IB/iser: Protect tasks cleanup in case IB device was already released
[linux-2.6-block.git] / kernel / kexec.c
CommitLineData
dc009d92
EB
1/*
2 * kexec.c - kexec system call
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8
cb105258
VG
9#define pr_fmt(fmt) "kexec: " fmt
10
c59ede7b 11#include <linux/capability.h>
dc009d92
EB
12#include <linux/mm.h>
13#include <linux/file.h>
14#include <linux/slab.h>
15#include <linux/fs.h>
16#include <linux/kexec.h>
8c5a1cf0 17#include <linux/mutex.h>
dc009d92
EB
18#include <linux/list.h>
19#include <linux/highmem.h>
20#include <linux/syscalls.h>
21#include <linux/reboot.h>
dc009d92 22#include <linux/ioport.h>
6e274d14 23#include <linux/hardirq.h>
85916f81
MD
24#include <linux/elf.h>
25#include <linux/elfcore.h>
fd59d231
KO
26#include <linux/utsname.h>
27#include <linux/numa.h>
3ab83521
HY
28#include <linux/suspend.h>
29#include <linux/device.h>
89081d17
HY
30#include <linux/freezer.h>
31#include <linux/pm.h>
32#include <linux/cpu.h>
33#include <linux/console.h>
5f41b8cd 34#include <linux/vmalloc.h>
06a7f711 35#include <linux/swap.h>
19234c08 36#include <linux/syscore_ops.h>
52f5684c 37#include <linux/compiler.h>
8f1d26d0 38#include <linux/hugetlb.h>
6e274d14 39
dc009d92
EB
40#include <asm/page.h>
41#include <asm/uaccess.h>
42#include <asm/io.h>
fd59d231 43#include <asm/sections.h>
dc009d92 44
12db5562
VG
45#include <crypto/hash.h>
46#include <crypto/sha.h>
47
cc571658 48/* Per cpu memory for storing cpu states in case of system crash. */
43cf38eb 49note_buf_t __percpu *crash_notes;
cc571658 50
fd59d231 51/* vmcoreinfo stuff */
edb79a21 52static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
fd59d231 53u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
d768281e
KO
54size_t vmcoreinfo_size;
55size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
fd59d231 56
4fc9bbf9
KA
57/* Flag to indicate we are going to kexec a new kernel */
58bool kexec_in_progress = false;
59
12db5562
VG
60/*
61 * Declare these symbols weak so that if architecture provides a purgatory,
62 * these will be overridden.
63 */
64char __weak kexec_purgatory[0];
65size_t __weak kexec_purgatory_size = 0;
66
74ca317c 67#ifdef CONFIG_KEXEC_FILE
12db5562 68static int kexec_calculate_store_digests(struct kimage *image);
74ca317c 69#endif
12db5562 70
dc009d92
EB
71/* Location of the reserved area for the crash kernel */
72struct resource crashk_res = {
73 .name = "Crash kernel",
74 .start = 0,
75 .end = 0,
76 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
77};
0212f915 78struct resource crashk_low_res = {
157752d8 79 .name = "Crash kernel",
0212f915
YL
80 .start = 0,
81 .end = 0,
82 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
83};
dc009d92 84
6e274d14
AN
85int kexec_should_crash(struct task_struct *p)
86{
b460cbc5 87 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
6e274d14
AN
88 return 1;
89 return 0;
90}
91
dc009d92
EB
92/*
93 * When kexec transitions to the new kernel there is a one-to-one
94 * mapping between physical and virtual addresses. On processors
95 * where you can disable the MMU this is trivial, and easy. For
96 * others it is still a simple predictable page table to setup.
97 *
98 * In that environment kexec copies the new kernel to its final
99 * resting place. This means I can only support memory whose
100 * physical address can fit in an unsigned long. In particular
101 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
102 * If the assembly stub has more restrictive requirements
103 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
104 * defined more restrictively in <asm/kexec.h>.
105 *
106 * The code for the transition from the current kernel to the
107 * the new kernel is placed in the control_code_buffer, whose size
163f6876 108 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
dc009d92
EB
109 * page of memory is necessary, but some architectures require more.
110 * Because this memory must be identity mapped in the transition from
111 * virtual to physical addresses it must live in the range
112 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
113 * modifiable.
114 *
115 * The assembly stub in the control code buffer is passed a linked list
116 * of descriptor pages detailing the source pages of the new kernel,
117 * and the destination addresses of those source pages. As this data
118 * structure is not used in the context of the current OS, it must
119 * be self-contained.
120 *
121 * The code has been made to work with highmem pages and will use a
122 * destination page in its final resting place (if it happens
123 * to allocate it). The end product of this is that most of the
124 * physical address space, and most of RAM can be used.
125 *
126 * Future directions include:
127 * - allocating a page table with the control code buffer identity
128 * mapped, to simplify machine_kexec and make kexec_on_panic more
129 * reliable.
130 */
131
132/*
133 * KIMAGE_NO_DEST is an impossible destination address..., for
134 * allocating pages whose destination address we do not care about.
135 */
136#define KIMAGE_NO_DEST (-1UL)
137
72414d3f
MS
138static int kimage_is_destination_range(struct kimage *image,
139 unsigned long start, unsigned long end);
140static struct page *kimage_alloc_page(struct kimage *image,
9796fdd8 141 gfp_t gfp_mask,
72414d3f 142 unsigned long dest);
dc009d92 143
dabe7862
VG
144static int copy_user_segment_list(struct kimage *image,
145 unsigned long nr_segments,
146 struct kexec_segment __user *segments)
dc009d92 147{
dabe7862 148 int ret;
dc009d92 149 size_t segment_bytes;
dc009d92
EB
150
151 /* Read in the segments */
152 image->nr_segments = nr_segments;
153 segment_bytes = nr_segments * sizeof(*segments);
dabe7862
VG
154 ret = copy_from_user(image->segment, segments, segment_bytes);
155 if (ret)
156 ret = -EFAULT;
157
158 return ret;
159}
160
161static int sanity_check_segment_list(struct kimage *image)
162{
163 int result, i;
164 unsigned long nr_segments = image->nr_segments;
dc009d92
EB
165
166 /*
167 * Verify we have good destination addresses. The caller is
168 * responsible for making certain we don't attempt to load
169 * the new image into invalid or reserved areas of RAM. This
170 * just verifies it is an address we can use.
171 *
172 * Since the kernel does everything in page size chunks ensure
b595076a 173 * the destination addresses are page aligned. Too many
dc009d92
EB
174 * special cases crop of when we don't do this. The most
175 * insidious is getting overlapping destination addresses
176 * simply because addresses are changed to page size
177 * granularity.
178 */
179 result = -EADDRNOTAVAIL;
180 for (i = 0; i < nr_segments; i++) {
181 unsigned long mstart, mend;
72414d3f 182
dc009d92
EB
183 mstart = image->segment[i].mem;
184 mend = mstart + image->segment[i].memsz;
185 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
dabe7862 186 return result;
dc009d92 187 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
dabe7862 188 return result;
dc009d92
EB
189 }
190
191 /* Verify our destination addresses do not overlap.
192 * If we alloed overlapping destination addresses
193 * through very weird things can happen with no
194 * easy explanation as one segment stops on another.
195 */
196 result = -EINVAL;
72414d3f 197 for (i = 0; i < nr_segments; i++) {
dc009d92
EB
198 unsigned long mstart, mend;
199 unsigned long j;
72414d3f 200
dc009d92
EB
201 mstart = image->segment[i].mem;
202 mend = mstart + image->segment[i].memsz;
72414d3f 203 for (j = 0; j < i; j++) {
dc009d92
EB
204 unsigned long pstart, pend;
205 pstart = image->segment[j].mem;
206 pend = pstart + image->segment[j].memsz;
207 /* Do the segments overlap ? */
208 if ((mend > pstart) && (mstart < pend))
dabe7862 209 return result;
dc009d92
EB
210 }
211 }
212
213 /* Ensure our buffer sizes are strictly less than
214 * our memory sizes. This should always be the case,
215 * and it is easier to check up front than to be surprised
216 * later on.
217 */
218 result = -EINVAL;
72414d3f 219 for (i = 0; i < nr_segments; i++) {
dc009d92 220 if (image->segment[i].bufsz > image->segment[i].memsz)
dabe7862 221 return result;
dc009d92
EB
222 }
223
dabe7862
VG
224 /*
225 * Verify we have good destination addresses. Normally
226 * the caller is responsible for making certain we don't
227 * attempt to load the new image into invalid or reserved
228 * areas of RAM. But crash kernels are preloaded into a
229 * reserved area of ram. We must ensure the addresses
230 * are in the reserved area otherwise preloading the
231 * kernel could corrupt things.
232 */
72414d3f 233
dabe7862
VG
234 if (image->type == KEXEC_TYPE_CRASH) {
235 result = -EADDRNOTAVAIL;
236 for (i = 0; i < nr_segments; i++) {
237 unsigned long mstart, mend;
238
239 mstart = image->segment[i].mem;
240 mend = mstart + image->segment[i].memsz - 1;
241 /* Ensure we are within the crash kernel limits */
242 if ((mstart < crashk_res.start) ||
243 (mend > crashk_res.end))
244 return result;
245 }
246 }
dc009d92 247
dabe7862
VG
248 return 0;
249}
250
251static struct kimage *do_kimage_alloc_init(void)
252{
253 struct kimage *image;
254
255 /* Allocate a controlling structure */
256 image = kzalloc(sizeof(*image), GFP_KERNEL);
257 if (!image)
258 return NULL;
259
260 image->head = 0;
261 image->entry = &image->head;
262 image->last_entry = &image->head;
263 image->control_page = ~0; /* By default this does not apply */
264 image->type = KEXEC_TYPE_DEFAULT;
265
266 /* Initialize the list of control pages */
267 INIT_LIST_HEAD(&image->control_pages);
268
269 /* Initialize the list of destination pages */
270 INIT_LIST_HEAD(&image->dest_pages);
271
272 /* Initialize the list of unusable pages */
273 INIT_LIST_HEAD(&image->unusable_pages);
274
275 return image;
dc009d92
EB
276}
277
b92e7e0d
ZY
278static void kimage_free_page_list(struct list_head *list);
279
255aedd9
VG
280static int kimage_alloc_init(struct kimage **rimage, unsigned long entry,
281 unsigned long nr_segments,
282 struct kexec_segment __user *segments,
283 unsigned long flags)
dc009d92 284{
255aedd9 285 int ret;
dc009d92 286 struct kimage *image;
255aedd9
VG
287 bool kexec_on_panic = flags & KEXEC_ON_CRASH;
288
289 if (kexec_on_panic) {
290 /* Verify we have a valid entry point */
291 if ((entry < crashk_res.start) || (entry > crashk_res.end))
292 return -EADDRNOTAVAIL;
293 }
dc009d92
EB
294
295 /* Allocate and initialize a controlling structure */
dabe7862
VG
296 image = do_kimage_alloc_init();
297 if (!image)
298 return -ENOMEM;
299
300 image->start = entry;
301
255aedd9
VG
302 ret = copy_user_segment_list(image, nr_segments, segments);
303 if (ret)
dabe7862
VG
304 goto out_free_image;
305
255aedd9
VG
306 ret = sanity_check_segment_list(image);
307 if (ret)
dabe7862 308 goto out_free_image;
72414d3f 309
255aedd9
VG
310 /* Enable the special crash kernel control page allocation policy. */
311 if (kexec_on_panic) {
312 image->control_page = crashk_res.start;
313 image->type = KEXEC_TYPE_CRASH;
314 }
315
dc009d92
EB
316 /*
317 * Find a location for the control code buffer, and add it
318 * the vector of segments so that it's pages will also be
319 * counted as destination pages.
320 */
255aedd9 321 ret = -ENOMEM;
dc009d92 322 image->control_code_page = kimage_alloc_control_pages(image,
163f6876 323 get_order(KEXEC_CONTROL_PAGE_SIZE));
dc009d92 324 if (!image->control_code_page) {
e1bebcf4 325 pr_err("Could not allocate control_code_buffer\n");
dabe7862 326 goto out_free_image;
dc009d92
EB
327 }
328
255aedd9
VG
329 if (!kexec_on_panic) {
330 image->swap_page = kimage_alloc_control_pages(image, 0);
331 if (!image->swap_page) {
332 pr_err("Could not allocate swap buffer\n");
333 goto out_free_control_pages;
334 }
3ab83521
HY
335 }
336
b92e7e0d
ZY
337 *rimage = image;
338 return 0;
dabe7862 339out_free_control_pages:
b92e7e0d 340 kimage_free_page_list(&image->control_pages);
dabe7862 341out_free_image:
b92e7e0d 342 kfree(image);
255aedd9 343 return ret;
dc009d92
EB
344}
345
74ca317c 346#ifdef CONFIG_KEXEC_FILE
cb105258
VG
347static int copy_file_from_fd(int fd, void **buf, unsigned long *buf_len)
348{
349 struct fd f = fdget(fd);
350 int ret;
351 struct kstat stat;
352 loff_t pos;
353 ssize_t bytes = 0;
354
355 if (!f.file)
356 return -EBADF;
357
358 ret = vfs_getattr(&f.file->f_path, &stat);
359 if (ret)
360 goto out;
361
362 if (stat.size > INT_MAX) {
363 ret = -EFBIG;
364 goto out;
365 }
366
367 /* Don't hand 0 to vmalloc, it whines. */
368 if (stat.size == 0) {
369 ret = -EINVAL;
370 goto out;
371 }
372
373 *buf = vmalloc(stat.size);
374 if (!*buf) {
375 ret = -ENOMEM;
376 goto out;
377 }
378
379 pos = 0;
380 while (pos < stat.size) {
381 bytes = kernel_read(f.file, pos, (char *)(*buf) + pos,
382 stat.size - pos);
383 if (bytes < 0) {
384 vfree(*buf);
385 ret = bytes;
386 goto out;
387 }
388
389 if (bytes == 0)
390 break;
391 pos += bytes;
392 }
393
394 if (pos != stat.size) {
395 ret = -EBADF;
396 vfree(*buf);
397 goto out;
398 }
399
400 *buf_len = pos;
401out:
402 fdput(f);
403 return ret;
404}
405
406/* Architectures can provide this probe function */
407int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
408 unsigned long buf_len)
409{
410 return -ENOEXEC;
411}
412
413void * __weak arch_kexec_kernel_image_load(struct kimage *image)
414{
415 return ERR_PTR(-ENOEXEC);
416}
417
418void __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
419{
420}
421
8e7d8381
VG
422int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
423 unsigned long buf_len)
424{
425 return -EKEYREJECTED;
426}
427
12db5562
VG
428/* Apply relocations of type RELA */
429int __weak
430arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
431 unsigned int relsec)
432{
433 pr_err("RELA relocation unsupported.\n");
434 return -ENOEXEC;
435}
436
437/* Apply relocations of type REL */
438int __weak
439arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
440 unsigned int relsec)
441{
442 pr_err("REL relocation unsupported.\n");
443 return -ENOEXEC;
444}
445
cb105258
VG
446/*
447 * Free up memory used by kernel, initrd, and comand line. This is temporary
448 * memory allocation which is not needed any more after these buffers have
449 * been loaded into separate segments and have been copied elsewhere.
450 */
451static void kimage_file_post_load_cleanup(struct kimage *image)
452{
12db5562
VG
453 struct purgatory_info *pi = &image->purgatory_info;
454
cb105258
VG
455 vfree(image->kernel_buf);
456 image->kernel_buf = NULL;
457
458 vfree(image->initrd_buf);
459 image->initrd_buf = NULL;
460
461 kfree(image->cmdline_buf);
462 image->cmdline_buf = NULL;
463
12db5562
VG
464 vfree(pi->purgatory_buf);
465 pi->purgatory_buf = NULL;
466
467 vfree(pi->sechdrs);
468 pi->sechdrs = NULL;
469
cb105258
VG
470 /* See if architecture has anything to cleanup post load */
471 arch_kimage_file_post_load_cleanup(image);
27f48d3e
VG
472
473 /*
474 * Above call should have called into bootloader to free up
475 * any data stored in kimage->image_loader_data. It should
476 * be ok now to free it up.
477 */
478 kfree(image->image_loader_data);
479 image->image_loader_data = NULL;
cb105258
VG
480}
481
482/*
483 * In file mode list of segments is prepared by kernel. Copy relevant
484 * data from user space, do error checking, prepare segment list
485 */
486static int
487kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
488 const char __user *cmdline_ptr,
489 unsigned long cmdline_len, unsigned flags)
490{
491 int ret = 0;
492 void *ldata;
493
494 ret = copy_file_from_fd(kernel_fd, &image->kernel_buf,
495 &image->kernel_buf_len);
496 if (ret)
497 return ret;
498
499 /* Call arch image probe handlers */
500 ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
501 image->kernel_buf_len);
502
503 if (ret)
504 goto out;
505
8e7d8381
VG
506#ifdef CONFIG_KEXEC_VERIFY_SIG
507 ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
508 image->kernel_buf_len);
509 if (ret) {
510 pr_debug("kernel signature verification failed.\n");
511 goto out;
512 }
513 pr_debug("kernel signature verification successful.\n");
514#endif
cb105258
VG
515 /* It is possible that there no initramfs is being loaded */
516 if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
517 ret = copy_file_from_fd(initrd_fd, &image->initrd_buf,
518 &image->initrd_buf_len);
519 if (ret)
520 goto out;
521 }
522
523 if (cmdline_len) {
524 image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL);
525 if (!image->cmdline_buf) {
526 ret = -ENOMEM;
527 goto out;
528 }
529
530 ret = copy_from_user(image->cmdline_buf, cmdline_ptr,
531 cmdline_len);
532 if (ret) {
533 ret = -EFAULT;
534 goto out;
535 }
536
537 image->cmdline_buf_len = cmdline_len;
538
539 /* command line should be a string with last byte null */
540 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
541 ret = -EINVAL;
542 goto out;
543 }
544 }
545
546 /* Call arch image load handlers */
547 ldata = arch_kexec_kernel_image_load(image);
548
549 if (IS_ERR(ldata)) {
550 ret = PTR_ERR(ldata);
551 goto out;
552 }
553
554 image->image_loader_data = ldata;
555out:
556 /* In case of error, free up all allocated memory in this function */
557 if (ret)
558 kimage_file_post_load_cleanup(image);
559 return ret;
560}
561
562static int
563kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
564 int initrd_fd, const char __user *cmdline_ptr,
565 unsigned long cmdline_len, unsigned long flags)
566{
567 int ret;
568 struct kimage *image;
dd5f7260 569 bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
cb105258
VG
570
571 image = do_kimage_alloc_init();
572 if (!image)
573 return -ENOMEM;
574
575 image->file_mode = 1;
576
dd5f7260
VG
577 if (kexec_on_panic) {
578 /* Enable special crash kernel control page alloc policy. */
579 image->control_page = crashk_res.start;
580 image->type = KEXEC_TYPE_CRASH;
581 }
582
cb105258
VG
583 ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
584 cmdline_ptr, cmdline_len, flags);
585 if (ret)
586 goto out_free_image;
587
588 ret = sanity_check_segment_list(image);
589 if (ret)
590 goto out_free_post_load_bufs;
591
592 ret = -ENOMEM;
593 image->control_code_page = kimage_alloc_control_pages(image,
594 get_order(KEXEC_CONTROL_PAGE_SIZE));
595 if (!image->control_code_page) {
596 pr_err("Could not allocate control_code_buffer\n");
597 goto out_free_post_load_bufs;
598 }
599
dd5f7260
VG
600 if (!kexec_on_panic) {
601 image->swap_page = kimage_alloc_control_pages(image, 0);
602 if (!image->swap_page) {
603 pr_err(KERN_ERR "Could not allocate swap buffer\n");
604 goto out_free_control_pages;
605 }
cb105258
VG
606 }
607
608 *rimage = image;
609 return 0;
610out_free_control_pages:
611 kimage_free_page_list(&image->control_pages);
612out_free_post_load_bufs:
613 kimage_file_post_load_cleanup(image);
cb105258
VG
614out_free_image:
615 kfree(image);
616 return ret;
617}
74ca317c
VG
618#else /* CONFIG_KEXEC_FILE */
619static inline void kimage_file_post_load_cleanup(struct kimage *image) { }
620#endif /* CONFIG_KEXEC_FILE */
cb105258 621
72414d3f
MS
622static int kimage_is_destination_range(struct kimage *image,
623 unsigned long start,
624 unsigned long end)
dc009d92
EB
625{
626 unsigned long i;
627
628 for (i = 0; i < image->nr_segments; i++) {
629 unsigned long mstart, mend;
72414d3f 630
dc009d92 631 mstart = image->segment[i].mem;
72414d3f
MS
632 mend = mstart + image->segment[i].memsz;
633 if ((end > mstart) && (start < mend))
dc009d92 634 return 1;
dc009d92 635 }
72414d3f 636
dc009d92
EB
637 return 0;
638}
639
9796fdd8 640static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
dc009d92
EB
641{
642 struct page *pages;
72414d3f 643
dc009d92
EB
644 pages = alloc_pages(gfp_mask, order);
645 if (pages) {
646 unsigned int count, i;
647 pages->mapping = NULL;
4c21e2f2 648 set_page_private(pages, order);
dc009d92 649 count = 1 << order;
72414d3f 650 for (i = 0; i < count; i++)
dc009d92 651 SetPageReserved(pages + i);
dc009d92 652 }
72414d3f 653
dc009d92
EB
654 return pages;
655}
656
657static void kimage_free_pages(struct page *page)
658{
659 unsigned int order, count, i;
72414d3f 660
4c21e2f2 661 order = page_private(page);
dc009d92 662 count = 1 << order;
72414d3f 663 for (i = 0; i < count; i++)
dc009d92 664 ClearPageReserved(page + i);
dc009d92
EB
665 __free_pages(page, order);
666}
667
668static void kimage_free_page_list(struct list_head *list)
669{
670 struct list_head *pos, *next;
72414d3f 671
dc009d92
EB
672 list_for_each_safe(pos, next, list) {
673 struct page *page;
674
675 page = list_entry(pos, struct page, lru);
676 list_del(&page->lru);
dc009d92
EB
677 kimage_free_pages(page);
678 }
679}
680
72414d3f
MS
681static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
682 unsigned int order)
dc009d92
EB
683{
684 /* Control pages are special, they are the intermediaries
685 * that are needed while we copy the rest of the pages
686 * to their final resting place. As such they must
687 * not conflict with either the destination addresses
688 * or memory the kernel is already using.
689 *
690 * The only case where we really need more than one of
691 * these are for architectures where we cannot disable
692 * the MMU and must instead generate an identity mapped
693 * page table for all of the memory.
694 *
695 * At worst this runs in O(N) of the image size.
696 */
697 struct list_head extra_pages;
698 struct page *pages;
699 unsigned int count;
700
701 count = 1 << order;
702 INIT_LIST_HEAD(&extra_pages);
703
704 /* Loop while I can allocate a page and the page allocated
705 * is a destination page.
706 */
707 do {
708 unsigned long pfn, epfn, addr, eaddr;
72414d3f 709
dc009d92
EB
710 pages = kimage_alloc_pages(GFP_KERNEL, order);
711 if (!pages)
712 break;
713 pfn = page_to_pfn(pages);
714 epfn = pfn + count;
715 addr = pfn << PAGE_SHIFT;
716 eaddr = epfn << PAGE_SHIFT;
717 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
72414d3f 718 kimage_is_destination_range(image, addr, eaddr)) {
dc009d92
EB
719 list_add(&pages->lru, &extra_pages);
720 pages = NULL;
721 }
72414d3f
MS
722 } while (!pages);
723
dc009d92
EB
724 if (pages) {
725 /* Remember the allocated page... */
726 list_add(&pages->lru, &image->control_pages);
727
728 /* Because the page is already in it's destination
729 * location we will never allocate another page at
730 * that address. Therefore kimage_alloc_pages
731 * will not return it (again) and we don't need
732 * to give it an entry in image->segment[].
733 */
734 }
735 /* Deal with the destination pages I have inadvertently allocated.
736 *
737 * Ideally I would convert multi-page allocations into single
25985edc 738 * page allocations, and add everything to image->dest_pages.
dc009d92
EB
739 *
740 * For now it is simpler to just free the pages.
741 */
742 kimage_free_page_list(&extra_pages);
dc009d92 743
72414d3f 744 return pages;
dc009d92
EB
745}
746
72414d3f
MS
747static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
748 unsigned int order)
dc009d92
EB
749{
750 /* Control pages are special, they are the intermediaries
751 * that are needed while we copy the rest of the pages
752 * to their final resting place. As such they must
753 * not conflict with either the destination addresses
754 * or memory the kernel is already using.
755 *
756 * Control pages are also the only pags we must allocate
757 * when loading a crash kernel. All of the other pages
758 * are specified by the segments and we just memcpy
759 * into them directly.
760 *
761 * The only case where we really need more than one of
762 * these are for architectures where we cannot disable
763 * the MMU and must instead generate an identity mapped
764 * page table for all of the memory.
765 *
766 * Given the low demand this implements a very simple
767 * allocator that finds the first hole of the appropriate
768 * size in the reserved memory region, and allocates all
769 * of the memory up to and including the hole.
770 */
771 unsigned long hole_start, hole_end, size;
772 struct page *pages;
72414d3f 773
dc009d92
EB
774 pages = NULL;
775 size = (1 << order) << PAGE_SHIFT;
776 hole_start = (image->control_page + (size - 1)) & ~(size - 1);
777 hole_end = hole_start + size - 1;
72414d3f 778 while (hole_end <= crashk_res.end) {
dc009d92 779 unsigned long i;
72414d3f 780
3d214fae 781 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
dc009d92 782 break;
dc009d92 783 /* See if I overlap any of the segments */
72414d3f 784 for (i = 0; i < image->nr_segments; i++) {
dc009d92 785 unsigned long mstart, mend;
72414d3f 786
dc009d92
EB
787 mstart = image->segment[i].mem;
788 mend = mstart + image->segment[i].memsz - 1;
789 if ((hole_end >= mstart) && (hole_start <= mend)) {
790 /* Advance the hole to the end of the segment */
791 hole_start = (mend + (size - 1)) & ~(size - 1);
792 hole_end = hole_start + size - 1;
793 break;
794 }
795 }
796 /* If I don't overlap any segments I have found my hole! */
797 if (i == image->nr_segments) {
798 pages = pfn_to_page(hole_start >> PAGE_SHIFT);
799 break;
800 }
801 }
72414d3f 802 if (pages)
dc009d92 803 image->control_page = hole_end;
72414d3f 804
dc009d92
EB
805 return pages;
806}
807
808
72414d3f
MS
809struct page *kimage_alloc_control_pages(struct kimage *image,
810 unsigned int order)
dc009d92
EB
811{
812 struct page *pages = NULL;
72414d3f
MS
813
814 switch (image->type) {
dc009d92
EB
815 case KEXEC_TYPE_DEFAULT:
816 pages = kimage_alloc_normal_control_pages(image, order);
817 break;
818 case KEXEC_TYPE_CRASH:
819 pages = kimage_alloc_crash_control_pages(image, order);
820 break;
821 }
72414d3f 822
dc009d92
EB
823 return pages;
824}
825
826static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
827{
72414d3f 828 if (*image->entry != 0)
dc009d92 829 image->entry++;
72414d3f 830
dc009d92
EB
831 if (image->entry == image->last_entry) {
832 kimage_entry_t *ind_page;
833 struct page *page;
72414d3f 834
dc009d92 835 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
72414d3f 836 if (!page)
dc009d92 837 return -ENOMEM;
72414d3f 838
dc009d92
EB
839 ind_page = page_address(page);
840 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
841 image->entry = ind_page;
72414d3f
MS
842 image->last_entry = ind_page +
843 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
dc009d92
EB
844 }
845 *image->entry = entry;
846 image->entry++;
847 *image->entry = 0;
72414d3f 848
dc009d92
EB
849 return 0;
850}
851
72414d3f
MS
852static int kimage_set_destination(struct kimage *image,
853 unsigned long destination)
dc009d92
EB
854{
855 int result;
856
857 destination &= PAGE_MASK;
858 result = kimage_add_entry(image, destination | IND_DESTINATION);
72414d3f 859 if (result == 0)
dc009d92 860 image->destination = destination;
72414d3f 861
dc009d92
EB
862 return result;
863}
864
865
866static int kimage_add_page(struct kimage *image, unsigned long page)
867{
868 int result;
869
870 page &= PAGE_MASK;
871 result = kimage_add_entry(image, page | IND_SOURCE);
72414d3f 872 if (result == 0)
dc009d92 873 image->destination += PAGE_SIZE;
72414d3f 874
dc009d92
EB
875 return result;
876}
877
878
879static void kimage_free_extra_pages(struct kimage *image)
880{
881 /* Walk through and free any extra destination pages I may have */
882 kimage_free_page_list(&image->dest_pages);
883
25985edc 884 /* Walk through and free any unusable pages I have cached */
7d3e2bca 885 kimage_free_page_list(&image->unusable_pages);
dc009d92
EB
886
887}
7fccf032 888static void kimage_terminate(struct kimage *image)
dc009d92 889{
72414d3f 890 if (*image->entry != 0)
dc009d92 891 image->entry++;
72414d3f 892
dc009d92 893 *image->entry = IND_DONE;
dc009d92
EB
894}
895
896#define for_each_kimage_entry(image, ptr, entry) \
897 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
e1bebcf4
FF
898 ptr = (entry & IND_INDIRECTION) ? \
899 phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
dc009d92
EB
900
901static void kimage_free_entry(kimage_entry_t entry)
902{
903 struct page *page;
904
905 page = pfn_to_page(entry >> PAGE_SHIFT);
906 kimage_free_pages(page);
907}
908
909static void kimage_free(struct kimage *image)
910{
911 kimage_entry_t *ptr, entry;
912 kimage_entry_t ind = 0;
913
914 if (!image)
915 return;
72414d3f 916
dc009d92
EB
917 kimage_free_extra_pages(image);
918 for_each_kimage_entry(image, ptr, entry) {
919 if (entry & IND_INDIRECTION) {
920 /* Free the previous indirection page */
72414d3f 921 if (ind & IND_INDIRECTION)
dc009d92 922 kimage_free_entry(ind);
dc009d92
EB
923 /* Save this indirection page until we are
924 * done with it.
925 */
926 ind = entry;
e1bebcf4 927 } else if (entry & IND_SOURCE)
dc009d92 928 kimage_free_entry(entry);
dc009d92
EB
929 }
930 /* Free the final indirection page */
72414d3f 931 if (ind & IND_INDIRECTION)
dc009d92 932 kimage_free_entry(ind);
dc009d92
EB
933
934 /* Handle any machine specific cleanup */
935 machine_kexec_cleanup(image);
936
937 /* Free the kexec control pages... */
938 kimage_free_page_list(&image->control_pages);
cb105258 939
cb105258
VG
940 /*
941 * Free up any temporary buffers allocated. This might hit if
942 * error occurred much later after buffer allocation.
943 */
944 if (image->file_mode)
945 kimage_file_post_load_cleanup(image);
946
dc009d92
EB
947 kfree(image);
948}
949
72414d3f
MS
950static kimage_entry_t *kimage_dst_used(struct kimage *image,
951 unsigned long page)
dc009d92
EB
952{
953 kimage_entry_t *ptr, entry;
954 unsigned long destination = 0;
955
956 for_each_kimage_entry(image, ptr, entry) {
72414d3f 957 if (entry & IND_DESTINATION)
dc009d92 958 destination = entry & PAGE_MASK;
dc009d92 959 else if (entry & IND_SOURCE) {
72414d3f 960 if (page == destination)
dc009d92 961 return ptr;
dc009d92
EB
962 destination += PAGE_SIZE;
963 }
964 }
72414d3f 965
314b6a4d 966 return NULL;
dc009d92
EB
967}
968
72414d3f 969static struct page *kimage_alloc_page(struct kimage *image,
9796fdd8 970 gfp_t gfp_mask,
72414d3f 971 unsigned long destination)
dc009d92
EB
972{
973 /*
974 * Here we implement safeguards to ensure that a source page
975 * is not copied to its destination page before the data on
976 * the destination page is no longer useful.
977 *
978 * To do this we maintain the invariant that a source page is
979 * either its own destination page, or it is not a
980 * destination page at all.
981 *
982 * That is slightly stronger than required, but the proof
983 * that no problems will not occur is trivial, and the
984 * implementation is simply to verify.
985 *
986 * When allocating all pages normally this algorithm will run
987 * in O(N) time, but in the worst case it will run in O(N^2)
988 * time. If the runtime is a problem the data structures can
989 * be fixed.
990 */
991 struct page *page;
992 unsigned long addr;
993
994 /*
995 * Walk through the list of destination pages, and see if I
996 * have a match.
997 */
998 list_for_each_entry(page, &image->dest_pages, lru) {
999 addr = page_to_pfn(page) << PAGE_SHIFT;
1000 if (addr == destination) {
1001 list_del(&page->lru);
1002 return page;
1003 }
1004 }
1005 page = NULL;
1006 while (1) {
1007 kimage_entry_t *old;
1008
1009 /* Allocate a page, if we run out of memory give up */
1010 page = kimage_alloc_pages(gfp_mask, 0);
72414d3f 1011 if (!page)
314b6a4d 1012 return NULL;
dc009d92 1013 /* If the page cannot be used file it away */
72414d3f
MS
1014 if (page_to_pfn(page) >
1015 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
7d3e2bca 1016 list_add(&page->lru, &image->unusable_pages);
dc009d92
EB
1017 continue;
1018 }
1019 addr = page_to_pfn(page) << PAGE_SHIFT;
1020
1021 /* If it is the destination page we want use it */
1022 if (addr == destination)
1023 break;
1024
1025 /* If the page is not a destination page use it */
72414d3f
MS
1026 if (!kimage_is_destination_range(image, addr,
1027 addr + PAGE_SIZE))
dc009d92
EB
1028 break;
1029
1030 /*
1031 * I know that the page is someones destination page.
1032 * See if there is already a source page for this
1033 * destination page. And if so swap the source pages.
1034 */
1035 old = kimage_dst_used(image, addr);
1036 if (old) {
1037 /* If so move it */
1038 unsigned long old_addr;
1039 struct page *old_page;
1040
1041 old_addr = *old & PAGE_MASK;
1042 old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
1043 copy_highpage(page, old_page);
1044 *old = addr | (*old & ~PAGE_MASK);
1045
1046 /* The old page I have found cannot be a
f9092f35
JS
1047 * destination page, so return it if it's
1048 * gfp_flags honor the ones passed in.
dc009d92 1049 */
f9092f35
JS
1050 if (!(gfp_mask & __GFP_HIGHMEM) &&
1051 PageHighMem(old_page)) {
1052 kimage_free_pages(old_page);
1053 continue;
1054 }
dc009d92
EB
1055 addr = old_addr;
1056 page = old_page;
1057 break;
e1bebcf4 1058 } else {
dc009d92
EB
1059 /* Place the page on the destination list I
1060 * will use it later.
1061 */
1062 list_add(&page->lru, &image->dest_pages);
1063 }
1064 }
72414d3f 1065
dc009d92
EB
1066 return page;
1067}
1068
1069static int kimage_load_normal_segment(struct kimage *image,
72414d3f 1070 struct kexec_segment *segment)
dc009d92
EB
1071{
1072 unsigned long maddr;
310faaa9 1073 size_t ubytes, mbytes;
dc009d92 1074 int result;
cb105258
VG
1075 unsigned char __user *buf = NULL;
1076 unsigned char *kbuf = NULL;
dc009d92
EB
1077
1078 result = 0;
cb105258
VG
1079 if (image->file_mode)
1080 kbuf = segment->kbuf;
1081 else
1082 buf = segment->buf;
dc009d92
EB
1083 ubytes = segment->bufsz;
1084 mbytes = segment->memsz;
1085 maddr = segment->mem;
1086
1087 result = kimage_set_destination(image, maddr);
72414d3f 1088 if (result < 0)
dc009d92 1089 goto out;
72414d3f
MS
1090
1091 while (mbytes) {
dc009d92
EB
1092 struct page *page;
1093 char *ptr;
1094 size_t uchunk, mchunk;
72414d3f 1095
dc009d92 1096 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
c80544dc 1097 if (!page) {
dc009d92
EB
1098 result = -ENOMEM;
1099 goto out;
1100 }
72414d3f
MS
1101 result = kimage_add_page(image, page_to_pfn(page)
1102 << PAGE_SHIFT);
1103 if (result < 0)
dc009d92 1104 goto out;
72414d3f 1105
dc009d92
EB
1106 ptr = kmap(page);
1107 /* Start with a clear page */
3ecb01df 1108 clear_page(ptr);
dc009d92 1109 ptr += maddr & ~PAGE_MASK;
31c3a3fe
ZY
1110 mchunk = min_t(size_t, mbytes,
1111 PAGE_SIZE - (maddr & ~PAGE_MASK));
1112 uchunk = min(ubytes, mchunk);
72414d3f 1113
cb105258
VG
1114 /* For file based kexec, source pages are in kernel memory */
1115 if (image->file_mode)
1116 memcpy(ptr, kbuf, uchunk);
1117 else
1118 result = copy_from_user(ptr, buf, uchunk);
dc009d92
EB
1119 kunmap(page);
1120 if (result) {
f65a03f6 1121 result = -EFAULT;
dc009d92
EB
1122 goto out;
1123 }
1124 ubytes -= uchunk;
1125 maddr += mchunk;
cb105258
VG
1126 if (image->file_mode)
1127 kbuf += mchunk;
1128 else
1129 buf += mchunk;
dc009d92
EB
1130 mbytes -= mchunk;
1131 }
72414d3f 1132out:
dc009d92
EB
1133 return result;
1134}
1135
1136static int kimage_load_crash_segment(struct kimage *image,
72414d3f 1137 struct kexec_segment *segment)
dc009d92
EB
1138{
1139 /* For crash dumps kernels we simply copy the data from
1140 * user space to it's destination.
1141 * We do things a page at a time for the sake of kmap.
1142 */
1143 unsigned long maddr;
310faaa9 1144 size_t ubytes, mbytes;
dc009d92 1145 int result;
dd5f7260
VG
1146 unsigned char __user *buf = NULL;
1147 unsigned char *kbuf = NULL;
dc009d92
EB
1148
1149 result = 0;
dd5f7260
VG
1150 if (image->file_mode)
1151 kbuf = segment->kbuf;
1152 else
1153 buf = segment->buf;
dc009d92
EB
1154 ubytes = segment->bufsz;
1155 mbytes = segment->memsz;
1156 maddr = segment->mem;
72414d3f 1157 while (mbytes) {
dc009d92
EB
1158 struct page *page;
1159 char *ptr;
1160 size_t uchunk, mchunk;
72414d3f 1161
dc009d92 1162 page = pfn_to_page(maddr >> PAGE_SHIFT);
c80544dc 1163 if (!page) {
dc009d92
EB
1164 result = -ENOMEM;
1165 goto out;
1166 }
1167 ptr = kmap(page);
1168 ptr += maddr & ~PAGE_MASK;
31c3a3fe
ZY
1169 mchunk = min_t(size_t, mbytes,
1170 PAGE_SIZE - (maddr & ~PAGE_MASK));
1171 uchunk = min(ubytes, mchunk);
1172 if (mchunk > uchunk) {
dc009d92
EB
1173 /* Zero the trailing part of the page */
1174 memset(ptr + uchunk, 0, mchunk - uchunk);
1175 }
dd5f7260
VG
1176
1177 /* For file based kexec, source pages are in kernel memory */
1178 if (image->file_mode)
1179 memcpy(ptr, kbuf, uchunk);
1180 else
1181 result = copy_from_user(ptr, buf, uchunk);
a7956113 1182 kexec_flush_icache_page(page);
dc009d92
EB
1183 kunmap(page);
1184 if (result) {
f65a03f6 1185 result = -EFAULT;
dc009d92
EB
1186 goto out;
1187 }
1188 ubytes -= uchunk;
1189 maddr += mchunk;
dd5f7260
VG
1190 if (image->file_mode)
1191 kbuf += mchunk;
1192 else
1193 buf += mchunk;
dc009d92
EB
1194 mbytes -= mchunk;
1195 }
72414d3f 1196out:
dc009d92
EB
1197 return result;
1198}
1199
1200static int kimage_load_segment(struct kimage *image,
72414d3f 1201 struct kexec_segment *segment)
dc009d92
EB
1202{
1203 int result = -ENOMEM;
72414d3f
MS
1204
1205 switch (image->type) {
dc009d92
EB
1206 case KEXEC_TYPE_DEFAULT:
1207 result = kimage_load_normal_segment(image, segment);
1208 break;
1209 case KEXEC_TYPE_CRASH:
1210 result = kimage_load_crash_segment(image, segment);
1211 break;
1212 }
72414d3f 1213
dc009d92
EB
1214 return result;
1215}
1216
1217/*
1218 * Exec Kernel system call: for obvious reasons only root may call it.
1219 *
1220 * This call breaks up into three pieces.
1221 * - A generic part which loads the new kernel from the current
1222 * address space, and very carefully places the data in the
1223 * allocated pages.
1224 *
1225 * - A generic part that interacts with the kernel and tells all of
1226 * the devices to shut down. Preventing on-going dmas, and placing
1227 * the devices in a consistent state so a later kernel can
1228 * reinitialize them.
1229 *
1230 * - A machine specific part that includes the syscall number
002ace78 1231 * and then copies the image to it's final destination. And
dc009d92
EB
1232 * jumps into the image at entry.
1233 *
1234 * kexec does not sync, or unmount filesystems so if you need
1235 * that to happen you need to do that yourself.
1236 */
c330dda9
JM
1237struct kimage *kexec_image;
1238struct kimage *kexec_crash_image;
7984754b 1239int kexec_load_disabled;
8c5a1cf0
AM
1240
1241static DEFINE_MUTEX(kexec_mutex);
dc009d92 1242
754fe8d2
HC
1243SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
1244 struct kexec_segment __user *, segments, unsigned long, flags)
dc009d92
EB
1245{
1246 struct kimage **dest_image, *image;
dc009d92
EB
1247 int result;
1248
1249 /* We only trust the superuser with rebooting the system. */
7984754b 1250 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
dc009d92
EB
1251 return -EPERM;
1252
1253 /*
1254 * Verify we have a legal set of flags
1255 * This leaves us room for future extensions.
1256 */
1257 if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
1258 return -EINVAL;
1259
1260 /* Verify we are on the appropriate architecture */
1261 if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
1262 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
dc009d92 1263 return -EINVAL;
dc009d92
EB
1264
1265 /* Put an artificial cap on the number
1266 * of segments passed to kexec_load.
1267 */
1268 if (nr_segments > KEXEC_SEGMENT_MAX)
1269 return -EINVAL;
1270
1271 image = NULL;
1272 result = 0;
1273
1274 /* Because we write directly to the reserved memory
1275 * region when loading crash kernels we need a mutex here to
1276 * prevent multiple crash kernels from attempting to load
1277 * simultaneously, and to prevent a crash kernel from loading
1278 * over the top of a in use crash kernel.
1279 *
1280 * KISS: always take the mutex.
1281 */
8c5a1cf0 1282 if (!mutex_trylock(&kexec_mutex))
dc009d92 1283 return -EBUSY;
72414d3f 1284
dc009d92 1285 dest_image = &kexec_image;
72414d3f 1286 if (flags & KEXEC_ON_CRASH)
dc009d92 1287 dest_image = &kexec_crash_image;
dc009d92
EB
1288 if (nr_segments > 0) {
1289 unsigned long i;
72414d3f 1290
dc009d92 1291 /* Loading another kernel to reboot into */
72414d3f 1292 if ((flags & KEXEC_ON_CRASH) == 0)
255aedd9
VG
1293 result = kimage_alloc_init(&image, entry, nr_segments,
1294 segments, flags);
dc009d92
EB
1295 /* Loading another kernel to switch to if this one crashes */
1296 else if (flags & KEXEC_ON_CRASH) {
1297 /* Free any current crash dump kernel before
1298 * we corrupt it.
1299 */
1300 kimage_free(xchg(&kexec_crash_image, NULL));
255aedd9
VG
1301 result = kimage_alloc_init(&image, entry, nr_segments,
1302 segments, flags);
558df720 1303 crash_map_reserved_pages();
dc009d92 1304 }
72414d3f 1305 if (result)
dc009d92 1306 goto out;
72414d3f 1307
3ab83521
HY
1308 if (flags & KEXEC_PRESERVE_CONTEXT)
1309 image->preserve_context = 1;
dc009d92 1310 result = machine_kexec_prepare(image);
72414d3f 1311 if (result)
dc009d92 1312 goto out;
72414d3f
MS
1313
1314 for (i = 0; i < nr_segments; i++) {
dc009d92 1315 result = kimage_load_segment(image, &image->segment[i]);
72414d3f 1316 if (result)
dc009d92 1317 goto out;
dc009d92 1318 }
7fccf032 1319 kimage_terminate(image);
558df720
MH
1320 if (flags & KEXEC_ON_CRASH)
1321 crash_unmap_reserved_pages();
dc009d92
EB
1322 }
1323 /* Install the new kernel, and Uninstall the old */
1324 image = xchg(dest_image, image);
1325
72414d3f 1326out:
8c5a1cf0 1327 mutex_unlock(&kexec_mutex);
dc009d92 1328 kimage_free(image);
72414d3f 1329
dc009d92
EB
1330 return result;
1331}
1332
558df720
MH
1333/*
1334 * Add and remove page tables for crashkernel memory
1335 *
1336 * Provide an empty default implementation here -- architecture
1337 * code may override this
1338 */
1339void __weak crash_map_reserved_pages(void)
1340{}
1341
1342void __weak crash_unmap_reserved_pages(void)
1343{}
1344
dc009d92 1345#ifdef CONFIG_COMPAT
ca2c405a
HC
1346COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
1347 compat_ulong_t, nr_segments,
1348 struct compat_kexec_segment __user *, segments,
1349 compat_ulong_t, flags)
dc009d92
EB
1350{
1351 struct compat_kexec_segment in;
1352 struct kexec_segment out, __user *ksegments;
1353 unsigned long i, result;
1354
1355 /* Don't allow clients that don't understand the native
1356 * architecture to do anything.
1357 */
72414d3f 1358 if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
dc009d92 1359 return -EINVAL;
dc009d92 1360
72414d3f 1361 if (nr_segments > KEXEC_SEGMENT_MAX)
dc009d92 1362 return -EINVAL;
dc009d92
EB
1363
1364 ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
e1bebcf4 1365 for (i = 0; i < nr_segments; i++) {
dc009d92 1366 result = copy_from_user(&in, &segments[i], sizeof(in));
72414d3f 1367 if (result)
dc009d92 1368 return -EFAULT;
dc009d92
EB
1369
1370 out.buf = compat_ptr(in.buf);
1371 out.bufsz = in.bufsz;
1372 out.mem = in.mem;
1373 out.memsz = in.memsz;
1374
1375 result = copy_to_user(&ksegments[i], &out, sizeof(out));
72414d3f 1376 if (result)
dc009d92 1377 return -EFAULT;
dc009d92
EB
1378 }
1379
1380 return sys_kexec_load(entry, nr_segments, ksegments, flags);
1381}
1382#endif
1383
74ca317c 1384#ifdef CONFIG_KEXEC_FILE
f0895685
VG
1385SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
1386 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
1387 unsigned long, flags)
1388{
cb105258
VG
1389 int ret = 0, i;
1390 struct kimage **dest_image, *image;
1391
1392 /* We only trust the superuser with rebooting the system. */
1393 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
1394 return -EPERM;
1395
1396 /* Make sure we have a legal set of flags */
1397 if (flags != (flags & KEXEC_FILE_FLAGS))
1398 return -EINVAL;
1399
1400 image = NULL;
1401
1402 if (!mutex_trylock(&kexec_mutex))
1403 return -EBUSY;
1404
1405 dest_image = &kexec_image;
1406 if (flags & KEXEC_FILE_ON_CRASH)
1407 dest_image = &kexec_crash_image;
1408
1409 if (flags & KEXEC_FILE_UNLOAD)
1410 goto exchange;
1411
1412 /*
1413 * In case of crash, new kernel gets loaded in reserved region. It is
1414 * same memory where old crash kernel might be loaded. Free any
1415 * current crash dump kernel before we corrupt it.
1416 */
1417 if (flags & KEXEC_FILE_ON_CRASH)
1418 kimage_free(xchg(&kexec_crash_image, NULL));
1419
1420 ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
1421 cmdline_len, flags);
1422 if (ret)
1423 goto out;
1424
1425 ret = machine_kexec_prepare(image);
1426 if (ret)
1427 goto out;
1428
12db5562
VG
1429 ret = kexec_calculate_store_digests(image);
1430 if (ret)
1431 goto out;
1432
cb105258
VG
1433 for (i = 0; i < image->nr_segments; i++) {
1434 struct kexec_segment *ksegment;
1435
1436 ksegment = &image->segment[i];
1437 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
1438 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
1439 ksegment->memsz);
1440
1441 ret = kimage_load_segment(image, &image->segment[i]);
1442 if (ret)
1443 goto out;
1444 }
1445
1446 kimage_terminate(image);
1447
1448 /*
1449 * Free up any temporary buffers allocated which are not needed
1450 * after image has been loaded
1451 */
1452 kimage_file_post_load_cleanup(image);
1453exchange:
1454 image = xchg(dest_image, image);
1455out:
1456 mutex_unlock(&kexec_mutex);
1457 kimage_free(image);
1458 return ret;
f0895685
VG
1459}
1460
74ca317c
VG
1461#endif /* CONFIG_KEXEC_FILE */
1462
6e274d14 1463void crash_kexec(struct pt_regs *regs)
dc009d92 1464{
8c5a1cf0 1465 /* Take the kexec_mutex here to prevent sys_kexec_load
dc009d92
EB
1466 * running on one cpu from replacing the crash kernel
1467 * we are using after a panic on a different cpu.
1468 *
1469 * If the crash kernel was not located in a fixed area
1470 * of memory the xchg(&kexec_crash_image) would be
1471 * sufficient. But since I reuse the memory...
1472 */
8c5a1cf0 1473 if (mutex_trylock(&kexec_mutex)) {
c0ce7d08 1474 if (kexec_crash_image) {
e996e581 1475 struct pt_regs fixed_regs;
0f4bd46e 1476
e996e581 1477 crash_setup_regs(&fixed_regs, regs);
fd59d231 1478 crash_save_vmcoreinfo();
e996e581 1479 machine_crash_shutdown(&fixed_regs);
c0ce7d08 1480 machine_kexec(kexec_crash_image);
dc009d92 1481 }
8c5a1cf0 1482 mutex_unlock(&kexec_mutex);
dc009d92
EB
1483 }
1484}
cc571658 1485
06a7f711
AW
1486size_t crash_get_memory_size(void)
1487{
e05bd336 1488 size_t size = 0;
06a7f711 1489 mutex_lock(&kexec_mutex);
e05bd336 1490 if (crashk_res.end != crashk_res.start)
28f65c11 1491 size = resource_size(&crashk_res);
06a7f711
AW
1492 mutex_unlock(&kexec_mutex);
1493 return size;
1494}
1495
c0bb9e45
AB
1496void __weak crash_free_reserved_phys_range(unsigned long begin,
1497 unsigned long end)
06a7f711
AW
1498{
1499 unsigned long addr;
1500
e07cee23
JL
1501 for (addr = begin; addr < end; addr += PAGE_SIZE)
1502 free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
06a7f711
AW
1503}
1504
1505int crash_shrink_memory(unsigned long new_size)
1506{
1507 int ret = 0;
1508 unsigned long start, end;
bec013c4 1509 unsigned long old_size;
6480e5a0 1510 struct resource *ram_res;
06a7f711
AW
1511
1512 mutex_lock(&kexec_mutex);
1513
1514 if (kexec_crash_image) {
1515 ret = -ENOENT;
1516 goto unlock;
1517 }
1518 start = crashk_res.start;
1519 end = crashk_res.end;
bec013c4
MH
1520 old_size = (end == 0) ? 0 : end - start + 1;
1521 if (new_size >= old_size) {
1522 ret = (new_size == old_size) ? 0 : -EINVAL;
06a7f711
AW
1523 goto unlock;
1524 }
1525
6480e5a0
MH
1526 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1527 if (!ram_res) {
1528 ret = -ENOMEM;
1529 goto unlock;
1530 }
1531
558df720
MH
1532 start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1533 end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
06a7f711 1534
558df720 1535 crash_map_reserved_pages();
c0bb9e45 1536 crash_free_reserved_phys_range(end, crashk_res.end);
06a7f711 1537
e05bd336 1538 if ((start == end) && (crashk_res.parent != NULL))
06a7f711 1539 release_resource(&crashk_res);
6480e5a0
MH
1540
1541 ram_res->start = end;
1542 ram_res->end = crashk_res.end;
1543 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1544 ram_res->name = "System RAM";
1545
475f9aa6 1546 crashk_res.end = end - 1;
6480e5a0
MH
1547
1548 insert_resource(&iomem_resource, ram_res);
558df720 1549 crash_unmap_reserved_pages();
06a7f711
AW
1550
1551unlock:
1552 mutex_unlock(&kexec_mutex);
1553 return ret;
1554}
1555
85916f81
MD
1556static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
1557 size_t data_len)
1558{
1559 struct elf_note note;
1560
1561 note.n_namesz = strlen(name) + 1;
1562 note.n_descsz = data_len;
1563 note.n_type = type;
1564 memcpy(buf, &note, sizeof(note));
1565 buf += (sizeof(note) + 3)/4;
1566 memcpy(buf, name, note.n_namesz);
1567 buf += (note.n_namesz + 3)/4;
1568 memcpy(buf, data, note.n_descsz);
1569 buf += (note.n_descsz + 3)/4;
1570
1571 return buf;
1572}
1573
1574static void final_note(u32 *buf)
1575{
1576 struct elf_note note;
1577
1578 note.n_namesz = 0;
1579 note.n_descsz = 0;
1580 note.n_type = 0;
1581 memcpy(buf, &note, sizeof(note));
1582}
1583
1584void crash_save_cpu(struct pt_regs *regs, int cpu)
1585{
1586 struct elf_prstatus prstatus;
1587 u32 *buf;
1588
4f4b6c1a 1589 if ((cpu < 0) || (cpu >= nr_cpu_ids))
85916f81
MD
1590 return;
1591
1592 /* Using ELF notes here is opportunistic.
1593 * I need a well defined structure format
1594 * for the data I pass, and I need tags
1595 * on the data to indicate what information I have
1596 * squirrelled away. ELF notes happen to provide
1597 * all of that, so there is no need to invent something new.
1598 */
e1bebcf4 1599 buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
85916f81
MD
1600 if (!buf)
1601 return;
1602 memset(&prstatus, 0, sizeof(prstatus));
1603 prstatus.pr_pid = current->pid;
6cd61c0b 1604 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
6672f76a 1605 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
e1bebcf4 1606 &prstatus, sizeof(prstatus));
85916f81
MD
1607 final_note(buf);
1608}
1609
cc571658
VG
1610static int __init crash_notes_memory_init(void)
1611{
1612 /* Allocate memory for saving cpu registers. */
1613 crash_notes = alloc_percpu(note_buf_t);
1614 if (!crash_notes) {
e1bebcf4 1615 pr_warn("Kexec: Memory allocation for saving cpu register states failed\n");
cc571658
VG
1616 return -ENOMEM;
1617 }
1618 return 0;
1619}
c96d6660 1620subsys_initcall(crash_notes_memory_init);
fd59d231 1621
cba63c30
BW
1622
1623/*
1624 * parsing the "crashkernel" commandline
1625 *
1626 * this code is intended to be called from architecture specific code
1627 */
1628
1629
1630/*
1631 * This function parses command lines in the format
1632 *
1633 * crashkernel=ramsize-range:size[,...][@offset]
1634 *
1635 * The function returns 0 on success and -EINVAL on failure.
1636 */
e1bebcf4
FF
1637static int __init parse_crashkernel_mem(char *cmdline,
1638 unsigned long long system_ram,
1639 unsigned long long *crash_size,
1640 unsigned long long *crash_base)
cba63c30
BW
1641{
1642 char *cur = cmdline, *tmp;
1643
1644 /* for each entry of the comma-separated list */
1645 do {
1646 unsigned long long start, end = ULLONG_MAX, size;
1647
1648 /* get the start of the range */
1649 start = memparse(cur, &tmp);
1650 if (cur == tmp) {
e1bebcf4 1651 pr_warn("crashkernel: Memory value expected\n");
cba63c30
BW
1652 return -EINVAL;
1653 }
1654 cur = tmp;
1655 if (*cur != '-') {
e1bebcf4 1656 pr_warn("crashkernel: '-' expected\n");
cba63c30
BW
1657 return -EINVAL;
1658 }
1659 cur++;
1660
1661 /* if no ':' is here, than we read the end */
1662 if (*cur != ':') {
1663 end = memparse(cur, &tmp);
1664 if (cur == tmp) {
e1bebcf4 1665 pr_warn("crashkernel: Memory value expected\n");
cba63c30
BW
1666 return -EINVAL;
1667 }
1668 cur = tmp;
1669 if (end <= start) {
e1bebcf4 1670 pr_warn("crashkernel: end <= start\n");
cba63c30
BW
1671 return -EINVAL;
1672 }
1673 }
1674
1675 if (*cur != ':') {
e1bebcf4 1676 pr_warn("crashkernel: ':' expected\n");
cba63c30
BW
1677 return -EINVAL;
1678 }
1679 cur++;
1680
1681 size = memparse(cur, &tmp);
1682 if (cur == tmp) {
e1bebcf4 1683 pr_warn("Memory value expected\n");
cba63c30
BW
1684 return -EINVAL;
1685 }
1686 cur = tmp;
1687 if (size >= system_ram) {
e1bebcf4 1688 pr_warn("crashkernel: invalid size\n");
cba63c30
BW
1689 return -EINVAL;
1690 }
1691
1692 /* match ? */
be089d79 1693 if (system_ram >= start && system_ram < end) {
cba63c30
BW
1694 *crash_size = size;
1695 break;
1696 }
1697 } while (*cur++ == ',');
1698
1699 if (*crash_size > 0) {
11c7da4b 1700 while (*cur && *cur != ' ' && *cur != '@')
cba63c30
BW
1701 cur++;
1702 if (*cur == '@') {
1703 cur++;
1704 *crash_base = memparse(cur, &tmp);
1705 if (cur == tmp) {
e1bebcf4 1706 pr_warn("Memory value expected after '@'\n");
cba63c30
BW
1707 return -EINVAL;
1708 }
1709 }
1710 }
1711
1712 return 0;
1713}
1714
1715/*
1716 * That function parses "simple" (old) crashkernel command lines like
1717 *
e1bebcf4 1718 * crashkernel=size[@offset]
cba63c30
BW
1719 *
1720 * It returns 0 on success and -EINVAL on failure.
1721 */
e1bebcf4
FF
1722static int __init parse_crashkernel_simple(char *cmdline,
1723 unsigned long long *crash_size,
1724 unsigned long long *crash_base)
cba63c30
BW
1725{
1726 char *cur = cmdline;
1727
1728 *crash_size = memparse(cmdline, &cur);
1729 if (cmdline == cur) {
e1bebcf4 1730 pr_warn("crashkernel: memory value expected\n");
cba63c30
BW
1731 return -EINVAL;
1732 }
1733
1734 if (*cur == '@')
1735 *crash_base = memparse(cur+1, &cur);
eaa3be6a 1736 else if (*cur != ' ' && *cur != '\0') {
e1bebcf4 1737 pr_warn("crashkernel: unrecognized char\n");
eaa3be6a
ZD
1738 return -EINVAL;
1739 }
cba63c30
BW
1740
1741 return 0;
1742}
1743
adbc742b
YL
1744#define SUFFIX_HIGH 0
1745#define SUFFIX_LOW 1
1746#define SUFFIX_NULL 2
1747static __initdata char *suffix_tbl[] = {
1748 [SUFFIX_HIGH] = ",high",
1749 [SUFFIX_LOW] = ",low",
1750 [SUFFIX_NULL] = NULL,
1751};
1752
cba63c30 1753/*
adbc742b
YL
1754 * That function parses "suffix" crashkernel command lines like
1755 *
1756 * crashkernel=size,[high|low]
1757 *
1758 * It returns 0 on success and -EINVAL on failure.
cba63c30 1759 */
adbc742b
YL
1760static int __init parse_crashkernel_suffix(char *cmdline,
1761 unsigned long long *crash_size,
1762 unsigned long long *crash_base,
1763 const char *suffix)
1764{
1765 char *cur = cmdline;
1766
1767 *crash_size = memparse(cmdline, &cur);
1768 if (cmdline == cur) {
1769 pr_warn("crashkernel: memory value expected\n");
1770 return -EINVAL;
1771 }
1772
1773 /* check with suffix */
1774 if (strncmp(cur, suffix, strlen(suffix))) {
1775 pr_warn("crashkernel: unrecognized char\n");
1776 return -EINVAL;
1777 }
1778 cur += strlen(suffix);
1779 if (*cur != ' ' && *cur != '\0') {
1780 pr_warn("crashkernel: unrecognized char\n");
1781 return -EINVAL;
1782 }
1783
1784 return 0;
1785}
1786
1787static __init char *get_last_crashkernel(char *cmdline,
1788 const char *name,
1789 const char *suffix)
1790{
1791 char *p = cmdline, *ck_cmdline = NULL;
1792
1793 /* find crashkernel and use the last one if there are more */
1794 p = strstr(p, name);
1795 while (p) {
1796 char *end_p = strchr(p, ' ');
1797 char *q;
1798
1799 if (!end_p)
1800 end_p = p + strlen(p);
1801
1802 if (!suffix) {
1803 int i;
1804
1805 /* skip the one with any known suffix */
1806 for (i = 0; suffix_tbl[i]; i++) {
1807 q = end_p - strlen(suffix_tbl[i]);
1808 if (!strncmp(q, suffix_tbl[i],
1809 strlen(suffix_tbl[i])))
1810 goto next;
1811 }
1812 ck_cmdline = p;
1813 } else {
1814 q = end_p - strlen(suffix);
1815 if (!strncmp(q, suffix, strlen(suffix)))
1816 ck_cmdline = p;
1817 }
1818next:
1819 p = strstr(p+1, name);
1820 }
1821
1822 if (!ck_cmdline)
1823 return NULL;
1824
1825 return ck_cmdline;
1826}
1827
0212f915 1828static int __init __parse_crashkernel(char *cmdline,
cba63c30
BW
1829 unsigned long long system_ram,
1830 unsigned long long *crash_size,
0212f915 1831 unsigned long long *crash_base,
adbc742b
YL
1832 const char *name,
1833 const char *suffix)
cba63c30 1834{
cba63c30 1835 char *first_colon, *first_space;
adbc742b 1836 char *ck_cmdline;
cba63c30
BW
1837
1838 BUG_ON(!crash_size || !crash_base);
1839 *crash_size = 0;
1840 *crash_base = 0;
1841
adbc742b 1842 ck_cmdline = get_last_crashkernel(cmdline, name, suffix);
cba63c30
BW
1843
1844 if (!ck_cmdline)
1845 return -EINVAL;
1846
0212f915 1847 ck_cmdline += strlen(name);
cba63c30 1848
adbc742b
YL
1849 if (suffix)
1850 return parse_crashkernel_suffix(ck_cmdline, crash_size,
1851 crash_base, suffix);
cba63c30
BW
1852 /*
1853 * if the commandline contains a ':', then that's the extended
1854 * syntax -- if not, it must be the classic syntax
1855 */
1856 first_colon = strchr(ck_cmdline, ':');
1857 first_space = strchr(ck_cmdline, ' ');
1858 if (first_colon && (!first_space || first_colon < first_space))
1859 return parse_crashkernel_mem(ck_cmdline, system_ram,
1860 crash_size, crash_base);
cba63c30 1861
80c74f6a 1862 return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base);
cba63c30
BW
1863}
1864
adbc742b
YL
1865/*
1866 * That function is the entry point for command line parsing and should be
1867 * called from the arch-specific code.
1868 */
0212f915
YL
1869int __init parse_crashkernel(char *cmdline,
1870 unsigned long long system_ram,
1871 unsigned long long *crash_size,
1872 unsigned long long *crash_base)
1873{
1874 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
adbc742b 1875 "crashkernel=", NULL);
0212f915 1876}
55a20ee7
YL
1877
1878int __init parse_crashkernel_high(char *cmdline,
1879 unsigned long long system_ram,
1880 unsigned long long *crash_size,
1881 unsigned long long *crash_base)
1882{
1883 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
adbc742b 1884 "crashkernel=", suffix_tbl[SUFFIX_HIGH]);
55a20ee7 1885}
0212f915
YL
1886
1887int __init parse_crashkernel_low(char *cmdline,
1888 unsigned long long system_ram,
1889 unsigned long long *crash_size,
1890 unsigned long long *crash_base)
1891{
1892 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
adbc742b 1893 "crashkernel=", suffix_tbl[SUFFIX_LOW]);
0212f915 1894}
cba63c30 1895
fa8ff292 1896static void update_vmcoreinfo_note(void)
fd59d231 1897{
fa8ff292 1898 u32 *buf = vmcoreinfo_note;
fd59d231
KO
1899
1900 if (!vmcoreinfo_size)
1901 return;
fd59d231
KO
1902 buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1903 vmcoreinfo_size);
fd59d231
KO
1904 final_note(buf);
1905}
1906
fa8ff292
MH
1907void crash_save_vmcoreinfo(void)
1908{
63dca8d5 1909 vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
fa8ff292
MH
1910 update_vmcoreinfo_note();
1911}
1912
fd59d231
KO
1913void vmcoreinfo_append_str(const char *fmt, ...)
1914{
1915 va_list args;
1916 char buf[0x50];
310faaa9 1917 size_t r;
fd59d231
KO
1918
1919 va_start(args, fmt);
a19428e5 1920 r = vscnprintf(buf, sizeof(buf), fmt, args);
fd59d231
KO
1921 va_end(args);
1922
31c3a3fe 1923 r = min(r, vmcoreinfo_max_size - vmcoreinfo_size);
fd59d231
KO
1924
1925 memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1926
1927 vmcoreinfo_size += r;
1928}
1929
1930/*
1931 * provide an empty default implementation here -- architecture
1932 * code may override this
1933 */
52f5684c 1934void __weak arch_crash_save_vmcoreinfo(void)
fd59d231
KO
1935{}
1936
52f5684c 1937unsigned long __weak paddr_vmcoreinfo_note(void)
fd59d231
KO
1938{
1939 return __pa((unsigned long)(char *)&vmcoreinfo_note);
1940}
1941
1942static int __init crash_save_vmcoreinfo_init(void)
1943{
bba1f603
KO
1944 VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1945 VMCOREINFO_PAGESIZE(PAGE_SIZE);
fd59d231 1946
bcbba6c1
KO
1947 VMCOREINFO_SYMBOL(init_uts_ns);
1948 VMCOREINFO_SYMBOL(node_online_map);
d034cfab 1949#ifdef CONFIG_MMU
bcbba6c1 1950 VMCOREINFO_SYMBOL(swapper_pg_dir);
d034cfab 1951#endif
bcbba6c1 1952 VMCOREINFO_SYMBOL(_stext);
f1c4069e 1953 VMCOREINFO_SYMBOL(vmap_area_list);
fd59d231
KO
1954
1955#ifndef CONFIG_NEED_MULTIPLE_NODES
bcbba6c1
KO
1956 VMCOREINFO_SYMBOL(mem_map);
1957 VMCOREINFO_SYMBOL(contig_page_data);
fd59d231
KO
1958#endif
1959#ifdef CONFIG_SPARSEMEM
bcbba6c1
KO
1960 VMCOREINFO_SYMBOL(mem_section);
1961 VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
c76f860c 1962 VMCOREINFO_STRUCT_SIZE(mem_section);
bcbba6c1 1963 VMCOREINFO_OFFSET(mem_section, section_mem_map);
fd59d231 1964#endif
c76f860c
KO
1965 VMCOREINFO_STRUCT_SIZE(page);
1966 VMCOREINFO_STRUCT_SIZE(pglist_data);
1967 VMCOREINFO_STRUCT_SIZE(zone);
1968 VMCOREINFO_STRUCT_SIZE(free_area);
1969 VMCOREINFO_STRUCT_SIZE(list_head);
1970 VMCOREINFO_SIZE(nodemask_t);
bcbba6c1
KO
1971 VMCOREINFO_OFFSET(page, flags);
1972 VMCOREINFO_OFFSET(page, _count);
1973 VMCOREINFO_OFFSET(page, mapping);
1974 VMCOREINFO_OFFSET(page, lru);
8d67091e
AK
1975 VMCOREINFO_OFFSET(page, _mapcount);
1976 VMCOREINFO_OFFSET(page, private);
bcbba6c1
KO
1977 VMCOREINFO_OFFSET(pglist_data, node_zones);
1978 VMCOREINFO_OFFSET(pglist_data, nr_zones);
fd59d231 1979#ifdef CONFIG_FLAT_NODE_MEM_MAP
bcbba6c1 1980 VMCOREINFO_OFFSET(pglist_data, node_mem_map);
fd59d231 1981#endif
bcbba6c1
KO
1982 VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1983 VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1984 VMCOREINFO_OFFSET(pglist_data, node_id);
1985 VMCOREINFO_OFFSET(zone, free_area);
1986 VMCOREINFO_OFFSET(zone, vm_stat);
1987 VMCOREINFO_OFFSET(zone, spanned_pages);
1988 VMCOREINFO_OFFSET(free_area, free_list);
1989 VMCOREINFO_OFFSET(list_head, next);
1990 VMCOREINFO_OFFSET(list_head, prev);
13ba3fcb
AK
1991 VMCOREINFO_OFFSET(vmap_area, va_start);
1992 VMCOREINFO_OFFSET(vmap_area, list);
bcbba6c1 1993 VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
04d491ab 1994 log_buf_kexec_setup();
83a08e7c 1995 VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
bcbba6c1 1996 VMCOREINFO_NUMBER(NR_FREE_PAGES);
122c7a59
KO
1997 VMCOREINFO_NUMBER(PG_lru);
1998 VMCOREINFO_NUMBER(PG_private);
1999 VMCOREINFO_NUMBER(PG_swapcache);
8d67091e 2000 VMCOREINFO_NUMBER(PG_slab);
0d0bf667
MT
2001#ifdef CONFIG_MEMORY_FAILURE
2002 VMCOREINFO_NUMBER(PG_hwpoison);
2003#endif
b3acc56b 2004 VMCOREINFO_NUMBER(PG_head_mask);
8d67091e 2005 VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE);
3a1122d2 2006#ifdef CONFIG_HUGETLBFS
8f1d26d0 2007 VMCOREINFO_SYMBOL(free_huge_page);
3a1122d2 2008#endif
fd59d231
KO
2009
2010 arch_crash_save_vmcoreinfo();
fa8ff292 2011 update_vmcoreinfo_note();
fd59d231
KO
2012
2013 return 0;
2014}
2015
c96d6660 2016subsys_initcall(crash_save_vmcoreinfo_init);
3ab83521 2017
74ca317c 2018#ifdef CONFIG_KEXEC_FILE
cb105258
VG
2019static int __kexec_add_segment(struct kimage *image, char *buf,
2020 unsigned long bufsz, unsigned long mem,
2021 unsigned long memsz)
2022{
2023 struct kexec_segment *ksegment;
2024
2025 ksegment = &image->segment[image->nr_segments];
2026 ksegment->kbuf = buf;
2027 ksegment->bufsz = bufsz;
2028 ksegment->mem = mem;
2029 ksegment->memsz = memsz;
2030 image->nr_segments++;
2031
2032 return 0;
2033}
2034
2035static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
2036 struct kexec_buf *kbuf)
2037{
2038 struct kimage *image = kbuf->image;
2039 unsigned long temp_start, temp_end;
2040
2041 temp_end = min(end, kbuf->buf_max);
2042 temp_start = temp_end - kbuf->memsz;
2043
2044 do {
2045 /* align down start */
2046 temp_start = temp_start & (~(kbuf->buf_align - 1));
2047
2048 if (temp_start < start || temp_start < kbuf->buf_min)
2049 return 0;
2050
2051 temp_end = temp_start + kbuf->memsz - 1;
2052
2053 /*
2054 * Make sure this does not conflict with any of existing
2055 * segments
2056 */
2057 if (kimage_is_destination_range(image, temp_start, temp_end)) {
2058 temp_start = temp_start - PAGE_SIZE;
2059 continue;
2060 }
2061
2062 /* We found a suitable memory range */
2063 break;
2064 } while (1);
2065
2066 /* If we are here, we found a suitable memory range */
2067 __kexec_add_segment(image, kbuf->buffer, kbuf->bufsz, temp_start,
2068 kbuf->memsz);
2069
2070 /* Success, stop navigating through remaining System RAM ranges */
2071 return 1;
2072}
2073
2074static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
2075 struct kexec_buf *kbuf)
2076{
2077 struct kimage *image = kbuf->image;
2078 unsigned long temp_start, temp_end;
2079
2080 temp_start = max(start, kbuf->buf_min);
2081
2082 do {
2083 temp_start = ALIGN(temp_start, kbuf->buf_align);
2084 temp_end = temp_start + kbuf->memsz - 1;
2085
2086 if (temp_end > end || temp_end > kbuf->buf_max)
2087 return 0;
2088 /*
2089 * Make sure this does not conflict with any of existing
2090 * segments
2091 */
2092 if (kimage_is_destination_range(image, temp_start, temp_end)) {
2093 temp_start = temp_start + PAGE_SIZE;
2094 continue;
2095 }
2096
2097 /* We found a suitable memory range */
2098 break;
2099 } while (1);
2100
2101 /* If we are here, we found a suitable memory range */
2102 __kexec_add_segment(image, kbuf->buffer, kbuf->bufsz, temp_start,
2103 kbuf->memsz);
2104
2105 /* Success, stop navigating through remaining System RAM ranges */
2106 return 1;
2107}
2108
2109static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
2110{
2111 struct kexec_buf *kbuf = (struct kexec_buf *)arg;
2112 unsigned long sz = end - start + 1;
2113
2114 /* Returning 0 will take to next memory range */
2115 if (sz < kbuf->memsz)
2116 return 0;
2117
2118 if (end < kbuf->buf_min || start > kbuf->buf_max)
2119 return 0;
2120
2121 /*
2122 * Allocate memory top down with-in ram range. Otherwise bottom up
2123 * allocation.
2124 */
2125 if (kbuf->top_down)
2126 return locate_mem_hole_top_down(start, end, kbuf);
2127 return locate_mem_hole_bottom_up(start, end, kbuf);
2128}
2129
2130/*
2131 * Helper function for placing a buffer in a kexec segment. This assumes
2132 * that kexec_mutex is held.
2133 */
2134int kexec_add_buffer(struct kimage *image, char *buffer, unsigned long bufsz,
2135 unsigned long memsz, unsigned long buf_align,
2136 unsigned long buf_min, unsigned long buf_max,
2137 bool top_down, unsigned long *load_addr)
2138{
2139
2140 struct kexec_segment *ksegment;
2141 struct kexec_buf buf, *kbuf;
2142 int ret;
2143
2144 /* Currently adding segment this way is allowed only in file mode */
2145 if (!image->file_mode)
2146 return -EINVAL;
2147
2148 if (image->nr_segments >= KEXEC_SEGMENT_MAX)
2149 return -EINVAL;
2150
2151 /*
2152 * Make sure we are not trying to add buffer after allocating
2153 * control pages. All segments need to be placed first before
2154 * any control pages are allocated. As control page allocation
2155 * logic goes through list of segments to make sure there are
2156 * no destination overlaps.
2157 */
2158 if (!list_empty(&image->control_pages)) {
2159 WARN_ON(1);
2160 return -EINVAL;
2161 }
2162
2163 memset(&buf, 0, sizeof(struct kexec_buf));
2164 kbuf = &buf;
2165 kbuf->image = image;
2166 kbuf->buffer = buffer;
2167 kbuf->bufsz = bufsz;
2168
2169 kbuf->memsz = ALIGN(memsz, PAGE_SIZE);
2170 kbuf->buf_align = max(buf_align, PAGE_SIZE);
2171 kbuf->buf_min = buf_min;
2172 kbuf->buf_max = buf_max;
2173 kbuf->top_down = top_down;
2174
2175 /* Walk the RAM ranges and allocate a suitable range for the buffer */
dd5f7260
VG
2176 if (image->type == KEXEC_TYPE_CRASH)
2177 ret = walk_iomem_res("Crash kernel",
2178 IORESOURCE_MEM | IORESOURCE_BUSY,
2179 crashk_res.start, crashk_res.end, kbuf,
2180 locate_mem_hole_callback);
2181 else
2182 ret = walk_system_ram_res(0, -1, kbuf,
2183 locate_mem_hole_callback);
cb105258
VG
2184 if (ret != 1) {
2185 /* A suitable memory range could not be found for buffer */
2186 return -EADDRNOTAVAIL;
2187 }
2188
2189 /* Found a suitable memory range */
2190 ksegment = &image->segment[image->nr_segments - 1];
2191 *load_addr = ksegment->mem;
2192 return 0;
2193}
2194
12db5562
VG
2195/* Calculate and store the digest of segments */
2196static int kexec_calculate_store_digests(struct kimage *image)
2197{
2198 struct crypto_shash *tfm;
2199 struct shash_desc *desc;
2200 int ret = 0, i, j, zero_buf_sz, sha_region_sz;
2201 size_t desc_size, nullsz;
2202 char *digest;
2203 void *zero_buf;
2204 struct kexec_sha_region *sha_regions;
2205 struct purgatory_info *pi = &image->purgatory_info;
2206
2207 zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
2208 zero_buf_sz = PAGE_SIZE;
2209
2210 tfm = crypto_alloc_shash("sha256", 0, 0);
2211 if (IS_ERR(tfm)) {
2212 ret = PTR_ERR(tfm);
2213 goto out;
2214 }
2215
2216 desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
2217 desc = kzalloc(desc_size, GFP_KERNEL);
2218 if (!desc) {
2219 ret = -ENOMEM;
2220 goto out_free_tfm;
2221 }
2222
2223 sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
2224 sha_regions = vzalloc(sha_region_sz);
2225 if (!sha_regions)
2226 goto out_free_desc;
2227
2228 desc->tfm = tfm;
2229 desc->flags = 0;
2230
2231 ret = crypto_shash_init(desc);
2232 if (ret < 0)
2233 goto out_free_sha_regions;
2234
2235 digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
2236 if (!digest) {
2237 ret = -ENOMEM;
2238 goto out_free_sha_regions;
2239 }
2240
2241 for (j = i = 0; i < image->nr_segments; i++) {
2242 struct kexec_segment *ksegment;
2243
2244 ksegment = &image->segment[i];
2245 /*
2246 * Skip purgatory as it will be modified once we put digest
2247 * info in purgatory.
2248 */
2249 if (ksegment->kbuf == pi->purgatory_buf)
2250 continue;
2251
2252 ret = crypto_shash_update(desc, ksegment->kbuf,
2253 ksegment->bufsz);
2254 if (ret)
2255 break;
2256
2257 /*
2258 * Assume rest of the buffer is filled with zero and
2259 * update digest accordingly.
2260 */
2261 nullsz = ksegment->memsz - ksegment->bufsz;
2262 while (nullsz) {
2263 unsigned long bytes = nullsz;
2264
2265 if (bytes > zero_buf_sz)
2266 bytes = zero_buf_sz;
2267 ret = crypto_shash_update(desc, zero_buf, bytes);
2268 if (ret)
2269 break;
2270 nullsz -= bytes;
2271 }
2272
2273 if (ret)
2274 break;
2275
2276 sha_regions[j].start = ksegment->mem;
2277 sha_regions[j].len = ksegment->memsz;
2278 j++;
2279 }
2280
2281 if (!ret) {
2282 ret = crypto_shash_final(desc, digest);
2283 if (ret)
2284 goto out_free_digest;
2285 ret = kexec_purgatory_get_set_symbol(image, "sha_regions",
2286 sha_regions, sha_region_sz, 0);
2287 if (ret)
2288 goto out_free_digest;
2289
2290 ret = kexec_purgatory_get_set_symbol(image, "sha256_digest",
2291 digest, SHA256_DIGEST_SIZE, 0);
2292 if (ret)
2293 goto out_free_digest;
2294 }
2295
2296out_free_digest:
2297 kfree(digest);
2298out_free_sha_regions:
2299 vfree(sha_regions);
2300out_free_desc:
2301 kfree(desc);
2302out_free_tfm:
2303 kfree(tfm);
2304out:
2305 return ret;
2306}
2307
2308/* Actually load purgatory. Lot of code taken from kexec-tools */
2309static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
2310 unsigned long max, int top_down)
2311{
2312 struct purgatory_info *pi = &image->purgatory_info;
2313 unsigned long align, buf_align, bss_align, buf_sz, bss_sz, bss_pad;
2314 unsigned long memsz, entry, load_addr, curr_load_addr, bss_addr, offset;
2315 unsigned char *buf_addr, *src;
2316 int i, ret = 0, entry_sidx = -1;
2317 const Elf_Shdr *sechdrs_c;
2318 Elf_Shdr *sechdrs = NULL;
2319 void *purgatory_buf = NULL;
2320
2321 /*
2322 * sechdrs_c points to section headers in purgatory and are read
2323 * only. No modifications allowed.
2324 */
2325 sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
2326
2327 /*
2328 * We can not modify sechdrs_c[] and its fields. It is read only.
2329 * Copy it over to a local copy where one can store some temporary
2330 * data and free it at the end. We need to modify ->sh_addr and
2331 * ->sh_offset fields to keep track of permanent and temporary
2332 * locations of sections.
2333 */
2334 sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
2335 if (!sechdrs)
2336 return -ENOMEM;
2337
2338 memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
2339
2340 /*
2341 * We seem to have multiple copies of sections. First copy is which
2342 * is embedded in kernel in read only section. Some of these sections
2343 * will be copied to a temporary buffer and relocated. And these
2344 * sections will finally be copied to their final destination at
2345 * segment load time.
2346 *
2347 * Use ->sh_offset to reflect section address in memory. It will
2348 * point to original read only copy if section is not allocatable.
2349 * Otherwise it will point to temporary copy which will be relocated.
2350 *
2351 * Use ->sh_addr to contain final address of the section where it
2352 * will go during execution time.
2353 */
2354 for (i = 0; i < pi->ehdr->e_shnum; i++) {
2355 if (sechdrs[i].sh_type == SHT_NOBITS)
2356 continue;
2357
2358 sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
2359 sechdrs[i].sh_offset;
2360 }
2361
2362 /*
2363 * Identify entry point section and make entry relative to section
2364 * start.
2365 */
2366 entry = pi->ehdr->e_entry;
2367 for (i = 0; i < pi->ehdr->e_shnum; i++) {
2368 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
2369 continue;
2370
2371 if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
2372 continue;
2373
2374 /* Make entry section relative */
2375 if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
2376 ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
2377 pi->ehdr->e_entry)) {
2378 entry_sidx = i;
2379 entry -= sechdrs[i].sh_addr;
2380 break;
2381 }
2382 }
2383
2384 /* Determine how much memory is needed to load relocatable object. */
2385 buf_align = 1;
2386 bss_align = 1;
2387 buf_sz = 0;
2388 bss_sz = 0;
2389
2390 for (i = 0; i < pi->ehdr->e_shnum; i++) {
2391 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
2392 continue;
2393
2394 align = sechdrs[i].sh_addralign;
2395 if (sechdrs[i].sh_type != SHT_NOBITS) {
2396 if (buf_align < align)
2397 buf_align = align;
2398 buf_sz = ALIGN(buf_sz, align);
2399 buf_sz += sechdrs[i].sh_size;
2400 } else {
2401 /* bss section */
2402 if (bss_align < align)
2403 bss_align = align;
2404 bss_sz = ALIGN(bss_sz, align);
2405 bss_sz += sechdrs[i].sh_size;
2406 }
2407 }
2408
2409 /* Determine the bss padding required to align bss properly */
2410 bss_pad = 0;
2411 if (buf_sz & (bss_align - 1))
2412 bss_pad = bss_align - (buf_sz & (bss_align - 1));
2413
2414 memsz = buf_sz + bss_pad + bss_sz;
2415
2416 /* Allocate buffer for purgatory */
2417 purgatory_buf = vzalloc(buf_sz);
2418 if (!purgatory_buf) {
2419 ret = -ENOMEM;
2420 goto out;
2421 }
2422
2423 if (buf_align < bss_align)
2424 buf_align = bss_align;
2425
2426 /* Add buffer to segment list */
2427 ret = kexec_add_buffer(image, purgatory_buf, buf_sz, memsz,
2428 buf_align, min, max, top_down,
2429 &pi->purgatory_load_addr);
2430 if (ret)
2431 goto out;
2432
2433 /* Load SHF_ALLOC sections */
2434 buf_addr = purgatory_buf;
2435 load_addr = curr_load_addr = pi->purgatory_load_addr;
2436 bss_addr = load_addr + buf_sz + bss_pad;
2437
2438 for (i = 0; i < pi->ehdr->e_shnum; i++) {
2439 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
2440 continue;
2441
2442 align = sechdrs[i].sh_addralign;
2443 if (sechdrs[i].sh_type != SHT_NOBITS) {
2444 curr_load_addr = ALIGN(curr_load_addr, align);
2445 offset = curr_load_addr - load_addr;
2446 /* We already modifed ->sh_offset to keep src addr */
2447 src = (char *) sechdrs[i].sh_offset;
2448 memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
2449
2450 /* Store load address and source address of section */
2451 sechdrs[i].sh_addr = curr_load_addr;
2452
2453 /*
2454 * This section got copied to temporary buffer. Update
2455 * ->sh_offset accordingly.
2456 */
2457 sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
2458
2459 /* Advance to the next address */
2460 curr_load_addr += sechdrs[i].sh_size;
2461 } else {
2462 bss_addr = ALIGN(bss_addr, align);
2463 sechdrs[i].sh_addr = bss_addr;
2464 bss_addr += sechdrs[i].sh_size;
2465 }
2466 }
2467
2468 /* Update entry point based on load address of text section */
2469 if (entry_sidx >= 0)
2470 entry += sechdrs[entry_sidx].sh_addr;
2471
2472 /* Make kernel jump to purgatory after shutdown */
2473 image->start = entry;
2474
2475 /* Used later to get/set symbol values */
2476 pi->sechdrs = sechdrs;
2477
2478 /*
2479 * Used later to identify which section is purgatory and skip it
2480 * from checksumming.
2481 */
2482 pi->purgatory_buf = purgatory_buf;
2483 return ret;
2484out:
2485 vfree(sechdrs);
2486 vfree(purgatory_buf);
2487 return ret;
2488}
2489
2490static int kexec_apply_relocations(struct kimage *image)
2491{
2492 int i, ret;
2493 struct purgatory_info *pi = &image->purgatory_info;
2494 Elf_Shdr *sechdrs = pi->sechdrs;
2495
2496 /* Apply relocations */
2497 for (i = 0; i < pi->ehdr->e_shnum; i++) {
2498 Elf_Shdr *section, *symtab;
2499
2500 if (sechdrs[i].sh_type != SHT_RELA &&
2501 sechdrs[i].sh_type != SHT_REL)
2502 continue;
2503
2504 /*
2505 * For section of type SHT_RELA/SHT_REL,
2506 * ->sh_link contains section header index of associated
2507 * symbol table. And ->sh_info contains section header
2508 * index of section to which relocations apply.
2509 */
2510 if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
2511 sechdrs[i].sh_link >= pi->ehdr->e_shnum)
2512 return -ENOEXEC;
2513
2514 section = &sechdrs[sechdrs[i].sh_info];
2515 symtab = &sechdrs[sechdrs[i].sh_link];
2516
2517 if (!(section->sh_flags & SHF_ALLOC))
2518 continue;
2519
2520 /*
2521 * symtab->sh_link contain section header index of associated
2522 * string table.
2523 */
2524 if (symtab->sh_link >= pi->ehdr->e_shnum)
2525 /* Invalid section number? */
2526 continue;
2527
2528 /*
2529 * Respective archicture needs to provide support for applying
2530 * relocations of type SHT_RELA/SHT_REL.
2531 */
2532 if (sechdrs[i].sh_type == SHT_RELA)
2533 ret = arch_kexec_apply_relocations_add(pi->ehdr,
2534 sechdrs, i);
2535 else if (sechdrs[i].sh_type == SHT_REL)
2536 ret = arch_kexec_apply_relocations(pi->ehdr,
2537 sechdrs, i);
2538 if (ret)
2539 return ret;
2540 }
2541
2542 return 0;
2543}
2544
2545/* Load relocatable purgatory object and relocate it appropriately */
2546int kexec_load_purgatory(struct kimage *image, unsigned long min,
2547 unsigned long max, int top_down,
2548 unsigned long *load_addr)
2549{
2550 struct purgatory_info *pi = &image->purgatory_info;
2551 int ret;
2552
2553 if (kexec_purgatory_size <= 0)
2554 return -EINVAL;
2555
2556 if (kexec_purgatory_size < sizeof(Elf_Ehdr))
2557 return -ENOEXEC;
2558
2559 pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
2560
2561 if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
2562 || pi->ehdr->e_type != ET_REL
2563 || !elf_check_arch(pi->ehdr)
2564 || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
2565 return -ENOEXEC;
2566
2567 if (pi->ehdr->e_shoff >= kexec_purgatory_size
2568 || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
2569 kexec_purgatory_size - pi->ehdr->e_shoff))
2570 return -ENOEXEC;
2571
2572 ret = __kexec_load_purgatory(image, min, max, top_down);
2573 if (ret)
2574 return ret;
2575
2576 ret = kexec_apply_relocations(image);
2577 if (ret)
2578 goto out;
2579
2580 *load_addr = pi->purgatory_load_addr;
2581 return 0;
2582out:
2583 vfree(pi->sechdrs);
2584 vfree(pi->purgatory_buf);
2585 return ret;
2586}
2587
2588static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
2589 const char *name)
2590{
2591 Elf_Sym *syms;
2592 Elf_Shdr *sechdrs;
2593 Elf_Ehdr *ehdr;
2594 int i, k;
2595 const char *strtab;
2596
2597 if (!pi->sechdrs || !pi->ehdr)
2598 return NULL;
2599
2600 sechdrs = pi->sechdrs;
2601 ehdr = pi->ehdr;
2602
2603 for (i = 0; i < ehdr->e_shnum; i++) {
2604 if (sechdrs[i].sh_type != SHT_SYMTAB)
2605 continue;
2606
2607 if (sechdrs[i].sh_link >= ehdr->e_shnum)
2608 /* Invalid strtab section number */
2609 continue;
2610 strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
2611 syms = (Elf_Sym *)sechdrs[i].sh_offset;
2612
2613 /* Go through symbols for a match */
2614 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
2615 if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
2616 continue;
2617
2618 if (strcmp(strtab + syms[k].st_name, name) != 0)
2619 continue;
2620
2621 if (syms[k].st_shndx == SHN_UNDEF ||
2622 syms[k].st_shndx >= ehdr->e_shnum) {
2623 pr_debug("Symbol: %s has bad section index %d.\n",
2624 name, syms[k].st_shndx);
2625 return NULL;
2626 }
2627
2628 /* Found the symbol we are looking for */
2629 return &syms[k];
2630 }
2631 }
2632
2633 return NULL;
2634}
2635
2636void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
2637{
2638 struct purgatory_info *pi = &image->purgatory_info;
2639 Elf_Sym *sym;
2640 Elf_Shdr *sechdr;
2641
2642 sym = kexec_purgatory_find_symbol(pi, name);
2643 if (!sym)
2644 return ERR_PTR(-EINVAL);
2645
2646 sechdr = &pi->sechdrs[sym->st_shndx];
2647
2648 /*
2649 * Returns the address where symbol will finally be loaded after
2650 * kexec_load_segment()
2651 */
2652 return (void *)(sechdr->sh_addr + sym->st_value);
2653}
2654
2655/*
2656 * Get or set value of a symbol. If "get_value" is true, symbol value is
2657 * returned in buf otherwise symbol value is set based on value in buf.
2658 */
2659int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
2660 void *buf, unsigned int size, bool get_value)
2661{
2662 Elf_Sym *sym;
2663 Elf_Shdr *sechdrs;
2664 struct purgatory_info *pi = &image->purgatory_info;
2665 char *sym_buf;
2666
2667 sym = kexec_purgatory_find_symbol(pi, name);
2668 if (!sym)
2669 return -EINVAL;
2670
2671 if (sym->st_size != size) {
2672 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
2673 name, (unsigned long)sym->st_size, size);
2674 return -EINVAL;
2675 }
2676
2677 sechdrs = pi->sechdrs;
2678
2679 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2680 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
2681 get_value ? "get" : "set");
2682 return -EINVAL;
2683 }
2684
2685 sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
2686 sym->st_value;
2687
2688 if (get_value)
2689 memcpy((void *)buf, sym_buf, size);
2690 else
2691 memcpy((void *)sym_buf, buf, size);
2692
2693 return 0;
2694}
74ca317c 2695#endif /* CONFIG_KEXEC_FILE */
cb105258 2696
7ade3fcc
HY
2697/*
2698 * Move into place and start executing a preloaded standalone
2699 * executable. If nothing was preloaded return an error.
3ab83521
HY
2700 */
2701int kernel_kexec(void)
2702{
2703 int error = 0;
2704
8c5a1cf0 2705 if (!mutex_trylock(&kexec_mutex))
3ab83521
HY
2706 return -EBUSY;
2707 if (!kexec_image) {
2708 error = -EINVAL;
2709 goto Unlock;
2710 }
2711
3ab83521 2712#ifdef CONFIG_KEXEC_JUMP
7ade3fcc 2713 if (kexec_image->preserve_context) {
bcda53fa 2714 lock_system_sleep();
89081d17
HY
2715 pm_prepare_console();
2716 error = freeze_processes();
2717 if (error) {
2718 error = -EBUSY;
2719 goto Restore_console;
2720 }
2721 suspend_console();
d1616302 2722 error = dpm_suspend_start(PMSG_FREEZE);
89081d17
HY
2723 if (error)
2724 goto Resume_console;
d1616302 2725 /* At this point, dpm_suspend_start() has been called,
cf579dfb
RW
2726 * but *not* dpm_suspend_end(). We *must* call
2727 * dpm_suspend_end() now. Otherwise, drivers for
89081d17
HY
2728 * some devices (e.g. interrupt controllers) become
2729 * desynchronized with the actual state of the
2730 * hardware at resume time, and evil weirdness ensues.
2731 */
cf579dfb 2732 error = dpm_suspend_end(PMSG_FREEZE);
89081d17 2733 if (error)
749b0afc
RW
2734 goto Resume_devices;
2735 error = disable_nonboot_cpus();
2736 if (error)
2737 goto Enable_cpus;
2ed8d2b3 2738 local_irq_disable();
2e711c04 2739 error = syscore_suspend();
770824bd 2740 if (error)
749b0afc 2741 goto Enable_irqs;
7ade3fcc 2742 } else
3ab83521 2743#endif
7ade3fcc 2744 {
4fc9bbf9 2745 kexec_in_progress = true;
ca195b7f 2746 kernel_restart_prepare(NULL);
c97102ba 2747 migrate_to_reboot_cpu();
011e4b02
SB
2748
2749 /*
2750 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
2751 * no further code needs to use CPU hotplug (which is true in
2752 * the reboot case). However, the kexec path depends on using
2753 * CPU hotplug again; so re-enable it here.
2754 */
2755 cpu_hotplug_enable();
e1bebcf4 2756 pr_emerg("Starting new kernel\n");
3ab83521
HY
2757 machine_shutdown();
2758 }
2759
2760 machine_kexec(kexec_image);
2761
3ab83521 2762#ifdef CONFIG_KEXEC_JUMP
7ade3fcc 2763 if (kexec_image->preserve_context) {
19234c08 2764 syscore_resume();
749b0afc 2765 Enable_irqs:
3ab83521 2766 local_irq_enable();
749b0afc 2767 Enable_cpus:
89081d17 2768 enable_nonboot_cpus();
cf579dfb 2769 dpm_resume_start(PMSG_RESTORE);
89081d17 2770 Resume_devices:
d1616302 2771 dpm_resume_end(PMSG_RESTORE);
89081d17
HY
2772 Resume_console:
2773 resume_console();
2774 thaw_processes();
2775 Restore_console:
2776 pm_restore_console();
bcda53fa 2777 unlock_system_sleep();
3ab83521 2778 }
7ade3fcc 2779#endif
3ab83521
HY
2780
2781 Unlock:
8c5a1cf0 2782 mutex_unlock(&kexec_mutex);
3ab83521
HY
2783 return error;
2784}