_buf, buf, size);
1054
1055 return 0;
1056}
b799a09f 1057#endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
babac4a8
AT
1058
1059int crash_exclude_mem_range(struct crash_mem *mem,
1060 unsigned long long mstart, unsigned long long mend)
1061{
1062 int i, j;
1063 unsigned long long start, end;
1064 struct crash_mem_range temp_range = {0, 0};
1065
1066 for (i = 0; i < mem->nr_ranges; i++) {
1067 start = mem->ranges[i].start;
1068 end = mem->ranges[i].end;
1069
1070 if (mstart > end || mend < start)
1071 continue;
1072
1073 /* Truncate any area outside of range */
1074 if (mstart < start)
1075 mstart = start;
1076 if (mend > end)
1077 mend = end;
1078
1079 /* Found completely overlapping range */
1080 if (mstart == start && mend == end) {
1081 mem->ranges[i].start = 0;
1082 mem->ranges[i].end = 0;
1083 if (i < mem->nr_ranges - 1) {
1084 /* Shift rest of the ranges to left */
1085 for (j = i; j < mem->nr_ranges - 1; j++) {
1086 mem->ranges[j].start =
1087 mem->ranges[j+1].start;
1088 mem->ranges[j].end =
1089 mem->ranges[j+1].end;
1090 }
1091 }
1092 mem->nr_ranges--;
1093 return 0;
1094 }
1095
1096 if (mstart > start && mend < end) {
1097 /* Split original range */
1098 mem->ranges[i].end = mstart - 1;
1099 temp_range.start = mend + 1;
1100 temp_range.end = end;
1101 } else if (mstart != start)
1102 mem->ranges[i].end = mstart - 1;
1103 else
1104 mem->ranges[i].start = mend + 1;
1105 break;
1106 }
1107
1108 /* If a split happened, add the split to array */
1109 if (!temp_range.end)
1110 return 0;
1111
1112 /* Split happened */
1113 if (i == mem->max_nr_ranges - 1)
1114 return -ENOMEM;
1115
1116 /* Location where new range should go */
1117 j = i + 1;
1118 if (j < mem->nr_ranges) {
1119 /* Move over all ranges one slot towards the end */
1120 for (i = mem->nr_ranges - 1; i >= j; i--)
1121 mem->ranges[i + 1] = mem->ranges[i];
1122 }
1123
1124 mem->ranges[j].start = temp_range.start;
1125 mem->ranges[j].end = temp_range.end;
1126 mem->nr_ranges++;
1127 return 0;
1128}
1129
1130int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map,
1131 void **addr, unsigned long *sz)
1132{
1133 Elf64_Ehdr *ehdr;
1134 Elf64_Phdr *phdr;
1135 unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1136 unsigned char *buf;
1137 unsigned int cpu, i;
1138 unsigned long long notes_addr;
1139 unsigned long mstart, mend;
1140
1141 /* extra phdr for vmcoreinfo elf note */
1142 nr_phdr = nr_cpus + 1;
1143 nr_phdr += mem->nr_ranges;
1144
1145 /*
1146 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1147 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1148 * I think this is required by tools like gdb. So same physical
1149 * memory will be mapped in two elf headers. One will contain kernel
1150 * text virtual addresses and other will have __va(physical) addresses.
1151 */
1152
1153 nr_phdr++;
1154 elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1155 elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1156
1157 buf = vzalloc(elf_sz);
1158 if (!buf)
1159 return -ENOMEM;
1160
1161 ehdr = (Elf64_Ehdr *)buf;
1162 phdr = (Elf64_Phdr *)(ehdr + 1);
1163 memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1164 ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1165 ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1166 ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1167 ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1168 memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1169 ehdr->e_type = ET_CORE;
1170 ehdr->e_machine = ELF_ARCH;
1171 ehdr->e_version = EV_CURRENT;
1172 ehdr->e_phoff = sizeof(Elf64_Ehdr);
1173 ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1174 ehdr->e_phentsize = sizeof(Elf64_Phdr);
1175
1176 /* Prepare one phdr of type PT_NOTE for each present cpu */
1177 for_each_present_cpu(cpu) {
1178 phdr->p_type = PT_NOTE;
1179 notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1180 phdr->p_offset = phdr->p_paddr = notes_addr;
1181 phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1182 (ehdr->e_phnum)++;
1183 phdr++;
1184 }
1185
1186 /* Prepare one PT_NOTE header for vmcoreinfo */
1187 phdr->p_type = PT_NOTE;
1188 phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1189 phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1190 (ehdr->e_phnum)++;
1191 phdr++;
1192
1193 /* Prepare PT_LOAD type program header for kernel text region */
1194 if (kernel_map) {
1195 phdr->p_type = PT_LOAD;
1196 phdr->p_flags = PF_R|PF_W|PF_X;
1197 phdr->p_vaddr = (Elf64_Addr)_text;
1198 phdr->p_filesz = phdr->p_memsz = _end - _text;
1199 phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1200 ehdr->e_phnum++;
1201 phdr++;
1202 }
1203
1204 /* Go through all the ranges in mem->ranges[] and prepare phdr */
1205 for (i = 0; i < mem->nr_ranges; i++) {
1206 mstart = mem->ranges[i].start;
1207 mend = mem->ranges[i].end;
1208
1209 phdr->p_type = PT_LOAD;
1210 phdr->p_flags = PF_R|PF_W|PF_X;
1211 phdr->p_offset = mstart;
1212
1213 phdr->p_paddr = mstart;
1214 phdr->p_vaddr = (unsigned long long) __va(mstart);
1215 phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1216 phdr->p_align = 0;
1217 ehdr->e_phnum++;
1218 phdr++;
1219 pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1220 phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1221 ehdr->e_phnum, phdr->p_offset);
1222 }
1223
1224 *addr = buf;
1225 *sz = elf_sz;
1226 return 0;
1227}