futex: Correct queue_me and unqueue_me commentary
[linux-2.6-block.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
7ed20e1a 57#include <linux/signal.h>
9adef58b 58#include <linux/module.h>
fd5eea42 59#include <linux/magic.h>
b488893a
PE
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
62
4732efbe 63#include <asm/futex.h>
1da177e4 64
c87e2837
IM
65#include "rtmutex_common.h"
66
a0c1e907
TG
67int __read_mostly futex_cmpxchg_enabled;
68
1da177e4
LT
69#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
70
c87e2837
IM
71/*
72 * Priority Inheritance state:
73 */
74struct futex_pi_state {
75 /*
76 * list of 'owned' pi_state instances - these have to be
77 * cleaned up in do_exit() if the task exits prematurely:
78 */
79 struct list_head list;
80
81 /*
82 * The PI object:
83 */
84 struct rt_mutex pi_mutex;
85
86 struct task_struct *owner;
87 atomic_t refcount;
88
89 union futex_key key;
90};
91
1da177e4
LT
92/*
93 * We use this hashed waitqueue instead of a normal wait_queue_t, so
94 * we can wake only the relevant ones (hashed queues may be shared).
95 *
96 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 97 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
1da177e4 98 * The order of wakup is always to make the first condition true, then
73500ac5 99 * wake up q->waiter, then make the second condition true.
1da177e4
LT
100 */
101struct futex_q {
ec92d082 102 struct plist_node list;
f1a11e05
TG
103 /* Waiter reference */
104 struct task_struct *task;
1da177e4 105
e2970f2f 106 /* Which hash list lock to use: */
1da177e4
LT
107 spinlock_t *lock_ptr;
108
e2970f2f 109 /* Key which the futex is hashed on: */
1da177e4
LT
110 union futex_key key;
111
c87e2837
IM
112 /* Optional priority inheritance state: */
113 struct futex_pi_state *pi_state;
cd689985 114
52400ba9
DH
115 /* rt_waiter storage for requeue_pi: */
116 struct rt_mutex_waiter *rt_waiter;
117
84bc4af5
DH
118 /* The expected requeue pi target futex key: */
119 union futex_key *requeue_pi_key;
120
cd689985
TG
121 /* Bitset for the optional bitmasked wakeup */
122 u32 bitset;
1da177e4
LT
123};
124
125/*
b2d0994b
DH
126 * Hash buckets are shared by all the futex_keys that hash to the same
127 * location. Each key may have multiple futex_q structures, one for each task
128 * waiting on a futex.
1da177e4
LT
129 */
130struct futex_hash_bucket {
ec92d082
PP
131 spinlock_t lock;
132 struct plist_head chain;
1da177e4
LT
133};
134
135static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
136
1da177e4
LT
137/*
138 * We hash on the keys returned from get_futex_key (see below).
139 */
140static struct futex_hash_bucket *hash_futex(union futex_key *key)
141{
142 u32 hash = jhash2((u32*)&key->both.word,
143 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
144 key->both.offset);
145 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
146}
147
148/*
149 * Return 1 if two futex_keys are equal, 0 otherwise.
150 */
151static inline int match_futex(union futex_key *key1, union futex_key *key2)
152{
153 return (key1->both.word == key2->both.word
154 && key1->both.ptr == key2->both.ptr
155 && key1->both.offset == key2->both.offset);
156}
157
38d47c1b
PZ
158/*
159 * Take a reference to the resource addressed by a key.
160 * Can be called while holding spinlocks.
161 *
162 */
163static void get_futex_key_refs(union futex_key *key)
164{
165 if (!key->both.ptr)
166 return;
167
168 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
169 case FUT_OFF_INODE:
170 atomic_inc(&key->shared.inode->i_count);
171 break;
172 case FUT_OFF_MMSHARED:
173 atomic_inc(&key->private.mm->mm_count);
174 break;
175 }
176}
177
178/*
179 * Drop a reference to the resource addressed by a key.
180 * The hash bucket spinlock must not be held.
181 */
182static void drop_futex_key_refs(union futex_key *key)
183{
90621c40
DH
184 if (!key->both.ptr) {
185 /* If we're here then we tried to put a key we failed to get */
186 WARN_ON_ONCE(1);
38d47c1b 187 return;
90621c40 188 }
38d47c1b
PZ
189
190 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
191 case FUT_OFF_INODE:
192 iput(key->shared.inode);
193 break;
194 case FUT_OFF_MMSHARED:
195 mmdrop(key->private.mm);
196 break;
197 }
198}
199
34f01cc1
ED
200/**
201 * get_futex_key - Get parameters which are the keys for a futex.
202 * @uaddr: virtual address of the futex
b2d0994b 203 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
34f01cc1 204 * @key: address where result is stored.
64d1304a 205 * @rw: mapping needs to be read/write (values: VERIFY_READ, VERIFY_WRITE)
34f01cc1
ED
206 *
207 * Returns a negative error code or 0
208 * The key words are stored in *key on success.
1da177e4 209 *
f3a43f3f 210 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
1da177e4
LT
211 * offset_within_page). For private mappings, it's (uaddr, current->mm).
212 * We can usually work out the index without swapping in the page.
213 *
b2d0994b 214 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 215 */
64d1304a
TG
216static int
217get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
1da177e4 218{
e2970f2f 219 unsigned long address = (unsigned long)uaddr;
1da177e4 220 struct mm_struct *mm = current->mm;
1da177e4
LT
221 struct page *page;
222 int err;
223
224 /*
225 * The futex address must be "naturally" aligned.
226 */
e2970f2f 227 key->both.offset = address % PAGE_SIZE;
34f01cc1 228 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 229 return -EINVAL;
e2970f2f 230 address -= key->both.offset;
1da177e4 231
34f01cc1
ED
232 /*
233 * PROCESS_PRIVATE futexes are fast.
234 * As the mm cannot disappear under us and the 'key' only needs
235 * virtual address, we dont even have to find the underlying vma.
236 * Note : We do have to check 'uaddr' is a valid user address,
237 * but access_ok() should be faster than find_vma()
238 */
239 if (!fshared) {
64d1304a 240 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
34f01cc1
ED
241 return -EFAULT;
242 key->private.mm = mm;
243 key->private.address = address;
42569c39 244 get_futex_key_refs(key);
34f01cc1
ED
245 return 0;
246 }
1da177e4 247
38d47c1b 248again:
64d1304a 249 err = get_user_pages_fast(address, 1, rw == VERIFY_WRITE, &page);
38d47c1b
PZ
250 if (err < 0)
251 return err;
252
ce2ae53b 253 page = compound_head(page);
38d47c1b
PZ
254 lock_page(page);
255 if (!page->mapping) {
256 unlock_page(page);
257 put_page(page);
258 goto again;
259 }
1da177e4
LT
260
261 /*
262 * Private mappings are handled in a simple way.
263 *
264 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
265 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 266 * the object not the particular process.
1da177e4 267 */
38d47c1b
PZ
268 if (PageAnon(page)) {
269 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 270 key->private.mm = mm;
e2970f2f 271 key->private.address = address;
38d47c1b
PZ
272 } else {
273 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
274 key->shared.inode = page->mapping->host;
275 key->shared.pgoff = page->index;
1da177e4
LT
276 }
277
38d47c1b 278 get_futex_key_refs(key);
1da177e4 279
38d47c1b
PZ
280 unlock_page(page);
281 put_page(page);
282 return 0;
1da177e4
LT
283}
284
38d47c1b 285static inline
c2f9f201 286void put_futex_key(int fshared, union futex_key *key)
1da177e4 287{
38d47c1b 288 drop_futex_key_refs(key);
1da177e4
LT
289}
290
d0725992
TG
291/*
292 * fault_in_user_writeable - fault in user address and verify RW access
293 * @uaddr: pointer to faulting user space address
294 *
295 * Slow path to fixup the fault we just took in the atomic write
296 * access to @uaddr.
297 *
298 * We have no generic implementation of a non destructive write to the
299 * user address. We know that we faulted in the atomic pagefault
300 * disabled section so we can as well avoid the #PF overhead by
301 * calling get_user_pages() right away.
302 */
303static int fault_in_user_writeable(u32 __user *uaddr)
304{
305 int ret = get_user_pages(current, current->mm, (unsigned long)uaddr,
aa715284 306 1, 1, 0, NULL, NULL);
d0725992
TG
307 return ret < 0 ? ret : 0;
308}
309
4b1c486b
DH
310/**
311 * futex_top_waiter() - Return the highest priority waiter on a futex
312 * @hb: the hash bucket the futex_q's reside in
313 * @key: the futex key (to distinguish it from other futex futex_q's)
314 *
315 * Must be called with the hb lock held.
316 */
317static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
318 union futex_key *key)
319{
320 struct futex_q *this;
321
322 plist_for_each_entry(this, &hb->chain, list) {
323 if (match_futex(&this->key, key))
324 return this;
325 }
326 return NULL;
327}
328
36cf3b5c
TG
329static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
330{
331 u32 curval;
332
333 pagefault_disable();
334 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
335 pagefault_enable();
336
337 return curval;
338}
339
340static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
341{
342 int ret;
343
a866374a 344 pagefault_disable();
e2970f2f 345 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 346 pagefault_enable();
1da177e4
LT
347
348 return ret ? -EFAULT : 0;
349}
350
c87e2837
IM
351
352/*
353 * PI code:
354 */
355static int refill_pi_state_cache(void)
356{
357 struct futex_pi_state *pi_state;
358
359 if (likely(current->pi_state_cache))
360 return 0;
361
4668edc3 362 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
363
364 if (!pi_state)
365 return -ENOMEM;
366
c87e2837
IM
367 INIT_LIST_HEAD(&pi_state->list);
368 /* pi_mutex gets initialized later */
369 pi_state->owner = NULL;
370 atomic_set(&pi_state->refcount, 1);
38d47c1b 371 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
372
373 current->pi_state_cache = pi_state;
374
375 return 0;
376}
377
378static struct futex_pi_state * alloc_pi_state(void)
379{
380 struct futex_pi_state *pi_state = current->pi_state_cache;
381
382 WARN_ON(!pi_state);
383 current->pi_state_cache = NULL;
384
385 return pi_state;
386}
387
388static void free_pi_state(struct futex_pi_state *pi_state)
389{
390 if (!atomic_dec_and_test(&pi_state->refcount))
391 return;
392
393 /*
394 * If pi_state->owner is NULL, the owner is most probably dying
395 * and has cleaned up the pi_state already
396 */
397 if (pi_state->owner) {
398 spin_lock_irq(&pi_state->owner->pi_lock);
399 list_del_init(&pi_state->list);
400 spin_unlock_irq(&pi_state->owner->pi_lock);
401
402 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
403 }
404
405 if (current->pi_state_cache)
406 kfree(pi_state);
407 else {
408 /*
409 * pi_state->list is already empty.
410 * clear pi_state->owner.
411 * refcount is at 0 - put it back to 1.
412 */
413 pi_state->owner = NULL;
414 atomic_set(&pi_state->refcount, 1);
415 current->pi_state_cache = pi_state;
416 }
417}
418
419/*
420 * Look up the task based on what TID userspace gave us.
421 * We dont trust it.
422 */
423static struct task_struct * futex_find_get_task(pid_t pid)
424{
425 struct task_struct *p;
c69e8d9c 426 const struct cred *cred = current_cred(), *pcred;
c87e2837 427
d359b549 428 rcu_read_lock();
228ebcbe 429 p = find_task_by_vpid(pid);
c69e8d9c 430 if (!p) {
a06381fe 431 p = ERR_PTR(-ESRCH);
c69e8d9c
DH
432 } else {
433 pcred = __task_cred(p);
434 if (cred->euid != pcred->euid &&
435 cred->euid != pcred->uid)
436 p = ERR_PTR(-ESRCH);
437 else
438 get_task_struct(p);
439 }
a06381fe 440
d359b549 441 rcu_read_unlock();
c87e2837
IM
442
443 return p;
444}
445
446/*
447 * This task is holding PI mutexes at exit time => bad.
448 * Kernel cleans up PI-state, but userspace is likely hosed.
449 * (Robust-futex cleanup is separate and might save the day for userspace.)
450 */
451void exit_pi_state_list(struct task_struct *curr)
452{
c87e2837
IM
453 struct list_head *next, *head = &curr->pi_state_list;
454 struct futex_pi_state *pi_state;
627371d7 455 struct futex_hash_bucket *hb;
38d47c1b 456 union futex_key key = FUTEX_KEY_INIT;
c87e2837 457
a0c1e907
TG
458 if (!futex_cmpxchg_enabled)
459 return;
c87e2837
IM
460 /*
461 * We are a ZOMBIE and nobody can enqueue itself on
462 * pi_state_list anymore, but we have to be careful
627371d7 463 * versus waiters unqueueing themselves:
c87e2837
IM
464 */
465 spin_lock_irq(&curr->pi_lock);
466 while (!list_empty(head)) {
467
468 next = head->next;
469 pi_state = list_entry(next, struct futex_pi_state, list);
470 key = pi_state->key;
627371d7 471 hb = hash_futex(&key);
c87e2837
IM
472 spin_unlock_irq(&curr->pi_lock);
473
c87e2837
IM
474 spin_lock(&hb->lock);
475
476 spin_lock_irq(&curr->pi_lock);
627371d7
IM
477 /*
478 * We dropped the pi-lock, so re-check whether this
479 * task still owns the PI-state:
480 */
c87e2837
IM
481 if (head->next != next) {
482 spin_unlock(&hb->lock);
483 continue;
484 }
485
c87e2837 486 WARN_ON(pi_state->owner != curr);
627371d7
IM
487 WARN_ON(list_empty(&pi_state->list));
488 list_del_init(&pi_state->list);
c87e2837
IM
489 pi_state->owner = NULL;
490 spin_unlock_irq(&curr->pi_lock);
491
492 rt_mutex_unlock(&pi_state->pi_mutex);
493
494 spin_unlock(&hb->lock);
495
496 spin_lock_irq(&curr->pi_lock);
497 }
498 spin_unlock_irq(&curr->pi_lock);
499}
500
501static int
d0aa7a70
PP
502lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
503 union futex_key *key, struct futex_pi_state **ps)
c87e2837
IM
504{
505 struct futex_pi_state *pi_state = NULL;
506 struct futex_q *this, *next;
ec92d082 507 struct plist_head *head;
c87e2837 508 struct task_struct *p;
778e9a9c 509 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837
IM
510
511 head = &hb->chain;
512
ec92d082 513 plist_for_each_entry_safe(this, next, head, list) {
d0aa7a70 514 if (match_futex(&this->key, key)) {
c87e2837
IM
515 /*
516 * Another waiter already exists - bump up
517 * the refcount and return its pi_state:
518 */
519 pi_state = this->pi_state;
06a9ec29
TG
520 /*
521 * Userspace might have messed up non PI and PI futexes
522 */
523 if (unlikely(!pi_state))
524 return -EINVAL;
525
627371d7 526 WARN_ON(!atomic_read(&pi_state->refcount));
778e9a9c
AK
527 WARN_ON(pid && pi_state->owner &&
528 pi_state->owner->pid != pid);
627371d7 529
c87e2837 530 atomic_inc(&pi_state->refcount);
d0aa7a70 531 *ps = pi_state;
c87e2837
IM
532
533 return 0;
534 }
535 }
536
537 /*
e3f2ddea 538 * We are the first waiter - try to look up the real owner and attach
778e9a9c 539 * the new pi_state to it, but bail out when TID = 0
c87e2837 540 */
778e9a9c 541 if (!pid)
e3f2ddea 542 return -ESRCH;
c87e2837 543 p = futex_find_get_task(pid);
778e9a9c
AK
544 if (IS_ERR(p))
545 return PTR_ERR(p);
546
547 /*
548 * We need to look at the task state flags to figure out,
549 * whether the task is exiting. To protect against the do_exit
550 * change of the task flags, we do this protected by
551 * p->pi_lock:
552 */
553 spin_lock_irq(&p->pi_lock);
554 if (unlikely(p->flags & PF_EXITING)) {
555 /*
556 * The task is on the way out. When PF_EXITPIDONE is
557 * set, we know that the task has finished the
558 * cleanup:
559 */
560 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
561
562 spin_unlock_irq(&p->pi_lock);
563 put_task_struct(p);
564 return ret;
565 }
c87e2837
IM
566
567 pi_state = alloc_pi_state();
568
569 /*
570 * Initialize the pi_mutex in locked state and make 'p'
571 * the owner of it:
572 */
573 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
574
575 /* Store the key for possible exit cleanups: */
d0aa7a70 576 pi_state->key = *key;
c87e2837 577
627371d7 578 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
579 list_add(&pi_state->list, &p->pi_state_list);
580 pi_state->owner = p;
581 spin_unlock_irq(&p->pi_lock);
582
583 put_task_struct(p);
584
d0aa7a70 585 *ps = pi_state;
c87e2837
IM
586
587 return 0;
588}
589
1a52084d
DH
590/**
591 * futex_lock_pi_atomic() - atomic work required to acquire a pi aware futex
bab5bc9e
DH
592 * @uaddr: the pi futex user address
593 * @hb: the pi futex hash bucket
594 * @key: the futex key associated with uaddr and hb
595 * @ps: the pi_state pointer where we store the result of the
596 * lookup
597 * @task: the task to perform the atomic lock work for. This will
598 * be "current" except in the case of requeue pi.
599 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d
DH
600 *
601 * Returns:
602 * 0 - ready to wait
603 * 1 - acquired the lock
604 * <0 - error
605 *
606 * The hb->lock and futex_key refs shall be held by the caller.
607 */
608static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
609 union futex_key *key,
610 struct futex_pi_state **ps,
bab5bc9e 611 struct task_struct *task, int set_waiters)
1a52084d
DH
612{
613 int lock_taken, ret, ownerdied = 0;
614 u32 uval, newval, curval;
615
616retry:
617 ret = lock_taken = 0;
618
619 /*
620 * To avoid races, we attempt to take the lock here again
621 * (by doing a 0 -> TID atomic cmpxchg), while holding all
622 * the locks. It will most likely not succeed.
623 */
624 newval = task_pid_vnr(task);
bab5bc9e
DH
625 if (set_waiters)
626 newval |= FUTEX_WAITERS;
1a52084d
DH
627
628 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
629
630 if (unlikely(curval == -EFAULT))
631 return -EFAULT;
632
633 /*
634 * Detect deadlocks.
635 */
636 if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
637 return -EDEADLK;
638
639 /*
640 * Surprise - we got the lock. Just return to userspace:
641 */
642 if (unlikely(!curval))
643 return 1;
644
645 uval = curval;
646
647 /*
648 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
649 * to wake at the next unlock.
650 */
651 newval = curval | FUTEX_WAITERS;
652
653 /*
654 * There are two cases, where a futex might have no owner (the
655 * owner TID is 0): OWNER_DIED. We take over the futex in this
656 * case. We also do an unconditional take over, when the owner
657 * of the futex died.
658 *
659 * This is safe as we are protected by the hash bucket lock !
660 */
661 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
662 /* Keep the OWNER_DIED bit */
663 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
664 ownerdied = 0;
665 lock_taken = 1;
666 }
667
668 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
669
670 if (unlikely(curval == -EFAULT))
671 return -EFAULT;
672 if (unlikely(curval != uval))
673 goto retry;
674
675 /*
676 * We took the lock due to owner died take over.
677 */
678 if (unlikely(lock_taken))
679 return 1;
680
681 /*
682 * We dont have the lock. Look up the PI state (or create it if
683 * we are the first waiter):
684 */
685 ret = lookup_pi_state(uval, hb, key, ps);
686
687 if (unlikely(ret)) {
688 switch (ret) {
689 case -ESRCH:
690 /*
691 * No owner found for this futex. Check if the
692 * OWNER_DIED bit is set to figure out whether
693 * this is a robust futex or not.
694 */
695 if (get_futex_value_locked(&curval, uaddr))
696 return -EFAULT;
697
698 /*
699 * We simply start over in case of a robust
700 * futex. The code above will take the futex
701 * and return happy.
702 */
703 if (curval & FUTEX_OWNER_DIED) {
704 ownerdied = 1;
705 goto retry;
706 }
707 default:
708 break;
709 }
710 }
711
712 return ret;
713}
714
1da177e4
LT
715/*
716 * The hash bucket lock must be held when this is called.
717 * Afterwards, the futex_q must not be accessed.
718 */
719static void wake_futex(struct futex_q *q)
720{
f1a11e05
TG
721 struct task_struct *p = q->task;
722
1da177e4 723 /*
f1a11e05
TG
724 * We set q->lock_ptr = NULL _before_ we wake up the task. If
725 * a non futex wake up happens on another CPU then the task
726 * might exit and p would dereference a non existing task
727 * struct. Prevent this by holding a reference on p across the
728 * wake up.
1da177e4 729 */
f1a11e05
TG
730 get_task_struct(p);
731
732 plist_del(&q->list, &q->list.plist);
1da177e4 733 /*
f1a11e05
TG
734 * The waiting task can free the futex_q as soon as
735 * q->lock_ptr = NULL is written, without taking any locks. A
736 * memory barrier is required here to prevent the following
737 * store to lock_ptr from getting ahead of the plist_del.
1da177e4 738 */
ccdea2f8 739 smp_wmb();
1da177e4 740 q->lock_ptr = NULL;
f1a11e05
TG
741
742 wake_up_state(p, TASK_NORMAL);
743 put_task_struct(p);
1da177e4
LT
744}
745
c87e2837
IM
746static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
747{
748 struct task_struct *new_owner;
749 struct futex_pi_state *pi_state = this->pi_state;
750 u32 curval, newval;
751
752 if (!pi_state)
753 return -EINVAL;
754
21778867 755 spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
756 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
757
758 /*
759 * This happens when we have stolen the lock and the original
760 * pending owner did not enqueue itself back on the rt_mutex.
761 * Thats not a tragedy. We know that way, that a lock waiter
762 * is on the fly. We make the futex_q waiter the pending owner.
763 */
764 if (!new_owner)
765 new_owner = this->task;
766
767 /*
768 * We pass it to the next owner. (The WAITERS bit is always
769 * kept enabled while there is PI state around. We must also
770 * preserve the owner died bit.)
771 */
e3f2ddea 772 if (!(uval & FUTEX_OWNER_DIED)) {
778e9a9c
AK
773 int ret = 0;
774
b488893a 775 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 776
36cf3b5c 777 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
778e9a9c 778
e3f2ddea 779 if (curval == -EFAULT)
778e9a9c 780 ret = -EFAULT;
cde898fa 781 else if (curval != uval)
778e9a9c
AK
782 ret = -EINVAL;
783 if (ret) {
784 spin_unlock(&pi_state->pi_mutex.wait_lock);
785 return ret;
786 }
e3f2ddea 787 }
c87e2837 788
627371d7
IM
789 spin_lock_irq(&pi_state->owner->pi_lock);
790 WARN_ON(list_empty(&pi_state->list));
791 list_del_init(&pi_state->list);
792 spin_unlock_irq(&pi_state->owner->pi_lock);
793
794 spin_lock_irq(&new_owner->pi_lock);
795 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
796 list_add(&pi_state->list, &new_owner->pi_state_list);
797 pi_state->owner = new_owner;
627371d7
IM
798 spin_unlock_irq(&new_owner->pi_lock);
799
21778867 800 spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
801 rt_mutex_unlock(&pi_state->pi_mutex);
802
803 return 0;
804}
805
806static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
807{
808 u32 oldval;
809
810 /*
811 * There is no waiter, so we unlock the futex. The owner died
812 * bit has not to be preserved here. We are the owner:
813 */
36cf3b5c 814 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
c87e2837
IM
815
816 if (oldval == -EFAULT)
817 return oldval;
818 if (oldval != uval)
819 return -EAGAIN;
820
821 return 0;
822}
823
8b8f319f
IM
824/*
825 * Express the locking dependencies for lockdep:
826 */
827static inline void
828double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
829{
830 if (hb1 <= hb2) {
831 spin_lock(&hb1->lock);
832 if (hb1 < hb2)
833 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
834 } else { /* hb1 > hb2 */
835 spin_lock(&hb2->lock);
836 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
837 }
838}
839
5eb3dc62
DH
840static inline void
841double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
842{
f061d351 843 spin_unlock(&hb1->lock);
88f502fe
IM
844 if (hb1 != hb2)
845 spin_unlock(&hb2->lock);
5eb3dc62
DH
846}
847
1da177e4 848/*
b2d0994b 849 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 850 */
c2f9f201 851static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
1da177e4 852{
e2970f2f 853 struct futex_hash_bucket *hb;
1da177e4 854 struct futex_q *this, *next;
ec92d082 855 struct plist_head *head;
38d47c1b 856 union futex_key key = FUTEX_KEY_INIT;
1da177e4
LT
857 int ret;
858
cd689985
TG
859 if (!bitset)
860 return -EINVAL;
861
64d1304a 862 ret = get_futex_key(uaddr, fshared, &key, VERIFY_READ);
1da177e4
LT
863 if (unlikely(ret != 0))
864 goto out;
865
e2970f2f
IM
866 hb = hash_futex(&key);
867 spin_lock(&hb->lock);
868 head = &hb->chain;
1da177e4 869
ec92d082 870 plist_for_each_entry_safe(this, next, head, list) {
1da177e4 871 if (match_futex (&this->key, &key)) {
52400ba9 872 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
873 ret = -EINVAL;
874 break;
875 }
cd689985
TG
876
877 /* Check if one of the bits is set in both bitsets */
878 if (!(this->bitset & bitset))
879 continue;
880
1da177e4
LT
881 wake_futex(this);
882 if (++ret >= nr_wake)
883 break;
884 }
885 }
886
e2970f2f 887 spin_unlock(&hb->lock);
38d47c1b 888 put_futex_key(fshared, &key);
42d35d48 889out:
1da177e4
LT
890 return ret;
891}
892
4732efbe
JJ
893/*
894 * Wake up all waiters hashed on the physical page that is mapped
895 * to this virtual address:
896 */
e2970f2f 897static int
c2f9f201 898futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
e2970f2f 899 int nr_wake, int nr_wake2, int op)
4732efbe 900{
38d47c1b 901 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 902 struct futex_hash_bucket *hb1, *hb2;
ec92d082 903 struct plist_head *head;
4732efbe 904 struct futex_q *this, *next;
e4dc5b7a 905 int ret, op_ret;
4732efbe 906
e4dc5b7a 907retry:
64d1304a 908 ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
4732efbe
JJ
909 if (unlikely(ret != 0))
910 goto out;
64d1304a 911 ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
4732efbe 912 if (unlikely(ret != 0))
42d35d48 913 goto out_put_key1;
4732efbe 914
e2970f2f
IM
915 hb1 = hash_futex(&key1);
916 hb2 = hash_futex(&key2);
4732efbe 917
8b8f319f 918 double_lock_hb(hb1, hb2);
e4dc5b7a 919retry_private:
e2970f2f 920 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 921 if (unlikely(op_ret < 0)) {
4732efbe 922
5eb3dc62 923 double_unlock_hb(hb1, hb2);
4732efbe 924
7ee1dd3f 925#ifndef CONFIG_MMU
e2970f2f
IM
926 /*
927 * we don't get EFAULT from MMU faults if we don't have an MMU,
928 * but we might get them from range checking
929 */
7ee1dd3f 930 ret = op_ret;
42d35d48 931 goto out_put_keys;
7ee1dd3f
DH
932#endif
933
796f8d9b
DG
934 if (unlikely(op_ret != -EFAULT)) {
935 ret = op_ret;
42d35d48 936 goto out_put_keys;
796f8d9b
DG
937 }
938
d0725992 939 ret = fault_in_user_writeable(uaddr2);
4732efbe 940 if (ret)
de87fcc1 941 goto out_put_keys;
4732efbe 942
e4dc5b7a
DH
943 if (!fshared)
944 goto retry_private;
945
de87fcc1
DH
946 put_futex_key(fshared, &key2);
947 put_futex_key(fshared, &key1);
e4dc5b7a 948 goto retry;
4732efbe
JJ
949 }
950
e2970f2f 951 head = &hb1->chain;
4732efbe 952
ec92d082 953 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
954 if (match_futex (&this->key, &key1)) {
955 wake_futex(this);
956 if (++ret >= nr_wake)
957 break;
958 }
959 }
960
961 if (op_ret > 0) {
e2970f2f 962 head = &hb2->chain;
4732efbe
JJ
963
964 op_ret = 0;
ec92d082 965 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
966 if (match_futex (&this->key, &key2)) {
967 wake_futex(this);
968 if (++op_ret >= nr_wake2)
969 break;
970 }
971 }
972 ret += op_ret;
973 }
974
5eb3dc62 975 double_unlock_hb(hb1, hb2);
42d35d48 976out_put_keys:
38d47c1b 977 put_futex_key(fshared, &key2);
42d35d48 978out_put_key1:
38d47c1b 979 put_futex_key(fshared, &key1);
42d35d48 980out:
4732efbe
JJ
981 return ret;
982}
983
9121e478
DH
984/**
985 * requeue_futex() - Requeue a futex_q from one hb to another
986 * @q: the futex_q to requeue
987 * @hb1: the source hash_bucket
988 * @hb2: the target hash_bucket
989 * @key2: the new key for the requeued futex_q
990 */
991static inline
992void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
993 struct futex_hash_bucket *hb2, union futex_key *key2)
994{
995
996 /*
997 * If key1 and key2 hash to the same bucket, no need to
998 * requeue.
999 */
1000 if (likely(&hb1->chain != &hb2->chain)) {
1001 plist_del(&q->list, &hb1->chain);
1002 plist_add(&q->list, &hb2->chain);
1003 q->lock_ptr = &hb2->lock;
1004#ifdef CONFIG_DEBUG_PI_LIST
1005 q->list.plist.lock = &hb2->lock;
1006#endif
1007 }
1008 get_futex_key_refs(key2);
1009 q->key = *key2;
1010}
1011
52400ba9
DH
1012/**
1013 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1014 * q: the futex_q
1015 * key: the key of the requeue target futex
beda2c7e 1016 * hb: the hash_bucket of the requeue target futex
52400ba9
DH
1017 *
1018 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1019 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1020 * to the requeue target futex so the waiter can detect the wakeup on the right
1021 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1022 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1023 * to protect access to the pi_state to fixup the owner later. Must be called
1024 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1025 */
1026static inline
beda2c7e
DH
1027void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1028 struct futex_hash_bucket *hb)
52400ba9
DH
1029{
1030 drop_futex_key_refs(&q->key);
1031 get_futex_key_refs(key);
1032 q->key = *key;
1033
1034 WARN_ON(plist_node_empty(&q->list));
1035 plist_del(&q->list, &q->list.plist);
1036
1037 WARN_ON(!q->rt_waiter);
1038 q->rt_waiter = NULL;
1039
beda2c7e
DH
1040 q->lock_ptr = &hb->lock;
1041#ifdef CONFIG_DEBUG_PI_LIST
1042 q->list.plist.lock = &hb->lock;
1043#endif
1044
f1a11e05 1045 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1046}
1047
1048/**
1049 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1050 * @pifutex: the user address of the to futex
1051 * @hb1: the from futex hash bucket, must be locked by the caller
1052 * @hb2: the to futex hash bucket, must be locked by the caller
1053 * @key1: the from futex key
1054 * @key2: the to futex key
1055 * @ps: address to store the pi_state pointer
1056 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1057 *
1058 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1059 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1060 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1061 * hb1 and hb2 must be held by the caller.
52400ba9
DH
1062 *
1063 * Returns:
1064 * 0 - failed to acquire the lock atomicly
1065 * 1 - acquired the lock
1066 * <0 - error
1067 */
1068static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1069 struct futex_hash_bucket *hb1,
1070 struct futex_hash_bucket *hb2,
1071 union futex_key *key1, union futex_key *key2,
bab5bc9e 1072 struct futex_pi_state **ps, int set_waiters)
52400ba9 1073{
bab5bc9e 1074 struct futex_q *top_waiter = NULL;
52400ba9
DH
1075 u32 curval;
1076 int ret;
1077
1078 if (get_futex_value_locked(&curval, pifutex))
1079 return -EFAULT;
1080
bab5bc9e
DH
1081 /*
1082 * Find the top_waiter and determine if there are additional waiters.
1083 * If the caller intends to requeue more than 1 waiter to pifutex,
1084 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1085 * as we have means to handle the possible fault. If not, don't set
1086 * the bit unecessarily as it will force the subsequent unlock to enter
1087 * the kernel.
1088 */
52400ba9
DH
1089 top_waiter = futex_top_waiter(hb1, key1);
1090
1091 /* There are no waiters, nothing for us to do. */
1092 if (!top_waiter)
1093 return 0;
1094
84bc4af5
DH
1095 /* Ensure we requeue to the expected futex. */
1096 if (!match_futex(top_waiter->requeue_pi_key, key2))
1097 return -EINVAL;
1098
52400ba9 1099 /*
bab5bc9e
DH
1100 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1101 * the contended case or if set_waiters is 1. The pi_state is returned
1102 * in ps in contended cases.
52400ba9 1103 */
bab5bc9e
DH
1104 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1105 set_waiters);
52400ba9 1106 if (ret == 1)
beda2c7e 1107 requeue_pi_wake_futex(top_waiter, key2, hb2);
52400ba9
DH
1108
1109 return ret;
1110}
1111
1112/**
1113 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1114 * uaddr1: source futex user address
1115 * uaddr2: target futex user address
1116 * nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1117 * nr_requeue: number of waiters to requeue (0-INT_MAX)
1118 * requeue_pi: if we are attempting to requeue from a non-pi futex to a
1119 * pi futex (pi to pi requeue is not supported)
1120 *
1121 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1122 * uaddr2 atomically on behalf of the top waiter.
1123 *
1124 * Returns:
1125 * >=0 - on success, the number of tasks requeued or woken
1126 * <0 - on error
1da177e4 1127 */
c2f9f201 1128static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
52400ba9
DH
1129 int nr_wake, int nr_requeue, u32 *cmpval,
1130 int requeue_pi)
1da177e4 1131{
38d47c1b 1132 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1133 int drop_count = 0, task_count = 0, ret;
1134 struct futex_pi_state *pi_state = NULL;
e2970f2f 1135 struct futex_hash_bucket *hb1, *hb2;
ec92d082 1136 struct plist_head *head1;
1da177e4 1137 struct futex_q *this, *next;
52400ba9
DH
1138 u32 curval2;
1139
1140 if (requeue_pi) {
1141 /*
1142 * requeue_pi requires a pi_state, try to allocate it now
1143 * without any locks in case it fails.
1144 */
1145 if (refill_pi_state_cache())
1146 return -ENOMEM;
1147 /*
1148 * requeue_pi must wake as many tasks as it can, up to nr_wake
1149 * + nr_requeue, since it acquires the rt_mutex prior to
1150 * returning to userspace, so as to not leave the rt_mutex with
1151 * waiters and no owner. However, second and third wake-ups
1152 * cannot be predicted as they involve race conditions with the
1153 * first wake and a fault while looking up the pi_state. Both
1154 * pthread_cond_signal() and pthread_cond_broadcast() should
1155 * use nr_wake=1.
1156 */
1157 if (nr_wake != 1)
1158 return -EINVAL;
1159 }
1da177e4 1160
42d35d48 1161retry:
52400ba9
DH
1162 if (pi_state != NULL) {
1163 /*
1164 * We will have to lookup the pi_state again, so free this one
1165 * to keep the accounting correct.
1166 */
1167 free_pi_state(pi_state);
1168 pi_state = NULL;
1169 }
1170
64d1304a 1171 ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
1da177e4
LT
1172 if (unlikely(ret != 0))
1173 goto out;
521c1808
TG
1174 ret = get_futex_key(uaddr2, fshared, &key2,
1175 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1da177e4 1176 if (unlikely(ret != 0))
42d35d48 1177 goto out_put_key1;
1da177e4 1178
e2970f2f
IM
1179 hb1 = hash_futex(&key1);
1180 hb2 = hash_futex(&key2);
1da177e4 1181
e4dc5b7a 1182retry_private:
8b8f319f 1183 double_lock_hb(hb1, hb2);
1da177e4 1184
e2970f2f
IM
1185 if (likely(cmpval != NULL)) {
1186 u32 curval;
1da177e4 1187
e2970f2f 1188 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1189
1190 if (unlikely(ret)) {
5eb3dc62 1191 double_unlock_hb(hb1, hb2);
1da177e4 1192
e2970f2f 1193 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1194 if (ret)
1195 goto out_put_keys;
1da177e4 1196
e4dc5b7a
DH
1197 if (!fshared)
1198 goto retry_private;
1da177e4 1199
e4dc5b7a
DH
1200 put_futex_key(fshared, &key2);
1201 put_futex_key(fshared, &key1);
1202 goto retry;
1da177e4 1203 }
e2970f2f 1204 if (curval != *cmpval) {
1da177e4
LT
1205 ret = -EAGAIN;
1206 goto out_unlock;
1207 }
1208 }
1209
52400ba9 1210 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
1211 /*
1212 * Attempt to acquire uaddr2 and wake the top waiter. If we
1213 * intend to requeue waiters, force setting the FUTEX_WAITERS
1214 * bit. We force this here where we are able to easily handle
1215 * faults rather in the requeue loop below.
1216 */
52400ba9 1217 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 1218 &key2, &pi_state, nr_requeue);
52400ba9
DH
1219
1220 /*
1221 * At this point the top_waiter has either taken uaddr2 or is
1222 * waiting on it. If the former, then the pi_state will not
1223 * exist yet, look it up one more time to ensure we have a
1224 * reference to it.
1225 */
1226 if (ret == 1) {
1227 WARN_ON(pi_state);
1228 task_count++;
1229 ret = get_futex_value_locked(&curval2, uaddr2);
1230 if (!ret)
1231 ret = lookup_pi_state(curval2, hb2, &key2,
1232 &pi_state);
1233 }
1234
1235 switch (ret) {
1236 case 0:
1237 break;
1238 case -EFAULT:
1239 double_unlock_hb(hb1, hb2);
1240 put_futex_key(fshared, &key2);
1241 put_futex_key(fshared, &key1);
d0725992 1242 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
1243 if (!ret)
1244 goto retry;
1245 goto out;
1246 case -EAGAIN:
1247 /* The owner was exiting, try again. */
1248 double_unlock_hb(hb1, hb2);
1249 put_futex_key(fshared, &key2);
1250 put_futex_key(fshared, &key1);
1251 cond_resched();
1252 goto retry;
1253 default:
1254 goto out_unlock;
1255 }
1256 }
1257
e2970f2f 1258 head1 = &hb1->chain;
ec92d082 1259 plist_for_each_entry_safe(this, next, head1, list) {
52400ba9
DH
1260 if (task_count - nr_wake >= nr_requeue)
1261 break;
1262
1263 if (!match_futex(&this->key, &key1))
1da177e4 1264 continue;
52400ba9 1265
392741e0
DH
1266 /*
1267 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1268 * be paired with each other and no other futex ops.
1269 */
1270 if ((requeue_pi && !this->rt_waiter) ||
1271 (!requeue_pi && this->rt_waiter)) {
1272 ret = -EINVAL;
1273 break;
1274 }
52400ba9
DH
1275
1276 /*
1277 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1278 * lock, we already woke the top_waiter. If not, it will be
1279 * woken by futex_unlock_pi().
1280 */
1281 if (++task_count <= nr_wake && !requeue_pi) {
1da177e4 1282 wake_futex(this);
52400ba9
DH
1283 continue;
1284 }
1da177e4 1285
84bc4af5
DH
1286 /* Ensure we requeue to the expected futex for requeue_pi. */
1287 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1288 ret = -EINVAL;
1289 break;
1290 }
1291
52400ba9
DH
1292 /*
1293 * Requeue nr_requeue waiters and possibly one more in the case
1294 * of requeue_pi if we couldn't acquire the lock atomically.
1295 */
1296 if (requeue_pi) {
1297 /* Prepare the waiter to take the rt_mutex. */
1298 atomic_inc(&pi_state->refcount);
1299 this->pi_state = pi_state;
1300 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1301 this->rt_waiter,
1302 this->task, 1);
1303 if (ret == 1) {
1304 /* We got the lock. */
beda2c7e 1305 requeue_pi_wake_futex(this, &key2, hb2);
52400ba9
DH
1306 continue;
1307 } else if (ret) {
1308 /* -EDEADLK */
1309 this->pi_state = NULL;
1310 free_pi_state(pi_state);
1311 goto out_unlock;
1312 }
1da177e4 1313 }
52400ba9
DH
1314 requeue_futex(this, hb1, hb2, &key2);
1315 drop_count++;
1da177e4
LT
1316 }
1317
1318out_unlock:
5eb3dc62 1319 double_unlock_hb(hb1, hb2);
1da177e4 1320
cd84a42f
DH
1321 /*
1322 * drop_futex_key_refs() must be called outside the spinlocks. During
1323 * the requeue we moved futex_q's from the hash bucket at key1 to the
1324 * one at key2 and updated their key pointer. We no longer need to
1325 * hold the references to key1.
1326 */
1da177e4 1327 while (--drop_count >= 0)
9adef58b 1328 drop_futex_key_refs(&key1);
1da177e4 1329
42d35d48 1330out_put_keys:
38d47c1b 1331 put_futex_key(fshared, &key2);
42d35d48 1332out_put_key1:
38d47c1b 1333 put_futex_key(fshared, &key1);
42d35d48 1334out:
52400ba9
DH
1335 if (pi_state != NULL)
1336 free_pi_state(pi_state);
1337 return ret ? ret : task_count;
1da177e4
LT
1338}
1339
1340/* The key must be already stored in q->key. */
82af7aca 1341static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1da177e4 1342{
e2970f2f 1343 struct futex_hash_bucket *hb;
1da177e4 1344
9adef58b 1345 get_futex_key_refs(&q->key);
e2970f2f
IM
1346 hb = hash_futex(&q->key);
1347 q->lock_ptr = &hb->lock;
1da177e4 1348
e2970f2f
IM
1349 spin_lock(&hb->lock);
1350 return hb;
1da177e4
LT
1351}
1352
d40d65c8
DH
1353static inline void
1354queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1355{
1356 spin_unlock(&hb->lock);
1357 drop_futex_key_refs(&q->key);
1358}
1359
1360/**
1361 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1362 * @q: The futex_q to enqueue
1363 * @hb: The destination hash bucket
1364 *
1365 * The hb->lock must be held by the caller, and is released here. A call to
1366 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1367 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1368 * or nothing if the unqueue is done as part of the wake process and the unqueue
1369 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1370 * an example).
1371 */
82af7aca 1372static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 1373{
ec92d082
PP
1374 int prio;
1375
1376 /*
1377 * The priority used to register this element is
1378 * - either the real thread-priority for the real-time threads
1379 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1380 * - or MAX_RT_PRIO for non-RT threads.
1381 * Thus, all RT-threads are woken first in priority order, and
1382 * the others are woken last, in FIFO order.
1383 */
1384 prio = min(current->normal_prio, MAX_RT_PRIO);
1385
1386 plist_node_init(&q->list, prio);
1387#ifdef CONFIG_DEBUG_PI_LIST
1388 q->list.plist.lock = &hb->lock;
1389#endif
1390 plist_add(&q->list, &hb->chain);
c87e2837 1391 q->task = current;
e2970f2f 1392 spin_unlock(&hb->lock);
1da177e4
LT
1393}
1394
d40d65c8
DH
1395/**
1396 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1397 * @q: The futex_q to unqueue
1398 *
1399 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1400 * be paired with exactly one earlier call to queue_me().
1401 *
1402 * Returns:
1403 * 1 - if the futex_q was still queued (and we removed unqueued it)
1404 * 0 - if the futex_q was already removed by the waking thread
1da177e4 1405 */
1da177e4
LT
1406static int unqueue_me(struct futex_q *q)
1407{
1da177e4 1408 spinlock_t *lock_ptr;
e2970f2f 1409 int ret = 0;
1da177e4
LT
1410
1411 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 1412retry:
1da177e4 1413 lock_ptr = q->lock_ptr;
e91467ec 1414 barrier();
c80544dc 1415 if (lock_ptr != NULL) {
1da177e4
LT
1416 spin_lock(lock_ptr);
1417 /*
1418 * q->lock_ptr can change between reading it and
1419 * spin_lock(), causing us to take the wrong lock. This
1420 * corrects the race condition.
1421 *
1422 * Reasoning goes like this: if we have the wrong lock,
1423 * q->lock_ptr must have changed (maybe several times)
1424 * between reading it and the spin_lock(). It can
1425 * change again after the spin_lock() but only if it was
1426 * already changed before the spin_lock(). It cannot,
1427 * however, change back to the original value. Therefore
1428 * we can detect whether we acquired the correct lock.
1429 */
1430 if (unlikely(lock_ptr != q->lock_ptr)) {
1431 spin_unlock(lock_ptr);
1432 goto retry;
1433 }
ec92d082
PP
1434 WARN_ON(plist_node_empty(&q->list));
1435 plist_del(&q->list, &q->list.plist);
c87e2837
IM
1436
1437 BUG_ON(q->pi_state);
1438
1da177e4
LT
1439 spin_unlock(lock_ptr);
1440 ret = 1;
1441 }
1442
9adef58b 1443 drop_futex_key_refs(&q->key);
1da177e4
LT
1444 return ret;
1445}
1446
c87e2837
IM
1447/*
1448 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1449 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1450 * and dropped here.
c87e2837 1451 */
d0aa7a70 1452static void unqueue_me_pi(struct futex_q *q)
c87e2837 1453{
ec92d082
PP
1454 WARN_ON(plist_node_empty(&q->list));
1455 plist_del(&q->list, &q->list.plist);
c87e2837
IM
1456
1457 BUG_ON(!q->pi_state);
1458 free_pi_state(q->pi_state);
1459 q->pi_state = NULL;
1460
d0aa7a70 1461 spin_unlock(q->lock_ptr);
c87e2837 1462
9adef58b 1463 drop_futex_key_refs(&q->key);
c87e2837
IM
1464}
1465
d0aa7a70 1466/*
cdf71a10 1467 * Fixup the pi_state owner with the new owner.
d0aa7a70 1468 *
778e9a9c
AK
1469 * Must be called with hash bucket lock held and mm->sem held for non
1470 * private futexes.
d0aa7a70 1471 */
778e9a9c 1472static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
c2f9f201 1473 struct task_struct *newowner, int fshared)
d0aa7a70 1474{
cdf71a10 1475 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 1476 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 1477 struct task_struct *oldowner = pi_state->owner;
d0aa7a70 1478 u32 uval, curval, newval;
e4dc5b7a 1479 int ret;
d0aa7a70
PP
1480
1481 /* Owner died? */
1b7558e4
TG
1482 if (!pi_state->owner)
1483 newtid |= FUTEX_OWNER_DIED;
1484
1485 /*
1486 * We are here either because we stole the rtmutex from the
1487 * pending owner or we are the pending owner which failed to
1488 * get the rtmutex. We have to replace the pending owner TID
1489 * in the user space variable. This must be atomic as we have
1490 * to preserve the owner died bit here.
1491 *
b2d0994b
DH
1492 * Note: We write the user space value _before_ changing the pi_state
1493 * because we can fault here. Imagine swapped out pages or a fork
1494 * that marked all the anonymous memory readonly for cow.
1b7558e4
TG
1495 *
1496 * Modifying pi_state _before_ the user space value would
1497 * leave the pi_state in an inconsistent state when we fault
1498 * here, because we need to drop the hash bucket lock to
1499 * handle the fault. This might be observed in the PID check
1500 * in lookup_pi_state.
1501 */
1502retry:
1503 if (get_futex_value_locked(&uval, uaddr))
1504 goto handle_fault;
1505
1506 while (1) {
1507 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1508
1509 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1510
1511 if (curval == -EFAULT)
1512 goto handle_fault;
1513 if (curval == uval)
1514 break;
1515 uval = curval;
1516 }
1517
1518 /*
1519 * We fixed up user space. Now we need to fix the pi_state
1520 * itself.
1521 */
d0aa7a70
PP
1522 if (pi_state->owner != NULL) {
1523 spin_lock_irq(&pi_state->owner->pi_lock);
1524 WARN_ON(list_empty(&pi_state->list));
1525 list_del_init(&pi_state->list);
1526 spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 1527 }
d0aa7a70 1528
cdf71a10 1529 pi_state->owner = newowner;
d0aa7a70 1530
cdf71a10 1531 spin_lock_irq(&newowner->pi_lock);
d0aa7a70 1532 WARN_ON(!list_empty(&pi_state->list));
cdf71a10
TG
1533 list_add(&pi_state->list, &newowner->pi_state_list);
1534 spin_unlock_irq(&newowner->pi_lock);
1b7558e4 1535 return 0;
d0aa7a70 1536
d0aa7a70 1537 /*
1b7558e4
TG
1538 * To handle the page fault we need to drop the hash bucket
1539 * lock here. That gives the other task (either the pending
1540 * owner itself or the task which stole the rtmutex) the
1541 * chance to try the fixup of the pi_state. So once we are
1542 * back from handling the fault we need to check the pi_state
1543 * after reacquiring the hash bucket lock and before trying to
1544 * do another fixup. When the fixup has been done already we
1545 * simply return.
d0aa7a70 1546 */
1b7558e4
TG
1547handle_fault:
1548 spin_unlock(q->lock_ptr);
778e9a9c 1549
d0725992 1550 ret = fault_in_user_writeable(uaddr);
778e9a9c 1551
1b7558e4 1552 spin_lock(q->lock_ptr);
778e9a9c 1553
1b7558e4
TG
1554 /*
1555 * Check if someone else fixed it for us:
1556 */
1557 if (pi_state->owner != oldowner)
1558 return 0;
1559
1560 if (ret)
1561 return ret;
1562
1563 goto retry;
d0aa7a70
PP
1564}
1565
34f01cc1
ED
1566/*
1567 * In case we must use restart_block to restart a futex_wait,
ce6bd420 1568 * we encode in the 'flags' shared capability
34f01cc1 1569 */
1acdac10
TG
1570#define FLAGS_SHARED 0x01
1571#define FLAGS_CLOCKRT 0x02
a72188d8 1572#define FLAGS_HAS_TIMEOUT 0x04
34f01cc1 1573
72c1bbf3 1574static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 1575
dd973998
DH
1576/**
1577 * fixup_owner() - Post lock pi_state and corner case management
1578 * @uaddr: user address of the futex
1579 * @fshared: whether the futex is shared (1) or not (0)
1580 * @q: futex_q (contains pi_state and access to the rt_mutex)
1581 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1582 *
1583 * After attempting to lock an rt_mutex, this function is called to cleanup
1584 * the pi_state owner as well as handle race conditions that may allow us to
1585 * acquire the lock. Must be called with the hb lock held.
1586 *
1587 * Returns:
1588 * 1 - success, lock taken
1589 * 0 - success, lock not taken
1590 * <0 - on error (-EFAULT)
1591 */
1592static int fixup_owner(u32 __user *uaddr, int fshared, struct futex_q *q,
1593 int locked)
1594{
1595 struct task_struct *owner;
1596 int ret = 0;
1597
1598 if (locked) {
1599 /*
1600 * Got the lock. We might not be the anticipated owner if we
1601 * did a lock-steal - fix up the PI-state in that case:
1602 */
1603 if (q->pi_state->owner != current)
1604 ret = fixup_pi_state_owner(uaddr, q, current, fshared);
1605 goto out;
1606 }
1607
1608 /*
1609 * Catch the rare case, where the lock was released when we were on the
1610 * way back before we locked the hash bucket.
1611 */
1612 if (q->pi_state->owner == current) {
1613 /*
1614 * Try to get the rt_mutex now. This might fail as some other
1615 * task acquired the rt_mutex after we removed ourself from the
1616 * rt_mutex waiters list.
1617 */
1618 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1619 locked = 1;
1620 goto out;
1621 }
1622
1623 /*
1624 * pi_state is incorrect, some other task did a lock steal and
1625 * we returned due to timeout or signal without taking the
1626 * rt_mutex. Too late. We can access the rt_mutex_owner without
1627 * locking, as the other task is now blocked on the hash bucket
1628 * lock. Fix the state up.
1629 */
1630 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1631 ret = fixup_pi_state_owner(uaddr, q, owner, fshared);
1632 goto out;
1633 }
1634
1635 /*
1636 * Paranoia check. If we did not take the lock, then we should not be
1637 * the owner, nor the pending owner, of the rt_mutex.
1638 */
1639 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1640 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1641 "pi-state %p\n", ret,
1642 q->pi_state->pi_mutex.owner,
1643 q->pi_state->owner);
1644
1645out:
1646 return ret ? ret : locked;
1647}
1648
ca5f9524
DH
1649/**
1650 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1651 * @hb: the futex hash bucket, must be locked by the caller
1652 * @q: the futex_q to queue up on
1653 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
1654 */
1655static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 1656 struct hrtimer_sleeper *timeout)
ca5f9524
DH
1657{
1658 queue_me(q, hb);
1659
1660 /*
1661 * There might have been scheduling since the queue_me(), as we
1662 * cannot hold a spinlock across the get_user() in case it
1663 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
f1a11e05 1664 * queueing ourselves into the futex hash. This code thus has to
ca5f9524
DH
1665 * rely on the futex_wake() code removing us from hash when it
1666 * wakes us up.
1667 */
f1a11e05 1668 set_current_state(TASK_INTERRUPTIBLE);
ca5f9524
DH
1669
1670 /* Arm the timer */
1671 if (timeout) {
1672 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1673 if (!hrtimer_active(&timeout->timer))
1674 timeout->task = NULL;
1675 }
1676
1677 /*
1678 * !plist_node_empty() is safe here without any lock.
1679 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1680 */
1681 if (likely(!plist_node_empty(&q->list))) {
1682 /*
1683 * If the timer has already expired, current will already be
1684 * flagged for rescheduling. Only call schedule if there
1685 * is no timeout, or if it has yet to expire.
1686 */
1687 if (!timeout || timeout->task)
1688 schedule();
1689 }
1690 __set_current_state(TASK_RUNNING);
1691}
1692
f801073f
DH
1693/**
1694 * futex_wait_setup() - Prepare to wait on a futex
1695 * @uaddr: the futex userspace address
1696 * @val: the expected value
1697 * @fshared: whether the futex is shared (1) or not (0)
1698 * @q: the associated futex_q
1699 * @hb: storage for hash_bucket pointer to be returned to caller
1700 *
1701 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1702 * compare it with the expected value. Handle atomic faults internally.
1703 * Return with the hb lock held and a q.key reference on success, and unlocked
1704 * with no q.key reference on failure.
1705 *
1706 * Returns:
1707 * 0 - uaddr contains val and hb has been locked
1708 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
1709 */
1710static int futex_wait_setup(u32 __user *uaddr, u32 val, int fshared,
1711 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 1712{
e2970f2f
IM
1713 u32 uval;
1714 int ret;
1da177e4 1715
1da177e4 1716 /*
b2d0994b 1717 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
1718 * Order is important:
1719 *
1720 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1721 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1722 *
1723 * The basic logical guarantee of a futex is that it blocks ONLY
1724 * if cond(var) is known to be true at the time of blocking, for
1725 * any cond. If we queued after testing *uaddr, that would open
1726 * a race condition where we could block indefinitely with
1727 * cond(var) false, which would violate the guarantee.
1728 *
1729 * A consequence is that futex_wait() can return zero and absorb
1730 * a wakeup when *uaddr != val on entry to the syscall. This is
1731 * rare, but normal.
1da177e4 1732 */
f801073f
DH
1733retry:
1734 q->key = FUTEX_KEY_INIT;
521c1808 1735 ret = get_futex_key(uaddr, fshared, &q->key, VERIFY_READ);
f801073f 1736 if (unlikely(ret != 0))
a5a2a0c7 1737 return ret;
f801073f
DH
1738
1739retry_private:
1740 *hb = queue_lock(q);
1741
e2970f2f 1742 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 1743
f801073f
DH
1744 if (ret) {
1745 queue_unlock(q, *hb);
1da177e4 1746
e2970f2f 1747 ret = get_user(uval, uaddr);
e4dc5b7a 1748 if (ret)
f801073f 1749 goto out;
1da177e4 1750
e4dc5b7a
DH
1751 if (!fshared)
1752 goto retry_private;
1753
f801073f 1754 put_futex_key(fshared, &q->key);
e4dc5b7a 1755 goto retry;
1da177e4 1756 }
ca5f9524 1757
f801073f
DH
1758 if (uval != val) {
1759 queue_unlock(q, *hb);
1760 ret = -EWOULDBLOCK;
2fff78c7 1761 }
1da177e4 1762
f801073f
DH
1763out:
1764 if (ret)
1765 put_futex_key(fshared, &q->key);
1766 return ret;
1767}
1768
1769static int futex_wait(u32 __user *uaddr, int fshared,
1770 u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
1771{
1772 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
1773 struct restart_block *restart;
1774 struct futex_hash_bucket *hb;
1775 struct futex_q q;
1776 int ret;
1777
1778 if (!bitset)
1779 return -EINVAL;
1780
1781 q.pi_state = NULL;
1782 q.bitset = bitset;
52400ba9 1783 q.rt_waiter = NULL;
84bc4af5 1784 q.requeue_pi_key = NULL;
f801073f
DH
1785
1786 if (abs_time) {
1787 to = &timeout;
1788
1789 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
1790 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1791 hrtimer_init_sleeper(to, current);
1792 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1793 current->timer_slack_ns);
1794 }
1795
1796 /* Prepare to wait on uaddr. */
1797 ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
1798 if (ret)
1799 goto out;
1800
ca5f9524 1801 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 1802 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
1803
1804 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 1805 ret = 0;
1da177e4 1806 if (!unqueue_me(&q))
2fff78c7
PZ
1807 goto out_put_key;
1808 ret = -ETIMEDOUT;
ca5f9524 1809 if (to && !to->task)
2fff78c7 1810 goto out_put_key;
72c1bbf3 1811
e2970f2f
IM
1812 /*
1813 * We expect signal_pending(current), but another thread may
1814 * have handled it for us already.
1815 */
2fff78c7 1816 ret = -ERESTARTSYS;
c19384b5 1817 if (!abs_time)
2fff78c7 1818 goto out_put_key;
1da177e4 1819
2fff78c7
PZ
1820 restart = &current_thread_info()->restart_block;
1821 restart->fn = futex_wait_restart;
1822 restart->futex.uaddr = (u32 *)uaddr;
1823 restart->futex.val = val;
1824 restart->futex.time = abs_time->tv64;
1825 restart->futex.bitset = bitset;
a72188d8 1826 restart->futex.flags = FLAGS_HAS_TIMEOUT;
2fff78c7
PZ
1827
1828 if (fshared)
1829 restart->futex.flags |= FLAGS_SHARED;
1830 if (clockrt)
1831 restart->futex.flags |= FLAGS_CLOCKRT;
42d35d48 1832
2fff78c7
PZ
1833 ret = -ERESTART_RESTARTBLOCK;
1834
1835out_put_key:
1836 put_futex_key(fshared, &q.key);
42d35d48 1837out:
ca5f9524
DH
1838 if (to) {
1839 hrtimer_cancel(&to->timer);
1840 destroy_hrtimer_on_stack(&to->timer);
1841 }
c87e2837
IM
1842 return ret;
1843}
1844
72c1bbf3
NP
1845
1846static long futex_wait_restart(struct restart_block *restart)
1847{
ce6bd420 1848 u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
c2f9f201 1849 int fshared = 0;
a72188d8 1850 ktime_t t, *tp = NULL;
72c1bbf3 1851
a72188d8
DH
1852 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1853 t.tv64 = restart->futex.time;
1854 tp = &t;
1855 }
72c1bbf3 1856 restart->fn = do_no_restart_syscall;
ce6bd420 1857 if (restart->futex.flags & FLAGS_SHARED)
c2f9f201 1858 fshared = 1;
a72188d8 1859 return (long)futex_wait(uaddr, fshared, restart->futex.val, tp,
1acdac10
TG
1860 restart->futex.bitset,
1861 restart->futex.flags & FLAGS_CLOCKRT);
72c1bbf3
NP
1862}
1863
1864
c87e2837
IM
1865/*
1866 * Userspace tried a 0 -> TID atomic transition of the futex value
1867 * and failed. The kernel side here does the whole locking operation:
1868 * if there are waiters then it will block, it does PI, etc. (Due to
1869 * races the kernel might see a 0 value of the futex too.)
1870 */
c2f9f201 1871static int futex_lock_pi(u32 __user *uaddr, int fshared,
34f01cc1 1872 int detect, ktime_t *time, int trylock)
c87e2837 1873{
c5780e97 1874 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837 1875 struct futex_hash_bucket *hb;
c87e2837 1876 struct futex_q q;
dd973998 1877 int res, ret;
c87e2837
IM
1878
1879 if (refill_pi_state_cache())
1880 return -ENOMEM;
1881
c19384b5 1882 if (time) {
c5780e97 1883 to = &timeout;
237fc6e7
TG
1884 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1885 HRTIMER_MODE_ABS);
c5780e97 1886 hrtimer_init_sleeper(to, current);
cc584b21 1887 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
1888 }
1889
c87e2837 1890 q.pi_state = NULL;
52400ba9 1891 q.rt_waiter = NULL;
84bc4af5 1892 q.requeue_pi_key = NULL;
42d35d48 1893retry:
38d47c1b 1894 q.key = FUTEX_KEY_INIT;
64d1304a 1895 ret = get_futex_key(uaddr, fshared, &q.key, VERIFY_WRITE);
c87e2837 1896 if (unlikely(ret != 0))
42d35d48 1897 goto out;
c87e2837 1898
e4dc5b7a 1899retry_private:
82af7aca 1900 hb = queue_lock(&q);
c87e2837 1901
bab5bc9e 1902 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 1903 if (unlikely(ret)) {
778e9a9c 1904 switch (ret) {
1a52084d
DH
1905 case 1:
1906 /* We got the lock. */
1907 ret = 0;
1908 goto out_unlock_put_key;
1909 case -EFAULT:
1910 goto uaddr_faulted;
778e9a9c
AK
1911 case -EAGAIN:
1912 /*
1913 * Task is exiting and we just wait for the
1914 * exit to complete.
1915 */
1916 queue_unlock(&q, hb);
de87fcc1 1917 put_futex_key(fshared, &q.key);
778e9a9c
AK
1918 cond_resched();
1919 goto retry;
778e9a9c 1920 default:
42d35d48 1921 goto out_unlock_put_key;
c87e2837 1922 }
c87e2837
IM
1923 }
1924
1925 /*
1926 * Only actually queue now that the atomic ops are done:
1927 */
82af7aca 1928 queue_me(&q, hb);
c87e2837 1929
c87e2837
IM
1930 WARN_ON(!q.pi_state);
1931 /*
1932 * Block on the PI mutex:
1933 */
1934 if (!trylock)
1935 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1936 else {
1937 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1938 /* Fixup the trylock return value: */
1939 ret = ret ? 0 : -EWOULDBLOCK;
1940 }
1941
a99e4e41 1942 spin_lock(q.lock_ptr);
dd973998
DH
1943 /*
1944 * Fixup the pi_state owner and possibly acquire the lock if we
1945 * haven't already.
1946 */
1947 res = fixup_owner(uaddr, fshared, &q, !ret);
1948 /*
1949 * If fixup_owner() returned an error, proprogate that. If it acquired
1950 * the lock, clear our -ETIMEDOUT or -EINTR.
1951 */
1952 if (res)
1953 ret = (res < 0) ? res : 0;
c87e2837 1954
e8f6386c 1955 /*
dd973998
DH
1956 * If fixup_owner() faulted and was unable to handle the fault, unlock
1957 * it and return the fault to userspace.
e8f6386c
DH
1958 */
1959 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
1960 rt_mutex_unlock(&q.pi_state->pi_mutex);
1961
778e9a9c
AK
1962 /* Unqueue and drop the lock */
1963 unqueue_me_pi(&q);
c87e2837 1964
dd973998 1965 goto out;
c87e2837 1966
42d35d48 1967out_unlock_put_key:
c87e2837
IM
1968 queue_unlock(&q, hb);
1969
42d35d48 1970out_put_key:
38d47c1b 1971 put_futex_key(fshared, &q.key);
42d35d48 1972out:
237fc6e7
TG
1973 if (to)
1974 destroy_hrtimer_on_stack(&to->timer);
dd973998 1975 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 1976
42d35d48 1977uaddr_faulted:
778e9a9c
AK
1978 queue_unlock(&q, hb);
1979
d0725992 1980 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
1981 if (ret)
1982 goto out_put_key;
c87e2837 1983
e4dc5b7a
DH
1984 if (!fshared)
1985 goto retry_private;
1986
1987 put_futex_key(fshared, &q.key);
1988 goto retry;
c87e2837
IM
1989}
1990
c87e2837
IM
1991/*
1992 * Userspace attempted a TID -> 0 atomic transition, and failed.
1993 * This is the in-kernel slowpath: we look up the PI state (if any),
1994 * and do the rt-mutex unlock.
1995 */
c2f9f201 1996static int futex_unlock_pi(u32 __user *uaddr, int fshared)
c87e2837
IM
1997{
1998 struct futex_hash_bucket *hb;
1999 struct futex_q *this, *next;
2000 u32 uval;
ec92d082 2001 struct plist_head *head;
38d47c1b 2002 union futex_key key = FUTEX_KEY_INIT;
e4dc5b7a 2003 int ret;
c87e2837
IM
2004
2005retry:
2006 if (get_user(uval, uaddr))
2007 return -EFAULT;
2008 /*
2009 * We release only a lock we actually own:
2010 */
b488893a 2011 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
c87e2837 2012 return -EPERM;
c87e2837 2013
64d1304a 2014 ret = get_futex_key(uaddr, fshared, &key, VERIFY_WRITE);
c87e2837
IM
2015 if (unlikely(ret != 0))
2016 goto out;
2017
2018 hb = hash_futex(&key);
2019 spin_lock(&hb->lock);
2020
c87e2837
IM
2021 /*
2022 * To avoid races, try to do the TID -> 0 atomic transition
2023 * again. If it succeeds then we can return without waking
2024 * anyone else up:
2025 */
36cf3b5c 2026 if (!(uval & FUTEX_OWNER_DIED))
b488893a 2027 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
36cf3b5c 2028
c87e2837
IM
2029
2030 if (unlikely(uval == -EFAULT))
2031 goto pi_faulted;
2032 /*
2033 * Rare case: we managed to release the lock atomically,
2034 * no need to wake anyone else up:
2035 */
b488893a 2036 if (unlikely(uval == task_pid_vnr(current)))
c87e2837
IM
2037 goto out_unlock;
2038
2039 /*
2040 * Ok, other tasks may need to be woken up - check waiters
2041 * and do the wakeup if necessary:
2042 */
2043 head = &hb->chain;
2044
ec92d082 2045 plist_for_each_entry_safe(this, next, head, list) {
c87e2837
IM
2046 if (!match_futex (&this->key, &key))
2047 continue;
2048 ret = wake_futex_pi(uaddr, uval, this);
2049 /*
2050 * The atomic access to the futex value
2051 * generated a pagefault, so retry the
2052 * user-access and the wakeup:
2053 */
2054 if (ret == -EFAULT)
2055 goto pi_faulted;
2056 goto out_unlock;
2057 }
2058 /*
2059 * No waiters - kernel unlocks the futex:
2060 */
e3f2ddea
IM
2061 if (!(uval & FUTEX_OWNER_DIED)) {
2062 ret = unlock_futex_pi(uaddr, uval);
2063 if (ret == -EFAULT)
2064 goto pi_faulted;
2065 }
c87e2837
IM
2066
2067out_unlock:
2068 spin_unlock(&hb->lock);
38d47c1b 2069 put_futex_key(fshared, &key);
c87e2837 2070
42d35d48 2071out:
c87e2837
IM
2072 return ret;
2073
2074pi_faulted:
778e9a9c 2075 spin_unlock(&hb->lock);
e4dc5b7a 2076 put_futex_key(fshared, &key);
c87e2837 2077
d0725992 2078 ret = fault_in_user_writeable(uaddr);
b5686363 2079 if (!ret)
c87e2837
IM
2080 goto retry;
2081
1da177e4
LT
2082 return ret;
2083}
2084
52400ba9
DH
2085/**
2086 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2087 * @hb: the hash_bucket futex_q was original enqueued on
2088 * @q: the futex_q woken while waiting to be requeued
2089 * @key2: the futex_key of the requeue target futex
2090 * @timeout: the timeout associated with the wait (NULL if none)
2091 *
2092 * Detect if the task was woken on the initial futex as opposed to the requeue
2093 * target futex. If so, determine if it was a timeout or a signal that caused
2094 * the wakeup and return the appropriate error code to the caller. Must be
2095 * called with the hb lock held.
2096 *
2097 * Returns
2098 * 0 - no early wakeup detected
1c840c14 2099 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
2100 */
2101static inline
2102int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2103 struct futex_q *q, union futex_key *key2,
2104 struct hrtimer_sleeper *timeout)
2105{
2106 int ret = 0;
2107
2108 /*
2109 * With the hb lock held, we avoid races while we process the wakeup.
2110 * We only need to hold hb (and not hb2) to ensure atomicity as the
2111 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2112 * It can't be requeued from uaddr2 to something else since we don't
2113 * support a PI aware source futex for requeue.
2114 */
2115 if (!match_futex(&q->key, key2)) {
2116 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2117 /*
2118 * We were woken prior to requeue by a timeout or a signal.
2119 * Unqueue the futex_q and determine which it was.
2120 */
2121 plist_del(&q->list, &q->list.plist);
2122 drop_futex_key_refs(&q->key);
2123
2124 if (timeout && !timeout->task)
2125 ret = -ETIMEDOUT;
1c840c14
TG
2126 else
2127 ret = -ERESTARTNOINTR;
52400ba9
DH
2128 }
2129 return ret;
2130}
2131
2132/**
2133 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 2134 * @uaddr: the futex we initially wait on (non-pi)
52400ba9
DH
2135 * @fshared: whether the futexes are shared (1) or not (0). They must be
2136 * the same type, no requeueing from private to shared, etc.
2137 * @val: the expected value of uaddr
2138 * @abs_time: absolute timeout
56ec1607 2139 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
2140 * @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2141 * @uaddr2: the pi futex we will take prior to returning to user-space
2142 *
2143 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2144 * uaddr2 which must be PI aware. Normal wakeup will wake on uaddr2 and
2145 * complete the acquisition of the rt_mutex prior to returning to userspace.
2146 * This ensures the rt_mutex maintains an owner when it has waiters; without
2147 * one, the pi logic wouldn't know which task to boost/deboost, if there was a
2148 * need to.
2149 *
2150 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2151 * via the following:
2152 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
2153 * 2) wakeup on uaddr2 after a requeue
2154 * 3) signal
2155 * 4) timeout
52400ba9 2156 *
cc6db4e6 2157 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
2158 *
2159 * If 2, we may then block on trying to take the rt_mutex and return via:
2160 * 5) successful lock
2161 * 6) signal
2162 * 7) timeout
2163 * 8) other lock acquisition failure
2164 *
cc6db4e6 2165 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
2166 *
2167 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2168 *
2169 * Returns:
2170 * 0 - On success
2171 * <0 - On error
2172 */
2173static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared,
2174 u32 val, ktime_t *abs_time, u32 bitset,
2175 int clockrt, u32 __user *uaddr2)
2176{
2177 struct hrtimer_sleeper timeout, *to = NULL;
2178 struct rt_mutex_waiter rt_waiter;
2179 struct rt_mutex *pi_mutex = NULL;
52400ba9
DH
2180 struct futex_hash_bucket *hb;
2181 union futex_key key2;
2182 struct futex_q q;
2183 int res, ret;
52400ba9
DH
2184
2185 if (!bitset)
2186 return -EINVAL;
2187
2188 if (abs_time) {
2189 to = &timeout;
2190 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
2191 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2192 hrtimer_init_sleeper(to, current);
2193 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2194 current->timer_slack_ns);
2195 }
2196
2197 /*
2198 * The waiter is allocated on our stack, manipulated by the requeue
2199 * code while we sleep on uaddr.
2200 */
2201 debug_rt_mutex_init_waiter(&rt_waiter);
2202 rt_waiter.task = NULL;
2203
52400ba9 2204 key2 = FUTEX_KEY_INIT;
521c1808 2205 ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
52400ba9
DH
2206 if (unlikely(ret != 0))
2207 goto out;
2208
84bc4af5
DH
2209 q.pi_state = NULL;
2210 q.bitset = bitset;
2211 q.rt_waiter = &rt_waiter;
2212 q.requeue_pi_key = &key2;
2213
52400ba9
DH
2214 /* Prepare to wait on uaddr. */
2215 ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
c8b15a70
TG
2216 if (ret)
2217 goto out_key2;
52400ba9
DH
2218
2219 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 2220 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
2221
2222 spin_lock(&hb->lock);
2223 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2224 spin_unlock(&hb->lock);
2225 if (ret)
2226 goto out_put_keys;
2227
2228 /*
2229 * In order for us to be here, we know our q.key == key2, and since
2230 * we took the hb->lock above, we also know that futex_requeue() has
2231 * completed and we no longer have to concern ourselves with a wakeup
2232 * race with the atomic proxy lock acquition by the requeue code.
2233 */
2234
2235 /* Check if the requeue code acquired the second futex for us. */
2236 if (!q.rt_waiter) {
2237 /*
2238 * Got the lock. We might not be the anticipated owner if we
2239 * did a lock-steal - fix up the PI-state in that case.
2240 */
2241 if (q.pi_state && (q.pi_state->owner != current)) {
2242 spin_lock(q.lock_ptr);
2243 ret = fixup_pi_state_owner(uaddr2, &q, current,
2244 fshared);
2245 spin_unlock(q.lock_ptr);
2246 }
2247 } else {
2248 /*
2249 * We have been woken up by futex_unlock_pi(), a timeout, or a
2250 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2251 * the pi_state.
2252 */
2253 WARN_ON(!&q.pi_state);
2254 pi_mutex = &q.pi_state->pi_mutex;
2255 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2256 debug_rt_mutex_free_waiter(&rt_waiter);
2257
2258 spin_lock(q.lock_ptr);
2259 /*
2260 * Fixup the pi_state owner and possibly acquire the lock if we
2261 * haven't already.
2262 */
2263 res = fixup_owner(uaddr2, fshared, &q, !ret);
2264 /*
2265 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 2266 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
2267 */
2268 if (res)
2269 ret = (res < 0) ? res : 0;
2270
2271 /* Unqueue and drop the lock. */
2272 unqueue_me_pi(&q);
2273 }
2274
2275 /*
2276 * If fixup_pi_state_owner() faulted and was unable to handle the
2277 * fault, unlock the rt_mutex and return the fault to userspace.
2278 */
2279 if (ret == -EFAULT) {
2280 if (rt_mutex_owner(pi_mutex) == current)
2281 rt_mutex_unlock(pi_mutex);
2282 } else if (ret == -EINTR) {
52400ba9 2283 /*
cc6db4e6
DH
2284 * We've already been requeued, but cannot restart by calling
2285 * futex_lock_pi() directly. We could restart this syscall, but
2286 * it would detect that the user space "val" changed and return
2287 * -EWOULDBLOCK. Save the overhead of the restart and return
2288 * -EWOULDBLOCK directly.
52400ba9 2289 */
2070887f 2290 ret = -EWOULDBLOCK;
52400ba9
DH
2291 }
2292
2293out_put_keys:
2294 put_futex_key(fshared, &q.key);
c8b15a70 2295out_key2:
52400ba9
DH
2296 put_futex_key(fshared, &key2);
2297
2298out:
2299 if (to) {
2300 hrtimer_cancel(&to->timer);
2301 destroy_hrtimer_on_stack(&to->timer);
2302 }
2303 return ret;
2304}
2305
0771dfef
IM
2306/*
2307 * Support for robust futexes: the kernel cleans up held futexes at
2308 * thread exit time.
2309 *
2310 * Implementation: user-space maintains a per-thread list of locks it
2311 * is holding. Upon do_exit(), the kernel carefully walks this list,
2312 * and marks all locks that are owned by this thread with the
c87e2837 2313 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
2314 * always manipulated with the lock held, so the list is private and
2315 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2316 * field, to allow the kernel to clean up if the thread dies after
2317 * acquiring the lock, but just before it could have added itself to
2318 * the list. There can only be one such pending lock.
2319 */
2320
2321/**
2322 * sys_set_robust_list - set the robust-futex list head of a task
2323 * @head: pointer to the list-head
2324 * @len: length of the list-head, as userspace expects
2325 */
836f92ad
HC
2326SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2327 size_t, len)
0771dfef 2328{
a0c1e907
TG
2329 if (!futex_cmpxchg_enabled)
2330 return -ENOSYS;
0771dfef
IM
2331 /*
2332 * The kernel knows only one size for now:
2333 */
2334 if (unlikely(len != sizeof(*head)))
2335 return -EINVAL;
2336
2337 current->robust_list = head;
2338
2339 return 0;
2340}
2341
2342/**
2343 * sys_get_robust_list - get the robust-futex list head of a task
2344 * @pid: pid of the process [zero for current task]
2345 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2346 * @len_ptr: pointer to a length field, the kernel fills in the header size
2347 */
836f92ad
HC
2348SYSCALL_DEFINE3(get_robust_list, int, pid,
2349 struct robust_list_head __user * __user *, head_ptr,
2350 size_t __user *, len_ptr)
0771dfef 2351{
ba46df98 2352 struct robust_list_head __user *head;
0771dfef 2353 unsigned long ret;
c69e8d9c 2354 const struct cred *cred = current_cred(), *pcred;
0771dfef 2355
a0c1e907
TG
2356 if (!futex_cmpxchg_enabled)
2357 return -ENOSYS;
2358
0771dfef
IM
2359 if (!pid)
2360 head = current->robust_list;
2361 else {
2362 struct task_struct *p;
2363
2364 ret = -ESRCH;
aaa2a97e 2365 rcu_read_lock();
228ebcbe 2366 p = find_task_by_vpid(pid);
0771dfef
IM
2367 if (!p)
2368 goto err_unlock;
2369 ret = -EPERM;
c69e8d9c
DH
2370 pcred = __task_cred(p);
2371 if (cred->euid != pcred->euid &&
2372 cred->euid != pcred->uid &&
76aac0e9 2373 !capable(CAP_SYS_PTRACE))
0771dfef
IM
2374 goto err_unlock;
2375 head = p->robust_list;
aaa2a97e 2376 rcu_read_unlock();
0771dfef
IM
2377 }
2378
2379 if (put_user(sizeof(*head), len_ptr))
2380 return -EFAULT;
2381 return put_user(head, head_ptr);
2382
2383err_unlock:
aaa2a97e 2384 rcu_read_unlock();
0771dfef
IM
2385
2386 return ret;
2387}
2388
2389/*
2390 * Process a futex-list entry, check whether it's owned by the
2391 * dying task, and do notification if so:
2392 */
e3f2ddea 2393int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 2394{
e3f2ddea 2395 u32 uval, nval, mval;
0771dfef 2396
8f17d3a5
IM
2397retry:
2398 if (get_user(uval, uaddr))
0771dfef
IM
2399 return -1;
2400
b488893a 2401 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
2402 /*
2403 * Ok, this dying thread is truly holding a futex
2404 * of interest. Set the OWNER_DIED bit atomically
2405 * via cmpxchg, and if the value had FUTEX_WAITERS
2406 * set, wake up a waiter (if any). (We have to do a
2407 * futex_wake() even if OWNER_DIED is already set -
2408 * to handle the rare but possible case of recursive
2409 * thread-death.) The rest of the cleanup is done in
2410 * userspace.
2411 */
e3f2ddea
IM
2412 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2413 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
2414
c87e2837
IM
2415 if (nval == -EFAULT)
2416 return -1;
2417
2418 if (nval != uval)
8f17d3a5 2419 goto retry;
0771dfef 2420
e3f2ddea
IM
2421 /*
2422 * Wake robust non-PI futexes here. The wakeup of
2423 * PI futexes happens in exit_pi_state():
2424 */
36cf3b5c 2425 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 2426 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
2427 }
2428 return 0;
2429}
2430
e3f2ddea
IM
2431/*
2432 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2433 */
2434static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98
AV
2435 struct robust_list __user * __user *head,
2436 int *pi)
e3f2ddea
IM
2437{
2438 unsigned long uentry;
2439
ba46df98 2440 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
2441 return -EFAULT;
2442
ba46df98 2443 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
2444 *pi = uentry & 1;
2445
2446 return 0;
2447}
2448
0771dfef
IM
2449/*
2450 * Walk curr->robust_list (very carefully, it's a userspace list!)
2451 * and mark any locks found there dead, and notify any waiters.
2452 *
2453 * We silently return on any sign of list-walking problem.
2454 */
2455void exit_robust_list(struct task_struct *curr)
2456{
2457 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e
MS
2458 struct robust_list __user *entry, *next_entry, *pending;
2459 unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
0771dfef 2460 unsigned long futex_offset;
9f96cb1e 2461 int rc;
0771dfef 2462
a0c1e907
TG
2463 if (!futex_cmpxchg_enabled)
2464 return;
2465
0771dfef
IM
2466 /*
2467 * Fetch the list head (which was registered earlier, via
2468 * sys_set_robust_list()):
2469 */
e3f2ddea 2470 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
2471 return;
2472 /*
2473 * Fetch the relative futex offset:
2474 */
2475 if (get_user(futex_offset, &head->futex_offset))
2476 return;
2477 /*
2478 * Fetch any possibly pending lock-add first, and handle it
2479 * if it exists:
2480 */
e3f2ddea 2481 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 2482 return;
e3f2ddea 2483
9f96cb1e 2484 next_entry = NULL; /* avoid warning with gcc */
0771dfef 2485 while (entry != &head->list) {
9f96cb1e
MS
2486 /*
2487 * Fetch the next entry in the list before calling
2488 * handle_futex_death:
2489 */
2490 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
2491 /*
2492 * A pending lock might already be on the list, so
c87e2837 2493 * don't process it twice:
0771dfef
IM
2494 */
2495 if (entry != pending)
ba46df98 2496 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 2497 curr, pi))
0771dfef 2498 return;
9f96cb1e 2499 if (rc)
0771dfef 2500 return;
9f96cb1e
MS
2501 entry = next_entry;
2502 pi = next_pi;
0771dfef
IM
2503 /*
2504 * Avoid excessively long or circular lists:
2505 */
2506 if (!--limit)
2507 break;
2508
2509 cond_resched();
2510 }
9f96cb1e
MS
2511
2512 if (pending)
2513 handle_futex_death((void __user *)pending + futex_offset,
2514 curr, pip);
0771dfef
IM
2515}
2516
c19384b5 2517long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 2518 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 2519{
1acdac10 2520 int clockrt, ret = -ENOSYS;
34f01cc1 2521 int cmd = op & FUTEX_CMD_MASK;
c2f9f201 2522 int fshared = 0;
34f01cc1
ED
2523
2524 if (!(op & FUTEX_PRIVATE_FLAG))
c2f9f201 2525 fshared = 1;
1da177e4 2526
1acdac10 2527 clockrt = op & FUTEX_CLOCK_REALTIME;
52400ba9 2528 if (clockrt && cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
1acdac10 2529 return -ENOSYS;
1da177e4 2530
34f01cc1 2531 switch (cmd) {
1da177e4 2532 case FUTEX_WAIT:
cd689985
TG
2533 val3 = FUTEX_BITSET_MATCH_ANY;
2534 case FUTEX_WAIT_BITSET:
1acdac10 2535 ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
1da177e4
LT
2536 break;
2537 case FUTEX_WAKE:
cd689985
TG
2538 val3 = FUTEX_BITSET_MATCH_ANY;
2539 case FUTEX_WAKE_BITSET:
2540 ret = futex_wake(uaddr, fshared, val, val3);
1da177e4 2541 break;
1da177e4 2542 case FUTEX_REQUEUE:
52400ba9 2543 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL, 0);
1da177e4
LT
2544 break;
2545 case FUTEX_CMP_REQUEUE:
52400ba9
DH
2546 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2547 0);
1da177e4 2548 break;
4732efbe 2549 case FUTEX_WAKE_OP:
34f01cc1 2550 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
4732efbe 2551 break;
c87e2837 2552 case FUTEX_LOCK_PI:
a0c1e907
TG
2553 if (futex_cmpxchg_enabled)
2554 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
c87e2837
IM
2555 break;
2556 case FUTEX_UNLOCK_PI:
a0c1e907
TG
2557 if (futex_cmpxchg_enabled)
2558 ret = futex_unlock_pi(uaddr, fshared);
c87e2837
IM
2559 break;
2560 case FUTEX_TRYLOCK_PI:
a0c1e907
TG
2561 if (futex_cmpxchg_enabled)
2562 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
c87e2837 2563 break;
52400ba9
DH
2564 case FUTEX_WAIT_REQUEUE_PI:
2565 val3 = FUTEX_BITSET_MATCH_ANY;
2566 ret = futex_wait_requeue_pi(uaddr, fshared, val, timeout, val3,
2567 clockrt, uaddr2);
2568 break;
52400ba9
DH
2569 case FUTEX_CMP_REQUEUE_PI:
2570 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2571 1);
2572 break;
1da177e4
LT
2573 default:
2574 ret = -ENOSYS;
2575 }
2576 return ret;
2577}
2578
2579
17da2bd9
HC
2580SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2581 struct timespec __user *, utime, u32 __user *, uaddr2,
2582 u32, val3)
1da177e4 2583{
c19384b5
PP
2584 struct timespec ts;
2585 ktime_t t, *tp = NULL;
e2970f2f 2586 u32 val2 = 0;
34f01cc1 2587 int cmd = op & FUTEX_CMD_MASK;
1da177e4 2588
cd689985 2589 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
2590 cmd == FUTEX_WAIT_BITSET ||
2591 cmd == FUTEX_WAIT_REQUEUE_PI)) {
c19384b5 2592 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 2593 return -EFAULT;
c19384b5 2594 if (!timespec_valid(&ts))
9741ef96 2595 return -EINVAL;
c19384b5
PP
2596
2597 t = timespec_to_ktime(ts);
34f01cc1 2598 if (cmd == FUTEX_WAIT)
5a7780e7 2599 t = ktime_add_safe(ktime_get(), t);
c19384b5 2600 tp = &t;
1da177e4
LT
2601 }
2602 /*
52400ba9 2603 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 2604 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 2605 */
f54f0986 2606 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 2607 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 2608 val2 = (u32) (unsigned long) utime;
1da177e4 2609
c19384b5 2610 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
2611}
2612
f6d107fb 2613static int __init futex_init(void)
1da177e4 2614{
a0c1e907 2615 u32 curval;
3e4ab747 2616 int i;
95362fa9 2617
a0c1e907
TG
2618 /*
2619 * This will fail and we want it. Some arch implementations do
2620 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2621 * functionality. We want to know that before we call in any
2622 * of the complex code paths. Also we want to prevent
2623 * registration of robust lists in that case. NULL is
2624 * guaranteed to fault and we get -EFAULT on functional
2625 * implementation, the non functional ones will return
2626 * -ENOSYS.
2627 */
2628 curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2629 if (curval == -EFAULT)
2630 futex_cmpxchg_enabled = 1;
2631
3e4ab747
TG
2632 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2633 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2634 spin_lock_init(&futex_queues[i].lock);
2635 }
2636
1da177e4
LT
2637 return 0;
2638}
f6d107fb 2639__initcall(futex_init);