futex: cleanup fshared
[linux-2.6-block.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
1da177e4
LT
22 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23 * enough at me, Linus for the original (flawed) idea, Matthew
24 * Kirkwood for proof-of-concept implementation.
25 *
26 * "The futexes are also cursed."
27 * "But they come in a choice of three flavours!"
28 *
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License as published by
31 * the Free Software Foundation; either version 2 of the License, or
32 * (at your option) any later version.
33 *
34 * This program is distributed in the hope that it will be useful,
35 * but WITHOUT ANY WARRANTY; without even the implied warranty of
36 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
37 * GNU General Public License for more details.
38 *
39 * You should have received a copy of the GNU General Public License
40 * along with this program; if not, write to the Free Software
41 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
42 */
43#include <linux/slab.h>
44#include <linux/poll.h>
45#include <linux/fs.h>
46#include <linux/file.h>
47#include <linux/jhash.h>
48#include <linux/init.h>
49#include <linux/futex.h>
50#include <linux/mount.h>
51#include <linux/pagemap.h>
52#include <linux/syscalls.h>
7ed20e1a 53#include <linux/signal.h>
9adef58b 54#include <linux/module.h>
fd5eea42 55#include <linux/magic.h>
b488893a
PE
56#include <linux/pid.h>
57#include <linux/nsproxy.h>
58
4732efbe 59#include <asm/futex.h>
1da177e4 60
c87e2837
IM
61#include "rtmutex_common.h"
62
a0c1e907
TG
63int __read_mostly futex_cmpxchg_enabled;
64
1da177e4
LT
65#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
66
c87e2837
IM
67/*
68 * Priority Inheritance state:
69 */
70struct futex_pi_state {
71 /*
72 * list of 'owned' pi_state instances - these have to be
73 * cleaned up in do_exit() if the task exits prematurely:
74 */
75 struct list_head list;
76
77 /*
78 * The PI object:
79 */
80 struct rt_mutex pi_mutex;
81
82 struct task_struct *owner;
83 atomic_t refcount;
84
85 union futex_key key;
86};
87
1da177e4
LT
88/*
89 * We use this hashed waitqueue instead of a normal wait_queue_t, so
90 * we can wake only the relevant ones (hashed queues may be shared).
91 *
92 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 93 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
1da177e4
LT
94 * The order of wakup is always to make the first condition true, then
95 * wake up q->waiters, then make the second condition true.
96 */
97struct futex_q {
ec92d082 98 struct plist_node list;
1da177e4
LT
99 wait_queue_head_t waiters;
100
e2970f2f 101 /* Which hash list lock to use: */
1da177e4
LT
102 spinlock_t *lock_ptr;
103
e2970f2f 104 /* Key which the futex is hashed on: */
1da177e4
LT
105 union futex_key key;
106
c87e2837
IM
107 /* Optional priority inheritance state: */
108 struct futex_pi_state *pi_state;
109 struct task_struct *task;
cd689985
TG
110
111 /* Bitset for the optional bitmasked wakeup */
112 u32 bitset;
1da177e4
LT
113};
114
115/*
116 * Split the global futex_lock into every hash list lock.
117 */
118struct futex_hash_bucket {
ec92d082
PP
119 spinlock_t lock;
120 struct plist_head chain;
1da177e4
LT
121};
122
123static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
124
1da177e4
LT
125/*
126 * We hash on the keys returned from get_futex_key (see below).
127 */
128static struct futex_hash_bucket *hash_futex(union futex_key *key)
129{
130 u32 hash = jhash2((u32*)&key->both.word,
131 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
132 key->both.offset);
133 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
134}
135
136/*
137 * Return 1 if two futex_keys are equal, 0 otherwise.
138 */
139static inline int match_futex(union futex_key *key1, union futex_key *key2)
140{
141 return (key1->both.word == key2->both.word
142 && key1->both.ptr == key2->both.ptr
143 && key1->both.offset == key2->both.offset);
144}
145
38d47c1b
PZ
146/*
147 * Take a reference to the resource addressed by a key.
148 * Can be called while holding spinlocks.
149 *
150 */
151static void get_futex_key_refs(union futex_key *key)
152{
153 if (!key->both.ptr)
154 return;
155
156 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
157 case FUT_OFF_INODE:
158 atomic_inc(&key->shared.inode->i_count);
159 break;
160 case FUT_OFF_MMSHARED:
161 atomic_inc(&key->private.mm->mm_count);
162 break;
163 }
164}
165
166/*
167 * Drop a reference to the resource addressed by a key.
168 * The hash bucket spinlock must not be held.
169 */
170static void drop_futex_key_refs(union futex_key *key)
171{
172 if (!key->both.ptr)
173 return;
174
175 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
176 case FUT_OFF_INODE:
177 iput(key->shared.inode);
178 break;
179 case FUT_OFF_MMSHARED:
180 mmdrop(key->private.mm);
181 break;
182 }
183}
184
34f01cc1
ED
185/**
186 * get_futex_key - Get parameters which are the keys for a futex.
187 * @uaddr: virtual address of the futex
188 * @shared: NULL for a PROCESS_PRIVATE futex,
189 * &current->mm->mmap_sem for a PROCESS_SHARED futex
190 * @key: address where result is stored.
191 *
192 * Returns a negative error code or 0
193 * The key words are stored in *key on success.
1da177e4 194 *
f3a43f3f 195 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
1da177e4
LT
196 * offset_within_page). For private mappings, it's (uaddr, current->mm).
197 * We can usually work out the index without swapping in the page.
198 *
34f01cc1
ED
199 * fshared is NULL for PROCESS_PRIVATE futexes
200 * For other futexes, it points to &current->mm->mmap_sem and
201 * caller must have taken the reader lock. but NOT any spinlocks.
1da177e4 202 */
c2f9f201 203static int get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
1da177e4 204{
e2970f2f 205 unsigned long address = (unsigned long)uaddr;
1da177e4 206 struct mm_struct *mm = current->mm;
1da177e4
LT
207 struct page *page;
208 int err;
209
210 /*
211 * The futex address must be "naturally" aligned.
212 */
e2970f2f 213 key->both.offset = address % PAGE_SIZE;
34f01cc1 214 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 215 return -EINVAL;
e2970f2f 216 address -= key->both.offset;
1da177e4 217
34f01cc1
ED
218 /*
219 * PROCESS_PRIVATE futexes are fast.
220 * As the mm cannot disappear under us and the 'key' only needs
221 * virtual address, we dont even have to find the underlying vma.
222 * Note : We do have to check 'uaddr' is a valid user address,
223 * but access_ok() should be faster than find_vma()
224 */
225 if (!fshared) {
226 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
227 return -EFAULT;
228 key->private.mm = mm;
229 key->private.address = address;
230 return 0;
231 }
1da177e4 232
38d47c1b 233again:
734b05b1 234 err = get_user_pages_fast(address, 1, 0, &page);
38d47c1b
PZ
235 if (err < 0)
236 return err;
237
238 lock_page(page);
239 if (!page->mapping) {
240 unlock_page(page);
241 put_page(page);
242 goto again;
243 }
1da177e4
LT
244
245 /*
246 * Private mappings are handled in a simple way.
247 *
248 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
249 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 250 * the object not the particular process.
1da177e4 251 */
38d47c1b
PZ
252 if (PageAnon(page)) {
253 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 254 key->private.mm = mm;
e2970f2f 255 key->private.address = address;
38d47c1b
PZ
256 } else {
257 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
258 key->shared.inode = page->mapping->host;
259 key->shared.pgoff = page->index;
1da177e4
LT
260 }
261
38d47c1b 262 get_futex_key_refs(key);
1da177e4 263
38d47c1b
PZ
264 unlock_page(page);
265 put_page(page);
266 return 0;
1da177e4
LT
267}
268
38d47c1b 269static inline
c2f9f201 270void put_futex_key(int fshared, union futex_key *key)
1da177e4 271{
38d47c1b 272 drop_futex_key_refs(key);
1da177e4
LT
273}
274
36cf3b5c
TG
275static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
276{
277 u32 curval;
278
279 pagefault_disable();
280 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
281 pagefault_enable();
282
283 return curval;
284}
285
286static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
287{
288 int ret;
289
a866374a 290 pagefault_disable();
e2970f2f 291 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 292 pagefault_enable();
1da177e4
LT
293
294 return ret ? -EFAULT : 0;
295}
296
c87e2837 297/*
34f01cc1 298 * Fault handling.
c87e2837 299 */
c2f9f201 300static int futex_handle_fault(unsigned long address, int attempt)
c87e2837
IM
301{
302 struct vm_area_struct * vma;
303 struct mm_struct *mm = current->mm;
34f01cc1 304 int ret = -EFAULT;
c87e2837 305
34f01cc1
ED
306 if (attempt > 2)
307 return ret;
c87e2837 308
61270708 309 down_read(&mm->mmap_sem);
34f01cc1
ED
310 vma = find_vma(mm, address);
311 if (vma && address >= vma->vm_start &&
312 (vma->vm_flags & VM_WRITE)) {
83c54070
NP
313 int fault;
314 fault = handle_mm_fault(mm, vma, address, 1);
315 if (unlikely((fault & VM_FAULT_ERROR))) {
316#if 0
317 /* XXX: let's do this when we verify it is OK */
318 if (ret & VM_FAULT_OOM)
319 ret = -ENOMEM;
320#endif
321 } else {
34f01cc1 322 ret = 0;
83c54070
NP
323 if (fault & VM_FAULT_MAJOR)
324 current->maj_flt++;
325 else
326 current->min_flt++;
34f01cc1 327 }
c87e2837 328 }
61270708 329 up_read(&mm->mmap_sem);
34f01cc1 330 return ret;
c87e2837
IM
331}
332
333/*
334 * PI code:
335 */
336static int refill_pi_state_cache(void)
337{
338 struct futex_pi_state *pi_state;
339
340 if (likely(current->pi_state_cache))
341 return 0;
342
4668edc3 343 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
344
345 if (!pi_state)
346 return -ENOMEM;
347
c87e2837
IM
348 INIT_LIST_HEAD(&pi_state->list);
349 /* pi_mutex gets initialized later */
350 pi_state->owner = NULL;
351 atomic_set(&pi_state->refcount, 1);
38d47c1b 352 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
353
354 current->pi_state_cache = pi_state;
355
356 return 0;
357}
358
359static struct futex_pi_state * alloc_pi_state(void)
360{
361 struct futex_pi_state *pi_state = current->pi_state_cache;
362
363 WARN_ON(!pi_state);
364 current->pi_state_cache = NULL;
365
366 return pi_state;
367}
368
369static void free_pi_state(struct futex_pi_state *pi_state)
370{
371 if (!atomic_dec_and_test(&pi_state->refcount))
372 return;
373
374 /*
375 * If pi_state->owner is NULL, the owner is most probably dying
376 * and has cleaned up the pi_state already
377 */
378 if (pi_state->owner) {
379 spin_lock_irq(&pi_state->owner->pi_lock);
380 list_del_init(&pi_state->list);
381 spin_unlock_irq(&pi_state->owner->pi_lock);
382
383 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
384 }
385
386 if (current->pi_state_cache)
387 kfree(pi_state);
388 else {
389 /*
390 * pi_state->list is already empty.
391 * clear pi_state->owner.
392 * refcount is at 0 - put it back to 1.
393 */
394 pi_state->owner = NULL;
395 atomic_set(&pi_state->refcount, 1);
396 current->pi_state_cache = pi_state;
397 }
398}
399
400/*
401 * Look up the task based on what TID userspace gave us.
402 * We dont trust it.
403 */
404static struct task_struct * futex_find_get_task(pid_t pid)
405{
406 struct task_struct *p;
407
d359b549 408 rcu_read_lock();
228ebcbe 409 p = find_task_by_vpid(pid);
a06381fe
TG
410 if (!p || ((current->euid != p->euid) && (current->euid != p->uid)))
411 p = ERR_PTR(-ESRCH);
412 else
413 get_task_struct(p);
414
d359b549 415 rcu_read_unlock();
c87e2837
IM
416
417 return p;
418}
419
420/*
421 * This task is holding PI mutexes at exit time => bad.
422 * Kernel cleans up PI-state, but userspace is likely hosed.
423 * (Robust-futex cleanup is separate and might save the day for userspace.)
424 */
425void exit_pi_state_list(struct task_struct *curr)
426{
c87e2837
IM
427 struct list_head *next, *head = &curr->pi_state_list;
428 struct futex_pi_state *pi_state;
627371d7 429 struct futex_hash_bucket *hb;
38d47c1b 430 union futex_key key = FUTEX_KEY_INIT;
c87e2837 431
a0c1e907
TG
432 if (!futex_cmpxchg_enabled)
433 return;
c87e2837
IM
434 /*
435 * We are a ZOMBIE and nobody can enqueue itself on
436 * pi_state_list anymore, but we have to be careful
627371d7 437 * versus waiters unqueueing themselves:
c87e2837
IM
438 */
439 spin_lock_irq(&curr->pi_lock);
440 while (!list_empty(head)) {
441
442 next = head->next;
443 pi_state = list_entry(next, struct futex_pi_state, list);
444 key = pi_state->key;
627371d7 445 hb = hash_futex(&key);
c87e2837
IM
446 spin_unlock_irq(&curr->pi_lock);
447
c87e2837
IM
448 spin_lock(&hb->lock);
449
450 spin_lock_irq(&curr->pi_lock);
627371d7
IM
451 /*
452 * We dropped the pi-lock, so re-check whether this
453 * task still owns the PI-state:
454 */
c87e2837
IM
455 if (head->next != next) {
456 spin_unlock(&hb->lock);
457 continue;
458 }
459
c87e2837 460 WARN_ON(pi_state->owner != curr);
627371d7
IM
461 WARN_ON(list_empty(&pi_state->list));
462 list_del_init(&pi_state->list);
c87e2837
IM
463 pi_state->owner = NULL;
464 spin_unlock_irq(&curr->pi_lock);
465
466 rt_mutex_unlock(&pi_state->pi_mutex);
467
468 spin_unlock(&hb->lock);
469
470 spin_lock_irq(&curr->pi_lock);
471 }
472 spin_unlock_irq(&curr->pi_lock);
473}
474
475static int
d0aa7a70
PP
476lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
477 union futex_key *key, struct futex_pi_state **ps)
c87e2837
IM
478{
479 struct futex_pi_state *pi_state = NULL;
480 struct futex_q *this, *next;
ec92d082 481 struct plist_head *head;
c87e2837 482 struct task_struct *p;
778e9a9c 483 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837
IM
484
485 head = &hb->chain;
486
ec92d082 487 plist_for_each_entry_safe(this, next, head, list) {
d0aa7a70 488 if (match_futex(&this->key, key)) {
c87e2837
IM
489 /*
490 * Another waiter already exists - bump up
491 * the refcount and return its pi_state:
492 */
493 pi_state = this->pi_state;
06a9ec29
TG
494 /*
495 * Userspace might have messed up non PI and PI futexes
496 */
497 if (unlikely(!pi_state))
498 return -EINVAL;
499
627371d7 500 WARN_ON(!atomic_read(&pi_state->refcount));
778e9a9c
AK
501 WARN_ON(pid && pi_state->owner &&
502 pi_state->owner->pid != pid);
627371d7 503
c87e2837 504 atomic_inc(&pi_state->refcount);
d0aa7a70 505 *ps = pi_state;
c87e2837
IM
506
507 return 0;
508 }
509 }
510
511 /*
e3f2ddea 512 * We are the first waiter - try to look up the real owner and attach
778e9a9c 513 * the new pi_state to it, but bail out when TID = 0
c87e2837 514 */
778e9a9c 515 if (!pid)
e3f2ddea 516 return -ESRCH;
c87e2837 517 p = futex_find_get_task(pid);
778e9a9c
AK
518 if (IS_ERR(p))
519 return PTR_ERR(p);
520
521 /*
522 * We need to look at the task state flags to figure out,
523 * whether the task is exiting. To protect against the do_exit
524 * change of the task flags, we do this protected by
525 * p->pi_lock:
526 */
527 spin_lock_irq(&p->pi_lock);
528 if (unlikely(p->flags & PF_EXITING)) {
529 /*
530 * The task is on the way out. When PF_EXITPIDONE is
531 * set, we know that the task has finished the
532 * cleanup:
533 */
534 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
535
536 spin_unlock_irq(&p->pi_lock);
537 put_task_struct(p);
538 return ret;
539 }
c87e2837
IM
540
541 pi_state = alloc_pi_state();
542
543 /*
544 * Initialize the pi_mutex in locked state and make 'p'
545 * the owner of it:
546 */
547 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
548
549 /* Store the key for possible exit cleanups: */
d0aa7a70 550 pi_state->key = *key;
c87e2837 551
627371d7 552 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
553 list_add(&pi_state->list, &p->pi_state_list);
554 pi_state->owner = p;
555 spin_unlock_irq(&p->pi_lock);
556
557 put_task_struct(p);
558
d0aa7a70 559 *ps = pi_state;
c87e2837
IM
560
561 return 0;
562}
563
1da177e4
LT
564/*
565 * The hash bucket lock must be held when this is called.
566 * Afterwards, the futex_q must not be accessed.
567 */
568static void wake_futex(struct futex_q *q)
569{
ec92d082 570 plist_del(&q->list, &q->list.plist);
1da177e4
LT
571 /*
572 * The lock in wake_up_all() is a crucial memory barrier after the
ec92d082 573 * plist_del() and also before assigning to q->lock_ptr.
1da177e4
LT
574 */
575 wake_up_all(&q->waiters);
576 /*
577 * The waiting task can free the futex_q as soon as this is written,
578 * without taking any locks. This must come last.
8e31108b
AM
579 *
580 * A memory barrier is required here to prevent the following store
581 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
582 * at the end of wake_up_all() does not prevent this store from
583 * moving.
1da177e4 584 */
ccdea2f8 585 smp_wmb();
1da177e4
LT
586 q->lock_ptr = NULL;
587}
588
c87e2837
IM
589static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
590{
591 struct task_struct *new_owner;
592 struct futex_pi_state *pi_state = this->pi_state;
593 u32 curval, newval;
594
595 if (!pi_state)
596 return -EINVAL;
597
21778867 598 spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
599 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
600
601 /*
602 * This happens when we have stolen the lock and the original
603 * pending owner did not enqueue itself back on the rt_mutex.
604 * Thats not a tragedy. We know that way, that a lock waiter
605 * is on the fly. We make the futex_q waiter the pending owner.
606 */
607 if (!new_owner)
608 new_owner = this->task;
609
610 /*
611 * We pass it to the next owner. (The WAITERS bit is always
612 * kept enabled while there is PI state around. We must also
613 * preserve the owner died bit.)
614 */
e3f2ddea 615 if (!(uval & FUTEX_OWNER_DIED)) {
778e9a9c
AK
616 int ret = 0;
617
b488893a 618 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 619
36cf3b5c 620 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
778e9a9c 621
e3f2ddea 622 if (curval == -EFAULT)
778e9a9c 623 ret = -EFAULT;
cde898fa 624 else if (curval != uval)
778e9a9c
AK
625 ret = -EINVAL;
626 if (ret) {
627 spin_unlock(&pi_state->pi_mutex.wait_lock);
628 return ret;
629 }
e3f2ddea 630 }
c87e2837 631
627371d7
IM
632 spin_lock_irq(&pi_state->owner->pi_lock);
633 WARN_ON(list_empty(&pi_state->list));
634 list_del_init(&pi_state->list);
635 spin_unlock_irq(&pi_state->owner->pi_lock);
636
637 spin_lock_irq(&new_owner->pi_lock);
638 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
639 list_add(&pi_state->list, &new_owner->pi_state_list);
640 pi_state->owner = new_owner;
627371d7
IM
641 spin_unlock_irq(&new_owner->pi_lock);
642
21778867 643 spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
644 rt_mutex_unlock(&pi_state->pi_mutex);
645
646 return 0;
647}
648
649static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
650{
651 u32 oldval;
652
653 /*
654 * There is no waiter, so we unlock the futex. The owner died
655 * bit has not to be preserved here. We are the owner:
656 */
36cf3b5c 657 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
c87e2837
IM
658
659 if (oldval == -EFAULT)
660 return oldval;
661 if (oldval != uval)
662 return -EAGAIN;
663
664 return 0;
665}
666
8b8f319f
IM
667/*
668 * Express the locking dependencies for lockdep:
669 */
670static inline void
671double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
672{
673 if (hb1 <= hb2) {
674 spin_lock(&hb1->lock);
675 if (hb1 < hb2)
676 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
677 } else { /* hb1 > hb2 */
678 spin_lock(&hb2->lock);
679 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
680 }
681}
682
1da177e4
LT
683/*
684 * Wake up all waiters hashed on the physical page that is mapped
685 * to this virtual address:
686 */
c2f9f201 687static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
1da177e4 688{
e2970f2f 689 struct futex_hash_bucket *hb;
1da177e4 690 struct futex_q *this, *next;
ec92d082 691 struct plist_head *head;
38d47c1b 692 union futex_key key = FUTEX_KEY_INIT;
1da177e4
LT
693 int ret;
694
cd689985
TG
695 if (!bitset)
696 return -EINVAL;
697
34f01cc1 698 ret = get_futex_key(uaddr, fshared, &key);
1da177e4
LT
699 if (unlikely(ret != 0))
700 goto out;
701
e2970f2f
IM
702 hb = hash_futex(&key);
703 spin_lock(&hb->lock);
704 head = &hb->chain;
1da177e4 705
ec92d082 706 plist_for_each_entry_safe(this, next, head, list) {
1da177e4 707 if (match_futex (&this->key, &key)) {
ed6f7b10
IM
708 if (this->pi_state) {
709 ret = -EINVAL;
710 break;
711 }
cd689985
TG
712
713 /* Check if one of the bits is set in both bitsets */
714 if (!(this->bitset & bitset))
715 continue;
716
1da177e4
LT
717 wake_futex(this);
718 if (++ret >= nr_wake)
719 break;
720 }
721 }
722
e2970f2f 723 spin_unlock(&hb->lock);
1da177e4 724out:
38d47c1b 725 put_futex_key(fshared, &key);
1da177e4
LT
726 return ret;
727}
728
4732efbe
JJ
729/*
730 * Wake up all waiters hashed on the physical page that is mapped
731 * to this virtual address:
732 */
e2970f2f 733static int
c2f9f201 734futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
e2970f2f 735 int nr_wake, int nr_wake2, int op)
4732efbe 736{
38d47c1b 737 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 738 struct futex_hash_bucket *hb1, *hb2;
ec92d082 739 struct plist_head *head;
4732efbe
JJ
740 struct futex_q *this, *next;
741 int ret, op_ret, attempt = 0;
742
743retryfull:
34f01cc1 744 ret = get_futex_key(uaddr1, fshared, &key1);
4732efbe
JJ
745 if (unlikely(ret != 0))
746 goto out;
34f01cc1 747 ret = get_futex_key(uaddr2, fshared, &key2);
4732efbe
JJ
748 if (unlikely(ret != 0))
749 goto out;
750
e2970f2f
IM
751 hb1 = hash_futex(&key1);
752 hb2 = hash_futex(&key2);
4732efbe
JJ
753
754retry:
8b8f319f 755 double_lock_hb(hb1, hb2);
4732efbe 756
e2970f2f 757 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 758 if (unlikely(op_ret < 0)) {
e2970f2f 759 u32 dummy;
4732efbe 760
e2970f2f
IM
761 spin_unlock(&hb1->lock);
762 if (hb1 != hb2)
763 spin_unlock(&hb2->lock);
4732efbe 764
7ee1dd3f 765#ifndef CONFIG_MMU
e2970f2f
IM
766 /*
767 * we don't get EFAULT from MMU faults if we don't have an MMU,
768 * but we might get them from range checking
769 */
7ee1dd3f
DH
770 ret = op_ret;
771 goto out;
772#endif
773
796f8d9b
DG
774 if (unlikely(op_ret != -EFAULT)) {
775 ret = op_ret;
776 goto out;
777 }
778
e2970f2f
IM
779 /*
780 * futex_atomic_op_inuser needs to both read and write
4732efbe
JJ
781 * *(int __user *)uaddr2, but we can't modify it
782 * non-atomically. Therefore, if get_user below is not
783 * enough, we need to handle the fault ourselves, while
e2970f2f
IM
784 * still holding the mmap_sem.
785 */
4732efbe 786 if (attempt++) {
34f01cc1 787 ret = futex_handle_fault((unsigned long)uaddr2,
c2f9f201 788 attempt);
34f01cc1 789 if (ret)
4732efbe 790 goto out;
4732efbe
JJ
791 goto retry;
792 }
793
e2970f2f 794 ret = get_user(dummy, uaddr2);
4732efbe
JJ
795 if (ret)
796 return ret;
797
798 goto retryfull;
799 }
800
e2970f2f 801 head = &hb1->chain;
4732efbe 802
ec92d082 803 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
804 if (match_futex (&this->key, &key1)) {
805 wake_futex(this);
806 if (++ret >= nr_wake)
807 break;
808 }
809 }
810
811 if (op_ret > 0) {
e2970f2f 812 head = &hb2->chain;
4732efbe
JJ
813
814 op_ret = 0;
ec92d082 815 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
816 if (match_futex (&this->key, &key2)) {
817 wake_futex(this);
818 if (++op_ret >= nr_wake2)
819 break;
820 }
821 }
822 ret += op_ret;
823 }
824
e2970f2f
IM
825 spin_unlock(&hb1->lock);
826 if (hb1 != hb2)
827 spin_unlock(&hb2->lock);
4732efbe 828out:
38d47c1b
PZ
829 put_futex_key(fshared, &key2);
830 put_futex_key(fshared, &key1);
36cf3b5c 831
4732efbe
JJ
832 return ret;
833}
834
1da177e4
LT
835/*
836 * Requeue all waiters hashed on one physical page to another
837 * physical page.
838 */
c2f9f201 839static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
e2970f2f 840 int nr_wake, int nr_requeue, u32 *cmpval)
1da177e4 841{
38d47c1b 842 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 843 struct futex_hash_bucket *hb1, *hb2;
ec92d082 844 struct plist_head *head1;
1da177e4
LT
845 struct futex_q *this, *next;
846 int ret, drop_count = 0;
847
848 retry:
34f01cc1 849 ret = get_futex_key(uaddr1, fshared, &key1);
1da177e4
LT
850 if (unlikely(ret != 0))
851 goto out;
34f01cc1 852 ret = get_futex_key(uaddr2, fshared, &key2);
1da177e4
LT
853 if (unlikely(ret != 0))
854 goto out;
855
e2970f2f
IM
856 hb1 = hash_futex(&key1);
857 hb2 = hash_futex(&key2);
1da177e4 858
8b8f319f 859 double_lock_hb(hb1, hb2);
1da177e4 860
e2970f2f
IM
861 if (likely(cmpval != NULL)) {
862 u32 curval;
1da177e4 863
e2970f2f 864 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
865
866 if (unlikely(ret)) {
e2970f2f
IM
867 spin_unlock(&hb1->lock);
868 if (hb1 != hb2)
869 spin_unlock(&hb2->lock);
1da177e4 870
e2970f2f 871 ret = get_user(curval, uaddr1);
1da177e4
LT
872
873 if (!ret)
874 goto retry;
875
876 return ret;
877 }
e2970f2f 878 if (curval != *cmpval) {
1da177e4
LT
879 ret = -EAGAIN;
880 goto out_unlock;
881 }
882 }
883
e2970f2f 884 head1 = &hb1->chain;
ec92d082 885 plist_for_each_entry_safe(this, next, head1, list) {
1da177e4
LT
886 if (!match_futex (&this->key, &key1))
887 continue;
888 if (++ret <= nr_wake) {
889 wake_futex(this);
890 } else {
59e0e0ac
SD
891 /*
892 * If key1 and key2 hash to the same bucket, no need to
893 * requeue.
894 */
895 if (likely(head1 != &hb2->chain)) {
ec92d082
PP
896 plist_del(&this->list, &hb1->chain);
897 plist_add(&this->list, &hb2->chain);
59e0e0ac 898 this->lock_ptr = &hb2->lock;
ec92d082
PP
899#ifdef CONFIG_DEBUG_PI_LIST
900 this->list.plist.lock = &hb2->lock;
901#endif
778e9a9c 902 }
1da177e4 903 this->key = key2;
9adef58b 904 get_futex_key_refs(&key2);
1da177e4
LT
905 drop_count++;
906
907 if (ret - nr_wake >= nr_requeue)
908 break;
1da177e4
LT
909 }
910 }
911
912out_unlock:
e2970f2f
IM
913 spin_unlock(&hb1->lock);
914 if (hb1 != hb2)
915 spin_unlock(&hb2->lock);
1da177e4 916
9adef58b 917 /* drop_futex_key_refs() must be called outside the spinlocks. */
1da177e4 918 while (--drop_count >= 0)
9adef58b 919 drop_futex_key_refs(&key1);
1da177e4
LT
920
921out:
38d47c1b
PZ
922 put_futex_key(fshared, &key2);
923 put_futex_key(fshared, &key1);
1da177e4
LT
924 return ret;
925}
926
927/* The key must be already stored in q->key. */
82af7aca 928static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1da177e4 929{
e2970f2f 930 struct futex_hash_bucket *hb;
1da177e4 931
1da177e4
LT
932 init_waitqueue_head(&q->waiters);
933
9adef58b 934 get_futex_key_refs(&q->key);
e2970f2f
IM
935 hb = hash_futex(&q->key);
936 q->lock_ptr = &hb->lock;
1da177e4 937
e2970f2f
IM
938 spin_lock(&hb->lock);
939 return hb;
1da177e4
LT
940}
941
82af7aca 942static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 943{
ec92d082
PP
944 int prio;
945
946 /*
947 * The priority used to register this element is
948 * - either the real thread-priority for the real-time threads
949 * (i.e. threads with a priority lower than MAX_RT_PRIO)
950 * - or MAX_RT_PRIO for non-RT threads.
951 * Thus, all RT-threads are woken first in priority order, and
952 * the others are woken last, in FIFO order.
953 */
954 prio = min(current->normal_prio, MAX_RT_PRIO);
955
956 plist_node_init(&q->list, prio);
957#ifdef CONFIG_DEBUG_PI_LIST
958 q->list.plist.lock = &hb->lock;
959#endif
960 plist_add(&q->list, &hb->chain);
c87e2837 961 q->task = current;
e2970f2f 962 spin_unlock(&hb->lock);
1da177e4
LT
963}
964
965static inline void
e2970f2f 966queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 967{
e2970f2f 968 spin_unlock(&hb->lock);
9adef58b 969 drop_futex_key_refs(&q->key);
1da177e4
LT
970}
971
972/*
973 * queue_me and unqueue_me must be called as a pair, each
974 * exactly once. They are called with the hashed spinlock held.
975 */
976
1da177e4
LT
977/* Return 1 if we were still queued (ie. 0 means we were woken) */
978static int unqueue_me(struct futex_q *q)
979{
1da177e4 980 spinlock_t *lock_ptr;
e2970f2f 981 int ret = 0;
1da177e4
LT
982
983 /* In the common case we don't take the spinlock, which is nice. */
984 retry:
985 lock_ptr = q->lock_ptr;
e91467ec 986 barrier();
c80544dc 987 if (lock_ptr != NULL) {
1da177e4
LT
988 spin_lock(lock_ptr);
989 /*
990 * q->lock_ptr can change between reading it and
991 * spin_lock(), causing us to take the wrong lock. This
992 * corrects the race condition.
993 *
994 * Reasoning goes like this: if we have the wrong lock,
995 * q->lock_ptr must have changed (maybe several times)
996 * between reading it and the spin_lock(). It can
997 * change again after the spin_lock() but only if it was
998 * already changed before the spin_lock(). It cannot,
999 * however, change back to the original value. Therefore
1000 * we can detect whether we acquired the correct lock.
1001 */
1002 if (unlikely(lock_ptr != q->lock_ptr)) {
1003 spin_unlock(lock_ptr);
1004 goto retry;
1005 }
ec92d082
PP
1006 WARN_ON(plist_node_empty(&q->list));
1007 plist_del(&q->list, &q->list.plist);
c87e2837
IM
1008
1009 BUG_ON(q->pi_state);
1010
1da177e4
LT
1011 spin_unlock(lock_ptr);
1012 ret = 1;
1013 }
1014
9adef58b 1015 drop_futex_key_refs(&q->key);
1da177e4
LT
1016 return ret;
1017}
1018
c87e2837
IM
1019/*
1020 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1021 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1022 * and dropped here.
c87e2837 1023 */
d0aa7a70 1024static void unqueue_me_pi(struct futex_q *q)
c87e2837 1025{
ec92d082
PP
1026 WARN_ON(plist_node_empty(&q->list));
1027 plist_del(&q->list, &q->list.plist);
c87e2837
IM
1028
1029 BUG_ON(!q->pi_state);
1030 free_pi_state(q->pi_state);
1031 q->pi_state = NULL;
1032
d0aa7a70 1033 spin_unlock(q->lock_ptr);
c87e2837 1034
9adef58b 1035 drop_futex_key_refs(&q->key);
c87e2837
IM
1036}
1037
d0aa7a70 1038/*
cdf71a10 1039 * Fixup the pi_state owner with the new owner.
d0aa7a70 1040 *
778e9a9c
AK
1041 * Must be called with hash bucket lock held and mm->sem held for non
1042 * private futexes.
d0aa7a70 1043 */
778e9a9c 1044static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
c2f9f201 1045 struct task_struct *newowner, int fshared)
d0aa7a70 1046{
cdf71a10 1047 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 1048 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 1049 struct task_struct *oldowner = pi_state->owner;
d0aa7a70 1050 u32 uval, curval, newval;
1b7558e4 1051 int ret, attempt = 0;
d0aa7a70
PP
1052
1053 /* Owner died? */
1b7558e4
TG
1054 if (!pi_state->owner)
1055 newtid |= FUTEX_OWNER_DIED;
1056
1057 /*
1058 * We are here either because we stole the rtmutex from the
1059 * pending owner or we are the pending owner which failed to
1060 * get the rtmutex. We have to replace the pending owner TID
1061 * in the user space variable. This must be atomic as we have
1062 * to preserve the owner died bit here.
1063 *
1064 * Note: We write the user space value _before_ changing the
1065 * pi_state because we can fault here. Imagine swapped out
1066 * pages or a fork, which was running right before we acquired
1067 * mmap_sem, that marked all the anonymous memory readonly for
1068 * cow.
1069 *
1070 * Modifying pi_state _before_ the user space value would
1071 * leave the pi_state in an inconsistent state when we fault
1072 * here, because we need to drop the hash bucket lock to
1073 * handle the fault. This might be observed in the PID check
1074 * in lookup_pi_state.
1075 */
1076retry:
1077 if (get_futex_value_locked(&uval, uaddr))
1078 goto handle_fault;
1079
1080 while (1) {
1081 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1082
1083 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1084
1085 if (curval == -EFAULT)
1086 goto handle_fault;
1087 if (curval == uval)
1088 break;
1089 uval = curval;
1090 }
1091
1092 /*
1093 * We fixed up user space. Now we need to fix the pi_state
1094 * itself.
1095 */
d0aa7a70
PP
1096 if (pi_state->owner != NULL) {
1097 spin_lock_irq(&pi_state->owner->pi_lock);
1098 WARN_ON(list_empty(&pi_state->list));
1099 list_del_init(&pi_state->list);
1100 spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 1101 }
d0aa7a70 1102
cdf71a10 1103 pi_state->owner = newowner;
d0aa7a70 1104
cdf71a10 1105 spin_lock_irq(&newowner->pi_lock);
d0aa7a70 1106 WARN_ON(!list_empty(&pi_state->list));
cdf71a10
TG
1107 list_add(&pi_state->list, &newowner->pi_state_list);
1108 spin_unlock_irq(&newowner->pi_lock);
1b7558e4 1109 return 0;
d0aa7a70 1110
d0aa7a70 1111 /*
1b7558e4
TG
1112 * To handle the page fault we need to drop the hash bucket
1113 * lock here. That gives the other task (either the pending
1114 * owner itself or the task which stole the rtmutex) the
1115 * chance to try the fixup of the pi_state. So once we are
1116 * back from handling the fault we need to check the pi_state
1117 * after reacquiring the hash bucket lock and before trying to
1118 * do another fixup. When the fixup has been done already we
1119 * simply return.
d0aa7a70 1120 */
1b7558e4
TG
1121handle_fault:
1122 spin_unlock(q->lock_ptr);
778e9a9c 1123
c2f9f201 1124 ret = futex_handle_fault((unsigned long)uaddr, attempt++);
778e9a9c 1125
1b7558e4 1126 spin_lock(q->lock_ptr);
778e9a9c 1127
1b7558e4
TG
1128 /*
1129 * Check if someone else fixed it for us:
1130 */
1131 if (pi_state->owner != oldowner)
1132 return 0;
1133
1134 if (ret)
1135 return ret;
1136
1137 goto retry;
d0aa7a70
PP
1138}
1139
34f01cc1
ED
1140/*
1141 * In case we must use restart_block to restart a futex_wait,
ce6bd420 1142 * we encode in the 'flags' shared capability
34f01cc1 1143 */
ce6bd420 1144#define FLAGS_SHARED 1
34f01cc1 1145
72c1bbf3 1146static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 1147
c2f9f201 1148static int futex_wait(u32 __user *uaddr, int fshared,
cd689985 1149 u32 val, ktime_t *abs_time, u32 bitset)
1da177e4 1150{
c87e2837
IM
1151 struct task_struct *curr = current;
1152 DECLARE_WAITQUEUE(wait, curr);
e2970f2f 1153 struct futex_hash_bucket *hb;
1da177e4 1154 struct futex_q q;
e2970f2f
IM
1155 u32 uval;
1156 int ret;
bd197234 1157 struct hrtimer_sleeper t;
c19384b5 1158 int rem = 0;
1da177e4 1159
cd689985
TG
1160 if (!bitset)
1161 return -EINVAL;
1162
c87e2837 1163 q.pi_state = NULL;
cd689985 1164 q.bitset = bitset;
1da177e4 1165 retry:
38d47c1b 1166 q.key = FUTEX_KEY_INIT;
34f01cc1 1167 ret = get_futex_key(uaddr, fshared, &q.key);
1da177e4
LT
1168 if (unlikely(ret != 0))
1169 goto out_release_sem;
1170
82af7aca 1171 hb = queue_lock(&q);
1da177e4
LT
1172
1173 /*
1174 * Access the page AFTER the futex is queued.
1175 * Order is important:
1176 *
1177 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1178 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1179 *
1180 * The basic logical guarantee of a futex is that it blocks ONLY
1181 * if cond(var) is known to be true at the time of blocking, for
1182 * any cond. If we queued after testing *uaddr, that would open
1183 * a race condition where we could block indefinitely with
1184 * cond(var) false, which would violate the guarantee.
1185 *
1186 * A consequence is that futex_wait() can return zero and absorb
1187 * a wakeup when *uaddr != val on entry to the syscall. This is
1188 * rare, but normal.
1189 *
34f01cc1
ED
1190 * for shared futexes, we hold the mmap semaphore, so the mapping
1191 * cannot have changed since we looked it up in get_futex_key.
1da177e4 1192 */
e2970f2f 1193 ret = get_futex_value_locked(&uval, uaddr);
1da177e4
LT
1194
1195 if (unlikely(ret)) {
e2970f2f 1196 queue_unlock(&q, hb);
1da177e4 1197
e2970f2f 1198 ret = get_user(uval, uaddr);
1da177e4
LT
1199
1200 if (!ret)
1201 goto retry;
1202 return ret;
1203 }
c87e2837
IM
1204 ret = -EWOULDBLOCK;
1205 if (uval != val)
1206 goto out_unlock_release_sem;
1da177e4
LT
1207
1208 /* Only actually queue if *uaddr contained val. */
82af7aca 1209 queue_me(&q, hb);
1da177e4 1210
1da177e4
LT
1211 /*
1212 * There might have been scheduling since the queue_me(), as we
1213 * cannot hold a spinlock across the get_user() in case it
1214 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1215 * queueing ourselves into the futex hash. This code thus has to
1216 * rely on the futex_wake() code removing us from hash when it
1217 * wakes us up.
1218 */
1219
1220 /* add_wait_queue is the barrier after __set_current_state. */
1221 __set_current_state(TASK_INTERRUPTIBLE);
1222 add_wait_queue(&q.waiters, &wait);
1223 /*
ec92d082 1224 * !plist_node_empty() is safe here without any lock.
1da177e4
LT
1225 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1226 */
ec92d082 1227 if (likely(!plist_node_empty(&q.list))) {
c19384b5
PP
1228 if (!abs_time)
1229 schedule();
1230 else {
237fc6e7
TG
1231 hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC,
1232 HRTIMER_MODE_ABS);
c19384b5
PP
1233 hrtimer_init_sleeper(&t, current);
1234 t.timer.expires = *abs_time;
1235
237fc6e7
TG
1236 hrtimer_start(&t.timer, t.timer.expires,
1237 HRTIMER_MODE_ABS);
3588a085
PZ
1238 if (!hrtimer_active(&t.timer))
1239 t.task = NULL;
c19384b5
PP
1240
1241 /*
1242 * the timer could have already expired, in which
1243 * case current would be flagged for rescheduling.
1244 * Don't bother calling schedule.
1245 */
1246 if (likely(t.task))
1247 schedule();
1248
1249 hrtimer_cancel(&t.timer);
72c1bbf3 1250
c19384b5
PP
1251 /* Flag if a timeout occured */
1252 rem = (t.task == NULL);
237fc6e7
TG
1253
1254 destroy_hrtimer_on_stack(&t.timer);
c19384b5 1255 }
72c1bbf3 1256 }
1da177e4
LT
1257 __set_current_state(TASK_RUNNING);
1258
1259 /*
1260 * NOTE: we don't remove ourselves from the waitqueue because
1261 * we are the only user of it.
1262 */
1263
1264 /* If we were woken (and unqueued), we succeeded, whatever. */
1265 if (!unqueue_me(&q))
1266 return 0;
c19384b5 1267 if (rem)
1da177e4 1268 return -ETIMEDOUT;
72c1bbf3 1269
e2970f2f
IM
1270 /*
1271 * We expect signal_pending(current), but another thread may
1272 * have handled it for us already.
1273 */
c19384b5 1274 if (!abs_time)
72c1bbf3
NP
1275 return -ERESTARTSYS;
1276 else {
1277 struct restart_block *restart;
1278 restart = &current_thread_info()->restart_block;
1279 restart->fn = futex_wait_restart;
ce6bd420
SR
1280 restart->futex.uaddr = (u32 *)uaddr;
1281 restart->futex.val = val;
1282 restart->futex.time = abs_time->tv64;
cd689985 1283 restart->futex.bitset = bitset;
ce6bd420
SR
1284 restart->futex.flags = 0;
1285
34f01cc1 1286 if (fshared)
ce6bd420 1287 restart->futex.flags |= FLAGS_SHARED;
72c1bbf3
NP
1288 return -ERESTART_RESTARTBLOCK;
1289 }
1da177e4 1290
c87e2837
IM
1291 out_unlock_release_sem:
1292 queue_unlock(&q, hb);
1293
1da177e4 1294 out_release_sem:
38d47c1b 1295 put_futex_key(fshared, &q.key);
c87e2837
IM
1296 return ret;
1297}
1298
72c1bbf3
NP
1299
1300static long futex_wait_restart(struct restart_block *restart)
1301{
ce6bd420 1302 u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
c2f9f201 1303 int fshared = 0;
ce6bd420 1304 ktime_t t;
72c1bbf3 1305
ce6bd420 1306 t.tv64 = restart->futex.time;
72c1bbf3 1307 restart->fn = do_no_restart_syscall;
ce6bd420 1308 if (restart->futex.flags & FLAGS_SHARED)
c2f9f201 1309 fshared = 1;
cd689985
TG
1310 return (long)futex_wait(uaddr, fshared, restart->futex.val, &t,
1311 restart->futex.bitset);
72c1bbf3
NP
1312}
1313
1314
c87e2837
IM
1315/*
1316 * Userspace tried a 0 -> TID atomic transition of the futex value
1317 * and failed. The kernel side here does the whole locking operation:
1318 * if there are waiters then it will block, it does PI, etc. (Due to
1319 * races the kernel might see a 0 value of the futex too.)
1320 */
c2f9f201 1321static int futex_lock_pi(u32 __user *uaddr, int fshared,
34f01cc1 1322 int detect, ktime_t *time, int trylock)
c87e2837 1323{
c5780e97 1324 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837
IM
1325 struct task_struct *curr = current;
1326 struct futex_hash_bucket *hb;
1327 u32 uval, newval, curval;
1328 struct futex_q q;
778e9a9c 1329 int ret, lock_taken, ownerdied = 0, attempt = 0;
c87e2837
IM
1330
1331 if (refill_pi_state_cache())
1332 return -ENOMEM;
1333
c19384b5 1334 if (time) {
c5780e97 1335 to = &timeout;
237fc6e7
TG
1336 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1337 HRTIMER_MODE_ABS);
c5780e97 1338 hrtimer_init_sleeper(to, current);
c19384b5 1339 to->timer.expires = *time;
c5780e97
TG
1340 }
1341
c87e2837
IM
1342 q.pi_state = NULL;
1343 retry:
38d47c1b 1344 q.key = FUTEX_KEY_INIT;
34f01cc1 1345 ret = get_futex_key(uaddr, fshared, &q.key);
c87e2837
IM
1346 if (unlikely(ret != 0))
1347 goto out_release_sem;
1348
778e9a9c 1349 retry_unlocked:
82af7aca 1350 hb = queue_lock(&q);
c87e2837
IM
1351
1352 retry_locked:
778e9a9c 1353 ret = lock_taken = 0;
d0aa7a70 1354
c87e2837
IM
1355 /*
1356 * To avoid races, we attempt to take the lock here again
1357 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1358 * the locks. It will most likely not succeed.
1359 */
b488893a 1360 newval = task_pid_vnr(current);
c87e2837 1361
36cf3b5c 1362 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
c87e2837
IM
1363
1364 if (unlikely(curval == -EFAULT))
1365 goto uaddr_faulted;
1366
778e9a9c
AK
1367 /*
1368 * Detect deadlocks. In case of REQUEUE_PI this is a valid
1369 * situation and we return success to user space.
1370 */
b488893a 1371 if (unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(current))) {
bd197234 1372 ret = -EDEADLK;
c87e2837
IM
1373 goto out_unlock_release_sem;
1374 }
1375
1376 /*
778e9a9c 1377 * Surprise - we got the lock. Just return to userspace:
c87e2837
IM
1378 */
1379 if (unlikely(!curval))
1380 goto out_unlock_release_sem;
1381
1382 uval = curval;
778e9a9c 1383
d0aa7a70 1384 /*
778e9a9c
AK
1385 * Set the WAITERS flag, so the owner will know it has someone
1386 * to wake at next unlock
d0aa7a70 1387 */
778e9a9c
AK
1388 newval = curval | FUTEX_WAITERS;
1389
1390 /*
1391 * There are two cases, where a futex might have no owner (the
bd197234
TG
1392 * owner TID is 0): OWNER_DIED. We take over the futex in this
1393 * case. We also do an unconditional take over, when the owner
1394 * of the futex died.
778e9a9c
AK
1395 *
1396 * This is safe as we are protected by the hash bucket lock !
1397 */
1398 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
bd197234 1399 /* Keep the OWNER_DIED bit */
b488893a 1400 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(current);
778e9a9c
AK
1401 ownerdied = 0;
1402 lock_taken = 1;
1403 }
c87e2837 1404
36cf3b5c 1405 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
c87e2837
IM
1406
1407 if (unlikely(curval == -EFAULT))
1408 goto uaddr_faulted;
1409 if (unlikely(curval != uval))
1410 goto retry_locked;
1411
778e9a9c 1412 /*
bd197234 1413 * We took the lock due to owner died take over.
778e9a9c 1414 */
bd197234 1415 if (unlikely(lock_taken))
d0aa7a70 1416 goto out_unlock_release_sem;
d0aa7a70 1417
c87e2837
IM
1418 /*
1419 * We dont have the lock. Look up the PI state (or create it if
1420 * we are the first waiter):
1421 */
d0aa7a70 1422 ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
c87e2837
IM
1423
1424 if (unlikely(ret)) {
778e9a9c 1425 switch (ret) {
c87e2837 1426
778e9a9c
AK
1427 case -EAGAIN:
1428 /*
1429 * Task is exiting and we just wait for the
1430 * exit to complete.
1431 */
1432 queue_unlock(&q, hb);
778e9a9c
AK
1433 cond_resched();
1434 goto retry;
c87e2837 1435
778e9a9c
AK
1436 case -ESRCH:
1437 /*
1438 * No owner found for this futex. Check if the
1439 * OWNER_DIED bit is set to figure out whether
1440 * this is a robust futex or not.
1441 */
1442 if (get_futex_value_locked(&curval, uaddr))
c87e2837 1443 goto uaddr_faulted;
778e9a9c
AK
1444
1445 /*
1446 * We simply start over in case of a robust
1447 * futex. The code above will take the futex
1448 * and return happy.
1449 */
1450 if (curval & FUTEX_OWNER_DIED) {
1451 ownerdied = 1;
c87e2837 1452 goto retry_locked;
778e9a9c
AK
1453 }
1454 default:
1455 goto out_unlock_release_sem;
c87e2837 1456 }
c87e2837
IM
1457 }
1458
1459 /*
1460 * Only actually queue now that the atomic ops are done:
1461 */
82af7aca 1462 queue_me(&q, hb);
c87e2837 1463
c87e2837
IM
1464 WARN_ON(!q.pi_state);
1465 /*
1466 * Block on the PI mutex:
1467 */
1468 if (!trylock)
1469 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1470 else {
1471 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1472 /* Fixup the trylock return value: */
1473 ret = ret ? 0 : -EWOULDBLOCK;
1474 }
1475
a99e4e41 1476 spin_lock(q.lock_ptr);
c87e2837 1477
778e9a9c
AK
1478 if (!ret) {
1479 /*
1480 * Got the lock. We might not be the anticipated owner
1481 * if we did a lock-steal - fix up the PI-state in
1482 * that case:
1483 */
1484 if (q.pi_state->owner != curr)
1b7558e4 1485 ret = fixup_pi_state_owner(uaddr, &q, curr, fshared);
778e9a9c 1486 } else {
c87e2837
IM
1487 /*
1488 * Catch the rare case, where the lock was released
778e9a9c
AK
1489 * when we were on the way back before we locked the
1490 * hash bucket.
c87e2837 1491 */
cdf71a10
TG
1492 if (q.pi_state->owner == curr) {
1493 /*
1494 * Try to get the rt_mutex now. This might
1495 * fail as some other task acquired the
1496 * rt_mutex after we removed ourself from the
1497 * rt_mutex waiters list.
1498 */
1499 if (rt_mutex_trylock(&q.pi_state->pi_mutex))
1500 ret = 0;
1501 else {
1502 /*
1503 * pi_state is incorrect, some other
1504 * task did a lock steal and we
1505 * returned due to timeout or signal
1506 * without taking the rt_mutex. Too
1507 * late. We can access the
1508 * rt_mutex_owner without locking, as
1509 * the other task is now blocked on
1510 * the hash bucket lock. Fix the state
1511 * up.
1512 */
1513 struct task_struct *owner;
1514 int res;
1515
1516 owner = rt_mutex_owner(&q.pi_state->pi_mutex);
1b7558e4
TG
1517 res = fixup_pi_state_owner(uaddr, &q, owner,
1518 fshared);
cdf71a10 1519
cdf71a10
TG
1520 /* propagate -EFAULT, if the fixup failed */
1521 if (res)
1522 ret = res;
1523 }
778e9a9c
AK
1524 } else {
1525 /*
1526 * Paranoia check. If we did not take the lock
1527 * in the trylock above, then we should not be
1528 * the owner of the rtmutex, neither the real
1529 * nor the pending one:
1530 */
1531 if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr)
1532 printk(KERN_ERR "futex_lock_pi: ret = %d "
1533 "pi-mutex: %p pi-state %p\n", ret,
1534 q.pi_state->pi_mutex.owner,
1535 q.pi_state->owner);
c87e2837 1536 }
c87e2837
IM
1537 }
1538
778e9a9c
AK
1539 /* Unqueue and drop the lock */
1540 unqueue_me_pi(&q);
c87e2837 1541
237fc6e7
TG
1542 if (to)
1543 destroy_hrtimer_on_stack(&to->timer);
c5780e97 1544 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837
IM
1545
1546 out_unlock_release_sem:
1547 queue_unlock(&q, hb);
1548
1549 out_release_sem:
38d47c1b 1550 put_futex_key(fshared, &q.key);
237fc6e7
TG
1551 if (to)
1552 destroy_hrtimer_on_stack(&to->timer);
c87e2837
IM
1553 return ret;
1554
1555 uaddr_faulted:
1556 /*
1557 * We have to r/w *(int __user *)uaddr, but we can't modify it
1558 * non-atomically. Therefore, if get_user below is not
1559 * enough, we need to handle the fault ourselves, while
1560 * still holding the mmap_sem.
778e9a9c
AK
1561 *
1562 * ... and hb->lock. :-) --ANK
c87e2837 1563 */
778e9a9c
AK
1564 queue_unlock(&q, hb);
1565
c87e2837 1566 if (attempt++) {
c2f9f201 1567 ret = futex_handle_fault((unsigned long)uaddr, attempt);
34f01cc1 1568 if (ret)
778e9a9c
AK
1569 goto out_release_sem;
1570 goto retry_unlocked;
c87e2837
IM
1571 }
1572
c87e2837
IM
1573 ret = get_user(uval, uaddr);
1574 if (!ret && (uval != -EFAULT))
1575 goto retry;
1576
237fc6e7
TG
1577 if (to)
1578 destroy_hrtimer_on_stack(&to->timer);
c87e2837
IM
1579 return ret;
1580}
1581
c87e2837
IM
1582/*
1583 * Userspace attempted a TID -> 0 atomic transition, and failed.
1584 * This is the in-kernel slowpath: we look up the PI state (if any),
1585 * and do the rt-mutex unlock.
1586 */
c2f9f201 1587static int futex_unlock_pi(u32 __user *uaddr, int fshared)
c87e2837
IM
1588{
1589 struct futex_hash_bucket *hb;
1590 struct futex_q *this, *next;
1591 u32 uval;
ec92d082 1592 struct plist_head *head;
38d47c1b 1593 union futex_key key = FUTEX_KEY_INIT;
c87e2837
IM
1594 int ret, attempt = 0;
1595
1596retry:
1597 if (get_user(uval, uaddr))
1598 return -EFAULT;
1599 /*
1600 * We release only a lock we actually own:
1601 */
b488893a 1602 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
c87e2837 1603 return -EPERM;
c87e2837 1604
34f01cc1 1605 ret = get_futex_key(uaddr, fshared, &key);
c87e2837
IM
1606 if (unlikely(ret != 0))
1607 goto out;
1608
1609 hb = hash_futex(&key);
778e9a9c 1610retry_unlocked:
c87e2837
IM
1611 spin_lock(&hb->lock);
1612
c87e2837
IM
1613 /*
1614 * To avoid races, try to do the TID -> 0 atomic transition
1615 * again. If it succeeds then we can return without waking
1616 * anyone else up:
1617 */
36cf3b5c 1618 if (!(uval & FUTEX_OWNER_DIED))
b488893a 1619 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
36cf3b5c 1620
c87e2837
IM
1621
1622 if (unlikely(uval == -EFAULT))
1623 goto pi_faulted;
1624 /*
1625 * Rare case: we managed to release the lock atomically,
1626 * no need to wake anyone else up:
1627 */
b488893a 1628 if (unlikely(uval == task_pid_vnr(current)))
c87e2837
IM
1629 goto out_unlock;
1630
1631 /*
1632 * Ok, other tasks may need to be woken up - check waiters
1633 * and do the wakeup if necessary:
1634 */
1635 head = &hb->chain;
1636
ec92d082 1637 plist_for_each_entry_safe(this, next, head, list) {
c87e2837
IM
1638 if (!match_futex (&this->key, &key))
1639 continue;
1640 ret = wake_futex_pi(uaddr, uval, this);
1641 /*
1642 * The atomic access to the futex value
1643 * generated a pagefault, so retry the
1644 * user-access and the wakeup:
1645 */
1646 if (ret == -EFAULT)
1647 goto pi_faulted;
1648 goto out_unlock;
1649 }
1650 /*
1651 * No waiters - kernel unlocks the futex:
1652 */
e3f2ddea
IM
1653 if (!(uval & FUTEX_OWNER_DIED)) {
1654 ret = unlock_futex_pi(uaddr, uval);
1655 if (ret == -EFAULT)
1656 goto pi_faulted;
1657 }
c87e2837
IM
1658
1659out_unlock:
1660 spin_unlock(&hb->lock);
1661out:
38d47c1b 1662 put_futex_key(fshared, &key);
c87e2837
IM
1663
1664 return ret;
1665
1666pi_faulted:
1667 /*
1668 * We have to r/w *(int __user *)uaddr, but we can't modify it
1669 * non-atomically. Therefore, if get_user below is not
1670 * enough, we need to handle the fault ourselves, while
1671 * still holding the mmap_sem.
778e9a9c
AK
1672 *
1673 * ... and hb->lock. --ANK
c87e2837 1674 */
778e9a9c
AK
1675 spin_unlock(&hb->lock);
1676
c87e2837 1677 if (attempt++) {
c2f9f201 1678 ret = futex_handle_fault((unsigned long)uaddr, attempt);
34f01cc1 1679 if (ret)
778e9a9c 1680 goto out;
187226f5 1681 uval = 0;
778e9a9c 1682 goto retry_unlocked;
c87e2837
IM
1683 }
1684
c87e2837
IM
1685 ret = get_user(uval, uaddr);
1686 if (!ret && (uval != -EFAULT))
1687 goto retry;
1688
1da177e4
LT
1689 return ret;
1690}
1691
0771dfef
IM
1692/*
1693 * Support for robust futexes: the kernel cleans up held futexes at
1694 * thread exit time.
1695 *
1696 * Implementation: user-space maintains a per-thread list of locks it
1697 * is holding. Upon do_exit(), the kernel carefully walks this list,
1698 * and marks all locks that are owned by this thread with the
c87e2837 1699 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
1700 * always manipulated with the lock held, so the list is private and
1701 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1702 * field, to allow the kernel to clean up if the thread dies after
1703 * acquiring the lock, but just before it could have added itself to
1704 * the list. There can only be one such pending lock.
1705 */
1706
1707/**
1708 * sys_set_robust_list - set the robust-futex list head of a task
1709 * @head: pointer to the list-head
1710 * @len: length of the list-head, as userspace expects
1711 */
1712asmlinkage long
1713sys_set_robust_list(struct robust_list_head __user *head,
1714 size_t len)
1715{
a0c1e907
TG
1716 if (!futex_cmpxchg_enabled)
1717 return -ENOSYS;
0771dfef
IM
1718 /*
1719 * The kernel knows only one size for now:
1720 */
1721 if (unlikely(len != sizeof(*head)))
1722 return -EINVAL;
1723
1724 current->robust_list = head;
1725
1726 return 0;
1727}
1728
1729/**
1730 * sys_get_robust_list - get the robust-futex list head of a task
1731 * @pid: pid of the process [zero for current task]
1732 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1733 * @len_ptr: pointer to a length field, the kernel fills in the header size
1734 */
1735asmlinkage long
ba46df98 1736sys_get_robust_list(int pid, struct robust_list_head __user * __user *head_ptr,
0771dfef
IM
1737 size_t __user *len_ptr)
1738{
ba46df98 1739 struct robust_list_head __user *head;
0771dfef
IM
1740 unsigned long ret;
1741
a0c1e907
TG
1742 if (!futex_cmpxchg_enabled)
1743 return -ENOSYS;
1744
0771dfef
IM
1745 if (!pid)
1746 head = current->robust_list;
1747 else {
1748 struct task_struct *p;
1749
1750 ret = -ESRCH;
aaa2a97e 1751 rcu_read_lock();
228ebcbe 1752 p = find_task_by_vpid(pid);
0771dfef
IM
1753 if (!p)
1754 goto err_unlock;
1755 ret = -EPERM;
1756 if ((current->euid != p->euid) && (current->euid != p->uid) &&
1757 !capable(CAP_SYS_PTRACE))
1758 goto err_unlock;
1759 head = p->robust_list;
aaa2a97e 1760 rcu_read_unlock();
0771dfef
IM
1761 }
1762
1763 if (put_user(sizeof(*head), len_ptr))
1764 return -EFAULT;
1765 return put_user(head, head_ptr);
1766
1767err_unlock:
aaa2a97e 1768 rcu_read_unlock();
0771dfef
IM
1769
1770 return ret;
1771}
1772
1773/*
1774 * Process a futex-list entry, check whether it's owned by the
1775 * dying task, and do notification if so:
1776 */
e3f2ddea 1777int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 1778{
e3f2ddea 1779 u32 uval, nval, mval;
0771dfef 1780
8f17d3a5
IM
1781retry:
1782 if (get_user(uval, uaddr))
0771dfef
IM
1783 return -1;
1784
b488893a 1785 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
1786 /*
1787 * Ok, this dying thread is truly holding a futex
1788 * of interest. Set the OWNER_DIED bit atomically
1789 * via cmpxchg, and if the value had FUTEX_WAITERS
1790 * set, wake up a waiter (if any). (We have to do a
1791 * futex_wake() even if OWNER_DIED is already set -
1792 * to handle the rare but possible case of recursive
1793 * thread-death.) The rest of the cleanup is done in
1794 * userspace.
1795 */
e3f2ddea
IM
1796 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1797 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
1798
c87e2837
IM
1799 if (nval == -EFAULT)
1800 return -1;
1801
1802 if (nval != uval)
8f17d3a5 1803 goto retry;
0771dfef 1804
e3f2ddea
IM
1805 /*
1806 * Wake robust non-PI futexes here. The wakeup of
1807 * PI futexes happens in exit_pi_state():
1808 */
36cf3b5c 1809 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 1810 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
1811 }
1812 return 0;
1813}
1814
e3f2ddea
IM
1815/*
1816 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1817 */
1818static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98
AV
1819 struct robust_list __user * __user *head,
1820 int *pi)
e3f2ddea
IM
1821{
1822 unsigned long uentry;
1823
ba46df98 1824 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
1825 return -EFAULT;
1826
ba46df98 1827 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
1828 *pi = uentry & 1;
1829
1830 return 0;
1831}
1832
0771dfef
IM
1833/*
1834 * Walk curr->robust_list (very carefully, it's a userspace list!)
1835 * and mark any locks found there dead, and notify any waiters.
1836 *
1837 * We silently return on any sign of list-walking problem.
1838 */
1839void exit_robust_list(struct task_struct *curr)
1840{
1841 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e
MS
1842 struct robust_list __user *entry, *next_entry, *pending;
1843 unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
0771dfef 1844 unsigned long futex_offset;
9f96cb1e 1845 int rc;
0771dfef 1846
a0c1e907
TG
1847 if (!futex_cmpxchg_enabled)
1848 return;
1849
0771dfef
IM
1850 /*
1851 * Fetch the list head (which was registered earlier, via
1852 * sys_set_robust_list()):
1853 */
e3f2ddea 1854 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
1855 return;
1856 /*
1857 * Fetch the relative futex offset:
1858 */
1859 if (get_user(futex_offset, &head->futex_offset))
1860 return;
1861 /*
1862 * Fetch any possibly pending lock-add first, and handle it
1863 * if it exists:
1864 */
e3f2ddea 1865 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 1866 return;
e3f2ddea 1867
9f96cb1e 1868 next_entry = NULL; /* avoid warning with gcc */
0771dfef 1869 while (entry != &head->list) {
9f96cb1e
MS
1870 /*
1871 * Fetch the next entry in the list before calling
1872 * handle_futex_death:
1873 */
1874 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
1875 /*
1876 * A pending lock might already be on the list, so
c87e2837 1877 * don't process it twice:
0771dfef
IM
1878 */
1879 if (entry != pending)
ba46df98 1880 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 1881 curr, pi))
0771dfef 1882 return;
9f96cb1e 1883 if (rc)
0771dfef 1884 return;
9f96cb1e
MS
1885 entry = next_entry;
1886 pi = next_pi;
0771dfef
IM
1887 /*
1888 * Avoid excessively long or circular lists:
1889 */
1890 if (!--limit)
1891 break;
1892
1893 cond_resched();
1894 }
9f96cb1e
MS
1895
1896 if (pending)
1897 handle_futex_death((void __user *)pending + futex_offset,
1898 curr, pip);
0771dfef
IM
1899}
1900
c19384b5 1901long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 1902 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 1903{
a0c1e907 1904 int ret = -ENOSYS;
34f01cc1 1905 int cmd = op & FUTEX_CMD_MASK;
c2f9f201 1906 int fshared = 0;
34f01cc1
ED
1907
1908 if (!(op & FUTEX_PRIVATE_FLAG))
c2f9f201 1909 fshared = 1;
1da177e4 1910
34f01cc1 1911 switch (cmd) {
1da177e4 1912 case FUTEX_WAIT:
cd689985
TG
1913 val3 = FUTEX_BITSET_MATCH_ANY;
1914 case FUTEX_WAIT_BITSET:
1915 ret = futex_wait(uaddr, fshared, val, timeout, val3);
1da177e4
LT
1916 break;
1917 case FUTEX_WAKE:
cd689985
TG
1918 val3 = FUTEX_BITSET_MATCH_ANY;
1919 case FUTEX_WAKE_BITSET:
1920 ret = futex_wake(uaddr, fshared, val, val3);
1da177e4 1921 break;
1da177e4 1922 case FUTEX_REQUEUE:
34f01cc1 1923 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
1da177e4
LT
1924 break;
1925 case FUTEX_CMP_REQUEUE:
34f01cc1 1926 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
1da177e4 1927 break;
4732efbe 1928 case FUTEX_WAKE_OP:
34f01cc1 1929 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
4732efbe 1930 break;
c87e2837 1931 case FUTEX_LOCK_PI:
a0c1e907
TG
1932 if (futex_cmpxchg_enabled)
1933 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
c87e2837
IM
1934 break;
1935 case FUTEX_UNLOCK_PI:
a0c1e907
TG
1936 if (futex_cmpxchg_enabled)
1937 ret = futex_unlock_pi(uaddr, fshared);
c87e2837
IM
1938 break;
1939 case FUTEX_TRYLOCK_PI:
a0c1e907
TG
1940 if (futex_cmpxchg_enabled)
1941 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
c87e2837 1942 break;
1da177e4
LT
1943 default:
1944 ret = -ENOSYS;
1945 }
1946 return ret;
1947}
1948
1949
e2970f2f 1950asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
1da177e4 1951 struct timespec __user *utime, u32 __user *uaddr2,
e2970f2f 1952 u32 val3)
1da177e4 1953{
c19384b5
PP
1954 struct timespec ts;
1955 ktime_t t, *tp = NULL;
e2970f2f 1956 u32 val2 = 0;
34f01cc1 1957 int cmd = op & FUTEX_CMD_MASK;
1da177e4 1958
cd689985
TG
1959 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
1960 cmd == FUTEX_WAIT_BITSET)) {
c19384b5 1961 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 1962 return -EFAULT;
c19384b5 1963 if (!timespec_valid(&ts))
9741ef96 1964 return -EINVAL;
c19384b5
PP
1965
1966 t = timespec_to_ktime(ts);
34f01cc1 1967 if (cmd == FUTEX_WAIT)
5a7780e7 1968 t = ktime_add_safe(ktime_get(), t);
c19384b5 1969 tp = &t;
1da177e4
LT
1970 }
1971 /*
34f01cc1 1972 * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
f54f0986 1973 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 1974 */
f54f0986
AS
1975 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
1976 cmd == FUTEX_WAKE_OP)
e2970f2f 1977 val2 = (u32) (unsigned long) utime;
1da177e4 1978
c19384b5 1979 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
1980}
1981
f6d107fb 1982static int __init futex_init(void)
1da177e4 1983{
a0c1e907 1984 u32 curval;
3e4ab747 1985 int i;
95362fa9 1986
a0c1e907
TG
1987 /*
1988 * This will fail and we want it. Some arch implementations do
1989 * runtime detection of the futex_atomic_cmpxchg_inatomic()
1990 * functionality. We want to know that before we call in any
1991 * of the complex code paths. Also we want to prevent
1992 * registration of robust lists in that case. NULL is
1993 * guaranteed to fault and we get -EFAULT on functional
1994 * implementation, the non functional ones will return
1995 * -ENOSYS.
1996 */
1997 curval = cmpxchg_futex_value_locked(NULL, 0, 0);
1998 if (curval == -EFAULT)
1999 futex_cmpxchg_enabled = 1;
2000
3e4ab747
TG
2001 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2002 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2003 spin_lock_init(&futex_queues[i].lock);
2004 }
2005
1da177e4
LT
2006 return 0;
2007}
f6d107fb 2008__initcall(futex_init);