sched: Change nohz idle load balancing logic to push model
[linux-2.6-block.git] / kernel / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
35#include <linux/module.h>
36#include <linux/percpu.h>
37#include <linux/hrtimer.h>
38#include <linux/notifier.h>
39#include <linux/syscalls.h>
54cdfdb4 40#include <linux/kallsyms.h>
c0a31329 41#include <linux/interrupt.h>
79bf2bb3 42#include <linux/tick.h>
54cdfdb4
TG
43#include <linux/seq_file.h>
44#include <linux/err.h>
237fc6e7 45#include <linux/debugobjects.h>
eea08f32
AB
46#include <linux/sched.h>
47#include <linux/timer.h>
c0a31329
TG
48
49#include <asm/uaccess.h>
50
c6a2a177
XG
51#include <trace/events/timer.h>
52
c0a31329
TG
53/*
54 * The timer bases:
7978672c
GA
55 *
56 * Note: If we want to add new timer bases, we have to skip the two
57 * clock ids captured by the cpu-timers. We do this by holding empty
58 * entries rather than doing math adjustment of the clock ids.
59 * This ensures that we capture erroneous accesses to these clock ids
60 * rather than moving them into the range of valid clock id's.
c0a31329 61 */
54cdfdb4 62DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 63{
3c8aa39d
TG
64
65 .clock_base =
c0a31329 66 {
3c8aa39d
TG
67 {
68 .index = CLOCK_REALTIME,
69 .get_time = &ktime_get_real,
54cdfdb4 70 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
71 },
72 {
73 .index = CLOCK_MONOTONIC,
74 .get_time = &ktime_get,
54cdfdb4 75 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
76 },
77 }
c0a31329
TG
78};
79
92127c7a
TG
80/*
81 * Get the coarse grained time at the softirq based on xtime and
82 * wall_to_monotonic.
83 */
3c8aa39d 84static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
92127c7a
TG
85{
86 ktime_t xtim, tomono;
ad28d94a 87 struct timespec xts, tom;
92127c7a
TG
88 unsigned long seq;
89
90 do {
91 seq = read_seqbegin(&xtime_lock);
174bd199 92 xts = __current_kernel_time();
ad28d94a 93 tom = wall_to_monotonic;
92127c7a
TG
94 } while (read_seqretry(&xtime_lock, seq));
95
f4304ab2 96 xtim = timespec_to_ktime(xts);
ad28d94a 97 tomono = timespec_to_ktime(tom);
3c8aa39d
TG
98 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
99 base->clock_base[CLOCK_MONOTONIC].softirq_time =
100 ktime_add(xtim, tomono);
92127c7a
TG
101}
102
c0a31329
TG
103/*
104 * Functions and macros which are different for UP/SMP systems are kept in a
105 * single place
106 */
107#ifdef CONFIG_SMP
108
c0a31329
TG
109/*
110 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
111 * means that all timers which are tied to this base via timer->base are
112 * locked, and the base itself is locked too.
113 *
114 * So __run_timers/migrate_timers can safely modify all timers which could
115 * be found on the lists/queues.
116 *
117 * When the timer's base is locked, and the timer removed from list, it is
118 * possible to set timer->base = NULL and drop the lock: the timer remains
119 * locked.
120 */
3c8aa39d
TG
121static
122struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
123 unsigned long *flags)
c0a31329 124{
3c8aa39d 125 struct hrtimer_clock_base *base;
c0a31329
TG
126
127 for (;;) {
128 base = timer->base;
129 if (likely(base != NULL)) {
ecb49d1a 130 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
131 if (likely(base == timer->base))
132 return base;
133 /* The timer has migrated to another CPU: */
ecb49d1a 134 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
135 }
136 cpu_relax();
137 }
138}
139
6ff7041d
TG
140
141/*
142 * Get the preferred target CPU for NOHZ
143 */
144static int hrtimer_get_target(int this_cpu, int pinned)
145{
146#ifdef CONFIG_NO_HZ
83cd4fe2
VP
147 if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
148 return get_nohz_timer_target();
6ff7041d
TG
149#endif
150 return this_cpu;
151}
152
153/*
154 * With HIGHRES=y we do not migrate the timer when it is expiring
155 * before the next event on the target cpu because we cannot reprogram
156 * the target cpu hardware and we would cause it to fire late.
157 *
158 * Called with cpu_base->lock of target cpu held.
159 */
160static int
161hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
162{
163#ifdef CONFIG_HIGH_RES_TIMERS
164 ktime_t expires;
165
166 if (!new_base->cpu_base->hres_active)
167 return 0;
168
169 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
170 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
171#else
172 return 0;
173#endif
174}
175
c0a31329
TG
176/*
177 * Switch the timer base to the current CPU when possible.
178 */
3c8aa39d 179static inline struct hrtimer_clock_base *
597d0275
AB
180switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
181 int pinned)
c0a31329 182{
3c8aa39d
TG
183 struct hrtimer_clock_base *new_base;
184 struct hrtimer_cpu_base *new_cpu_base;
6ff7041d
TG
185 int this_cpu = smp_processor_id();
186 int cpu = hrtimer_get_target(this_cpu, pinned);
c0a31329 187
eea08f32
AB
188again:
189 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
3c8aa39d 190 new_base = &new_cpu_base->clock_base[base->index];
c0a31329
TG
191
192 if (base != new_base) {
193 /*
6ff7041d 194 * We are trying to move timer to new_base.
c0a31329
TG
195 * However we can't change timer's base while it is running,
196 * so we keep it on the same CPU. No hassle vs. reprogramming
197 * the event source in the high resolution case. The softirq
198 * code will take care of this when the timer function has
199 * completed. There is no conflict as we hold the lock until
200 * the timer is enqueued.
201 */
54cdfdb4 202 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
203 return base;
204
205 /* See the comment in lock_timer_base() */
206 timer->base = NULL;
ecb49d1a
TG
207 raw_spin_unlock(&base->cpu_base->lock);
208 raw_spin_lock(&new_base->cpu_base->lock);
eea08f32 209
6ff7041d
TG
210 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
211 cpu = this_cpu;
ecb49d1a
TG
212 raw_spin_unlock(&new_base->cpu_base->lock);
213 raw_spin_lock(&base->cpu_base->lock);
6ff7041d
TG
214 timer->base = base;
215 goto again;
eea08f32 216 }
c0a31329
TG
217 timer->base = new_base;
218 }
219 return new_base;
220}
221
222#else /* CONFIG_SMP */
223
3c8aa39d 224static inline struct hrtimer_clock_base *
c0a31329
TG
225lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
226{
3c8aa39d 227 struct hrtimer_clock_base *base = timer->base;
c0a31329 228
ecb49d1a 229 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
230
231 return base;
232}
233
eea08f32 234# define switch_hrtimer_base(t, b, p) (b)
c0a31329
TG
235
236#endif /* !CONFIG_SMP */
237
238/*
239 * Functions for the union type storage format of ktime_t which are
240 * too large for inlining:
241 */
242#if BITS_PER_LONG < 64
243# ifndef CONFIG_KTIME_SCALAR
244/**
245 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
c0a31329
TG
246 * @kt: addend
247 * @nsec: the scalar nsec value to add
248 *
249 * Returns the sum of kt and nsec in ktime_t format
250 */
251ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
252{
253 ktime_t tmp;
254
255 if (likely(nsec < NSEC_PER_SEC)) {
256 tmp.tv64 = nsec;
257 } else {
258 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
259
260 tmp = ktime_set((long)nsec, rem);
261 }
262
263 return ktime_add(kt, tmp);
264}
b8b8fd2d
DH
265
266EXPORT_SYMBOL_GPL(ktime_add_ns);
a272378d
ACM
267
268/**
269 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
270 * @kt: minuend
271 * @nsec: the scalar nsec value to subtract
272 *
273 * Returns the subtraction of @nsec from @kt in ktime_t format
274 */
275ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
276{
277 ktime_t tmp;
278
279 if (likely(nsec < NSEC_PER_SEC)) {
280 tmp.tv64 = nsec;
281 } else {
282 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
283
284 tmp = ktime_set((long)nsec, rem);
285 }
286
287 return ktime_sub(kt, tmp);
288}
289
290EXPORT_SYMBOL_GPL(ktime_sub_ns);
c0a31329
TG
291# endif /* !CONFIG_KTIME_SCALAR */
292
293/*
294 * Divide a ktime value by a nanosecond value
295 */
4d672e7a 296u64 ktime_divns(const ktime_t kt, s64 div)
c0a31329 297{
900cfa46 298 u64 dclc;
c0a31329
TG
299 int sft = 0;
300
900cfa46 301 dclc = ktime_to_ns(kt);
c0a31329
TG
302 /* Make sure the divisor is less than 2^32: */
303 while (div >> 32) {
304 sft++;
305 div >>= 1;
306 }
307 dclc >>= sft;
308 do_div(dclc, (unsigned long) div);
309
4d672e7a 310 return dclc;
c0a31329 311}
c0a31329
TG
312#endif /* BITS_PER_LONG >= 64 */
313
5a7780e7
TG
314/*
315 * Add two ktime values and do a safety check for overflow:
316 */
317ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
318{
319 ktime_t res = ktime_add(lhs, rhs);
320
321 /*
322 * We use KTIME_SEC_MAX here, the maximum timeout which we can
323 * return to user space in a timespec:
324 */
325 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
326 res = ktime_set(KTIME_SEC_MAX, 0);
327
328 return res;
329}
330
8daa21e6
AB
331EXPORT_SYMBOL_GPL(ktime_add_safe);
332
237fc6e7
TG
333#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
334
335static struct debug_obj_descr hrtimer_debug_descr;
336
337/*
338 * fixup_init is called when:
339 * - an active object is initialized
340 */
341static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
342{
343 struct hrtimer *timer = addr;
344
345 switch (state) {
346 case ODEBUG_STATE_ACTIVE:
347 hrtimer_cancel(timer);
348 debug_object_init(timer, &hrtimer_debug_descr);
349 return 1;
350 default:
351 return 0;
352 }
353}
354
355/*
356 * fixup_activate is called when:
357 * - an active object is activated
358 * - an unknown object is activated (might be a statically initialized object)
359 */
360static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
361{
362 switch (state) {
363
364 case ODEBUG_STATE_NOTAVAILABLE:
365 WARN_ON_ONCE(1);
366 return 0;
367
368 case ODEBUG_STATE_ACTIVE:
369 WARN_ON(1);
370
371 default:
372 return 0;
373 }
374}
375
376/*
377 * fixup_free is called when:
378 * - an active object is freed
379 */
380static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
381{
382 struct hrtimer *timer = addr;
383
384 switch (state) {
385 case ODEBUG_STATE_ACTIVE:
386 hrtimer_cancel(timer);
387 debug_object_free(timer, &hrtimer_debug_descr);
388 return 1;
389 default:
390 return 0;
391 }
392}
393
394static struct debug_obj_descr hrtimer_debug_descr = {
395 .name = "hrtimer",
396 .fixup_init = hrtimer_fixup_init,
397 .fixup_activate = hrtimer_fixup_activate,
398 .fixup_free = hrtimer_fixup_free,
399};
400
401static inline void debug_hrtimer_init(struct hrtimer *timer)
402{
403 debug_object_init(timer, &hrtimer_debug_descr);
404}
405
406static inline void debug_hrtimer_activate(struct hrtimer *timer)
407{
408 debug_object_activate(timer, &hrtimer_debug_descr);
409}
410
411static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
412{
413 debug_object_deactivate(timer, &hrtimer_debug_descr);
414}
415
416static inline void debug_hrtimer_free(struct hrtimer *timer)
417{
418 debug_object_free(timer, &hrtimer_debug_descr);
419}
420
421static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
422 enum hrtimer_mode mode);
423
424void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
425 enum hrtimer_mode mode)
426{
427 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
428 __hrtimer_init(timer, clock_id, mode);
429}
2bc481cf 430EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
237fc6e7
TG
431
432void destroy_hrtimer_on_stack(struct hrtimer *timer)
433{
434 debug_object_free(timer, &hrtimer_debug_descr);
435}
436
437#else
438static inline void debug_hrtimer_init(struct hrtimer *timer) { }
439static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
440static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
441#endif
442
c6a2a177
XG
443static inline void
444debug_init(struct hrtimer *timer, clockid_t clockid,
445 enum hrtimer_mode mode)
446{
447 debug_hrtimer_init(timer);
448 trace_hrtimer_init(timer, clockid, mode);
449}
450
451static inline void debug_activate(struct hrtimer *timer)
452{
453 debug_hrtimer_activate(timer);
454 trace_hrtimer_start(timer);
455}
456
457static inline void debug_deactivate(struct hrtimer *timer)
458{
459 debug_hrtimer_deactivate(timer);
460 trace_hrtimer_cancel(timer);
461}
462
54cdfdb4
TG
463/* High resolution timer related functions */
464#ifdef CONFIG_HIGH_RES_TIMERS
465
466/*
467 * High resolution timer enabled ?
468 */
469static int hrtimer_hres_enabled __read_mostly = 1;
470
471/*
472 * Enable / Disable high resolution mode
473 */
474static int __init setup_hrtimer_hres(char *str)
475{
476 if (!strcmp(str, "off"))
477 hrtimer_hres_enabled = 0;
478 else if (!strcmp(str, "on"))
479 hrtimer_hres_enabled = 1;
480 else
481 return 0;
482 return 1;
483}
484
485__setup("highres=", setup_hrtimer_hres);
486
487/*
488 * hrtimer_high_res_enabled - query, if the highres mode is enabled
489 */
490static inline int hrtimer_is_hres_enabled(void)
491{
492 return hrtimer_hres_enabled;
493}
494
495/*
496 * Is the high resolution mode active ?
497 */
498static inline int hrtimer_hres_active(void)
499{
500 return __get_cpu_var(hrtimer_bases).hres_active;
501}
502
503/*
504 * Reprogram the event source with checking both queues for the
505 * next event
506 * Called with interrupts disabled and base->lock held
507 */
7403f41f
AC
508static void
509hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
54cdfdb4
TG
510{
511 int i;
512 struct hrtimer_clock_base *base = cpu_base->clock_base;
7403f41f 513 ktime_t expires, expires_next;
54cdfdb4 514
7403f41f 515 expires_next.tv64 = KTIME_MAX;
54cdfdb4
TG
516
517 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
518 struct hrtimer *timer;
519
520 if (!base->first)
521 continue;
522 timer = rb_entry(base->first, struct hrtimer, node);
cc584b21 523 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
b0a9b511
TG
524 /*
525 * clock_was_set() has changed base->offset so the
526 * result might be negative. Fix it up to prevent a
527 * false positive in clockevents_program_event()
528 */
529 if (expires.tv64 < 0)
530 expires.tv64 = 0;
7403f41f
AC
531 if (expires.tv64 < expires_next.tv64)
532 expires_next = expires;
54cdfdb4
TG
533 }
534
7403f41f
AC
535 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
536 return;
537
538 cpu_base->expires_next.tv64 = expires_next.tv64;
539
54cdfdb4
TG
540 if (cpu_base->expires_next.tv64 != KTIME_MAX)
541 tick_program_event(cpu_base->expires_next, 1);
542}
543
544/*
545 * Shared reprogramming for clock_realtime and clock_monotonic
546 *
547 * When a timer is enqueued and expires earlier than the already enqueued
548 * timers, we have to check, whether it expires earlier than the timer for
549 * which the clock event device was armed.
550 *
551 * Called with interrupts disabled and base->cpu_base.lock held
552 */
553static int hrtimer_reprogram(struct hrtimer *timer,
554 struct hrtimer_clock_base *base)
555{
41d2e494 556 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
cc584b21 557 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
54cdfdb4
TG
558 int res;
559
cc584b21 560 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
63070a79 561
54cdfdb4
TG
562 /*
563 * When the callback is running, we do not reprogram the clock event
564 * device. The timer callback is either running on a different CPU or
3a4fa0a2 565 * the callback is executed in the hrtimer_interrupt context. The
54cdfdb4
TG
566 * reprogramming is handled either by the softirq, which called the
567 * callback or at the end of the hrtimer_interrupt.
568 */
569 if (hrtimer_callback_running(timer))
570 return 0;
571
63070a79
TG
572 /*
573 * CLOCK_REALTIME timer might be requested with an absolute
574 * expiry time which is less than base->offset. Nothing wrong
575 * about that, just avoid to call into the tick code, which
576 * has now objections against negative expiry values.
577 */
578 if (expires.tv64 < 0)
579 return -ETIME;
580
41d2e494
TG
581 if (expires.tv64 >= cpu_base->expires_next.tv64)
582 return 0;
583
584 /*
585 * If a hang was detected in the last timer interrupt then we
586 * do not schedule a timer which is earlier than the expiry
587 * which we enforced in the hang detection. We want the system
588 * to make progress.
589 */
590 if (cpu_base->hang_detected)
54cdfdb4
TG
591 return 0;
592
593 /*
594 * Clockevents returns -ETIME, when the event was in the past.
595 */
596 res = tick_program_event(expires, 0);
597 if (!IS_ERR_VALUE(res))
41d2e494 598 cpu_base->expires_next = expires;
54cdfdb4
TG
599 return res;
600}
601
602
603/*
604 * Retrigger next event is called after clock was set
605 *
606 * Called with interrupts disabled via on_each_cpu()
607 */
608static void retrigger_next_event(void *arg)
609{
610 struct hrtimer_cpu_base *base;
611 struct timespec realtime_offset;
612 unsigned long seq;
613
614 if (!hrtimer_hres_active())
615 return;
616
617 do {
618 seq = read_seqbegin(&xtime_lock);
619 set_normalized_timespec(&realtime_offset,
620 -wall_to_monotonic.tv_sec,
621 -wall_to_monotonic.tv_nsec);
622 } while (read_seqretry(&xtime_lock, seq));
623
624 base = &__get_cpu_var(hrtimer_bases);
625
626 /* Adjust CLOCK_REALTIME offset */
ecb49d1a 627 raw_spin_lock(&base->lock);
54cdfdb4
TG
628 base->clock_base[CLOCK_REALTIME].offset =
629 timespec_to_ktime(realtime_offset);
630
7403f41f 631 hrtimer_force_reprogram(base, 0);
ecb49d1a 632 raw_spin_unlock(&base->lock);
54cdfdb4
TG
633}
634
635/*
636 * Clock realtime was set
637 *
638 * Change the offset of the realtime clock vs. the monotonic
639 * clock.
640 *
641 * We might have to reprogram the high resolution timer interrupt. On
642 * SMP we call the architecture specific code to retrigger _all_ high
643 * resolution timer interrupts. On UP we just disable interrupts and
644 * call the high resolution interrupt code.
645 */
646void clock_was_set(void)
647{
648 /* Retrigger the CPU local events everywhere */
15c8b6c1 649 on_each_cpu(retrigger_next_event, NULL, 1);
54cdfdb4
TG
650}
651
995f054f
IM
652/*
653 * During resume we might have to reprogram the high resolution timer
654 * interrupt (on the local CPU):
655 */
656void hres_timers_resume(void)
657{
1d4a7f1c
PZ
658 WARN_ONCE(!irqs_disabled(),
659 KERN_INFO "hres_timers_resume() called with IRQs enabled!");
660
995f054f
IM
661 retrigger_next_event(NULL);
662}
663
54cdfdb4
TG
664/*
665 * Initialize the high resolution related parts of cpu_base
666 */
667static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
668{
669 base->expires_next.tv64 = KTIME_MAX;
670 base->hres_active = 0;
54cdfdb4
TG
671}
672
673/*
674 * Initialize the high resolution related parts of a hrtimer
675 */
676static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
677{
54cdfdb4
TG
678}
679
ca109491 680
54cdfdb4
TG
681/*
682 * When High resolution timers are active, try to reprogram. Note, that in case
683 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
684 * check happens. The timer gets enqueued into the rbtree. The reprogramming
685 * and expiry check is done in the hrtimer_interrupt or in the softirq.
686 */
687static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
7f1e2ca9
PZ
688 struct hrtimer_clock_base *base,
689 int wakeup)
54cdfdb4
TG
690{
691 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
7f1e2ca9 692 if (wakeup) {
ecb49d1a 693 raw_spin_unlock(&base->cpu_base->lock);
7f1e2ca9 694 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
ecb49d1a 695 raw_spin_lock(&base->cpu_base->lock);
7f1e2ca9
PZ
696 } else
697 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
698
ca109491 699 return 1;
54cdfdb4 700 }
7f1e2ca9 701
54cdfdb4
TG
702 return 0;
703}
704
705/*
706 * Switch to high resolution mode
707 */
f8953856 708static int hrtimer_switch_to_hres(void)
54cdfdb4 709{
820de5c3
IM
710 int cpu = smp_processor_id();
711 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
54cdfdb4
TG
712 unsigned long flags;
713
714 if (base->hres_active)
f8953856 715 return 1;
54cdfdb4
TG
716
717 local_irq_save(flags);
718
719 if (tick_init_highres()) {
720 local_irq_restore(flags);
820de5c3
IM
721 printk(KERN_WARNING "Could not switch to high resolution "
722 "mode on CPU %d\n", cpu);
f8953856 723 return 0;
54cdfdb4
TG
724 }
725 base->hres_active = 1;
726 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
727 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
728
729 tick_setup_sched_timer();
730
731 /* "Retrigger" the interrupt to get things going */
732 retrigger_next_event(NULL);
733 local_irq_restore(flags);
f8953856 734 return 1;
54cdfdb4
TG
735}
736
737#else
738
739static inline int hrtimer_hres_active(void) { return 0; }
740static inline int hrtimer_is_hres_enabled(void) { return 0; }
f8953856 741static inline int hrtimer_switch_to_hres(void) { return 0; }
7403f41f
AC
742static inline void
743hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
54cdfdb4 744static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
7f1e2ca9
PZ
745 struct hrtimer_clock_base *base,
746 int wakeup)
54cdfdb4
TG
747{
748 return 0;
749}
54cdfdb4
TG
750static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
751static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
752
753#endif /* CONFIG_HIGH_RES_TIMERS */
754
5f201907 755static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
82f67cd9 756{
5f201907 757#ifdef CONFIG_TIMER_STATS
82f67cd9
IM
758 if (timer->start_site)
759 return;
5f201907 760 timer->start_site = __builtin_return_address(0);
82f67cd9
IM
761 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
762 timer->start_pid = current->pid;
5f201907
HC
763#endif
764}
765
766static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
767{
768#ifdef CONFIG_TIMER_STATS
769 timer->start_site = NULL;
770#endif
82f67cd9 771}
5f201907
HC
772
773static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
774{
775#ifdef CONFIG_TIMER_STATS
776 if (likely(!timer_stats_active))
777 return;
778 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
779 timer->function, timer->start_comm, 0);
82f67cd9 780#endif
5f201907 781}
82f67cd9 782
c0a31329 783/*
6506f2aa 784 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
785 */
786static inline
787void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
788{
ecb49d1a 789 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
790}
791
792/**
793 * hrtimer_forward - forward the timer expiry
c0a31329 794 * @timer: hrtimer to forward
44f21475 795 * @now: forward past this time
c0a31329
TG
796 * @interval: the interval to forward
797 *
798 * Forward the timer expiry so it will expire in the future.
8dca6f33 799 * Returns the number of overruns.
c0a31329 800 */
4d672e7a 801u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 802{
4d672e7a 803 u64 orun = 1;
44f21475 804 ktime_t delta;
c0a31329 805
cc584b21 806 delta = ktime_sub(now, hrtimer_get_expires(timer));
c0a31329
TG
807
808 if (delta.tv64 < 0)
809 return 0;
810
c9db4fa1
TG
811 if (interval.tv64 < timer->base->resolution.tv64)
812 interval.tv64 = timer->base->resolution.tv64;
813
c0a31329 814 if (unlikely(delta.tv64 >= interval.tv64)) {
df869b63 815 s64 incr = ktime_to_ns(interval);
c0a31329
TG
816
817 orun = ktime_divns(delta, incr);
cc584b21
AV
818 hrtimer_add_expires_ns(timer, incr * orun);
819 if (hrtimer_get_expires_tv64(timer) > now.tv64)
c0a31329
TG
820 return orun;
821 /*
822 * This (and the ktime_add() below) is the
823 * correction for exact:
824 */
825 orun++;
826 }
cc584b21 827 hrtimer_add_expires(timer, interval);
c0a31329
TG
828
829 return orun;
830}
6bdb6b62 831EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
832
833/*
834 * enqueue_hrtimer - internal function to (re)start a timer
835 *
836 * The timer is inserted in expiry order. Insertion into the
837 * red black tree is O(log(n)). Must hold the base lock.
a6037b61
PZ
838 *
839 * Returns 1 when the new timer is the leftmost timer in the tree.
c0a31329 840 */
a6037b61
PZ
841static int enqueue_hrtimer(struct hrtimer *timer,
842 struct hrtimer_clock_base *base)
c0a31329
TG
843{
844 struct rb_node **link = &base->active.rb_node;
c0a31329
TG
845 struct rb_node *parent = NULL;
846 struct hrtimer *entry;
99bc2fcb 847 int leftmost = 1;
c0a31329 848
c6a2a177 849 debug_activate(timer);
237fc6e7 850
c0a31329
TG
851 /*
852 * Find the right place in the rbtree:
853 */
854 while (*link) {
855 parent = *link;
856 entry = rb_entry(parent, struct hrtimer, node);
857 /*
858 * We dont care about collisions. Nodes with
859 * the same expiry time stay together.
860 */
cc584b21
AV
861 if (hrtimer_get_expires_tv64(timer) <
862 hrtimer_get_expires_tv64(entry)) {
c0a31329 863 link = &(*link)->rb_left;
99bc2fcb 864 } else {
c0a31329 865 link = &(*link)->rb_right;
99bc2fcb
IM
866 leftmost = 0;
867 }
c0a31329
TG
868 }
869
870 /*
288867ec
TG
871 * Insert the timer to the rbtree and check whether it
872 * replaces the first pending timer
c0a31329 873 */
a6037b61 874 if (leftmost)
54cdfdb4 875 base->first = &timer->node;
54cdfdb4 876
c0a31329
TG
877 rb_link_node(&timer->node, parent, link);
878 rb_insert_color(&timer->node, &base->active);
303e967f
TG
879 /*
880 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
881 * state of a possibly running callback.
882 */
883 timer->state |= HRTIMER_STATE_ENQUEUED;
a6037b61
PZ
884
885 return leftmost;
288867ec 886}
c0a31329
TG
887
888/*
889 * __remove_hrtimer - internal function to remove a timer
890 *
891 * Caller must hold the base lock.
54cdfdb4
TG
892 *
893 * High resolution timer mode reprograms the clock event device when the
894 * timer is the one which expires next. The caller can disable this by setting
895 * reprogram to zero. This is useful, when the context does a reprogramming
896 * anyway (e.g. timer interrupt)
c0a31329 897 */
3c8aa39d 898static void __remove_hrtimer(struct hrtimer *timer,
303e967f 899 struct hrtimer_clock_base *base,
54cdfdb4 900 unsigned long newstate, int reprogram)
c0a31329 901{
7403f41f
AC
902 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
903 goto out;
904
905 /*
906 * Remove the timer from the rbtree and replace the first
907 * entry pointer if necessary.
908 */
909 if (base->first == &timer->node) {
910 base->first = rb_next(&timer->node);
911#ifdef CONFIG_HIGH_RES_TIMERS
912 /* Reprogram the clock event device. if enabled */
913 if (reprogram && hrtimer_hres_active()) {
914 ktime_t expires;
915
916 expires = ktime_sub(hrtimer_get_expires(timer),
917 base->offset);
918 if (base->cpu_base->expires_next.tv64 == expires.tv64)
919 hrtimer_force_reprogram(base->cpu_base, 1);
54cdfdb4 920 }
7403f41f 921#endif
54cdfdb4 922 }
7403f41f
AC
923 rb_erase(&timer->node, &base->active);
924out:
303e967f 925 timer->state = newstate;
c0a31329
TG
926}
927
928/*
929 * remove hrtimer, called with base lock held
930 */
931static inline int
3c8aa39d 932remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 933{
303e967f 934 if (hrtimer_is_queued(timer)) {
54cdfdb4
TG
935 int reprogram;
936
937 /*
938 * Remove the timer and force reprogramming when high
939 * resolution mode is active and the timer is on the current
940 * CPU. If we remove a timer on another CPU, reprogramming is
941 * skipped. The interrupt event on this CPU is fired and
942 * reprogramming happens in the interrupt handler. This is a
943 * rare case and less expensive than a smp call.
944 */
c6a2a177 945 debug_deactivate(timer);
82f67cd9 946 timer_stats_hrtimer_clear_start_info(timer);
54cdfdb4
TG
947 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
948 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
949 reprogram);
c0a31329
TG
950 return 1;
951 }
952 return 0;
953}
954
7f1e2ca9
PZ
955int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
956 unsigned long delta_ns, const enum hrtimer_mode mode,
957 int wakeup)
c0a31329 958{
3c8aa39d 959 struct hrtimer_clock_base *base, *new_base;
c0a31329 960 unsigned long flags;
a6037b61 961 int ret, leftmost;
c0a31329
TG
962
963 base = lock_hrtimer_base(timer, &flags);
964
965 /* Remove an active timer from the queue: */
966 ret = remove_hrtimer(timer, base);
967
968 /* Switch the timer base, if necessary: */
597d0275 969 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
c0a31329 970
597d0275 971 if (mode & HRTIMER_MODE_REL) {
5a7780e7 972 tim = ktime_add_safe(tim, new_base->get_time());
06027bdd
IM
973 /*
974 * CONFIG_TIME_LOW_RES is a temporary way for architectures
975 * to signal that they simply return xtime in
976 * do_gettimeoffset(). In this case we want to round up by
977 * resolution when starting a relative timer, to avoid short
978 * timeouts. This will go away with the GTOD framework.
979 */
980#ifdef CONFIG_TIME_LOW_RES
5a7780e7 981 tim = ktime_add_safe(tim, base->resolution);
06027bdd
IM
982#endif
983 }
237fc6e7 984
da8f2e17 985 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
c0a31329 986
82f67cd9
IM
987 timer_stats_hrtimer_set_start_info(timer);
988
a6037b61
PZ
989 leftmost = enqueue_hrtimer(timer, new_base);
990
935c631d
IM
991 /*
992 * Only allow reprogramming if the new base is on this CPU.
993 * (it might still be on another CPU if the timer was pending)
a6037b61
PZ
994 *
995 * XXX send_remote_softirq() ?
935c631d 996 */
a6037b61 997 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
7f1e2ca9 998 hrtimer_enqueue_reprogram(timer, new_base, wakeup);
c0a31329
TG
999
1000 unlock_hrtimer_base(timer, &flags);
1001
1002 return ret;
1003}
7f1e2ca9
PZ
1004
1005/**
1006 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1007 * @timer: the timer to be added
1008 * @tim: expiry time
1009 * @delta_ns: "slack" range for the timer
1010 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1011 *
1012 * Returns:
1013 * 0 on success
1014 * 1 when the timer was active
1015 */
1016int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1017 unsigned long delta_ns, const enum hrtimer_mode mode)
1018{
1019 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1020}
da8f2e17
AV
1021EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1022
1023/**
e1dd7bc5 1024 * hrtimer_start - (re)start an hrtimer on the current CPU
da8f2e17
AV
1025 * @timer: the timer to be added
1026 * @tim: expiry time
1027 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1028 *
1029 * Returns:
1030 * 0 on success
1031 * 1 when the timer was active
1032 */
1033int
1034hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1035{
7f1e2ca9 1036 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
da8f2e17 1037}
8d16b764 1038EXPORT_SYMBOL_GPL(hrtimer_start);
c0a31329 1039
da8f2e17 1040
c0a31329
TG
1041/**
1042 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
1043 * @timer: hrtimer to stop
1044 *
1045 * Returns:
1046 * 0 when the timer was not active
1047 * 1 when the timer was active
1048 * -1 when the timer is currently excuting the callback function and
fa9799e3 1049 * cannot be stopped
c0a31329
TG
1050 */
1051int hrtimer_try_to_cancel(struct hrtimer *timer)
1052{
3c8aa39d 1053 struct hrtimer_clock_base *base;
c0a31329
TG
1054 unsigned long flags;
1055 int ret = -1;
1056
1057 base = lock_hrtimer_base(timer, &flags);
1058
303e967f 1059 if (!hrtimer_callback_running(timer))
c0a31329
TG
1060 ret = remove_hrtimer(timer, base);
1061
1062 unlock_hrtimer_base(timer, &flags);
1063
1064 return ret;
1065
1066}
8d16b764 1067EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
1068
1069/**
1070 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
1071 * @timer: the timer to be cancelled
1072 *
1073 * Returns:
1074 * 0 when the timer was not active
1075 * 1 when the timer was active
1076 */
1077int hrtimer_cancel(struct hrtimer *timer)
1078{
1079 for (;;) {
1080 int ret = hrtimer_try_to_cancel(timer);
1081
1082 if (ret >= 0)
1083 return ret;
5ef37b19 1084 cpu_relax();
c0a31329
TG
1085 }
1086}
8d16b764 1087EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
1088
1089/**
1090 * hrtimer_get_remaining - get remaining time for the timer
c0a31329
TG
1091 * @timer: the timer to read
1092 */
1093ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1094{
3c8aa39d 1095 struct hrtimer_clock_base *base;
c0a31329
TG
1096 unsigned long flags;
1097 ktime_t rem;
1098
1099 base = lock_hrtimer_base(timer, &flags);
cc584b21 1100 rem = hrtimer_expires_remaining(timer);
c0a31329
TG
1101 unlock_hrtimer_base(timer, &flags);
1102
1103 return rem;
1104}
8d16b764 1105EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
c0a31329 1106
ee9c5785 1107#ifdef CONFIG_NO_HZ
69239749
TL
1108/**
1109 * hrtimer_get_next_event - get the time until next expiry event
1110 *
1111 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1112 * is pending.
1113 */
1114ktime_t hrtimer_get_next_event(void)
1115{
3c8aa39d
TG
1116 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1117 struct hrtimer_clock_base *base = cpu_base->clock_base;
69239749
TL
1118 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1119 unsigned long flags;
1120 int i;
1121
ecb49d1a 1122 raw_spin_lock_irqsave(&cpu_base->lock, flags);
3c8aa39d 1123
54cdfdb4
TG
1124 if (!hrtimer_hres_active()) {
1125 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1126 struct hrtimer *timer;
69239749 1127
54cdfdb4
TG
1128 if (!base->first)
1129 continue;
3c8aa39d 1130
54cdfdb4 1131 timer = rb_entry(base->first, struct hrtimer, node);
cc584b21 1132 delta.tv64 = hrtimer_get_expires_tv64(timer);
54cdfdb4
TG
1133 delta = ktime_sub(delta, base->get_time());
1134 if (delta.tv64 < mindelta.tv64)
1135 mindelta.tv64 = delta.tv64;
1136 }
69239749 1137 }
3c8aa39d 1138
ecb49d1a 1139 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
3c8aa39d 1140
69239749
TL
1141 if (mindelta.tv64 < 0)
1142 mindelta.tv64 = 0;
1143 return mindelta;
1144}
1145#endif
1146
237fc6e7
TG
1147static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1148 enum hrtimer_mode mode)
c0a31329 1149{
3c8aa39d 1150 struct hrtimer_cpu_base *cpu_base;
c0a31329 1151
7978672c
GA
1152 memset(timer, 0, sizeof(struct hrtimer));
1153
3c8aa39d 1154 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
c0a31329 1155
c9cb2e3d 1156 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
7978672c
GA
1157 clock_id = CLOCK_MONOTONIC;
1158
3c8aa39d 1159 timer->base = &cpu_base->clock_base[clock_id];
54cdfdb4 1160 hrtimer_init_timer_hres(timer);
82f67cd9
IM
1161
1162#ifdef CONFIG_TIMER_STATS
1163 timer->start_site = NULL;
1164 timer->start_pid = -1;
1165 memset(timer->start_comm, 0, TASK_COMM_LEN);
1166#endif
c0a31329 1167}
237fc6e7
TG
1168
1169/**
1170 * hrtimer_init - initialize a timer to the given clock
1171 * @timer: the timer to be initialized
1172 * @clock_id: the clock to be used
1173 * @mode: timer mode abs/rel
1174 */
1175void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1176 enum hrtimer_mode mode)
1177{
c6a2a177 1178 debug_init(timer, clock_id, mode);
237fc6e7
TG
1179 __hrtimer_init(timer, clock_id, mode);
1180}
8d16b764 1181EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329
TG
1182
1183/**
1184 * hrtimer_get_res - get the timer resolution for a clock
c0a31329
TG
1185 * @which_clock: which clock to query
1186 * @tp: pointer to timespec variable to store the resolution
1187 *
72fd4a35
RD
1188 * Store the resolution of the clock selected by @which_clock in the
1189 * variable pointed to by @tp.
c0a31329
TG
1190 */
1191int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1192{
3c8aa39d 1193 struct hrtimer_cpu_base *cpu_base;
c0a31329 1194
3c8aa39d
TG
1195 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1196 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
c0a31329
TG
1197
1198 return 0;
1199}
8d16b764 1200EXPORT_SYMBOL_GPL(hrtimer_get_res);
c0a31329 1201
c6a2a177 1202static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
d3d74453
PZ
1203{
1204 struct hrtimer_clock_base *base = timer->base;
1205 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1206 enum hrtimer_restart (*fn)(struct hrtimer *);
1207 int restart;
1208
ca109491
PZ
1209 WARN_ON(!irqs_disabled());
1210
c6a2a177 1211 debug_deactivate(timer);
d3d74453
PZ
1212 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1213 timer_stats_account_hrtimer(timer);
d3d74453 1214 fn = timer->function;
ca109491
PZ
1215
1216 /*
1217 * Because we run timers from hardirq context, there is no chance
1218 * they get migrated to another cpu, therefore its safe to unlock
1219 * the timer base.
1220 */
ecb49d1a 1221 raw_spin_unlock(&cpu_base->lock);
c6a2a177 1222 trace_hrtimer_expire_entry(timer, now);
ca109491 1223 restart = fn(timer);
c6a2a177 1224 trace_hrtimer_expire_exit(timer);
ecb49d1a 1225 raw_spin_lock(&cpu_base->lock);
d3d74453
PZ
1226
1227 /*
e3f1d883
TG
1228 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1229 * we do not reprogramm the event hardware. Happens either in
1230 * hrtimer_start_range_ns() or in hrtimer_interrupt()
d3d74453
PZ
1231 */
1232 if (restart != HRTIMER_NORESTART) {
1233 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
a6037b61 1234 enqueue_hrtimer(timer, base);
d3d74453
PZ
1235 }
1236 timer->state &= ~HRTIMER_STATE_CALLBACK;
1237}
1238
54cdfdb4
TG
1239#ifdef CONFIG_HIGH_RES_TIMERS
1240
1241/*
1242 * High resolution timer interrupt
1243 * Called with interrupts disabled
1244 */
1245void hrtimer_interrupt(struct clock_event_device *dev)
1246{
1247 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1248 struct hrtimer_clock_base *base;
41d2e494
TG
1249 ktime_t expires_next, now, entry_time, delta;
1250 int i, retries = 0;
54cdfdb4
TG
1251
1252 BUG_ON(!cpu_base->hres_active);
1253 cpu_base->nr_events++;
1254 dev->next_event.tv64 = KTIME_MAX;
1255
41d2e494
TG
1256 entry_time = now = ktime_get();
1257retry:
54cdfdb4
TG
1258 expires_next.tv64 = KTIME_MAX;
1259
ecb49d1a 1260 raw_spin_lock(&cpu_base->lock);
6ff7041d
TG
1261 /*
1262 * We set expires_next to KTIME_MAX here with cpu_base->lock
1263 * held to prevent that a timer is enqueued in our queue via
1264 * the migration code. This does not affect enqueueing of
1265 * timers which run their callback and need to be requeued on
1266 * this CPU.
1267 */
1268 cpu_base->expires_next.tv64 = KTIME_MAX;
1269
54cdfdb4
TG
1270 base = cpu_base->clock_base;
1271
1272 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1273 ktime_t basenow;
1274 struct rb_node *node;
1275
54cdfdb4
TG
1276 basenow = ktime_add(now, base->offset);
1277
1278 while ((node = base->first)) {
1279 struct hrtimer *timer;
1280
1281 timer = rb_entry(node, struct hrtimer, node);
1282
654c8e0b
AV
1283 /*
1284 * The immediate goal for using the softexpires is
1285 * minimizing wakeups, not running timers at the
1286 * earliest interrupt after their soft expiration.
1287 * This allows us to avoid using a Priority Search
1288 * Tree, which can answer a stabbing querry for
1289 * overlapping intervals and instead use the simple
1290 * BST we already have.
1291 * We don't add extra wakeups by delaying timers that
1292 * are right-of a not yet expired timer, because that
1293 * timer will have to trigger a wakeup anyway.
1294 */
1295
1296 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
54cdfdb4
TG
1297 ktime_t expires;
1298
cc584b21 1299 expires = ktime_sub(hrtimer_get_expires(timer),
54cdfdb4
TG
1300 base->offset);
1301 if (expires.tv64 < expires_next.tv64)
1302 expires_next = expires;
1303 break;
1304 }
1305
c6a2a177 1306 __run_hrtimer(timer, &basenow);
54cdfdb4 1307 }
54cdfdb4
TG
1308 base++;
1309 }
1310
6ff7041d
TG
1311 /*
1312 * Store the new expiry value so the migration code can verify
1313 * against it.
1314 */
54cdfdb4 1315 cpu_base->expires_next = expires_next;
ecb49d1a 1316 raw_spin_unlock(&cpu_base->lock);
54cdfdb4
TG
1317
1318 /* Reprogramming necessary ? */
41d2e494
TG
1319 if (expires_next.tv64 == KTIME_MAX ||
1320 !tick_program_event(expires_next, 0)) {
1321 cpu_base->hang_detected = 0;
1322 return;
54cdfdb4 1323 }
41d2e494
TG
1324
1325 /*
1326 * The next timer was already expired due to:
1327 * - tracing
1328 * - long lasting callbacks
1329 * - being scheduled away when running in a VM
1330 *
1331 * We need to prevent that we loop forever in the hrtimer
1332 * interrupt routine. We give it 3 attempts to avoid
1333 * overreacting on some spurious event.
1334 */
1335 now = ktime_get();
1336 cpu_base->nr_retries++;
1337 if (++retries < 3)
1338 goto retry;
1339 /*
1340 * Give the system a chance to do something else than looping
1341 * here. We stored the entry time, so we know exactly how long
1342 * we spent here. We schedule the next event this amount of
1343 * time away.
1344 */
1345 cpu_base->nr_hangs++;
1346 cpu_base->hang_detected = 1;
1347 delta = ktime_sub(now, entry_time);
1348 if (delta.tv64 > cpu_base->max_hang_time.tv64)
1349 cpu_base->max_hang_time = delta;
1350 /*
1351 * Limit it to a sensible value as we enforce a longer
1352 * delay. Give the CPU at least 100ms to catch up.
1353 */
1354 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1355 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1356 else
1357 expires_next = ktime_add(now, delta);
1358 tick_program_event(expires_next, 1);
1359 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1360 ktime_to_ns(delta));
54cdfdb4
TG
1361}
1362
8bdec955
TG
1363/*
1364 * local version of hrtimer_peek_ahead_timers() called with interrupts
1365 * disabled.
1366 */
1367static void __hrtimer_peek_ahead_timers(void)
1368{
1369 struct tick_device *td;
1370
1371 if (!hrtimer_hres_active())
1372 return;
1373
1374 td = &__get_cpu_var(tick_cpu_device);
1375 if (td && td->evtdev)
1376 hrtimer_interrupt(td->evtdev);
1377}
1378
2e94d1f7
AV
1379/**
1380 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1381 *
1382 * hrtimer_peek_ahead_timers will peek at the timer queue of
1383 * the current cpu and check if there are any timers for which
1384 * the soft expires time has passed. If any such timers exist,
1385 * they are run immediately and then removed from the timer queue.
1386 *
1387 */
1388void hrtimer_peek_ahead_timers(void)
1389{
643bdf68 1390 unsigned long flags;
dc4304f7 1391
2e94d1f7 1392 local_irq_save(flags);
8bdec955 1393 __hrtimer_peek_ahead_timers();
2e94d1f7
AV
1394 local_irq_restore(flags);
1395}
1396
a6037b61
PZ
1397static void run_hrtimer_softirq(struct softirq_action *h)
1398{
1399 hrtimer_peek_ahead_timers();
1400}
1401
82c5b7b5
IM
1402#else /* CONFIG_HIGH_RES_TIMERS */
1403
1404static inline void __hrtimer_peek_ahead_timers(void) { }
1405
1406#endif /* !CONFIG_HIGH_RES_TIMERS */
82f67cd9 1407
d3d74453
PZ
1408/*
1409 * Called from timer softirq every jiffy, expire hrtimers:
1410 *
1411 * For HRT its the fall back code to run the softirq in the timer
1412 * softirq context in case the hrtimer initialization failed or has
1413 * not been done yet.
1414 */
1415void hrtimer_run_pending(void)
1416{
d3d74453
PZ
1417 if (hrtimer_hres_active())
1418 return;
54cdfdb4 1419
d3d74453
PZ
1420 /*
1421 * This _is_ ugly: We have to check in the softirq context,
1422 * whether we can switch to highres and / or nohz mode. The
1423 * clocksource switch happens in the timer interrupt with
1424 * xtime_lock held. Notification from there only sets the
1425 * check bit in the tick_oneshot code, otherwise we might
1426 * deadlock vs. xtime_lock.
1427 */
1428 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1429 hrtimer_switch_to_hres();
54cdfdb4
TG
1430}
1431
c0a31329 1432/*
d3d74453 1433 * Called from hardirq context every jiffy
c0a31329 1434 */
833883d9 1435void hrtimer_run_queues(void)
c0a31329 1436{
288867ec 1437 struct rb_node *node;
833883d9
DS
1438 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1439 struct hrtimer_clock_base *base;
1440 int index, gettime = 1;
c0a31329 1441
833883d9 1442 if (hrtimer_hres_active())
3055adda
DS
1443 return;
1444
833883d9
DS
1445 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1446 base = &cpu_base->clock_base[index];
c0a31329 1447
833883d9 1448 if (!base->first)
d3d74453 1449 continue;
833883d9 1450
d7cfb60c 1451 if (gettime) {
833883d9
DS
1452 hrtimer_get_softirq_time(cpu_base);
1453 gettime = 0;
b75f7a51 1454 }
d3d74453 1455
ecb49d1a 1456 raw_spin_lock(&cpu_base->lock);
c0a31329 1457
833883d9
DS
1458 while ((node = base->first)) {
1459 struct hrtimer *timer;
54cdfdb4 1460
833883d9 1461 timer = rb_entry(node, struct hrtimer, node);
cc584b21
AV
1462 if (base->softirq_time.tv64 <=
1463 hrtimer_get_expires_tv64(timer))
833883d9
DS
1464 break;
1465
c6a2a177 1466 __run_hrtimer(timer, &base->softirq_time);
833883d9 1467 }
ecb49d1a 1468 raw_spin_unlock(&cpu_base->lock);
833883d9 1469 }
c0a31329
TG
1470}
1471
10c94ec1
TG
1472/*
1473 * Sleep related functions:
1474 */
c9cb2e3d 1475static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1476{
1477 struct hrtimer_sleeper *t =
1478 container_of(timer, struct hrtimer_sleeper, timer);
1479 struct task_struct *task = t->task;
1480
1481 t->task = NULL;
1482 if (task)
1483 wake_up_process(task);
1484
1485 return HRTIMER_NORESTART;
1486}
1487
36c8b586 1488void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1489{
1490 sl->timer.function = hrtimer_wakeup;
1491 sl->task = task;
1492}
2bc481cf 1493EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
00362e33 1494
669d7868 1495static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1496{
669d7868 1497 hrtimer_init_sleeper(t, current);
10c94ec1 1498
432569bb
RZ
1499 do {
1500 set_current_state(TASK_INTERRUPTIBLE);
cc584b21 1501 hrtimer_start_expires(&t->timer, mode);
37bb6cb4
PZ
1502 if (!hrtimer_active(&t->timer))
1503 t->task = NULL;
432569bb 1504
54cdfdb4
TG
1505 if (likely(t->task))
1506 schedule();
432569bb 1507
669d7868 1508 hrtimer_cancel(&t->timer);
c9cb2e3d 1509 mode = HRTIMER_MODE_ABS;
669d7868
TG
1510
1511 } while (t->task && !signal_pending(current));
432569bb 1512
3588a085
PZ
1513 __set_current_state(TASK_RUNNING);
1514
669d7868 1515 return t->task == NULL;
10c94ec1
TG
1516}
1517
080344b9
ON
1518static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1519{
1520 struct timespec rmt;
1521 ktime_t rem;
1522
cc584b21 1523 rem = hrtimer_expires_remaining(timer);
080344b9
ON
1524 if (rem.tv64 <= 0)
1525 return 0;
1526 rmt = ktime_to_timespec(rem);
1527
1528 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1529 return -EFAULT;
1530
1531 return 1;
1532}
1533
1711ef38 1534long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1535{
669d7868 1536 struct hrtimer_sleeper t;
080344b9 1537 struct timespec __user *rmtp;
237fc6e7 1538 int ret = 0;
10c94ec1 1539
237fc6e7
TG
1540 hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
1541 HRTIMER_MODE_ABS);
cc584b21 1542 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
10c94ec1 1543
c9cb2e3d 1544 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
237fc6e7 1545 goto out;
10c94ec1 1546
029a07e0 1547 rmtp = restart->nanosleep.rmtp;
432569bb 1548 if (rmtp) {
237fc6e7 1549 ret = update_rmtp(&t.timer, rmtp);
080344b9 1550 if (ret <= 0)
237fc6e7 1551 goto out;
432569bb 1552 }
10c94ec1 1553
10c94ec1 1554 /* The other values in restart are already filled in */
237fc6e7
TG
1555 ret = -ERESTART_RESTARTBLOCK;
1556out:
1557 destroy_hrtimer_on_stack(&t.timer);
1558 return ret;
10c94ec1
TG
1559}
1560
080344b9 1561long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
10c94ec1
TG
1562 const enum hrtimer_mode mode, const clockid_t clockid)
1563{
1564 struct restart_block *restart;
669d7868 1565 struct hrtimer_sleeper t;
237fc6e7 1566 int ret = 0;
3bd01206
AV
1567 unsigned long slack;
1568
1569 slack = current->timer_slack_ns;
1570 if (rt_task(current))
1571 slack = 0;
10c94ec1 1572
237fc6e7 1573 hrtimer_init_on_stack(&t.timer, clockid, mode);
3bd01206 1574 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
432569bb 1575 if (do_nanosleep(&t, mode))
237fc6e7 1576 goto out;
10c94ec1 1577
7978672c 1578 /* Absolute timers do not update the rmtp value and restart: */
237fc6e7
TG
1579 if (mode == HRTIMER_MODE_ABS) {
1580 ret = -ERESTARTNOHAND;
1581 goto out;
1582 }
10c94ec1 1583
432569bb 1584 if (rmtp) {
237fc6e7 1585 ret = update_rmtp(&t.timer, rmtp);
080344b9 1586 if (ret <= 0)
237fc6e7 1587 goto out;
432569bb 1588 }
10c94ec1
TG
1589
1590 restart = &current_thread_info()->restart_block;
1711ef38 1591 restart->fn = hrtimer_nanosleep_restart;
029a07e0
TG
1592 restart->nanosleep.index = t.timer.base->index;
1593 restart->nanosleep.rmtp = rmtp;
cc584b21 1594 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
10c94ec1 1595
237fc6e7
TG
1596 ret = -ERESTART_RESTARTBLOCK;
1597out:
1598 destroy_hrtimer_on_stack(&t.timer);
1599 return ret;
10c94ec1
TG
1600}
1601
58fd3aa2
HC
1602SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1603 struct timespec __user *, rmtp)
6ba1b912 1604{
080344b9 1605 struct timespec tu;
6ba1b912
TG
1606
1607 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1608 return -EFAULT;
1609
1610 if (!timespec_valid(&tu))
1611 return -EINVAL;
1612
080344b9 1613 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1614}
1615
c0a31329
TG
1616/*
1617 * Functions related to boot-time initialization:
1618 */
0ec160dd 1619static void __cpuinit init_hrtimers_cpu(int cpu)
c0a31329 1620{
3c8aa39d 1621 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1622 int i;
1623
ecb49d1a 1624 raw_spin_lock_init(&cpu_base->lock);
3c8aa39d
TG
1625
1626 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1627 cpu_base->clock_base[i].cpu_base = cpu_base;
1628
54cdfdb4 1629 hrtimer_init_hres(cpu_base);
c0a31329
TG
1630}
1631
1632#ifdef CONFIG_HOTPLUG_CPU
1633
ca109491 1634static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
37810659 1635 struct hrtimer_clock_base *new_base)
c0a31329
TG
1636{
1637 struct hrtimer *timer;
1638 struct rb_node *node;
1639
1640 while ((node = rb_first(&old_base->active))) {
1641 timer = rb_entry(node, struct hrtimer, node);
54cdfdb4 1642 BUG_ON(hrtimer_callback_running(timer));
c6a2a177 1643 debug_deactivate(timer);
b00c1a99
TG
1644
1645 /*
1646 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1647 * timer could be seen as !active and just vanish away
1648 * under us on another CPU
1649 */
1650 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
c0a31329 1651 timer->base = new_base;
54cdfdb4 1652 /*
e3f1d883
TG
1653 * Enqueue the timers on the new cpu. This does not
1654 * reprogram the event device in case the timer
1655 * expires before the earliest on this CPU, but we run
1656 * hrtimer_interrupt after we migrated everything to
1657 * sort out already expired timers and reprogram the
1658 * event device.
54cdfdb4 1659 */
a6037b61 1660 enqueue_hrtimer(timer, new_base);
41e1022e 1661
b00c1a99
TG
1662 /* Clear the migration state bit */
1663 timer->state &= ~HRTIMER_STATE_MIGRATE;
c0a31329
TG
1664 }
1665}
1666
d5fd43c4 1667static void migrate_hrtimers(int scpu)
c0a31329 1668{
3c8aa39d 1669 struct hrtimer_cpu_base *old_base, *new_base;
731a55ba 1670 int i;
c0a31329 1671
37810659 1672 BUG_ON(cpu_online(scpu));
37810659 1673 tick_cancel_sched_timer(scpu);
731a55ba
TG
1674
1675 local_irq_disable();
1676 old_base = &per_cpu(hrtimer_bases, scpu);
1677 new_base = &__get_cpu_var(hrtimer_bases);
d82f0b0f
ON
1678 /*
1679 * The caller is globally serialized and nobody else
1680 * takes two locks at once, deadlock is not possible.
1681 */
ecb49d1a
TG
1682 raw_spin_lock(&new_base->lock);
1683 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
c0a31329 1684
3c8aa39d 1685 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ca109491 1686 migrate_hrtimer_list(&old_base->clock_base[i],
37810659 1687 &new_base->clock_base[i]);
c0a31329
TG
1688 }
1689
ecb49d1a
TG
1690 raw_spin_unlock(&old_base->lock);
1691 raw_spin_unlock(&new_base->lock);
37810659 1692
731a55ba
TG
1693 /* Check, if we got expired work to do */
1694 __hrtimer_peek_ahead_timers();
1695 local_irq_enable();
c0a31329 1696}
37810659 1697
c0a31329
TG
1698#endif /* CONFIG_HOTPLUG_CPU */
1699
8c78f307 1700static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
c0a31329
TG
1701 unsigned long action, void *hcpu)
1702{
b2e3c0ad 1703 int scpu = (long)hcpu;
c0a31329
TG
1704
1705 switch (action) {
1706
1707 case CPU_UP_PREPARE:
8bb78442 1708 case CPU_UP_PREPARE_FROZEN:
37810659 1709 init_hrtimers_cpu(scpu);
c0a31329
TG
1710 break;
1711
1712#ifdef CONFIG_HOTPLUG_CPU
94df7de0
SD
1713 case CPU_DYING:
1714 case CPU_DYING_FROZEN:
1715 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1716 break;
c0a31329 1717 case CPU_DEAD:
8bb78442 1718 case CPU_DEAD_FROZEN:
b2e3c0ad 1719 {
37810659 1720 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
d5fd43c4 1721 migrate_hrtimers(scpu);
c0a31329 1722 break;
b2e3c0ad 1723 }
c0a31329
TG
1724#endif
1725
1726 default:
1727 break;
1728 }
1729
1730 return NOTIFY_OK;
1731}
1732
8c78f307 1733static struct notifier_block __cpuinitdata hrtimers_nb = {
c0a31329
TG
1734 .notifier_call = hrtimer_cpu_notify,
1735};
1736
1737void __init hrtimers_init(void)
1738{
1739 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1740 (void *)(long)smp_processor_id());
1741 register_cpu_notifier(&hrtimers_nb);
a6037b61
PZ
1742#ifdef CONFIG_HIGH_RES_TIMERS
1743 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1744#endif
c0a31329
TG
1745}
1746
7bb67439 1747/**
351b3f7a 1748 * schedule_hrtimeout_range_clock - sleep until timeout
7bb67439 1749 * @expires: timeout value (ktime_t)
654c8e0b 1750 * @delta: slack in expires timeout (ktime_t)
7bb67439 1751 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
351b3f7a 1752 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
7bb67439 1753 */
351b3f7a
CE
1754int __sched
1755schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1756 const enum hrtimer_mode mode, int clock)
7bb67439
AV
1757{
1758 struct hrtimer_sleeper t;
1759
1760 /*
1761 * Optimize when a zero timeout value is given. It does not
1762 * matter whether this is an absolute or a relative time.
1763 */
1764 if (expires && !expires->tv64) {
1765 __set_current_state(TASK_RUNNING);
1766 return 0;
1767 }
1768
1769 /*
1770 * A NULL parameter means "inifinte"
1771 */
1772 if (!expires) {
1773 schedule();
1774 __set_current_state(TASK_RUNNING);
1775 return -EINTR;
1776 }
1777
351b3f7a 1778 hrtimer_init_on_stack(&t.timer, clock, mode);
654c8e0b 1779 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
7bb67439
AV
1780
1781 hrtimer_init_sleeper(&t, current);
1782
cc584b21 1783 hrtimer_start_expires(&t.timer, mode);
7bb67439
AV
1784 if (!hrtimer_active(&t.timer))
1785 t.task = NULL;
1786
1787 if (likely(t.task))
1788 schedule();
1789
1790 hrtimer_cancel(&t.timer);
1791 destroy_hrtimer_on_stack(&t.timer);
1792
1793 __set_current_state(TASK_RUNNING);
1794
1795 return !t.task ? 0 : -EINTR;
1796}
351b3f7a
CE
1797
1798/**
1799 * schedule_hrtimeout_range - sleep until timeout
1800 * @expires: timeout value (ktime_t)
1801 * @delta: slack in expires timeout (ktime_t)
1802 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1803 *
1804 * Make the current task sleep until the given expiry time has
1805 * elapsed. The routine will return immediately unless
1806 * the current task state has been set (see set_current_state()).
1807 *
1808 * The @delta argument gives the kernel the freedom to schedule the
1809 * actual wakeup to a time that is both power and performance friendly.
1810 * The kernel give the normal best effort behavior for "@expires+@delta",
1811 * but may decide to fire the timer earlier, but no earlier than @expires.
1812 *
1813 * You can set the task state as follows -
1814 *
1815 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1816 * pass before the routine returns.
1817 *
1818 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1819 * delivered to the current task.
1820 *
1821 * The current task state is guaranteed to be TASK_RUNNING when this
1822 * routine returns.
1823 *
1824 * Returns 0 when the timer has expired otherwise -EINTR
1825 */
1826int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1827 const enum hrtimer_mode mode)
1828{
1829 return schedule_hrtimeout_range_clock(expires, delta, mode,
1830 CLOCK_MONOTONIC);
1831}
654c8e0b
AV
1832EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1833
1834/**
1835 * schedule_hrtimeout - sleep until timeout
1836 * @expires: timeout value (ktime_t)
1837 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1838 *
1839 * Make the current task sleep until the given expiry time has
1840 * elapsed. The routine will return immediately unless
1841 * the current task state has been set (see set_current_state()).
1842 *
1843 * You can set the task state as follows -
1844 *
1845 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1846 * pass before the routine returns.
1847 *
1848 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1849 * delivered to the current task.
1850 *
1851 * The current task state is guaranteed to be TASK_RUNNING when this
1852 * routine returns.
1853 *
1854 * Returns 0 when the timer has expired otherwise -EINTR
1855 */
1856int __sched schedule_hrtimeout(ktime_t *expires,
1857 const enum hrtimer_mode mode)
1858{
1859 return schedule_hrtimeout_range(expires, 0, mode);
1860}
7bb67439 1861EXPORT_SYMBOL_GPL(schedule_hrtimeout);