kexec: move segment verification code in a separate function
[linux-block.git] / kernel / kexec.c
CommitLineData
dc009d92
EB
1/*
2 * kexec.c - kexec system call
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8
c59ede7b 9#include <linux/capability.h>
dc009d92
EB
10#include <linux/mm.h>
11#include <linux/file.h>
12#include <linux/slab.h>
13#include <linux/fs.h>
14#include <linux/kexec.h>
8c5a1cf0 15#include <linux/mutex.h>
dc009d92
EB
16#include <linux/list.h>
17#include <linux/highmem.h>
18#include <linux/syscalls.h>
19#include <linux/reboot.h>
dc009d92 20#include <linux/ioport.h>
6e274d14 21#include <linux/hardirq.h>
85916f81
MD
22#include <linux/elf.h>
23#include <linux/elfcore.h>
fd59d231
KO
24#include <linux/utsname.h>
25#include <linux/numa.h>
3ab83521
HY
26#include <linux/suspend.h>
27#include <linux/device.h>
89081d17
HY
28#include <linux/freezer.h>
29#include <linux/pm.h>
30#include <linux/cpu.h>
31#include <linux/console.h>
5f41b8cd 32#include <linux/vmalloc.h>
06a7f711 33#include <linux/swap.h>
19234c08 34#include <linux/syscore_ops.h>
52f5684c 35#include <linux/compiler.h>
8f1d26d0 36#include <linux/hugetlb.h>
6e274d14 37
dc009d92
EB
38#include <asm/page.h>
39#include <asm/uaccess.h>
40#include <asm/io.h>
fd59d231 41#include <asm/sections.h>
dc009d92 42
cc571658 43/* Per cpu memory for storing cpu states in case of system crash. */
43cf38eb 44note_buf_t __percpu *crash_notes;
cc571658 45
fd59d231 46/* vmcoreinfo stuff */
edb79a21 47static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
fd59d231 48u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
d768281e
KO
49size_t vmcoreinfo_size;
50size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
fd59d231 51
4fc9bbf9
KA
52/* Flag to indicate we are going to kexec a new kernel */
53bool kexec_in_progress = false;
54
dc009d92
EB
55/* Location of the reserved area for the crash kernel */
56struct resource crashk_res = {
57 .name = "Crash kernel",
58 .start = 0,
59 .end = 0,
60 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
61};
0212f915 62struct resource crashk_low_res = {
157752d8 63 .name = "Crash kernel",
0212f915
YL
64 .start = 0,
65 .end = 0,
66 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
67};
dc009d92 68
6e274d14
AN
69int kexec_should_crash(struct task_struct *p)
70{
b460cbc5 71 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
6e274d14
AN
72 return 1;
73 return 0;
74}
75
dc009d92
EB
76/*
77 * When kexec transitions to the new kernel there is a one-to-one
78 * mapping between physical and virtual addresses. On processors
79 * where you can disable the MMU this is trivial, and easy. For
80 * others it is still a simple predictable page table to setup.
81 *
82 * In that environment kexec copies the new kernel to its final
83 * resting place. This means I can only support memory whose
84 * physical address can fit in an unsigned long. In particular
85 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
86 * If the assembly stub has more restrictive requirements
87 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
88 * defined more restrictively in <asm/kexec.h>.
89 *
90 * The code for the transition from the current kernel to the
91 * the new kernel is placed in the control_code_buffer, whose size
163f6876 92 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
dc009d92
EB
93 * page of memory is necessary, but some architectures require more.
94 * Because this memory must be identity mapped in the transition from
95 * virtual to physical addresses it must live in the range
96 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
97 * modifiable.
98 *
99 * The assembly stub in the control code buffer is passed a linked list
100 * of descriptor pages detailing the source pages of the new kernel,
101 * and the destination addresses of those source pages. As this data
102 * structure is not used in the context of the current OS, it must
103 * be self-contained.
104 *
105 * The code has been made to work with highmem pages and will use a
106 * destination page in its final resting place (if it happens
107 * to allocate it). The end product of this is that most of the
108 * physical address space, and most of RAM can be used.
109 *
110 * Future directions include:
111 * - allocating a page table with the control code buffer identity
112 * mapped, to simplify machine_kexec and make kexec_on_panic more
113 * reliable.
114 */
115
116/*
117 * KIMAGE_NO_DEST is an impossible destination address..., for
118 * allocating pages whose destination address we do not care about.
119 */
120#define KIMAGE_NO_DEST (-1UL)
121
72414d3f
MS
122static int kimage_is_destination_range(struct kimage *image,
123 unsigned long start, unsigned long end);
124static struct page *kimage_alloc_page(struct kimage *image,
9796fdd8 125 gfp_t gfp_mask,
72414d3f 126 unsigned long dest);
dc009d92 127
dabe7862
VG
128static int copy_user_segment_list(struct kimage *image,
129 unsigned long nr_segments,
130 struct kexec_segment __user *segments)
dc009d92 131{
dabe7862 132 int ret;
dc009d92 133 size_t segment_bytes;
dc009d92
EB
134
135 /* Read in the segments */
136 image->nr_segments = nr_segments;
137 segment_bytes = nr_segments * sizeof(*segments);
dabe7862
VG
138 ret = copy_from_user(image->segment, segments, segment_bytes);
139 if (ret)
140 ret = -EFAULT;
141
142 return ret;
143}
144
145static int sanity_check_segment_list(struct kimage *image)
146{
147 int result, i;
148 unsigned long nr_segments = image->nr_segments;
dc009d92
EB
149
150 /*
151 * Verify we have good destination addresses. The caller is
152 * responsible for making certain we don't attempt to load
153 * the new image into invalid or reserved areas of RAM. This
154 * just verifies it is an address we can use.
155 *
156 * Since the kernel does everything in page size chunks ensure
b595076a 157 * the destination addresses are page aligned. Too many
dc009d92
EB
158 * special cases crop of when we don't do this. The most
159 * insidious is getting overlapping destination addresses
160 * simply because addresses are changed to page size
161 * granularity.
162 */
163 result = -EADDRNOTAVAIL;
164 for (i = 0; i < nr_segments; i++) {
165 unsigned long mstart, mend;
72414d3f 166
dc009d92
EB
167 mstart = image->segment[i].mem;
168 mend = mstart + image->segment[i].memsz;
169 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
dabe7862 170 return result;
dc009d92 171 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
dabe7862 172 return result;
dc009d92
EB
173 }
174
175 /* Verify our destination addresses do not overlap.
176 * If we alloed overlapping destination addresses
177 * through very weird things can happen with no
178 * easy explanation as one segment stops on another.
179 */
180 result = -EINVAL;
72414d3f 181 for (i = 0; i < nr_segments; i++) {
dc009d92
EB
182 unsigned long mstart, mend;
183 unsigned long j;
72414d3f 184
dc009d92
EB
185 mstart = image->segment[i].mem;
186 mend = mstart + image->segment[i].memsz;
72414d3f 187 for (j = 0; j < i; j++) {
dc009d92
EB
188 unsigned long pstart, pend;
189 pstart = image->segment[j].mem;
190 pend = pstart + image->segment[j].memsz;
191 /* Do the segments overlap ? */
192 if ((mend > pstart) && (mstart < pend))
dabe7862 193 return result;
dc009d92
EB
194 }
195 }
196
197 /* Ensure our buffer sizes are strictly less than
198 * our memory sizes. This should always be the case,
199 * and it is easier to check up front than to be surprised
200 * later on.
201 */
202 result = -EINVAL;
72414d3f 203 for (i = 0; i < nr_segments; i++) {
dc009d92 204 if (image->segment[i].bufsz > image->segment[i].memsz)
dabe7862 205 return result;
dc009d92
EB
206 }
207
dabe7862
VG
208 /*
209 * Verify we have good destination addresses. Normally
210 * the caller is responsible for making certain we don't
211 * attempt to load the new image into invalid or reserved
212 * areas of RAM. But crash kernels are preloaded into a
213 * reserved area of ram. We must ensure the addresses
214 * are in the reserved area otherwise preloading the
215 * kernel could corrupt things.
216 */
72414d3f 217
dabe7862
VG
218 if (image->type == KEXEC_TYPE_CRASH) {
219 result = -EADDRNOTAVAIL;
220 for (i = 0; i < nr_segments; i++) {
221 unsigned long mstart, mend;
222
223 mstart = image->segment[i].mem;
224 mend = mstart + image->segment[i].memsz - 1;
225 /* Ensure we are within the crash kernel limits */
226 if ((mstart < crashk_res.start) ||
227 (mend > crashk_res.end))
228 return result;
229 }
230 }
dc009d92 231
dabe7862
VG
232 return 0;
233}
234
235static struct kimage *do_kimage_alloc_init(void)
236{
237 struct kimage *image;
238
239 /* Allocate a controlling structure */
240 image = kzalloc(sizeof(*image), GFP_KERNEL);
241 if (!image)
242 return NULL;
243
244 image->head = 0;
245 image->entry = &image->head;
246 image->last_entry = &image->head;
247 image->control_page = ~0; /* By default this does not apply */
248 image->type = KEXEC_TYPE_DEFAULT;
249
250 /* Initialize the list of control pages */
251 INIT_LIST_HEAD(&image->control_pages);
252
253 /* Initialize the list of destination pages */
254 INIT_LIST_HEAD(&image->dest_pages);
255
256 /* Initialize the list of unusable pages */
257 INIT_LIST_HEAD(&image->unusable_pages);
258
259 return image;
dc009d92
EB
260}
261
b92e7e0d
ZY
262static void kimage_free_page_list(struct list_head *list);
263
dc009d92 264static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry,
72414d3f
MS
265 unsigned long nr_segments,
266 struct kexec_segment __user *segments)
dc009d92
EB
267{
268 int result;
269 struct kimage *image;
270
271 /* Allocate and initialize a controlling structure */
dabe7862
VG
272 image = do_kimage_alloc_init();
273 if (!image)
274 return -ENOMEM;
275
276 image->start = entry;
277
278 result = copy_user_segment_list(image, nr_segments, segments);
279 if (result)
280 goto out_free_image;
281
282 result = sanity_check_segment_list(image);
72414d3f 283 if (result)
dabe7862 284 goto out_free_image;
72414d3f 285
dc009d92
EB
286 /*
287 * Find a location for the control code buffer, and add it
288 * the vector of segments so that it's pages will also be
289 * counted as destination pages.
290 */
291 result = -ENOMEM;
292 image->control_code_page = kimage_alloc_control_pages(image,
163f6876 293 get_order(KEXEC_CONTROL_PAGE_SIZE));
dc009d92 294 if (!image->control_code_page) {
e1bebcf4 295 pr_err("Could not allocate control_code_buffer\n");
dabe7862 296 goto out_free_image;
dc009d92
EB
297 }
298
3ab83521
HY
299 image->swap_page = kimage_alloc_control_pages(image, 0);
300 if (!image->swap_page) {
e1bebcf4 301 pr_err("Could not allocate swap buffer\n");
dabe7862 302 goto out_free_control_pages;
3ab83521
HY
303 }
304
b92e7e0d
ZY
305 *rimage = image;
306 return 0;
dabe7862 307out_free_control_pages:
b92e7e0d 308 kimage_free_page_list(&image->control_pages);
dabe7862 309out_free_image:
b92e7e0d 310 kfree(image);
dc009d92
EB
311 return result;
312}
313
314static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry,
72414d3f 315 unsigned long nr_segments,
314b6a4d 316 struct kexec_segment __user *segments)
dc009d92
EB
317{
318 int result;
319 struct kimage *image;
dc009d92 320
dc009d92 321 /* Verify we have a valid entry point */
dabe7862
VG
322 if ((entry < crashk_res.start) || (entry > crashk_res.end))
323 return -EADDRNOTAVAIL;
dc009d92
EB
324
325 /* Allocate and initialize a controlling structure */
dabe7862
VG
326 image = do_kimage_alloc_init();
327 if (!image)
328 return -ENOMEM;
329
330 image->start = entry;
dc009d92
EB
331
332 /* Enable the special crash kernel control page
333 * allocation policy.
334 */
335 image->control_page = crashk_res.start;
336 image->type = KEXEC_TYPE_CRASH;
337
dabe7862
VG
338 result = copy_user_segment_list(image, nr_segments, segments);
339 if (result)
340 goto out_free_image;
72414d3f 341
dabe7862
VG
342 result = sanity_check_segment_list(image);
343 if (result)
344 goto out_free_image;
dc009d92 345
dc009d92
EB
346 /*
347 * Find a location for the control code buffer, and add
348 * the vector of segments so that it's pages will also be
349 * counted as destination pages.
350 */
351 result = -ENOMEM;
352 image->control_code_page = kimage_alloc_control_pages(image,
163f6876 353 get_order(KEXEC_CONTROL_PAGE_SIZE));
dc009d92 354 if (!image->control_code_page) {
e1bebcf4 355 pr_err("Could not allocate control_code_buffer\n");
dabe7862 356 goto out_free_image;
dc009d92
EB
357 }
358
8c333ac2
ZY
359 *rimage = image;
360 return 0;
72414d3f 361
dabe7862 362out_free_image:
8c333ac2 363 kfree(image);
dc009d92
EB
364 return result;
365}
366
72414d3f
MS
367static int kimage_is_destination_range(struct kimage *image,
368 unsigned long start,
369 unsigned long end)
dc009d92
EB
370{
371 unsigned long i;
372
373 for (i = 0; i < image->nr_segments; i++) {
374 unsigned long mstart, mend;
72414d3f 375
dc009d92 376 mstart = image->segment[i].mem;
72414d3f
MS
377 mend = mstart + image->segment[i].memsz;
378 if ((end > mstart) && (start < mend))
dc009d92 379 return 1;
dc009d92 380 }
72414d3f 381
dc009d92
EB
382 return 0;
383}
384
9796fdd8 385static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
dc009d92
EB
386{
387 struct page *pages;
72414d3f 388
dc009d92
EB
389 pages = alloc_pages(gfp_mask, order);
390 if (pages) {
391 unsigned int count, i;
392 pages->mapping = NULL;
4c21e2f2 393 set_page_private(pages, order);
dc009d92 394 count = 1 << order;
72414d3f 395 for (i = 0; i < count; i++)
dc009d92 396 SetPageReserved(pages + i);
dc009d92 397 }
72414d3f 398
dc009d92
EB
399 return pages;
400}
401
402static void kimage_free_pages(struct page *page)
403{
404 unsigned int order, count, i;
72414d3f 405
4c21e2f2 406 order = page_private(page);
dc009d92 407 count = 1 << order;
72414d3f 408 for (i = 0; i < count; i++)
dc009d92 409 ClearPageReserved(page + i);
dc009d92
EB
410 __free_pages(page, order);
411}
412
413static void kimage_free_page_list(struct list_head *list)
414{
415 struct list_head *pos, *next;
72414d3f 416
dc009d92
EB
417 list_for_each_safe(pos, next, list) {
418 struct page *page;
419
420 page = list_entry(pos, struct page, lru);
421 list_del(&page->lru);
dc009d92
EB
422 kimage_free_pages(page);
423 }
424}
425
72414d3f
MS
426static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
427 unsigned int order)
dc009d92
EB
428{
429 /* Control pages are special, they are the intermediaries
430 * that are needed while we copy the rest of the pages
431 * to their final resting place. As such they must
432 * not conflict with either the destination addresses
433 * or memory the kernel is already using.
434 *
435 * The only case where we really need more than one of
436 * these are for architectures where we cannot disable
437 * the MMU and must instead generate an identity mapped
438 * page table for all of the memory.
439 *
440 * At worst this runs in O(N) of the image size.
441 */
442 struct list_head extra_pages;
443 struct page *pages;
444 unsigned int count;
445
446 count = 1 << order;
447 INIT_LIST_HEAD(&extra_pages);
448
449 /* Loop while I can allocate a page and the page allocated
450 * is a destination page.
451 */
452 do {
453 unsigned long pfn, epfn, addr, eaddr;
72414d3f 454
dc009d92
EB
455 pages = kimage_alloc_pages(GFP_KERNEL, order);
456 if (!pages)
457 break;
458 pfn = page_to_pfn(pages);
459 epfn = pfn + count;
460 addr = pfn << PAGE_SHIFT;
461 eaddr = epfn << PAGE_SHIFT;
462 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
72414d3f 463 kimage_is_destination_range(image, addr, eaddr)) {
dc009d92
EB
464 list_add(&pages->lru, &extra_pages);
465 pages = NULL;
466 }
72414d3f
MS
467 } while (!pages);
468
dc009d92
EB
469 if (pages) {
470 /* Remember the allocated page... */
471 list_add(&pages->lru, &image->control_pages);
472
473 /* Because the page is already in it's destination
474 * location we will never allocate another page at
475 * that address. Therefore kimage_alloc_pages
476 * will not return it (again) and we don't need
477 * to give it an entry in image->segment[].
478 */
479 }
480 /* Deal with the destination pages I have inadvertently allocated.
481 *
482 * Ideally I would convert multi-page allocations into single
25985edc 483 * page allocations, and add everything to image->dest_pages.
dc009d92
EB
484 *
485 * For now it is simpler to just free the pages.
486 */
487 kimage_free_page_list(&extra_pages);
dc009d92 488
72414d3f 489 return pages;
dc009d92
EB
490}
491
72414d3f
MS
492static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
493 unsigned int order)
dc009d92
EB
494{
495 /* Control pages are special, they are the intermediaries
496 * that are needed while we copy the rest of the pages
497 * to their final resting place. As such they must
498 * not conflict with either the destination addresses
499 * or memory the kernel is already using.
500 *
501 * Control pages are also the only pags we must allocate
502 * when loading a crash kernel. All of the other pages
503 * are specified by the segments and we just memcpy
504 * into them directly.
505 *
506 * The only case where we really need more than one of
507 * these are for architectures where we cannot disable
508 * the MMU and must instead generate an identity mapped
509 * page table for all of the memory.
510 *
511 * Given the low demand this implements a very simple
512 * allocator that finds the first hole of the appropriate
513 * size in the reserved memory region, and allocates all
514 * of the memory up to and including the hole.
515 */
516 unsigned long hole_start, hole_end, size;
517 struct page *pages;
72414d3f 518
dc009d92
EB
519 pages = NULL;
520 size = (1 << order) << PAGE_SHIFT;
521 hole_start = (image->control_page + (size - 1)) & ~(size - 1);
522 hole_end = hole_start + size - 1;
72414d3f 523 while (hole_end <= crashk_res.end) {
dc009d92 524 unsigned long i;
72414d3f 525
3d214fae 526 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
dc009d92 527 break;
dc009d92 528 /* See if I overlap any of the segments */
72414d3f 529 for (i = 0; i < image->nr_segments; i++) {
dc009d92 530 unsigned long mstart, mend;
72414d3f 531
dc009d92
EB
532 mstart = image->segment[i].mem;
533 mend = mstart + image->segment[i].memsz - 1;
534 if ((hole_end >= mstart) && (hole_start <= mend)) {
535 /* Advance the hole to the end of the segment */
536 hole_start = (mend + (size - 1)) & ~(size - 1);
537 hole_end = hole_start + size - 1;
538 break;
539 }
540 }
541 /* If I don't overlap any segments I have found my hole! */
542 if (i == image->nr_segments) {
543 pages = pfn_to_page(hole_start >> PAGE_SHIFT);
544 break;
545 }
546 }
72414d3f 547 if (pages)
dc009d92 548 image->control_page = hole_end;
72414d3f 549
dc009d92
EB
550 return pages;
551}
552
553
72414d3f
MS
554struct page *kimage_alloc_control_pages(struct kimage *image,
555 unsigned int order)
dc009d92
EB
556{
557 struct page *pages = NULL;
72414d3f
MS
558
559 switch (image->type) {
dc009d92
EB
560 case KEXEC_TYPE_DEFAULT:
561 pages = kimage_alloc_normal_control_pages(image, order);
562 break;
563 case KEXEC_TYPE_CRASH:
564 pages = kimage_alloc_crash_control_pages(image, order);
565 break;
566 }
72414d3f 567
dc009d92
EB
568 return pages;
569}
570
571static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
572{
72414d3f 573 if (*image->entry != 0)
dc009d92 574 image->entry++;
72414d3f 575
dc009d92
EB
576 if (image->entry == image->last_entry) {
577 kimage_entry_t *ind_page;
578 struct page *page;
72414d3f 579
dc009d92 580 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
72414d3f 581 if (!page)
dc009d92 582 return -ENOMEM;
72414d3f 583
dc009d92
EB
584 ind_page = page_address(page);
585 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
586 image->entry = ind_page;
72414d3f
MS
587 image->last_entry = ind_page +
588 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
dc009d92
EB
589 }
590 *image->entry = entry;
591 image->entry++;
592 *image->entry = 0;
72414d3f 593
dc009d92
EB
594 return 0;
595}
596
72414d3f
MS
597static int kimage_set_destination(struct kimage *image,
598 unsigned long destination)
dc009d92
EB
599{
600 int result;
601
602 destination &= PAGE_MASK;
603 result = kimage_add_entry(image, destination | IND_DESTINATION);
72414d3f 604 if (result == 0)
dc009d92 605 image->destination = destination;
72414d3f 606
dc009d92
EB
607 return result;
608}
609
610
611static int kimage_add_page(struct kimage *image, unsigned long page)
612{
613 int result;
614
615 page &= PAGE_MASK;
616 result = kimage_add_entry(image, page | IND_SOURCE);
72414d3f 617 if (result == 0)
dc009d92 618 image->destination += PAGE_SIZE;
72414d3f 619
dc009d92
EB
620 return result;
621}
622
623
624static void kimage_free_extra_pages(struct kimage *image)
625{
626 /* Walk through and free any extra destination pages I may have */
627 kimage_free_page_list(&image->dest_pages);
628
25985edc 629 /* Walk through and free any unusable pages I have cached */
7d3e2bca 630 kimage_free_page_list(&image->unusable_pages);
dc009d92
EB
631
632}
7fccf032 633static void kimage_terminate(struct kimage *image)
dc009d92 634{
72414d3f 635 if (*image->entry != 0)
dc009d92 636 image->entry++;
72414d3f 637
dc009d92 638 *image->entry = IND_DONE;
dc009d92
EB
639}
640
641#define for_each_kimage_entry(image, ptr, entry) \
642 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
e1bebcf4
FF
643 ptr = (entry & IND_INDIRECTION) ? \
644 phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
dc009d92
EB
645
646static void kimage_free_entry(kimage_entry_t entry)
647{
648 struct page *page;
649
650 page = pfn_to_page(entry >> PAGE_SHIFT);
651 kimage_free_pages(page);
652}
653
654static void kimage_free(struct kimage *image)
655{
656 kimage_entry_t *ptr, entry;
657 kimage_entry_t ind = 0;
658
659 if (!image)
660 return;
72414d3f 661
dc009d92
EB
662 kimage_free_extra_pages(image);
663 for_each_kimage_entry(image, ptr, entry) {
664 if (entry & IND_INDIRECTION) {
665 /* Free the previous indirection page */
72414d3f 666 if (ind & IND_INDIRECTION)
dc009d92 667 kimage_free_entry(ind);
dc009d92
EB
668 /* Save this indirection page until we are
669 * done with it.
670 */
671 ind = entry;
e1bebcf4 672 } else if (entry & IND_SOURCE)
dc009d92 673 kimage_free_entry(entry);
dc009d92
EB
674 }
675 /* Free the final indirection page */
72414d3f 676 if (ind & IND_INDIRECTION)
dc009d92 677 kimage_free_entry(ind);
dc009d92
EB
678
679 /* Handle any machine specific cleanup */
680 machine_kexec_cleanup(image);
681
682 /* Free the kexec control pages... */
683 kimage_free_page_list(&image->control_pages);
684 kfree(image);
685}
686
72414d3f
MS
687static kimage_entry_t *kimage_dst_used(struct kimage *image,
688 unsigned long page)
dc009d92
EB
689{
690 kimage_entry_t *ptr, entry;
691 unsigned long destination = 0;
692
693 for_each_kimage_entry(image, ptr, entry) {
72414d3f 694 if (entry & IND_DESTINATION)
dc009d92 695 destination = entry & PAGE_MASK;
dc009d92 696 else if (entry & IND_SOURCE) {
72414d3f 697 if (page == destination)
dc009d92 698 return ptr;
dc009d92
EB
699 destination += PAGE_SIZE;
700 }
701 }
72414d3f 702
314b6a4d 703 return NULL;
dc009d92
EB
704}
705
72414d3f 706static struct page *kimage_alloc_page(struct kimage *image,
9796fdd8 707 gfp_t gfp_mask,
72414d3f 708 unsigned long destination)
dc009d92
EB
709{
710 /*
711 * Here we implement safeguards to ensure that a source page
712 * is not copied to its destination page before the data on
713 * the destination page is no longer useful.
714 *
715 * To do this we maintain the invariant that a source page is
716 * either its own destination page, or it is not a
717 * destination page at all.
718 *
719 * That is slightly stronger than required, but the proof
720 * that no problems will not occur is trivial, and the
721 * implementation is simply to verify.
722 *
723 * When allocating all pages normally this algorithm will run
724 * in O(N) time, but in the worst case it will run in O(N^2)
725 * time. If the runtime is a problem the data structures can
726 * be fixed.
727 */
728 struct page *page;
729 unsigned long addr;
730
731 /*
732 * Walk through the list of destination pages, and see if I
733 * have a match.
734 */
735 list_for_each_entry(page, &image->dest_pages, lru) {
736 addr = page_to_pfn(page) << PAGE_SHIFT;
737 if (addr == destination) {
738 list_del(&page->lru);
739 return page;
740 }
741 }
742 page = NULL;
743 while (1) {
744 kimage_entry_t *old;
745
746 /* Allocate a page, if we run out of memory give up */
747 page = kimage_alloc_pages(gfp_mask, 0);
72414d3f 748 if (!page)
314b6a4d 749 return NULL;
dc009d92 750 /* If the page cannot be used file it away */
72414d3f
MS
751 if (page_to_pfn(page) >
752 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
7d3e2bca 753 list_add(&page->lru, &image->unusable_pages);
dc009d92
EB
754 continue;
755 }
756 addr = page_to_pfn(page) << PAGE_SHIFT;
757
758 /* If it is the destination page we want use it */
759 if (addr == destination)
760 break;
761
762 /* If the page is not a destination page use it */
72414d3f
MS
763 if (!kimage_is_destination_range(image, addr,
764 addr + PAGE_SIZE))
dc009d92
EB
765 break;
766
767 /*
768 * I know that the page is someones destination page.
769 * See if there is already a source page for this
770 * destination page. And if so swap the source pages.
771 */
772 old = kimage_dst_used(image, addr);
773 if (old) {
774 /* If so move it */
775 unsigned long old_addr;
776 struct page *old_page;
777
778 old_addr = *old & PAGE_MASK;
779 old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
780 copy_highpage(page, old_page);
781 *old = addr | (*old & ~PAGE_MASK);
782
783 /* The old page I have found cannot be a
f9092f35
JS
784 * destination page, so return it if it's
785 * gfp_flags honor the ones passed in.
dc009d92 786 */
f9092f35
JS
787 if (!(gfp_mask & __GFP_HIGHMEM) &&
788 PageHighMem(old_page)) {
789 kimage_free_pages(old_page);
790 continue;
791 }
dc009d92
EB
792 addr = old_addr;
793 page = old_page;
794 break;
e1bebcf4 795 } else {
dc009d92
EB
796 /* Place the page on the destination list I
797 * will use it later.
798 */
799 list_add(&page->lru, &image->dest_pages);
800 }
801 }
72414d3f 802
dc009d92
EB
803 return page;
804}
805
806static int kimage_load_normal_segment(struct kimage *image,
72414d3f 807 struct kexec_segment *segment)
dc009d92
EB
808{
809 unsigned long maddr;
310faaa9 810 size_t ubytes, mbytes;
dc009d92 811 int result;
314b6a4d 812 unsigned char __user *buf;
dc009d92
EB
813
814 result = 0;
815 buf = segment->buf;
816 ubytes = segment->bufsz;
817 mbytes = segment->memsz;
818 maddr = segment->mem;
819
820 result = kimage_set_destination(image, maddr);
72414d3f 821 if (result < 0)
dc009d92 822 goto out;
72414d3f
MS
823
824 while (mbytes) {
dc009d92
EB
825 struct page *page;
826 char *ptr;
827 size_t uchunk, mchunk;
72414d3f 828
dc009d92 829 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
c80544dc 830 if (!page) {
dc009d92
EB
831 result = -ENOMEM;
832 goto out;
833 }
72414d3f
MS
834 result = kimage_add_page(image, page_to_pfn(page)
835 << PAGE_SHIFT);
836 if (result < 0)
dc009d92 837 goto out;
72414d3f 838
dc009d92
EB
839 ptr = kmap(page);
840 /* Start with a clear page */
3ecb01df 841 clear_page(ptr);
dc009d92 842 ptr += maddr & ~PAGE_MASK;
31c3a3fe
ZY
843 mchunk = min_t(size_t, mbytes,
844 PAGE_SIZE - (maddr & ~PAGE_MASK));
845 uchunk = min(ubytes, mchunk);
72414d3f 846
dc009d92
EB
847 result = copy_from_user(ptr, buf, uchunk);
848 kunmap(page);
849 if (result) {
f65a03f6 850 result = -EFAULT;
dc009d92
EB
851 goto out;
852 }
853 ubytes -= uchunk;
854 maddr += mchunk;
855 buf += mchunk;
856 mbytes -= mchunk;
857 }
72414d3f 858out:
dc009d92
EB
859 return result;
860}
861
862static int kimage_load_crash_segment(struct kimage *image,
72414d3f 863 struct kexec_segment *segment)
dc009d92
EB
864{
865 /* For crash dumps kernels we simply copy the data from
866 * user space to it's destination.
867 * We do things a page at a time for the sake of kmap.
868 */
869 unsigned long maddr;
310faaa9 870 size_t ubytes, mbytes;
dc009d92 871 int result;
314b6a4d 872 unsigned char __user *buf;
dc009d92
EB
873
874 result = 0;
875 buf = segment->buf;
876 ubytes = segment->bufsz;
877 mbytes = segment->memsz;
878 maddr = segment->mem;
72414d3f 879 while (mbytes) {
dc009d92
EB
880 struct page *page;
881 char *ptr;
882 size_t uchunk, mchunk;
72414d3f 883
dc009d92 884 page = pfn_to_page(maddr >> PAGE_SHIFT);
c80544dc 885 if (!page) {
dc009d92
EB
886 result = -ENOMEM;
887 goto out;
888 }
889 ptr = kmap(page);
890 ptr += maddr & ~PAGE_MASK;
31c3a3fe
ZY
891 mchunk = min_t(size_t, mbytes,
892 PAGE_SIZE - (maddr & ~PAGE_MASK));
893 uchunk = min(ubytes, mchunk);
894 if (mchunk > uchunk) {
dc009d92
EB
895 /* Zero the trailing part of the page */
896 memset(ptr + uchunk, 0, mchunk - uchunk);
897 }
898 result = copy_from_user(ptr, buf, uchunk);
a7956113 899 kexec_flush_icache_page(page);
dc009d92
EB
900 kunmap(page);
901 if (result) {
f65a03f6 902 result = -EFAULT;
dc009d92
EB
903 goto out;
904 }
905 ubytes -= uchunk;
906 maddr += mchunk;
907 buf += mchunk;
908 mbytes -= mchunk;
909 }
72414d3f 910out:
dc009d92
EB
911 return result;
912}
913
914static int kimage_load_segment(struct kimage *image,
72414d3f 915 struct kexec_segment *segment)
dc009d92
EB
916{
917 int result = -ENOMEM;
72414d3f
MS
918
919 switch (image->type) {
dc009d92
EB
920 case KEXEC_TYPE_DEFAULT:
921 result = kimage_load_normal_segment(image, segment);
922 break;
923 case KEXEC_TYPE_CRASH:
924 result = kimage_load_crash_segment(image, segment);
925 break;
926 }
72414d3f 927
dc009d92
EB
928 return result;
929}
930
931/*
932 * Exec Kernel system call: for obvious reasons only root may call it.
933 *
934 * This call breaks up into three pieces.
935 * - A generic part which loads the new kernel from the current
936 * address space, and very carefully places the data in the
937 * allocated pages.
938 *
939 * - A generic part that interacts with the kernel and tells all of
940 * the devices to shut down. Preventing on-going dmas, and placing
941 * the devices in a consistent state so a later kernel can
942 * reinitialize them.
943 *
944 * - A machine specific part that includes the syscall number
002ace78 945 * and then copies the image to it's final destination. And
dc009d92
EB
946 * jumps into the image at entry.
947 *
948 * kexec does not sync, or unmount filesystems so if you need
949 * that to happen you need to do that yourself.
950 */
c330dda9
JM
951struct kimage *kexec_image;
952struct kimage *kexec_crash_image;
7984754b 953int kexec_load_disabled;
8c5a1cf0
AM
954
955static DEFINE_MUTEX(kexec_mutex);
dc009d92 956
754fe8d2
HC
957SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
958 struct kexec_segment __user *, segments, unsigned long, flags)
dc009d92
EB
959{
960 struct kimage **dest_image, *image;
dc009d92
EB
961 int result;
962
963 /* We only trust the superuser with rebooting the system. */
7984754b 964 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
dc009d92
EB
965 return -EPERM;
966
967 /*
968 * Verify we have a legal set of flags
969 * This leaves us room for future extensions.
970 */
971 if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
972 return -EINVAL;
973
974 /* Verify we are on the appropriate architecture */
975 if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
976 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
dc009d92 977 return -EINVAL;
dc009d92
EB
978
979 /* Put an artificial cap on the number
980 * of segments passed to kexec_load.
981 */
982 if (nr_segments > KEXEC_SEGMENT_MAX)
983 return -EINVAL;
984
985 image = NULL;
986 result = 0;
987
988 /* Because we write directly to the reserved memory
989 * region when loading crash kernels we need a mutex here to
990 * prevent multiple crash kernels from attempting to load
991 * simultaneously, and to prevent a crash kernel from loading
992 * over the top of a in use crash kernel.
993 *
994 * KISS: always take the mutex.
995 */
8c5a1cf0 996 if (!mutex_trylock(&kexec_mutex))
dc009d92 997 return -EBUSY;
72414d3f 998
dc009d92 999 dest_image = &kexec_image;
72414d3f 1000 if (flags & KEXEC_ON_CRASH)
dc009d92 1001 dest_image = &kexec_crash_image;
dc009d92
EB
1002 if (nr_segments > 0) {
1003 unsigned long i;
72414d3f 1004
dc009d92 1005 /* Loading another kernel to reboot into */
72414d3f
MS
1006 if ((flags & KEXEC_ON_CRASH) == 0)
1007 result = kimage_normal_alloc(&image, entry,
1008 nr_segments, segments);
dc009d92
EB
1009 /* Loading another kernel to switch to if this one crashes */
1010 else if (flags & KEXEC_ON_CRASH) {
1011 /* Free any current crash dump kernel before
1012 * we corrupt it.
1013 */
1014 kimage_free(xchg(&kexec_crash_image, NULL));
72414d3f
MS
1015 result = kimage_crash_alloc(&image, entry,
1016 nr_segments, segments);
558df720 1017 crash_map_reserved_pages();
dc009d92 1018 }
72414d3f 1019 if (result)
dc009d92 1020 goto out;
72414d3f 1021
3ab83521
HY
1022 if (flags & KEXEC_PRESERVE_CONTEXT)
1023 image->preserve_context = 1;
dc009d92 1024 result = machine_kexec_prepare(image);
72414d3f 1025 if (result)
dc009d92 1026 goto out;
72414d3f
MS
1027
1028 for (i = 0; i < nr_segments; i++) {
dc009d92 1029 result = kimage_load_segment(image, &image->segment[i]);
72414d3f 1030 if (result)
dc009d92 1031 goto out;
dc009d92 1032 }
7fccf032 1033 kimage_terminate(image);
558df720
MH
1034 if (flags & KEXEC_ON_CRASH)
1035 crash_unmap_reserved_pages();
dc009d92
EB
1036 }
1037 /* Install the new kernel, and Uninstall the old */
1038 image = xchg(dest_image, image);
1039
72414d3f 1040out:
8c5a1cf0 1041 mutex_unlock(&kexec_mutex);
dc009d92 1042 kimage_free(image);
72414d3f 1043
dc009d92
EB
1044 return result;
1045}
1046
558df720
MH
1047/*
1048 * Add and remove page tables for crashkernel memory
1049 *
1050 * Provide an empty default implementation here -- architecture
1051 * code may override this
1052 */
1053void __weak crash_map_reserved_pages(void)
1054{}
1055
1056void __weak crash_unmap_reserved_pages(void)
1057{}
1058
dc009d92 1059#ifdef CONFIG_COMPAT
ca2c405a
HC
1060COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
1061 compat_ulong_t, nr_segments,
1062 struct compat_kexec_segment __user *, segments,
1063 compat_ulong_t, flags)
dc009d92
EB
1064{
1065 struct compat_kexec_segment in;
1066 struct kexec_segment out, __user *ksegments;
1067 unsigned long i, result;
1068
1069 /* Don't allow clients that don't understand the native
1070 * architecture to do anything.
1071 */
72414d3f 1072 if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
dc009d92 1073 return -EINVAL;
dc009d92 1074
72414d3f 1075 if (nr_segments > KEXEC_SEGMENT_MAX)
dc009d92 1076 return -EINVAL;
dc009d92
EB
1077
1078 ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
e1bebcf4 1079 for (i = 0; i < nr_segments; i++) {
dc009d92 1080 result = copy_from_user(&in, &segments[i], sizeof(in));
72414d3f 1081 if (result)
dc009d92 1082 return -EFAULT;
dc009d92
EB
1083
1084 out.buf = compat_ptr(in.buf);
1085 out.bufsz = in.bufsz;
1086 out.mem = in.mem;
1087 out.memsz = in.memsz;
1088
1089 result = copy_to_user(&ksegments[i], &out, sizeof(out));
72414d3f 1090 if (result)
dc009d92 1091 return -EFAULT;
dc009d92
EB
1092 }
1093
1094 return sys_kexec_load(entry, nr_segments, ksegments, flags);
1095}
1096#endif
1097
6e274d14 1098void crash_kexec(struct pt_regs *regs)
dc009d92 1099{
8c5a1cf0 1100 /* Take the kexec_mutex here to prevent sys_kexec_load
dc009d92
EB
1101 * running on one cpu from replacing the crash kernel
1102 * we are using after a panic on a different cpu.
1103 *
1104 * If the crash kernel was not located in a fixed area
1105 * of memory the xchg(&kexec_crash_image) would be
1106 * sufficient. But since I reuse the memory...
1107 */
8c5a1cf0 1108 if (mutex_trylock(&kexec_mutex)) {
c0ce7d08 1109 if (kexec_crash_image) {
e996e581 1110 struct pt_regs fixed_regs;
0f4bd46e 1111
e996e581 1112 crash_setup_regs(&fixed_regs, regs);
fd59d231 1113 crash_save_vmcoreinfo();
e996e581 1114 machine_crash_shutdown(&fixed_regs);
c0ce7d08 1115 machine_kexec(kexec_crash_image);
dc009d92 1116 }
8c5a1cf0 1117 mutex_unlock(&kexec_mutex);
dc009d92
EB
1118 }
1119}
cc571658 1120
06a7f711
AW
1121size_t crash_get_memory_size(void)
1122{
e05bd336 1123 size_t size = 0;
06a7f711 1124 mutex_lock(&kexec_mutex);
e05bd336 1125 if (crashk_res.end != crashk_res.start)
28f65c11 1126 size = resource_size(&crashk_res);
06a7f711
AW
1127 mutex_unlock(&kexec_mutex);
1128 return size;
1129}
1130
c0bb9e45
AB
1131void __weak crash_free_reserved_phys_range(unsigned long begin,
1132 unsigned long end)
06a7f711
AW
1133{
1134 unsigned long addr;
1135
e07cee23
JL
1136 for (addr = begin; addr < end; addr += PAGE_SIZE)
1137 free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
06a7f711
AW
1138}
1139
1140int crash_shrink_memory(unsigned long new_size)
1141{
1142 int ret = 0;
1143 unsigned long start, end;
bec013c4 1144 unsigned long old_size;
6480e5a0 1145 struct resource *ram_res;
06a7f711
AW
1146
1147 mutex_lock(&kexec_mutex);
1148
1149 if (kexec_crash_image) {
1150 ret = -ENOENT;
1151 goto unlock;
1152 }
1153 start = crashk_res.start;
1154 end = crashk_res.end;
bec013c4
MH
1155 old_size = (end == 0) ? 0 : end - start + 1;
1156 if (new_size >= old_size) {
1157 ret = (new_size == old_size) ? 0 : -EINVAL;
06a7f711
AW
1158 goto unlock;
1159 }
1160
6480e5a0
MH
1161 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1162 if (!ram_res) {
1163 ret = -ENOMEM;
1164 goto unlock;
1165 }
1166
558df720
MH
1167 start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1168 end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
06a7f711 1169
558df720 1170 crash_map_reserved_pages();
c0bb9e45 1171 crash_free_reserved_phys_range(end, crashk_res.end);
06a7f711 1172
e05bd336 1173 if ((start == end) && (crashk_res.parent != NULL))
06a7f711 1174 release_resource(&crashk_res);
6480e5a0
MH
1175
1176 ram_res->start = end;
1177 ram_res->end = crashk_res.end;
1178 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1179 ram_res->name = "System RAM";
1180
475f9aa6 1181 crashk_res.end = end - 1;
6480e5a0
MH
1182
1183 insert_resource(&iomem_resource, ram_res);
558df720 1184 crash_unmap_reserved_pages();
06a7f711
AW
1185
1186unlock:
1187 mutex_unlock(&kexec_mutex);
1188 return ret;
1189}
1190
85916f81
MD
1191static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
1192 size_t data_len)
1193{
1194 struct elf_note note;
1195
1196 note.n_namesz = strlen(name) + 1;
1197 note.n_descsz = data_len;
1198 note.n_type = type;
1199 memcpy(buf, &note, sizeof(note));
1200 buf += (sizeof(note) + 3)/4;
1201 memcpy(buf, name, note.n_namesz);
1202 buf += (note.n_namesz + 3)/4;
1203 memcpy(buf, data, note.n_descsz);
1204 buf += (note.n_descsz + 3)/4;
1205
1206 return buf;
1207}
1208
1209static void final_note(u32 *buf)
1210{
1211 struct elf_note note;
1212
1213 note.n_namesz = 0;
1214 note.n_descsz = 0;
1215 note.n_type = 0;
1216 memcpy(buf, &note, sizeof(note));
1217}
1218
1219void crash_save_cpu(struct pt_regs *regs, int cpu)
1220{
1221 struct elf_prstatus prstatus;
1222 u32 *buf;
1223
4f4b6c1a 1224 if ((cpu < 0) || (cpu >= nr_cpu_ids))
85916f81
MD
1225 return;
1226
1227 /* Using ELF notes here is opportunistic.
1228 * I need a well defined structure format
1229 * for the data I pass, and I need tags
1230 * on the data to indicate what information I have
1231 * squirrelled away. ELF notes happen to provide
1232 * all of that, so there is no need to invent something new.
1233 */
e1bebcf4 1234 buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
85916f81
MD
1235 if (!buf)
1236 return;
1237 memset(&prstatus, 0, sizeof(prstatus));
1238 prstatus.pr_pid = current->pid;
6cd61c0b 1239 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
6672f76a 1240 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
e1bebcf4 1241 &prstatus, sizeof(prstatus));
85916f81
MD
1242 final_note(buf);
1243}
1244
cc571658
VG
1245static int __init crash_notes_memory_init(void)
1246{
1247 /* Allocate memory for saving cpu registers. */
1248 crash_notes = alloc_percpu(note_buf_t);
1249 if (!crash_notes) {
e1bebcf4 1250 pr_warn("Kexec: Memory allocation for saving cpu register states failed\n");
cc571658
VG
1251 return -ENOMEM;
1252 }
1253 return 0;
1254}
c96d6660 1255subsys_initcall(crash_notes_memory_init);
fd59d231 1256
cba63c30
BW
1257
1258/*
1259 * parsing the "crashkernel" commandline
1260 *
1261 * this code is intended to be called from architecture specific code
1262 */
1263
1264
1265/*
1266 * This function parses command lines in the format
1267 *
1268 * crashkernel=ramsize-range:size[,...][@offset]
1269 *
1270 * The function returns 0 on success and -EINVAL on failure.
1271 */
e1bebcf4
FF
1272static int __init parse_crashkernel_mem(char *cmdline,
1273 unsigned long long system_ram,
1274 unsigned long long *crash_size,
1275 unsigned long long *crash_base)
cba63c30
BW
1276{
1277 char *cur = cmdline, *tmp;
1278
1279 /* for each entry of the comma-separated list */
1280 do {
1281 unsigned long long start, end = ULLONG_MAX, size;
1282
1283 /* get the start of the range */
1284 start = memparse(cur, &tmp);
1285 if (cur == tmp) {
e1bebcf4 1286 pr_warn("crashkernel: Memory value expected\n");
cba63c30
BW
1287 return -EINVAL;
1288 }
1289 cur = tmp;
1290 if (*cur != '-') {
e1bebcf4 1291 pr_warn("crashkernel: '-' expected\n");
cba63c30
BW
1292 return -EINVAL;
1293 }
1294 cur++;
1295
1296 /* if no ':' is here, than we read the end */
1297 if (*cur != ':') {
1298 end = memparse(cur, &tmp);
1299 if (cur == tmp) {
e1bebcf4 1300 pr_warn("crashkernel: Memory value expected\n");
cba63c30
BW
1301 return -EINVAL;
1302 }
1303 cur = tmp;
1304 if (end <= start) {
e1bebcf4 1305 pr_warn("crashkernel: end <= start\n");
cba63c30
BW
1306 return -EINVAL;
1307 }
1308 }
1309
1310 if (*cur != ':') {
e1bebcf4 1311 pr_warn("crashkernel: ':' expected\n");
cba63c30
BW
1312 return -EINVAL;
1313 }
1314 cur++;
1315
1316 size = memparse(cur, &tmp);
1317 if (cur == tmp) {
e1bebcf4 1318 pr_warn("Memory value expected\n");
cba63c30
BW
1319 return -EINVAL;
1320 }
1321 cur = tmp;
1322 if (size >= system_ram) {
e1bebcf4 1323 pr_warn("crashkernel: invalid size\n");
cba63c30
BW
1324 return -EINVAL;
1325 }
1326
1327 /* match ? */
be089d79 1328 if (system_ram >= start && system_ram < end) {
cba63c30
BW
1329 *crash_size = size;
1330 break;
1331 }
1332 } while (*cur++ == ',');
1333
1334 if (*crash_size > 0) {
11c7da4b 1335 while (*cur && *cur != ' ' && *cur != '@')
cba63c30
BW
1336 cur++;
1337 if (*cur == '@') {
1338 cur++;
1339 *crash_base = memparse(cur, &tmp);
1340 if (cur == tmp) {
e1bebcf4 1341 pr_warn("Memory value expected after '@'\n");
cba63c30
BW
1342 return -EINVAL;
1343 }
1344 }
1345 }
1346
1347 return 0;
1348}
1349
1350/*
1351 * That function parses "simple" (old) crashkernel command lines like
1352 *
e1bebcf4 1353 * crashkernel=size[@offset]
cba63c30
BW
1354 *
1355 * It returns 0 on success and -EINVAL on failure.
1356 */
e1bebcf4
FF
1357static int __init parse_crashkernel_simple(char *cmdline,
1358 unsigned long long *crash_size,
1359 unsigned long long *crash_base)
cba63c30
BW
1360{
1361 char *cur = cmdline;
1362
1363 *crash_size = memparse(cmdline, &cur);
1364 if (cmdline == cur) {
e1bebcf4 1365 pr_warn("crashkernel: memory value expected\n");
cba63c30
BW
1366 return -EINVAL;
1367 }
1368
1369 if (*cur == '@')
1370 *crash_base = memparse(cur+1, &cur);
eaa3be6a 1371 else if (*cur != ' ' && *cur != '\0') {
e1bebcf4 1372 pr_warn("crashkernel: unrecognized char\n");
eaa3be6a
ZD
1373 return -EINVAL;
1374 }
cba63c30
BW
1375
1376 return 0;
1377}
1378
adbc742b
YL
1379#define SUFFIX_HIGH 0
1380#define SUFFIX_LOW 1
1381#define SUFFIX_NULL 2
1382static __initdata char *suffix_tbl[] = {
1383 [SUFFIX_HIGH] = ",high",
1384 [SUFFIX_LOW] = ",low",
1385 [SUFFIX_NULL] = NULL,
1386};
1387
cba63c30 1388/*
adbc742b
YL
1389 * That function parses "suffix" crashkernel command lines like
1390 *
1391 * crashkernel=size,[high|low]
1392 *
1393 * It returns 0 on success and -EINVAL on failure.
cba63c30 1394 */
adbc742b
YL
1395static int __init parse_crashkernel_suffix(char *cmdline,
1396 unsigned long long *crash_size,
1397 unsigned long long *crash_base,
1398 const char *suffix)
1399{
1400 char *cur = cmdline;
1401
1402 *crash_size = memparse(cmdline, &cur);
1403 if (cmdline == cur) {
1404 pr_warn("crashkernel: memory value expected\n");
1405 return -EINVAL;
1406 }
1407
1408 /* check with suffix */
1409 if (strncmp(cur, suffix, strlen(suffix))) {
1410 pr_warn("crashkernel: unrecognized char\n");
1411 return -EINVAL;
1412 }
1413 cur += strlen(suffix);
1414 if (*cur != ' ' && *cur != '\0') {
1415 pr_warn("crashkernel: unrecognized char\n");
1416 return -EINVAL;
1417 }
1418
1419 return 0;
1420}
1421
1422static __init char *get_last_crashkernel(char *cmdline,
1423 const char *name,
1424 const char *suffix)
1425{
1426 char *p = cmdline, *ck_cmdline = NULL;
1427
1428 /* find crashkernel and use the last one if there are more */
1429 p = strstr(p, name);
1430 while (p) {
1431 char *end_p = strchr(p, ' ');
1432 char *q;
1433
1434 if (!end_p)
1435 end_p = p + strlen(p);
1436
1437 if (!suffix) {
1438 int i;
1439
1440 /* skip the one with any known suffix */
1441 for (i = 0; suffix_tbl[i]; i++) {
1442 q = end_p - strlen(suffix_tbl[i]);
1443 if (!strncmp(q, suffix_tbl[i],
1444 strlen(suffix_tbl[i])))
1445 goto next;
1446 }
1447 ck_cmdline = p;
1448 } else {
1449 q = end_p - strlen(suffix);
1450 if (!strncmp(q, suffix, strlen(suffix)))
1451 ck_cmdline = p;
1452 }
1453next:
1454 p = strstr(p+1, name);
1455 }
1456
1457 if (!ck_cmdline)
1458 return NULL;
1459
1460 return ck_cmdline;
1461}
1462
0212f915 1463static int __init __parse_crashkernel(char *cmdline,
cba63c30
BW
1464 unsigned long long system_ram,
1465 unsigned long long *crash_size,
0212f915 1466 unsigned long long *crash_base,
adbc742b
YL
1467 const char *name,
1468 const char *suffix)
cba63c30 1469{
cba63c30 1470 char *first_colon, *first_space;
adbc742b 1471 char *ck_cmdline;
cba63c30
BW
1472
1473 BUG_ON(!crash_size || !crash_base);
1474 *crash_size = 0;
1475 *crash_base = 0;
1476
adbc742b 1477 ck_cmdline = get_last_crashkernel(cmdline, name, suffix);
cba63c30
BW
1478
1479 if (!ck_cmdline)
1480 return -EINVAL;
1481
0212f915 1482 ck_cmdline += strlen(name);
cba63c30 1483
adbc742b
YL
1484 if (suffix)
1485 return parse_crashkernel_suffix(ck_cmdline, crash_size,
1486 crash_base, suffix);
cba63c30
BW
1487 /*
1488 * if the commandline contains a ':', then that's the extended
1489 * syntax -- if not, it must be the classic syntax
1490 */
1491 first_colon = strchr(ck_cmdline, ':');
1492 first_space = strchr(ck_cmdline, ' ');
1493 if (first_colon && (!first_space || first_colon < first_space))
1494 return parse_crashkernel_mem(ck_cmdline, system_ram,
1495 crash_size, crash_base);
cba63c30 1496
80c74f6a 1497 return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base);
cba63c30
BW
1498}
1499
adbc742b
YL
1500/*
1501 * That function is the entry point for command line parsing and should be
1502 * called from the arch-specific code.
1503 */
0212f915
YL
1504int __init parse_crashkernel(char *cmdline,
1505 unsigned long long system_ram,
1506 unsigned long long *crash_size,
1507 unsigned long long *crash_base)
1508{
1509 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
adbc742b 1510 "crashkernel=", NULL);
0212f915 1511}
55a20ee7
YL
1512
1513int __init parse_crashkernel_high(char *cmdline,
1514 unsigned long long system_ram,
1515 unsigned long long *crash_size,
1516 unsigned long long *crash_base)
1517{
1518 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
adbc742b 1519 "crashkernel=", suffix_tbl[SUFFIX_HIGH]);
55a20ee7 1520}
0212f915
YL
1521
1522int __init parse_crashkernel_low(char *cmdline,
1523 unsigned long long system_ram,
1524 unsigned long long *crash_size,
1525 unsigned long long *crash_base)
1526{
1527 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
adbc742b 1528 "crashkernel=", suffix_tbl[SUFFIX_LOW]);
0212f915 1529}
cba63c30 1530
fa8ff292 1531static void update_vmcoreinfo_note(void)
fd59d231 1532{
fa8ff292 1533 u32 *buf = vmcoreinfo_note;
fd59d231
KO
1534
1535 if (!vmcoreinfo_size)
1536 return;
fd59d231
KO
1537 buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1538 vmcoreinfo_size);
fd59d231
KO
1539 final_note(buf);
1540}
1541
fa8ff292
MH
1542void crash_save_vmcoreinfo(void)
1543{
63dca8d5 1544 vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
fa8ff292
MH
1545 update_vmcoreinfo_note();
1546}
1547
fd59d231
KO
1548void vmcoreinfo_append_str(const char *fmt, ...)
1549{
1550 va_list args;
1551 char buf[0x50];
310faaa9 1552 size_t r;
fd59d231
KO
1553
1554 va_start(args, fmt);
a19428e5 1555 r = vscnprintf(buf, sizeof(buf), fmt, args);
fd59d231
KO
1556 va_end(args);
1557
31c3a3fe 1558 r = min(r, vmcoreinfo_max_size - vmcoreinfo_size);
fd59d231
KO
1559
1560 memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1561
1562 vmcoreinfo_size += r;
1563}
1564
1565/*
1566 * provide an empty default implementation here -- architecture
1567 * code may override this
1568 */
52f5684c 1569void __weak arch_crash_save_vmcoreinfo(void)
fd59d231
KO
1570{}
1571
52f5684c 1572unsigned long __weak paddr_vmcoreinfo_note(void)
fd59d231
KO
1573{
1574 return __pa((unsigned long)(char *)&vmcoreinfo_note);
1575}
1576
1577static int __init crash_save_vmcoreinfo_init(void)
1578{
bba1f603
KO
1579 VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1580 VMCOREINFO_PAGESIZE(PAGE_SIZE);
fd59d231 1581
bcbba6c1
KO
1582 VMCOREINFO_SYMBOL(init_uts_ns);
1583 VMCOREINFO_SYMBOL(node_online_map);
d034cfab 1584#ifdef CONFIG_MMU
bcbba6c1 1585 VMCOREINFO_SYMBOL(swapper_pg_dir);
d034cfab 1586#endif
bcbba6c1 1587 VMCOREINFO_SYMBOL(_stext);
f1c4069e 1588 VMCOREINFO_SYMBOL(vmap_area_list);
fd59d231
KO
1589
1590#ifndef CONFIG_NEED_MULTIPLE_NODES
bcbba6c1
KO
1591 VMCOREINFO_SYMBOL(mem_map);
1592 VMCOREINFO_SYMBOL(contig_page_data);
fd59d231
KO
1593#endif
1594#ifdef CONFIG_SPARSEMEM
bcbba6c1
KO
1595 VMCOREINFO_SYMBOL(mem_section);
1596 VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
c76f860c 1597 VMCOREINFO_STRUCT_SIZE(mem_section);
bcbba6c1 1598 VMCOREINFO_OFFSET(mem_section, section_mem_map);
fd59d231 1599#endif
c76f860c
KO
1600 VMCOREINFO_STRUCT_SIZE(page);
1601 VMCOREINFO_STRUCT_SIZE(pglist_data);
1602 VMCOREINFO_STRUCT_SIZE(zone);
1603 VMCOREINFO_STRUCT_SIZE(free_area);
1604 VMCOREINFO_STRUCT_SIZE(list_head);
1605 VMCOREINFO_SIZE(nodemask_t);
bcbba6c1
KO
1606 VMCOREINFO_OFFSET(page, flags);
1607 VMCOREINFO_OFFSET(page, _count);
1608 VMCOREINFO_OFFSET(page, mapping);
1609 VMCOREINFO_OFFSET(page, lru);
8d67091e
AK
1610 VMCOREINFO_OFFSET(page, _mapcount);
1611 VMCOREINFO_OFFSET(page, private);
bcbba6c1
KO
1612 VMCOREINFO_OFFSET(pglist_data, node_zones);
1613 VMCOREINFO_OFFSET(pglist_data, nr_zones);
fd59d231 1614#ifdef CONFIG_FLAT_NODE_MEM_MAP
bcbba6c1 1615 VMCOREINFO_OFFSET(pglist_data, node_mem_map);
fd59d231 1616#endif
bcbba6c1
KO
1617 VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1618 VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1619 VMCOREINFO_OFFSET(pglist_data, node_id);
1620 VMCOREINFO_OFFSET(zone, free_area);
1621 VMCOREINFO_OFFSET(zone, vm_stat);
1622 VMCOREINFO_OFFSET(zone, spanned_pages);
1623 VMCOREINFO_OFFSET(free_area, free_list);
1624 VMCOREINFO_OFFSET(list_head, next);
1625 VMCOREINFO_OFFSET(list_head, prev);
13ba3fcb
AK
1626 VMCOREINFO_OFFSET(vmap_area, va_start);
1627 VMCOREINFO_OFFSET(vmap_area, list);
bcbba6c1 1628 VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
04d491ab 1629 log_buf_kexec_setup();
83a08e7c 1630 VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
bcbba6c1 1631 VMCOREINFO_NUMBER(NR_FREE_PAGES);
122c7a59
KO
1632 VMCOREINFO_NUMBER(PG_lru);
1633 VMCOREINFO_NUMBER(PG_private);
1634 VMCOREINFO_NUMBER(PG_swapcache);
8d67091e 1635 VMCOREINFO_NUMBER(PG_slab);
0d0bf667
MT
1636#ifdef CONFIG_MEMORY_FAILURE
1637 VMCOREINFO_NUMBER(PG_hwpoison);
1638#endif
b3acc56b 1639 VMCOREINFO_NUMBER(PG_head_mask);
8d67091e 1640 VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE);
3a1122d2 1641#ifdef CONFIG_HUGETLBFS
8f1d26d0 1642 VMCOREINFO_SYMBOL(free_huge_page);
3a1122d2 1643#endif
fd59d231
KO
1644
1645 arch_crash_save_vmcoreinfo();
fa8ff292 1646 update_vmcoreinfo_note();
fd59d231
KO
1647
1648 return 0;
1649}
1650
c96d6660 1651subsys_initcall(crash_save_vmcoreinfo_init);
3ab83521 1652
7ade3fcc
HY
1653/*
1654 * Move into place and start executing a preloaded standalone
1655 * executable. If nothing was preloaded return an error.
3ab83521
HY
1656 */
1657int kernel_kexec(void)
1658{
1659 int error = 0;
1660
8c5a1cf0 1661 if (!mutex_trylock(&kexec_mutex))
3ab83521
HY
1662 return -EBUSY;
1663 if (!kexec_image) {
1664 error = -EINVAL;
1665 goto Unlock;
1666 }
1667
3ab83521 1668#ifdef CONFIG_KEXEC_JUMP
7ade3fcc 1669 if (kexec_image->preserve_context) {
bcda53fa 1670 lock_system_sleep();
89081d17
HY
1671 pm_prepare_console();
1672 error = freeze_processes();
1673 if (error) {
1674 error = -EBUSY;
1675 goto Restore_console;
1676 }
1677 suspend_console();
d1616302 1678 error = dpm_suspend_start(PMSG_FREEZE);
89081d17
HY
1679 if (error)
1680 goto Resume_console;
d1616302 1681 /* At this point, dpm_suspend_start() has been called,
cf579dfb
RW
1682 * but *not* dpm_suspend_end(). We *must* call
1683 * dpm_suspend_end() now. Otherwise, drivers for
89081d17
HY
1684 * some devices (e.g. interrupt controllers) become
1685 * desynchronized with the actual state of the
1686 * hardware at resume time, and evil weirdness ensues.
1687 */
cf579dfb 1688 error = dpm_suspend_end(PMSG_FREEZE);
89081d17 1689 if (error)
749b0afc
RW
1690 goto Resume_devices;
1691 error = disable_nonboot_cpus();
1692 if (error)
1693 goto Enable_cpus;
2ed8d2b3 1694 local_irq_disable();
2e711c04 1695 error = syscore_suspend();
770824bd 1696 if (error)
749b0afc 1697 goto Enable_irqs;
7ade3fcc 1698 } else
3ab83521 1699#endif
7ade3fcc 1700 {
4fc9bbf9 1701 kexec_in_progress = true;
ca195b7f 1702 kernel_restart_prepare(NULL);
c97102ba 1703 migrate_to_reboot_cpu();
011e4b02
SB
1704
1705 /*
1706 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1707 * no further code needs to use CPU hotplug (which is true in
1708 * the reboot case). However, the kexec path depends on using
1709 * CPU hotplug again; so re-enable it here.
1710 */
1711 cpu_hotplug_enable();
e1bebcf4 1712 pr_emerg("Starting new kernel\n");
3ab83521
HY
1713 machine_shutdown();
1714 }
1715
1716 machine_kexec(kexec_image);
1717
3ab83521 1718#ifdef CONFIG_KEXEC_JUMP
7ade3fcc 1719 if (kexec_image->preserve_context) {
19234c08 1720 syscore_resume();
749b0afc 1721 Enable_irqs:
3ab83521 1722 local_irq_enable();
749b0afc 1723 Enable_cpus:
89081d17 1724 enable_nonboot_cpus();
cf579dfb 1725 dpm_resume_start(PMSG_RESTORE);
89081d17 1726 Resume_devices:
d1616302 1727 dpm_resume_end(PMSG_RESTORE);
89081d17
HY
1728 Resume_console:
1729 resume_console();
1730 thaw_processes();
1731 Restore_console:
1732 pm_restore_console();
bcda53fa 1733 unlock_system_sleep();
3ab83521 1734 }
7ade3fcc 1735#endif
3ab83521
HY
1736
1737 Unlock:
8c5a1cf0 1738 mutex_unlock(&kexec_mutex);
3ab83521
HY
1739 return error;
1740}