futex: Make unlock_pi more robust
[linux-block.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
7ed20e1a 57#include <linux/signal.h>
9984de1a 58#include <linux/export.h>
fd5eea42 59#include <linux/magic.h>
b488893a
PE
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
bdbb776f 62#include <linux/ptrace.h>
8bd75c77 63#include <linux/sched/rt.h>
13d60f4b 64#include <linux/hugetlb.h>
88c8004f 65#include <linux/freezer.h>
a52b89eb 66#include <linux/bootmem.h>
b488893a 67
4732efbe 68#include <asm/futex.h>
1da177e4 69
1696a8be 70#include "locking/rtmutex_common.h"
c87e2837 71
99b60ce6 72/*
d7e8af1a
DB
73 * READ this before attempting to hack on futexes!
74 *
75 * Basic futex operation and ordering guarantees
76 * =============================================
99b60ce6
TG
77 *
78 * The waiter reads the futex value in user space and calls
79 * futex_wait(). This function computes the hash bucket and acquires
80 * the hash bucket lock. After that it reads the futex user space value
b0c29f79
DB
81 * again and verifies that the data has not changed. If it has not changed
82 * it enqueues itself into the hash bucket, releases the hash bucket lock
83 * and schedules.
99b60ce6
TG
84 *
85 * The waker side modifies the user space value of the futex and calls
b0c29f79
DB
86 * futex_wake(). This function computes the hash bucket and acquires the
87 * hash bucket lock. Then it looks for waiters on that futex in the hash
88 * bucket and wakes them.
99b60ce6 89 *
b0c29f79
DB
90 * In futex wake up scenarios where no tasks are blocked on a futex, taking
91 * the hb spinlock can be avoided and simply return. In order for this
92 * optimization to work, ordering guarantees must exist so that the waiter
93 * being added to the list is acknowledged when the list is concurrently being
94 * checked by the waker, avoiding scenarios like the following:
99b60ce6
TG
95 *
96 * CPU 0 CPU 1
97 * val = *futex;
98 * sys_futex(WAIT, futex, val);
99 * futex_wait(futex, val);
100 * uval = *futex;
101 * *futex = newval;
102 * sys_futex(WAKE, futex);
103 * futex_wake(futex);
104 * if (queue_empty())
105 * return;
106 * if (uval == val)
107 * lock(hash_bucket(futex));
108 * queue();
109 * unlock(hash_bucket(futex));
110 * schedule();
111 *
112 * This would cause the waiter on CPU 0 to wait forever because it
113 * missed the transition of the user space value from val to newval
114 * and the waker did not find the waiter in the hash bucket queue.
99b60ce6 115 *
b0c29f79
DB
116 * The correct serialization ensures that a waiter either observes
117 * the changed user space value before blocking or is woken by a
118 * concurrent waker:
119 *
120 * CPU 0 CPU 1
99b60ce6
TG
121 * val = *futex;
122 * sys_futex(WAIT, futex, val);
123 * futex_wait(futex, val);
b0c29f79 124 *
d7e8af1a 125 * waiters++; (a)
b0c29f79
DB
126 * mb(); (A) <-- paired with -.
127 * |
128 * lock(hash_bucket(futex)); |
129 * |
130 * uval = *futex; |
131 * | *futex = newval;
132 * | sys_futex(WAKE, futex);
133 * | futex_wake(futex);
134 * |
135 * `-------> mb(); (B)
99b60ce6 136 * if (uval == val)
b0c29f79 137 * queue();
99b60ce6 138 * unlock(hash_bucket(futex));
b0c29f79
DB
139 * schedule(); if (waiters)
140 * lock(hash_bucket(futex));
d7e8af1a
DB
141 * else wake_waiters(futex);
142 * waiters--; (b) unlock(hash_bucket(futex));
b0c29f79 143 *
d7e8af1a
DB
144 * Where (A) orders the waiters increment and the futex value read through
145 * atomic operations (see hb_waiters_inc) and where (B) orders the write
146 * to futex and the waiters read -- this is done by the barriers in
147 * get_futex_key_refs(), through either ihold or atomic_inc, depending on the
148 * futex type.
b0c29f79
DB
149 *
150 * This yields the following case (where X:=waiters, Y:=futex):
151 *
152 * X = Y = 0
153 *
154 * w[X]=1 w[Y]=1
155 * MB MB
156 * r[Y]=y r[X]=x
157 *
158 * Which guarantees that x==0 && y==0 is impossible; which translates back into
159 * the guarantee that we cannot both miss the futex variable change and the
160 * enqueue.
d7e8af1a
DB
161 *
162 * Note that a new waiter is accounted for in (a) even when it is possible that
163 * the wait call can return error, in which case we backtrack from it in (b).
164 * Refer to the comment in queue_lock().
165 *
166 * Similarly, in order to account for waiters being requeued on another
167 * address we always increment the waiters for the destination bucket before
168 * acquiring the lock. It then decrements them again after releasing it -
169 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
170 * will do the additional required waiter count housekeeping. This is done for
171 * double_lock_hb() and double_unlock_hb(), respectively.
99b60ce6
TG
172 */
173
03b8c7b6 174#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 175int __read_mostly futex_cmpxchg_enabled;
03b8c7b6 176#endif
a0c1e907 177
b41277dc
DH
178/*
179 * Futex flags used to encode options to functions and preserve them across
180 * restarts.
181 */
182#define FLAGS_SHARED 0x01
183#define FLAGS_CLOCKRT 0x02
184#define FLAGS_HAS_TIMEOUT 0x04
185
c87e2837
IM
186/*
187 * Priority Inheritance state:
188 */
189struct futex_pi_state {
190 /*
191 * list of 'owned' pi_state instances - these have to be
192 * cleaned up in do_exit() if the task exits prematurely:
193 */
194 struct list_head list;
195
196 /*
197 * The PI object:
198 */
199 struct rt_mutex pi_mutex;
200
201 struct task_struct *owner;
202 atomic_t refcount;
203
204 union futex_key key;
205};
206
d8d88fbb
DH
207/**
208 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 209 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
210 * @task: the task waiting on the futex
211 * @lock_ptr: the hash bucket lock
212 * @key: the key the futex is hashed on
213 * @pi_state: optional priority inheritance state
214 * @rt_waiter: rt_waiter storage for use with requeue_pi
215 * @requeue_pi_key: the requeue_pi target futex key
216 * @bitset: bitset for the optional bitmasked wakeup
217 *
218 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
1da177e4
LT
219 * we can wake only the relevant ones (hashed queues may be shared).
220 *
221 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 222 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 223 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
224 * the second.
225 *
226 * PI futexes are typically woken before they are removed from the hash list via
227 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
228 */
229struct futex_q {
ec92d082 230 struct plist_node list;
1da177e4 231
d8d88fbb 232 struct task_struct *task;
1da177e4 233 spinlock_t *lock_ptr;
1da177e4 234 union futex_key key;
c87e2837 235 struct futex_pi_state *pi_state;
52400ba9 236 struct rt_mutex_waiter *rt_waiter;
84bc4af5 237 union futex_key *requeue_pi_key;
cd689985 238 u32 bitset;
1da177e4
LT
239};
240
5bdb05f9
DH
241static const struct futex_q futex_q_init = {
242 /* list gets initialized in queue_me()*/
243 .key = FUTEX_KEY_INIT,
244 .bitset = FUTEX_BITSET_MATCH_ANY
245};
246
1da177e4 247/*
b2d0994b
DH
248 * Hash buckets are shared by all the futex_keys that hash to the same
249 * location. Each key may have multiple futex_q structures, one for each task
250 * waiting on a futex.
1da177e4
LT
251 */
252struct futex_hash_bucket {
11d4616b 253 atomic_t waiters;
ec92d082
PP
254 spinlock_t lock;
255 struct plist_head chain;
a52b89eb 256} ____cacheline_aligned_in_smp;
1da177e4 257
a52b89eb
DB
258static unsigned long __read_mostly futex_hashsize;
259
260static struct futex_hash_bucket *futex_queues;
1da177e4 261
b0c29f79
DB
262static inline void futex_get_mm(union futex_key *key)
263{
264 atomic_inc(&key->private.mm->mm_count);
265 /*
266 * Ensure futex_get_mm() implies a full barrier such that
267 * get_futex_key() implies a full barrier. This is relied upon
268 * as full barrier (B), see the ordering comment above.
269 */
4e857c58 270 smp_mb__after_atomic();
b0c29f79
DB
271}
272
11d4616b
LT
273/*
274 * Reflects a new waiter being added to the waitqueue.
275 */
276static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
b0c29f79
DB
277{
278#ifdef CONFIG_SMP
11d4616b 279 atomic_inc(&hb->waiters);
b0c29f79 280 /*
11d4616b 281 * Full barrier (A), see the ordering comment above.
b0c29f79 282 */
4e857c58 283 smp_mb__after_atomic();
11d4616b
LT
284#endif
285}
286
287/*
288 * Reflects a waiter being removed from the waitqueue by wakeup
289 * paths.
290 */
291static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
292{
293#ifdef CONFIG_SMP
294 atomic_dec(&hb->waiters);
295#endif
296}
b0c29f79 297
11d4616b
LT
298static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
299{
300#ifdef CONFIG_SMP
301 return atomic_read(&hb->waiters);
b0c29f79 302#else
11d4616b 303 return 1;
b0c29f79
DB
304#endif
305}
306
1da177e4
LT
307/*
308 * We hash on the keys returned from get_futex_key (see below).
309 */
310static struct futex_hash_bucket *hash_futex(union futex_key *key)
311{
312 u32 hash = jhash2((u32*)&key->both.word,
313 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
314 key->both.offset);
a52b89eb 315 return &futex_queues[hash & (futex_hashsize - 1)];
1da177e4
LT
316}
317
318/*
319 * Return 1 if two futex_keys are equal, 0 otherwise.
320 */
321static inline int match_futex(union futex_key *key1, union futex_key *key2)
322{
2bc87203
DH
323 return (key1 && key2
324 && key1->both.word == key2->both.word
1da177e4
LT
325 && key1->both.ptr == key2->both.ptr
326 && key1->both.offset == key2->both.offset);
327}
328
38d47c1b
PZ
329/*
330 * Take a reference to the resource addressed by a key.
331 * Can be called while holding spinlocks.
332 *
333 */
334static void get_futex_key_refs(union futex_key *key)
335{
336 if (!key->both.ptr)
337 return;
338
339 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
340 case FUT_OFF_INODE:
b0c29f79 341 ihold(key->shared.inode); /* implies MB (B) */
38d47c1b
PZ
342 break;
343 case FUT_OFF_MMSHARED:
b0c29f79 344 futex_get_mm(key); /* implies MB (B) */
38d47c1b
PZ
345 break;
346 }
347}
348
349/*
350 * Drop a reference to the resource addressed by a key.
351 * The hash bucket spinlock must not be held.
352 */
353static void drop_futex_key_refs(union futex_key *key)
354{
90621c40
DH
355 if (!key->both.ptr) {
356 /* If we're here then we tried to put a key we failed to get */
357 WARN_ON_ONCE(1);
38d47c1b 358 return;
90621c40 359 }
38d47c1b
PZ
360
361 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
362 case FUT_OFF_INODE:
363 iput(key->shared.inode);
364 break;
365 case FUT_OFF_MMSHARED:
366 mmdrop(key->private.mm);
367 break;
368 }
369}
370
34f01cc1 371/**
d96ee56c
DH
372 * get_futex_key() - Get parameters which are the keys for a futex
373 * @uaddr: virtual address of the futex
374 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
375 * @key: address where result is stored.
9ea71503
SB
376 * @rw: mapping needs to be read/write (values: VERIFY_READ,
377 * VERIFY_WRITE)
34f01cc1 378 *
6c23cbbd
RD
379 * Return: a negative error code or 0
380 *
34f01cc1 381 * The key words are stored in *key on success.
1da177e4 382 *
6131ffaa 383 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
1da177e4
LT
384 * offset_within_page). For private mappings, it's (uaddr, current->mm).
385 * We can usually work out the index without swapping in the page.
386 *
b2d0994b 387 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 388 */
64d1304a 389static int
9ea71503 390get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
1da177e4 391{
e2970f2f 392 unsigned long address = (unsigned long)uaddr;
1da177e4 393 struct mm_struct *mm = current->mm;
a5b338f2 394 struct page *page, *page_head;
9ea71503 395 int err, ro = 0;
1da177e4
LT
396
397 /*
398 * The futex address must be "naturally" aligned.
399 */
e2970f2f 400 key->both.offset = address % PAGE_SIZE;
34f01cc1 401 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 402 return -EINVAL;
e2970f2f 403 address -= key->both.offset;
1da177e4 404
5cdec2d8
LT
405 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
406 return -EFAULT;
407
34f01cc1
ED
408 /*
409 * PROCESS_PRIVATE futexes are fast.
410 * As the mm cannot disappear under us and the 'key' only needs
411 * virtual address, we dont even have to find the underlying vma.
412 * Note : We do have to check 'uaddr' is a valid user address,
413 * but access_ok() should be faster than find_vma()
414 */
415 if (!fshared) {
34f01cc1
ED
416 key->private.mm = mm;
417 key->private.address = address;
b0c29f79 418 get_futex_key_refs(key); /* implies MB (B) */
34f01cc1
ED
419 return 0;
420 }
1da177e4 421
38d47c1b 422again:
7485d0d3 423 err = get_user_pages_fast(address, 1, 1, &page);
9ea71503
SB
424 /*
425 * If write access is not required (eg. FUTEX_WAIT), try
426 * and get read-only access.
427 */
428 if (err == -EFAULT && rw == VERIFY_READ) {
429 err = get_user_pages_fast(address, 1, 0, &page);
430 ro = 1;
431 }
38d47c1b
PZ
432 if (err < 0)
433 return err;
9ea71503
SB
434 else
435 err = 0;
38d47c1b 436
a5b338f2
AA
437#ifdef CONFIG_TRANSPARENT_HUGEPAGE
438 page_head = page;
439 if (unlikely(PageTail(page))) {
38d47c1b 440 put_page(page);
a5b338f2
AA
441 /* serialize against __split_huge_page_splitting() */
442 local_irq_disable();
f12d5bfc 443 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
a5b338f2
AA
444 page_head = compound_head(page);
445 /*
446 * page_head is valid pointer but we must pin
447 * it before taking the PG_lock and/or
448 * PG_compound_lock. The moment we re-enable
449 * irqs __split_huge_page_splitting() can
450 * return and the head page can be freed from
451 * under us. We can't take the PG_lock and/or
452 * PG_compound_lock on a page that could be
453 * freed from under us.
454 */
455 if (page != page_head) {
456 get_page(page_head);
457 put_page(page);
458 }
459 local_irq_enable();
460 } else {
461 local_irq_enable();
462 goto again;
463 }
464 }
465#else
466 page_head = compound_head(page);
467 if (page != page_head) {
468 get_page(page_head);
469 put_page(page);
470 }
471#endif
472
473 lock_page(page_head);
e6780f72
HD
474
475 /*
476 * If page_head->mapping is NULL, then it cannot be a PageAnon
477 * page; but it might be the ZERO_PAGE or in the gate area or
478 * in a special mapping (all cases which we are happy to fail);
479 * or it may have been a good file page when get_user_pages_fast
480 * found it, but truncated or holepunched or subjected to
481 * invalidate_complete_page2 before we got the page lock (also
482 * cases which we are happy to fail). And we hold a reference,
483 * so refcount care in invalidate_complete_page's remove_mapping
484 * prevents drop_caches from setting mapping to NULL beneath us.
485 *
486 * The case we do have to guard against is when memory pressure made
487 * shmem_writepage move it from filecache to swapcache beneath us:
488 * an unlikely race, but we do need to retry for page_head->mapping.
489 */
a5b338f2 490 if (!page_head->mapping) {
e6780f72 491 int shmem_swizzled = PageSwapCache(page_head);
a5b338f2
AA
492 unlock_page(page_head);
493 put_page(page_head);
e6780f72
HD
494 if (shmem_swizzled)
495 goto again;
496 return -EFAULT;
38d47c1b 497 }
1da177e4
LT
498
499 /*
500 * Private mappings are handled in a simple way.
501 *
502 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
503 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 504 * the object not the particular process.
1da177e4 505 */
a5b338f2 506 if (PageAnon(page_head)) {
9ea71503
SB
507 /*
508 * A RO anonymous page will never change and thus doesn't make
509 * sense for futex operations.
510 */
511 if (ro) {
512 err = -EFAULT;
513 goto out;
514 }
515
38d47c1b 516 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 517 key->private.mm = mm;
e2970f2f 518 key->private.address = address;
38d47c1b
PZ
519 } else {
520 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
a5b338f2 521 key->shared.inode = page_head->mapping->host;
13d60f4b 522 key->shared.pgoff = basepage_index(page);
1da177e4
LT
523 }
524
b0c29f79 525 get_futex_key_refs(key); /* implies MB (B) */
1da177e4 526
9ea71503 527out:
a5b338f2
AA
528 unlock_page(page_head);
529 put_page(page_head);
9ea71503 530 return err;
1da177e4
LT
531}
532
ae791a2d 533static inline void put_futex_key(union futex_key *key)
1da177e4 534{
38d47c1b 535 drop_futex_key_refs(key);
1da177e4
LT
536}
537
d96ee56c
DH
538/**
539 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
540 * @uaddr: pointer to faulting user space address
541 *
542 * Slow path to fixup the fault we just took in the atomic write
543 * access to @uaddr.
544 *
fb62db2b 545 * We have no generic implementation of a non-destructive write to the
d0725992
TG
546 * user address. We know that we faulted in the atomic pagefault
547 * disabled section so we can as well avoid the #PF overhead by
548 * calling get_user_pages() right away.
549 */
550static int fault_in_user_writeable(u32 __user *uaddr)
551{
722d0172
AK
552 struct mm_struct *mm = current->mm;
553 int ret;
554
555 down_read(&mm->mmap_sem);
2efaca92
BH
556 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
557 FAULT_FLAG_WRITE);
722d0172
AK
558 up_read(&mm->mmap_sem);
559
d0725992
TG
560 return ret < 0 ? ret : 0;
561}
562
4b1c486b
DH
563/**
564 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
565 * @hb: the hash bucket the futex_q's reside in
566 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
567 *
568 * Must be called with the hb lock held.
569 */
570static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
571 union futex_key *key)
572{
573 struct futex_q *this;
574
575 plist_for_each_entry(this, &hb->chain, list) {
576 if (match_futex(&this->key, key))
577 return this;
578 }
579 return NULL;
580}
581
37a9d912
ML
582static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
583 u32 uval, u32 newval)
36cf3b5c 584{
37a9d912 585 int ret;
36cf3b5c
TG
586
587 pagefault_disable();
37a9d912 588 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
589 pagefault_enable();
590
37a9d912 591 return ret;
36cf3b5c
TG
592}
593
594static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
595{
596 int ret;
597
a866374a 598 pagefault_disable();
e2970f2f 599 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 600 pagefault_enable();
1da177e4
LT
601
602 return ret ? -EFAULT : 0;
603}
604
c87e2837
IM
605
606/*
607 * PI code:
608 */
609static int refill_pi_state_cache(void)
610{
611 struct futex_pi_state *pi_state;
612
613 if (likely(current->pi_state_cache))
614 return 0;
615
4668edc3 616 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
617
618 if (!pi_state)
619 return -ENOMEM;
620
c87e2837
IM
621 INIT_LIST_HEAD(&pi_state->list);
622 /* pi_mutex gets initialized later */
623 pi_state->owner = NULL;
624 atomic_set(&pi_state->refcount, 1);
38d47c1b 625 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
626
627 current->pi_state_cache = pi_state;
628
629 return 0;
630}
631
632static struct futex_pi_state * alloc_pi_state(void)
633{
634 struct futex_pi_state *pi_state = current->pi_state_cache;
635
636 WARN_ON(!pi_state);
637 current->pi_state_cache = NULL;
638
639 return pi_state;
640}
641
642static void free_pi_state(struct futex_pi_state *pi_state)
643{
644 if (!atomic_dec_and_test(&pi_state->refcount))
645 return;
646
647 /*
648 * If pi_state->owner is NULL, the owner is most probably dying
649 * and has cleaned up the pi_state already
650 */
651 if (pi_state->owner) {
1d615482 652 raw_spin_lock_irq(&pi_state->owner->pi_lock);
c87e2837 653 list_del_init(&pi_state->list);
1d615482 654 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
c87e2837
IM
655
656 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
657 }
658
659 if (current->pi_state_cache)
660 kfree(pi_state);
661 else {
662 /*
663 * pi_state->list is already empty.
664 * clear pi_state->owner.
665 * refcount is at 0 - put it back to 1.
666 */
667 pi_state->owner = NULL;
668 atomic_set(&pi_state->refcount, 1);
669 current->pi_state_cache = pi_state;
670 }
671}
672
673/*
674 * Look up the task based on what TID userspace gave us.
675 * We dont trust it.
676 */
677static struct task_struct * futex_find_get_task(pid_t pid)
678{
679 struct task_struct *p;
680
d359b549 681 rcu_read_lock();
228ebcbe 682 p = find_task_by_vpid(pid);
7a0ea09a
MH
683 if (p)
684 get_task_struct(p);
a06381fe 685
d359b549 686 rcu_read_unlock();
c87e2837
IM
687
688 return p;
689}
690
691/*
692 * This task is holding PI mutexes at exit time => bad.
693 * Kernel cleans up PI-state, but userspace is likely hosed.
694 * (Robust-futex cleanup is separate and might save the day for userspace.)
695 */
696void exit_pi_state_list(struct task_struct *curr)
697{
c87e2837
IM
698 struct list_head *next, *head = &curr->pi_state_list;
699 struct futex_pi_state *pi_state;
627371d7 700 struct futex_hash_bucket *hb;
38d47c1b 701 union futex_key key = FUTEX_KEY_INIT;
c87e2837 702
a0c1e907
TG
703 if (!futex_cmpxchg_enabled)
704 return;
c87e2837
IM
705 /*
706 * We are a ZOMBIE and nobody can enqueue itself on
707 * pi_state_list anymore, but we have to be careful
627371d7 708 * versus waiters unqueueing themselves:
c87e2837 709 */
1d615482 710 raw_spin_lock_irq(&curr->pi_lock);
c87e2837
IM
711 while (!list_empty(head)) {
712
713 next = head->next;
714 pi_state = list_entry(next, struct futex_pi_state, list);
715 key = pi_state->key;
627371d7 716 hb = hash_futex(&key);
1d615482 717 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 718
c87e2837
IM
719 spin_lock(&hb->lock);
720
1d615482 721 raw_spin_lock_irq(&curr->pi_lock);
627371d7
IM
722 /*
723 * We dropped the pi-lock, so re-check whether this
724 * task still owns the PI-state:
725 */
c87e2837
IM
726 if (head->next != next) {
727 spin_unlock(&hb->lock);
728 continue;
729 }
730
c87e2837 731 WARN_ON(pi_state->owner != curr);
627371d7
IM
732 WARN_ON(list_empty(&pi_state->list));
733 list_del_init(&pi_state->list);
c87e2837 734 pi_state->owner = NULL;
1d615482 735 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
736
737 rt_mutex_unlock(&pi_state->pi_mutex);
738
739 spin_unlock(&hb->lock);
740
1d615482 741 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 742 }
1d615482 743 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
744}
745
54a21788
TG
746/*
747 * We need to check the following states:
748 *
749 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
750 *
751 * [1] NULL | --- | --- | 0 | 0/1 | Valid
752 * [2] NULL | --- | --- | >0 | 0/1 | Valid
753 *
754 * [3] Found | NULL | -- | Any | 0/1 | Invalid
755 *
756 * [4] Found | Found | NULL | 0 | 1 | Valid
757 * [5] Found | Found | NULL | >0 | 1 | Invalid
758 *
759 * [6] Found | Found | task | 0 | 1 | Valid
760 *
761 * [7] Found | Found | NULL | Any | 0 | Invalid
762 *
763 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
764 * [9] Found | Found | task | 0 | 0 | Invalid
765 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
766 *
767 * [1] Indicates that the kernel can acquire the futex atomically. We
768 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
769 *
770 * [2] Valid, if TID does not belong to a kernel thread. If no matching
771 * thread is found then it indicates that the owner TID has died.
772 *
773 * [3] Invalid. The waiter is queued on a non PI futex
774 *
775 * [4] Valid state after exit_robust_list(), which sets the user space
776 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
777 *
778 * [5] The user space value got manipulated between exit_robust_list()
779 * and exit_pi_state_list()
780 *
781 * [6] Valid state after exit_pi_state_list() which sets the new owner in
782 * the pi_state but cannot access the user space value.
783 *
784 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
785 *
786 * [8] Owner and user space value match
787 *
788 * [9] There is no transient state which sets the user space TID to 0
789 * except exit_robust_list(), but this is indicated by the
790 * FUTEX_OWNER_DIED bit. See [4]
791 *
792 * [10] There is no transient state which leaves owner and user space
793 * TID out of sync.
794 */
c87e2837 795static int
d0aa7a70 796lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
54a21788 797 union futex_key *key, struct futex_pi_state **ps)
c87e2837
IM
798{
799 struct futex_pi_state *pi_state = NULL;
800 struct futex_q *this, *next;
c87e2837 801 struct task_struct *p;
778e9a9c 802 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837 803
0d00c7b2 804 plist_for_each_entry_safe(this, next, &hb->chain, list) {
d0aa7a70 805 if (match_futex(&this->key, key)) {
c87e2837 806 /*
54a21788
TG
807 * Sanity check the waiter before increasing
808 * the refcount and attaching to it.
c87e2837
IM
809 */
810 pi_state = this->pi_state;
06a9ec29 811 /*
54a21788
TG
812 * Userspace might have messed up non-PI and
813 * PI futexes [3]
06a9ec29
TG
814 */
815 if (unlikely(!pi_state))
816 return -EINVAL;
817
627371d7 818 WARN_ON(!atomic_read(&pi_state->refcount));
59647b6a
TG
819
820 /*
54a21788 821 * Handle the owner died case:
59647b6a 822 */
54a21788 823 if (uval & FUTEX_OWNER_DIED) {
59647b6a 824 /*
54a21788
TG
825 * exit_pi_state_list sets owner to NULL and
826 * wakes the topmost waiter. The task which
827 * acquires the pi_state->rt_mutex will fixup
828 * owner.
59647b6a 829 */
54a21788
TG
830 if (!pi_state->owner) {
831 /*
832 * No pi state owner, but the user
833 * space TID is not 0. Inconsistent
834 * state. [5]
835 */
836 if (pid)
837 return -EINVAL;
838 /*
839 * Take a ref on the state and
840 * return. [4]
841 */
842 goto out_state;
843 }
844
845 /*
846 * If TID is 0, then either the dying owner
847 * has not yet executed exit_pi_state_list()
848 * or some waiter acquired the rtmutex in the
849 * pi state, but did not yet fixup the TID in
850 * user space.
851 *
852 * Take a ref on the state and return. [6]
853 */
854 if (!pid)
855 goto out_state;
856 } else {
857 /*
858 * If the owner died bit is not set,
859 * then the pi_state must have an
860 * owner. [7]
861 */
862 if (!pi_state->owner)
59647b6a
TG
863 return -EINVAL;
864 }
627371d7 865
866293ee 866 /*
54a21788
TG
867 * Bail out if user space manipulated the
868 * futex value. If pi state exists then the
869 * owner TID must be the same as the user
870 * space TID. [9/10]
866293ee 871 */
54a21788
TG
872 if (pid != task_pid_vnr(pi_state->owner))
873 return -EINVAL;
866293ee 874
54a21788 875 out_state:
c87e2837 876 atomic_inc(&pi_state->refcount);
d0aa7a70 877 *ps = pi_state;
c87e2837
IM
878 return 0;
879 }
880 }
881
882 /*
e3f2ddea 883 * We are the first waiter - try to look up the real owner and attach
54a21788 884 * the new pi_state to it, but bail out when TID = 0 [1]
c87e2837 885 */
778e9a9c 886 if (!pid)
e3f2ddea 887 return -ESRCH;
c87e2837 888 p = futex_find_get_task(pid);
7a0ea09a
MH
889 if (!p)
890 return -ESRCH;
778e9a9c 891
f0d71b3d
TG
892 if (!p->mm) {
893 put_task_struct(p);
894 return -EPERM;
895 }
896
778e9a9c
AK
897 /*
898 * We need to look at the task state flags to figure out,
899 * whether the task is exiting. To protect against the do_exit
900 * change of the task flags, we do this protected by
901 * p->pi_lock:
902 */
1d615482 903 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
904 if (unlikely(p->flags & PF_EXITING)) {
905 /*
906 * The task is on the way out. When PF_EXITPIDONE is
907 * set, we know that the task has finished the
908 * cleanup:
909 */
910 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
911
1d615482 912 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
913 put_task_struct(p);
914 return ret;
915 }
c87e2837 916
54a21788
TG
917 /*
918 * No existing pi state. First waiter. [2]
919 */
c87e2837
IM
920 pi_state = alloc_pi_state();
921
922 /*
923 * Initialize the pi_mutex in locked state and make 'p'
924 * the owner of it:
925 */
926 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
927
928 /* Store the key for possible exit cleanups: */
d0aa7a70 929 pi_state->key = *key;
c87e2837 930
627371d7 931 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
932 list_add(&pi_state->list, &p->pi_state_list);
933 pi_state->owner = p;
1d615482 934 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
935
936 put_task_struct(p);
937
d0aa7a70 938 *ps = pi_state;
c87e2837
IM
939
940 return 0;
941}
942
1a52084d 943/**
d96ee56c 944 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
945 * @uaddr: the pi futex user address
946 * @hb: the pi futex hash bucket
947 * @key: the futex key associated with uaddr and hb
948 * @ps: the pi_state pointer where we store the result of the
949 * lookup
950 * @task: the task to perform the atomic lock work for. This will
951 * be "current" except in the case of requeue pi.
952 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 953 *
6c23cbbd
RD
954 * Return:
955 * 0 - ready to wait;
956 * 1 - acquired the lock;
1a52084d
DH
957 * <0 - error
958 *
959 * The hb->lock and futex_key refs shall be held by the caller.
960 */
961static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
962 union futex_key *key,
963 struct futex_pi_state **ps,
bab5bc9e 964 struct task_struct *task, int set_waiters)
1a52084d 965{
59fa6245 966 int lock_taken, ret, force_take = 0;
c0c9ed15 967 u32 uval, newval, curval, vpid = task_pid_vnr(task);
1a52084d
DH
968
969retry:
970 ret = lock_taken = 0;
971
972 /*
973 * To avoid races, we attempt to take the lock here again
974 * (by doing a 0 -> TID atomic cmpxchg), while holding all
975 * the locks. It will most likely not succeed.
976 */
c0c9ed15 977 newval = vpid;
bab5bc9e
DH
978 if (set_waiters)
979 newval |= FUTEX_WAITERS;
1a52084d 980
37a9d912 981 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
1a52084d
DH
982 return -EFAULT;
983
984 /*
985 * Detect deadlocks.
986 */
c0c9ed15 987 if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
988 return -EDEADLK;
989
990 /*
b3eaa9fc 991 * Surprise - we got the lock, but we do not trust user space at all.
1a52084d 992 */
b3eaa9fc
TG
993 if (unlikely(!curval)) {
994 /*
995 * We verify whether there is kernel state for this
996 * futex. If not, we can safely assume, that the 0 ->
997 * TID transition is correct. If state exists, we do
998 * not bother to fixup the user space state as it was
999 * corrupted already.
1000 */
1001 return futex_top_waiter(hb, key) ? -EINVAL : 1;
1002 }
1a52084d
DH
1003
1004 uval = curval;
1005
1006 /*
1007 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
1008 * to wake at the next unlock.
1009 */
1010 newval = curval | FUTEX_WAITERS;
1011
1012 /*
59fa6245 1013 * Should we force take the futex? See below.
1a52084d 1014 */
59fa6245
TG
1015 if (unlikely(force_take)) {
1016 /*
1017 * Keep the OWNER_DIED and the WAITERS bit and set the
1018 * new TID value.
1019 */
c0c9ed15 1020 newval = (curval & ~FUTEX_TID_MASK) | vpid;
59fa6245 1021 force_take = 0;
1a52084d
DH
1022 lock_taken = 1;
1023 }
1024
37a9d912 1025 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1a52084d
DH
1026 return -EFAULT;
1027 if (unlikely(curval != uval))
1028 goto retry;
1029
1030 /*
59fa6245 1031 * We took the lock due to forced take over.
1a52084d
DH
1032 */
1033 if (unlikely(lock_taken))
1034 return 1;
1035
1036 /*
1037 * We dont have the lock. Look up the PI state (or create it if
1038 * we are the first waiter):
1039 */
54a21788 1040 ret = lookup_pi_state(uval, hb, key, ps);
1a52084d
DH
1041
1042 if (unlikely(ret)) {
1043 switch (ret) {
1044 case -ESRCH:
1045 /*
59fa6245
TG
1046 * We failed to find an owner for this
1047 * futex. So we have no pi_state to block
1048 * on. This can happen in two cases:
1049 *
1050 * 1) The owner died
1051 * 2) A stale FUTEX_WAITERS bit
1052 *
1053 * Re-read the futex value.
1a52084d
DH
1054 */
1055 if (get_futex_value_locked(&curval, uaddr))
1056 return -EFAULT;
1057
1058 /*
59fa6245
TG
1059 * If the owner died or we have a stale
1060 * WAITERS bit the owner TID in the user space
1061 * futex is 0.
1a52084d 1062 */
59fa6245
TG
1063 if (!(curval & FUTEX_TID_MASK)) {
1064 force_take = 1;
1a52084d
DH
1065 goto retry;
1066 }
1067 default:
1068 break;
1069 }
1070 }
1071
1072 return ret;
1073}
1074
2e12978a
LJ
1075/**
1076 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1077 * @q: The futex_q to unqueue
1078 *
1079 * The q->lock_ptr must not be NULL and must be held by the caller.
1080 */
1081static void __unqueue_futex(struct futex_q *q)
1082{
1083 struct futex_hash_bucket *hb;
1084
29096202
SR
1085 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1086 || WARN_ON(plist_node_empty(&q->list)))
2e12978a
LJ
1087 return;
1088
1089 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1090 plist_del(&q->list, &hb->chain);
11d4616b 1091 hb_waiters_dec(hb);
2e12978a
LJ
1092}
1093
1da177e4
LT
1094/*
1095 * The hash bucket lock must be held when this is called.
1096 * Afterwards, the futex_q must not be accessed.
1097 */
1098static void wake_futex(struct futex_q *q)
1099{
f1a11e05
TG
1100 struct task_struct *p = q->task;
1101
aa10990e
DH
1102 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1103 return;
1104
1da177e4 1105 /*
f1a11e05 1106 * We set q->lock_ptr = NULL _before_ we wake up the task. If
fb62db2b
RD
1107 * a non-futex wake up happens on another CPU then the task
1108 * might exit and p would dereference a non-existing task
f1a11e05
TG
1109 * struct. Prevent this by holding a reference on p across the
1110 * wake up.
1da177e4 1111 */
f1a11e05
TG
1112 get_task_struct(p);
1113
2e12978a 1114 __unqueue_futex(q);
1da177e4 1115 /*
f1a11e05
TG
1116 * The waiting task can free the futex_q as soon as
1117 * q->lock_ptr = NULL is written, without taking any locks. A
1118 * memory barrier is required here to prevent the following
1119 * store to lock_ptr from getting ahead of the plist_del.
1da177e4 1120 */
ccdea2f8 1121 smp_wmb();
1da177e4 1122 q->lock_ptr = NULL;
f1a11e05
TG
1123
1124 wake_up_state(p, TASK_NORMAL);
1125 put_task_struct(p);
1da177e4
LT
1126}
1127
c87e2837
IM
1128static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
1129{
1130 struct task_struct *new_owner;
1131 struct futex_pi_state *pi_state = this->pi_state;
7cfdaf38 1132 u32 uninitialized_var(curval), newval;
13fbca4c 1133 int ret = 0;
c87e2837
IM
1134
1135 if (!pi_state)
1136 return -EINVAL;
1137
51246bfd
TG
1138 /*
1139 * If current does not own the pi_state then the futex is
1140 * inconsistent and user space fiddled with the futex value.
1141 */
1142 if (pi_state->owner != current)
1143 return -EINVAL;
1144
d209d74d 1145 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
1146 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1147
1148 /*
f123c98e
SR
1149 * It is possible that the next waiter (the one that brought
1150 * this owner to the kernel) timed out and is no longer
1151 * waiting on the lock.
c87e2837
IM
1152 */
1153 if (!new_owner)
1154 new_owner = this->task;
1155
1156 /*
13fbca4c
TG
1157 * We pass it to the next owner. The WAITERS bit is always
1158 * kept enabled while there is PI state around. We cleanup the
1159 * owner died bit, because we are the owner.
c87e2837 1160 */
13fbca4c 1161 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 1162
13fbca4c
TG
1163 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1164 ret = -EFAULT;
1165 else if (curval != uval)
1166 ret = -EINVAL;
1167 if (ret) {
1168 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1169 return ret;
e3f2ddea 1170 }
c87e2837 1171
1d615482 1172 raw_spin_lock_irq(&pi_state->owner->pi_lock);
627371d7
IM
1173 WARN_ON(list_empty(&pi_state->list));
1174 list_del_init(&pi_state->list);
1d615482 1175 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
627371d7 1176
1d615482 1177 raw_spin_lock_irq(&new_owner->pi_lock);
627371d7 1178 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1179 list_add(&pi_state->list, &new_owner->pi_state_list);
1180 pi_state->owner = new_owner;
1d615482 1181 raw_spin_unlock_irq(&new_owner->pi_lock);
627371d7 1182
d209d74d 1183 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
1184 rt_mutex_unlock(&pi_state->pi_mutex);
1185
1186 return 0;
1187}
1188
8b8f319f
IM
1189/*
1190 * Express the locking dependencies for lockdep:
1191 */
1192static inline void
1193double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1194{
1195 if (hb1 <= hb2) {
1196 spin_lock(&hb1->lock);
1197 if (hb1 < hb2)
1198 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1199 } else { /* hb1 > hb2 */
1200 spin_lock(&hb2->lock);
1201 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1202 }
1203}
1204
5eb3dc62
DH
1205static inline void
1206double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1207{
f061d351 1208 spin_unlock(&hb1->lock);
88f502fe
IM
1209 if (hb1 != hb2)
1210 spin_unlock(&hb2->lock);
5eb3dc62
DH
1211}
1212
1da177e4 1213/*
b2d0994b 1214 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1215 */
b41277dc
DH
1216static int
1217futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1218{
e2970f2f 1219 struct futex_hash_bucket *hb;
1da177e4 1220 struct futex_q *this, *next;
38d47c1b 1221 union futex_key key = FUTEX_KEY_INIT;
1da177e4
LT
1222 int ret;
1223
cd689985
TG
1224 if (!bitset)
1225 return -EINVAL;
1226
9ea71503 1227 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1da177e4
LT
1228 if (unlikely(ret != 0))
1229 goto out;
1230
e2970f2f 1231 hb = hash_futex(&key);
b0c29f79
DB
1232
1233 /* Make sure we really have tasks to wakeup */
1234 if (!hb_waiters_pending(hb))
1235 goto out_put_key;
1236
e2970f2f 1237 spin_lock(&hb->lock);
1da177e4 1238
0d00c7b2 1239 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1da177e4 1240 if (match_futex (&this->key, &key)) {
52400ba9 1241 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1242 ret = -EINVAL;
1243 break;
1244 }
cd689985
TG
1245
1246 /* Check if one of the bits is set in both bitsets */
1247 if (!(this->bitset & bitset))
1248 continue;
1249
1da177e4
LT
1250 wake_futex(this);
1251 if (++ret >= nr_wake)
1252 break;
1253 }
1254 }
1255
e2970f2f 1256 spin_unlock(&hb->lock);
b0c29f79 1257out_put_key:
ae791a2d 1258 put_futex_key(&key);
42d35d48 1259out:
1da177e4
LT
1260 return ret;
1261}
1262
4732efbe
JJ
1263/*
1264 * Wake up all waiters hashed on the physical page that is mapped
1265 * to this virtual address:
1266 */
e2970f2f 1267static int
b41277dc 1268futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1269 int nr_wake, int nr_wake2, int op)
4732efbe 1270{
38d47c1b 1271 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1272 struct futex_hash_bucket *hb1, *hb2;
4732efbe 1273 struct futex_q *this, *next;
e4dc5b7a 1274 int ret, op_ret;
4732efbe 1275
e4dc5b7a 1276retry:
9ea71503 1277 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
4732efbe
JJ
1278 if (unlikely(ret != 0))
1279 goto out;
9ea71503 1280 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
4732efbe 1281 if (unlikely(ret != 0))
42d35d48 1282 goto out_put_key1;
4732efbe 1283
e2970f2f
IM
1284 hb1 = hash_futex(&key1);
1285 hb2 = hash_futex(&key2);
4732efbe 1286
e4dc5b7a 1287retry_private:
eaaea803 1288 double_lock_hb(hb1, hb2);
e2970f2f 1289 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1290 if (unlikely(op_ret < 0)) {
4732efbe 1291
5eb3dc62 1292 double_unlock_hb(hb1, hb2);
4732efbe 1293
7ee1dd3f 1294#ifndef CONFIG_MMU
e2970f2f
IM
1295 /*
1296 * we don't get EFAULT from MMU faults if we don't have an MMU,
1297 * but we might get them from range checking
1298 */
7ee1dd3f 1299 ret = op_ret;
42d35d48 1300 goto out_put_keys;
7ee1dd3f
DH
1301#endif
1302
796f8d9b
DG
1303 if (unlikely(op_ret != -EFAULT)) {
1304 ret = op_ret;
42d35d48 1305 goto out_put_keys;
796f8d9b
DG
1306 }
1307
d0725992 1308 ret = fault_in_user_writeable(uaddr2);
4732efbe 1309 if (ret)
de87fcc1 1310 goto out_put_keys;
4732efbe 1311
b41277dc 1312 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1313 goto retry_private;
1314
ae791a2d
TG
1315 put_futex_key(&key2);
1316 put_futex_key(&key1);
e4dc5b7a 1317 goto retry;
4732efbe
JJ
1318 }
1319
0d00c7b2 1320 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
4732efbe 1321 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1322 if (this->pi_state || this->rt_waiter) {
1323 ret = -EINVAL;
1324 goto out_unlock;
1325 }
4732efbe
JJ
1326 wake_futex(this);
1327 if (++ret >= nr_wake)
1328 break;
1329 }
1330 }
1331
1332 if (op_ret > 0) {
4732efbe 1333 op_ret = 0;
0d00c7b2 1334 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
4732efbe 1335 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1336 if (this->pi_state || this->rt_waiter) {
1337 ret = -EINVAL;
1338 goto out_unlock;
1339 }
4732efbe
JJ
1340 wake_futex(this);
1341 if (++op_ret >= nr_wake2)
1342 break;
1343 }
1344 }
1345 ret += op_ret;
1346 }
1347
aa10990e 1348out_unlock:
5eb3dc62 1349 double_unlock_hb(hb1, hb2);
42d35d48 1350out_put_keys:
ae791a2d 1351 put_futex_key(&key2);
42d35d48 1352out_put_key1:
ae791a2d 1353 put_futex_key(&key1);
42d35d48 1354out:
4732efbe
JJ
1355 return ret;
1356}
1357
9121e478
DH
1358/**
1359 * requeue_futex() - Requeue a futex_q from one hb to another
1360 * @q: the futex_q to requeue
1361 * @hb1: the source hash_bucket
1362 * @hb2: the target hash_bucket
1363 * @key2: the new key for the requeued futex_q
1364 */
1365static inline
1366void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1367 struct futex_hash_bucket *hb2, union futex_key *key2)
1368{
1369
1370 /*
1371 * If key1 and key2 hash to the same bucket, no need to
1372 * requeue.
1373 */
1374 if (likely(&hb1->chain != &hb2->chain)) {
1375 plist_del(&q->list, &hb1->chain);
11d4616b 1376 hb_waiters_dec(hb1);
9121e478 1377 plist_add(&q->list, &hb2->chain);
11d4616b 1378 hb_waiters_inc(hb2);
9121e478 1379 q->lock_ptr = &hb2->lock;
9121e478
DH
1380 }
1381 get_futex_key_refs(key2);
1382 q->key = *key2;
1383}
1384
52400ba9
DH
1385/**
1386 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1387 * @q: the futex_q
1388 * @key: the key of the requeue target futex
1389 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1390 *
1391 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1392 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1393 * to the requeue target futex so the waiter can detect the wakeup on the right
1394 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1395 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1396 * to protect access to the pi_state to fixup the owner later. Must be called
1397 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1398 */
1399static inline
beda2c7e
DH
1400void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1401 struct futex_hash_bucket *hb)
52400ba9 1402{
52400ba9
DH
1403 get_futex_key_refs(key);
1404 q->key = *key;
1405
2e12978a 1406 __unqueue_futex(q);
52400ba9
DH
1407
1408 WARN_ON(!q->rt_waiter);
1409 q->rt_waiter = NULL;
1410
beda2c7e 1411 q->lock_ptr = &hb->lock;
beda2c7e 1412
f1a11e05 1413 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1414}
1415
1416/**
1417 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1418 * @pifutex: the user address of the to futex
1419 * @hb1: the from futex hash bucket, must be locked by the caller
1420 * @hb2: the to futex hash bucket, must be locked by the caller
1421 * @key1: the from futex key
1422 * @key2: the to futex key
1423 * @ps: address to store the pi_state pointer
1424 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1425 *
1426 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1427 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1428 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1429 * hb1 and hb2 must be held by the caller.
52400ba9 1430 *
6c23cbbd
RD
1431 * Return:
1432 * 0 - failed to acquire the lock atomically;
866293ee 1433 * >0 - acquired the lock, return value is vpid of the top_waiter
52400ba9
DH
1434 * <0 - error
1435 */
1436static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1437 struct futex_hash_bucket *hb1,
1438 struct futex_hash_bucket *hb2,
1439 union futex_key *key1, union futex_key *key2,
bab5bc9e 1440 struct futex_pi_state **ps, int set_waiters)
52400ba9 1441{
bab5bc9e 1442 struct futex_q *top_waiter = NULL;
52400ba9 1443 u32 curval;
866293ee 1444 int ret, vpid;
52400ba9
DH
1445
1446 if (get_futex_value_locked(&curval, pifutex))
1447 return -EFAULT;
1448
bab5bc9e
DH
1449 /*
1450 * Find the top_waiter and determine if there are additional waiters.
1451 * If the caller intends to requeue more than 1 waiter to pifutex,
1452 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1453 * as we have means to handle the possible fault. If not, don't set
1454 * the bit unecessarily as it will force the subsequent unlock to enter
1455 * the kernel.
1456 */
52400ba9
DH
1457 top_waiter = futex_top_waiter(hb1, key1);
1458
1459 /* There are no waiters, nothing for us to do. */
1460 if (!top_waiter)
1461 return 0;
1462
84bc4af5
DH
1463 /* Ensure we requeue to the expected futex. */
1464 if (!match_futex(top_waiter->requeue_pi_key, key2))
1465 return -EINVAL;
1466
52400ba9 1467 /*
bab5bc9e
DH
1468 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1469 * the contended case or if set_waiters is 1. The pi_state is returned
1470 * in ps in contended cases.
52400ba9 1471 */
866293ee 1472 vpid = task_pid_vnr(top_waiter->task);
bab5bc9e
DH
1473 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1474 set_waiters);
866293ee 1475 if (ret == 1) {
beda2c7e 1476 requeue_pi_wake_futex(top_waiter, key2, hb2);
866293ee
TG
1477 return vpid;
1478 }
52400ba9
DH
1479 return ret;
1480}
1481
1482/**
1483 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1484 * @uaddr1: source futex user address
b41277dc 1485 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1486 * @uaddr2: target futex user address
1487 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1488 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1489 * @cmpval: @uaddr1 expected value (or %NULL)
1490 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1491 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1492 *
1493 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1494 * uaddr2 atomically on behalf of the top waiter.
1495 *
6c23cbbd
RD
1496 * Return:
1497 * >=0 - on success, the number of tasks requeued or woken;
52400ba9 1498 * <0 - on error
1da177e4 1499 */
b41277dc
DH
1500static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1501 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1502 u32 *cmpval, int requeue_pi)
1da177e4 1503{
38d47c1b 1504 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1505 int drop_count = 0, task_count = 0, ret;
1506 struct futex_pi_state *pi_state = NULL;
e2970f2f 1507 struct futex_hash_bucket *hb1, *hb2;
1da177e4 1508 struct futex_q *this, *next;
52400ba9
DH
1509
1510 if (requeue_pi) {
e9c243a5
TG
1511 /*
1512 * Requeue PI only works on two distinct uaddrs. This
1513 * check is only valid for private futexes. See below.
1514 */
1515 if (uaddr1 == uaddr2)
1516 return -EINVAL;
1517
52400ba9
DH
1518 /*
1519 * requeue_pi requires a pi_state, try to allocate it now
1520 * without any locks in case it fails.
1521 */
1522 if (refill_pi_state_cache())
1523 return -ENOMEM;
1524 /*
1525 * requeue_pi must wake as many tasks as it can, up to nr_wake
1526 * + nr_requeue, since it acquires the rt_mutex prior to
1527 * returning to userspace, so as to not leave the rt_mutex with
1528 * waiters and no owner. However, second and third wake-ups
1529 * cannot be predicted as they involve race conditions with the
1530 * first wake and a fault while looking up the pi_state. Both
1531 * pthread_cond_signal() and pthread_cond_broadcast() should
1532 * use nr_wake=1.
1533 */
1534 if (nr_wake != 1)
1535 return -EINVAL;
1536 }
1da177e4 1537
42d35d48 1538retry:
52400ba9
DH
1539 if (pi_state != NULL) {
1540 /*
1541 * We will have to lookup the pi_state again, so free this one
1542 * to keep the accounting correct.
1543 */
1544 free_pi_state(pi_state);
1545 pi_state = NULL;
1546 }
1547
9ea71503 1548 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1da177e4
LT
1549 if (unlikely(ret != 0))
1550 goto out;
9ea71503
SB
1551 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1552 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1da177e4 1553 if (unlikely(ret != 0))
42d35d48 1554 goto out_put_key1;
1da177e4 1555
e9c243a5
TG
1556 /*
1557 * The check above which compares uaddrs is not sufficient for
1558 * shared futexes. We need to compare the keys:
1559 */
1560 if (requeue_pi && match_futex(&key1, &key2)) {
1561 ret = -EINVAL;
1562 goto out_put_keys;
1563 }
1564
e2970f2f
IM
1565 hb1 = hash_futex(&key1);
1566 hb2 = hash_futex(&key2);
1da177e4 1567
e4dc5b7a 1568retry_private:
69cd9eba 1569 hb_waiters_inc(hb2);
8b8f319f 1570 double_lock_hb(hb1, hb2);
1da177e4 1571
e2970f2f
IM
1572 if (likely(cmpval != NULL)) {
1573 u32 curval;
1da177e4 1574
e2970f2f 1575 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1576
1577 if (unlikely(ret)) {
5eb3dc62 1578 double_unlock_hb(hb1, hb2);
69cd9eba 1579 hb_waiters_dec(hb2);
1da177e4 1580
e2970f2f 1581 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1582 if (ret)
1583 goto out_put_keys;
1da177e4 1584
b41277dc 1585 if (!(flags & FLAGS_SHARED))
e4dc5b7a 1586 goto retry_private;
1da177e4 1587
ae791a2d
TG
1588 put_futex_key(&key2);
1589 put_futex_key(&key1);
e4dc5b7a 1590 goto retry;
1da177e4 1591 }
e2970f2f 1592 if (curval != *cmpval) {
1da177e4
LT
1593 ret = -EAGAIN;
1594 goto out_unlock;
1595 }
1596 }
1597
52400ba9 1598 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
1599 /*
1600 * Attempt to acquire uaddr2 and wake the top waiter. If we
1601 * intend to requeue waiters, force setting the FUTEX_WAITERS
1602 * bit. We force this here where we are able to easily handle
1603 * faults rather in the requeue loop below.
1604 */
52400ba9 1605 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 1606 &key2, &pi_state, nr_requeue);
52400ba9
DH
1607
1608 /*
1609 * At this point the top_waiter has either taken uaddr2 or is
1610 * waiting on it. If the former, then the pi_state will not
1611 * exist yet, look it up one more time to ensure we have a
866293ee
TG
1612 * reference to it. If the lock was taken, ret contains the
1613 * vpid of the top waiter task.
52400ba9 1614 */
866293ee 1615 if (ret > 0) {
52400ba9 1616 WARN_ON(pi_state);
89061d3d 1617 drop_count++;
52400ba9 1618 task_count++;
866293ee
TG
1619 /*
1620 * If we acquired the lock, then the user
1621 * space value of uaddr2 should be vpid. It
1622 * cannot be changed by the top waiter as it
1623 * is blocked on hb2 lock if it tries to do
1624 * so. If something fiddled with it behind our
1625 * back the pi state lookup might unearth
1626 * it. So we rather use the known value than
1627 * rereading and handing potential crap to
1628 * lookup_pi_state.
1629 */
54a21788 1630 ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
52400ba9
DH
1631 }
1632
1633 switch (ret) {
1634 case 0:
1635 break;
1636 case -EFAULT:
1637 double_unlock_hb(hb1, hb2);
69cd9eba 1638 hb_waiters_dec(hb2);
ae791a2d
TG
1639 put_futex_key(&key2);
1640 put_futex_key(&key1);
d0725992 1641 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
1642 if (!ret)
1643 goto retry;
1644 goto out;
1645 case -EAGAIN:
1646 /* The owner was exiting, try again. */
1647 double_unlock_hb(hb1, hb2);
69cd9eba 1648 hb_waiters_dec(hb2);
ae791a2d
TG
1649 put_futex_key(&key2);
1650 put_futex_key(&key1);
52400ba9
DH
1651 cond_resched();
1652 goto retry;
1653 default:
1654 goto out_unlock;
1655 }
1656 }
1657
0d00c7b2 1658 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
52400ba9
DH
1659 if (task_count - nr_wake >= nr_requeue)
1660 break;
1661
1662 if (!match_futex(&this->key, &key1))
1da177e4 1663 continue;
52400ba9 1664
392741e0
DH
1665 /*
1666 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1667 * be paired with each other and no other futex ops.
aa10990e
DH
1668 *
1669 * We should never be requeueing a futex_q with a pi_state,
1670 * which is awaiting a futex_unlock_pi().
392741e0
DH
1671 */
1672 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
1673 (!requeue_pi && this->rt_waiter) ||
1674 this->pi_state) {
392741e0
DH
1675 ret = -EINVAL;
1676 break;
1677 }
52400ba9
DH
1678
1679 /*
1680 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1681 * lock, we already woke the top_waiter. If not, it will be
1682 * woken by futex_unlock_pi().
1683 */
1684 if (++task_count <= nr_wake && !requeue_pi) {
1da177e4 1685 wake_futex(this);
52400ba9
DH
1686 continue;
1687 }
1da177e4 1688
84bc4af5
DH
1689 /* Ensure we requeue to the expected futex for requeue_pi. */
1690 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1691 ret = -EINVAL;
1692 break;
1693 }
1694
52400ba9
DH
1695 /*
1696 * Requeue nr_requeue waiters and possibly one more in the case
1697 * of requeue_pi if we couldn't acquire the lock atomically.
1698 */
1699 if (requeue_pi) {
1700 /* Prepare the waiter to take the rt_mutex. */
1701 atomic_inc(&pi_state->refcount);
1702 this->pi_state = pi_state;
1703 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1704 this->rt_waiter,
c051b21f 1705 this->task);
52400ba9
DH
1706 if (ret == 1) {
1707 /* We got the lock. */
beda2c7e 1708 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 1709 drop_count++;
52400ba9
DH
1710 continue;
1711 } else if (ret) {
1712 /* -EDEADLK */
1713 this->pi_state = NULL;
1714 free_pi_state(pi_state);
1715 goto out_unlock;
1716 }
1da177e4 1717 }
52400ba9
DH
1718 requeue_futex(this, hb1, hb2, &key2);
1719 drop_count++;
1da177e4
LT
1720 }
1721
1722out_unlock:
5eb3dc62 1723 double_unlock_hb(hb1, hb2);
69cd9eba 1724 hb_waiters_dec(hb2);
1da177e4 1725
cd84a42f
DH
1726 /*
1727 * drop_futex_key_refs() must be called outside the spinlocks. During
1728 * the requeue we moved futex_q's from the hash bucket at key1 to the
1729 * one at key2 and updated their key pointer. We no longer need to
1730 * hold the references to key1.
1731 */
1da177e4 1732 while (--drop_count >= 0)
9adef58b 1733 drop_futex_key_refs(&key1);
1da177e4 1734
42d35d48 1735out_put_keys:
ae791a2d 1736 put_futex_key(&key2);
42d35d48 1737out_put_key1:
ae791a2d 1738 put_futex_key(&key1);
42d35d48 1739out:
52400ba9
DH
1740 if (pi_state != NULL)
1741 free_pi_state(pi_state);
1742 return ret ? ret : task_count;
1da177e4
LT
1743}
1744
1745/* The key must be already stored in q->key. */
82af7aca 1746static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 1747 __acquires(&hb->lock)
1da177e4 1748{
e2970f2f 1749 struct futex_hash_bucket *hb;
1da177e4 1750
e2970f2f 1751 hb = hash_futex(&q->key);
11d4616b
LT
1752
1753 /*
1754 * Increment the counter before taking the lock so that
1755 * a potential waker won't miss a to-be-slept task that is
1756 * waiting for the spinlock. This is safe as all queue_lock()
1757 * users end up calling queue_me(). Similarly, for housekeeping,
1758 * decrement the counter at queue_unlock() when some error has
1759 * occurred and we don't end up adding the task to the list.
1760 */
1761 hb_waiters_inc(hb);
1762
e2970f2f 1763 q->lock_ptr = &hb->lock;
1da177e4 1764
b0c29f79 1765 spin_lock(&hb->lock); /* implies MB (A) */
e2970f2f 1766 return hb;
1da177e4
LT
1767}
1768
d40d65c8 1769static inline void
0d00c7b2 1770queue_unlock(struct futex_hash_bucket *hb)
15e408cd 1771 __releases(&hb->lock)
d40d65c8
DH
1772{
1773 spin_unlock(&hb->lock);
11d4616b 1774 hb_waiters_dec(hb);
d40d65c8
DH
1775}
1776
1777/**
1778 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1779 * @q: The futex_q to enqueue
1780 * @hb: The destination hash bucket
1781 *
1782 * The hb->lock must be held by the caller, and is released here. A call to
1783 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1784 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1785 * or nothing if the unqueue is done as part of the wake process and the unqueue
1786 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1787 * an example).
1788 */
82af7aca 1789static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
15e408cd 1790 __releases(&hb->lock)
1da177e4 1791{
ec92d082
PP
1792 int prio;
1793
1794 /*
1795 * The priority used to register this element is
1796 * - either the real thread-priority for the real-time threads
1797 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1798 * - or MAX_RT_PRIO for non-RT threads.
1799 * Thus, all RT-threads are woken first in priority order, and
1800 * the others are woken last, in FIFO order.
1801 */
1802 prio = min(current->normal_prio, MAX_RT_PRIO);
1803
1804 plist_node_init(&q->list, prio);
ec92d082 1805 plist_add(&q->list, &hb->chain);
c87e2837 1806 q->task = current;
e2970f2f 1807 spin_unlock(&hb->lock);
1da177e4
LT
1808}
1809
d40d65c8
DH
1810/**
1811 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1812 * @q: The futex_q to unqueue
1813 *
1814 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1815 * be paired with exactly one earlier call to queue_me().
1816 *
6c23cbbd
RD
1817 * Return:
1818 * 1 - if the futex_q was still queued (and we removed unqueued it);
d40d65c8 1819 * 0 - if the futex_q was already removed by the waking thread
1da177e4 1820 */
1da177e4
LT
1821static int unqueue_me(struct futex_q *q)
1822{
1da177e4 1823 spinlock_t *lock_ptr;
e2970f2f 1824 int ret = 0;
1da177e4
LT
1825
1826 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 1827retry:
1da177e4 1828 lock_ptr = q->lock_ptr;
e91467ec 1829 barrier();
c80544dc 1830 if (lock_ptr != NULL) {
1da177e4
LT
1831 spin_lock(lock_ptr);
1832 /*
1833 * q->lock_ptr can change between reading it and
1834 * spin_lock(), causing us to take the wrong lock. This
1835 * corrects the race condition.
1836 *
1837 * Reasoning goes like this: if we have the wrong lock,
1838 * q->lock_ptr must have changed (maybe several times)
1839 * between reading it and the spin_lock(). It can
1840 * change again after the spin_lock() but only if it was
1841 * already changed before the spin_lock(). It cannot,
1842 * however, change back to the original value. Therefore
1843 * we can detect whether we acquired the correct lock.
1844 */
1845 if (unlikely(lock_ptr != q->lock_ptr)) {
1846 spin_unlock(lock_ptr);
1847 goto retry;
1848 }
2e12978a 1849 __unqueue_futex(q);
c87e2837
IM
1850
1851 BUG_ON(q->pi_state);
1852
1da177e4
LT
1853 spin_unlock(lock_ptr);
1854 ret = 1;
1855 }
1856
9adef58b 1857 drop_futex_key_refs(&q->key);
1da177e4
LT
1858 return ret;
1859}
1860
c87e2837
IM
1861/*
1862 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1863 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1864 * and dropped here.
c87e2837 1865 */
d0aa7a70 1866static void unqueue_me_pi(struct futex_q *q)
15e408cd 1867 __releases(q->lock_ptr)
c87e2837 1868{
2e12978a 1869 __unqueue_futex(q);
c87e2837
IM
1870
1871 BUG_ON(!q->pi_state);
1872 free_pi_state(q->pi_state);
1873 q->pi_state = NULL;
1874
d0aa7a70 1875 spin_unlock(q->lock_ptr);
c87e2837
IM
1876}
1877
d0aa7a70 1878/*
cdf71a10 1879 * Fixup the pi_state owner with the new owner.
d0aa7a70 1880 *
778e9a9c
AK
1881 * Must be called with hash bucket lock held and mm->sem held for non
1882 * private futexes.
d0aa7a70 1883 */
778e9a9c 1884static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
ae791a2d 1885 struct task_struct *newowner)
d0aa7a70 1886{
cdf71a10 1887 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 1888 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 1889 struct task_struct *oldowner = pi_state->owner;
7cfdaf38 1890 u32 uval, uninitialized_var(curval), newval;
e4dc5b7a 1891 int ret;
d0aa7a70
PP
1892
1893 /* Owner died? */
1b7558e4
TG
1894 if (!pi_state->owner)
1895 newtid |= FUTEX_OWNER_DIED;
1896
1897 /*
1898 * We are here either because we stole the rtmutex from the
8161239a
LJ
1899 * previous highest priority waiter or we are the highest priority
1900 * waiter but failed to get the rtmutex the first time.
1901 * We have to replace the newowner TID in the user space variable.
1902 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 1903 *
b2d0994b
DH
1904 * Note: We write the user space value _before_ changing the pi_state
1905 * because we can fault here. Imagine swapped out pages or a fork
1906 * that marked all the anonymous memory readonly for cow.
1b7558e4
TG
1907 *
1908 * Modifying pi_state _before_ the user space value would
1909 * leave the pi_state in an inconsistent state when we fault
1910 * here, because we need to drop the hash bucket lock to
1911 * handle the fault. This might be observed in the PID check
1912 * in lookup_pi_state.
1913 */
1914retry:
1915 if (get_futex_value_locked(&uval, uaddr))
1916 goto handle_fault;
1917
1918 while (1) {
1919 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1920
37a9d912 1921 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1b7558e4
TG
1922 goto handle_fault;
1923 if (curval == uval)
1924 break;
1925 uval = curval;
1926 }
1927
1928 /*
1929 * We fixed up user space. Now we need to fix the pi_state
1930 * itself.
1931 */
d0aa7a70 1932 if (pi_state->owner != NULL) {
1d615482 1933 raw_spin_lock_irq(&pi_state->owner->pi_lock);
d0aa7a70
PP
1934 WARN_ON(list_empty(&pi_state->list));
1935 list_del_init(&pi_state->list);
1d615482 1936 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 1937 }
d0aa7a70 1938
cdf71a10 1939 pi_state->owner = newowner;
d0aa7a70 1940
1d615482 1941 raw_spin_lock_irq(&newowner->pi_lock);
d0aa7a70 1942 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 1943 list_add(&pi_state->list, &newowner->pi_state_list);
1d615482 1944 raw_spin_unlock_irq(&newowner->pi_lock);
1b7558e4 1945 return 0;
d0aa7a70 1946
d0aa7a70 1947 /*
1b7558e4 1948 * To handle the page fault we need to drop the hash bucket
8161239a
LJ
1949 * lock here. That gives the other task (either the highest priority
1950 * waiter itself or the task which stole the rtmutex) the
1b7558e4
TG
1951 * chance to try the fixup of the pi_state. So once we are
1952 * back from handling the fault we need to check the pi_state
1953 * after reacquiring the hash bucket lock and before trying to
1954 * do another fixup. When the fixup has been done already we
1955 * simply return.
d0aa7a70 1956 */
1b7558e4
TG
1957handle_fault:
1958 spin_unlock(q->lock_ptr);
778e9a9c 1959
d0725992 1960 ret = fault_in_user_writeable(uaddr);
778e9a9c 1961
1b7558e4 1962 spin_lock(q->lock_ptr);
778e9a9c 1963
1b7558e4
TG
1964 /*
1965 * Check if someone else fixed it for us:
1966 */
1967 if (pi_state->owner != oldowner)
1968 return 0;
1969
1970 if (ret)
1971 return ret;
1972
1973 goto retry;
d0aa7a70
PP
1974}
1975
72c1bbf3 1976static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 1977
dd973998
DH
1978/**
1979 * fixup_owner() - Post lock pi_state and corner case management
1980 * @uaddr: user address of the futex
dd973998
DH
1981 * @q: futex_q (contains pi_state and access to the rt_mutex)
1982 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1983 *
1984 * After attempting to lock an rt_mutex, this function is called to cleanup
1985 * the pi_state owner as well as handle race conditions that may allow us to
1986 * acquire the lock. Must be called with the hb lock held.
1987 *
6c23cbbd
RD
1988 * Return:
1989 * 1 - success, lock taken;
1990 * 0 - success, lock not taken;
dd973998
DH
1991 * <0 - on error (-EFAULT)
1992 */
ae791a2d 1993static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998
DH
1994{
1995 struct task_struct *owner;
1996 int ret = 0;
1997
1998 if (locked) {
1999 /*
2000 * Got the lock. We might not be the anticipated owner if we
2001 * did a lock-steal - fix up the PI-state in that case:
2002 */
2003 if (q->pi_state->owner != current)
ae791a2d 2004 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
2005 goto out;
2006 }
2007
2008 /*
2009 * Catch the rare case, where the lock was released when we were on the
2010 * way back before we locked the hash bucket.
2011 */
2012 if (q->pi_state->owner == current) {
2013 /*
2014 * Try to get the rt_mutex now. This might fail as some other
2015 * task acquired the rt_mutex after we removed ourself from the
2016 * rt_mutex waiters list.
2017 */
2018 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2019 locked = 1;
2020 goto out;
2021 }
2022
2023 /*
2024 * pi_state is incorrect, some other task did a lock steal and
2025 * we returned due to timeout or signal without taking the
8161239a 2026 * rt_mutex. Too late.
dd973998 2027 */
8161239a 2028 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
dd973998 2029 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
8161239a
LJ
2030 if (!owner)
2031 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2032 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
ae791a2d 2033 ret = fixup_pi_state_owner(uaddr, q, owner);
dd973998
DH
2034 goto out;
2035 }
2036
2037 /*
2038 * Paranoia check. If we did not take the lock, then we should not be
8161239a 2039 * the owner of the rt_mutex.
dd973998
DH
2040 */
2041 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2042 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2043 "pi-state %p\n", ret,
2044 q->pi_state->pi_mutex.owner,
2045 q->pi_state->owner);
2046
2047out:
2048 return ret ? ret : locked;
2049}
2050
ca5f9524
DH
2051/**
2052 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2053 * @hb: the futex hash bucket, must be locked by the caller
2054 * @q: the futex_q to queue up on
2055 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
2056 */
2057static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 2058 struct hrtimer_sleeper *timeout)
ca5f9524 2059{
9beba3c5
DH
2060 /*
2061 * The task state is guaranteed to be set before another task can
2062 * wake it. set_current_state() is implemented using set_mb() and
2063 * queue_me() calls spin_unlock() upon completion, both serializing
2064 * access to the hash list and forcing another memory barrier.
2065 */
f1a11e05 2066 set_current_state(TASK_INTERRUPTIBLE);
0729e196 2067 queue_me(q, hb);
ca5f9524
DH
2068
2069 /* Arm the timer */
2070 if (timeout) {
2071 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2072 if (!hrtimer_active(&timeout->timer))
2073 timeout->task = NULL;
2074 }
2075
2076 /*
0729e196
DH
2077 * If we have been removed from the hash list, then another task
2078 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
2079 */
2080 if (likely(!plist_node_empty(&q->list))) {
2081 /*
2082 * If the timer has already expired, current will already be
2083 * flagged for rescheduling. Only call schedule if there
2084 * is no timeout, or if it has yet to expire.
2085 */
2086 if (!timeout || timeout->task)
88c8004f 2087 freezable_schedule();
ca5f9524
DH
2088 }
2089 __set_current_state(TASK_RUNNING);
2090}
2091
f801073f
DH
2092/**
2093 * futex_wait_setup() - Prepare to wait on a futex
2094 * @uaddr: the futex userspace address
2095 * @val: the expected value
b41277dc 2096 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
2097 * @q: the associated futex_q
2098 * @hb: storage for hash_bucket pointer to be returned to caller
2099 *
2100 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2101 * compare it with the expected value. Handle atomic faults internally.
2102 * Return with the hb lock held and a q.key reference on success, and unlocked
2103 * with no q.key reference on failure.
2104 *
6c23cbbd
RD
2105 * Return:
2106 * 0 - uaddr contains val and hb has been locked;
ca4a04cf 2107 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 2108 */
b41277dc 2109static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 2110 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 2111{
e2970f2f
IM
2112 u32 uval;
2113 int ret;
1da177e4 2114
1da177e4 2115 /*
b2d0994b 2116 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
2117 * Order is important:
2118 *
2119 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2120 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2121 *
2122 * The basic logical guarantee of a futex is that it blocks ONLY
2123 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
2124 * any cond. If we locked the hash-bucket after testing *uaddr, that
2125 * would open a race condition where we could block indefinitely with
1da177e4
LT
2126 * cond(var) false, which would violate the guarantee.
2127 *
8fe8f545
ML
2128 * On the other hand, we insert q and release the hash-bucket only
2129 * after testing *uaddr. This guarantees that futex_wait() will NOT
2130 * absorb a wakeup if *uaddr does not match the desired values
2131 * while the syscall executes.
1da177e4 2132 */
f801073f 2133retry:
9ea71503 2134 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
f801073f 2135 if (unlikely(ret != 0))
a5a2a0c7 2136 return ret;
f801073f
DH
2137
2138retry_private:
2139 *hb = queue_lock(q);
2140
e2970f2f 2141 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 2142
f801073f 2143 if (ret) {
0d00c7b2 2144 queue_unlock(*hb);
1da177e4 2145
e2970f2f 2146 ret = get_user(uval, uaddr);
e4dc5b7a 2147 if (ret)
f801073f 2148 goto out;
1da177e4 2149
b41277dc 2150 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2151 goto retry_private;
2152
ae791a2d 2153 put_futex_key(&q->key);
e4dc5b7a 2154 goto retry;
1da177e4 2155 }
ca5f9524 2156
f801073f 2157 if (uval != val) {
0d00c7b2 2158 queue_unlock(*hb);
f801073f 2159 ret = -EWOULDBLOCK;
2fff78c7 2160 }
1da177e4 2161
f801073f
DH
2162out:
2163 if (ret)
ae791a2d 2164 put_futex_key(&q->key);
f801073f
DH
2165 return ret;
2166}
2167
b41277dc
DH
2168static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2169 ktime_t *abs_time, u32 bitset)
f801073f
DH
2170{
2171 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
2172 struct restart_block *restart;
2173 struct futex_hash_bucket *hb;
5bdb05f9 2174 struct futex_q q = futex_q_init;
f801073f
DH
2175 int ret;
2176
2177 if (!bitset)
2178 return -EINVAL;
f801073f
DH
2179 q.bitset = bitset;
2180
2181 if (abs_time) {
2182 to = &timeout;
2183
b41277dc
DH
2184 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2185 CLOCK_REALTIME : CLOCK_MONOTONIC,
2186 HRTIMER_MODE_ABS);
f801073f
DH
2187 hrtimer_init_sleeper(to, current);
2188 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2189 current->timer_slack_ns);
2190 }
2191
d58e6576 2192retry:
7ada876a
DH
2193 /*
2194 * Prepare to wait on uaddr. On success, holds hb lock and increments
2195 * q.key refs.
2196 */
b41277dc 2197 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
2198 if (ret)
2199 goto out;
2200
ca5f9524 2201 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 2202 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
2203
2204 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 2205 ret = 0;
7ada876a 2206 /* unqueue_me() drops q.key ref */
1da177e4 2207 if (!unqueue_me(&q))
7ada876a 2208 goto out;
2fff78c7 2209 ret = -ETIMEDOUT;
ca5f9524 2210 if (to && !to->task)
7ada876a 2211 goto out;
72c1bbf3 2212
e2970f2f 2213 /*
d58e6576
TG
2214 * We expect signal_pending(current), but we might be the
2215 * victim of a spurious wakeup as well.
e2970f2f 2216 */
7ada876a 2217 if (!signal_pending(current))
d58e6576 2218 goto retry;
d58e6576 2219
2fff78c7 2220 ret = -ERESTARTSYS;
c19384b5 2221 if (!abs_time)
7ada876a 2222 goto out;
1da177e4 2223
2fff78c7
PZ
2224 restart = &current_thread_info()->restart_block;
2225 restart->fn = futex_wait_restart;
a3c74c52 2226 restart->futex.uaddr = uaddr;
2fff78c7
PZ
2227 restart->futex.val = val;
2228 restart->futex.time = abs_time->tv64;
2229 restart->futex.bitset = bitset;
0cd9c649 2230 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2231
2fff78c7
PZ
2232 ret = -ERESTART_RESTARTBLOCK;
2233
42d35d48 2234out:
ca5f9524
DH
2235 if (to) {
2236 hrtimer_cancel(&to->timer);
2237 destroy_hrtimer_on_stack(&to->timer);
2238 }
c87e2837
IM
2239 return ret;
2240}
2241
72c1bbf3
NP
2242
2243static long futex_wait_restart(struct restart_block *restart)
2244{
a3c74c52 2245 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2246 ktime_t t, *tp = NULL;
72c1bbf3 2247
a72188d8
DH
2248 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2249 t.tv64 = restart->futex.time;
2250 tp = &t;
2251 }
72c1bbf3 2252 restart->fn = do_no_restart_syscall;
b41277dc
DH
2253
2254 return (long)futex_wait(uaddr, restart->futex.flags,
2255 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2256}
2257
2258
c87e2837
IM
2259/*
2260 * Userspace tried a 0 -> TID atomic transition of the futex value
2261 * and failed. The kernel side here does the whole locking operation:
2262 * if there are waiters then it will block, it does PI, etc. (Due to
2263 * races the kernel might see a 0 value of the futex too.)
2264 */
b41277dc
DH
2265static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2266 ktime_t *time, int trylock)
c87e2837 2267{
c5780e97 2268 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837 2269 struct futex_hash_bucket *hb;
5bdb05f9 2270 struct futex_q q = futex_q_init;
dd973998 2271 int res, ret;
c87e2837
IM
2272
2273 if (refill_pi_state_cache())
2274 return -ENOMEM;
2275
c19384b5 2276 if (time) {
c5780e97 2277 to = &timeout;
237fc6e7
TG
2278 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2279 HRTIMER_MODE_ABS);
c5780e97 2280 hrtimer_init_sleeper(to, current);
cc584b21 2281 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
2282 }
2283
42d35d48 2284retry:
9ea71503 2285 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
c87e2837 2286 if (unlikely(ret != 0))
42d35d48 2287 goto out;
c87e2837 2288
e4dc5b7a 2289retry_private:
82af7aca 2290 hb = queue_lock(&q);
c87e2837 2291
bab5bc9e 2292 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 2293 if (unlikely(ret)) {
778e9a9c 2294 switch (ret) {
1a52084d
DH
2295 case 1:
2296 /* We got the lock. */
2297 ret = 0;
2298 goto out_unlock_put_key;
2299 case -EFAULT:
2300 goto uaddr_faulted;
778e9a9c
AK
2301 case -EAGAIN:
2302 /*
2303 * Task is exiting and we just wait for the
2304 * exit to complete.
2305 */
0d00c7b2 2306 queue_unlock(hb);
ae791a2d 2307 put_futex_key(&q.key);
778e9a9c
AK
2308 cond_resched();
2309 goto retry;
778e9a9c 2310 default:
42d35d48 2311 goto out_unlock_put_key;
c87e2837 2312 }
c87e2837
IM
2313 }
2314
2315 /*
2316 * Only actually queue now that the atomic ops are done:
2317 */
82af7aca 2318 queue_me(&q, hb);
c87e2837 2319
c87e2837
IM
2320 WARN_ON(!q.pi_state);
2321 /*
2322 * Block on the PI mutex:
2323 */
c051b21f
TG
2324 if (!trylock) {
2325 ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2326 } else {
c87e2837
IM
2327 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2328 /* Fixup the trylock return value: */
2329 ret = ret ? 0 : -EWOULDBLOCK;
2330 }
2331
a99e4e41 2332 spin_lock(q.lock_ptr);
dd973998
DH
2333 /*
2334 * Fixup the pi_state owner and possibly acquire the lock if we
2335 * haven't already.
2336 */
ae791a2d 2337 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2338 /*
2339 * If fixup_owner() returned an error, proprogate that. If it acquired
2340 * the lock, clear our -ETIMEDOUT or -EINTR.
2341 */
2342 if (res)
2343 ret = (res < 0) ? res : 0;
c87e2837 2344
e8f6386c 2345 /*
dd973998
DH
2346 * If fixup_owner() faulted and was unable to handle the fault, unlock
2347 * it and return the fault to userspace.
e8f6386c
DH
2348 */
2349 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2350 rt_mutex_unlock(&q.pi_state->pi_mutex);
2351
778e9a9c
AK
2352 /* Unqueue and drop the lock */
2353 unqueue_me_pi(&q);
c87e2837 2354
5ecb01cf 2355 goto out_put_key;
c87e2837 2356
42d35d48 2357out_unlock_put_key:
0d00c7b2 2358 queue_unlock(hb);
c87e2837 2359
42d35d48 2360out_put_key:
ae791a2d 2361 put_futex_key(&q.key);
42d35d48 2362out:
237fc6e7
TG
2363 if (to)
2364 destroy_hrtimer_on_stack(&to->timer);
dd973998 2365 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2366
42d35d48 2367uaddr_faulted:
0d00c7b2 2368 queue_unlock(hb);
778e9a9c 2369
d0725992 2370 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2371 if (ret)
2372 goto out_put_key;
c87e2837 2373
b41277dc 2374 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2375 goto retry_private;
2376
ae791a2d 2377 put_futex_key(&q.key);
e4dc5b7a 2378 goto retry;
c87e2837
IM
2379}
2380
c87e2837
IM
2381/*
2382 * Userspace attempted a TID -> 0 atomic transition, and failed.
2383 * This is the in-kernel slowpath: we look up the PI state (if any),
2384 * and do the rt-mutex unlock.
2385 */
b41277dc 2386static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837 2387{
ccf9e6a8 2388 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
38d47c1b 2389 union futex_key key = FUTEX_KEY_INIT;
ccf9e6a8
TG
2390 struct futex_hash_bucket *hb;
2391 struct futex_q *match;
e4dc5b7a 2392 int ret;
c87e2837
IM
2393
2394retry:
2395 if (get_user(uval, uaddr))
2396 return -EFAULT;
2397 /*
2398 * We release only a lock we actually own:
2399 */
c0c9ed15 2400 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2401 return -EPERM;
c87e2837 2402
9ea71503 2403 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
ccf9e6a8
TG
2404 if (ret)
2405 return ret;
c87e2837
IM
2406
2407 hb = hash_futex(&key);
2408 spin_lock(&hb->lock);
2409
c87e2837 2410 /*
ccf9e6a8
TG
2411 * Check waiters first. We do not trust user space values at
2412 * all and we at least want to know if user space fiddled
2413 * with the futex value instead of blindly unlocking.
c87e2837 2414 */
ccf9e6a8
TG
2415 match = futex_top_waiter(hb, &key);
2416 if (match) {
2417 ret = wake_futex_pi(uaddr, uval, match);
c87e2837 2418 /*
ccf9e6a8
TG
2419 * The atomic access to the futex value generated a
2420 * pagefault, so retry the user-access and the wakeup:
c87e2837
IM
2421 */
2422 if (ret == -EFAULT)
2423 goto pi_faulted;
2424 goto out_unlock;
2425 }
ccf9e6a8 2426
c87e2837 2427 /*
ccf9e6a8
TG
2428 * We have no kernel internal state, i.e. no waiters in the
2429 * kernel. Waiters which are about to queue themselves are stuck
2430 * on hb->lock. So we can safely ignore them. We do neither
2431 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2432 * owner.
c87e2837 2433 */
ccf9e6a8 2434 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
13fbca4c 2435 goto pi_faulted;
c87e2837 2436
ccf9e6a8
TG
2437 /*
2438 * If uval has changed, let user space handle it.
2439 */
2440 ret = (curval == uval) ? 0 : -EAGAIN;
2441
c87e2837
IM
2442out_unlock:
2443 spin_unlock(&hb->lock);
ae791a2d 2444 put_futex_key(&key);
c87e2837
IM
2445 return ret;
2446
2447pi_faulted:
778e9a9c 2448 spin_unlock(&hb->lock);
ae791a2d 2449 put_futex_key(&key);
c87e2837 2450
d0725992 2451 ret = fault_in_user_writeable(uaddr);
b5686363 2452 if (!ret)
c87e2837
IM
2453 goto retry;
2454
1da177e4
LT
2455 return ret;
2456}
2457
52400ba9
DH
2458/**
2459 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2460 * @hb: the hash_bucket futex_q was original enqueued on
2461 * @q: the futex_q woken while waiting to be requeued
2462 * @key2: the futex_key of the requeue target futex
2463 * @timeout: the timeout associated with the wait (NULL if none)
2464 *
2465 * Detect if the task was woken on the initial futex as opposed to the requeue
2466 * target futex. If so, determine if it was a timeout or a signal that caused
2467 * the wakeup and return the appropriate error code to the caller. Must be
2468 * called with the hb lock held.
2469 *
6c23cbbd
RD
2470 * Return:
2471 * 0 = no early wakeup detected;
2472 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
2473 */
2474static inline
2475int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2476 struct futex_q *q, union futex_key *key2,
2477 struct hrtimer_sleeper *timeout)
2478{
2479 int ret = 0;
2480
2481 /*
2482 * With the hb lock held, we avoid races while we process the wakeup.
2483 * We only need to hold hb (and not hb2) to ensure atomicity as the
2484 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2485 * It can't be requeued from uaddr2 to something else since we don't
2486 * support a PI aware source futex for requeue.
2487 */
2488 if (!match_futex(&q->key, key2)) {
2489 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2490 /*
2491 * We were woken prior to requeue by a timeout or a signal.
2492 * Unqueue the futex_q and determine which it was.
2493 */
2e12978a 2494 plist_del(&q->list, &hb->chain);
11d4616b 2495 hb_waiters_dec(hb);
52400ba9 2496
d58e6576 2497 /* Handle spurious wakeups gracefully */
11df6ddd 2498 ret = -EWOULDBLOCK;
52400ba9
DH
2499 if (timeout && !timeout->task)
2500 ret = -ETIMEDOUT;
d58e6576 2501 else if (signal_pending(current))
1c840c14 2502 ret = -ERESTARTNOINTR;
52400ba9
DH
2503 }
2504 return ret;
2505}
2506
2507/**
2508 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 2509 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 2510 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
52400ba9
DH
2511 * the same type, no requeueing from private to shared, etc.
2512 * @val: the expected value of uaddr
2513 * @abs_time: absolute timeout
56ec1607 2514 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
2515 * @uaddr2: the pi futex we will take prior to returning to user-space
2516 *
2517 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
2518 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2519 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2520 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2521 * without one, the pi logic would not know which task to boost/deboost, if
2522 * there was a need to.
52400ba9
DH
2523 *
2524 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 2525 * via the following--
52400ba9 2526 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
2527 * 2) wakeup on uaddr2 after a requeue
2528 * 3) signal
2529 * 4) timeout
52400ba9 2530 *
cc6db4e6 2531 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
2532 *
2533 * If 2, we may then block on trying to take the rt_mutex and return via:
2534 * 5) successful lock
2535 * 6) signal
2536 * 7) timeout
2537 * 8) other lock acquisition failure
2538 *
cc6db4e6 2539 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
2540 *
2541 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2542 *
6c23cbbd
RD
2543 * Return:
2544 * 0 - On success;
52400ba9
DH
2545 * <0 - On error
2546 */
b41277dc 2547static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 2548 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 2549 u32 __user *uaddr2)
52400ba9
DH
2550{
2551 struct hrtimer_sleeper timeout, *to = NULL;
2552 struct rt_mutex_waiter rt_waiter;
2553 struct rt_mutex *pi_mutex = NULL;
52400ba9 2554 struct futex_hash_bucket *hb;
5bdb05f9
DH
2555 union futex_key key2 = FUTEX_KEY_INIT;
2556 struct futex_q q = futex_q_init;
52400ba9 2557 int res, ret;
52400ba9 2558
6f7b0a2a
DH
2559 if (uaddr == uaddr2)
2560 return -EINVAL;
2561
52400ba9
DH
2562 if (!bitset)
2563 return -EINVAL;
2564
2565 if (abs_time) {
2566 to = &timeout;
b41277dc
DH
2567 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2568 CLOCK_REALTIME : CLOCK_MONOTONIC,
2569 HRTIMER_MODE_ABS);
52400ba9
DH
2570 hrtimer_init_sleeper(to, current);
2571 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2572 current->timer_slack_ns);
2573 }
2574
2575 /*
2576 * The waiter is allocated on our stack, manipulated by the requeue
2577 * code while we sleep on uaddr.
2578 */
2579 debug_rt_mutex_init_waiter(&rt_waiter);
fb00aca4
PZ
2580 RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2581 RB_CLEAR_NODE(&rt_waiter.tree_entry);
52400ba9
DH
2582 rt_waiter.task = NULL;
2583
9ea71503 2584 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
52400ba9
DH
2585 if (unlikely(ret != 0))
2586 goto out;
2587
84bc4af5
DH
2588 q.bitset = bitset;
2589 q.rt_waiter = &rt_waiter;
2590 q.requeue_pi_key = &key2;
2591
7ada876a
DH
2592 /*
2593 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2594 * count.
2595 */
b41277dc 2596 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
2597 if (ret)
2598 goto out_key2;
52400ba9 2599
e9c243a5
TG
2600 /*
2601 * The check above which compares uaddrs is not sufficient for
2602 * shared futexes. We need to compare the keys:
2603 */
2604 if (match_futex(&q.key, &key2)) {
2605 ret = -EINVAL;
2606 goto out_put_keys;
2607 }
2608
52400ba9 2609 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 2610 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
2611
2612 spin_lock(&hb->lock);
2613 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2614 spin_unlock(&hb->lock);
2615 if (ret)
2616 goto out_put_keys;
2617
2618 /*
2619 * In order for us to be here, we know our q.key == key2, and since
2620 * we took the hb->lock above, we also know that futex_requeue() has
2621 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
2622 * race with the atomic proxy lock acquisition by the requeue code. The
2623 * futex_requeue dropped our key1 reference and incremented our key2
2624 * reference count.
52400ba9
DH
2625 */
2626
2627 /* Check if the requeue code acquired the second futex for us. */
2628 if (!q.rt_waiter) {
2629 /*
2630 * Got the lock. We might not be the anticipated owner if we
2631 * did a lock-steal - fix up the PI-state in that case.
2632 */
2633 if (q.pi_state && (q.pi_state->owner != current)) {
2634 spin_lock(q.lock_ptr);
ae791a2d 2635 ret = fixup_pi_state_owner(uaddr2, &q, current);
52400ba9
DH
2636 spin_unlock(q.lock_ptr);
2637 }
2638 } else {
2639 /*
2640 * We have been woken up by futex_unlock_pi(), a timeout, or a
2641 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2642 * the pi_state.
2643 */
f27071cb 2644 WARN_ON(!q.pi_state);
52400ba9 2645 pi_mutex = &q.pi_state->pi_mutex;
c051b21f 2646 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
52400ba9
DH
2647 debug_rt_mutex_free_waiter(&rt_waiter);
2648
2649 spin_lock(q.lock_ptr);
2650 /*
2651 * Fixup the pi_state owner and possibly acquire the lock if we
2652 * haven't already.
2653 */
ae791a2d 2654 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
2655 /*
2656 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 2657 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
2658 */
2659 if (res)
2660 ret = (res < 0) ? res : 0;
2661
2662 /* Unqueue and drop the lock. */
2663 unqueue_me_pi(&q);
2664 }
2665
2666 /*
2667 * If fixup_pi_state_owner() faulted and was unable to handle the
2668 * fault, unlock the rt_mutex and return the fault to userspace.
2669 */
2670 if (ret == -EFAULT) {
b6070a8d 2671 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
52400ba9
DH
2672 rt_mutex_unlock(pi_mutex);
2673 } else if (ret == -EINTR) {
52400ba9 2674 /*
cc6db4e6
DH
2675 * We've already been requeued, but cannot restart by calling
2676 * futex_lock_pi() directly. We could restart this syscall, but
2677 * it would detect that the user space "val" changed and return
2678 * -EWOULDBLOCK. Save the overhead of the restart and return
2679 * -EWOULDBLOCK directly.
52400ba9 2680 */
2070887f 2681 ret = -EWOULDBLOCK;
52400ba9
DH
2682 }
2683
2684out_put_keys:
ae791a2d 2685 put_futex_key(&q.key);
c8b15a70 2686out_key2:
ae791a2d 2687 put_futex_key(&key2);
52400ba9
DH
2688
2689out:
2690 if (to) {
2691 hrtimer_cancel(&to->timer);
2692 destroy_hrtimer_on_stack(&to->timer);
2693 }
2694 return ret;
2695}
2696
0771dfef
IM
2697/*
2698 * Support for robust futexes: the kernel cleans up held futexes at
2699 * thread exit time.
2700 *
2701 * Implementation: user-space maintains a per-thread list of locks it
2702 * is holding. Upon do_exit(), the kernel carefully walks this list,
2703 * and marks all locks that are owned by this thread with the
c87e2837 2704 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
2705 * always manipulated with the lock held, so the list is private and
2706 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2707 * field, to allow the kernel to clean up if the thread dies after
2708 * acquiring the lock, but just before it could have added itself to
2709 * the list. There can only be one such pending lock.
2710 */
2711
2712/**
d96ee56c
DH
2713 * sys_set_robust_list() - Set the robust-futex list head of a task
2714 * @head: pointer to the list-head
2715 * @len: length of the list-head, as userspace expects
0771dfef 2716 */
836f92ad
HC
2717SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2718 size_t, len)
0771dfef 2719{
a0c1e907
TG
2720 if (!futex_cmpxchg_enabled)
2721 return -ENOSYS;
0771dfef
IM
2722 /*
2723 * The kernel knows only one size for now:
2724 */
2725 if (unlikely(len != sizeof(*head)))
2726 return -EINVAL;
2727
2728 current->robust_list = head;
2729
2730 return 0;
2731}
2732
2733/**
d96ee56c
DH
2734 * sys_get_robust_list() - Get the robust-futex list head of a task
2735 * @pid: pid of the process [zero for current task]
2736 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2737 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 2738 */
836f92ad
HC
2739SYSCALL_DEFINE3(get_robust_list, int, pid,
2740 struct robust_list_head __user * __user *, head_ptr,
2741 size_t __user *, len_ptr)
0771dfef 2742{
ba46df98 2743 struct robust_list_head __user *head;
0771dfef 2744 unsigned long ret;
bdbb776f 2745 struct task_struct *p;
0771dfef 2746
a0c1e907
TG
2747 if (!futex_cmpxchg_enabled)
2748 return -ENOSYS;
2749
bdbb776f
KC
2750 rcu_read_lock();
2751
2752 ret = -ESRCH;
0771dfef 2753 if (!pid)
bdbb776f 2754 p = current;
0771dfef 2755 else {
228ebcbe 2756 p = find_task_by_vpid(pid);
0771dfef
IM
2757 if (!p)
2758 goto err_unlock;
0771dfef
IM
2759 }
2760
bdbb776f
KC
2761 ret = -EPERM;
2762 if (!ptrace_may_access(p, PTRACE_MODE_READ))
2763 goto err_unlock;
2764
2765 head = p->robust_list;
2766 rcu_read_unlock();
2767
0771dfef
IM
2768 if (put_user(sizeof(*head), len_ptr))
2769 return -EFAULT;
2770 return put_user(head, head_ptr);
2771
2772err_unlock:
aaa2a97e 2773 rcu_read_unlock();
0771dfef
IM
2774
2775 return ret;
2776}
2777
2778/*
2779 * Process a futex-list entry, check whether it's owned by the
2780 * dying task, and do notification if so:
2781 */
e3f2ddea 2782int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 2783{
7cfdaf38 2784 u32 uval, uninitialized_var(nval), mval;
0771dfef 2785
8f17d3a5
IM
2786retry:
2787 if (get_user(uval, uaddr))
0771dfef
IM
2788 return -1;
2789
b488893a 2790 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
2791 /*
2792 * Ok, this dying thread is truly holding a futex
2793 * of interest. Set the OWNER_DIED bit atomically
2794 * via cmpxchg, and if the value had FUTEX_WAITERS
2795 * set, wake up a waiter (if any). (We have to do a
2796 * futex_wake() even if OWNER_DIED is already set -
2797 * to handle the rare but possible case of recursive
2798 * thread-death.) The rest of the cleanup is done in
2799 * userspace.
2800 */
e3f2ddea 2801 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
6e0aa9f8
TG
2802 /*
2803 * We are not holding a lock here, but we want to have
2804 * the pagefault_disable/enable() protection because
2805 * we want to handle the fault gracefully. If the
2806 * access fails we try to fault in the futex with R/W
2807 * verification via get_user_pages. get_user() above
2808 * does not guarantee R/W access. If that fails we
2809 * give up and leave the futex locked.
2810 */
2811 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2812 if (fault_in_user_writeable(uaddr))
2813 return -1;
2814 goto retry;
2815 }
c87e2837 2816 if (nval != uval)
8f17d3a5 2817 goto retry;
0771dfef 2818
e3f2ddea
IM
2819 /*
2820 * Wake robust non-PI futexes here. The wakeup of
2821 * PI futexes happens in exit_pi_state():
2822 */
36cf3b5c 2823 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 2824 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
2825 }
2826 return 0;
2827}
2828
e3f2ddea
IM
2829/*
2830 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2831 */
2832static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 2833 struct robust_list __user * __user *head,
1dcc41bb 2834 unsigned int *pi)
e3f2ddea
IM
2835{
2836 unsigned long uentry;
2837
ba46df98 2838 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
2839 return -EFAULT;
2840
ba46df98 2841 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
2842 *pi = uentry & 1;
2843
2844 return 0;
2845}
2846
0771dfef
IM
2847/*
2848 * Walk curr->robust_list (very carefully, it's a userspace list!)
2849 * and mark any locks found there dead, and notify any waiters.
2850 *
2851 * We silently return on any sign of list-walking problem.
2852 */
2853void exit_robust_list(struct task_struct *curr)
2854{
2855 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 2856 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
2857 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2858 unsigned int uninitialized_var(next_pi);
0771dfef 2859 unsigned long futex_offset;
9f96cb1e 2860 int rc;
0771dfef 2861
a0c1e907
TG
2862 if (!futex_cmpxchg_enabled)
2863 return;
2864
0771dfef
IM
2865 /*
2866 * Fetch the list head (which was registered earlier, via
2867 * sys_set_robust_list()):
2868 */
e3f2ddea 2869 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
2870 return;
2871 /*
2872 * Fetch the relative futex offset:
2873 */
2874 if (get_user(futex_offset, &head->futex_offset))
2875 return;
2876 /*
2877 * Fetch any possibly pending lock-add first, and handle it
2878 * if it exists:
2879 */
e3f2ddea 2880 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 2881 return;
e3f2ddea 2882
9f96cb1e 2883 next_entry = NULL; /* avoid warning with gcc */
0771dfef 2884 while (entry != &head->list) {
9f96cb1e
MS
2885 /*
2886 * Fetch the next entry in the list before calling
2887 * handle_futex_death:
2888 */
2889 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
2890 /*
2891 * A pending lock might already be on the list, so
c87e2837 2892 * don't process it twice:
0771dfef
IM
2893 */
2894 if (entry != pending)
ba46df98 2895 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 2896 curr, pi))
0771dfef 2897 return;
9f96cb1e 2898 if (rc)
0771dfef 2899 return;
9f96cb1e
MS
2900 entry = next_entry;
2901 pi = next_pi;
0771dfef
IM
2902 /*
2903 * Avoid excessively long or circular lists:
2904 */
2905 if (!--limit)
2906 break;
2907
2908 cond_resched();
2909 }
9f96cb1e
MS
2910
2911 if (pending)
2912 handle_futex_death((void __user *)pending + futex_offset,
2913 curr, pip);
0771dfef
IM
2914}
2915
c19384b5 2916long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 2917 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 2918{
81b40539 2919 int cmd = op & FUTEX_CMD_MASK;
b41277dc 2920 unsigned int flags = 0;
34f01cc1
ED
2921
2922 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 2923 flags |= FLAGS_SHARED;
1da177e4 2924
b41277dc
DH
2925 if (op & FUTEX_CLOCK_REALTIME) {
2926 flags |= FLAGS_CLOCKRT;
2927 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2928 return -ENOSYS;
2929 }
1da177e4 2930
59263b51
TG
2931 switch (cmd) {
2932 case FUTEX_LOCK_PI:
2933 case FUTEX_UNLOCK_PI:
2934 case FUTEX_TRYLOCK_PI:
2935 case FUTEX_WAIT_REQUEUE_PI:
2936 case FUTEX_CMP_REQUEUE_PI:
2937 if (!futex_cmpxchg_enabled)
2938 return -ENOSYS;
2939 }
2940
34f01cc1 2941 switch (cmd) {
1da177e4 2942 case FUTEX_WAIT:
cd689985
TG
2943 val3 = FUTEX_BITSET_MATCH_ANY;
2944 case FUTEX_WAIT_BITSET:
81b40539 2945 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 2946 case FUTEX_WAKE:
cd689985
TG
2947 val3 = FUTEX_BITSET_MATCH_ANY;
2948 case FUTEX_WAKE_BITSET:
81b40539 2949 return futex_wake(uaddr, flags, val, val3);
1da177e4 2950 case FUTEX_REQUEUE:
81b40539 2951 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 2952 case FUTEX_CMP_REQUEUE:
81b40539 2953 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 2954 case FUTEX_WAKE_OP:
81b40539 2955 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 2956 case FUTEX_LOCK_PI:
81b40539 2957 return futex_lock_pi(uaddr, flags, val, timeout, 0);
c87e2837 2958 case FUTEX_UNLOCK_PI:
81b40539 2959 return futex_unlock_pi(uaddr, flags);
c87e2837 2960 case FUTEX_TRYLOCK_PI:
81b40539 2961 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
52400ba9
DH
2962 case FUTEX_WAIT_REQUEUE_PI:
2963 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
2964 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2965 uaddr2);
52400ba9 2966 case FUTEX_CMP_REQUEUE_PI:
81b40539 2967 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 2968 }
81b40539 2969 return -ENOSYS;
1da177e4
LT
2970}
2971
2972
17da2bd9
HC
2973SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2974 struct timespec __user *, utime, u32 __user *, uaddr2,
2975 u32, val3)
1da177e4 2976{
c19384b5
PP
2977 struct timespec ts;
2978 ktime_t t, *tp = NULL;
e2970f2f 2979 u32 val2 = 0;
34f01cc1 2980 int cmd = op & FUTEX_CMD_MASK;
1da177e4 2981
cd689985 2982 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
2983 cmd == FUTEX_WAIT_BITSET ||
2984 cmd == FUTEX_WAIT_REQUEUE_PI)) {
c19384b5 2985 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 2986 return -EFAULT;
c19384b5 2987 if (!timespec_valid(&ts))
9741ef96 2988 return -EINVAL;
c19384b5
PP
2989
2990 t = timespec_to_ktime(ts);
34f01cc1 2991 if (cmd == FUTEX_WAIT)
5a7780e7 2992 t = ktime_add_safe(ktime_get(), t);
c19384b5 2993 tp = &t;
1da177e4
LT
2994 }
2995 /*
52400ba9 2996 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 2997 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 2998 */
f54f0986 2999 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 3000 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 3001 val2 = (u32) (unsigned long) utime;
1da177e4 3002
c19384b5 3003 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
3004}
3005
03b8c7b6 3006static void __init futex_detect_cmpxchg(void)
1da177e4 3007{
03b8c7b6 3008#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 3009 u32 curval;
03b8c7b6
HC
3010
3011 /*
3012 * This will fail and we want it. Some arch implementations do
3013 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3014 * functionality. We want to know that before we call in any
3015 * of the complex code paths. Also we want to prevent
3016 * registration of robust lists in that case. NULL is
3017 * guaranteed to fault and we get -EFAULT on functional
3018 * implementation, the non-functional ones will return
3019 * -ENOSYS.
3020 */
3021 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3022 futex_cmpxchg_enabled = 1;
3023#endif
3024}
3025
3026static int __init futex_init(void)
3027{
63b1a816 3028 unsigned int futex_shift;
a52b89eb
DB
3029 unsigned long i;
3030
3031#if CONFIG_BASE_SMALL
3032 futex_hashsize = 16;
3033#else
3034 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3035#endif
3036
3037 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3038 futex_hashsize, 0,
3039 futex_hashsize < 256 ? HASH_SMALL : 0,
63b1a816
HC
3040 &futex_shift, NULL,
3041 futex_hashsize, futex_hashsize);
3042 futex_hashsize = 1UL << futex_shift;
03b8c7b6
HC
3043
3044 futex_detect_cmpxchg();
a0c1e907 3045
a52b89eb 3046 for (i = 0; i < futex_hashsize; i++) {
11d4616b 3047 atomic_set(&futex_queues[i].waiters, 0);
732375c6 3048 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
3049 spin_lock_init(&futex_queues[i].lock);
3050 }
3051
1da177e4
LT
3052 return 0;
3053}
f6d107fb 3054__initcall(futex_init);