[PATCH] SPI: at25: do not use pointer before assignment
[linux-2.6-block.git] / kernel / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
54cdfdb4 35#include <linux/irq.h>
c0a31329
TG
36#include <linux/module.h>
37#include <linux/percpu.h>
38#include <linux/hrtimer.h>
39#include <linux/notifier.h>
40#include <linux/syscalls.h>
54cdfdb4 41#include <linux/kallsyms.h>
c0a31329 42#include <linux/interrupt.h>
79bf2bb3 43#include <linux/tick.h>
54cdfdb4
TG
44#include <linux/seq_file.h>
45#include <linux/err.h>
c0a31329
TG
46
47#include <asm/uaccess.h>
48
49/**
50 * ktime_get - get the monotonic time in ktime_t format
51 *
52 * returns the time in ktime_t format
53 */
d316c57f 54ktime_t ktime_get(void)
c0a31329
TG
55{
56 struct timespec now;
57
58 ktime_get_ts(&now);
59
60 return timespec_to_ktime(now);
61}
62
63/**
64 * ktime_get_real - get the real (wall-) time in ktime_t format
65 *
66 * returns the time in ktime_t format
67 */
d316c57f 68ktime_t ktime_get_real(void)
c0a31329
TG
69{
70 struct timespec now;
71
72 getnstimeofday(&now);
73
74 return timespec_to_ktime(now);
75}
76
77EXPORT_SYMBOL_GPL(ktime_get_real);
78
79/*
80 * The timer bases:
7978672c
GA
81 *
82 * Note: If we want to add new timer bases, we have to skip the two
83 * clock ids captured by the cpu-timers. We do this by holding empty
84 * entries rather than doing math adjustment of the clock ids.
85 * This ensures that we capture erroneous accesses to these clock ids
86 * rather than moving them into the range of valid clock id's.
c0a31329 87 */
54cdfdb4 88DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 89{
3c8aa39d
TG
90
91 .clock_base =
c0a31329 92 {
3c8aa39d
TG
93 {
94 .index = CLOCK_REALTIME,
95 .get_time = &ktime_get_real,
54cdfdb4 96 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
97 },
98 {
99 .index = CLOCK_MONOTONIC,
100 .get_time = &ktime_get,
54cdfdb4 101 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
102 },
103 }
c0a31329
TG
104};
105
106/**
107 * ktime_get_ts - get the monotonic clock in timespec format
c0a31329
TG
108 * @ts: pointer to timespec variable
109 *
110 * The function calculates the monotonic clock from the realtime
111 * clock and the wall_to_monotonic offset and stores the result
72fd4a35 112 * in normalized timespec format in the variable pointed to by @ts.
c0a31329
TG
113 */
114void ktime_get_ts(struct timespec *ts)
115{
116 struct timespec tomono;
117 unsigned long seq;
118
119 do {
120 seq = read_seqbegin(&xtime_lock);
121 getnstimeofday(ts);
122 tomono = wall_to_monotonic;
123
124 } while (read_seqretry(&xtime_lock, seq));
125
126 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
127 ts->tv_nsec + tomono.tv_nsec);
128}
69778e32 129EXPORT_SYMBOL_GPL(ktime_get_ts);
c0a31329 130
92127c7a
TG
131/*
132 * Get the coarse grained time at the softirq based on xtime and
133 * wall_to_monotonic.
134 */
3c8aa39d 135static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
92127c7a
TG
136{
137 ktime_t xtim, tomono;
f4304ab2 138 struct timespec xts;
92127c7a
TG
139 unsigned long seq;
140
141 do {
142 seq = read_seqbegin(&xtime_lock);
f4304ab2 143#ifdef CONFIG_NO_HZ
144 getnstimeofday(&xts);
145#else
146 xts = xtime;
147#endif
92127c7a
TG
148 } while (read_seqretry(&xtime_lock, seq));
149
f4304ab2 150 xtim = timespec_to_ktime(xts);
151 tomono = timespec_to_ktime(wall_to_monotonic);
3c8aa39d
TG
152 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
153 base->clock_base[CLOCK_MONOTONIC].softirq_time =
154 ktime_add(xtim, tomono);
92127c7a
TG
155}
156
303e967f
TG
157/*
158 * Helper function to check, whether the timer is running the callback
159 * function
160 */
161static inline int hrtimer_callback_running(struct hrtimer *timer)
162{
163 return timer->state & HRTIMER_STATE_CALLBACK;
164}
165
c0a31329
TG
166/*
167 * Functions and macros which are different for UP/SMP systems are kept in a
168 * single place
169 */
170#ifdef CONFIG_SMP
171
c0a31329
TG
172/*
173 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
174 * means that all timers which are tied to this base via timer->base are
175 * locked, and the base itself is locked too.
176 *
177 * So __run_timers/migrate_timers can safely modify all timers which could
178 * be found on the lists/queues.
179 *
180 * When the timer's base is locked, and the timer removed from list, it is
181 * possible to set timer->base = NULL and drop the lock: the timer remains
182 * locked.
183 */
3c8aa39d
TG
184static
185struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
186 unsigned long *flags)
c0a31329 187{
3c8aa39d 188 struct hrtimer_clock_base *base;
c0a31329
TG
189
190 for (;;) {
191 base = timer->base;
192 if (likely(base != NULL)) {
3c8aa39d 193 spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
194 if (likely(base == timer->base))
195 return base;
196 /* The timer has migrated to another CPU: */
3c8aa39d 197 spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
198 }
199 cpu_relax();
200 }
201}
202
203/*
204 * Switch the timer base to the current CPU when possible.
205 */
3c8aa39d
TG
206static inline struct hrtimer_clock_base *
207switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 208{
3c8aa39d
TG
209 struct hrtimer_clock_base *new_base;
210 struct hrtimer_cpu_base *new_cpu_base;
c0a31329 211
3c8aa39d
TG
212 new_cpu_base = &__get_cpu_var(hrtimer_bases);
213 new_base = &new_cpu_base->clock_base[base->index];
c0a31329
TG
214
215 if (base != new_base) {
216 /*
217 * We are trying to schedule the timer on the local CPU.
218 * However we can't change timer's base while it is running,
219 * so we keep it on the same CPU. No hassle vs. reprogramming
220 * the event source in the high resolution case. The softirq
221 * code will take care of this when the timer function has
222 * completed. There is no conflict as we hold the lock until
223 * the timer is enqueued.
224 */
54cdfdb4 225 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
226 return base;
227
228 /* See the comment in lock_timer_base() */
229 timer->base = NULL;
3c8aa39d
TG
230 spin_unlock(&base->cpu_base->lock);
231 spin_lock(&new_base->cpu_base->lock);
c0a31329
TG
232 timer->base = new_base;
233 }
234 return new_base;
235}
236
237#else /* CONFIG_SMP */
238
3c8aa39d 239static inline struct hrtimer_clock_base *
c0a31329
TG
240lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
241{
3c8aa39d 242 struct hrtimer_clock_base *base = timer->base;
c0a31329 243
3c8aa39d 244 spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
245
246 return base;
247}
248
54cdfdb4 249# define switch_hrtimer_base(t, b) (b)
c0a31329
TG
250
251#endif /* !CONFIG_SMP */
252
253/*
254 * Functions for the union type storage format of ktime_t which are
255 * too large for inlining:
256 */
257#if BITS_PER_LONG < 64
258# ifndef CONFIG_KTIME_SCALAR
259/**
260 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
c0a31329
TG
261 * @kt: addend
262 * @nsec: the scalar nsec value to add
263 *
264 * Returns the sum of kt and nsec in ktime_t format
265 */
266ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
267{
268 ktime_t tmp;
269
270 if (likely(nsec < NSEC_PER_SEC)) {
271 tmp.tv64 = nsec;
272 } else {
273 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
274
275 tmp = ktime_set((long)nsec, rem);
276 }
277
278 return ktime_add(kt, tmp);
279}
c0a31329
TG
280# endif /* !CONFIG_KTIME_SCALAR */
281
282/*
283 * Divide a ktime value by a nanosecond value
284 */
79bf2bb3 285unsigned long ktime_divns(const ktime_t kt, s64 div)
c0a31329
TG
286{
287 u64 dclc, inc, dns;
288 int sft = 0;
289
290 dclc = dns = ktime_to_ns(kt);
291 inc = div;
292 /* Make sure the divisor is less than 2^32: */
293 while (div >> 32) {
294 sft++;
295 div >>= 1;
296 }
297 dclc >>= sft;
298 do_div(dclc, (unsigned long) div);
299
300 return (unsigned long) dclc;
301}
c0a31329
TG
302#endif /* BITS_PER_LONG >= 64 */
303
54cdfdb4
TG
304/* High resolution timer related functions */
305#ifdef CONFIG_HIGH_RES_TIMERS
306
307/*
308 * High resolution timer enabled ?
309 */
310static int hrtimer_hres_enabled __read_mostly = 1;
311
312/*
313 * Enable / Disable high resolution mode
314 */
315static int __init setup_hrtimer_hres(char *str)
316{
317 if (!strcmp(str, "off"))
318 hrtimer_hres_enabled = 0;
319 else if (!strcmp(str, "on"))
320 hrtimer_hres_enabled = 1;
321 else
322 return 0;
323 return 1;
324}
325
326__setup("highres=", setup_hrtimer_hres);
327
328/*
329 * hrtimer_high_res_enabled - query, if the highres mode is enabled
330 */
331static inline int hrtimer_is_hres_enabled(void)
332{
333 return hrtimer_hres_enabled;
334}
335
336/*
337 * Is the high resolution mode active ?
338 */
339static inline int hrtimer_hres_active(void)
340{
341 return __get_cpu_var(hrtimer_bases).hres_active;
342}
343
344/*
345 * Reprogram the event source with checking both queues for the
346 * next event
347 * Called with interrupts disabled and base->lock held
348 */
349static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
350{
351 int i;
352 struct hrtimer_clock_base *base = cpu_base->clock_base;
353 ktime_t expires;
354
355 cpu_base->expires_next.tv64 = KTIME_MAX;
356
357 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
358 struct hrtimer *timer;
359
360 if (!base->first)
361 continue;
362 timer = rb_entry(base->first, struct hrtimer, node);
363 expires = ktime_sub(timer->expires, base->offset);
364 if (expires.tv64 < cpu_base->expires_next.tv64)
365 cpu_base->expires_next = expires;
366 }
367
368 if (cpu_base->expires_next.tv64 != KTIME_MAX)
369 tick_program_event(cpu_base->expires_next, 1);
370}
371
372/*
373 * Shared reprogramming for clock_realtime and clock_monotonic
374 *
375 * When a timer is enqueued and expires earlier than the already enqueued
376 * timers, we have to check, whether it expires earlier than the timer for
377 * which the clock event device was armed.
378 *
379 * Called with interrupts disabled and base->cpu_base.lock held
380 */
381static int hrtimer_reprogram(struct hrtimer *timer,
382 struct hrtimer_clock_base *base)
383{
384 ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
385 ktime_t expires = ktime_sub(timer->expires, base->offset);
386 int res;
387
388 /*
389 * When the callback is running, we do not reprogram the clock event
390 * device. The timer callback is either running on a different CPU or
391 * the callback is executed in the hrtimer_interupt context. The
392 * reprogramming is handled either by the softirq, which called the
393 * callback or at the end of the hrtimer_interrupt.
394 */
395 if (hrtimer_callback_running(timer))
396 return 0;
397
398 if (expires.tv64 >= expires_next->tv64)
399 return 0;
400
401 /*
402 * Clockevents returns -ETIME, when the event was in the past.
403 */
404 res = tick_program_event(expires, 0);
405 if (!IS_ERR_VALUE(res))
406 *expires_next = expires;
407 return res;
408}
409
410
411/*
412 * Retrigger next event is called after clock was set
413 *
414 * Called with interrupts disabled via on_each_cpu()
415 */
416static void retrigger_next_event(void *arg)
417{
418 struct hrtimer_cpu_base *base;
419 struct timespec realtime_offset;
420 unsigned long seq;
421
422 if (!hrtimer_hres_active())
423 return;
424
425 do {
426 seq = read_seqbegin(&xtime_lock);
427 set_normalized_timespec(&realtime_offset,
428 -wall_to_monotonic.tv_sec,
429 -wall_to_monotonic.tv_nsec);
430 } while (read_seqretry(&xtime_lock, seq));
431
432 base = &__get_cpu_var(hrtimer_bases);
433
434 /* Adjust CLOCK_REALTIME offset */
435 spin_lock(&base->lock);
436 base->clock_base[CLOCK_REALTIME].offset =
437 timespec_to_ktime(realtime_offset);
438
439 hrtimer_force_reprogram(base);
440 spin_unlock(&base->lock);
441}
442
443/*
444 * Clock realtime was set
445 *
446 * Change the offset of the realtime clock vs. the monotonic
447 * clock.
448 *
449 * We might have to reprogram the high resolution timer interrupt. On
450 * SMP we call the architecture specific code to retrigger _all_ high
451 * resolution timer interrupts. On UP we just disable interrupts and
452 * call the high resolution interrupt code.
453 */
454void clock_was_set(void)
455{
456 /* Retrigger the CPU local events everywhere */
457 on_each_cpu(retrigger_next_event, NULL, 0, 1);
458}
459
460/*
461 * Check, whether the timer is on the callback pending list
462 */
463static inline int hrtimer_cb_pending(const struct hrtimer *timer)
464{
465 return timer->state & HRTIMER_STATE_PENDING;
466}
467
468/*
469 * Remove a timer from the callback pending list
470 */
471static inline void hrtimer_remove_cb_pending(struct hrtimer *timer)
472{
473 list_del_init(&timer->cb_entry);
474}
475
476/*
477 * Initialize the high resolution related parts of cpu_base
478 */
479static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
480{
481 base->expires_next.tv64 = KTIME_MAX;
482 base->hres_active = 0;
483 INIT_LIST_HEAD(&base->cb_pending);
484}
485
486/*
487 * Initialize the high resolution related parts of a hrtimer
488 */
489static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
490{
491 INIT_LIST_HEAD(&timer->cb_entry);
492}
493
494/*
495 * When High resolution timers are active, try to reprogram. Note, that in case
496 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
497 * check happens. The timer gets enqueued into the rbtree. The reprogramming
498 * and expiry check is done in the hrtimer_interrupt or in the softirq.
499 */
500static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
501 struct hrtimer_clock_base *base)
502{
503 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
504
505 /* Timer is expired, act upon the callback mode */
506 switch(timer->cb_mode) {
507 case HRTIMER_CB_IRQSAFE_NO_RESTART:
508 /*
509 * We can call the callback from here. No restart
510 * happens, so no danger of recursion
511 */
512 BUG_ON(timer->function(timer) != HRTIMER_NORESTART);
513 return 1;
514 case HRTIMER_CB_IRQSAFE_NO_SOFTIRQ:
515 /*
516 * This is solely for the sched tick emulation with
517 * dynamic tick support to ensure that we do not
518 * restart the tick right on the edge and end up with
519 * the tick timer in the softirq ! The calling site
520 * takes care of this.
521 */
522 return 1;
523 case HRTIMER_CB_IRQSAFE:
524 case HRTIMER_CB_SOFTIRQ:
525 /*
526 * Move everything else into the softirq pending list !
527 */
528 list_add_tail(&timer->cb_entry,
529 &base->cpu_base->cb_pending);
530 timer->state = HRTIMER_STATE_PENDING;
531 raise_softirq(HRTIMER_SOFTIRQ);
532 return 1;
533 default:
534 BUG();
535 }
536 }
537 return 0;
538}
539
540/*
541 * Switch to high resolution mode
542 */
f8953856 543static int hrtimer_switch_to_hres(void)
54cdfdb4
TG
544{
545 struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);
546 unsigned long flags;
547
548 if (base->hres_active)
f8953856 549 return 1;
54cdfdb4
TG
550
551 local_irq_save(flags);
552
553 if (tick_init_highres()) {
554 local_irq_restore(flags);
f8953856 555 return 0;
54cdfdb4
TG
556 }
557 base->hres_active = 1;
558 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
559 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
560
561 tick_setup_sched_timer();
562
563 /* "Retrigger" the interrupt to get things going */
564 retrigger_next_event(NULL);
565 local_irq_restore(flags);
566 printk(KERN_INFO "Switched to high resolution mode on CPU %d\n",
567 smp_processor_id());
f8953856 568 return 1;
54cdfdb4
TG
569}
570
571#else
572
573static inline int hrtimer_hres_active(void) { return 0; }
574static inline int hrtimer_is_hres_enabled(void) { return 0; }
f8953856 575static inline int hrtimer_switch_to_hres(void) { return 0; }
54cdfdb4
TG
576static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
577static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
578 struct hrtimer_clock_base *base)
579{
580 return 0;
581}
582static inline int hrtimer_cb_pending(struct hrtimer *timer) { return 0; }
583static inline void hrtimer_remove_cb_pending(struct hrtimer *timer) { }
584static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
585static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
586
587#endif /* CONFIG_HIGH_RES_TIMERS */
588
82f67cd9
IM
589#ifdef CONFIG_TIMER_STATS
590void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
591{
592 if (timer->start_site)
593 return;
594
595 timer->start_site = addr;
596 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
597 timer->start_pid = current->pid;
598}
599#endif
600
c0a31329
TG
601/*
602 * Counterpart to lock_timer_base above:
603 */
604static inline
605void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
606{
3c8aa39d 607 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
608}
609
610/**
611 * hrtimer_forward - forward the timer expiry
c0a31329 612 * @timer: hrtimer to forward
44f21475 613 * @now: forward past this time
c0a31329
TG
614 * @interval: the interval to forward
615 *
616 * Forward the timer expiry so it will expire in the future.
8dca6f33 617 * Returns the number of overruns.
c0a31329
TG
618 */
619unsigned long
44f21475 620hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329
TG
621{
622 unsigned long orun = 1;
44f21475 623 ktime_t delta;
c0a31329
TG
624
625 delta = ktime_sub(now, timer->expires);
626
627 if (delta.tv64 < 0)
628 return 0;
629
c9db4fa1
TG
630 if (interval.tv64 < timer->base->resolution.tv64)
631 interval.tv64 = timer->base->resolution.tv64;
632
c0a31329 633 if (unlikely(delta.tv64 >= interval.tv64)) {
df869b63 634 s64 incr = ktime_to_ns(interval);
c0a31329
TG
635
636 orun = ktime_divns(delta, incr);
637 timer->expires = ktime_add_ns(timer->expires, incr * orun);
638 if (timer->expires.tv64 > now.tv64)
639 return orun;
640 /*
641 * This (and the ktime_add() below) is the
642 * correction for exact:
643 */
644 orun++;
645 }
646 timer->expires = ktime_add(timer->expires, interval);
13788ccc
TG
647 /*
648 * Make sure, that the result did not wrap with a very large
649 * interval.
650 */
651 if (timer->expires.tv64 < 0)
652 timer->expires = ktime_set(KTIME_SEC_MAX, 0);
c0a31329
TG
653
654 return orun;
655}
656
657/*
658 * enqueue_hrtimer - internal function to (re)start a timer
659 *
660 * The timer is inserted in expiry order. Insertion into the
661 * red black tree is O(log(n)). Must hold the base lock.
662 */
3c8aa39d 663static void enqueue_hrtimer(struct hrtimer *timer,
54cdfdb4 664 struct hrtimer_clock_base *base, int reprogram)
c0a31329
TG
665{
666 struct rb_node **link = &base->active.rb_node;
c0a31329
TG
667 struct rb_node *parent = NULL;
668 struct hrtimer *entry;
669
670 /*
671 * Find the right place in the rbtree:
672 */
673 while (*link) {
674 parent = *link;
675 entry = rb_entry(parent, struct hrtimer, node);
676 /*
677 * We dont care about collisions. Nodes with
678 * the same expiry time stay together.
679 */
680 if (timer->expires.tv64 < entry->expires.tv64)
681 link = &(*link)->rb_left;
288867ec 682 else
c0a31329 683 link = &(*link)->rb_right;
c0a31329
TG
684 }
685
686 /*
288867ec
TG
687 * Insert the timer to the rbtree and check whether it
688 * replaces the first pending timer
c0a31329 689 */
54cdfdb4
TG
690 if (!base->first || timer->expires.tv64 <
691 rb_entry(base->first, struct hrtimer, node)->expires.tv64) {
692 /*
693 * Reprogram the clock event device. When the timer is already
694 * expired hrtimer_enqueue_reprogram has either called the
695 * callback or added it to the pending list and raised the
696 * softirq.
697 *
698 * This is a NOP for !HIGHRES
699 */
700 if (reprogram && hrtimer_enqueue_reprogram(timer, base))
701 return;
702
703 base->first = &timer->node;
704 }
705
c0a31329
TG
706 rb_link_node(&timer->node, parent, link);
707 rb_insert_color(&timer->node, &base->active);
303e967f
TG
708 /*
709 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
710 * state of a possibly running callback.
711 */
712 timer->state |= HRTIMER_STATE_ENQUEUED;
288867ec 713}
c0a31329
TG
714
715/*
716 * __remove_hrtimer - internal function to remove a timer
717 *
718 * Caller must hold the base lock.
54cdfdb4
TG
719 *
720 * High resolution timer mode reprograms the clock event device when the
721 * timer is the one which expires next. The caller can disable this by setting
722 * reprogram to zero. This is useful, when the context does a reprogramming
723 * anyway (e.g. timer interrupt)
c0a31329 724 */
3c8aa39d 725static void __remove_hrtimer(struct hrtimer *timer,
303e967f 726 struct hrtimer_clock_base *base,
54cdfdb4 727 unsigned long newstate, int reprogram)
c0a31329 728{
54cdfdb4
TG
729 /* High res. callback list. NOP for !HIGHRES */
730 if (hrtimer_cb_pending(timer))
731 hrtimer_remove_cb_pending(timer);
732 else {
733 /*
734 * Remove the timer from the rbtree and replace the
735 * first entry pointer if necessary.
736 */
737 if (base->first == &timer->node) {
738 base->first = rb_next(&timer->node);
739 /* Reprogram the clock event device. if enabled */
740 if (reprogram && hrtimer_hres_active())
741 hrtimer_force_reprogram(base->cpu_base);
742 }
743 rb_erase(&timer->node, &base->active);
744 }
303e967f 745 timer->state = newstate;
c0a31329
TG
746}
747
748/*
749 * remove hrtimer, called with base lock held
750 */
751static inline int
3c8aa39d 752remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 753{
303e967f 754 if (hrtimer_is_queued(timer)) {
54cdfdb4
TG
755 int reprogram;
756
757 /*
758 * Remove the timer and force reprogramming when high
759 * resolution mode is active and the timer is on the current
760 * CPU. If we remove a timer on another CPU, reprogramming is
761 * skipped. The interrupt event on this CPU is fired and
762 * reprogramming happens in the interrupt handler. This is a
763 * rare case and less expensive than a smp call.
764 */
82f67cd9 765 timer_stats_hrtimer_clear_start_info(timer);
54cdfdb4
TG
766 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
767 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
768 reprogram);
c0a31329
TG
769 return 1;
770 }
771 return 0;
772}
773
774/**
775 * hrtimer_start - (re)start an relative timer on the current CPU
c0a31329
TG
776 * @timer: the timer to be added
777 * @tim: expiry time
778 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
779 *
780 * Returns:
781 * 0 on success
782 * 1 when the timer was active
783 */
784int
785hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
786{
3c8aa39d 787 struct hrtimer_clock_base *base, *new_base;
c0a31329
TG
788 unsigned long flags;
789 int ret;
790
791 base = lock_hrtimer_base(timer, &flags);
792
793 /* Remove an active timer from the queue: */
794 ret = remove_hrtimer(timer, base);
795
796 /* Switch the timer base, if necessary: */
797 new_base = switch_hrtimer_base(timer, base);
798
c9cb2e3d 799 if (mode == HRTIMER_MODE_REL) {
c0a31329 800 tim = ktime_add(tim, new_base->get_time());
06027bdd
IM
801 /*
802 * CONFIG_TIME_LOW_RES is a temporary way for architectures
803 * to signal that they simply return xtime in
804 * do_gettimeoffset(). In this case we want to round up by
805 * resolution when starting a relative timer, to avoid short
806 * timeouts. This will go away with the GTOD framework.
807 */
808#ifdef CONFIG_TIME_LOW_RES
809 tim = ktime_add(tim, base->resolution);
810#endif
811 }
c0a31329
TG
812 timer->expires = tim;
813
82f67cd9
IM
814 timer_stats_hrtimer_set_start_info(timer);
815
54cdfdb4 816 enqueue_hrtimer(timer, new_base, base == new_base);
c0a31329
TG
817
818 unlock_hrtimer_base(timer, &flags);
819
820 return ret;
821}
8d16b764 822EXPORT_SYMBOL_GPL(hrtimer_start);
c0a31329
TG
823
824/**
825 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
826 * @timer: hrtimer to stop
827 *
828 * Returns:
829 * 0 when the timer was not active
830 * 1 when the timer was active
831 * -1 when the timer is currently excuting the callback function and
fa9799e3 832 * cannot be stopped
c0a31329
TG
833 */
834int hrtimer_try_to_cancel(struct hrtimer *timer)
835{
3c8aa39d 836 struct hrtimer_clock_base *base;
c0a31329
TG
837 unsigned long flags;
838 int ret = -1;
839
840 base = lock_hrtimer_base(timer, &flags);
841
303e967f 842 if (!hrtimer_callback_running(timer))
c0a31329
TG
843 ret = remove_hrtimer(timer, base);
844
845 unlock_hrtimer_base(timer, &flags);
846
847 return ret;
848
849}
8d16b764 850EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
851
852/**
853 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
854 * @timer: the timer to be cancelled
855 *
856 * Returns:
857 * 0 when the timer was not active
858 * 1 when the timer was active
859 */
860int hrtimer_cancel(struct hrtimer *timer)
861{
862 for (;;) {
863 int ret = hrtimer_try_to_cancel(timer);
864
865 if (ret >= 0)
866 return ret;
5ef37b19 867 cpu_relax();
c0a31329
TG
868 }
869}
8d16b764 870EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
871
872/**
873 * hrtimer_get_remaining - get remaining time for the timer
c0a31329
TG
874 * @timer: the timer to read
875 */
876ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
877{
3c8aa39d 878 struct hrtimer_clock_base *base;
c0a31329
TG
879 unsigned long flags;
880 ktime_t rem;
881
882 base = lock_hrtimer_base(timer, &flags);
3c8aa39d 883 rem = ktime_sub(timer->expires, base->get_time());
c0a31329
TG
884 unlock_hrtimer_base(timer, &flags);
885
886 return rem;
887}
8d16b764 888EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
c0a31329 889
fd064b9b 890#if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
69239749
TL
891/**
892 * hrtimer_get_next_event - get the time until next expiry event
893 *
894 * Returns the delta to the next expiry event or KTIME_MAX if no timer
895 * is pending.
896 */
897ktime_t hrtimer_get_next_event(void)
898{
3c8aa39d
TG
899 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
900 struct hrtimer_clock_base *base = cpu_base->clock_base;
69239749
TL
901 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
902 unsigned long flags;
903 int i;
904
3c8aa39d
TG
905 spin_lock_irqsave(&cpu_base->lock, flags);
906
54cdfdb4
TG
907 if (!hrtimer_hres_active()) {
908 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
909 struct hrtimer *timer;
69239749 910
54cdfdb4
TG
911 if (!base->first)
912 continue;
3c8aa39d 913
54cdfdb4
TG
914 timer = rb_entry(base->first, struct hrtimer, node);
915 delta.tv64 = timer->expires.tv64;
916 delta = ktime_sub(delta, base->get_time());
917 if (delta.tv64 < mindelta.tv64)
918 mindelta.tv64 = delta.tv64;
919 }
69239749 920 }
3c8aa39d
TG
921
922 spin_unlock_irqrestore(&cpu_base->lock, flags);
923
69239749
TL
924 if (mindelta.tv64 < 0)
925 mindelta.tv64 = 0;
926 return mindelta;
927}
928#endif
929
c0a31329 930/**
7978672c 931 * hrtimer_init - initialize a timer to the given clock
7978672c 932 * @timer: the timer to be initialized
c0a31329 933 * @clock_id: the clock to be used
7978672c 934 * @mode: timer mode abs/rel
c0a31329 935 */
7978672c
GA
936void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
937 enum hrtimer_mode mode)
c0a31329 938{
3c8aa39d 939 struct hrtimer_cpu_base *cpu_base;
c0a31329 940
7978672c
GA
941 memset(timer, 0, sizeof(struct hrtimer));
942
3c8aa39d 943 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
c0a31329 944
c9cb2e3d 945 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
7978672c
GA
946 clock_id = CLOCK_MONOTONIC;
947
3c8aa39d 948 timer->base = &cpu_base->clock_base[clock_id];
54cdfdb4 949 hrtimer_init_timer_hres(timer);
82f67cd9
IM
950
951#ifdef CONFIG_TIMER_STATS
952 timer->start_site = NULL;
953 timer->start_pid = -1;
954 memset(timer->start_comm, 0, TASK_COMM_LEN);
955#endif
c0a31329 956}
8d16b764 957EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329
TG
958
959/**
960 * hrtimer_get_res - get the timer resolution for a clock
c0a31329
TG
961 * @which_clock: which clock to query
962 * @tp: pointer to timespec variable to store the resolution
963 *
72fd4a35
RD
964 * Store the resolution of the clock selected by @which_clock in the
965 * variable pointed to by @tp.
c0a31329
TG
966 */
967int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
968{
3c8aa39d 969 struct hrtimer_cpu_base *cpu_base;
c0a31329 970
3c8aa39d
TG
971 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
972 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
c0a31329
TG
973
974 return 0;
975}
8d16b764 976EXPORT_SYMBOL_GPL(hrtimer_get_res);
c0a31329 977
54cdfdb4
TG
978#ifdef CONFIG_HIGH_RES_TIMERS
979
980/*
981 * High resolution timer interrupt
982 * Called with interrupts disabled
983 */
984void hrtimer_interrupt(struct clock_event_device *dev)
985{
986 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
987 struct hrtimer_clock_base *base;
988 ktime_t expires_next, now;
989 int i, raise = 0;
990
991 BUG_ON(!cpu_base->hres_active);
992 cpu_base->nr_events++;
993 dev->next_event.tv64 = KTIME_MAX;
994
995 retry:
996 now = ktime_get();
997
998 expires_next.tv64 = KTIME_MAX;
999
1000 base = cpu_base->clock_base;
1001
1002 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1003 ktime_t basenow;
1004 struct rb_node *node;
1005
1006 spin_lock(&cpu_base->lock);
1007
1008 basenow = ktime_add(now, base->offset);
1009
1010 while ((node = base->first)) {
1011 struct hrtimer *timer;
1012
1013 timer = rb_entry(node, struct hrtimer, node);
1014
1015 if (basenow.tv64 < timer->expires.tv64) {
1016 ktime_t expires;
1017
1018 expires = ktime_sub(timer->expires,
1019 base->offset);
1020 if (expires.tv64 < expires_next.tv64)
1021 expires_next = expires;
1022 break;
1023 }
1024
1025 /* Move softirq callbacks to the pending list */
1026 if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
1027 __remove_hrtimer(timer, base,
1028 HRTIMER_STATE_PENDING, 0);
1029 list_add_tail(&timer->cb_entry,
1030 &base->cpu_base->cb_pending);
1031 raise = 1;
1032 continue;
1033 }
1034
1035 __remove_hrtimer(timer, base,
1036 HRTIMER_STATE_CALLBACK, 0);
82f67cd9 1037 timer_stats_account_hrtimer(timer);
54cdfdb4
TG
1038
1039 /*
1040 * Note: We clear the CALLBACK bit after
1041 * enqueue_hrtimer to avoid reprogramming of
1042 * the event hardware. This happens at the end
1043 * of this function anyway.
1044 */
1045 if (timer->function(timer) != HRTIMER_NORESTART) {
1046 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1047 enqueue_hrtimer(timer, base, 0);
1048 }
1049 timer->state &= ~HRTIMER_STATE_CALLBACK;
1050 }
1051 spin_unlock(&cpu_base->lock);
1052 base++;
1053 }
1054
1055 cpu_base->expires_next = expires_next;
1056
1057 /* Reprogramming necessary ? */
1058 if (expires_next.tv64 != KTIME_MAX) {
1059 if (tick_program_event(expires_next, 0))
1060 goto retry;
1061 }
1062
1063 /* Raise softirq ? */
1064 if (raise)
1065 raise_softirq(HRTIMER_SOFTIRQ);
1066}
1067
1068static void run_hrtimer_softirq(struct softirq_action *h)
1069{
1070 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1071
1072 spin_lock_irq(&cpu_base->lock);
1073
1074 while (!list_empty(&cpu_base->cb_pending)) {
1075 enum hrtimer_restart (*fn)(struct hrtimer *);
1076 struct hrtimer *timer;
1077 int restart;
1078
1079 timer = list_entry(cpu_base->cb_pending.next,
1080 struct hrtimer, cb_entry);
1081
82f67cd9
IM
1082 timer_stats_account_hrtimer(timer);
1083
54cdfdb4
TG
1084 fn = timer->function;
1085 __remove_hrtimer(timer, timer->base, HRTIMER_STATE_CALLBACK, 0);
1086 spin_unlock_irq(&cpu_base->lock);
1087
1088 restart = fn(timer);
1089
1090 spin_lock_irq(&cpu_base->lock);
1091
1092 timer->state &= ~HRTIMER_STATE_CALLBACK;
1093 if (restart == HRTIMER_RESTART) {
1094 BUG_ON(hrtimer_active(timer));
1095 /*
1096 * Enqueue the timer, allow reprogramming of the event
1097 * device
1098 */
1099 enqueue_hrtimer(timer, timer->base, 1);
1100 } else if (hrtimer_active(timer)) {
1101 /*
1102 * If the timer was rearmed on another CPU, reprogram
1103 * the event device.
1104 */
1105 if (timer->base->first == &timer->node)
1106 hrtimer_reprogram(timer, timer->base);
1107 }
1108 }
1109 spin_unlock_irq(&cpu_base->lock);
1110}
1111
1112#endif /* CONFIG_HIGH_RES_TIMERS */
1113
c0a31329
TG
1114/*
1115 * Expire the per base hrtimer-queue:
1116 */
3c8aa39d
TG
1117static inline void run_hrtimer_queue(struct hrtimer_cpu_base *cpu_base,
1118 int index)
c0a31329 1119{
288867ec 1120 struct rb_node *node;
3c8aa39d 1121 struct hrtimer_clock_base *base = &cpu_base->clock_base[index];
c0a31329 1122
3055adda
DS
1123 if (!base->first)
1124 return;
1125
92127c7a
TG
1126 if (base->get_softirq_time)
1127 base->softirq_time = base->get_softirq_time();
1128
3c8aa39d 1129 spin_lock_irq(&cpu_base->lock);
c0a31329 1130
288867ec 1131 while ((node = base->first)) {
c0a31329 1132 struct hrtimer *timer;
c9cb2e3d 1133 enum hrtimer_restart (*fn)(struct hrtimer *);
c0a31329 1134 int restart;
c0a31329 1135
288867ec 1136 timer = rb_entry(node, struct hrtimer, node);
92127c7a 1137 if (base->softirq_time.tv64 <= timer->expires.tv64)
c0a31329
TG
1138 break;
1139
f8953856
TG
1140#ifdef CONFIG_HIGH_RES_TIMERS
1141 WARN_ON_ONCE(timer->cb_mode == HRTIMER_CB_IRQSAFE_NO_SOFTIRQ);
1142#endif
82f67cd9
IM
1143 timer_stats_account_hrtimer(timer);
1144
c0a31329 1145 fn = timer->function;
54cdfdb4 1146 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
3c8aa39d 1147 spin_unlock_irq(&cpu_base->lock);
c0a31329 1148
05cfb614 1149 restart = fn(timer);
c0a31329 1150
3c8aa39d 1151 spin_lock_irq(&cpu_base->lock);
c0a31329 1152
303e967f 1153 timer->state &= ~HRTIMER_STATE_CALLBACK;
b75f7a51
RZ
1154 if (restart != HRTIMER_NORESTART) {
1155 BUG_ON(hrtimer_active(timer));
54cdfdb4 1156 enqueue_hrtimer(timer, base, 0);
b75f7a51 1157 }
c0a31329 1158 }
3c8aa39d 1159 spin_unlock_irq(&cpu_base->lock);
c0a31329
TG
1160}
1161
1162/*
1163 * Called from timer softirq every jiffy, expire hrtimers:
54cdfdb4
TG
1164 *
1165 * For HRT its the fall back code to run the softirq in the timer
1166 * softirq context in case the hrtimer initialization failed or has
1167 * not been done yet.
c0a31329
TG
1168 */
1169void hrtimer_run_queues(void)
1170{
3c8aa39d 1171 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
c0a31329
TG
1172 int i;
1173
54cdfdb4
TG
1174 if (hrtimer_hres_active())
1175 return;
1176
79bf2bb3
TG
1177 /*
1178 * This _is_ ugly: We have to check in the softirq context,
1179 * whether we can switch to highres and / or nohz mode. The
1180 * clocksource switch happens in the timer interrupt with
1181 * xtime_lock held. Notification from there only sets the
1182 * check bit in the tick_oneshot code, otherwise we might
1183 * deadlock vs. xtime_lock.
1184 */
54cdfdb4 1185 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
f8953856
TG
1186 if (hrtimer_switch_to_hres())
1187 return;
79bf2bb3 1188
3c8aa39d 1189 hrtimer_get_softirq_time(cpu_base);
92127c7a 1190
3c8aa39d
TG
1191 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1192 run_hrtimer_queue(cpu_base, i);
c0a31329
TG
1193}
1194
10c94ec1
TG
1195/*
1196 * Sleep related functions:
1197 */
c9cb2e3d 1198static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1199{
1200 struct hrtimer_sleeper *t =
1201 container_of(timer, struct hrtimer_sleeper, timer);
1202 struct task_struct *task = t->task;
1203
1204 t->task = NULL;
1205 if (task)
1206 wake_up_process(task);
1207
1208 return HRTIMER_NORESTART;
1209}
1210
36c8b586 1211void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1212{
1213 sl->timer.function = hrtimer_wakeup;
1214 sl->task = task;
54cdfdb4
TG
1215#ifdef CONFIG_HIGH_RES_TIMERS
1216 sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_RESTART;
1217#endif
00362e33
TG
1218}
1219
669d7868 1220static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1221{
669d7868 1222 hrtimer_init_sleeper(t, current);
10c94ec1 1223
432569bb
RZ
1224 do {
1225 set_current_state(TASK_INTERRUPTIBLE);
1226 hrtimer_start(&t->timer, t->timer.expires, mode);
1227
54cdfdb4
TG
1228 if (likely(t->task))
1229 schedule();
432569bb 1230
669d7868 1231 hrtimer_cancel(&t->timer);
c9cb2e3d 1232 mode = HRTIMER_MODE_ABS;
669d7868
TG
1233
1234 } while (t->task && !signal_pending(current));
432569bb 1235
669d7868 1236 return t->task == NULL;
10c94ec1
TG
1237}
1238
1711ef38 1239long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1240{
669d7868 1241 struct hrtimer_sleeper t;
ea13dbc8
IM
1242 struct timespec __user *rmtp;
1243 struct timespec tu;
432569bb 1244 ktime_t time;
10c94ec1
TG
1245
1246 restart->fn = do_no_restart_syscall;
1247
c9cb2e3d 1248 hrtimer_init(&t.timer, restart->arg0, HRTIMER_MODE_ABS);
1711ef38 1249 t.timer.expires.tv64 = ((u64)restart->arg3 << 32) | (u64) restart->arg2;
10c94ec1 1250
c9cb2e3d 1251 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
10c94ec1
TG
1252 return 0;
1253
1711ef38 1254 rmtp = (struct timespec __user *) restart->arg1;
432569bb
RZ
1255 if (rmtp) {
1256 time = ktime_sub(t.timer.expires, t.timer.base->get_time());
1257 if (time.tv64 <= 0)
1258 return 0;
1259 tu = ktime_to_timespec(time);
1260 if (copy_to_user(rmtp, &tu, sizeof(tu)))
1261 return -EFAULT;
1262 }
10c94ec1 1263
1711ef38 1264 restart->fn = hrtimer_nanosleep_restart;
10c94ec1
TG
1265
1266 /* The other values in restart are already filled in */
1267 return -ERESTART_RESTARTBLOCK;
1268}
1269
10c94ec1
TG
1270long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1271 const enum hrtimer_mode mode, const clockid_t clockid)
1272{
1273 struct restart_block *restart;
669d7868 1274 struct hrtimer_sleeper t;
10c94ec1
TG
1275 struct timespec tu;
1276 ktime_t rem;
1277
432569bb
RZ
1278 hrtimer_init(&t.timer, clockid, mode);
1279 t.timer.expires = timespec_to_ktime(*rqtp);
1280 if (do_nanosleep(&t, mode))
10c94ec1
TG
1281 return 0;
1282
7978672c 1283 /* Absolute timers do not update the rmtp value and restart: */
c9cb2e3d 1284 if (mode == HRTIMER_MODE_ABS)
10c94ec1
TG
1285 return -ERESTARTNOHAND;
1286
432569bb
RZ
1287 if (rmtp) {
1288 rem = ktime_sub(t.timer.expires, t.timer.base->get_time());
1289 if (rem.tv64 <= 0)
1290 return 0;
1291 tu = ktime_to_timespec(rem);
1292 if (copy_to_user(rmtp, &tu, sizeof(tu)))
1293 return -EFAULT;
1294 }
10c94ec1
TG
1295
1296 restart = &current_thread_info()->restart_block;
1711ef38
TA
1297 restart->fn = hrtimer_nanosleep_restart;
1298 restart->arg0 = (unsigned long) t.timer.base->index;
1299 restart->arg1 = (unsigned long) rmtp;
1300 restart->arg2 = t.timer.expires.tv64 & 0xFFFFFFFF;
1301 restart->arg3 = t.timer.expires.tv64 >> 32;
10c94ec1
TG
1302
1303 return -ERESTART_RESTARTBLOCK;
1304}
1305
6ba1b912
TG
1306asmlinkage long
1307sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
1308{
1309 struct timespec tu;
1310
1311 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1312 return -EFAULT;
1313
1314 if (!timespec_valid(&tu))
1315 return -EINVAL;
1316
c9cb2e3d 1317 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1318}
1319
c0a31329
TG
1320/*
1321 * Functions related to boot-time initialization:
1322 */
1323static void __devinit init_hrtimers_cpu(int cpu)
1324{
3c8aa39d 1325 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1326 int i;
1327
3c8aa39d
TG
1328 spin_lock_init(&cpu_base->lock);
1329 lockdep_set_class(&cpu_base->lock, &cpu_base->lock_key);
1330
1331 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1332 cpu_base->clock_base[i].cpu_base = cpu_base;
1333
54cdfdb4 1334 hrtimer_init_hres(cpu_base);
c0a31329
TG
1335}
1336
1337#ifdef CONFIG_HOTPLUG_CPU
1338
3c8aa39d
TG
1339static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1340 struct hrtimer_clock_base *new_base)
c0a31329
TG
1341{
1342 struct hrtimer *timer;
1343 struct rb_node *node;
1344
1345 while ((node = rb_first(&old_base->active))) {
1346 timer = rb_entry(node, struct hrtimer, node);
54cdfdb4
TG
1347 BUG_ON(hrtimer_callback_running(timer));
1348 __remove_hrtimer(timer, old_base, HRTIMER_STATE_INACTIVE, 0);
c0a31329 1349 timer->base = new_base;
54cdfdb4
TG
1350 /*
1351 * Enqueue the timer. Allow reprogramming of the event device
1352 */
1353 enqueue_hrtimer(timer, new_base, 1);
c0a31329
TG
1354 }
1355}
1356
1357static void migrate_hrtimers(int cpu)
1358{
3c8aa39d 1359 struct hrtimer_cpu_base *old_base, *new_base;
c0a31329
TG
1360 int i;
1361
1362 BUG_ON(cpu_online(cpu));
3c8aa39d
TG
1363 old_base = &per_cpu(hrtimer_bases, cpu);
1364 new_base = &get_cpu_var(hrtimer_bases);
c0a31329 1365
54cdfdb4
TG
1366 tick_cancel_sched_timer(cpu);
1367
c0a31329 1368 local_irq_disable();
e81ce1f7
HC
1369 double_spin_lock(&new_base->lock, &old_base->lock,
1370 smp_processor_id() < cpu);
c0a31329 1371
3c8aa39d 1372 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
3c8aa39d
TG
1373 migrate_hrtimer_list(&old_base->clock_base[i],
1374 &new_base->clock_base[i]);
c0a31329
TG
1375 }
1376
e81ce1f7
HC
1377 double_spin_unlock(&new_base->lock, &old_base->lock,
1378 smp_processor_id() < cpu);
c0a31329
TG
1379 local_irq_enable();
1380 put_cpu_var(hrtimer_bases);
1381}
1382#endif /* CONFIG_HOTPLUG_CPU */
1383
8c78f307 1384static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
c0a31329
TG
1385 unsigned long action, void *hcpu)
1386{
1387 long cpu = (long)hcpu;
1388
1389 switch (action) {
1390
1391 case CPU_UP_PREPARE:
1392 init_hrtimers_cpu(cpu);
1393 break;
1394
1395#ifdef CONFIG_HOTPLUG_CPU
1396 case CPU_DEAD:
d316c57f 1397 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &cpu);
c0a31329
TG
1398 migrate_hrtimers(cpu);
1399 break;
1400#endif
1401
1402 default:
1403 break;
1404 }
1405
1406 return NOTIFY_OK;
1407}
1408
8c78f307 1409static struct notifier_block __cpuinitdata hrtimers_nb = {
c0a31329
TG
1410 .notifier_call = hrtimer_cpu_notify,
1411};
1412
1413void __init hrtimers_init(void)
1414{
1415 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1416 (void *)(long)smp_processor_id());
1417 register_cpu_notifier(&hrtimers_nb);
54cdfdb4
TG
1418#ifdef CONFIG_HIGH_RES_TIMERS
1419 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq, NULL);
1420#endif
c0a31329
TG
1421}
1422