[PATCH] hrtimers: prevent possible itimer DoS
[linux-2.6-block.git] / kernel / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
54cdfdb4 35#include <linux/irq.h>
c0a31329
TG
36#include <linux/module.h>
37#include <linux/percpu.h>
38#include <linux/hrtimer.h>
39#include <linux/notifier.h>
40#include <linux/syscalls.h>
54cdfdb4 41#include <linux/kallsyms.h>
c0a31329 42#include <linux/interrupt.h>
79bf2bb3 43#include <linux/tick.h>
54cdfdb4
TG
44#include <linux/seq_file.h>
45#include <linux/err.h>
c0a31329
TG
46
47#include <asm/uaccess.h>
48
49/**
50 * ktime_get - get the monotonic time in ktime_t format
51 *
52 * returns the time in ktime_t format
53 */
d316c57f 54ktime_t ktime_get(void)
c0a31329
TG
55{
56 struct timespec now;
57
58 ktime_get_ts(&now);
59
60 return timespec_to_ktime(now);
61}
62
63/**
64 * ktime_get_real - get the real (wall-) time in ktime_t format
65 *
66 * returns the time in ktime_t format
67 */
d316c57f 68ktime_t ktime_get_real(void)
c0a31329
TG
69{
70 struct timespec now;
71
72 getnstimeofday(&now);
73
74 return timespec_to_ktime(now);
75}
76
77EXPORT_SYMBOL_GPL(ktime_get_real);
78
79/*
80 * The timer bases:
7978672c
GA
81 *
82 * Note: If we want to add new timer bases, we have to skip the two
83 * clock ids captured by the cpu-timers. We do this by holding empty
84 * entries rather than doing math adjustment of the clock ids.
85 * This ensures that we capture erroneous accesses to these clock ids
86 * rather than moving them into the range of valid clock id's.
c0a31329 87 */
54cdfdb4 88DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 89{
3c8aa39d
TG
90
91 .clock_base =
c0a31329 92 {
3c8aa39d
TG
93 {
94 .index = CLOCK_REALTIME,
95 .get_time = &ktime_get_real,
54cdfdb4 96 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
97 },
98 {
99 .index = CLOCK_MONOTONIC,
100 .get_time = &ktime_get,
54cdfdb4 101 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
102 },
103 }
c0a31329
TG
104};
105
106/**
107 * ktime_get_ts - get the monotonic clock in timespec format
c0a31329
TG
108 * @ts: pointer to timespec variable
109 *
110 * The function calculates the monotonic clock from the realtime
111 * clock and the wall_to_monotonic offset and stores the result
72fd4a35 112 * in normalized timespec format in the variable pointed to by @ts.
c0a31329
TG
113 */
114void ktime_get_ts(struct timespec *ts)
115{
116 struct timespec tomono;
117 unsigned long seq;
118
119 do {
120 seq = read_seqbegin(&xtime_lock);
121 getnstimeofday(ts);
122 tomono = wall_to_monotonic;
123
124 } while (read_seqretry(&xtime_lock, seq));
125
126 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
127 ts->tv_nsec + tomono.tv_nsec);
128}
69778e32 129EXPORT_SYMBOL_GPL(ktime_get_ts);
c0a31329 130
92127c7a
TG
131/*
132 * Get the coarse grained time at the softirq based on xtime and
133 * wall_to_monotonic.
134 */
3c8aa39d 135static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
92127c7a
TG
136{
137 ktime_t xtim, tomono;
f4304ab2 138 struct timespec xts;
92127c7a
TG
139 unsigned long seq;
140
141 do {
142 seq = read_seqbegin(&xtime_lock);
f4304ab2 143#ifdef CONFIG_NO_HZ
144 getnstimeofday(&xts);
145#else
146 xts = xtime;
147#endif
92127c7a
TG
148 } while (read_seqretry(&xtime_lock, seq));
149
f4304ab2 150 xtim = timespec_to_ktime(xts);
151 tomono = timespec_to_ktime(wall_to_monotonic);
3c8aa39d
TG
152 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
153 base->clock_base[CLOCK_MONOTONIC].softirq_time =
154 ktime_add(xtim, tomono);
92127c7a
TG
155}
156
303e967f
TG
157/*
158 * Helper function to check, whether the timer is running the callback
159 * function
160 */
161static inline int hrtimer_callback_running(struct hrtimer *timer)
162{
163 return timer->state & HRTIMER_STATE_CALLBACK;
164}
165
c0a31329
TG
166/*
167 * Functions and macros which are different for UP/SMP systems are kept in a
168 * single place
169 */
170#ifdef CONFIG_SMP
171
c0a31329
TG
172/*
173 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
174 * means that all timers which are tied to this base via timer->base are
175 * locked, and the base itself is locked too.
176 *
177 * So __run_timers/migrate_timers can safely modify all timers which could
178 * be found on the lists/queues.
179 *
180 * When the timer's base is locked, and the timer removed from list, it is
181 * possible to set timer->base = NULL and drop the lock: the timer remains
182 * locked.
183 */
3c8aa39d
TG
184static
185struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
186 unsigned long *flags)
c0a31329 187{
3c8aa39d 188 struct hrtimer_clock_base *base;
c0a31329
TG
189
190 for (;;) {
191 base = timer->base;
192 if (likely(base != NULL)) {
3c8aa39d 193 spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
194 if (likely(base == timer->base))
195 return base;
196 /* The timer has migrated to another CPU: */
3c8aa39d 197 spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
198 }
199 cpu_relax();
200 }
201}
202
203/*
204 * Switch the timer base to the current CPU when possible.
205 */
3c8aa39d
TG
206static inline struct hrtimer_clock_base *
207switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 208{
3c8aa39d
TG
209 struct hrtimer_clock_base *new_base;
210 struct hrtimer_cpu_base *new_cpu_base;
c0a31329 211
3c8aa39d
TG
212 new_cpu_base = &__get_cpu_var(hrtimer_bases);
213 new_base = &new_cpu_base->clock_base[base->index];
c0a31329
TG
214
215 if (base != new_base) {
216 /*
217 * We are trying to schedule the timer on the local CPU.
218 * However we can't change timer's base while it is running,
219 * so we keep it on the same CPU. No hassle vs. reprogramming
220 * the event source in the high resolution case. The softirq
221 * code will take care of this when the timer function has
222 * completed. There is no conflict as we hold the lock until
223 * the timer is enqueued.
224 */
54cdfdb4 225 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
226 return base;
227
228 /* See the comment in lock_timer_base() */
229 timer->base = NULL;
3c8aa39d
TG
230 spin_unlock(&base->cpu_base->lock);
231 spin_lock(&new_base->cpu_base->lock);
c0a31329
TG
232 timer->base = new_base;
233 }
234 return new_base;
235}
236
237#else /* CONFIG_SMP */
238
3c8aa39d 239static inline struct hrtimer_clock_base *
c0a31329
TG
240lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
241{
3c8aa39d 242 struct hrtimer_clock_base *base = timer->base;
c0a31329 243
3c8aa39d 244 spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
245
246 return base;
247}
248
54cdfdb4 249# define switch_hrtimer_base(t, b) (b)
c0a31329
TG
250
251#endif /* !CONFIG_SMP */
252
253/*
254 * Functions for the union type storage format of ktime_t which are
255 * too large for inlining:
256 */
257#if BITS_PER_LONG < 64
258# ifndef CONFIG_KTIME_SCALAR
259/**
260 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
c0a31329
TG
261 * @kt: addend
262 * @nsec: the scalar nsec value to add
263 *
264 * Returns the sum of kt and nsec in ktime_t format
265 */
266ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
267{
268 ktime_t tmp;
269
270 if (likely(nsec < NSEC_PER_SEC)) {
271 tmp.tv64 = nsec;
272 } else {
273 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
274
275 tmp = ktime_set((long)nsec, rem);
276 }
277
278 return ktime_add(kt, tmp);
279}
c0a31329
TG
280# endif /* !CONFIG_KTIME_SCALAR */
281
282/*
283 * Divide a ktime value by a nanosecond value
284 */
79bf2bb3 285unsigned long ktime_divns(const ktime_t kt, s64 div)
c0a31329
TG
286{
287 u64 dclc, inc, dns;
288 int sft = 0;
289
290 dclc = dns = ktime_to_ns(kt);
291 inc = div;
292 /* Make sure the divisor is less than 2^32: */
293 while (div >> 32) {
294 sft++;
295 div >>= 1;
296 }
297 dclc >>= sft;
298 do_div(dclc, (unsigned long) div);
299
300 return (unsigned long) dclc;
301}
c0a31329
TG
302#endif /* BITS_PER_LONG >= 64 */
303
54cdfdb4
TG
304/* High resolution timer related functions */
305#ifdef CONFIG_HIGH_RES_TIMERS
306
307/*
308 * High resolution timer enabled ?
309 */
310static int hrtimer_hres_enabled __read_mostly = 1;
311
312/*
313 * Enable / Disable high resolution mode
314 */
315static int __init setup_hrtimer_hres(char *str)
316{
317 if (!strcmp(str, "off"))
318 hrtimer_hres_enabled = 0;
319 else if (!strcmp(str, "on"))
320 hrtimer_hres_enabled = 1;
321 else
322 return 0;
323 return 1;
324}
325
326__setup("highres=", setup_hrtimer_hres);
327
328/*
329 * hrtimer_high_res_enabled - query, if the highres mode is enabled
330 */
331static inline int hrtimer_is_hres_enabled(void)
332{
333 return hrtimer_hres_enabled;
334}
335
336/*
337 * Is the high resolution mode active ?
338 */
339static inline int hrtimer_hres_active(void)
340{
341 return __get_cpu_var(hrtimer_bases).hres_active;
342}
343
344/*
345 * Reprogram the event source with checking both queues for the
346 * next event
347 * Called with interrupts disabled and base->lock held
348 */
349static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
350{
351 int i;
352 struct hrtimer_clock_base *base = cpu_base->clock_base;
353 ktime_t expires;
354
355 cpu_base->expires_next.tv64 = KTIME_MAX;
356
357 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
358 struct hrtimer *timer;
359
360 if (!base->first)
361 continue;
362 timer = rb_entry(base->first, struct hrtimer, node);
363 expires = ktime_sub(timer->expires, base->offset);
364 if (expires.tv64 < cpu_base->expires_next.tv64)
365 cpu_base->expires_next = expires;
366 }
367
368 if (cpu_base->expires_next.tv64 != KTIME_MAX)
369 tick_program_event(cpu_base->expires_next, 1);
370}
371
372/*
373 * Shared reprogramming for clock_realtime and clock_monotonic
374 *
375 * When a timer is enqueued and expires earlier than the already enqueued
376 * timers, we have to check, whether it expires earlier than the timer for
377 * which the clock event device was armed.
378 *
379 * Called with interrupts disabled and base->cpu_base.lock held
380 */
381static int hrtimer_reprogram(struct hrtimer *timer,
382 struct hrtimer_clock_base *base)
383{
384 ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
385 ktime_t expires = ktime_sub(timer->expires, base->offset);
386 int res;
387
388 /*
389 * When the callback is running, we do not reprogram the clock event
390 * device. The timer callback is either running on a different CPU or
391 * the callback is executed in the hrtimer_interupt context. The
392 * reprogramming is handled either by the softirq, which called the
393 * callback or at the end of the hrtimer_interrupt.
394 */
395 if (hrtimer_callback_running(timer))
396 return 0;
397
398 if (expires.tv64 >= expires_next->tv64)
399 return 0;
400
401 /*
402 * Clockevents returns -ETIME, when the event was in the past.
403 */
404 res = tick_program_event(expires, 0);
405 if (!IS_ERR_VALUE(res))
406 *expires_next = expires;
407 return res;
408}
409
410
411/*
412 * Retrigger next event is called after clock was set
413 *
414 * Called with interrupts disabled via on_each_cpu()
415 */
416static void retrigger_next_event(void *arg)
417{
418 struct hrtimer_cpu_base *base;
419 struct timespec realtime_offset;
420 unsigned long seq;
421
422 if (!hrtimer_hres_active())
423 return;
424
425 do {
426 seq = read_seqbegin(&xtime_lock);
427 set_normalized_timespec(&realtime_offset,
428 -wall_to_monotonic.tv_sec,
429 -wall_to_monotonic.tv_nsec);
430 } while (read_seqretry(&xtime_lock, seq));
431
432 base = &__get_cpu_var(hrtimer_bases);
433
434 /* Adjust CLOCK_REALTIME offset */
435 spin_lock(&base->lock);
436 base->clock_base[CLOCK_REALTIME].offset =
437 timespec_to_ktime(realtime_offset);
438
439 hrtimer_force_reprogram(base);
440 spin_unlock(&base->lock);
441}
442
443/*
444 * Clock realtime was set
445 *
446 * Change the offset of the realtime clock vs. the monotonic
447 * clock.
448 *
449 * We might have to reprogram the high resolution timer interrupt. On
450 * SMP we call the architecture specific code to retrigger _all_ high
451 * resolution timer interrupts. On UP we just disable interrupts and
452 * call the high resolution interrupt code.
453 */
454void clock_was_set(void)
455{
456 /* Retrigger the CPU local events everywhere */
457 on_each_cpu(retrigger_next_event, NULL, 0, 1);
458}
459
460/*
461 * Check, whether the timer is on the callback pending list
462 */
463static inline int hrtimer_cb_pending(const struct hrtimer *timer)
464{
465 return timer->state & HRTIMER_STATE_PENDING;
466}
467
468/*
469 * Remove a timer from the callback pending list
470 */
471static inline void hrtimer_remove_cb_pending(struct hrtimer *timer)
472{
473 list_del_init(&timer->cb_entry);
474}
475
476/*
477 * Initialize the high resolution related parts of cpu_base
478 */
479static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
480{
481 base->expires_next.tv64 = KTIME_MAX;
482 base->hres_active = 0;
483 INIT_LIST_HEAD(&base->cb_pending);
484}
485
486/*
487 * Initialize the high resolution related parts of a hrtimer
488 */
489static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
490{
491 INIT_LIST_HEAD(&timer->cb_entry);
492}
493
494/*
495 * When High resolution timers are active, try to reprogram. Note, that in case
496 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
497 * check happens. The timer gets enqueued into the rbtree. The reprogramming
498 * and expiry check is done in the hrtimer_interrupt or in the softirq.
499 */
500static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
501 struct hrtimer_clock_base *base)
502{
503 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
504
505 /* Timer is expired, act upon the callback mode */
506 switch(timer->cb_mode) {
507 case HRTIMER_CB_IRQSAFE_NO_RESTART:
508 /*
509 * We can call the callback from here. No restart
510 * happens, so no danger of recursion
511 */
512 BUG_ON(timer->function(timer) != HRTIMER_NORESTART);
513 return 1;
514 case HRTIMER_CB_IRQSAFE_NO_SOFTIRQ:
515 /*
516 * This is solely for the sched tick emulation with
517 * dynamic tick support to ensure that we do not
518 * restart the tick right on the edge and end up with
519 * the tick timer in the softirq ! The calling site
520 * takes care of this.
521 */
522 return 1;
523 case HRTIMER_CB_IRQSAFE:
524 case HRTIMER_CB_SOFTIRQ:
525 /*
526 * Move everything else into the softirq pending list !
527 */
528 list_add_tail(&timer->cb_entry,
529 &base->cpu_base->cb_pending);
530 timer->state = HRTIMER_STATE_PENDING;
531 raise_softirq(HRTIMER_SOFTIRQ);
532 return 1;
533 default:
534 BUG();
535 }
536 }
537 return 0;
538}
539
540/*
541 * Switch to high resolution mode
542 */
543static void hrtimer_switch_to_hres(void)
544{
545 struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);
546 unsigned long flags;
547
548 if (base->hres_active)
549 return;
550
551 local_irq_save(flags);
552
553 if (tick_init_highres()) {
554 local_irq_restore(flags);
555 return;
556 }
557 base->hres_active = 1;
558 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
559 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
560
561 tick_setup_sched_timer();
562
563 /* "Retrigger" the interrupt to get things going */
564 retrigger_next_event(NULL);
565 local_irq_restore(flags);
566 printk(KERN_INFO "Switched to high resolution mode on CPU %d\n",
567 smp_processor_id());
568}
569
570#else
571
572static inline int hrtimer_hres_active(void) { return 0; }
573static inline int hrtimer_is_hres_enabled(void) { return 0; }
574static inline void hrtimer_switch_to_hres(void) { }
575static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
576static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
577 struct hrtimer_clock_base *base)
578{
579 return 0;
580}
581static inline int hrtimer_cb_pending(struct hrtimer *timer) { return 0; }
582static inline void hrtimer_remove_cb_pending(struct hrtimer *timer) { }
583static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
584static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
585
586#endif /* CONFIG_HIGH_RES_TIMERS */
587
c0a31329
TG
588/*
589 * Counterpart to lock_timer_base above:
590 */
591static inline
592void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
593{
3c8aa39d 594 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
595}
596
597/**
598 * hrtimer_forward - forward the timer expiry
c0a31329 599 * @timer: hrtimer to forward
44f21475 600 * @now: forward past this time
c0a31329
TG
601 * @interval: the interval to forward
602 *
603 * Forward the timer expiry so it will expire in the future.
8dca6f33 604 * Returns the number of overruns.
c0a31329
TG
605 */
606unsigned long
44f21475 607hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329
TG
608{
609 unsigned long orun = 1;
44f21475 610 ktime_t delta;
c0a31329
TG
611
612 delta = ktime_sub(now, timer->expires);
613
614 if (delta.tv64 < 0)
615 return 0;
616
c9db4fa1
TG
617 if (interval.tv64 < timer->base->resolution.tv64)
618 interval.tv64 = timer->base->resolution.tv64;
619
c0a31329 620 if (unlikely(delta.tv64 >= interval.tv64)) {
df869b63 621 s64 incr = ktime_to_ns(interval);
c0a31329
TG
622
623 orun = ktime_divns(delta, incr);
624 timer->expires = ktime_add_ns(timer->expires, incr * orun);
625 if (timer->expires.tv64 > now.tv64)
626 return orun;
627 /*
628 * This (and the ktime_add() below) is the
629 * correction for exact:
630 */
631 orun++;
632 }
633 timer->expires = ktime_add(timer->expires, interval);
634
635 return orun;
636}
637
638/*
639 * enqueue_hrtimer - internal function to (re)start a timer
640 *
641 * The timer is inserted in expiry order. Insertion into the
642 * red black tree is O(log(n)). Must hold the base lock.
643 */
3c8aa39d 644static void enqueue_hrtimer(struct hrtimer *timer,
54cdfdb4 645 struct hrtimer_clock_base *base, int reprogram)
c0a31329
TG
646{
647 struct rb_node **link = &base->active.rb_node;
c0a31329
TG
648 struct rb_node *parent = NULL;
649 struct hrtimer *entry;
650
651 /*
652 * Find the right place in the rbtree:
653 */
654 while (*link) {
655 parent = *link;
656 entry = rb_entry(parent, struct hrtimer, node);
657 /*
658 * We dont care about collisions. Nodes with
659 * the same expiry time stay together.
660 */
661 if (timer->expires.tv64 < entry->expires.tv64)
662 link = &(*link)->rb_left;
288867ec 663 else
c0a31329 664 link = &(*link)->rb_right;
c0a31329
TG
665 }
666
667 /*
288867ec
TG
668 * Insert the timer to the rbtree and check whether it
669 * replaces the first pending timer
c0a31329 670 */
54cdfdb4
TG
671 if (!base->first || timer->expires.tv64 <
672 rb_entry(base->first, struct hrtimer, node)->expires.tv64) {
673 /*
674 * Reprogram the clock event device. When the timer is already
675 * expired hrtimer_enqueue_reprogram has either called the
676 * callback or added it to the pending list and raised the
677 * softirq.
678 *
679 * This is a NOP for !HIGHRES
680 */
681 if (reprogram && hrtimer_enqueue_reprogram(timer, base))
682 return;
683
684 base->first = &timer->node;
685 }
686
c0a31329
TG
687 rb_link_node(&timer->node, parent, link);
688 rb_insert_color(&timer->node, &base->active);
303e967f
TG
689 /*
690 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
691 * state of a possibly running callback.
692 */
693 timer->state |= HRTIMER_STATE_ENQUEUED;
288867ec 694}
c0a31329
TG
695
696/*
697 * __remove_hrtimer - internal function to remove a timer
698 *
699 * Caller must hold the base lock.
54cdfdb4
TG
700 *
701 * High resolution timer mode reprograms the clock event device when the
702 * timer is the one which expires next. The caller can disable this by setting
703 * reprogram to zero. This is useful, when the context does a reprogramming
704 * anyway (e.g. timer interrupt)
c0a31329 705 */
3c8aa39d 706static void __remove_hrtimer(struct hrtimer *timer,
303e967f 707 struct hrtimer_clock_base *base,
54cdfdb4 708 unsigned long newstate, int reprogram)
c0a31329 709{
54cdfdb4
TG
710 /* High res. callback list. NOP for !HIGHRES */
711 if (hrtimer_cb_pending(timer))
712 hrtimer_remove_cb_pending(timer);
713 else {
714 /*
715 * Remove the timer from the rbtree and replace the
716 * first entry pointer if necessary.
717 */
718 if (base->first == &timer->node) {
719 base->first = rb_next(&timer->node);
720 /* Reprogram the clock event device. if enabled */
721 if (reprogram && hrtimer_hres_active())
722 hrtimer_force_reprogram(base->cpu_base);
723 }
724 rb_erase(&timer->node, &base->active);
725 }
303e967f 726 timer->state = newstate;
c0a31329
TG
727}
728
729/*
730 * remove hrtimer, called with base lock held
731 */
732static inline int
3c8aa39d 733remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 734{
303e967f 735 if (hrtimer_is_queued(timer)) {
54cdfdb4
TG
736 int reprogram;
737
738 /*
739 * Remove the timer and force reprogramming when high
740 * resolution mode is active and the timer is on the current
741 * CPU. If we remove a timer on another CPU, reprogramming is
742 * skipped. The interrupt event on this CPU is fired and
743 * reprogramming happens in the interrupt handler. This is a
744 * rare case and less expensive than a smp call.
745 */
746 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
747 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
748 reprogram);
c0a31329
TG
749 return 1;
750 }
751 return 0;
752}
753
754/**
755 * hrtimer_start - (re)start an relative timer on the current CPU
c0a31329
TG
756 * @timer: the timer to be added
757 * @tim: expiry time
758 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
759 *
760 * Returns:
761 * 0 on success
762 * 1 when the timer was active
763 */
764int
765hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
766{
3c8aa39d 767 struct hrtimer_clock_base *base, *new_base;
c0a31329
TG
768 unsigned long flags;
769 int ret;
770
771 base = lock_hrtimer_base(timer, &flags);
772
773 /* Remove an active timer from the queue: */
774 ret = remove_hrtimer(timer, base);
775
776 /* Switch the timer base, if necessary: */
777 new_base = switch_hrtimer_base(timer, base);
778
c9cb2e3d 779 if (mode == HRTIMER_MODE_REL) {
c0a31329 780 tim = ktime_add(tim, new_base->get_time());
06027bdd
IM
781 /*
782 * CONFIG_TIME_LOW_RES is a temporary way for architectures
783 * to signal that they simply return xtime in
784 * do_gettimeoffset(). In this case we want to round up by
785 * resolution when starting a relative timer, to avoid short
786 * timeouts. This will go away with the GTOD framework.
787 */
788#ifdef CONFIG_TIME_LOW_RES
789 tim = ktime_add(tim, base->resolution);
790#endif
791 }
c0a31329
TG
792 timer->expires = tim;
793
54cdfdb4 794 enqueue_hrtimer(timer, new_base, base == new_base);
c0a31329
TG
795
796 unlock_hrtimer_base(timer, &flags);
797
798 return ret;
799}
8d16b764 800EXPORT_SYMBOL_GPL(hrtimer_start);
c0a31329
TG
801
802/**
803 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
804 * @timer: hrtimer to stop
805 *
806 * Returns:
807 * 0 when the timer was not active
808 * 1 when the timer was active
809 * -1 when the timer is currently excuting the callback function and
fa9799e3 810 * cannot be stopped
c0a31329
TG
811 */
812int hrtimer_try_to_cancel(struct hrtimer *timer)
813{
3c8aa39d 814 struct hrtimer_clock_base *base;
c0a31329
TG
815 unsigned long flags;
816 int ret = -1;
817
818 base = lock_hrtimer_base(timer, &flags);
819
303e967f 820 if (!hrtimer_callback_running(timer))
c0a31329
TG
821 ret = remove_hrtimer(timer, base);
822
823 unlock_hrtimer_base(timer, &flags);
824
825 return ret;
826
827}
8d16b764 828EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
829
830/**
831 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
832 * @timer: the timer to be cancelled
833 *
834 * Returns:
835 * 0 when the timer was not active
836 * 1 when the timer was active
837 */
838int hrtimer_cancel(struct hrtimer *timer)
839{
840 for (;;) {
841 int ret = hrtimer_try_to_cancel(timer);
842
843 if (ret >= 0)
844 return ret;
5ef37b19 845 cpu_relax();
c0a31329
TG
846 }
847}
8d16b764 848EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
849
850/**
851 * hrtimer_get_remaining - get remaining time for the timer
c0a31329
TG
852 * @timer: the timer to read
853 */
854ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
855{
3c8aa39d 856 struct hrtimer_clock_base *base;
c0a31329
TG
857 unsigned long flags;
858 ktime_t rem;
859
860 base = lock_hrtimer_base(timer, &flags);
3c8aa39d 861 rem = ktime_sub(timer->expires, base->get_time());
c0a31329
TG
862 unlock_hrtimer_base(timer, &flags);
863
864 return rem;
865}
8d16b764 866EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
c0a31329 867
fd064b9b 868#if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
69239749
TL
869/**
870 * hrtimer_get_next_event - get the time until next expiry event
871 *
872 * Returns the delta to the next expiry event or KTIME_MAX if no timer
873 * is pending.
874 */
875ktime_t hrtimer_get_next_event(void)
876{
3c8aa39d
TG
877 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
878 struct hrtimer_clock_base *base = cpu_base->clock_base;
69239749
TL
879 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
880 unsigned long flags;
881 int i;
882
3c8aa39d
TG
883 spin_lock_irqsave(&cpu_base->lock, flags);
884
54cdfdb4
TG
885 if (!hrtimer_hres_active()) {
886 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
887 struct hrtimer *timer;
69239749 888
54cdfdb4
TG
889 if (!base->first)
890 continue;
3c8aa39d 891
54cdfdb4
TG
892 timer = rb_entry(base->first, struct hrtimer, node);
893 delta.tv64 = timer->expires.tv64;
894 delta = ktime_sub(delta, base->get_time());
895 if (delta.tv64 < mindelta.tv64)
896 mindelta.tv64 = delta.tv64;
897 }
69239749 898 }
3c8aa39d
TG
899
900 spin_unlock_irqrestore(&cpu_base->lock, flags);
901
69239749
TL
902 if (mindelta.tv64 < 0)
903 mindelta.tv64 = 0;
904 return mindelta;
905}
906#endif
907
c0a31329 908/**
7978672c 909 * hrtimer_init - initialize a timer to the given clock
7978672c 910 * @timer: the timer to be initialized
c0a31329 911 * @clock_id: the clock to be used
7978672c 912 * @mode: timer mode abs/rel
c0a31329 913 */
7978672c
GA
914void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
915 enum hrtimer_mode mode)
c0a31329 916{
3c8aa39d 917 struct hrtimer_cpu_base *cpu_base;
c0a31329 918
7978672c
GA
919 memset(timer, 0, sizeof(struct hrtimer));
920
3c8aa39d 921 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
c0a31329 922
c9cb2e3d 923 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
7978672c
GA
924 clock_id = CLOCK_MONOTONIC;
925
3c8aa39d 926 timer->base = &cpu_base->clock_base[clock_id];
54cdfdb4 927 hrtimer_init_timer_hres(timer);
c0a31329 928}
8d16b764 929EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329
TG
930
931/**
932 * hrtimer_get_res - get the timer resolution for a clock
c0a31329
TG
933 * @which_clock: which clock to query
934 * @tp: pointer to timespec variable to store the resolution
935 *
72fd4a35
RD
936 * Store the resolution of the clock selected by @which_clock in the
937 * variable pointed to by @tp.
c0a31329
TG
938 */
939int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
940{
3c8aa39d 941 struct hrtimer_cpu_base *cpu_base;
c0a31329 942
3c8aa39d
TG
943 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
944 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
c0a31329
TG
945
946 return 0;
947}
8d16b764 948EXPORT_SYMBOL_GPL(hrtimer_get_res);
c0a31329 949
54cdfdb4
TG
950#ifdef CONFIG_HIGH_RES_TIMERS
951
952/*
953 * High resolution timer interrupt
954 * Called with interrupts disabled
955 */
956void hrtimer_interrupt(struct clock_event_device *dev)
957{
958 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
959 struct hrtimer_clock_base *base;
960 ktime_t expires_next, now;
961 int i, raise = 0;
962
963 BUG_ON(!cpu_base->hres_active);
964 cpu_base->nr_events++;
965 dev->next_event.tv64 = KTIME_MAX;
966
967 retry:
968 now = ktime_get();
969
970 expires_next.tv64 = KTIME_MAX;
971
972 base = cpu_base->clock_base;
973
974 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
975 ktime_t basenow;
976 struct rb_node *node;
977
978 spin_lock(&cpu_base->lock);
979
980 basenow = ktime_add(now, base->offset);
981
982 while ((node = base->first)) {
983 struct hrtimer *timer;
984
985 timer = rb_entry(node, struct hrtimer, node);
986
987 if (basenow.tv64 < timer->expires.tv64) {
988 ktime_t expires;
989
990 expires = ktime_sub(timer->expires,
991 base->offset);
992 if (expires.tv64 < expires_next.tv64)
993 expires_next = expires;
994 break;
995 }
996
997 /* Move softirq callbacks to the pending list */
998 if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
999 __remove_hrtimer(timer, base,
1000 HRTIMER_STATE_PENDING, 0);
1001 list_add_tail(&timer->cb_entry,
1002 &base->cpu_base->cb_pending);
1003 raise = 1;
1004 continue;
1005 }
1006
1007 __remove_hrtimer(timer, base,
1008 HRTIMER_STATE_CALLBACK, 0);
1009
1010 /*
1011 * Note: We clear the CALLBACK bit after
1012 * enqueue_hrtimer to avoid reprogramming of
1013 * the event hardware. This happens at the end
1014 * of this function anyway.
1015 */
1016 if (timer->function(timer) != HRTIMER_NORESTART) {
1017 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1018 enqueue_hrtimer(timer, base, 0);
1019 }
1020 timer->state &= ~HRTIMER_STATE_CALLBACK;
1021 }
1022 spin_unlock(&cpu_base->lock);
1023 base++;
1024 }
1025
1026 cpu_base->expires_next = expires_next;
1027
1028 /* Reprogramming necessary ? */
1029 if (expires_next.tv64 != KTIME_MAX) {
1030 if (tick_program_event(expires_next, 0))
1031 goto retry;
1032 }
1033
1034 /* Raise softirq ? */
1035 if (raise)
1036 raise_softirq(HRTIMER_SOFTIRQ);
1037}
1038
1039static void run_hrtimer_softirq(struct softirq_action *h)
1040{
1041 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1042
1043 spin_lock_irq(&cpu_base->lock);
1044
1045 while (!list_empty(&cpu_base->cb_pending)) {
1046 enum hrtimer_restart (*fn)(struct hrtimer *);
1047 struct hrtimer *timer;
1048 int restart;
1049
1050 timer = list_entry(cpu_base->cb_pending.next,
1051 struct hrtimer, cb_entry);
1052
1053 fn = timer->function;
1054 __remove_hrtimer(timer, timer->base, HRTIMER_STATE_CALLBACK, 0);
1055 spin_unlock_irq(&cpu_base->lock);
1056
1057 restart = fn(timer);
1058
1059 spin_lock_irq(&cpu_base->lock);
1060
1061 timer->state &= ~HRTIMER_STATE_CALLBACK;
1062 if (restart == HRTIMER_RESTART) {
1063 BUG_ON(hrtimer_active(timer));
1064 /*
1065 * Enqueue the timer, allow reprogramming of the event
1066 * device
1067 */
1068 enqueue_hrtimer(timer, timer->base, 1);
1069 } else if (hrtimer_active(timer)) {
1070 /*
1071 * If the timer was rearmed on another CPU, reprogram
1072 * the event device.
1073 */
1074 if (timer->base->first == &timer->node)
1075 hrtimer_reprogram(timer, timer->base);
1076 }
1077 }
1078 spin_unlock_irq(&cpu_base->lock);
1079}
1080
1081#endif /* CONFIG_HIGH_RES_TIMERS */
1082
c0a31329
TG
1083/*
1084 * Expire the per base hrtimer-queue:
1085 */
3c8aa39d
TG
1086static inline void run_hrtimer_queue(struct hrtimer_cpu_base *cpu_base,
1087 int index)
c0a31329 1088{
288867ec 1089 struct rb_node *node;
3c8aa39d 1090 struct hrtimer_clock_base *base = &cpu_base->clock_base[index];
c0a31329 1091
3055adda
DS
1092 if (!base->first)
1093 return;
1094
92127c7a
TG
1095 if (base->get_softirq_time)
1096 base->softirq_time = base->get_softirq_time();
1097
3c8aa39d 1098 spin_lock_irq(&cpu_base->lock);
c0a31329 1099
288867ec 1100 while ((node = base->first)) {
c0a31329 1101 struct hrtimer *timer;
c9cb2e3d 1102 enum hrtimer_restart (*fn)(struct hrtimer *);
c0a31329 1103 int restart;
c0a31329 1104
288867ec 1105 timer = rb_entry(node, struct hrtimer, node);
92127c7a 1106 if (base->softirq_time.tv64 <= timer->expires.tv64)
c0a31329
TG
1107 break;
1108
1109 fn = timer->function;
54cdfdb4 1110 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
3c8aa39d 1111 spin_unlock_irq(&cpu_base->lock);
c0a31329 1112
05cfb614 1113 restart = fn(timer);
c0a31329 1114
3c8aa39d 1115 spin_lock_irq(&cpu_base->lock);
c0a31329 1116
303e967f 1117 timer->state &= ~HRTIMER_STATE_CALLBACK;
b75f7a51
RZ
1118 if (restart != HRTIMER_NORESTART) {
1119 BUG_ON(hrtimer_active(timer));
54cdfdb4 1120 enqueue_hrtimer(timer, base, 0);
b75f7a51 1121 }
c0a31329 1122 }
3c8aa39d 1123 spin_unlock_irq(&cpu_base->lock);
c0a31329
TG
1124}
1125
1126/*
1127 * Called from timer softirq every jiffy, expire hrtimers:
54cdfdb4
TG
1128 *
1129 * For HRT its the fall back code to run the softirq in the timer
1130 * softirq context in case the hrtimer initialization failed or has
1131 * not been done yet.
c0a31329
TG
1132 */
1133void hrtimer_run_queues(void)
1134{
3c8aa39d 1135 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
c0a31329
TG
1136 int i;
1137
54cdfdb4
TG
1138 if (hrtimer_hres_active())
1139 return;
1140
79bf2bb3
TG
1141 /*
1142 * This _is_ ugly: We have to check in the softirq context,
1143 * whether we can switch to highres and / or nohz mode. The
1144 * clocksource switch happens in the timer interrupt with
1145 * xtime_lock held. Notification from there only sets the
1146 * check bit in the tick_oneshot code, otherwise we might
1147 * deadlock vs. xtime_lock.
1148 */
54cdfdb4
TG
1149 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1150 hrtimer_switch_to_hres();
79bf2bb3 1151
3c8aa39d 1152 hrtimer_get_softirq_time(cpu_base);
92127c7a 1153
3c8aa39d
TG
1154 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1155 run_hrtimer_queue(cpu_base, i);
c0a31329
TG
1156}
1157
10c94ec1
TG
1158/*
1159 * Sleep related functions:
1160 */
c9cb2e3d 1161static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1162{
1163 struct hrtimer_sleeper *t =
1164 container_of(timer, struct hrtimer_sleeper, timer);
1165 struct task_struct *task = t->task;
1166
1167 t->task = NULL;
1168 if (task)
1169 wake_up_process(task);
1170
1171 return HRTIMER_NORESTART;
1172}
1173
36c8b586 1174void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1175{
1176 sl->timer.function = hrtimer_wakeup;
1177 sl->task = task;
54cdfdb4
TG
1178#ifdef CONFIG_HIGH_RES_TIMERS
1179 sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_RESTART;
1180#endif
00362e33
TG
1181}
1182
669d7868 1183static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1184{
669d7868 1185 hrtimer_init_sleeper(t, current);
10c94ec1 1186
432569bb
RZ
1187 do {
1188 set_current_state(TASK_INTERRUPTIBLE);
1189 hrtimer_start(&t->timer, t->timer.expires, mode);
1190
54cdfdb4
TG
1191 if (likely(t->task))
1192 schedule();
432569bb 1193
669d7868 1194 hrtimer_cancel(&t->timer);
c9cb2e3d 1195 mode = HRTIMER_MODE_ABS;
669d7868
TG
1196
1197 } while (t->task && !signal_pending(current));
432569bb 1198
669d7868 1199 return t->task == NULL;
10c94ec1
TG
1200}
1201
1711ef38 1202long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1203{
669d7868 1204 struct hrtimer_sleeper t;
ea13dbc8
IM
1205 struct timespec __user *rmtp;
1206 struct timespec tu;
432569bb 1207 ktime_t time;
10c94ec1
TG
1208
1209 restart->fn = do_no_restart_syscall;
1210
c9cb2e3d 1211 hrtimer_init(&t.timer, restart->arg0, HRTIMER_MODE_ABS);
1711ef38 1212 t.timer.expires.tv64 = ((u64)restart->arg3 << 32) | (u64) restart->arg2;
10c94ec1 1213
c9cb2e3d 1214 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
10c94ec1
TG
1215 return 0;
1216
1711ef38 1217 rmtp = (struct timespec __user *) restart->arg1;
432569bb
RZ
1218 if (rmtp) {
1219 time = ktime_sub(t.timer.expires, t.timer.base->get_time());
1220 if (time.tv64 <= 0)
1221 return 0;
1222 tu = ktime_to_timespec(time);
1223 if (copy_to_user(rmtp, &tu, sizeof(tu)))
1224 return -EFAULT;
1225 }
10c94ec1 1226
1711ef38 1227 restart->fn = hrtimer_nanosleep_restart;
10c94ec1
TG
1228
1229 /* The other values in restart are already filled in */
1230 return -ERESTART_RESTARTBLOCK;
1231}
1232
10c94ec1
TG
1233long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1234 const enum hrtimer_mode mode, const clockid_t clockid)
1235{
1236 struct restart_block *restart;
669d7868 1237 struct hrtimer_sleeper t;
10c94ec1
TG
1238 struct timespec tu;
1239 ktime_t rem;
1240
432569bb
RZ
1241 hrtimer_init(&t.timer, clockid, mode);
1242 t.timer.expires = timespec_to_ktime(*rqtp);
1243 if (do_nanosleep(&t, mode))
10c94ec1
TG
1244 return 0;
1245
7978672c 1246 /* Absolute timers do not update the rmtp value and restart: */
c9cb2e3d 1247 if (mode == HRTIMER_MODE_ABS)
10c94ec1
TG
1248 return -ERESTARTNOHAND;
1249
432569bb
RZ
1250 if (rmtp) {
1251 rem = ktime_sub(t.timer.expires, t.timer.base->get_time());
1252 if (rem.tv64 <= 0)
1253 return 0;
1254 tu = ktime_to_timespec(rem);
1255 if (copy_to_user(rmtp, &tu, sizeof(tu)))
1256 return -EFAULT;
1257 }
10c94ec1
TG
1258
1259 restart = &current_thread_info()->restart_block;
1711ef38
TA
1260 restart->fn = hrtimer_nanosleep_restart;
1261 restart->arg0 = (unsigned long) t.timer.base->index;
1262 restart->arg1 = (unsigned long) rmtp;
1263 restart->arg2 = t.timer.expires.tv64 & 0xFFFFFFFF;
1264 restart->arg3 = t.timer.expires.tv64 >> 32;
10c94ec1
TG
1265
1266 return -ERESTART_RESTARTBLOCK;
1267}
1268
6ba1b912
TG
1269asmlinkage long
1270sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
1271{
1272 struct timespec tu;
1273
1274 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1275 return -EFAULT;
1276
1277 if (!timespec_valid(&tu))
1278 return -EINVAL;
1279
c9cb2e3d 1280 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1281}
1282
c0a31329
TG
1283/*
1284 * Functions related to boot-time initialization:
1285 */
1286static void __devinit init_hrtimers_cpu(int cpu)
1287{
3c8aa39d 1288 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1289 int i;
1290
3c8aa39d
TG
1291 spin_lock_init(&cpu_base->lock);
1292 lockdep_set_class(&cpu_base->lock, &cpu_base->lock_key);
1293
1294 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1295 cpu_base->clock_base[i].cpu_base = cpu_base;
1296
54cdfdb4 1297 hrtimer_init_hres(cpu_base);
c0a31329
TG
1298}
1299
1300#ifdef CONFIG_HOTPLUG_CPU
1301
3c8aa39d
TG
1302static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1303 struct hrtimer_clock_base *new_base)
c0a31329
TG
1304{
1305 struct hrtimer *timer;
1306 struct rb_node *node;
1307
1308 while ((node = rb_first(&old_base->active))) {
1309 timer = rb_entry(node, struct hrtimer, node);
54cdfdb4
TG
1310 BUG_ON(hrtimer_callback_running(timer));
1311 __remove_hrtimer(timer, old_base, HRTIMER_STATE_INACTIVE, 0);
c0a31329 1312 timer->base = new_base;
54cdfdb4
TG
1313 /*
1314 * Enqueue the timer. Allow reprogramming of the event device
1315 */
1316 enqueue_hrtimer(timer, new_base, 1);
c0a31329
TG
1317 }
1318}
1319
1320static void migrate_hrtimers(int cpu)
1321{
3c8aa39d 1322 struct hrtimer_cpu_base *old_base, *new_base;
c0a31329
TG
1323 int i;
1324
1325 BUG_ON(cpu_online(cpu));
3c8aa39d
TG
1326 old_base = &per_cpu(hrtimer_bases, cpu);
1327 new_base = &get_cpu_var(hrtimer_bases);
c0a31329 1328
54cdfdb4
TG
1329 tick_cancel_sched_timer(cpu);
1330
c0a31329
TG
1331 local_irq_disable();
1332
3c8aa39d
TG
1333 spin_lock(&new_base->lock);
1334 spin_lock(&old_base->lock);
c0a31329 1335
3c8aa39d 1336 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
3c8aa39d
TG
1337 migrate_hrtimer_list(&old_base->clock_base[i],
1338 &new_base->clock_base[i]);
c0a31329 1339 }
3c8aa39d
TG
1340 spin_unlock(&old_base->lock);
1341 spin_unlock(&new_base->lock);
c0a31329
TG
1342
1343 local_irq_enable();
1344 put_cpu_var(hrtimer_bases);
1345}
1346#endif /* CONFIG_HOTPLUG_CPU */
1347
8c78f307 1348static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
c0a31329
TG
1349 unsigned long action, void *hcpu)
1350{
1351 long cpu = (long)hcpu;
1352
1353 switch (action) {
1354
1355 case CPU_UP_PREPARE:
1356 init_hrtimers_cpu(cpu);
1357 break;
1358
1359#ifdef CONFIG_HOTPLUG_CPU
1360 case CPU_DEAD:
d316c57f 1361 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &cpu);
c0a31329
TG
1362 migrate_hrtimers(cpu);
1363 break;
1364#endif
1365
1366 default:
1367 break;
1368 }
1369
1370 return NOTIFY_OK;
1371}
1372
8c78f307 1373static struct notifier_block __cpuinitdata hrtimers_nb = {
c0a31329
TG
1374 .notifier_call = hrtimer_cpu_notify,
1375};
1376
1377void __init hrtimers_init(void)
1378{
1379 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1380 (void *)(long)smp_processor_id());
1381 register_cpu_notifier(&hrtimers_nb);
54cdfdb4
TG
1382#ifdef CONFIG_HIGH_RES_TIMERS
1383 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq, NULL);
1384#endif
c0a31329
TG
1385}
1386