signal: allow to send any siginfo to itself
[linux-2.6-block.git] / kernel / kexec.c
CommitLineData
dc009d92
EB
1/*
2 * kexec.c - kexec system call
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8
c59ede7b 9#include <linux/capability.h>
dc009d92
EB
10#include <linux/mm.h>
11#include <linux/file.h>
12#include <linux/slab.h>
13#include <linux/fs.h>
14#include <linux/kexec.h>
8c5a1cf0 15#include <linux/mutex.h>
dc009d92
EB
16#include <linux/list.h>
17#include <linux/highmem.h>
18#include <linux/syscalls.h>
19#include <linux/reboot.h>
dc009d92 20#include <linux/ioport.h>
6e274d14 21#include <linux/hardirq.h>
85916f81
MD
22#include <linux/elf.h>
23#include <linux/elfcore.h>
fd59d231
KO
24#include <linux/utsname.h>
25#include <linux/numa.h>
3ab83521
HY
26#include <linux/suspend.h>
27#include <linux/device.h>
89081d17
HY
28#include <linux/freezer.h>
29#include <linux/pm.h>
30#include <linux/cpu.h>
31#include <linux/console.h>
5f41b8cd 32#include <linux/vmalloc.h>
06a7f711 33#include <linux/swap.h>
19234c08 34#include <linux/syscore_ops.h>
6e274d14 35
dc009d92
EB
36#include <asm/page.h>
37#include <asm/uaccess.h>
38#include <asm/io.h>
fd59d231 39#include <asm/sections.h>
dc009d92 40
cc571658 41/* Per cpu memory for storing cpu states in case of system crash. */
43cf38eb 42note_buf_t __percpu *crash_notes;
cc571658 43
fd59d231 44/* vmcoreinfo stuff */
edb79a21 45static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
fd59d231 46u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
d768281e
KO
47size_t vmcoreinfo_size;
48size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
fd59d231 49
dc009d92
EB
50/* Location of the reserved area for the crash kernel */
51struct resource crashk_res = {
52 .name = "Crash kernel",
53 .start = 0,
54 .end = 0,
55 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
56};
0212f915
YL
57struct resource crashk_low_res = {
58 .name = "Crash kernel low",
59 .start = 0,
60 .end = 0,
61 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
62};
dc009d92 63
6e274d14
AN
64int kexec_should_crash(struct task_struct *p)
65{
b460cbc5 66 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
6e274d14
AN
67 return 1;
68 return 0;
69}
70
dc009d92
EB
71/*
72 * When kexec transitions to the new kernel there is a one-to-one
73 * mapping between physical and virtual addresses. On processors
74 * where you can disable the MMU this is trivial, and easy. For
75 * others it is still a simple predictable page table to setup.
76 *
77 * In that environment kexec copies the new kernel to its final
78 * resting place. This means I can only support memory whose
79 * physical address can fit in an unsigned long. In particular
80 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
81 * If the assembly stub has more restrictive requirements
82 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
83 * defined more restrictively in <asm/kexec.h>.
84 *
85 * The code for the transition from the current kernel to the
86 * the new kernel is placed in the control_code_buffer, whose size
163f6876 87 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
dc009d92
EB
88 * page of memory is necessary, but some architectures require more.
89 * Because this memory must be identity mapped in the transition from
90 * virtual to physical addresses it must live in the range
91 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
92 * modifiable.
93 *
94 * The assembly stub in the control code buffer is passed a linked list
95 * of descriptor pages detailing the source pages of the new kernel,
96 * and the destination addresses of those source pages. As this data
97 * structure is not used in the context of the current OS, it must
98 * be self-contained.
99 *
100 * The code has been made to work with highmem pages and will use a
101 * destination page in its final resting place (if it happens
102 * to allocate it). The end product of this is that most of the
103 * physical address space, and most of RAM can be used.
104 *
105 * Future directions include:
106 * - allocating a page table with the control code buffer identity
107 * mapped, to simplify machine_kexec and make kexec_on_panic more
108 * reliable.
109 */
110
111/*
112 * KIMAGE_NO_DEST is an impossible destination address..., for
113 * allocating pages whose destination address we do not care about.
114 */
115#define KIMAGE_NO_DEST (-1UL)
116
72414d3f
MS
117static int kimage_is_destination_range(struct kimage *image,
118 unsigned long start, unsigned long end);
119static struct page *kimage_alloc_page(struct kimage *image,
9796fdd8 120 gfp_t gfp_mask,
72414d3f 121 unsigned long dest);
dc009d92
EB
122
123static int do_kimage_alloc(struct kimage **rimage, unsigned long entry,
72414d3f
MS
124 unsigned long nr_segments,
125 struct kexec_segment __user *segments)
dc009d92
EB
126{
127 size_t segment_bytes;
128 struct kimage *image;
129 unsigned long i;
130 int result;
131
132 /* Allocate a controlling structure */
133 result = -ENOMEM;
4668edc3 134 image = kzalloc(sizeof(*image), GFP_KERNEL);
72414d3f 135 if (!image)
dc009d92 136 goto out;
72414d3f 137
dc009d92
EB
138 image->head = 0;
139 image->entry = &image->head;
140 image->last_entry = &image->head;
141 image->control_page = ~0; /* By default this does not apply */
142 image->start = entry;
143 image->type = KEXEC_TYPE_DEFAULT;
144
145 /* Initialize the list of control pages */
146 INIT_LIST_HEAD(&image->control_pages);
147
148 /* Initialize the list of destination pages */
149 INIT_LIST_HEAD(&image->dest_pages);
150
25985edc 151 /* Initialize the list of unusable pages */
dc009d92
EB
152 INIT_LIST_HEAD(&image->unuseable_pages);
153
154 /* Read in the segments */
155 image->nr_segments = nr_segments;
156 segment_bytes = nr_segments * sizeof(*segments);
157 result = copy_from_user(image->segment, segments, segment_bytes);
f65a03f6
DC
158 if (result) {
159 result = -EFAULT;
dc009d92 160 goto out;
f65a03f6 161 }
dc009d92
EB
162
163 /*
164 * Verify we have good destination addresses. The caller is
165 * responsible for making certain we don't attempt to load
166 * the new image into invalid or reserved areas of RAM. This
167 * just verifies it is an address we can use.
168 *
169 * Since the kernel does everything in page size chunks ensure
b595076a 170 * the destination addresses are page aligned. Too many
dc009d92
EB
171 * special cases crop of when we don't do this. The most
172 * insidious is getting overlapping destination addresses
173 * simply because addresses are changed to page size
174 * granularity.
175 */
176 result = -EADDRNOTAVAIL;
177 for (i = 0; i < nr_segments; i++) {
178 unsigned long mstart, mend;
72414d3f 179
dc009d92
EB
180 mstart = image->segment[i].mem;
181 mend = mstart + image->segment[i].memsz;
182 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
183 goto out;
184 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
185 goto out;
186 }
187
188 /* Verify our destination addresses do not overlap.
189 * If we alloed overlapping destination addresses
190 * through very weird things can happen with no
191 * easy explanation as one segment stops on another.
192 */
193 result = -EINVAL;
72414d3f 194 for (i = 0; i < nr_segments; i++) {
dc009d92
EB
195 unsigned long mstart, mend;
196 unsigned long j;
72414d3f 197
dc009d92
EB
198 mstart = image->segment[i].mem;
199 mend = mstart + image->segment[i].memsz;
72414d3f 200 for (j = 0; j < i; j++) {
dc009d92
EB
201 unsigned long pstart, pend;
202 pstart = image->segment[j].mem;
203 pend = pstart + image->segment[j].memsz;
204 /* Do the segments overlap ? */
205 if ((mend > pstart) && (mstart < pend))
206 goto out;
207 }
208 }
209
210 /* Ensure our buffer sizes are strictly less than
211 * our memory sizes. This should always be the case,
212 * and it is easier to check up front than to be surprised
213 * later on.
214 */
215 result = -EINVAL;
72414d3f 216 for (i = 0; i < nr_segments; i++) {
dc009d92
EB
217 if (image->segment[i].bufsz > image->segment[i].memsz)
218 goto out;
219 }
220
dc009d92 221 result = 0;
72414d3f
MS
222out:
223 if (result == 0)
dc009d92 224 *rimage = image;
72414d3f 225 else
dc009d92 226 kfree(image);
72414d3f 227
dc009d92
EB
228 return result;
229
230}
231
232static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry,
72414d3f
MS
233 unsigned long nr_segments,
234 struct kexec_segment __user *segments)
dc009d92
EB
235{
236 int result;
237 struct kimage *image;
238
239 /* Allocate and initialize a controlling structure */
240 image = NULL;
241 result = do_kimage_alloc(&image, entry, nr_segments, segments);
72414d3f 242 if (result)
dc009d92 243 goto out;
72414d3f 244
dc009d92
EB
245 *rimage = image;
246
247 /*
248 * Find a location for the control code buffer, and add it
249 * the vector of segments so that it's pages will also be
250 * counted as destination pages.
251 */
252 result = -ENOMEM;
253 image->control_code_page = kimage_alloc_control_pages(image,
163f6876 254 get_order(KEXEC_CONTROL_PAGE_SIZE));
dc009d92
EB
255 if (!image->control_code_page) {
256 printk(KERN_ERR "Could not allocate control_code_buffer\n");
257 goto out;
258 }
259
3ab83521
HY
260 image->swap_page = kimage_alloc_control_pages(image, 0);
261 if (!image->swap_page) {
262 printk(KERN_ERR "Could not allocate swap buffer\n");
263 goto out;
264 }
265
dc009d92
EB
266 result = 0;
267 out:
72414d3f 268 if (result == 0)
dc009d92 269 *rimage = image;
72414d3f 270 else
dc009d92 271 kfree(image);
72414d3f 272
dc009d92
EB
273 return result;
274}
275
276static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry,
72414d3f 277 unsigned long nr_segments,
314b6a4d 278 struct kexec_segment __user *segments)
dc009d92
EB
279{
280 int result;
281 struct kimage *image;
282 unsigned long i;
283
284 image = NULL;
285 /* Verify we have a valid entry point */
286 if ((entry < crashk_res.start) || (entry > crashk_res.end)) {
287 result = -EADDRNOTAVAIL;
288 goto out;
289 }
290
291 /* Allocate and initialize a controlling structure */
292 result = do_kimage_alloc(&image, entry, nr_segments, segments);
72414d3f 293 if (result)
dc009d92 294 goto out;
dc009d92
EB
295
296 /* Enable the special crash kernel control page
297 * allocation policy.
298 */
299 image->control_page = crashk_res.start;
300 image->type = KEXEC_TYPE_CRASH;
301
302 /*
303 * Verify we have good destination addresses. Normally
304 * the caller is responsible for making certain we don't
305 * attempt to load the new image into invalid or reserved
306 * areas of RAM. But crash kernels are preloaded into a
307 * reserved area of ram. We must ensure the addresses
308 * are in the reserved area otherwise preloading the
309 * kernel could corrupt things.
310 */
311 result = -EADDRNOTAVAIL;
312 for (i = 0; i < nr_segments; i++) {
313 unsigned long mstart, mend;
72414d3f 314
dc009d92 315 mstart = image->segment[i].mem;
50cccc69 316 mend = mstart + image->segment[i].memsz - 1;
dc009d92
EB
317 /* Ensure we are within the crash kernel limits */
318 if ((mstart < crashk_res.start) || (mend > crashk_res.end))
319 goto out;
320 }
321
dc009d92
EB
322 /*
323 * Find a location for the control code buffer, and add
324 * the vector of segments so that it's pages will also be
325 * counted as destination pages.
326 */
327 result = -ENOMEM;
328 image->control_code_page = kimage_alloc_control_pages(image,
163f6876 329 get_order(KEXEC_CONTROL_PAGE_SIZE));
dc009d92
EB
330 if (!image->control_code_page) {
331 printk(KERN_ERR "Could not allocate control_code_buffer\n");
332 goto out;
333 }
334
335 result = 0;
72414d3f
MS
336out:
337 if (result == 0)
dc009d92 338 *rimage = image;
72414d3f 339 else
dc009d92 340 kfree(image);
72414d3f 341
dc009d92
EB
342 return result;
343}
344
72414d3f
MS
345static int kimage_is_destination_range(struct kimage *image,
346 unsigned long start,
347 unsigned long end)
dc009d92
EB
348{
349 unsigned long i;
350
351 for (i = 0; i < image->nr_segments; i++) {
352 unsigned long mstart, mend;
72414d3f 353
dc009d92 354 mstart = image->segment[i].mem;
72414d3f
MS
355 mend = mstart + image->segment[i].memsz;
356 if ((end > mstart) && (start < mend))
dc009d92 357 return 1;
dc009d92 358 }
72414d3f 359
dc009d92
EB
360 return 0;
361}
362
9796fdd8 363static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
dc009d92
EB
364{
365 struct page *pages;
72414d3f 366
dc009d92
EB
367 pages = alloc_pages(gfp_mask, order);
368 if (pages) {
369 unsigned int count, i;
370 pages->mapping = NULL;
4c21e2f2 371 set_page_private(pages, order);
dc009d92 372 count = 1 << order;
72414d3f 373 for (i = 0; i < count; i++)
dc009d92 374 SetPageReserved(pages + i);
dc009d92 375 }
72414d3f 376
dc009d92
EB
377 return pages;
378}
379
380static void kimage_free_pages(struct page *page)
381{
382 unsigned int order, count, i;
72414d3f 383
4c21e2f2 384 order = page_private(page);
dc009d92 385 count = 1 << order;
72414d3f 386 for (i = 0; i < count; i++)
dc009d92 387 ClearPageReserved(page + i);
dc009d92
EB
388 __free_pages(page, order);
389}
390
391static void kimage_free_page_list(struct list_head *list)
392{
393 struct list_head *pos, *next;
72414d3f 394
dc009d92
EB
395 list_for_each_safe(pos, next, list) {
396 struct page *page;
397
398 page = list_entry(pos, struct page, lru);
399 list_del(&page->lru);
dc009d92
EB
400 kimage_free_pages(page);
401 }
402}
403
72414d3f
MS
404static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
405 unsigned int order)
dc009d92
EB
406{
407 /* Control pages are special, they are the intermediaries
408 * that are needed while we copy the rest of the pages
409 * to their final resting place. As such they must
410 * not conflict with either the destination addresses
411 * or memory the kernel is already using.
412 *
413 * The only case where we really need more than one of
414 * these are for architectures where we cannot disable
415 * the MMU and must instead generate an identity mapped
416 * page table for all of the memory.
417 *
418 * At worst this runs in O(N) of the image size.
419 */
420 struct list_head extra_pages;
421 struct page *pages;
422 unsigned int count;
423
424 count = 1 << order;
425 INIT_LIST_HEAD(&extra_pages);
426
427 /* Loop while I can allocate a page and the page allocated
428 * is a destination page.
429 */
430 do {
431 unsigned long pfn, epfn, addr, eaddr;
72414d3f 432
dc009d92
EB
433 pages = kimage_alloc_pages(GFP_KERNEL, order);
434 if (!pages)
435 break;
436 pfn = page_to_pfn(pages);
437 epfn = pfn + count;
438 addr = pfn << PAGE_SHIFT;
439 eaddr = epfn << PAGE_SHIFT;
440 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
72414d3f 441 kimage_is_destination_range(image, addr, eaddr)) {
dc009d92
EB
442 list_add(&pages->lru, &extra_pages);
443 pages = NULL;
444 }
72414d3f
MS
445 } while (!pages);
446
dc009d92
EB
447 if (pages) {
448 /* Remember the allocated page... */
449 list_add(&pages->lru, &image->control_pages);
450
451 /* Because the page is already in it's destination
452 * location we will never allocate another page at
453 * that address. Therefore kimage_alloc_pages
454 * will not return it (again) and we don't need
455 * to give it an entry in image->segment[].
456 */
457 }
458 /* Deal with the destination pages I have inadvertently allocated.
459 *
460 * Ideally I would convert multi-page allocations into single
25985edc 461 * page allocations, and add everything to image->dest_pages.
dc009d92
EB
462 *
463 * For now it is simpler to just free the pages.
464 */
465 kimage_free_page_list(&extra_pages);
dc009d92 466
72414d3f 467 return pages;
dc009d92
EB
468}
469
72414d3f
MS
470static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
471 unsigned int order)
dc009d92
EB
472{
473 /* Control pages are special, they are the intermediaries
474 * that are needed while we copy the rest of the pages
475 * to their final resting place. As such they must
476 * not conflict with either the destination addresses
477 * or memory the kernel is already using.
478 *
479 * Control pages are also the only pags we must allocate
480 * when loading a crash kernel. All of the other pages
481 * are specified by the segments and we just memcpy
482 * into them directly.
483 *
484 * The only case where we really need more than one of
485 * these are for architectures where we cannot disable
486 * the MMU and must instead generate an identity mapped
487 * page table for all of the memory.
488 *
489 * Given the low demand this implements a very simple
490 * allocator that finds the first hole of the appropriate
491 * size in the reserved memory region, and allocates all
492 * of the memory up to and including the hole.
493 */
494 unsigned long hole_start, hole_end, size;
495 struct page *pages;
72414d3f 496
dc009d92
EB
497 pages = NULL;
498 size = (1 << order) << PAGE_SHIFT;
499 hole_start = (image->control_page + (size - 1)) & ~(size - 1);
500 hole_end = hole_start + size - 1;
72414d3f 501 while (hole_end <= crashk_res.end) {
dc009d92 502 unsigned long i;
72414d3f 503
3d214fae 504 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
dc009d92 505 break;
72414d3f 506 if (hole_end > crashk_res.end)
dc009d92 507 break;
dc009d92 508 /* See if I overlap any of the segments */
72414d3f 509 for (i = 0; i < image->nr_segments; i++) {
dc009d92 510 unsigned long mstart, mend;
72414d3f 511
dc009d92
EB
512 mstart = image->segment[i].mem;
513 mend = mstart + image->segment[i].memsz - 1;
514 if ((hole_end >= mstart) && (hole_start <= mend)) {
515 /* Advance the hole to the end of the segment */
516 hole_start = (mend + (size - 1)) & ~(size - 1);
517 hole_end = hole_start + size - 1;
518 break;
519 }
520 }
521 /* If I don't overlap any segments I have found my hole! */
522 if (i == image->nr_segments) {
523 pages = pfn_to_page(hole_start >> PAGE_SHIFT);
524 break;
525 }
526 }
72414d3f 527 if (pages)
dc009d92 528 image->control_page = hole_end;
72414d3f 529
dc009d92
EB
530 return pages;
531}
532
533
72414d3f
MS
534struct page *kimage_alloc_control_pages(struct kimage *image,
535 unsigned int order)
dc009d92
EB
536{
537 struct page *pages = NULL;
72414d3f
MS
538
539 switch (image->type) {
dc009d92
EB
540 case KEXEC_TYPE_DEFAULT:
541 pages = kimage_alloc_normal_control_pages(image, order);
542 break;
543 case KEXEC_TYPE_CRASH:
544 pages = kimage_alloc_crash_control_pages(image, order);
545 break;
546 }
72414d3f 547
dc009d92
EB
548 return pages;
549}
550
551static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
552{
72414d3f 553 if (*image->entry != 0)
dc009d92 554 image->entry++;
72414d3f 555
dc009d92
EB
556 if (image->entry == image->last_entry) {
557 kimage_entry_t *ind_page;
558 struct page *page;
72414d3f 559
dc009d92 560 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
72414d3f 561 if (!page)
dc009d92 562 return -ENOMEM;
72414d3f 563
dc009d92
EB
564 ind_page = page_address(page);
565 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
566 image->entry = ind_page;
72414d3f
MS
567 image->last_entry = ind_page +
568 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
dc009d92
EB
569 }
570 *image->entry = entry;
571 image->entry++;
572 *image->entry = 0;
72414d3f 573
dc009d92
EB
574 return 0;
575}
576
72414d3f
MS
577static int kimage_set_destination(struct kimage *image,
578 unsigned long destination)
dc009d92
EB
579{
580 int result;
581
582 destination &= PAGE_MASK;
583 result = kimage_add_entry(image, destination | IND_DESTINATION);
72414d3f 584 if (result == 0)
dc009d92 585 image->destination = destination;
72414d3f 586
dc009d92
EB
587 return result;
588}
589
590
591static int kimage_add_page(struct kimage *image, unsigned long page)
592{
593 int result;
594
595 page &= PAGE_MASK;
596 result = kimage_add_entry(image, page | IND_SOURCE);
72414d3f 597 if (result == 0)
dc009d92 598 image->destination += PAGE_SIZE;
72414d3f 599
dc009d92
EB
600 return result;
601}
602
603
604static void kimage_free_extra_pages(struct kimage *image)
605{
606 /* Walk through and free any extra destination pages I may have */
607 kimage_free_page_list(&image->dest_pages);
608
25985edc 609 /* Walk through and free any unusable pages I have cached */
dc009d92
EB
610 kimage_free_page_list(&image->unuseable_pages);
611
612}
7fccf032 613static void kimage_terminate(struct kimage *image)
dc009d92 614{
72414d3f 615 if (*image->entry != 0)
dc009d92 616 image->entry++;
72414d3f 617
dc009d92 618 *image->entry = IND_DONE;
dc009d92
EB
619}
620
621#define for_each_kimage_entry(image, ptr, entry) \
622 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
623 ptr = (entry & IND_INDIRECTION)? \
624 phys_to_virt((entry & PAGE_MASK)): ptr +1)
625
626static void kimage_free_entry(kimage_entry_t entry)
627{
628 struct page *page;
629
630 page = pfn_to_page(entry >> PAGE_SHIFT);
631 kimage_free_pages(page);
632}
633
634static void kimage_free(struct kimage *image)
635{
636 kimage_entry_t *ptr, entry;
637 kimage_entry_t ind = 0;
638
639 if (!image)
640 return;
72414d3f 641
dc009d92
EB
642 kimage_free_extra_pages(image);
643 for_each_kimage_entry(image, ptr, entry) {
644 if (entry & IND_INDIRECTION) {
645 /* Free the previous indirection page */
72414d3f 646 if (ind & IND_INDIRECTION)
dc009d92 647 kimage_free_entry(ind);
dc009d92
EB
648 /* Save this indirection page until we are
649 * done with it.
650 */
651 ind = entry;
652 }
72414d3f 653 else if (entry & IND_SOURCE)
dc009d92 654 kimage_free_entry(entry);
dc009d92
EB
655 }
656 /* Free the final indirection page */
72414d3f 657 if (ind & IND_INDIRECTION)
dc009d92 658 kimage_free_entry(ind);
dc009d92
EB
659
660 /* Handle any machine specific cleanup */
661 machine_kexec_cleanup(image);
662
663 /* Free the kexec control pages... */
664 kimage_free_page_list(&image->control_pages);
665 kfree(image);
666}
667
72414d3f
MS
668static kimage_entry_t *kimage_dst_used(struct kimage *image,
669 unsigned long page)
dc009d92
EB
670{
671 kimage_entry_t *ptr, entry;
672 unsigned long destination = 0;
673
674 for_each_kimage_entry(image, ptr, entry) {
72414d3f 675 if (entry & IND_DESTINATION)
dc009d92 676 destination = entry & PAGE_MASK;
dc009d92 677 else if (entry & IND_SOURCE) {
72414d3f 678 if (page == destination)
dc009d92 679 return ptr;
dc009d92
EB
680 destination += PAGE_SIZE;
681 }
682 }
72414d3f 683
314b6a4d 684 return NULL;
dc009d92
EB
685}
686
72414d3f 687static struct page *kimage_alloc_page(struct kimage *image,
9796fdd8 688 gfp_t gfp_mask,
72414d3f 689 unsigned long destination)
dc009d92
EB
690{
691 /*
692 * Here we implement safeguards to ensure that a source page
693 * is not copied to its destination page before the data on
694 * the destination page is no longer useful.
695 *
696 * To do this we maintain the invariant that a source page is
697 * either its own destination page, or it is not a
698 * destination page at all.
699 *
700 * That is slightly stronger than required, but the proof
701 * that no problems will not occur is trivial, and the
702 * implementation is simply to verify.
703 *
704 * When allocating all pages normally this algorithm will run
705 * in O(N) time, but in the worst case it will run in O(N^2)
706 * time. If the runtime is a problem the data structures can
707 * be fixed.
708 */
709 struct page *page;
710 unsigned long addr;
711
712 /*
713 * Walk through the list of destination pages, and see if I
714 * have a match.
715 */
716 list_for_each_entry(page, &image->dest_pages, lru) {
717 addr = page_to_pfn(page) << PAGE_SHIFT;
718 if (addr == destination) {
719 list_del(&page->lru);
720 return page;
721 }
722 }
723 page = NULL;
724 while (1) {
725 kimage_entry_t *old;
726
727 /* Allocate a page, if we run out of memory give up */
728 page = kimage_alloc_pages(gfp_mask, 0);
72414d3f 729 if (!page)
314b6a4d 730 return NULL;
dc009d92 731 /* If the page cannot be used file it away */
72414d3f
MS
732 if (page_to_pfn(page) >
733 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
dc009d92
EB
734 list_add(&page->lru, &image->unuseable_pages);
735 continue;
736 }
737 addr = page_to_pfn(page) << PAGE_SHIFT;
738
739 /* If it is the destination page we want use it */
740 if (addr == destination)
741 break;
742
743 /* If the page is not a destination page use it */
72414d3f
MS
744 if (!kimage_is_destination_range(image, addr,
745 addr + PAGE_SIZE))
dc009d92
EB
746 break;
747
748 /*
749 * I know that the page is someones destination page.
750 * See if there is already a source page for this
751 * destination page. And if so swap the source pages.
752 */
753 old = kimage_dst_used(image, addr);
754 if (old) {
755 /* If so move it */
756 unsigned long old_addr;
757 struct page *old_page;
758
759 old_addr = *old & PAGE_MASK;
760 old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
761 copy_highpage(page, old_page);
762 *old = addr | (*old & ~PAGE_MASK);
763
764 /* The old page I have found cannot be a
f9092f35
JS
765 * destination page, so return it if it's
766 * gfp_flags honor the ones passed in.
dc009d92 767 */
f9092f35
JS
768 if (!(gfp_mask & __GFP_HIGHMEM) &&
769 PageHighMem(old_page)) {
770 kimage_free_pages(old_page);
771 continue;
772 }
dc009d92
EB
773 addr = old_addr;
774 page = old_page;
775 break;
776 }
777 else {
778 /* Place the page on the destination list I
779 * will use it later.
780 */
781 list_add(&page->lru, &image->dest_pages);
782 }
783 }
72414d3f 784
dc009d92
EB
785 return page;
786}
787
788static int kimage_load_normal_segment(struct kimage *image,
72414d3f 789 struct kexec_segment *segment)
dc009d92
EB
790{
791 unsigned long maddr;
792 unsigned long ubytes, mbytes;
793 int result;
314b6a4d 794 unsigned char __user *buf;
dc009d92
EB
795
796 result = 0;
797 buf = segment->buf;
798 ubytes = segment->bufsz;
799 mbytes = segment->memsz;
800 maddr = segment->mem;
801
802 result = kimage_set_destination(image, maddr);
72414d3f 803 if (result < 0)
dc009d92 804 goto out;
72414d3f
MS
805
806 while (mbytes) {
dc009d92
EB
807 struct page *page;
808 char *ptr;
809 size_t uchunk, mchunk;
72414d3f 810
dc009d92 811 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
c80544dc 812 if (!page) {
dc009d92
EB
813 result = -ENOMEM;
814 goto out;
815 }
72414d3f
MS
816 result = kimage_add_page(image, page_to_pfn(page)
817 << PAGE_SHIFT);
818 if (result < 0)
dc009d92 819 goto out;
72414d3f 820
dc009d92
EB
821 ptr = kmap(page);
822 /* Start with a clear page */
3ecb01df 823 clear_page(ptr);
dc009d92
EB
824 ptr += maddr & ~PAGE_MASK;
825 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
72414d3f 826 if (mchunk > mbytes)
dc009d92 827 mchunk = mbytes;
72414d3f 828
dc009d92 829 uchunk = mchunk;
72414d3f 830 if (uchunk > ubytes)
dc009d92 831 uchunk = ubytes;
72414d3f 832
dc009d92
EB
833 result = copy_from_user(ptr, buf, uchunk);
834 kunmap(page);
835 if (result) {
f65a03f6 836 result = -EFAULT;
dc009d92
EB
837 goto out;
838 }
839 ubytes -= uchunk;
840 maddr += mchunk;
841 buf += mchunk;
842 mbytes -= mchunk;
843 }
72414d3f 844out:
dc009d92
EB
845 return result;
846}
847
848static int kimage_load_crash_segment(struct kimage *image,
72414d3f 849 struct kexec_segment *segment)
dc009d92
EB
850{
851 /* For crash dumps kernels we simply copy the data from
852 * user space to it's destination.
853 * We do things a page at a time for the sake of kmap.
854 */
855 unsigned long maddr;
856 unsigned long ubytes, mbytes;
857 int result;
314b6a4d 858 unsigned char __user *buf;
dc009d92
EB
859
860 result = 0;
861 buf = segment->buf;
862 ubytes = segment->bufsz;
863 mbytes = segment->memsz;
864 maddr = segment->mem;
72414d3f 865 while (mbytes) {
dc009d92
EB
866 struct page *page;
867 char *ptr;
868 size_t uchunk, mchunk;
72414d3f 869
dc009d92 870 page = pfn_to_page(maddr >> PAGE_SHIFT);
c80544dc 871 if (!page) {
dc009d92
EB
872 result = -ENOMEM;
873 goto out;
874 }
875 ptr = kmap(page);
876 ptr += maddr & ~PAGE_MASK;
877 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
72414d3f 878 if (mchunk > mbytes)
dc009d92 879 mchunk = mbytes;
72414d3f 880
dc009d92
EB
881 uchunk = mchunk;
882 if (uchunk > ubytes) {
883 uchunk = ubytes;
884 /* Zero the trailing part of the page */
885 memset(ptr + uchunk, 0, mchunk - uchunk);
886 }
887 result = copy_from_user(ptr, buf, uchunk);
a7956113 888 kexec_flush_icache_page(page);
dc009d92
EB
889 kunmap(page);
890 if (result) {
f65a03f6 891 result = -EFAULT;
dc009d92
EB
892 goto out;
893 }
894 ubytes -= uchunk;
895 maddr += mchunk;
896 buf += mchunk;
897 mbytes -= mchunk;
898 }
72414d3f 899out:
dc009d92
EB
900 return result;
901}
902
903static int kimage_load_segment(struct kimage *image,
72414d3f 904 struct kexec_segment *segment)
dc009d92
EB
905{
906 int result = -ENOMEM;
72414d3f
MS
907
908 switch (image->type) {
dc009d92
EB
909 case KEXEC_TYPE_DEFAULT:
910 result = kimage_load_normal_segment(image, segment);
911 break;
912 case KEXEC_TYPE_CRASH:
913 result = kimage_load_crash_segment(image, segment);
914 break;
915 }
72414d3f 916
dc009d92
EB
917 return result;
918}
919
920/*
921 * Exec Kernel system call: for obvious reasons only root may call it.
922 *
923 * This call breaks up into three pieces.
924 * - A generic part which loads the new kernel from the current
925 * address space, and very carefully places the data in the
926 * allocated pages.
927 *
928 * - A generic part that interacts with the kernel and tells all of
929 * the devices to shut down. Preventing on-going dmas, and placing
930 * the devices in a consistent state so a later kernel can
931 * reinitialize them.
932 *
933 * - A machine specific part that includes the syscall number
934 * and the copies the image to it's final destination. And
935 * jumps into the image at entry.
936 *
937 * kexec does not sync, or unmount filesystems so if you need
938 * that to happen you need to do that yourself.
939 */
c330dda9
JM
940struct kimage *kexec_image;
941struct kimage *kexec_crash_image;
8c5a1cf0
AM
942
943static DEFINE_MUTEX(kexec_mutex);
dc009d92 944
754fe8d2
HC
945SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
946 struct kexec_segment __user *, segments, unsigned long, flags)
dc009d92
EB
947{
948 struct kimage **dest_image, *image;
dc009d92
EB
949 int result;
950
951 /* We only trust the superuser with rebooting the system. */
952 if (!capable(CAP_SYS_BOOT))
953 return -EPERM;
954
955 /*
956 * Verify we have a legal set of flags
957 * This leaves us room for future extensions.
958 */
959 if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
960 return -EINVAL;
961
962 /* Verify we are on the appropriate architecture */
963 if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
964 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
dc009d92 965 return -EINVAL;
dc009d92
EB
966
967 /* Put an artificial cap on the number
968 * of segments passed to kexec_load.
969 */
970 if (nr_segments > KEXEC_SEGMENT_MAX)
971 return -EINVAL;
972
973 image = NULL;
974 result = 0;
975
976 /* Because we write directly to the reserved memory
977 * region when loading crash kernels we need a mutex here to
978 * prevent multiple crash kernels from attempting to load
979 * simultaneously, and to prevent a crash kernel from loading
980 * over the top of a in use crash kernel.
981 *
982 * KISS: always take the mutex.
983 */
8c5a1cf0 984 if (!mutex_trylock(&kexec_mutex))
dc009d92 985 return -EBUSY;
72414d3f 986
dc009d92 987 dest_image = &kexec_image;
72414d3f 988 if (flags & KEXEC_ON_CRASH)
dc009d92 989 dest_image = &kexec_crash_image;
dc009d92
EB
990 if (nr_segments > 0) {
991 unsigned long i;
72414d3f 992
dc009d92 993 /* Loading another kernel to reboot into */
72414d3f
MS
994 if ((flags & KEXEC_ON_CRASH) == 0)
995 result = kimage_normal_alloc(&image, entry,
996 nr_segments, segments);
dc009d92
EB
997 /* Loading another kernel to switch to if this one crashes */
998 else if (flags & KEXEC_ON_CRASH) {
999 /* Free any current crash dump kernel before
1000 * we corrupt it.
1001 */
1002 kimage_free(xchg(&kexec_crash_image, NULL));
72414d3f
MS
1003 result = kimage_crash_alloc(&image, entry,
1004 nr_segments, segments);
558df720 1005 crash_map_reserved_pages();
dc009d92 1006 }
72414d3f 1007 if (result)
dc009d92 1008 goto out;
72414d3f 1009
3ab83521
HY
1010 if (flags & KEXEC_PRESERVE_CONTEXT)
1011 image->preserve_context = 1;
dc009d92 1012 result = machine_kexec_prepare(image);
72414d3f 1013 if (result)
dc009d92 1014 goto out;
72414d3f
MS
1015
1016 for (i = 0; i < nr_segments; i++) {
dc009d92 1017 result = kimage_load_segment(image, &image->segment[i]);
72414d3f 1018 if (result)
dc009d92 1019 goto out;
dc009d92 1020 }
7fccf032 1021 kimage_terminate(image);
558df720
MH
1022 if (flags & KEXEC_ON_CRASH)
1023 crash_unmap_reserved_pages();
dc009d92
EB
1024 }
1025 /* Install the new kernel, and Uninstall the old */
1026 image = xchg(dest_image, image);
1027
72414d3f 1028out:
8c5a1cf0 1029 mutex_unlock(&kexec_mutex);
dc009d92 1030 kimage_free(image);
72414d3f 1031
dc009d92
EB
1032 return result;
1033}
1034
558df720
MH
1035/*
1036 * Add and remove page tables for crashkernel memory
1037 *
1038 * Provide an empty default implementation here -- architecture
1039 * code may override this
1040 */
1041void __weak crash_map_reserved_pages(void)
1042{}
1043
1044void __weak crash_unmap_reserved_pages(void)
1045{}
1046
dc009d92
EB
1047#ifdef CONFIG_COMPAT
1048asmlinkage long compat_sys_kexec_load(unsigned long entry,
72414d3f
MS
1049 unsigned long nr_segments,
1050 struct compat_kexec_segment __user *segments,
1051 unsigned long flags)
dc009d92
EB
1052{
1053 struct compat_kexec_segment in;
1054 struct kexec_segment out, __user *ksegments;
1055 unsigned long i, result;
1056
1057 /* Don't allow clients that don't understand the native
1058 * architecture to do anything.
1059 */
72414d3f 1060 if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
dc009d92 1061 return -EINVAL;
dc009d92 1062
72414d3f 1063 if (nr_segments > KEXEC_SEGMENT_MAX)
dc009d92 1064 return -EINVAL;
dc009d92
EB
1065
1066 ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
1067 for (i=0; i < nr_segments; i++) {
1068 result = copy_from_user(&in, &segments[i], sizeof(in));
72414d3f 1069 if (result)
dc009d92 1070 return -EFAULT;
dc009d92
EB
1071
1072 out.buf = compat_ptr(in.buf);
1073 out.bufsz = in.bufsz;
1074 out.mem = in.mem;
1075 out.memsz = in.memsz;
1076
1077 result = copy_to_user(&ksegments[i], &out, sizeof(out));
72414d3f 1078 if (result)
dc009d92 1079 return -EFAULT;
dc009d92
EB
1080 }
1081
1082 return sys_kexec_load(entry, nr_segments, ksegments, flags);
1083}
1084#endif
1085
6e274d14 1086void crash_kexec(struct pt_regs *regs)
dc009d92 1087{
8c5a1cf0 1088 /* Take the kexec_mutex here to prevent sys_kexec_load
dc009d92
EB
1089 * running on one cpu from replacing the crash kernel
1090 * we are using after a panic on a different cpu.
1091 *
1092 * If the crash kernel was not located in a fixed area
1093 * of memory the xchg(&kexec_crash_image) would be
1094 * sufficient. But since I reuse the memory...
1095 */
8c5a1cf0 1096 if (mutex_trylock(&kexec_mutex)) {
c0ce7d08 1097 if (kexec_crash_image) {
e996e581 1098 struct pt_regs fixed_regs;
0f4bd46e 1099
e996e581 1100 crash_setup_regs(&fixed_regs, regs);
fd59d231 1101 crash_save_vmcoreinfo();
e996e581 1102 machine_crash_shutdown(&fixed_regs);
c0ce7d08 1103 machine_kexec(kexec_crash_image);
dc009d92 1104 }
8c5a1cf0 1105 mutex_unlock(&kexec_mutex);
dc009d92
EB
1106 }
1107}
cc571658 1108
06a7f711
AW
1109size_t crash_get_memory_size(void)
1110{
e05bd336 1111 size_t size = 0;
06a7f711 1112 mutex_lock(&kexec_mutex);
e05bd336 1113 if (crashk_res.end != crashk_res.start)
28f65c11 1114 size = resource_size(&crashk_res);
06a7f711
AW
1115 mutex_unlock(&kexec_mutex);
1116 return size;
1117}
1118
c0bb9e45
AB
1119void __weak crash_free_reserved_phys_range(unsigned long begin,
1120 unsigned long end)
06a7f711
AW
1121{
1122 unsigned long addr;
1123
1124 for (addr = begin; addr < end; addr += PAGE_SIZE) {
1125 ClearPageReserved(pfn_to_page(addr >> PAGE_SHIFT));
1126 init_page_count(pfn_to_page(addr >> PAGE_SHIFT));
1127 free_page((unsigned long)__va(addr));
1128 totalram_pages++;
1129 }
1130}
1131
1132int crash_shrink_memory(unsigned long new_size)
1133{
1134 int ret = 0;
1135 unsigned long start, end;
bec013c4 1136 unsigned long old_size;
6480e5a0 1137 struct resource *ram_res;
06a7f711
AW
1138
1139 mutex_lock(&kexec_mutex);
1140
1141 if (kexec_crash_image) {
1142 ret = -ENOENT;
1143 goto unlock;
1144 }
1145 start = crashk_res.start;
1146 end = crashk_res.end;
bec013c4
MH
1147 old_size = (end == 0) ? 0 : end - start + 1;
1148 if (new_size >= old_size) {
1149 ret = (new_size == old_size) ? 0 : -EINVAL;
06a7f711
AW
1150 goto unlock;
1151 }
1152
6480e5a0
MH
1153 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1154 if (!ram_res) {
1155 ret = -ENOMEM;
1156 goto unlock;
1157 }
1158
558df720
MH
1159 start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1160 end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
06a7f711 1161
558df720 1162 crash_map_reserved_pages();
c0bb9e45 1163 crash_free_reserved_phys_range(end, crashk_res.end);
06a7f711 1164
e05bd336 1165 if ((start == end) && (crashk_res.parent != NULL))
06a7f711 1166 release_resource(&crashk_res);
6480e5a0
MH
1167
1168 ram_res->start = end;
1169 ram_res->end = crashk_res.end;
1170 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1171 ram_res->name = "System RAM";
1172
475f9aa6 1173 crashk_res.end = end - 1;
6480e5a0
MH
1174
1175 insert_resource(&iomem_resource, ram_res);
558df720 1176 crash_unmap_reserved_pages();
06a7f711
AW
1177
1178unlock:
1179 mutex_unlock(&kexec_mutex);
1180 return ret;
1181}
1182
85916f81
MD
1183static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
1184 size_t data_len)
1185{
1186 struct elf_note note;
1187
1188 note.n_namesz = strlen(name) + 1;
1189 note.n_descsz = data_len;
1190 note.n_type = type;
1191 memcpy(buf, &note, sizeof(note));
1192 buf += (sizeof(note) + 3)/4;
1193 memcpy(buf, name, note.n_namesz);
1194 buf += (note.n_namesz + 3)/4;
1195 memcpy(buf, data, note.n_descsz);
1196 buf += (note.n_descsz + 3)/4;
1197
1198 return buf;
1199}
1200
1201static void final_note(u32 *buf)
1202{
1203 struct elf_note note;
1204
1205 note.n_namesz = 0;
1206 note.n_descsz = 0;
1207 note.n_type = 0;
1208 memcpy(buf, &note, sizeof(note));
1209}
1210
1211void crash_save_cpu(struct pt_regs *regs, int cpu)
1212{
1213 struct elf_prstatus prstatus;
1214 u32 *buf;
1215
4f4b6c1a 1216 if ((cpu < 0) || (cpu >= nr_cpu_ids))
85916f81
MD
1217 return;
1218
1219 /* Using ELF notes here is opportunistic.
1220 * I need a well defined structure format
1221 * for the data I pass, and I need tags
1222 * on the data to indicate what information I have
1223 * squirrelled away. ELF notes happen to provide
1224 * all of that, so there is no need to invent something new.
1225 */
1226 buf = (u32*)per_cpu_ptr(crash_notes, cpu);
1227 if (!buf)
1228 return;
1229 memset(&prstatus, 0, sizeof(prstatus));
1230 prstatus.pr_pid = current->pid;
6cd61c0b 1231 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
6672f76a
SH
1232 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1233 &prstatus, sizeof(prstatus));
85916f81
MD
1234 final_note(buf);
1235}
1236
cc571658
VG
1237static int __init crash_notes_memory_init(void)
1238{
1239 /* Allocate memory for saving cpu registers. */
1240 crash_notes = alloc_percpu(note_buf_t);
1241 if (!crash_notes) {
1242 printk("Kexec: Memory allocation for saving cpu register"
1243 " states failed\n");
1244 return -ENOMEM;
1245 }
1246 return 0;
1247}
1248module_init(crash_notes_memory_init)
fd59d231 1249
cba63c30
BW
1250
1251/*
1252 * parsing the "crashkernel" commandline
1253 *
1254 * this code is intended to be called from architecture specific code
1255 */
1256
1257
1258/*
1259 * This function parses command lines in the format
1260 *
1261 * crashkernel=ramsize-range:size[,...][@offset]
1262 *
1263 * The function returns 0 on success and -EINVAL on failure.
1264 */
1265static int __init parse_crashkernel_mem(char *cmdline,
1266 unsigned long long system_ram,
1267 unsigned long long *crash_size,
1268 unsigned long long *crash_base)
1269{
1270 char *cur = cmdline, *tmp;
1271
1272 /* for each entry of the comma-separated list */
1273 do {
1274 unsigned long long start, end = ULLONG_MAX, size;
1275
1276 /* get the start of the range */
1277 start = memparse(cur, &tmp);
1278 if (cur == tmp) {
1279 pr_warning("crashkernel: Memory value expected\n");
1280 return -EINVAL;
1281 }
1282 cur = tmp;
1283 if (*cur != '-') {
1284 pr_warning("crashkernel: '-' expected\n");
1285 return -EINVAL;
1286 }
1287 cur++;
1288
1289 /* if no ':' is here, than we read the end */
1290 if (*cur != ':') {
1291 end = memparse(cur, &tmp);
1292 if (cur == tmp) {
1293 pr_warning("crashkernel: Memory "
1294 "value expected\n");
1295 return -EINVAL;
1296 }
1297 cur = tmp;
1298 if (end <= start) {
1299 pr_warning("crashkernel: end <= start\n");
1300 return -EINVAL;
1301 }
1302 }
1303
1304 if (*cur != ':') {
1305 pr_warning("crashkernel: ':' expected\n");
1306 return -EINVAL;
1307 }
1308 cur++;
1309
1310 size = memparse(cur, &tmp);
1311 if (cur == tmp) {
1312 pr_warning("Memory value expected\n");
1313 return -EINVAL;
1314 }
1315 cur = tmp;
1316 if (size >= system_ram) {
1317 pr_warning("crashkernel: invalid size\n");
1318 return -EINVAL;
1319 }
1320
1321 /* match ? */
be089d79 1322 if (system_ram >= start && system_ram < end) {
cba63c30
BW
1323 *crash_size = size;
1324 break;
1325 }
1326 } while (*cur++ == ',');
1327
1328 if (*crash_size > 0) {
11c7da4b 1329 while (*cur && *cur != ' ' && *cur != '@')
cba63c30
BW
1330 cur++;
1331 if (*cur == '@') {
1332 cur++;
1333 *crash_base = memparse(cur, &tmp);
1334 if (cur == tmp) {
1335 pr_warning("Memory value expected "
1336 "after '@'\n");
1337 return -EINVAL;
1338 }
1339 }
1340 }
1341
1342 return 0;
1343}
1344
1345/*
1346 * That function parses "simple" (old) crashkernel command lines like
1347 *
1348 * crashkernel=size[@offset]
1349 *
1350 * It returns 0 on success and -EINVAL on failure.
1351 */
1352static int __init parse_crashkernel_simple(char *cmdline,
1353 unsigned long long *crash_size,
1354 unsigned long long *crash_base)
1355{
1356 char *cur = cmdline;
1357
1358 *crash_size = memparse(cmdline, &cur);
1359 if (cmdline == cur) {
1360 pr_warning("crashkernel: memory value expected\n");
1361 return -EINVAL;
1362 }
1363
1364 if (*cur == '@')
1365 *crash_base = memparse(cur+1, &cur);
eaa3be6a
ZD
1366 else if (*cur != ' ' && *cur != '\0') {
1367 pr_warning("crashkernel: unrecognized char\n");
1368 return -EINVAL;
1369 }
cba63c30
BW
1370
1371 return 0;
1372}
1373
1374/*
1375 * That function is the entry point for command line parsing and should be
1376 * called from the arch-specific code.
1377 */
0212f915 1378static int __init __parse_crashkernel(char *cmdline,
cba63c30
BW
1379 unsigned long long system_ram,
1380 unsigned long long *crash_size,
0212f915
YL
1381 unsigned long long *crash_base,
1382 const char *name)
cba63c30
BW
1383{
1384 char *p = cmdline, *ck_cmdline = NULL;
1385 char *first_colon, *first_space;
1386
1387 BUG_ON(!crash_size || !crash_base);
1388 *crash_size = 0;
1389 *crash_base = 0;
1390
1391 /* find crashkernel and use the last one if there are more */
0212f915 1392 p = strstr(p, name);
cba63c30
BW
1393 while (p) {
1394 ck_cmdline = p;
0212f915 1395 p = strstr(p+1, name);
cba63c30
BW
1396 }
1397
1398 if (!ck_cmdline)
1399 return -EINVAL;
1400
0212f915 1401 ck_cmdline += strlen(name);
cba63c30
BW
1402
1403 /*
1404 * if the commandline contains a ':', then that's the extended
1405 * syntax -- if not, it must be the classic syntax
1406 */
1407 first_colon = strchr(ck_cmdline, ':');
1408 first_space = strchr(ck_cmdline, ' ');
1409 if (first_colon && (!first_space || first_colon < first_space))
1410 return parse_crashkernel_mem(ck_cmdline, system_ram,
1411 crash_size, crash_base);
1412 else
1413 return parse_crashkernel_simple(ck_cmdline, crash_size,
1414 crash_base);
1415
1416 return 0;
1417}
1418
0212f915
YL
1419int __init parse_crashkernel(char *cmdline,
1420 unsigned long long system_ram,
1421 unsigned long long *crash_size,
1422 unsigned long long *crash_base)
1423{
1424 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1425 "crashkernel=");
1426}
1427
1428int __init parse_crashkernel_low(char *cmdline,
1429 unsigned long long system_ram,
1430 unsigned long long *crash_size,
1431 unsigned long long *crash_base)
1432{
1433 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1434 "crashkernel_low=");
1435}
cba63c30 1436
fa8ff292 1437static void update_vmcoreinfo_note(void)
fd59d231 1438{
fa8ff292 1439 u32 *buf = vmcoreinfo_note;
fd59d231
KO
1440
1441 if (!vmcoreinfo_size)
1442 return;
fd59d231
KO
1443 buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1444 vmcoreinfo_size);
fd59d231
KO
1445 final_note(buf);
1446}
1447
fa8ff292
MH
1448void crash_save_vmcoreinfo(void)
1449{
63dca8d5 1450 vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
fa8ff292
MH
1451 update_vmcoreinfo_note();
1452}
1453
fd59d231
KO
1454void vmcoreinfo_append_str(const char *fmt, ...)
1455{
1456 va_list args;
1457 char buf[0x50];
1458 int r;
1459
1460 va_start(args, fmt);
1461 r = vsnprintf(buf, sizeof(buf), fmt, args);
1462 va_end(args);
1463
1464 if (r + vmcoreinfo_size > vmcoreinfo_max_size)
1465 r = vmcoreinfo_max_size - vmcoreinfo_size;
1466
1467 memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1468
1469 vmcoreinfo_size += r;
1470}
1471
1472/*
1473 * provide an empty default implementation here -- architecture
1474 * code may override this
1475 */
1476void __attribute__ ((weak)) arch_crash_save_vmcoreinfo(void)
1477{}
1478
1479unsigned long __attribute__ ((weak)) paddr_vmcoreinfo_note(void)
1480{
1481 return __pa((unsigned long)(char *)&vmcoreinfo_note);
1482}
1483
1484static int __init crash_save_vmcoreinfo_init(void)
1485{
bba1f603
KO
1486 VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1487 VMCOREINFO_PAGESIZE(PAGE_SIZE);
fd59d231 1488
bcbba6c1
KO
1489 VMCOREINFO_SYMBOL(init_uts_ns);
1490 VMCOREINFO_SYMBOL(node_online_map);
d034cfab 1491#ifdef CONFIG_MMU
bcbba6c1 1492 VMCOREINFO_SYMBOL(swapper_pg_dir);
d034cfab 1493#endif
bcbba6c1 1494 VMCOREINFO_SYMBOL(_stext);
acd99dbf 1495 VMCOREINFO_SYMBOL(vmlist);
fd59d231
KO
1496
1497#ifndef CONFIG_NEED_MULTIPLE_NODES
bcbba6c1
KO
1498 VMCOREINFO_SYMBOL(mem_map);
1499 VMCOREINFO_SYMBOL(contig_page_data);
fd59d231
KO
1500#endif
1501#ifdef CONFIG_SPARSEMEM
bcbba6c1
KO
1502 VMCOREINFO_SYMBOL(mem_section);
1503 VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
c76f860c 1504 VMCOREINFO_STRUCT_SIZE(mem_section);
bcbba6c1 1505 VMCOREINFO_OFFSET(mem_section, section_mem_map);
fd59d231 1506#endif
c76f860c
KO
1507 VMCOREINFO_STRUCT_SIZE(page);
1508 VMCOREINFO_STRUCT_SIZE(pglist_data);
1509 VMCOREINFO_STRUCT_SIZE(zone);
1510 VMCOREINFO_STRUCT_SIZE(free_area);
1511 VMCOREINFO_STRUCT_SIZE(list_head);
1512 VMCOREINFO_SIZE(nodemask_t);
bcbba6c1
KO
1513 VMCOREINFO_OFFSET(page, flags);
1514 VMCOREINFO_OFFSET(page, _count);
1515 VMCOREINFO_OFFSET(page, mapping);
1516 VMCOREINFO_OFFSET(page, lru);
1517 VMCOREINFO_OFFSET(pglist_data, node_zones);
1518 VMCOREINFO_OFFSET(pglist_data, nr_zones);
fd59d231 1519#ifdef CONFIG_FLAT_NODE_MEM_MAP
bcbba6c1 1520 VMCOREINFO_OFFSET(pglist_data, node_mem_map);
fd59d231 1521#endif
bcbba6c1
KO
1522 VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1523 VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1524 VMCOREINFO_OFFSET(pglist_data, node_id);
1525 VMCOREINFO_OFFSET(zone, free_area);
1526 VMCOREINFO_OFFSET(zone, vm_stat);
1527 VMCOREINFO_OFFSET(zone, spanned_pages);
1528 VMCOREINFO_OFFSET(free_area, free_list);
1529 VMCOREINFO_OFFSET(list_head, next);
1530 VMCOREINFO_OFFSET(list_head, prev);
acd99dbf 1531 VMCOREINFO_OFFSET(vm_struct, addr);
bcbba6c1 1532 VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
04d491ab 1533 log_buf_kexec_setup();
83a08e7c 1534 VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
bcbba6c1 1535 VMCOREINFO_NUMBER(NR_FREE_PAGES);
122c7a59
KO
1536 VMCOREINFO_NUMBER(PG_lru);
1537 VMCOREINFO_NUMBER(PG_private);
1538 VMCOREINFO_NUMBER(PG_swapcache);
fd59d231
KO
1539
1540 arch_crash_save_vmcoreinfo();
fa8ff292 1541 update_vmcoreinfo_note();
fd59d231
KO
1542
1543 return 0;
1544}
1545
1546module_init(crash_save_vmcoreinfo_init)
3ab83521 1547
7ade3fcc
HY
1548/*
1549 * Move into place and start executing a preloaded standalone
1550 * executable. If nothing was preloaded return an error.
3ab83521
HY
1551 */
1552int kernel_kexec(void)
1553{
1554 int error = 0;
1555
8c5a1cf0 1556 if (!mutex_trylock(&kexec_mutex))
3ab83521
HY
1557 return -EBUSY;
1558 if (!kexec_image) {
1559 error = -EINVAL;
1560 goto Unlock;
1561 }
1562
3ab83521 1563#ifdef CONFIG_KEXEC_JUMP
7ade3fcc 1564 if (kexec_image->preserve_context) {
bcda53fa 1565 lock_system_sleep();
89081d17
HY
1566 pm_prepare_console();
1567 error = freeze_processes();
1568 if (error) {
1569 error = -EBUSY;
1570 goto Restore_console;
1571 }
1572 suspend_console();
d1616302 1573 error = dpm_suspend_start(PMSG_FREEZE);
89081d17
HY
1574 if (error)
1575 goto Resume_console;
d1616302 1576 /* At this point, dpm_suspend_start() has been called,
cf579dfb
RW
1577 * but *not* dpm_suspend_end(). We *must* call
1578 * dpm_suspend_end() now. Otherwise, drivers for
89081d17
HY
1579 * some devices (e.g. interrupt controllers) become
1580 * desynchronized with the actual state of the
1581 * hardware at resume time, and evil weirdness ensues.
1582 */
cf579dfb 1583 error = dpm_suspend_end(PMSG_FREEZE);
89081d17 1584 if (error)
749b0afc
RW
1585 goto Resume_devices;
1586 error = disable_nonboot_cpus();
1587 if (error)
1588 goto Enable_cpus;
2ed8d2b3 1589 local_irq_disable();
2e711c04 1590 error = syscore_suspend();
770824bd 1591 if (error)
749b0afc 1592 goto Enable_irqs;
7ade3fcc 1593 } else
3ab83521 1594#endif
7ade3fcc 1595 {
ca195b7f 1596 kernel_restart_prepare(NULL);
3ab83521
HY
1597 printk(KERN_EMERG "Starting new kernel\n");
1598 machine_shutdown();
1599 }
1600
1601 machine_kexec(kexec_image);
1602
3ab83521 1603#ifdef CONFIG_KEXEC_JUMP
7ade3fcc 1604 if (kexec_image->preserve_context) {
19234c08 1605 syscore_resume();
749b0afc 1606 Enable_irqs:
3ab83521 1607 local_irq_enable();
749b0afc 1608 Enable_cpus:
89081d17 1609 enable_nonboot_cpus();
cf579dfb 1610 dpm_resume_start(PMSG_RESTORE);
89081d17 1611 Resume_devices:
d1616302 1612 dpm_resume_end(PMSG_RESTORE);
89081d17
HY
1613 Resume_console:
1614 resume_console();
1615 thaw_processes();
1616 Restore_console:
1617 pm_restore_console();
bcda53fa 1618 unlock_system_sleep();
3ab83521 1619 }
7ade3fcc 1620#endif
3ab83521
HY
1621
1622 Unlock:
8c5a1cf0 1623 mutex_unlock(&kexec_mutex);
3ab83521
HY
1624 return error;
1625}