x86: Clean up mtrr/centaur.c
[linux-2.6-block.git] / kernel / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
35#include <linux/module.h>
36#include <linux/percpu.h>
37#include <linux/hrtimer.h>
38#include <linux/notifier.h>
39#include <linux/syscalls.h>
54cdfdb4 40#include <linux/kallsyms.h>
c0a31329 41#include <linux/interrupt.h>
79bf2bb3 42#include <linux/tick.h>
54cdfdb4
TG
43#include <linux/seq_file.h>
44#include <linux/err.h>
237fc6e7 45#include <linux/debugobjects.h>
eea08f32
AB
46#include <linux/sched.h>
47#include <linux/timer.h>
c0a31329
TG
48
49#include <asm/uaccess.h>
50
51/**
52 * ktime_get - get the monotonic time in ktime_t format
53 *
54 * returns the time in ktime_t format
55 */
d316c57f 56ktime_t ktime_get(void)
c0a31329
TG
57{
58 struct timespec now;
59
60 ktime_get_ts(&now);
61
62 return timespec_to_ktime(now);
63}
641b9e0e 64EXPORT_SYMBOL_GPL(ktime_get);
c0a31329
TG
65
66/**
67 * ktime_get_real - get the real (wall-) time in ktime_t format
68 *
69 * returns the time in ktime_t format
70 */
d316c57f 71ktime_t ktime_get_real(void)
c0a31329
TG
72{
73 struct timespec now;
74
75 getnstimeofday(&now);
76
77 return timespec_to_ktime(now);
78}
79
80EXPORT_SYMBOL_GPL(ktime_get_real);
81
82/*
83 * The timer bases:
7978672c
GA
84 *
85 * Note: If we want to add new timer bases, we have to skip the two
86 * clock ids captured by the cpu-timers. We do this by holding empty
87 * entries rather than doing math adjustment of the clock ids.
88 * This ensures that we capture erroneous accesses to these clock ids
89 * rather than moving them into the range of valid clock id's.
c0a31329 90 */
54cdfdb4 91DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 92{
3c8aa39d
TG
93
94 .clock_base =
c0a31329 95 {
3c8aa39d
TG
96 {
97 .index = CLOCK_REALTIME,
98 .get_time = &ktime_get_real,
54cdfdb4 99 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
100 },
101 {
102 .index = CLOCK_MONOTONIC,
103 .get_time = &ktime_get,
54cdfdb4 104 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
105 },
106 }
c0a31329
TG
107};
108
109/**
110 * ktime_get_ts - get the monotonic clock in timespec format
c0a31329
TG
111 * @ts: pointer to timespec variable
112 *
113 * The function calculates the monotonic clock from the realtime
114 * clock and the wall_to_monotonic offset and stores the result
72fd4a35 115 * in normalized timespec format in the variable pointed to by @ts.
c0a31329
TG
116 */
117void ktime_get_ts(struct timespec *ts)
118{
119 struct timespec tomono;
120 unsigned long seq;
121
122 do {
123 seq = read_seqbegin(&xtime_lock);
124 getnstimeofday(ts);
125 tomono = wall_to_monotonic;
126
127 } while (read_seqretry(&xtime_lock, seq));
128
129 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
130 ts->tv_nsec + tomono.tv_nsec);
131}
69778e32 132EXPORT_SYMBOL_GPL(ktime_get_ts);
c0a31329 133
92127c7a
TG
134/*
135 * Get the coarse grained time at the softirq based on xtime and
136 * wall_to_monotonic.
137 */
3c8aa39d 138static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
92127c7a
TG
139{
140 ktime_t xtim, tomono;
ad28d94a 141 struct timespec xts, tom;
92127c7a
TG
142 unsigned long seq;
143
144 do {
145 seq = read_seqbegin(&xtime_lock);
2c6b47de 146 xts = current_kernel_time();
ad28d94a 147 tom = wall_to_monotonic;
92127c7a
TG
148 } while (read_seqretry(&xtime_lock, seq));
149
f4304ab2 150 xtim = timespec_to_ktime(xts);
ad28d94a 151 tomono = timespec_to_ktime(tom);
3c8aa39d
TG
152 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
153 base->clock_base[CLOCK_MONOTONIC].softirq_time =
154 ktime_add(xtim, tomono);
92127c7a
TG
155}
156
c0a31329
TG
157/*
158 * Functions and macros which are different for UP/SMP systems are kept in a
159 * single place
160 */
161#ifdef CONFIG_SMP
162
c0a31329
TG
163/*
164 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
165 * means that all timers which are tied to this base via timer->base are
166 * locked, and the base itself is locked too.
167 *
168 * So __run_timers/migrate_timers can safely modify all timers which could
169 * be found on the lists/queues.
170 *
171 * When the timer's base is locked, and the timer removed from list, it is
172 * possible to set timer->base = NULL and drop the lock: the timer remains
173 * locked.
174 */
3c8aa39d
TG
175static
176struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
177 unsigned long *flags)
c0a31329 178{
3c8aa39d 179 struct hrtimer_clock_base *base;
c0a31329
TG
180
181 for (;;) {
182 base = timer->base;
183 if (likely(base != NULL)) {
3c8aa39d 184 spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
185 if (likely(base == timer->base))
186 return base;
187 /* The timer has migrated to another CPU: */
3c8aa39d 188 spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
189 }
190 cpu_relax();
191 }
192}
193
194/*
195 * Switch the timer base to the current CPU when possible.
196 */
3c8aa39d 197static inline struct hrtimer_clock_base *
597d0275
AB
198switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
199 int pinned)
c0a31329 200{
3c8aa39d
TG
201 struct hrtimer_clock_base *new_base;
202 struct hrtimer_cpu_base *new_cpu_base;
eea08f32
AB
203 int cpu, preferred_cpu = -1;
204
205 cpu = smp_processor_id();
206#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
207 if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu)) {
208 preferred_cpu = get_nohz_load_balancer();
209 if (preferred_cpu >= 0)
210 cpu = preferred_cpu;
211 }
212#endif
c0a31329 213
eea08f32
AB
214again:
215 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
3c8aa39d 216 new_base = &new_cpu_base->clock_base[base->index];
c0a31329
TG
217
218 if (base != new_base) {
219 /*
220 * We are trying to schedule the timer on the local CPU.
221 * However we can't change timer's base while it is running,
222 * so we keep it on the same CPU. No hassle vs. reprogramming
223 * the event source in the high resolution case. The softirq
224 * code will take care of this when the timer function has
225 * completed. There is no conflict as we hold the lock until
226 * the timer is enqueued.
227 */
54cdfdb4 228 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
229 return base;
230
231 /* See the comment in lock_timer_base() */
232 timer->base = NULL;
3c8aa39d
TG
233 spin_unlock(&base->cpu_base->lock);
234 spin_lock(&new_base->cpu_base->lock);
eea08f32
AB
235
236 /* Optimized away for NOHZ=n SMP=n */
237 if (cpu == preferred_cpu) {
238 /* Calculate clock monotonic expiry time */
239#ifdef CONFIG_HIGH_RES_TIMERS
240 ktime_t expires = ktime_sub(hrtimer_get_expires(timer),
241 new_base->offset);
242#else
243 ktime_t expires = hrtimer_get_expires(timer);
244#endif
245
246 /*
247 * Get the next event on target cpu from the
248 * clock events layer.
249 * This covers the highres=off nohz=on case as well.
250 */
251 ktime_t next = clockevents_get_next_event(cpu);
252
253 ktime_t delta = ktime_sub(expires, next);
254
255 /*
256 * We do not migrate the timer when it is expiring
257 * before the next event on the target cpu because
258 * we cannot reprogram the target cpu hardware and
259 * we would cause it to fire late.
260 */
261 if (delta.tv64 < 0) {
262 cpu = smp_processor_id();
263 spin_unlock(&new_base->cpu_base->lock);
264 spin_lock(&base->cpu_base->lock);
265 timer->base = base;
266 goto again;
267 }
268 }
c0a31329
TG
269 timer->base = new_base;
270 }
271 return new_base;
272}
273
274#else /* CONFIG_SMP */
275
3c8aa39d 276static inline struct hrtimer_clock_base *
c0a31329
TG
277lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
278{
3c8aa39d 279 struct hrtimer_clock_base *base = timer->base;
c0a31329 280
3c8aa39d 281 spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
282
283 return base;
284}
285
eea08f32 286# define switch_hrtimer_base(t, b, p) (b)
c0a31329
TG
287
288#endif /* !CONFIG_SMP */
289
290/*
291 * Functions for the union type storage format of ktime_t which are
292 * too large for inlining:
293 */
294#if BITS_PER_LONG < 64
295# ifndef CONFIG_KTIME_SCALAR
296/**
297 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
c0a31329
TG
298 * @kt: addend
299 * @nsec: the scalar nsec value to add
300 *
301 * Returns the sum of kt and nsec in ktime_t format
302 */
303ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
304{
305 ktime_t tmp;
306
307 if (likely(nsec < NSEC_PER_SEC)) {
308 tmp.tv64 = nsec;
309 } else {
310 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
311
312 tmp = ktime_set((long)nsec, rem);
313 }
314
315 return ktime_add(kt, tmp);
316}
b8b8fd2d
DH
317
318EXPORT_SYMBOL_GPL(ktime_add_ns);
a272378d
ACM
319
320/**
321 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
322 * @kt: minuend
323 * @nsec: the scalar nsec value to subtract
324 *
325 * Returns the subtraction of @nsec from @kt in ktime_t format
326 */
327ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
328{
329 ktime_t tmp;
330
331 if (likely(nsec < NSEC_PER_SEC)) {
332 tmp.tv64 = nsec;
333 } else {
334 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
335
336 tmp = ktime_set((long)nsec, rem);
337 }
338
339 return ktime_sub(kt, tmp);
340}
341
342EXPORT_SYMBOL_GPL(ktime_sub_ns);
c0a31329
TG
343# endif /* !CONFIG_KTIME_SCALAR */
344
345/*
346 * Divide a ktime value by a nanosecond value
347 */
4d672e7a 348u64 ktime_divns(const ktime_t kt, s64 div)
c0a31329 349{
900cfa46 350 u64 dclc;
c0a31329
TG
351 int sft = 0;
352
900cfa46 353 dclc = ktime_to_ns(kt);
c0a31329
TG
354 /* Make sure the divisor is less than 2^32: */
355 while (div >> 32) {
356 sft++;
357 div >>= 1;
358 }
359 dclc >>= sft;
360 do_div(dclc, (unsigned long) div);
361
4d672e7a 362 return dclc;
c0a31329 363}
c0a31329
TG
364#endif /* BITS_PER_LONG >= 64 */
365
5a7780e7
TG
366/*
367 * Add two ktime values and do a safety check for overflow:
368 */
369ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
370{
371 ktime_t res = ktime_add(lhs, rhs);
372
373 /*
374 * We use KTIME_SEC_MAX here, the maximum timeout which we can
375 * return to user space in a timespec:
376 */
377 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
378 res = ktime_set(KTIME_SEC_MAX, 0);
379
380 return res;
381}
382
8daa21e6
AB
383EXPORT_SYMBOL_GPL(ktime_add_safe);
384
237fc6e7
TG
385#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
386
387static struct debug_obj_descr hrtimer_debug_descr;
388
389/*
390 * fixup_init is called when:
391 * - an active object is initialized
392 */
393static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
394{
395 struct hrtimer *timer = addr;
396
397 switch (state) {
398 case ODEBUG_STATE_ACTIVE:
399 hrtimer_cancel(timer);
400 debug_object_init(timer, &hrtimer_debug_descr);
401 return 1;
402 default:
403 return 0;
404 }
405}
406
407/*
408 * fixup_activate is called when:
409 * - an active object is activated
410 * - an unknown object is activated (might be a statically initialized object)
411 */
412static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
413{
414 switch (state) {
415
416 case ODEBUG_STATE_NOTAVAILABLE:
417 WARN_ON_ONCE(1);
418 return 0;
419
420 case ODEBUG_STATE_ACTIVE:
421 WARN_ON(1);
422
423 default:
424 return 0;
425 }
426}
427
428/*
429 * fixup_free is called when:
430 * - an active object is freed
431 */
432static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
433{
434 struct hrtimer *timer = addr;
435
436 switch (state) {
437 case ODEBUG_STATE_ACTIVE:
438 hrtimer_cancel(timer);
439 debug_object_free(timer, &hrtimer_debug_descr);
440 return 1;
441 default:
442 return 0;
443 }
444}
445
446static struct debug_obj_descr hrtimer_debug_descr = {
447 .name = "hrtimer",
448 .fixup_init = hrtimer_fixup_init,
449 .fixup_activate = hrtimer_fixup_activate,
450 .fixup_free = hrtimer_fixup_free,
451};
452
453static inline void debug_hrtimer_init(struct hrtimer *timer)
454{
455 debug_object_init(timer, &hrtimer_debug_descr);
456}
457
458static inline void debug_hrtimer_activate(struct hrtimer *timer)
459{
460 debug_object_activate(timer, &hrtimer_debug_descr);
461}
462
463static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
464{
465 debug_object_deactivate(timer, &hrtimer_debug_descr);
466}
467
468static inline void debug_hrtimer_free(struct hrtimer *timer)
469{
470 debug_object_free(timer, &hrtimer_debug_descr);
471}
472
473static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
474 enum hrtimer_mode mode);
475
476void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
477 enum hrtimer_mode mode)
478{
479 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
480 __hrtimer_init(timer, clock_id, mode);
481}
482
483void destroy_hrtimer_on_stack(struct hrtimer *timer)
484{
485 debug_object_free(timer, &hrtimer_debug_descr);
486}
487
488#else
489static inline void debug_hrtimer_init(struct hrtimer *timer) { }
490static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
491static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
492#endif
493
54cdfdb4
TG
494/* High resolution timer related functions */
495#ifdef CONFIG_HIGH_RES_TIMERS
496
497/*
498 * High resolution timer enabled ?
499 */
500static int hrtimer_hres_enabled __read_mostly = 1;
501
502/*
503 * Enable / Disable high resolution mode
504 */
505static int __init setup_hrtimer_hres(char *str)
506{
507 if (!strcmp(str, "off"))
508 hrtimer_hres_enabled = 0;
509 else if (!strcmp(str, "on"))
510 hrtimer_hres_enabled = 1;
511 else
512 return 0;
513 return 1;
514}
515
516__setup("highres=", setup_hrtimer_hres);
517
518/*
519 * hrtimer_high_res_enabled - query, if the highres mode is enabled
520 */
521static inline int hrtimer_is_hres_enabled(void)
522{
523 return hrtimer_hres_enabled;
524}
525
526/*
527 * Is the high resolution mode active ?
528 */
529static inline int hrtimer_hres_active(void)
530{
531 return __get_cpu_var(hrtimer_bases).hres_active;
532}
533
534/*
535 * Reprogram the event source with checking both queues for the
536 * next event
537 * Called with interrupts disabled and base->lock held
538 */
539static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
540{
541 int i;
542 struct hrtimer_clock_base *base = cpu_base->clock_base;
543 ktime_t expires;
544
545 cpu_base->expires_next.tv64 = KTIME_MAX;
546
547 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
548 struct hrtimer *timer;
549
550 if (!base->first)
551 continue;
552 timer = rb_entry(base->first, struct hrtimer, node);
cc584b21 553 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
b0a9b511
TG
554 /*
555 * clock_was_set() has changed base->offset so the
556 * result might be negative. Fix it up to prevent a
557 * false positive in clockevents_program_event()
558 */
559 if (expires.tv64 < 0)
560 expires.tv64 = 0;
54cdfdb4
TG
561 if (expires.tv64 < cpu_base->expires_next.tv64)
562 cpu_base->expires_next = expires;
563 }
564
565 if (cpu_base->expires_next.tv64 != KTIME_MAX)
566 tick_program_event(cpu_base->expires_next, 1);
567}
568
569/*
570 * Shared reprogramming for clock_realtime and clock_monotonic
571 *
572 * When a timer is enqueued and expires earlier than the already enqueued
573 * timers, we have to check, whether it expires earlier than the timer for
574 * which the clock event device was armed.
575 *
576 * Called with interrupts disabled and base->cpu_base.lock held
577 */
578static int hrtimer_reprogram(struct hrtimer *timer,
579 struct hrtimer_clock_base *base)
580{
581 ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
cc584b21 582 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
54cdfdb4
TG
583 int res;
584
cc584b21 585 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
63070a79 586
54cdfdb4
TG
587 /*
588 * When the callback is running, we do not reprogram the clock event
589 * device. The timer callback is either running on a different CPU or
3a4fa0a2 590 * the callback is executed in the hrtimer_interrupt context. The
54cdfdb4
TG
591 * reprogramming is handled either by the softirq, which called the
592 * callback or at the end of the hrtimer_interrupt.
593 */
594 if (hrtimer_callback_running(timer))
595 return 0;
596
63070a79
TG
597 /*
598 * CLOCK_REALTIME timer might be requested with an absolute
599 * expiry time which is less than base->offset. Nothing wrong
600 * about that, just avoid to call into the tick code, which
601 * has now objections against negative expiry values.
602 */
603 if (expires.tv64 < 0)
604 return -ETIME;
605
54cdfdb4
TG
606 if (expires.tv64 >= expires_next->tv64)
607 return 0;
608
609 /*
610 * Clockevents returns -ETIME, when the event was in the past.
611 */
612 res = tick_program_event(expires, 0);
613 if (!IS_ERR_VALUE(res))
614 *expires_next = expires;
615 return res;
616}
617
618
619/*
620 * Retrigger next event is called after clock was set
621 *
622 * Called with interrupts disabled via on_each_cpu()
623 */
624static void retrigger_next_event(void *arg)
625{
626 struct hrtimer_cpu_base *base;
627 struct timespec realtime_offset;
628 unsigned long seq;
629
630 if (!hrtimer_hres_active())
631 return;
632
633 do {
634 seq = read_seqbegin(&xtime_lock);
635 set_normalized_timespec(&realtime_offset,
636 -wall_to_monotonic.tv_sec,
637 -wall_to_monotonic.tv_nsec);
638 } while (read_seqretry(&xtime_lock, seq));
639
640 base = &__get_cpu_var(hrtimer_bases);
641
642 /* Adjust CLOCK_REALTIME offset */
643 spin_lock(&base->lock);
644 base->clock_base[CLOCK_REALTIME].offset =
645 timespec_to_ktime(realtime_offset);
646
647 hrtimer_force_reprogram(base);
648 spin_unlock(&base->lock);
649}
650
651/*
652 * Clock realtime was set
653 *
654 * Change the offset of the realtime clock vs. the monotonic
655 * clock.
656 *
657 * We might have to reprogram the high resolution timer interrupt. On
658 * SMP we call the architecture specific code to retrigger _all_ high
659 * resolution timer interrupts. On UP we just disable interrupts and
660 * call the high resolution interrupt code.
661 */
662void clock_was_set(void)
663{
664 /* Retrigger the CPU local events everywhere */
15c8b6c1 665 on_each_cpu(retrigger_next_event, NULL, 1);
54cdfdb4
TG
666}
667
995f054f
IM
668/*
669 * During resume we might have to reprogram the high resolution timer
670 * interrupt (on the local CPU):
671 */
672void hres_timers_resume(void)
673{
1d4a7f1c
PZ
674 WARN_ONCE(!irqs_disabled(),
675 KERN_INFO "hres_timers_resume() called with IRQs enabled!");
676
995f054f
IM
677 retrigger_next_event(NULL);
678}
679
54cdfdb4
TG
680/*
681 * Initialize the high resolution related parts of cpu_base
682 */
683static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
684{
685 base->expires_next.tv64 = KTIME_MAX;
686 base->hres_active = 0;
54cdfdb4
TG
687}
688
689/*
690 * Initialize the high resolution related parts of a hrtimer
691 */
692static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
693{
54cdfdb4
TG
694}
695
ca109491 696
54cdfdb4
TG
697/*
698 * When High resolution timers are active, try to reprogram. Note, that in case
699 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
700 * check happens. The timer gets enqueued into the rbtree. The reprogramming
701 * and expiry check is done in the hrtimer_interrupt or in the softirq.
702 */
703static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
7f1e2ca9
PZ
704 struct hrtimer_clock_base *base,
705 int wakeup)
54cdfdb4
TG
706{
707 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
7f1e2ca9
PZ
708 if (wakeup) {
709 spin_unlock(&base->cpu_base->lock);
710 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
711 spin_lock(&base->cpu_base->lock);
712 } else
713 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
714
ca109491 715 return 1;
54cdfdb4 716 }
7f1e2ca9 717
54cdfdb4
TG
718 return 0;
719}
720
721/*
722 * Switch to high resolution mode
723 */
f8953856 724static int hrtimer_switch_to_hres(void)
54cdfdb4 725{
820de5c3
IM
726 int cpu = smp_processor_id();
727 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
54cdfdb4
TG
728 unsigned long flags;
729
730 if (base->hres_active)
f8953856 731 return 1;
54cdfdb4
TG
732
733 local_irq_save(flags);
734
735 if (tick_init_highres()) {
736 local_irq_restore(flags);
820de5c3
IM
737 printk(KERN_WARNING "Could not switch to high resolution "
738 "mode on CPU %d\n", cpu);
f8953856 739 return 0;
54cdfdb4
TG
740 }
741 base->hres_active = 1;
742 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
743 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
744
745 tick_setup_sched_timer();
746
747 /* "Retrigger" the interrupt to get things going */
748 retrigger_next_event(NULL);
749 local_irq_restore(flags);
edfed66e 750 printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
54cdfdb4 751 smp_processor_id());
f8953856 752 return 1;
54cdfdb4
TG
753}
754
755#else
756
757static inline int hrtimer_hres_active(void) { return 0; }
758static inline int hrtimer_is_hres_enabled(void) { return 0; }
f8953856 759static inline int hrtimer_switch_to_hres(void) { return 0; }
54cdfdb4
TG
760static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
761static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
7f1e2ca9
PZ
762 struct hrtimer_clock_base *base,
763 int wakeup)
54cdfdb4
TG
764{
765 return 0;
766}
54cdfdb4
TG
767static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
768static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
769
770#endif /* CONFIG_HIGH_RES_TIMERS */
771
82f67cd9
IM
772#ifdef CONFIG_TIMER_STATS
773void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
774{
775 if (timer->start_site)
776 return;
777
778 timer->start_site = addr;
779 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
780 timer->start_pid = current->pid;
781}
782#endif
783
c0a31329 784/*
6506f2aa 785 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
786 */
787static inline
788void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
789{
3c8aa39d 790 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
791}
792
793/**
794 * hrtimer_forward - forward the timer expiry
c0a31329 795 * @timer: hrtimer to forward
44f21475 796 * @now: forward past this time
c0a31329
TG
797 * @interval: the interval to forward
798 *
799 * Forward the timer expiry so it will expire in the future.
8dca6f33 800 * Returns the number of overruns.
c0a31329 801 */
4d672e7a 802u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 803{
4d672e7a 804 u64 orun = 1;
44f21475 805 ktime_t delta;
c0a31329 806
cc584b21 807 delta = ktime_sub(now, hrtimer_get_expires(timer));
c0a31329
TG
808
809 if (delta.tv64 < 0)
810 return 0;
811
c9db4fa1
TG
812 if (interval.tv64 < timer->base->resolution.tv64)
813 interval.tv64 = timer->base->resolution.tv64;
814
c0a31329 815 if (unlikely(delta.tv64 >= interval.tv64)) {
df869b63 816 s64 incr = ktime_to_ns(interval);
c0a31329
TG
817
818 orun = ktime_divns(delta, incr);
cc584b21
AV
819 hrtimer_add_expires_ns(timer, incr * orun);
820 if (hrtimer_get_expires_tv64(timer) > now.tv64)
c0a31329
TG
821 return orun;
822 /*
823 * This (and the ktime_add() below) is the
824 * correction for exact:
825 */
826 orun++;
827 }
cc584b21 828 hrtimer_add_expires(timer, interval);
c0a31329
TG
829
830 return orun;
831}
6bdb6b62 832EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
833
834/*
835 * enqueue_hrtimer - internal function to (re)start a timer
836 *
837 * The timer is inserted in expiry order. Insertion into the
838 * red black tree is O(log(n)). Must hold the base lock.
a6037b61
PZ
839 *
840 * Returns 1 when the new timer is the leftmost timer in the tree.
c0a31329 841 */
a6037b61
PZ
842static int enqueue_hrtimer(struct hrtimer *timer,
843 struct hrtimer_clock_base *base)
c0a31329
TG
844{
845 struct rb_node **link = &base->active.rb_node;
c0a31329
TG
846 struct rb_node *parent = NULL;
847 struct hrtimer *entry;
99bc2fcb 848 int leftmost = 1;
c0a31329 849
237fc6e7
TG
850 debug_hrtimer_activate(timer);
851
c0a31329
TG
852 /*
853 * Find the right place in the rbtree:
854 */
855 while (*link) {
856 parent = *link;
857 entry = rb_entry(parent, struct hrtimer, node);
858 /*
859 * We dont care about collisions. Nodes with
860 * the same expiry time stay together.
861 */
cc584b21
AV
862 if (hrtimer_get_expires_tv64(timer) <
863 hrtimer_get_expires_tv64(entry)) {
c0a31329 864 link = &(*link)->rb_left;
99bc2fcb 865 } else {
c0a31329 866 link = &(*link)->rb_right;
99bc2fcb
IM
867 leftmost = 0;
868 }
c0a31329
TG
869 }
870
871 /*
288867ec
TG
872 * Insert the timer to the rbtree and check whether it
873 * replaces the first pending timer
c0a31329 874 */
a6037b61 875 if (leftmost)
54cdfdb4 876 base->first = &timer->node;
54cdfdb4 877
c0a31329
TG
878 rb_link_node(&timer->node, parent, link);
879 rb_insert_color(&timer->node, &base->active);
303e967f
TG
880 /*
881 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
882 * state of a possibly running callback.
883 */
884 timer->state |= HRTIMER_STATE_ENQUEUED;
a6037b61
PZ
885
886 return leftmost;
288867ec 887}
c0a31329
TG
888
889/*
890 * __remove_hrtimer - internal function to remove a timer
891 *
892 * Caller must hold the base lock.
54cdfdb4
TG
893 *
894 * High resolution timer mode reprograms the clock event device when the
895 * timer is the one which expires next. The caller can disable this by setting
896 * reprogram to zero. This is useful, when the context does a reprogramming
897 * anyway (e.g. timer interrupt)
c0a31329 898 */
3c8aa39d 899static void __remove_hrtimer(struct hrtimer *timer,
303e967f 900 struct hrtimer_clock_base *base,
54cdfdb4 901 unsigned long newstate, int reprogram)
c0a31329 902{
ca109491 903 if (timer->state & HRTIMER_STATE_ENQUEUED) {
54cdfdb4
TG
904 /*
905 * Remove the timer from the rbtree and replace the
906 * first entry pointer if necessary.
907 */
908 if (base->first == &timer->node) {
909 base->first = rb_next(&timer->node);
910 /* Reprogram the clock event device. if enabled */
911 if (reprogram && hrtimer_hres_active())
912 hrtimer_force_reprogram(base->cpu_base);
913 }
914 rb_erase(&timer->node, &base->active);
915 }
303e967f 916 timer->state = newstate;
c0a31329
TG
917}
918
919/*
920 * remove hrtimer, called with base lock held
921 */
922static inline int
3c8aa39d 923remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 924{
303e967f 925 if (hrtimer_is_queued(timer)) {
54cdfdb4
TG
926 int reprogram;
927
928 /*
929 * Remove the timer and force reprogramming when high
930 * resolution mode is active and the timer is on the current
931 * CPU. If we remove a timer on another CPU, reprogramming is
932 * skipped. The interrupt event on this CPU is fired and
933 * reprogramming happens in the interrupt handler. This is a
934 * rare case and less expensive than a smp call.
935 */
237fc6e7 936 debug_hrtimer_deactivate(timer);
82f67cd9 937 timer_stats_hrtimer_clear_start_info(timer);
54cdfdb4
TG
938 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
939 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
940 reprogram);
c0a31329
TG
941 return 1;
942 }
943 return 0;
944}
945
7f1e2ca9
PZ
946int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
947 unsigned long delta_ns, const enum hrtimer_mode mode,
948 int wakeup)
c0a31329 949{
3c8aa39d 950 struct hrtimer_clock_base *base, *new_base;
c0a31329 951 unsigned long flags;
a6037b61 952 int ret, leftmost;
c0a31329
TG
953
954 base = lock_hrtimer_base(timer, &flags);
955
956 /* Remove an active timer from the queue: */
957 ret = remove_hrtimer(timer, base);
958
959 /* Switch the timer base, if necessary: */
597d0275 960 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
c0a31329 961
597d0275 962 if (mode & HRTIMER_MODE_REL) {
5a7780e7 963 tim = ktime_add_safe(tim, new_base->get_time());
06027bdd
IM
964 /*
965 * CONFIG_TIME_LOW_RES is a temporary way for architectures
966 * to signal that they simply return xtime in
967 * do_gettimeoffset(). In this case we want to round up by
968 * resolution when starting a relative timer, to avoid short
969 * timeouts. This will go away with the GTOD framework.
970 */
971#ifdef CONFIG_TIME_LOW_RES
5a7780e7 972 tim = ktime_add_safe(tim, base->resolution);
06027bdd
IM
973#endif
974 }
237fc6e7 975
da8f2e17 976 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
c0a31329 977
82f67cd9
IM
978 timer_stats_hrtimer_set_start_info(timer);
979
a6037b61
PZ
980 leftmost = enqueue_hrtimer(timer, new_base);
981
935c631d
IM
982 /*
983 * Only allow reprogramming if the new base is on this CPU.
984 * (it might still be on another CPU if the timer was pending)
a6037b61
PZ
985 *
986 * XXX send_remote_softirq() ?
935c631d 987 */
a6037b61 988 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
7f1e2ca9 989 hrtimer_enqueue_reprogram(timer, new_base, wakeup);
c0a31329
TG
990
991 unlock_hrtimer_base(timer, &flags);
992
993 return ret;
994}
7f1e2ca9
PZ
995
996/**
997 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
998 * @timer: the timer to be added
999 * @tim: expiry time
1000 * @delta_ns: "slack" range for the timer
1001 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1002 *
1003 * Returns:
1004 * 0 on success
1005 * 1 when the timer was active
1006 */
1007int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1008 unsigned long delta_ns, const enum hrtimer_mode mode)
1009{
1010 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1011}
da8f2e17
AV
1012EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1013
1014/**
e1dd7bc5 1015 * hrtimer_start - (re)start an hrtimer on the current CPU
da8f2e17
AV
1016 * @timer: the timer to be added
1017 * @tim: expiry time
1018 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1019 *
1020 * Returns:
1021 * 0 on success
1022 * 1 when the timer was active
1023 */
1024int
1025hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1026{
7f1e2ca9 1027 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
da8f2e17 1028}
8d16b764 1029EXPORT_SYMBOL_GPL(hrtimer_start);
c0a31329 1030
da8f2e17 1031
c0a31329
TG
1032/**
1033 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
1034 * @timer: hrtimer to stop
1035 *
1036 * Returns:
1037 * 0 when the timer was not active
1038 * 1 when the timer was active
1039 * -1 when the timer is currently excuting the callback function and
fa9799e3 1040 * cannot be stopped
c0a31329
TG
1041 */
1042int hrtimer_try_to_cancel(struct hrtimer *timer)
1043{
3c8aa39d 1044 struct hrtimer_clock_base *base;
c0a31329
TG
1045 unsigned long flags;
1046 int ret = -1;
1047
1048 base = lock_hrtimer_base(timer, &flags);
1049
303e967f 1050 if (!hrtimer_callback_running(timer))
c0a31329
TG
1051 ret = remove_hrtimer(timer, base);
1052
1053 unlock_hrtimer_base(timer, &flags);
1054
1055 return ret;
1056
1057}
8d16b764 1058EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
1059
1060/**
1061 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
1062 * @timer: the timer to be cancelled
1063 *
1064 * Returns:
1065 * 0 when the timer was not active
1066 * 1 when the timer was active
1067 */
1068int hrtimer_cancel(struct hrtimer *timer)
1069{
1070 for (;;) {
1071 int ret = hrtimer_try_to_cancel(timer);
1072
1073 if (ret >= 0)
1074 return ret;
5ef37b19 1075 cpu_relax();
c0a31329
TG
1076 }
1077}
8d16b764 1078EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
1079
1080/**
1081 * hrtimer_get_remaining - get remaining time for the timer
c0a31329
TG
1082 * @timer: the timer to read
1083 */
1084ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1085{
3c8aa39d 1086 struct hrtimer_clock_base *base;
c0a31329
TG
1087 unsigned long flags;
1088 ktime_t rem;
1089
1090 base = lock_hrtimer_base(timer, &flags);
cc584b21 1091 rem = hrtimer_expires_remaining(timer);
c0a31329
TG
1092 unlock_hrtimer_base(timer, &flags);
1093
1094 return rem;
1095}
8d16b764 1096EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
c0a31329 1097
ee9c5785 1098#ifdef CONFIG_NO_HZ
69239749
TL
1099/**
1100 * hrtimer_get_next_event - get the time until next expiry event
1101 *
1102 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1103 * is pending.
1104 */
1105ktime_t hrtimer_get_next_event(void)
1106{
3c8aa39d
TG
1107 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1108 struct hrtimer_clock_base *base = cpu_base->clock_base;
69239749
TL
1109 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1110 unsigned long flags;
1111 int i;
1112
3c8aa39d
TG
1113 spin_lock_irqsave(&cpu_base->lock, flags);
1114
54cdfdb4
TG
1115 if (!hrtimer_hres_active()) {
1116 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1117 struct hrtimer *timer;
69239749 1118
54cdfdb4
TG
1119 if (!base->first)
1120 continue;
3c8aa39d 1121
54cdfdb4 1122 timer = rb_entry(base->first, struct hrtimer, node);
cc584b21 1123 delta.tv64 = hrtimer_get_expires_tv64(timer);
54cdfdb4
TG
1124 delta = ktime_sub(delta, base->get_time());
1125 if (delta.tv64 < mindelta.tv64)
1126 mindelta.tv64 = delta.tv64;
1127 }
69239749 1128 }
3c8aa39d
TG
1129
1130 spin_unlock_irqrestore(&cpu_base->lock, flags);
1131
69239749
TL
1132 if (mindelta.tv64 < 0)
1133 mindelta.tv64 = 0;
1134 return mindelta;
1135}
1136#endif
1137
237fc6e7
TG
1138static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1139 enum hrtimer_mode mode)
c0a31329 1140{
3c8aa39d 1141 struct hrtimer_cpu_base *cpu_base;
c0a31329 1142
7978672c
GA
1143 memset(timer, 0, sizeof(struct hrtimer));
1144
3c8aa39d 1145 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
c0a31329 1146
c9cb2e3d 1147 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
7978672c
GA
1148 clock_id = CLOCK_MONOTONIC;
1149
3c8aa39d 1150 timer->base = &cpu_base->clock_base[clock_id];
d3d74453 1151 INIT_LIST_HEAD(&timer->cb_entry);
54cdfdb4 1152 hrtimer_init_timer_hres(timer);
82f67cd9
IM
1153
1154#ifdef CONFIG_TIMER_STATS
1155 timer->start_site = NULL;
1156 timer->start_pid = -1;
1157 memset(timer->start_comm, 0, TASK_COMM_LEN);
1158#endif
c0a31329 1159}
237fc6e7
TG
1160
1161/**
1162 * hrtimer_init - initialize a timer to the given clock
1163 * @timer: the timer to be initialized
1164 * @clock_id: the clock to be used
1165 * @mode: timer mode abs/rel
1166 */
1167void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1168 enum hrtimer_mode mode)
1169{
1170 debug_hrtimer_init(timer);
1171 __hrtimer_init(timer, clock_id, mode);
1172}
8d16b764 1173EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329
TG
1174
1175/**
1176 * hrtimer_get_res - get the timer resolution for a clock
c0a31329
TG
1177 * @which_clock: which clock to query
1178 * @tp: pointer to timespec variable to store the resolution
1179 *
72fd4a35
RD
1180 * Store the resolution of the clock selected by @which_clock in the
1181 * variable pointed to by @tp.
c0a31329
TG
1182 */
1183int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1184{
3c8aa39d 1185 struct hrtimer_cpu_base *cpu_base;
c0a31329 1186
3c8aa39d
TG
1187 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1188 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
c0a31329
TG
1189
1190 return 0;
1191}
8d16b764 1192EXPORT_SYMBOL_GPL(hrtimer_get_res);
c0a31329 1193
d3d74453
PZ
1194static void __run_hrtimer(struct hrtimer *timer)
1195{
1196 struct hrtimer_clock_base *base = timer->base;
1197 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1198 enum hrtimer_restart (*fn)(struct hrtimer *);
1199 int restart;
1200
ca109491
PZ
1201 WARN_ON(!irqs_disabled());
1202
237fc6e7 1203 debug_hrtimer_deactivate(timer);
d3d74453
PZ
1204 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1205 timer_stats_account_hrtimer(timer);
d3d74453 1206 fn = timer->function;
ca109491
PZ
1207
1208 /*
1209 * Because we run timers from hardirq context, there is no chance
1210 * they get migrated to another cpu, therefore its safe to unlock
1211 * the timer base.
1212 */
1213 spin_unlock(&cpu_base->lock);
1214 restart = fn(timer);
1215 spin_lock(&cpu_base->lock);
d3d74453
PZ
1216
1217 /*
e3f1d883
TG
1218 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1219 * we do not reprogramm the event hardware. Happens either in
1220 * hrtimer_start_range_ns() or in hrtimer_interrupt()
d3d74453
PZ
1221 */
1222 if (restart != HRTIMER_NORESTART) {
1223 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
a6037b61 1224 enqueue_hrtimer(timer, base);
d3d74453
PZ
1225 }
1226 timer->state &= ~HRTIMER_STATE_CALLBACK;
1227}
1228
54cdfdb4
TG
1229#ifdef CONFIG_HIGH_RES_TIMERS
1230
7f22391c
FW
1231static int force_clock_reprogram;
1232
1233/*
1234 * After 5 iteration's attempts, we consider that hrtimer_interrupt()
1235 * is hanging, which could happen with something that slows the interrupt
1236 * such as the tracing. Then we force the clock reprogramming for each future
1237 * hrtimer interrupts to avoid infinite loops and use the min_delta_ns
1238 * threshold that we will overwrite.
1239 * The next tick event will be scheduled to 3 times we currently spend on
1240 * hrtimer_interrupt(). This gives a good compromise, the cpus will spend
1241 * 1/4 of their time to process the hrtimer interrupts. This is enough to
1242 * let it running without serious starvation.
1243 */
1244
1245static inline void
1246hrtimer_interrupt_hanging(struct clock_event_device *dev,
1247 ktime_t try_time)
1248{
1249 force_clock_reprogram = 1;
1250 dev->min_delta_ns = (unsigned long)try_time.tv64 * 3;
1251 printk(KERN_WARNING "hrtimer: interrupt too slow, "
1252 "forcing clock min delta to %lu ns\n", dev->min_delta_ns);
1253}
54cdfdb4
TG
1254/*
1255 * High resolution timer interrupt
1256 * Called with interrupts disabled
1257 */
1258void hrtimer_interrupt(struct clock_event_device *dev)
1259{
1260 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1261 struct hrtimer_clock_base *base;
1262 ktime_t expires_next, now;
7f22391c 1263 int nr_retries = 0;
ca109491 1264 int i;
54cdfdb4
TG
1265
1266 BUG_ON(!cpu_base->hres_active);
1267 cpu_base->nr_events++;
1268 dev->next_event.tv64 = KTIME_MAX;
1269
1270 retry:
7f22391c
FW
1271 /* 5 retries is enough to notice a hang */
1272 if (!(++nr_retries % 5))
1273 hrtimer_interrupt_hanging(dev, ktime_sub(ktime_get(), now));
1274
54cdfdb4
TG
1275 now = ktime_get();
1276
1277 expires_next.tv64 = KTIME_MAX;
1278
1279 base = cpu_base->clock_base;
1280
1281 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1282 ktime_t basenow;
1283 struct rb_node *node;
1284
1285 spin_lock(&cpu_base->lock);
1286
1287 basenow = ktime_add(now, base->offset);
1288
1289 while ((node = base->first)) {
1290 struct hrtimer *timer;
1291
1292 timer = rb_entry(node, struct hrtimer, node);
1293
654c8e0b
AV
1294 /*
1295 * The immediate goal for using the softexpires is
1296 * minimizing wakeups, not running timers at the
1297 * earliest interrupt after their soft expiration.
1298 * This allows us to avoid using a Priority Search
1299 * Tree, which can answer a stabbing querry for
1300 * overlapping intervals and instead use the simple
1301 * BST we already have.
1302 * We don't add extra wakeups by delaying timers that
1303 * are right-of a not yet expired timer, because that
1304 * timer will have to trigger a wakeup anyway.
1305 */
1306
1307 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
54cdfdb4
TG
1308 ktime_t expires;
1309
cc584b21 1310 expires = ktime_sub(hrtimer_get_expires(timer),
54cdfdb4
TG
1311 base->offset);
1312 if (expires.tv64 < expires_next.tv64)
1313 expires_next = expires;
1314 break;
1315 }
1316
d3d74453 1317 __run_hrtimer(timer);
54cdfdb4
TG
1318 }
1319 spin_unlock(&cpu_base->lock);
1320 base++;
1321 }
1322
1323 cpu_base->expires_next = expires_next;
1324
1325 /* Reprogramming necessary ? */
1326 if (expires_next.tv64 != KTIME_MAX) {
7f22391c 1327 if (tick_program_event(expires_next, force_clock_reprogram))
54cdfdb4
TG
1328 goto retry;
1329 }
54cdfdb4
TG
1330}
1331
8bdec955
TG
1332/*
1333 * local version of hrtimer_peek_ahead_timers() called with interrupts
1334 * disabled.
1335 */
1336static void __hrtimer_peek_ahead_timers(void)
1337{
1338 struct tick_device *td;
1339
1340 if (!hrtimer_hres_active())
1341 return;
1342
1343 td = &__get_cpu_var(tick_cpu_device);
1344 if (td && td->evtdev)
1345 hrtimer_interrupt(td->evtdev);
1346}
1347
2e94d1f7
AV
1348/**
1349 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1350 *
1351 * hrtimer_peek_ahead_timers will peek at the timer queue of
1352 * the current cpu and check if there are any timers for which
1353 * the soft expires time has passed. If any such timers exist,
1354 * they are run immediately and then removed from the timer queue.
1355 *
1356 */
1357void hrtimer_peek_ahead_timers(void)
1358{
643bdf68 1359 unsigned long flags;
dc4304f7 1360
2e94d1f7 1361 local_irq_save(flags);
8bdec955 1362 __hrtimer_peek_ahead_timers();
2e94d1f7
AV
1363 local_irq_restore(flags);
1364}
1365
a6037b61
PZ
1366static void run_hrtimer_softirq(struct softirq_action *h)
1367{
1368 hrtimer_peek_ahead_timers();
1369}
1370
82c5b7b5
IM
1371#else /* CONFIG_HIGH_RES_TIMERS */
1372
1373static inline void __hrtimer_peek_ahead_timers(void) { }
1374
1375#endif /* !CONFIG_HIGH_RES_TIMERS */
82f67cd9 1376
d3d74453
PZ
1377/*
1378 * Called from timer softirq every jiffy, expire hrtimers:
1379 *
1380 * For HRT its the fall back code to run the softirq in the timer
1381 * softirq context in case the hrtimer initialization failed or has
1382 * not been done yet.
1383 */
1384void hrtimer_run_pending(void)
1385{
d3d74453
PZ
1386 if (hrtimer_hres_active())
1387 return;
54cdfdb4 1388
d3d74453
PZ
1389 /*
1390 * This _is_ ugly: We have to check in the softirq context,
1391 * whether we can switch to highres and / or nohz mode. The
1392 * clocksource switch happens in the timer interrupt with
1393 * xtime_lock held. Notification from there only sets the
1394 * check bit in the tick_oneshot code, otherwise we might
1395 * deadlock vs. xtime_lock.
1396 */
1397 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1398 hrtimer_switch_to_hres();
54cdfdb4
TG
1399}
1400
c0a31329 1401/*
d3d74453 1402 * Called from hardirq context every jiffy
c0a31329 1403 */
833883d9 1404void hrtimer_run_queues(void)
c0a31329 1405{
288867ec 1406 struct rb_node *node;
833883d9
DS
1407 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1408 struct hrtimer_clock_base *base;
1409 int index, gettime = 1;
c0a31329 1410
833883d9 1411 if (hrtimer_hres_active())
3055adda
DS
1412 return;
1413
833883d9
DS
1414 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1415 base = &cpu_base->clock_base[index];
c0a31329 1416
833883d9 1417 if (!base->first)
d3d74453 1418 continue;
833883d9 1419
d7cfb60c 1420 if (gettime) {
833883d9
DS
1421 hrtimer_get_softirq_time(cpu_base);
1422 gettime = 0;
b75f7a51 1423 }
d3d74453 1424
833883d9 1425 spin_lock(&cpu_base->lock);
c0a31329 1426
833883d9
DS
1427 while ((node = base->first)) {
1428 struct hrtimer *timer;
54cdfdb4 1429
833883d9 1430 timer = rb_entry(node, struct hrtimer, node);
cc584b21
AV
1431 if (base->softirq_time.tv64 <=
1432 hrtimer_get_expires_tv64(timer))
833883d9
DS
1433 break;
1434
833883d9
DS
1435 __run_hrtimer(timer);
1436 }
1437 spin_unlock(&cpu_base->lock);
1438 }
c0a31329
TG
1439}
1440
10c94ec1
TG
1441/*
1442 * Sleep related functions:
1443 */
c9cb2e3d 1444static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1445{
1446 struct hrtimer_sleeper *t =
1447 container_of(timer, struct hrtimer_sleeper, timer);
1448 struct task_struct *task = t->task;
1449
1450 t->task = NULL;
1451 if (task)
1452 wake_up_process(task);
1453
1454 return HRTIMER_NORESTART;
1455}
1456
36c8b586 1457void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1458{
1459 sl->timer.function = hrtimer_wakeup;
1460 sl->task = task;
1461}
1462
669d7868 1463static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1464{
669d7868 1465 hrtimer_init_sleeper(t, current);
10c94ec1 1466
432569bb
RZ
1467 do {
1468 set_current_state(TASK_INTERRUPTIBLE);
cc584b21 1469 hrtimer_start_expires(&t->timer, mode);
37bb6cb4
PZ
1470 if (!hrtimer_active(&t->timer))
1471 t->task = NULL;
432569bb 1472
54cdfdb4
TG
1473 if (likely(t->task))
1474 schedule();
432569bb 1475
669d7868 1476 hrtimer_cancel(&t->timer);
c9cb2e3d 1477 mode = HRTIMER_MODE_ABS;
669d7868
TG
1478
1479 } while (t->task && !signal_pending(current));
432569bb 1480
3588a085
PZ
1481 __set_current_state(TASK_RUNNING);
1482
669d7868 1483 return t->task == NULL;
10c94ec1
TG
1484}
1485
080344b9
ON
1486static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1487{
1488 struct timespec rmt;
1489 ktime_t rem;
1490
cc584b21 1491 rem = hrtimer_expires_remaining(timer);
080344b9
ON
1492 if (rem.tv64 <= 0)
1493 return 0;
1494 rmt = ktime_to_timespec(rem);
1495
1496 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1497 return -EFAULT;
1498
1499 return 1;
1500}
1501
1711ef38 1502long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1503{
669d7868 1504 struct hrtimer_sleeper t;
080344b9 1505 struct timespec __user *rmtp;
237fc6e7 1506 int ret = 0;
10c94ec1 1507
237fc6e7
TG
1508 hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
1509 HRTIMER_MODE_ABS);
cc584b21 1510 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
10c94ec1 1511
c9cb2e3d 1512 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
237fc6e7 1513 goto out;
10c94ec1 1514
029a07e0 1515 rmtp = restart->nanosleep.rmtp;
432569bb 1516 if (rmtp) {
237fc6e7 1517 ret = update_rmtp(&t.timer, rmtp);
080344b9 1518 if (ret <= 0)
237fc6e7 1519 goto out;
432569bb 1520 }
10c94ec1 1521
10c94ec1 1522 /* The other values in restart are already filled in */
237fc6e7
TG
1523 ret = -ERESTART_RESTARTBLOCK;
1524out:
1525 destroy_hrtimer_on_stack(&t.timer);
1526 return ret;
10c94ec1
TG
1527}
1528
080344b9 1529long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
10c94ec1
TG
1530 const enum hrtimer_mode mode, const clockid_t clockid)
1531{
1532 struct restart_block *restart;
669d7868 1533 struct hrtimer_sleeper t;
237fc6e7 1534 int ret = 0;
3bd01206
AV
1535 unsigned long slack;
1536
1537 slack = current->timer_slack_ns;
1538 if (rt_task(current))
1539 slack = 0;
10c94ec1 1540
237fc6e7 1541 hrtimer_init_on_stack(&t.timer, clockid, mode);
3bd01206 1542 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
432569bb 1543 if (do_nanosleep(&t, mode))
237fc6e7 1544 goto out;
10c94ec1 1545
7978672c 1546 /* Absolute timers do not update the rmtp value and restart: */
237fc6e7
TG
1547 if (mode == HRTIMER_MODE_ABS) {
1548 ret = -ERESTARTNOHAND;
1549 goto out;
1550 }
10c94ec1 1551
432569bb 1552 if (rmtp) {
237fc6e7 1553 ret = update_rmtp(&t.timer, rmtp);
080344b9 1554 if (ret <= 0)
237fc6e7 1555 goto out;
432569bb 1556 }
10c94ec1
TG
1557
1558 restart = &current_thread_info()->restart_block;
1711ef38 1559 restart->fn = hrtimer_nanosleep_restart;
029a07e0
TG
1560 restart->nanosleep.index = t.timer.base->index;
1561 restart->nanosleep.rmtp = rmtp;
cc584b21 1562 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
10c94ec1 1563
237fc6e7
TG
1564 ret = -ERESTART_RESTARTBLOCK;
1565out:
1566 destroy_hrtimer_on_stack(&t.timer);
1567 return ret;
10c94ec1
TG
1568}
1569
58fd3aa2
HC
1570SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1571 struct timespec __user *, rmtp)
6ba1b912 1572{
080344b9 1573 struct timespec tu;
6ba1b912
TG
1574
1575 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1576 return -EFAULT;
1577
1578 if (!timespec_valid(&tu))
1579 return -EINVAL;
1580
080344b9 1581 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1582}
1583
c0a31329
TG
1584/*
1585 * Functions related to boot-time initialization:
1586 */
0ec160dd 1587static void __cpuinit init_hrtimers_cpu(int cpu)
c0a31329 1588{
3c8aa39d 1589 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1590 int i;
1591
3c8aa39d 1592 spin_lock_init(&cpu_base->lock);
3c8aa39d
TG
1593
1594 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1595 cpu_base->clock_base[i].cpu_base = cpu_base;
1596
54cdfdb4 1597 hrtimer_init_hres(cpu_base);
c0a31329
TG
1598}
1599
1600#ifdef CONFIG_HOTPLUG_CPU
1601
ca109491 1602static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
37810659 1603 struct hrtimer_clock_base *new_base)
c0a31329
TG
1604{
1605 struct hrtimer *timer;
1606 struct rb_node *node;
1607
1608 while ((node = rb_first(&old_base->active))) {
1609 timer = rb_entry(node, struct hrtimer, node);
54cdfdb4 1610 BUG_ON(hrtimer_callback_running(timer));
237fc6e7 1611 debug_hrtimer_deactivate(timer);
b00c1a99
TG
1612
1613 /*
1614 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1615 * timer could be seen as !active and just vanish away
1616 * under us on another CPU
1617 */
1618 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
c0a31329 1619 timer->base = new_base;
54cdfdb4 1620 /*
e3f1d883
TG
1621 * Enqueue the timers on the new cpu. This does not
1622 * reprogram the event device in case the timer
1623 * expires before the earliest on this CPU, but we run
1624 * hrtimer_interrupt after we migrated everything to
1625 * sort out already expired timers and reprogram the
1626 * event device.
54cdfdb4 1627 */
a6037b61 1628 enqueue_hrtimer(timer, new_base);
41e1022e 1629
b00c1a99
TG
1630 /* Clear the migration state bit */
1631 timer->state &= ~HRTIMER_STATE_MIGRATE;
c0a31329
TG
1632 }
1633}
1634
d5fd43c4 1635static void migrate_hrtimers(int scpu)
c0a31329 1636{
3c8aa39d 1637 struct hrtimer_cpu_base *old_base, *new_base;
731a55ba 1638 int i;
c0a31329 1639
37810659 1640 BUG_ON(cpu_online(scpu));
37810659 1641 tick_cancel_sched_timer(scpu);
731a55ba
TG
1642
1643 local_irq_disable();
1644 old_base = &per_cpu(hrtimer_bases, scpu);
1645 new_base = &__get_cpu_var(hrtimer_bases);
d82f0b0f
ON
1646 /*
1647 * The caller is globally serialized and nobody else
1648 * takes two locks at once, deadlock is not possible.
1649 */
731a55ba 1650 spin_lock(&new_base->lock);
8e60e05f 1651 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
c0a31329 1652
3c8aa39d 1653 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ca109491 1654 migrate_hrtimer_list(&old_base->clock_base[i],
37810659 1655 &new_base->clock_base[i]);
c0a31329
TG
1656 }
1657
8e60e05f 1658 spin_unlock(&old_base->lock);
731a55ba 1659 spin_unlock(&new_base->lock);
37810659 1660
731a55ba
TG
1661 /* Check, if we got expired work to do */
1662 __hrtimer_peek_ahead_timers();
1663 local_irq_enable();
c0a31329 1664}
37810659 1665
c0a31329
TG
1666#endif /* CONFIG_HOTPLUG_CPU */
1667
8c78f307 1668static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
c0a31329
TG
1669 unsigned long action, void *hcpu)
1670{
b2e3c0ad 1671 int scpu = (long)hcpu;
c0a31329
TG
1672
1673 switch (action) {
1674
1675 case CPU_UP_PREPARE:
8bb78442 1676 case CPU_UP_PREPARE_FROZEN:
37810659 1677 init_hrtimers_cpu(scpu);
c0a31329
TG
1678 break;
1679
1680#ifdef CONFIG_HOTPLUG_CPU
94df7de0
SD
1681 case CPU_DYING:
1682 case CPU_DYING_FROZEN:
1683 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1684 break;
c0a31329 1685 case CPU_DEAD:
8bb78442 1686 case CPU_DEAD_FROZEN:
b2e3c0ad 1687 {
37810659 1688 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
d5fd43c4 1689 migrate_hrtimers(scpu);
c0a31329 1690 break;
b2e3c0ad 1691 }
c0a31329
TG
1692#endif
1693
1694 default:
1695 break;
1696 }
1697
1698 return NOTIFY_OK;
1699}
1700
8c78f307 1701static struct notifier_block __cpuinitdata hrtimers_nb = {
c0a31329
TG
1702 .notifier_call = hrtimer_cpu_notify,
1703};
1704
1705void __init hrtimers_init(void)
1706{
1707 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1708 (void *)(long)smp_processor_id());
1709 register_cpu_notifier(&hrtimers_nb);
a6037b61
PZ
1710#ifdef CONFIG_HIGH_RES_TIMERS
1711 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1712#endif
c0a31329
TG
1713}
1714
7bb67439 1715/**
654c8e0b 1716 * schedule_hrtimeout_range - sleep until timeout
7bb67439 1717 * @expires: timeout value (ktime_t)
654c8e0b 1718 * @delta: slack in expires timeout (ktime_t)
7bb67439
AV
1719 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1720 *
1721 * Make the current task sleep until the given expiry time has
1722 * elapsed. The routine will return immediately unless
1723 * the current task state has been set (see set_current_state()).
1724 *
654c8e0b
AV
1725 * The @delta argument gives the kernel the freedom to schedule the
1726 * actual wakeup to a time that is both power and performance friendly.
1727 * The kernel give the normal best effort behavior for "@expires+@delta",
1728 * but may decide to fire the timer earlier, but no earlier than @expires.
1729 *
7bb67439
AV
1730 * You can set the task state as follows -
1731 *
1732 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1733 * pass before the routine returns.
1734 *
1735 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1736 * delivered to the current task.
1737 *
1738 * The current task state is guaranteed to be TASK_RUNNING when this
1739 * routine returns.
1740 *
1741 * Returns 0 when the timer has expired otherwise -EINTR
1742 */
654c8e0b 1743int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
7bb67439
AV
1744 const enum hrtimer_mode mode)
1745{
1746 struct hrtimer_sleeper t;
1747
1748 /*
1749 * Optimize when a zero timeout value is given. It does not
1750 * matter whether this is an absolute or a relative time.
1751 */
1752 if (expires && !expires->tv64) {
1753 __set_current_state(TASK_RUNNING);
1754 return 0;
1755 }
1756
1757 /*
1758 * A NULL parameter means "inifinte"
1759 */
1760 if (!expires) {
1761 schedule();
1762 __set_current_state(TASK_RUNNING);
1763 return -EINTR;
1764 }
1765
1766 hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode);
654c8e0b 1767 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
7bb67439
AV
1768
1769 hrtimer_init_sleeper(&t, current);
1770
cc584b21 1771 hrtimer_start_expires(&t.timer, mode);
7bb67439
AV
1772 if (!hrtimer_active(&t.timer))
1773 t.task = NULL;
1774
1775 if (likely(t.task))
1776 schedule();
1777
1778 hrtimer_cancel(&t.timer);
1779 destroy_hrtimer_on_stack(&t.timer);
1780
1781 __set_current_state(TASK_RUNNING);
1782
1783 return !t.task ? 0 : -EINTR;
1784}
654c8e0b
AV
1785EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1786
1787/**
1788 * schedule_hrtimeout - sleep until timeout
1789 * @expires: timeout value (ktime_t)
1790 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1791 *
1792 * Make the current task sleep until the given expiry time has
1793 * elapsed. The routine will return immediately unless
1794 * the current task state has been set (see set_current_state()).
1795 *
1796 * You can set the task state as follows -
1797 *
1798 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1799 * pass before the routine returns.
1800 *
1801 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1802 * delivered to the current task.
1803 *
1804 * The current task state is guaranteed to be TASK_RUNNING when this
1805 * routine returns.
1806 *
1807 * Returns 0 when the timer has expired otherwise -EINTR
1808 */
1809int __sched schedule_hrtimeout(ktime_t *expires,
1810 const enum hrtimer_mode mode)
1811{
1812 return schedule_hrtimeout_range(expires, 0, mode);
1813}
7bb67439 1814EXPORT_SYMBOL_GPL(schedule_hrtimeout);