futex priority based wakeup
[linux-2.6-block.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
1da177e4
LT
19 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
20 * enough at me, Linus for the original (flawed) idea, Matthew
21 * Kirkwood for proof-of-concept implementation.
22 *
23 * "The futexes are also cursed."
24 * "But they come in a choice of three flavours!"
25 *
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License as published by
28 * the Free Software Foundation; either version 2 of the License, or
29 * (at your option) any later version.
30 *
31 * This program is distributed in the hope that it will be useful,
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
34 * GNU General Public License for more details.
35 *
36 * You should have received a copy of the GNU General Public License
37 * along with this program; if not, write to the Free Software
38 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
39 */
40#include <linux/slab.h>
41#include <linux/poll.h>
42#include <linux/fs.h>
43#include <linux/file.h>
44#include <linux/jhash.h>
45#include <linux/init.h>
46#include <linux/futex.h>
47#include <linux/mount.h>
48#include <linux/pagemap.h>
49#include <linux/syscalls.h>
7ed20e1a 50#include <linux/signal.h>
9adef58b 51#include <linux/module.h>
4732efbe 52#include <asm/futex.h>
1da177e4 53
c87e2837
IM
54#include "rtmutex_common.h"
55
1da177e4
LT
56#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
57
c87e2837
IM
58/*
59 * Priority Inheritance state:
60 */
61struct futex_pi_state {
62 /*
63 * list of 'owned' pi_state instances - these have to be
64 * cleaned up in do_exit() if the task exits prematurely:
65 */
66 struct list_head list;
67
68 /*
69 * The PI object:
70 */
71 struct rt_mutex pi_mutex;
72
73 struct task_struct *owner;
74 atomic_t refcount;
75
76 union futex_key key;
77};
78
1da177e4
LT
79/*
80 * We use this hashed waitqueue instead of a normal wait_queue_t, so
81 * we can wake only the relevant ones (hashed queues may be shared).
82 *
83 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 84 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
1da177e4
LT
85 * The order of wakup is always to make the first condition true, then
86 * wake up q->waiters, then make the second condition true.
87 */
88struct futex_q {
ec92d082 89 struct plist_node list;
1da177e4
LT
90 wait_queue_head_t waiters;
91
e2970f2f 92 /* Which hash list lock to use: */
1da177e4
LT
93 spinlock_t *lock_ptr;
94
e2970f2f 95 /* Key which the futex is hashed on: */
1da177e4
LT
96 union futex_key key;
97
e2970f2f 98 /* For fd, sigio sent using these: */
1da177e4
LT
99 int fd;
100 struct file *filp;
c87e2837
IM
101
102 /* Optional priority inheritance state: */
103 struct futex_pi_state *pi_state;
104 struct task_struct *task;
1da177e4
LT
105};
106
107/*
108 * Split the global futex_lock into every hash list lock.
109 */
110struct futex_hash_bucket {
ec92d082
PP
111 spinlock_t lock;
112 struct plist_head chain;
1da177e4
LT
113};
114
115static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
116
117/* Futex-fs vfsmount entry: */
118static struct vfsmount *futex_mnt;
119
120/*
121 * We hash on the keys returned from get_futex_key (see below).
122 */
123static struct futex_hash_bucket *hash_futex(union futex_key *key)
124{
125 u32 hash = jhash2((u32*)&key->both.word,
126 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
127 key->both.offset);
128 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
129}
130
131/*
132 * Return 1 if two futex_keys are equal, 0 otherwise.
133 */
134static inline int match_futex(union futex_key *key1, union futex_key *key2)
135{
136 return (key1->both.word == key2->both.word
137 && key1->both.ptr == key2->both.ptr
138 && key1->both.offset == key2->both.offset);
139}
140
141/*
142 * Get parameters which are the keys for a futex.
143 *
f3a43f3f 144 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
1da177e4
LT
145 * offset_within_page). For private mappings, it's (uaddr, current->mm).
146 * We can usually work out the index without swapping in the page.
147 *
148 * Returns: 0, or negative error code.
149 * The key words are stored in *key on success.
150 *
151 * Should be called with &current->mm->mmap_sem but NOT any spinlocks.
152 */
9adef58b 153int get_futex_key(u32 __user *uaddr, union futex_key *key)
1da177e4 154{
e2970f2f 155 unsigned long address = (unsigned long)uaddr;
1da177e4
LT
156 struct mm_struct *mm = current->mm;
157 struct vm_area_struct *vma;
158 struct page *page;
159 int err;
160
161 /*
162 * The futex address must be "naturally" aligned.
163 */
e2970f2f 164 key->both.offset = address % PAGE_SIZE;
1da177e4
LT
165 if (unlikely((key->both.offset % sizeof(u32)) != 0))
166 return -EINVAL;
e2970f2f 167 address -= key->both.offset;
1da177e4
LT
168
169 /*
170 * The futex is hashed differently depending on whether
171 * it's in a shared or private mapping. So check vma first.
172 */
e2970f2f 173 vma = find_extend_vma(mm, address);
1da177e4
LT
174 if (unlikely(!vma))
175 return -EFAULT;
176
177 /*
178 * Permissions.
179 */
180 if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
181 return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;
182
183 /*
184 * Private mappings are handled in a simple way.
185 *
186 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
187 * it's a read-only handle, it's expected that futexes attach to
188 * the object not the particular process. Therefore we use
189 * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
190 * mappings of _writable_ handles.
191 */
192 if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
193 key->private.mm = mm;
e2970f2f 194 key->private.address = address;
1da177e4
LT
195 return 0;
196 }
197
198 /*
199 * Linear file mappings are also simple.
200 */
f3a43f3f 201 key->shared.inode = vma->vm_file->f_path.dentry->d_inode;
1da177e4
LT
202 key->both.offset++; /* Bit 0 of offset indicates inode-based key. */
203 if (likely(!(vma->vm_flags & VM_NONLINEAR))) {
e2970f2f 204 key->shared.pgoff = (((address - vma->vm_start) >> PAGE_SHIFT)
1da177e4
LT
205 + vma->vm_pgoff);
206 return 0;
207 }
208
209 /*
210 * We could walk the page table to read the non-linear
211 * pte, and get the page index without fetching the page
212 * from swap. But that's a lot of code to duplicate here
213 * for a rare case, so we simply fetch the page.
214 */
e2970f2f 215 err = get_user_pages(current, mm, address, 1, 0, 0, &page, NULL);
1da177e4
LT
216 if (err >= 0) {
217 key->shared.pgoff =
218 page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
219 put_page(page);
220 return 0;
221 }
222 return err;
223}
9adef58b 224EXPORT_SYMBOL_GPL(get_futex_key);
1da177e4
LT
225
226/*
227 * Take a reference to the resource addressed by a key.
228 * Can be called while holding spinlocks.
229 *
230 * NOTE: mmap_sem MUST be held between get_futex_key() and calling this
231 * function, if it is called at all. mmap_sem keeps key->shared.inode valid.
232 */
9adef58b 233inline void get_futex_key_refs(union futex_key *key)
1da177e4
LT
234{
235 if (key->both.ptr != 0) {
236 if (key->both.offset & 1)
237 atomic_inc(&key->shared.inode->i_count);
238 else
239 atomic_inc(&key->private.mm->mm_count);
240 }
241}
9adef58b 242EXPORT_SYMBOL_GPL(get_futex_key_refs);
1da177e4
LT
243
244/*
245 * Drop a reference to the resource addressed by a key.
246 * The hash bucket spinlock must not be held.
247 */
9adef58b 248void drop_futex_key_refs(union futex_key *key)
1da177e4
LT
249{
250 if (key->both.ptr != 0) {
251 if (key->both.offset & 1)
252 iput(key->shared.inode);
253 else
254 mmdrop(key->private.mm);
255 }
256}
9adef58b 257EXPORT_SYMBOL_GPL(drop_futex_key_refs);
1da177e4 258
e2970f2f 259static inline int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
260{
261 int ret;
262
a866374a 263 pagefault_disable();
e2970f2f 264 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 265 pagefault_enable();
1da177e4
LT
266
267 return ret ? -EFAULT : 0;
268}
269
c87e2837
IM
270/*
271 * Fault handling. Called with current->mm->mmap_sem held.
272 */
273static int futex_handle_fault(unsigned long address, int attempt)
274{
275 struct vm_area_struct * vma;
276 struct mm_struct *mm = current->mm;
277
e579dcbf 278 if (attempt > 2 || !(vma = find_vma(mm, address)) ||
c87e2837
IM
279 vma->vm_start > address || !(vma->vm_flags & VM_WRITE))
280 return -EFAULT;
281
282 switch (handle_mm_fault(mm, vma, address, 1)) {
283 case VM_FAULT_MINOR:
284 current->min_flt++;
285 break;
286 case VM_FAULT_MAJOR:
287 current->maj_flt++;
288 break;
289 default:
290 return -EFAULT;
291 }
292 return 0;
293}
294
295/*
296 * PI code:
297 */
298static int refill_pi_state_cache(void)
299{
300 struct futex_pi_state *pi_state;
301
302 if (likely(current->pi_state_cache))
303 return 0;
304
4668edc3 305 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
306
307 if (!pi_state)
308 return -ENOMEM;
309
c87e2837
IM
310 INIT_LIST_HEAD(&pi_state->list);
311 /* pi_mutex gets initialized later */
312 pi_state->owner = NULL;
313 atomic_set(&pi_state->refcount, 1);
314
315 current->pi_state_cache = pi_state;
316
317 return 0;
318}
319
320static struct futex_pi_state * alloc_pi_state(void)
321{
322 struct futex_pi_state *pi_state = current->pi_state_cache;
323
324 WARN_ON(!pi_state);
325 current->pi_state_cache = NULL;
326
327 return pi_state;
328}
329
330static void free_pi_state(struct futex_pi_state *pi_state)
331{
332 if (!atomic_dec_and_test(&pi_state->refcount))
333 return;
334
335 /*
336 * If pi_state->owner is NULL, the owner is most probably dying
337 * and has cleaned up the pi_state already
338 */
339 if (pi_state->owner) {
340 spin_lock_irq(&pi_state->owner->pi_lock);
341 list_del_init(&pi_state->list);
342 spin_unlock_irq(&pi_state->owner->pi_lock);
343
344 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
345 }
346
347 if (current->pi_state_cache)
348 kfree(pi_state);
349 else {
350 /*
351 * pi_state->list is already empty.
352 * clear pi_state->owner.
353 * refcount is at 0 - put it back to 1.
354 */
355 pi_state->owner = NULL;
356 atomic_set(&pi_state->refcount, 1);
357 current->pi_state_cache = pi_state;
358 }
359}
360
361/*
362 * Look up the task based on what TID userspace gave us.
363 * We dont trust it.
364 */
365static struct task_struct * futex_find_get_task(pid_t pid)
366{
367 struct task_struct *p;
368
d359b549 369 rcu_read_lock();
c87e2837
IM
370 p = find_task_by_pid(pid);
371 if (!p)
372 goto out_unlock;
373 if ((current->euid != p->euid) && (current->euid != p->uid)) {
374 p = NULL;
375 goto out_unlock;
376 }
d015baeb 377 if (p->exit_state != 0) {
c87e2837
IM
378 p = NULL;
379 goto out_unlock;
380 }
381 get_task_struct(p);
382out_unlock:
d359b549 383 rcu_read_unlock();
c87e2837
IM
384
385 return p;
386}
387
388/*
389 * This task is holding PI mutexes at exit time => bad.
390 * Kernel cleans up PI-state, but userspace is likely hosed.
391 * (Robust-futex cleanup is separate and might save the day for userspace.)
392 */
393void exit_pi_state_list(struct task_struct *curr)
394{
c87e2837
IM
395 struct list_head *next, *head = &curr->pi_state_list;
396 struct futex_pi_state *pi_state;
627371d7 397 struct futex_hash_bucket *hb;
c87e2837
IM
398 union futex_key key;
399
400 /*
401 * We are a ZOMBIE and nobody can enqueue itself on
402 * pi_state_list anymore, but we have to be careful
627371d7 403 * versus waiters unqueueing themselves:
c87e2837
IM
404 */
405 spin_lock_irq(&curr->pi_lock);
406 while (!list_empty(head)) {
407
408 next = head->next;
409 pi_state = list_entry(next, struct futex_pi_state, list);
410 key = pi_state->key;
627371d7 411 hb = hash_futex(&key);
c87e2837
IM
412 spin_unlock_irq(&curr->pi_lock);
413
c87e2837
IM
414 spin_lock(&hb->lock);
415
416 spin_lock_irq(&curr->pi_lock);
627371d7
IM
417 /*
418 * We dropped the pi-lock, so re-check whether this
419 * task still owns the PI-state:
420 */
c87e2837
IM
421 if (head->next != next) {
422 spin_unlock(&hb->lock);
423 continue;
424 }
425
c87e2837 426 WARN_ON(pi_state->owner != curr);
627371d7
IM
427 WARN_ON(list_empty(&pi_state->list));
428 list_del_init(&pi_state->list);
c87e2837
IM
429 pi_state->owner = NULL;
430 spin_unlock_irq(&curr->pi_lock);
431
432 rt_mutex_unlock(&pi_state->pi_mutex);
433
434 spin_unlock(&hb->lock);
435
436 spin_lock_irq(&curr->pi_lock);
437 }
438 spin_unlock_irq(&curr->pi_lock);
439}
440
441static int
442lookup_pi_state(u32 uval, struct futex_hash_bucket *hb, struct futex_q *me)
443{
444 struct futex_pi_state *pi_state = NULL;
445 struct futex_q *this, *next;
ec92d082 446 struct plist_head *head;
c87e2837
IM
447 struct task_struct *p;
448 pid_t pid;
449
450 head = &hb->chain;
451
ec92d082 452 plist_for_each_entry_safe(this, next, head, list) {
627371d7 453 if (match_futex(&this->key, &me->key)) {
c87e2837
IM
454 /*
455 * Another waiter already exists - bump up
456 * the refcount and return its pi_state:
457 */
458 pi_state = this->pi_state;
06a9ec29
TG
459 /*
460 * Userspace might have messed up non PI and PI futexes
461 */
462 if (unlikely(!pi_state))
463 return -EINVAL;
464
627371d7
IM
465 WARN_ON(!atomic_read(&pi_state->refcount));
466
c87e2837
IM
467 atomic_inc(&pi_state->refcount);
468 me->pi_state = pi_state;
469
470 return 0;
471 }
472 }
473
474 /*
e3f2ddea
IM
475 * We are the first waiter - try to look up the real owner and attach
476 * the new pi_state to it, but bail out when the owner died bit is set
477 * and TID = 0:
c87e2837
IM
478 */
479 pid = uval & FUTEX_TID_MASK;
e3f2ddea
IM
480 if (!pid && (uval & FUTEX_OWNER_DIED))
481 return -ESRCH;
c87e2837
IM
482 p = futex_find_get_task(pid);
483 if (!p)
484 return -ESRCH;
485
486 pi_state = alloc_pi_state();
487
488 /*
489 * Initialize the pi_mutex in locked state and make 'p'
490 * the owner of it:
491 */
492 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
493
494 /* Store the key for possible exit cleanups: */
495 pi_state->key = me->key;
496
497 spin_lock_irq(&p->pi_lock);
627371d7 498 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
499 list_add(&pi_state->list, &p->pi_state_list);
500 pi_state->owner = p;
501 spin_unlock_irq(&p->pi_lock);
502
503 put_task_struct(p);
504
505 me->pi_state = pi_state;
506
507 return 0;
508}
509
1da177e4
LT
510/*
511 * The hash bucket lock must be held when this is called.
512 * Afterwards, the futex_q must not be accessed.
513 */
514static void wake_futex(struct futex_q *q)
515{
ec92d082 516 plist_del(&q->list, &q->list.plist);
1da177e4
LT
517 if (q->filp)
518 send_sigio(&q->filp->f_owner, q->fd, POLL_IN);
519 /*
520 * The lock in wake_up_all() is a crucial memory barrier after the
ec92d082 521 * plist_del() and also before assigning to q->lock_ptr.
1da177e4
LT
522 */
523 wake_up_all(&q->waiters);
524 /*
525 * The waiting task can free the futex_q as soon as this is written,
526 * without taking any locks. This must come last.
8e31108b
AM
527 *
528 * A memory barrier is required here to prevent the following store
529 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
530 * at the end of wake_up_all() does not prevent this store from
531 * moving.
1da177e4 532 */
ccdea2f8 533 smp_wmb();
1da177e4
LT
534 q->lock_ptr = NULL;
535}
536
c87e2837
IM
537static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
538{
539 struct task_struct *new_owner;
540 struct futex_pi_state *pi_state = this->pi_state;
541 u32 curval, newval;
542
543 if (!pi_state)
544 return -EINVAL;
545
21778867 546 spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
547 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
548
549 /*
550 * This happens when we have stolen the lock and the original
551 * pending owner did not enqueue itself back on the rt_mutex.
552 * Thats not a tragedy. We know that way, that a lock waiter
553 * is on the fly. We make the futex_q waiter the pending owner.
554 */
555 if (!new_owner)
556 new_owner = this->task;
557
558 /*
559 * We pass it to the next owner. (The WAITERS bit is always
560 * kept enabled while there is PI state around. We must also
561 * preserve the owner died bit.)
562 */
e3f2ddea
IM
563 if (!(uval & FUTEX_OWNER_DIED)) {
564 newval = FUTEX_WAITERS | new_owner->pid;
565
a866374a 566 pagefault_disable();
e3f2ddea 567 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
a866374a 568 pagefault_enable();
e3f2ddea
IM
569 if (curval == -EFAULT)
570 return -EFAULT;
571 if (curval != uval)
572 return -EINVAL;
573 }
c87e2837 574
627371d7
IM
575 spin_lock_irq(&pi_state->owner->pi_lock);
576 WARN_ON(list_empty(&pi_state->list));
577 list_del_init(&pi_state->list);
578 spin_unlock_irq(&pi_state->owner->pi_lock);
579
580 spin_lock_irq(&new_owner->pi_lock);
581 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
582 list_add(&pi_state->list, &new_owner->pi_state_list);
583 pi_state->owner = new_owner;
627371d7
IM
584 spin_unlock_irq(&new_owner->pi_lock);
585
21778867 586 spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
587 rt_mutex_unlock(&pi_state->pi_mutex);
588
589 return 0;
590}
591
592static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
593{
594 u32 oldval;
595
596 /*
597 * There is no waiter, so we unlock the futex. The owner died
598 * bit has not to be preserved here. We are the owner:
599 */
a866374a 600 pagefault_disable();
c87e2837 601 oldval = futex_atomic_cmpxchg_inatomic(uaddr, uval, 0);
a866374a 602 pagefault_enable();
c87e2837
IM
603
604 if (oldval == -EFAULT)
605 return oldval;
606 if (oldval != uval)
607 return -EAGAIN;
608
609 return 0;
610}
611
8b8f319f
IM
612/*
613 * Express the locking dependencies for lockdep:
614 */
615static inline void
616double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
617{
618 if (hb1 <= hb2) {
619 spin_lock(&hb1->lock);
620 if (hb1 < hb2)
621 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
622 } else { /* hb1 > hb2 */
623 spin_lock(&hb2->lock);
624 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
625 }
626}
627
1da177e4
LT
628/*
629 * Wake up all waiters hashed on the physical page that is mapped
630 * to this virtual address:
631 */
e2970f2f 632static int futex_wake(u32 __user *uaddr, int nr_wake)
1da177e4 633{
e2970f2f 634 struct futex_hash_bucket *hb;
1da177e4 635 struct futex_q *this, *next;
ec92d082 636 struct plist_head *head;
e2970f2f 637 union futex_key key;
1da177e4
LT
638 int ret;
639
640 down_read(&current->mm->mmap_sem);
641
642 ret = get_futex_key(uaddr, &key);
643 if (unlikely(ret != 0))
644 goto out;
645
e2970f2f
IM
646 hb = hash_futex(&key);
647 spin_lock(&hb->lock);
648 head = &hb->chain;
1da177e4 649
ec92d082 650 plist_for_each_entry_safe(this, next, head, list) {
1da177e4 651 if (match_futex (&this->key, &key)) {
ed6f7b10
IM
652 if (this->pi_state) {
653 ret = -EINVAL;
654 break;
655 }
1da177e4
LT
656 wake_futex(this);
657 if (++ret >= nr_wake)
658 break;
659 }
660 }
661
e2970f2f 662 spin_unlock(&hb->lock);
1da177e4
LT
663out:
664 up_read(&current->mm->mmap_sem);
665 return ret;
666}
667
4732efbe
JJ
668/*
669 * Wake up all waiters hashed on the physical page that is mapped
670 * to this virtual address:
671 */
e2970f2f
IM
672static int
673futex_wake_op(u32 __user *uaddr1, u32 __user *uaddr2,
674 int nr_wake, int nr_wake2, int op)
4732efbe
JJ
675{
676 union futex_key key1, key2;
e2970f2f 677 struct futex_hash_bucket *hb1, *hb2;
ec92d082 678 struct plist_head *head;
4732efbe
JJ
679 struct futex_q *this, *next;
680 int ret, op_ret, attempt = 0;
681
682retryfull:
683 down_read(&current->mm->mmap_sem);
684
685 ret = get_futex_key(uaddr1, &key1);
686 if (unlikely(ret != 0))
687 goto out;
688 ret = get_futex_key(uaddr2, &key2);
689 if (unlikely(ret != 0))
690 goto out;
691
e2970f2f
IM
692 hb1 = hash_futex(&key1);
693 hb2 = hash_futex(&key2);
4732efbe
JJ
694
695retry:
8b8f319f 696 double_lock_hb(hb1, hb2);
4732efbe 697
e2970f2f 698 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 699 if (unlikely(op_ret < 0)) {
e2970f2f 700 u32 dummy;
4732efbe 701
e2970f2f
IM
702 spin_unlock(&hb1->lock);
703 if (hb1 != hb2)
704 spin_unlock(&hb2->lock);
4732efbe 705
7ee1dd3f 706#ifndef CONFIG_MMU
e2970f2f
IM
707 /*
708 * we don't get EFAULT from MMU faults if we don't have an MMU,
709 * but we might get them from range checking
710 */
7ee1dd3f
DH
711 ret = op_ret;
712 goto out;
713#endif
714
796f8d9b
DG
715 if (unlikely(op_ret != -EFAULT)) {
716 ret = op_ret;
717 goto out;
718 }
719
e2970f2f
IM
720 /*
721 * futex_atomic_op_inuser needs to both read and write
4732efbe
JJ
722 * *(int __user *)uaddr2, but we can't modify it
723 * non-atomically. Therefore, if get_user below is not
724 * enough, we need to handle the fault ourselves, while
e2970f2f
IM
725 * still holding the mmap_sem.
726 */
4732efbe 727 if (attempt++) {
c87e2837 728 if (futex_handle_fault((unsigned long)uaddr2,
e579dcbf 729 attempt)) {
730 ret = -EFAULT;
4732efbe 731 goto out;
e579dcbf 732 }
4732efbe
JJ
733 goto retry;
734 }
735
e2970f2f
IM
736 /*
737 * If we would have faulted, release mmap_sem,
738 * fault it in and start all over again.
739 */
4732efbe
JJ
740 up_read(&current->mm->mmap_sem);
741
e2970f2f 742 ret = get_user(dummy, uaddr2);
4732efbe
JJ
743 if (ret)
744 return ret;
745
746 goto retryfull;
747 }
748
e2970f2f 749 head = &hb1->chain;
4732efbe 750
ec92d082 751 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
752 if (match_futex (&this->key, &key1)) {
753 wake_futex(this);
754 if (++ret >= nr_wake)
755 break;
756 }
757 }
758
759 if (op_ret > 0) {
e2970f2f 760 head = &hb2->chain;
4732efbe
JJ
761
762 op_ret = 0;
ec92d082 763 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
764 if (match_futex (&this->key, &key2)) {
765 wake_futex(this);
766 if (++op_ret >= nr_wake2)
767 break;
768 }
769 }
770 ret += op_ret;
771 }
772
e2970f2f
IM
773 spin_unlock(&hb1->lock);
774 if (hb1 != hb2)
775 spin_unlock(&hb2->lock);
4732efbe
JJ
776out:
777 up_read(&current->mm->mmap_sem);
778 return ret;
779}
780
1da177e4
LT
781/*
782 * Requeue all waiters hashed on one physical page to another
783 * physical page.
784 */
e2970f2f
IM
785static int futex_requeue(u32 __user *uaddr1, u32 __user *uaddr2,
786 int nr_wake, int nr_requeue, u32 *cmpval)
1da177e4
LT
787{
788 union futex_key key1, key2;
e2970f2f 789 struct futex_hash_bucket *hb1, *hb2;
ec92d082 790 struct plist_head *head1;
1da177e4
LT
791 struct futex_q *this, *next;
792 int ret, drop_count = 0;
793
794 retry:
795 down_read(&current->mm->mmap_sem);
796
797 ret = get_futex_key(uaddr1, &key1);
798 if (unlikely(ret != 0))
799 goto out;
800 ret = get_futex_key(uaddr2, &key2);
801 if (unlikely(ret != 0))
802 goto out;
803
e2970f2f
IM
804 hb1 = hash_futex(&key1);
805 hb2 = hash_futex(&key2);
1da177e4 806
8b8f319f 807 double_lock_hb(hb1, hb2);
1da177e4 808
e2970f2f
IM
809 if (likely(cmpval != NULL)) {
810 u32 curval;
1da177e4 811
e2970f2f 812 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
813
814 if (unlikely(ret)) {
e2970f2f
IM
815 spin_unlock(&hb1->lock);
816 if (hb1 != hb2)
817 spin_unlock(&hb2->lock);
1da177e4 818
e2970f2f
IM
819 /*
820 * If we would have faulted, release mmap_sem, fault
1da177e4
LT
821 * it in and start all over again.
822 */
823 up_read(&current->mm->mmap_sem);
824
e2970f2f 825 ret = get_user(curval, uaddr1);
1da177e4
LT
826
827 if (!ret)
828 goto retry;
829
830 return ret;
831 }
e2970f2f 832 if (curval != *cmpval) {
1da177e4
LT
833 ret = -EAGAIN;
834 goto out_unlock;
835 }
836 }
837
e2970f2f 838 head1 = &hb1->chain;
ec92d082 839 plist_for_each_entry_safe(this, next, head1, list) {
1da177e4
LT
840 if (!match_futex (&this->key, &key1))
841 continue;
842 if (++ret <= nr_wake) {
843 wake_futex(this);
844 } else {
59e0e0ac
SD
845 /*
846 * If key1 and key2 hash to the same bucket, no need to
847 * requeue.
848 */
849 if (likely(head1 != &hb2->chain)) {
ec92d082
PP
850 plist_del(&this->list, &hb1->chain);
851 plist_add(&this->list, &hb2->chain);
59e0e0ac 852 this->lock_ptr = &hb2->lock;
ec92d082
PP
853#ifdef CONFIG_DEBUG_PI_LIST
854 this->list.plist.lock = &hb2->lock;
855#endif
856 }
1da177e4 857 this->key = key2;
9adef58b 858 get_futex_key_refs(&key2);
1da177e4
LT
859 drop_count++;
860
861 if (ret - nr_wake >= nr_requeue)
862 break;
1da177e4
LT
863 }
864 }
865
866out_unlock:
e2970f2f
IM
867 spin_unlock(&hb1->lock);
868 if (hb1 != hb2)
869 spin_unlock(&hb2->lock);
1da177e4 870
9adef58b 871 /* drop_futex_key_refs() must be called outside the spinlocks. */
1da177e4 872 while (--drop_count >= 0)
9adef58b 873 drop_futex_key_refs(&key1);
1da177e4
LT
874
875out:
876 up_read(&current->mm->mmap_sem);
877 return ret;
878}
879
880/* The key must be already stored in q->key. */
881static inline struct futex_hash_bucket *
882queue_lock(struct futex_q *q, int fd, struct file *filp)
883{
e2970f2f 884 struct futex_hash_bucket *hb;
1da177e4
LT
885
886 q->fd = fd;
887 q->filp = filp;
888
889 init_waitqueue_head(&q->waiters);
890
9adef58b 891 get_futex_key_refs(&q->key);
e2970f2f
IM
892 hb = hash_futex(&q->key);
893 q->lock_ptr = &hb->lock;
1da177e4 894
e2970f2f
IM
895 spin_lock(&hb->lock);
896 return hb;
1da177e4
LT
897}
898
e2970f2f 899static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 900{
ec92d082
PP
901 int prio;
902
903 /*
904 * The priority used to register this element is
905 * - either the real thread-priority for the real-time threads
906 * (i.e. threads with a priority lower than MAX_RT_PRIO)
907 * - or MAX_RT_PRIO for non-RT threads.
908 * Thus, all RT-threads are woken first in priority order, and
909 * the others are woken last, in FIFO order.
910 */
911 prio = min(current->normal_prio, MAX_RT_PRIO);
912
913 plist_node_init(&q->list, prio);
914#ifdef CONFIG_DEBUG_PI_LIST
915 q->list.plist.lock = &hb->lock;
916#endif
917 plist_add(&q->list, &hb->chain);
c87e2837 918 q->task = current;
e2970f2f 919 spin_unlock(&hb->lock);
1da177e4
LT
920}
921
922static inline void
e2970f2f 923queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 924{
e2970f2f 925 spin_unlock(&hb->lock);
9adef58b 926 drop_futex_key_refs(&q->key);
1da177e4
LT
927}
928
929/*
930 * queue_me and unqueue_me must be called as a pair, each
931 * exactly once. They are called with the hashed spinlock held.
932 */
933
934/* The key must be already stored in q->key. */
935static void queue_me(struct futex_q *q, int fd, struct file *filp)
936{
e2970f2f
IM
937 struct futex_hash_bucket *hb;
938
939 hb = queue_lock(q, fd, filp);
940 __queue_me(q, hb);
1da177e4
LT
941}
942
943/* Return 1 if we were still queued (ie. 0 means we were woken) */
944static int unqueue_me(struct futex_q *q)
945{
1da177e4 946 spinlock_t *lock_ptr;
e2970f2f 947 int ret = 0;
1da177e4
LT
948
949 /* In the common case we don't take the spinlock, which is nice. */
950 retry:
951 lock_ptr = q->lock_ptr;
e91467ec 952 barrier();
1da177e4
LT
953 if (lock_ptr != 0) {
954 spin_lock(lock_ptr);
955 /*
956 * q->lock_ptr can change between reading it and
957 * spin_lock(), causing us to take the wrong lock. This
958 * corrects the race condition.
959 *
960 * Reasoning goes like this: if we have the wrong lock,
961 * q->lock_ptr must have changed (maybe several times)
962 * between reading it and the spin_lock(). It can
963 * change again after the spin_lock() but only if it was
964 * already changed before the spin_lock(). It cannot,
965 * however, change back to the original value. Therefore
966 * we can detect whether we acquired the correct lock.
967 */
968 if (unlikely(lock_ptr != q->lock_ptr)) {
969 spin_unlock(lock_ptr);
970 goto retry;
971 }
ec92d082
PP
972 WARN_ON(plist_node_empty(&q->list));
973 plist_del(&q->list, &q->list.plist);
c87e2837
IM
974
975 BUG_ON(q->pi_state);
976
1da177e4
LT
977 spin_unlock(lock_ptr);
978 ret = 1;
979 }
980
9adef58b 981 drop_futex_key_refs(&q->key);
1da177e4
LT
982 return ret;
983}
984
c87e2837
IM
985/*
986 * PI futexes can not be requeued and must remove themself from the
987 * hash bucket. The hash bucket lock is held on entry and dropped here.
988 */
989static void unqueue_me_pi(struct futex_q *q, struct futex_hash_bucket *hb)
990{
ec92d082
PP
991 WARN_ON(plist_node_empty(&q->list));
992 plist_del(&q->list, &q->list.plist);
c87e2837
IM
993
994 BUG_ON(!q->pi_state);
995 free_pi_state(q->pi_state);
996 q->pi_state = NULL;
997
998 spin_unlock(&hb->lock);
999
9adef58b 1000 drop_futex_key_refs(&q->key);
c87e2837
IM
1001}
1002
72c1bbf3
NP
1003static long futex_wait_restart(struct restart_block *restart);
1004static int futex_wait_abstime(u32 __user *uaddr, u32 val,
1005 int timed, unsigned long abs_time)
1da177e4 1006{
c87e2837
IM
1007 struct task_struct *curr = current;
1008 DECLARE_WAITQUEUE(wait, curr);
e2970f2f 1009 struct futex_hash_bucket *hb;
1da177e4 1010 struct futex_q q;
72c1bbf3 1011 unsigned long time_left = 0;
e2970f2f
IM
1012 u32 uval;
1013 int ret;
1da177e4 1014
c87e2837 1015 q.pi_state = NULL;
1da177e4 1016 retry:
c87e2837 1017 down_read(&curr->mm->mmap_sem);
1da177e4
LT
1018
1019 ret = get_futex_key(uaddr, &q.key);
1020 if (unlikely(ret != 0))
1021 goto out_release_sem;
1022
e2970f2f 1023 hb = queue_lock(&q, -1, NULL);
1da177e4
LT
1024
1025 /*
1026 * Access the page AFTER the futex is queued.
1027 * Order is important:
1028 *
1029 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1030 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1031 *
1032 * The basic logical guarantee of a futex is that it blocks ONLY
1033 * if cond(var) is known to be true at the time of blocking, for
1034 * any cond. If we queued after testing *uaddr, that would open
1035 * a race condition where we could block indefinitely with
1036 * cond(var) false, which would violate the guarantee.
1037 *
1038 * A consequence is that futex_wait() can return zero and absorb
1039 * a wakeup when *uaddr != val on entry to the syscall. This is
1040 * rare, but normal.
1041 *
1042 * We hold the mmap semaphore, so the mapping cannot have changed
1043 * since we looked it up in get_futex_key.
1044 */
e2970f2f 1045 ret = get_futex_value_locked(&uval, uaddr);
1da177e4
LT
1046
1047 if (unlikely(ret)) {
e2970f2f 1048 queue_unlock(&q, hb);
1da177e4 1049
e2970f2f
IM
1050 /*
1051 * If we would have faulted, release mmap_sem, fault it in and
1da177e4
LT
1052 * start all over again.
1053 */
c87e2837 1054 up_read(&curr->mm->mmap_sem);
1da177e4 1055
e2970f2f 1056 ret = get_user(uval, uaddr);
1da177e4
LT
1057
1058 if (!ret)
1059 goto retry;
1060 return ret;
1061 }
c87e2837
IM
1062 ret = -EWOULDBLOCK;
1063 if (uval != val)
1064 goto out_unlock_release_sem;
1da177e4
LT
1065
1066 /* Only actually queue if *uaddr contained val. */
e2970f2f 1067 __queue_me(&q, hb);
1da177e4
LT
1068
1069 /*
1070 * Now the futex is queued and we have checked the data, we
1071 * don't want to hold mmap_sem while we sleep.
c87e2837
IM
1072 */
1073 up_read(&curr->mm->mmap_sem);
1da177e4
LT
1074
1075 /*
1076 * There might have been scheduling since the queue_me(), as we
1077 * cannot hold a spinlock across the get_user() in case it
1078 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1079 * queueing ourselves into the futex hash. This code thus has to
1080 * rely on the futex_wake() code removing us from hash when it
1081 * wakes us up.
1082 */
1083
1084 /* add_wait_queue is the barrier after __set_current_state. */
1085 __set_current_state(TASK_INTERRUPTIBLE);
1086 add_wait_queue(&q.waiters, &wait);
1087 /*
ec92d082 1088 * !plist_node_empty() is safe here without any lock.
1da177e4
LT
1089 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1090 */
72c1bbf3 1091 time_left = 0;
ec92d082 1092 if (likely(!plist_node_empty(&q.list))) {
72c1bbf3
NP
1093 unsigned long rel_time;
1094
1095 if (timed) {
1096 unsigned long now = jiffies;
1097 if (time_after(now, abs_time))
1098 rel_time = 0;
1099 else
1100 rel_time = abs_time - now;
1101 } else
1102 rel_time = MAX_SCHEDULE_TIMEOUT;
1103
1104 time_left = schedule_timeout(rel_time);
1105 }
1da177e4
LT
1106 __set_current_state(TASK_RUNNING);
1107
1108 /*
1109 * NOTE: we don't remove ourselves from the waitqueue because
1110 * we are the only user of it.
1111 */
1112
1113 /* If we were woken (and unqueued), we succeeded, whatever. */
1114 if (!unqueue_me(&q))
1115 return 0;
72c1bbf3 1116 if (time_left == 0)
1da177e4 1117 return -ETIMEDOUT;
72c1bbf3 1118
e2970f2f
IM
1119 /*
1120 * We expect signal_pending(current), but another thread may
1121 * have handled it for us already.
1122 */
72c1bbf3
NP
1123 if (time_left == MAX_SCHEDULE_TIMEOUT)
1124 return -ERESTARTSYS;
1125 else {
1126 struct restart_block *restart;
1127 restart = &current_thread_info()->restart_block;
1128 restart->fn = futex_wait_restart;
1129 restart->arg0 = (unsigned long)uaddr;
1130 restart->arg1 = (unsigned long)val;
1131 restart->arg2 = (unsigned long)timed;
1132 restart->arg3 = abs_time;
1133 return -ERESTART_RESTARTBLOCK;
1134 }
1da177e4 1135
c87e2837
IM
1136 out_unlock_release_sem:
1137 queue_unlock(&q, hb);
1138
1da177e4 1139 out_release_sem:
c87e2837
IM
1140 up_read(&curr->mm->mmap_sem);
1141 return ret;
1142}
1143
72c1bbf3
NP
1144static int futex_wait(u32 __user *uaddr, u32 val, unsigned long rel_time)
1145{
1146 int timed = (rel_time != MAX_SCHEDULE_TIMEOUT);
1147 return futex_wait_abstime(uaddr, val, timed, jiffies+rel_time);
1148}
1149
1150static long futex_wait_restart(struct restart_block *restart)
1151{
1152 u32 __user *uaddr = (u32 __user *)restart->arg0;
1153 u32 val = (u32)restart->arg1;
1154 int timed = (int)restart->arg2;
1155 unsigned long abs_time = restart->arg3;
1156
1157 restart->fn = do_no_restart_syscall;
1158 return (long)futex_wait_abstime(uaddr, val, timed, abs_time);
1159}
1160
1161
c87e2837
IM
1162/*
1163 * Userspace tried a 0 -> TID atomic transition of the futex value
1164 * and failed. The kernel side here does the whole locking operation:
1165 * if there are waiters then it will block, it does PI, etc. (Due to
1166 * races the kernel might see a 0 value of the futex too.)
1167 */
c5780e97
TG
1168static int futex_lock_pi(u32 __user *uaddr, int detect, unsigned long sec,
1169 long nsec, int trylock)
c87e2837 1170{
c5780e97 1171 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837
IM
1172 struct task_struct *curr = current;
1173 struct futex_hash_bucket *hb;
1174 u32 uval, newval, curval;
1175 struct futex_q q;
1176 int ret, attempt = 0;
1177
1178 if (refill_pi_state_cache())
1179 return -ENOMEM;
1180
c5780e97
TG
1181 if (sec != MAX_SCHEDULE_TIMEOUT) {
1182 to = &timeout;
c9cb2e3d 1183 hrtimer_init(&to->timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
c5780e97
TG
1184 hrtimer_init_sleeper(to, current);
1185 to->timer.expires = ktime_set(sec, nsec);
1186 }
1187
c87e2837
IM
1188 q.pi_state = NULL;
1189 retry:
1190 down_read(&curr->mm->mmap_sem);
1191
1192 ret = get_futex_key(uaddr, &q.key);
1193 if (unlikely(ret != 0))
1194 goto out_release_sem;
1195
1196 hb = queue_lock(&q, -1, NULL);
1197
1198 retry_locked:
1199 /*
1200 * To avoid races, we attempt to take the lock here again
1201 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1202 * the locks. It will most likely not succeed.
1203 */
1204 newval = current->pid;
1205
a866374a 1206 pagefault_disable();
c87e2837 1207 curval = futex_atomic_cmpxchg_inatomic(uaddr, 0, newval);
a866374a 1208 pagefault_enable();
c87e2837
IM
1209
1210 if (unlikely(curval == -EFAULT))
1211 goto uaddr_faulted;
1212
1213 /* We own the lock already */
1214 if (unlikely((curval & FUTEX_TID_MASK) == current->pid)) {
1215 if (!detect && 0)
1216 force_sig(SIGKILL, current);
1217 ret = -EDEADLK;
1218 goto out_unlock_release_sem;
1219 }
1220
1221 /*
1222 * Surprise - we got the lock. Just return
1223 * to userspace:
1224 */
1225 if (unlikely(!curval))
1226 goto out_unlock_release_sem;
1227
1228 uval = curval;
1229 newval = uval | FUTEX_WAITERS;
1230
a866374a 1231 pagefault_disable();
c87e2837 1232 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
a866374a 1233 pagefault_enable();
c87e2837
IM
1234
1235 if (unlikely(curval == -EFAULT))
1236 goto uaddr_faulted;
1237 if (unlikely(curval != uval))
1238 goto retry_locked;
1239
1240 /*
1241 * We dont have the lock. Look up the PI state (or create it if
1242 * we are the first waiter):
1243 */
1244 ret = lookup_pi_state(uval, hb, &q);
1245
1246 if (unlikely(ret)) {
1247 /*
1248 * There were no waiters and the owner task lookup
1249 * failed. When the OWNER_DIED bit is set, then we
1250 * know that this is a robust futex and we actually
1251 * take the lock. This is safe as we are protected by
1252 * the hash bucket lock. We also set the waiters bit
1253 * unconditionally here, to simplify glibc handling of
1254 * multiple tasks racing to acquire the lock and
1255 * cleanup the problems which were left by the dead
1256 * owner.
1257 */
1258 if (curval & FUTEX_OWNER_DIED) {
1259 uval = newval;
1260 newval = current->pid |
1261 FUTEX_OWNER_DIED | FUTEX_WAITERS;
1262
a866374a 1263 pagefault_disable();
c87e2837
IM
1264 curval = futex_atomic_cmpxchg_inatomic(uaddr,
1265 uval, newval);
a866374a 1266 pagefault_enable();
c87e2837
IM
1267
1268 if (unlikely(curval == -EFAULT))
1269 goto uaddr_faulted;
1270 if (unlikely(curval != uval))
1271 goto retry_locked;
1272 ret = 0;
1273 }
1274 goto out_unlock_release_sem;
1275 }
1276
1277 /*
1278 * Only actually queue now that the atomic ops are done:
1279 */
1280 __queue_me(&q, hb);
1281
1282 /*
1283 * Now the futex is queued and we have checked the data, we
1284 * don't want to hold mmap_sem while we sleep.
1285 */
1286 up_read(&curr->mm->mmap_sem);
1287
1288 WARN_ON(!q.pi_state);
1289 /*
1290 * Block on the PI mutex:
1291 */
1292 if (!trylock)
1293 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1294 else {
1295 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1296 /* Fixup the trylock return value: */
1297 ret = ret ? 0 : -EWOULDBLOCK;
1298 }
1299
1300 down_read(&curr->mm->mmap_sem);
a99e4e41 1301 spin_lock(q.lock_ptr);
c87e2837
IM
1302
1303 /*
1304 * Got the lock. We might not be the anticipated owner if we
1305 * did a lock-steal - fix up the PI-state in that case.
1306 */
1307 if (!ret && q.pi_state->owner != curr) {
1308 u32 newtid = current->pid | FUTEX_WAITERS;
1309
1310 /* Owner died? */
1311 if (q.pi_state->owner != NULL) {
1312 spin_lock_irq(&q.pi_state->owner->pi_lock);
627371d7 1313 WARN_ON(list_empty(&q.pi_state->list));
c87e2837
IM
1314 list_del_init(&q.pi_state->list);
1315 spin_unlock_irq(&q.pi_state->owner->pi_lock);
1316 } else
1317 newtid |= FUTEX_OWNER_DIED;
1318
1319 q.pi_state->owner = current;
1320
1321 spin_lock_irq(&current->pi_lock);
627371d7 1322 WARN_ON(!list_empty(&q.pi_state->list));
c87e2837
IM
1323 list_add(&q.pi_state->list, &current->pi_state_list);
1324 spin_unlock_irq(&current->pi_lock);
1325
1326 /* Unqueue and drop the lock */
1327 unqueue_me_pi(&q, hb);
1328 up_read(&curr->mm->mmap_sem);
1329 /*
1330 * We own it, so we have to replace the pending owner
1331 * TID. This must be atomic as we have preserve the
1332 * owner died bit here.
1333 */
1334 ret = get_user(uval, uaddr);
1335 while (!ret) {
1336 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1337 curval = futex_atomic_cmpxchg_inatomic(uaddr,
1338 uval, newval);
1339 if (curval == -EFAULT)
1340 ret = -EFAULT;
1341 if (curval == uval)
1342 break;
1343 uval = curval;
1344 }
1345 } else {
1346 /*
1347 * Catch the rare case, where the lock was released
1348 * when we were on the way back before we locked
1349 * the hash bucket.
1350 */
1351 if (ret && q.pi_state->owner == curr) {
1352 if (rt_mutex_trylock(&q.pi_state->pi_mutex))
1353 ret = 0;
1354 }
1355 /* Unqueue and drop the lock */
1356 unqueue_me_pi(&q, hb);
1357 up_read(&curr->mm->mmap_sem);
1358 }
1359
1360 if (!detect && ret == -EDEADLK && 0)
1361 force_sig(SIGKILL, current);
1362
c5780e97 1363 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837
IM
1364
1365 out_unlock_release_sem:
1366 queue_unlock(&q, hb);
1367
1368 out_release_sem:
1369 up_read(&curr->mm->mmap_sem);
1370 return ret;
1371
1372 uaddr_faulted:
1373 /*
1374 * We have to r/w *(int __user *)uaddr, but we can't modify it
1375 * non-atomically. Therefore, if get_user below is not
1376 * enough, we need to handle the fault ourselves, while
1377 * still holding the mmap_sem.
1378 */
1379 if (attempt++) {
e579dcbf 1380 if (futex_handle_fault((unsigned long)uaddr, attempt)) {
1381 ret = -EFAULT;
c87e2837 1382 goto out_unlock_release_sem;
e579dcbf 1383 }
c87e2837
IM
1384 goto retry_locked;
1385 }
1386
1387 queue_unlock(&q, hb);
1388 up_read(&curr->mm->mmap_sem);
1389
1390 ret = get_user(uval, uaddr);
1391 if (!ret && (uval != -EFAULT))
1392 goto retry;
1393
1394 return ret;
1395}
1396
c87e2837
IM
1397/*
1398 * Userspace attempted a TID -> 0 atomic transition, and failed.
1399 * This is the in-kernel slowpath: we look up the PI state (if any),
1400 * and do the rt-mutex unlock.
1401 */
1402static int futex_unlock_pi(u32 __user *uaddr)
1403{
1404 struct futex_hash_bucket *hb;
1405 struct futex_q *this, *next;
1406 u32 uval;
ec92d082 1407 struct plist_head *head;
c87e2837
IM
1408 union futex_key key;
1409 int ret, attempt = 0;
1410
1411retry:
1412 if (get_user(uval, uaddr))
1413 return -EFAULT;
1414 /*
1415 * We release only a lock we actually own:
1416 */
1417 if ((uval & FUTEX_TID_MASK) != current->pid)
1418 return -EPERM;
1419 /*
1420 * First take all the futex related locks:
1421 */
1422 down_read(&current->mm->mmap_sem);
1423
1424 ret = get_futex_key(uaddr, &key);
1425 if (unlikely(ret != 0))
1426 goto out;
1427
1428 hb = hash_futex(&key);
1429 spin_lock(&hb->lock);
1430
1431retry_locked:
1432 /*
1433 * To avoid races, try to do the TID -> 0 atomic transition
1434 * again. If it succeeds then we can return without waking
1435 * anyone else up:
1436 */
e3f2ddea 1437 if (!(uval & FUTEX_OWNER_DIED)) {
a866374a 1438 pagefault_disable();
e3f2ddea 1439 uval = futex_atomic_cmpxchg_inatomic(uaddr, current->pid, 0);
a866374a 1440 pagefault_enable();
e3f2ddea 1441 }
c87e2837
IM
1442
1443 if (unlikely(uval == -EFAULT))
1444 goto pi_faulted;
1445 /*
1446 * Rare case: we managed to release the lock atomically,
1447 * no need to wake anyone else up:
1448 */
1449 if (unlikely(uval == current->pid))
1450 goto out_unlock;
1451
1452 /*
1453 * Ok, other tasks may need to be woken up - check waiters
1454 * and do the wakeup if necessary:
1455 */
1456 head = &hb->chain;
1457
ec92d082 1458 plist_for_each_entry_safe(this, next, head, list) {
c87e2837
IM
1459 if (!match_futex (&this->key, &key))
1460 continue;
1461 ret = wake_futex_pi(uaddr, uval, this);
1462 /*
1463 * The atomic access to the futex value
1464 * generated a pagefault, so retry the
1465 * user-access and the wakeup:
1466 */
1467 if (ret == -EFAULT)
1468 goto pi_faulted;
1469 goto out_unlock;
1470 }
1471 /*
1472 * No waiters - kernel unlocks the futex:
1473 */
e3f2ddea
IM
1474 if (!(uval & FUTEX_OWNER_DIED)) {
1475 ret = unlock_futex_pi(uaddr, uval);
1476 if (ret == -EFAULT)
1477 goto pi_faulted;
1478 }
c87e2837
IM
1479
1480out_unlock:
1481 spin_unlock(&hb->lock);
1482out:
1483 up_read(&current->mm->mmap_sem);
1484
1485 return ret;
1486
1487pi_faulted:
1488 /*
1489 * We have to r/w *(int __user *)uaddr, but we can't modify it
1490 * non-atomically. Therefore, if get_user below is not
1491 * enough, we need to handle the fault ourselves, while
1492 * still holding the mmap_sem.
1493 */
1494 if (attempt++) {
e579dcbf 1495 if (futex_handle_fault((unsigned long)uaddr, attempt)) {
1496 ret = -EFAULT;
c87e2837 1497 goto out_unlock;
e579dcbf 1498 }
c87e2837
IM
1499 goto retry_locked;
1500 }
1501
1502 spin_unlock(&hb->lock);
1da177e4 1503 up_read(&current->mm->mmap_sem);
c87e2837
IM
1504
1505 ret = get_user(uval, uaddr);
1506 if (!ret && (uval != -EFAULT))
1507 goto retry;
1508
1da177e4
LT
1509 return ret;
1510}
1511
1512static int futex_close(struct inode *inode, struct file *filp)
1513{
1514 struct futex_q *q = filp->private_data;
1515
1516 unqueue_me(q);
1517 kfree(q);
e2970f2f 1518
1da177e4
LT
1519 return 0;
1520}
1521
1522/* This is one-shot: once it's gone off you need a new fd */
1523static unsigned int futex_poll(struct file *filp,
1524 struct poll_table_struct *wait)
1525{
1526 struct futex_q *q = filp->private_data;
1527 int ret = 0;
1528
1529 poll_wait(filp, &q->waiters, wait);
1530
1531 /*
ec92d082 1532 * plist_node_empty() is safe here without any lock.
1da177e4
LT
1533 * q->lock_ptr != 0 is not safe, because of ordering against wakeup.
1534 */
ec92d082 1535 if (plist_node_empty(&q->list))
1da177e4
LT
1536 ret = POLLIN | POLLRDNORM;
1537
1538 return ret;
1539}
1540
15ad7cdc 1541static const struct file_operations futex_fops = {
1da177e4
LT
1542 .release = futex_close,
1543 .poll = futex_poll,
1544};
1545
1546/*
1547 * Signal allows caller to avoid the race which would occur if they
1548 * set the sigio stuff up afterwards.
1549 */
e2970f2f 1550static int futex_fd(u32 __user *uaddr, int signal)
1da177e4
LT
1551{
1552 struct futex_q *q;
1553 struct file *filp;
1554 int ret, err;
19c6b6ed
AM
1555 static unsigned long printk_interval;
1556
1557 if (printk_timed_ratelimit(&printk_interval, 60 * 60 * 1000)) {
1558 printk(KERN_WARNING "Process `%s' used FUTEX_FD, which "
1559 "will be removed from the kernel in June 2007\n",
1560 current->comm);
1561 }
1da177e4
LT
1562
1563 ret = -EINVAL;
7ed20e1a 1564 if (!valid_signal(signal))
1da177e4
LT
1565 goto out;
1566
1567 ret = get_unused_fd();
1568 if (ret < 0)
1569 goto out;
1570 filp = get_empty_filp();
1571 if (!filp) {
1572 put_unused_fd(ret);
1573 ret = -ENFILE;
1574 goto out;
1575 }
1576 filp->f_op = &futex_fops;
f3a43f3f
JJS
1577 filp->f_path.mnt = mntget(futex_mnt);
1578 filp->f_path.dentry = dget(futex_mnt->mnt_root);
1579 filp->f_mapping = filp->f_path.dentry->d_inode->i_mapping;
1da177e4
LT
1580
1581 if (signal) {
609d7fa9 1582 err = __f_setown(filp, task_pid(current), PIDTYPE_PID, 1);
1da177e4 1583 if (err < 0) {
39ed3fde 1584 goto error;
1da177e4
LT
1585 }
1586 filp->f_owner.signum = signal;
1587 }
1588
1589 q = kmalloc(sizeof(*q), GFP_KERNEL);
1590 if (!q) {
39ed3fde
PE
1591 err = -ENOMEM;
1592 goto error;
1da177e4 1593 }
c87e2837 1594 q->pi_state = NULL;
1da177e4
LT
1595
1596 down_read(&current->mm->mmap_sem);
1597 err = get_futex_key(uaddr, &q->key);
1598
1599 if (unlikely(err != 0)) {
1600 up_read(&current->mm->mmap_sem);
1da177e4 1601 kfree(q);
39ed3fde 1602 goto error;
1da177e4
LT
1603 }
1604
1605 /*
1606 * queue_me() must be called before releasing mmap_sem, because
1607 * key->shared.inode needs to be referenced while holding it.
1608 */
1609 filp->private_data = q;
1610
1611 queue_me(q, ret, filp);
1612 up_read(&current->mm->mmap_sem);
1613
1614 /* Now we map fd to filp, so userspace can access it */
1615 fd_install(ret, filp);
1616out:
1617 return ret;
39ed3fde
PE
1618error:
1619 put_unused_fd(ret);
1620 put_filp(filp);
1621 ret = err;
1622 goto out;
1da177e4
LT
1623}
1624
0771dfef
IM
1625/*
1626 * Support for robust futexes: the kernel cleans up held futexes at
1627 * thread exit time.
1628 *
1629 * Implementation: user-space maintains a per-thread list of locks it
1630 * is holding. Upon do_exit(), the kernel carefully walks this list,
1631 * and marks all locks that are owned by this thread with the
c87e2837 1632 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
1633 * always manipulated with the lock held, so the list is private and
1634 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1635 * field, to allow the kernel to clean up if the thread dies after
1636 * acquiring the lock, but just before it could have added itself to
1637 * the list. There can only be one such pending lock.
1638 */
1639
1640/**
1641 * sys_set_robust_list - set the robust-futex list head of a task
1642 * @head: pointer to the list-head
1643 * @len: length of the list-head, as userspace expects
1644 */
1645asmlinkage long
1646sys_set_robust_list(struct robust_list_head __user *head,
1647 size_t len)
1648{
1649 /*
1650 * The kernel knows only one size for now:
1651 */
1652 if (unlikely(len != sizeof(*head)))
1653 return -EINVAL;
1654
1655 current->robust_list = head;
1656
1657 return 0;
1658}
1659
1660/**
1661 * sys_get_robust_list - get the robust-futex list head of a task
1662 * @pid: pid of the process [zero for current task]
1663 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1664 * @len_ptr: pointer to a length field, the kernel fills in the header size
1665 */
1666asmlinkage long
ba46df98 1667sys_get_robust_list(int pid, struct robust_list_head __user * __user *head_ptr,
0771dfef
IM
1668 size_t __user *len_ptr)
1669{
ba46df98 1670 struct robust_list_head __user *head;
0771dfef
IM
1671 unsigned long ret;
1672
1673 if (!pid)
1674 head = current->robust_list;
1675 else {
1676 struct task_struct *p;
1677
1678 ret = -ESRCH;
aaa2a97e 1679 rcu_read_lock();
0771dfef
IM
1680 p = find_task_by_pid(pid);
1681 if (!p)
1682 goto err_unlock;
1683 ret = -EPERM;
1684 if ((current->euid != p->euid) && (current->euid != p->uid) &&
1685 !capable(CAP_SYS_PTRACE))
1686 goto err_unlock;
1687 head = p->robust_list;
aaa2a97e 1688 rcu_read_unlock();
0771dfef
IM
1689 }
1690
1691 if (put_user(sizeof(*head), len_ptr))
1692 return -EFAULT;
1693 return put_user(head, head_ptr);
1694
1695err_unlock:
aaa2a97e 1696 rcu_read_unlock();
0771dfef
IM
1697
1698 return ret;
1699}
1700
1701/*
1702 * Process a futex-list entry, check whether it's owned by the
1703 * dying task, and do notification if so:
1704 */
e3f2ddea 1705int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 1706{
e3f2ddea 1707 u32 uval, nval, mval;
0771dfef 1708
8f17d3a5
IM
1709retry:
1710 if (get_user(uval, uaddr))
0771dfef
IM
1711 return -1;
1712
8f17d3a5 1713 if ((uval & FUTEX_TID_MASK) == curr->pid) {
0771dfef
IM
1714 /*
1715 * Ok, this dying thread is truly holding a futex
1716 * of interest. Set the OWNER_DIED bit atomically
1717 * via cmpxchg, and if the value had FUTEX_WAITERS
1718 * set, wake up a waiter (if any). (We have to do a
1719 * futex_wake() even if OWNER_DIED is already set -
1720 * to handle the rare but possible case of recursive
1721 * thread-death.) The rest of the cleanup is done in
1722 * userspace.
1723 */
e3f2ddea
IM
1724 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1725 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
1726
c87e2837
IM
1727 if (nval == -EFAULT)
1728 return -1;
1729
1730 if (nval != uval)
8f17d3a5 1731 goto retry;
0771dfef 1732
e3f2ddea
IM
1733 /*
1734 * Wake robust non-PI futexes here. The wakeup of
1735 * PI futexes happens in exit_pi_state():
1736 */
1737 if (!pi) {
1738 if (uval & FUTEX_WAITERS)
1739 futex_wake(uaddr, 1);
1740 }
0771dfef
IM
1741 }
1742 return 0;
1743}
1744
e3f2ddea
IM
1745/*
1746 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1747 */
1748static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98
AV
1749 struct robust_list __user * __user *head,
1750 int *pi)
e3f2ddea
IM
1751{
1752 unsigned long uentry;
1753
ba46df98 1754 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
1755 return -EFAULT;
1756
ba46df98 1757 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
1758 *pi = uentry & 1;
1759
1760 return 0;
1761}
1762
0771dfef
IM
1763/*
1764 * Walk curr->robust_list (very carefully, it's a userspace list!)
1765 * and mark any locks found there dead, and notify any waiters.
1766 *
1767 * We silently return on any sign of list-walking problem.
1768 */
1769void exit_robust_list(struct task_struct *curr)
1770{
1771 struct robust_list_head __user *head = curr->robust_list;
1772 struct robust_list __user *entry, *pending;
e3f2ddea 1773 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
0771dfef
IM
1774 unsigned long futex_offset;
1775
1776 /*
1777 * Fetch the list head (which was registered earlier, via
1778 * sys_set_robust_list()):
1779 */
e3f2ddea 1780 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
1781 return;
1782 /*
1783 * Fetch the relative futex offset:
1784 */
1785 if (get_user(futex_offset, &head->futex_offset))
1786 return;
1787 /*
1788 * Fetch any possibly pending lock-add first, and handle it
1789 * if it exists:
1790 */
e3f2ddea 1791 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 1792 return;
e3f2ddea 1793
0771dfef 1794 if (pending)
ba46df98 1795 handle_futex_death((void __user *)pending + futex_offset, curr, pip);
0771dfef
IM
1796
1797 while (entry != &head->list) {
1798 /*
1799 * A pending lock might already be on the list, so
c87e2837 1800 * don't process it twice:
0771dfef
IM
1801 */
1802 if (entry != pending)
ba46df98 1803 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 1804 curr, pi))
0771dfef 1805 return;
0771dfef
IM
1806 /*
1807 * Fetch the next entry in the list:
1808 */
e3f2ddea 1809 if (fetch_robust_entry(&entry, &entry->next, &pi))
0771dfef
IM
1810 return;
1811 /*
1812 * Avoid excessively long or circular lists:
1813 */
1814 if (!--limit)
1815 break;
1816
1817 cond_resched();
1818 }
1819}
1820
e2970f2f
IM
1821long do_futex(u32 __user *uaddr, int op, u32 val, unsigned long timeout,
1822 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4
LT
1823{
1824 int ret;
1825
1826 switch (op) {
1827 case FUTEX_WAIT:
1828 ret = futex_wait(uaddr, val, timeout);
1829 break;
1830 case FUTEX_WAKE:
1831 ret = futex_wake(uaddr, val);
1832 break;
1833 case FUTEX_FD:
1834 /* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
1835 ret = futex_fd(uaddr, val);
1836 break;
1837 case FUTEX_REQUEUE:
1838 ret = futex_requeue(uaddr, uaddr2, val, val2, NULL);
1839 break;
1840 case FUTEX_CMP_REQUEUE:
1841 ret = futex_requeue(uaddr, uaddr2, val, val2, &val3);
1842 break;
4732efbe
JJ
1843 case FUTEX_WAKE_OP:
1844 ret = futex_wake_op(uaddr, uaddr2, val, val2, val3);
1845 break;
c87e2837
IM
1846 case FUTEX_LOCK_PI:
1847 ret = futex_lock_pi(uaddr, val, timeout, val2, 0);
1848 break;
1849 case FUTEX_UNLOCK_PI:
1850 ret = futex_unlock_pi(uaddr);
1851 break;
1852 case FUTEX_TRYLOCK_PI:
1853 ret = futex_lock_pi(uaddr, 0, timeout, val2, 1);
1854 break;
1da177e4
LT
1855 default:
1856 ret = -ENOSYS;
1857 }
1858 return ret;
1859}
1860
1861
e2970f2f 1862asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
1da177e4 1863 struct timespec __user *utime, u32 __user *uaddr2,
e2970f2f 1864 u32 val3)
1da177e4
LT
1865{
1866 struct timespec t;
1867 unsigned long timeout = MAX_SCHEDULE_TIMEOUT;
e2970f2f 1868 u32 val2 = 0;
1da177e4 1869
c87e2837 1870 if (utime && (op == FUTEX_WAIT || op == FUTEX_LOCK_PI)) {
1da177e4
LT
1871 if (copy_from_user(&t, utime, sizeof(t)) != 0)
1872 return -EFAULT;
9741ef96
TG
1873 if (!timespec_valid(&t))
1874 return -EINVAL;
c87e2837
IM
1875 if (op == FUTEX_WAIT)
1876 timeout = timespec_to_jiffies(&t) + 1;
1877 else {
1878 timeout = t.tv_sec;
1879 val2 = t.tv_nsec;
1880 }
1da177e4
LT
1881 }
1882 /*
1883 * requeue parameter in 'utime' if op == FUTEX_REQUEUE.
1884 */
c87e2837 1885 if (op == FUTEX_REQUEUE || op == FUTEX_CMP_REQUEUE)
e2970f2f 1886 val2 = (u32) (unsigned long) utime;
1da177e4 1887
e2970f2f 1888 return do_futex(uaddr, op, val, timeout, uaddr2, val2, val3);
1da177e4
LT
1889}
1890
454e2398
DH
1891static int futexfs_get_sb(struct file_system_type *fs_type,
1892 int flags, const char *dev_name, void *data,
1893 struct vfsmount *mnt)
1da177e4 1894{
454e2398 1895 return get_sb_pseudo(fs_type, "futex", NULL, 0xBAD1DEA, mnt);
1da177e4
LT
1896}
1897
1898static struct file_system_type futex_fs_type = {
1899 .name = "futexfs",
1900 .get_sb = futexfs_get_sb,
1901 .kill_sb = kill_anon_super,
1902};
1903
1904static int __init init(void)
1905{
95362fa9
AM
1906 int i = register_filesystem(&futex_fs_type);
1907
1908 if (i)
1909 return i;
1da177e4 1910
1da177e4 1911 futex_mnt = kern_mount(&futex_fs_type);
95362fa9
AM
1912 if (IS_ERR(futex_mnt)) {
1913 unregister_filesystem(&futex_fs_type);
1914 return PTR_ERR(futex_mnt);
1915 }
1da177e4
LT
1916
1917 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
ec92d082 1918 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
1da177e4
LT
1919 spin_lock_init(&futex_queues[i].lock);
1920 }
1921 return 0;
1922}
1923__initcall(init);