futex: Futex_unlock_pi() determinism
[linux-2.6-block.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
7ed20e1a 57#include <linux/signal.h>
9984de1a 58#include <linux/export.h>
fd5eea42 59#include <linux/magic.h>
b488893a
PE
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
bdbb776f 62#include <linux/ptrace.h>
8bd75c77 63#include <linux/sched/rt.h>
84f001e1 64#include <linux/sched/wake_q.h>
6e84f315 65#include <linux/sched/mm.h>
13d60f4b 66#include <linux/hugetlb.h>
88c8004f 67#include <linux/freezer.h>
a52b89eb 68#include <linux/bootmem.h>
ab51fbab 69#include <linux/fault-inject.h>
b488893a 70
4732efbe 71#include <asm/futex.h>
1da177e4 72
1696a8be 73#include "locking/rtmutex_common.h"
c87e2837 74
99b60ce6 75/*
d7e8af1a
DB
76 * READ this before attempting to hack on futexes!
77 *
78 * Basic futex operation and ordering guarantees
79 * =============================================
99b60ce6
TG
80 *
81 * The waiter reads the futex value in user space and calls
82 * futex_wait(). This function computes the hash bucket and acquires
83 * the hash bucket lock. After that it reads the futex user space value
b0c29f79
DB
84 * again and verifies that the data has not changed. If it has not changed
85 * it enqueues itself into the hash bucket, releases the hash bucket lock
86 * and schedules.
99b60ce6
TG
87 *
88 * The waker side modifies the user space value of the futex and calls
b0c29f79
DB
89 * futex_wake(). This function computes the hash bucket and acquires the
90 * hash bucket lock. Then it looks for waiters on that futex in the hash
91 * bucket and wakes them.
99b60ce6 92 *
b0c29f79
DB
93 * In futex wake up scenarios where no tasks are blocked on a futex, taking
94 * the hb spinlock can be avoided and simply return. In order for this
95 * optimization to work, ordering guarantees must exist so that the waiter
96 * being added to the list is acknowledged when the list is concurrently being
97 * checked by the waker, avoiding scenarios like the following:
99b60ce6
TG
98 *
99 * CPU 0 CPU 1
100 * val = *futex;
101 * sys_futex(WAIT, futex, val);
102 * futex_wait(futex, val);
103 * uval = *futex;
104 * *futex = newval;
105 * sys_futex(WAKE, futex);
106 * futex_wake(futex);
107 * if (queue_empty())
108 * return;
109 * if (uval == val)
110 * lock(hash_bucket(futex));
111 * queue();
112 * unlock(hash_bucket(futex));
113 * schedule();
114 *
115 * This would cause the waiter on CPU 0 to wait forever because it
116 * missed the transition of the user space value from val to newval
117 * and the waker did not find the waiter in the hash bucket queue.
99b60ce6 118 *
b0c29f79
DB
119 * The correct serialization ensures that a waiter either observes
120 * the changed user space value before blocking or is woken by a
121 * concurrent waker:
122 *
123 * CPU 0 CPU 1
99b60ce6
TG
124 * val = *futex;
125 * sys_futex(WAIT, futex, val);
126 * futex_wait(futex, val);
b0c29f79 127 *
d7e8af1a 128 * waiters++; (a)
8ad7b378
DB
129 * smp_mb(); (A) <-- paired with -.
130 * |
131 * lock(hash_bucket(futex)); |
132 * |
133 * uval = *futex; |
134 * | *futex = newval;
135 * | sys_futex(WAKE, futex);
136 * | futex_wake(futex);
137 * |
138 * `--------> smp_mb(); (B)
99b60ce6 139 * if (uval == val)
b0c29f79 140 * queue();
99b60ce6 141 * unlock(hash_bucket(futex));
b0c29f79
DB
142 * schedule(); if (waiters)
143 * lock(hash_bucket(futex));
d7e8af1a
DB
144 * else wake_waiters(futex);
145 * waiters--; (b) unlock(hash_bucket(futex));
b0c29f79 146 *
d7e8af1a
DB
147 * Where (A) orders the waiters increment and the futex value read through
148 * atomic operations (see hb_waiters_inc) and where (B) orders the write
993b2ff2
DB
149 * to futex and the waiters read -- this is done by the barriers for both
150 * shared and private futexes in get_futex_key_refs().
b0c29f79
DB
151 *
152 * This yields the following case (where X:=waiters, Y:=futex):
153 *
154 * X = Y = 0
155 *
156 * w[X]=1 w[Y]=1
157 * MB MB
158 * r[Y]=y r[X]=x
159 *
160 * Which guarantees that x==0 && y==0 is impossible; which translates back into
161 * the guarantee that we cannot both miss the futex variable change and the
162 * enqueue.
d7e8af1a
DB
163 *
164 * Note that a new waiter is accounted for in (a) even when it is possible that
165 * the wait call can return error, in which case we backtrack from it in (b).
166 * Refer to the comment in queue_lock().
167 *
168 * Similarly, in order to account for waiters being requeued on another
169 * address we always increment the waiters for the destination bucket before
170 * acquiring the lock. It then decrements them again after releasing it -
171 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
172 * will do the additional required waiter count housekeeping. This is done for
173 * double_lock_hb() and double_unlock_hb(), respectively.
99b60ce6
TG
174 */
175
03b8c7b6 176#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 177int __read_mostly futex_cmpxchg_enabled;
03b8c7b6 178#endif
a0c1e907 179
b41277dc
DH
180/*
181 * Futex flags used to encode options to functions and preserve them across
182 * restarts.
183 */
784bdf3b
TG
184#ifdef CONFIG_MMU
185# define FLAGS_SHARED 0x01
186#else
187/*
188 * NOMMU does not have per process address space. Let the compiler optimize
189 * code away.
190 */
191# define FLAGS_SHARED 0x00
192#endif
b41277dc
DH
193#define FLAGS_CLOCKRT 0x02
194#define FLAGS_HAS_TIMEOUT 0x04
195
c87e2837
IM
196/*
197 * Priority Inheritance state:
198 */
199struct futex_pi_state {
200 /*
201 * list of 'owned' pi_state instances - these have to be
202 * cleaned up in do_exit() if the task exits prematurely:
203 */
204 struct list_head list;
205
206 /*
207 * The PI object:
208 */
209 struct rt_mutex pi_mutex;
210
211 struct task_struct *owner;
212 atomic_t refcount;
213
214 union futex_key key;
215};
216
d8d88fbb
DH
217/**
218 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 219 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
220 * @task: the task waiting on the futex
221 * @lock_ptr: the hash bucket lock
222 * @key: the key the futex is hashed on
223 * @pi_state: optional priority inheritance state
224 * @rt_waiter: rt_waiter storage for use with requeue_pi
225 * @requeue_pi_key: the requeue_pi target futex key
226 * @bitset: bitset for the optional bitmasked wakeup
227 *
228 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
1da177e4
LT
229 * we can wake only the relevant ones (hashed queues may be shared).
230 *
231 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 232 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 233 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
234 * the second.
235 *
236 * PI futexes are typically woken before they are removed from the hash list via
237 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
238 */
239struct futex_q {
ec92d082 240 struct plist_node list;
1da177e4 241
d8d88fbb 242 struct task_struct *task;
1da177e4 243 spinlock_t *lock_ptr;
1da177e4 244 union futex_key key;
c87e2837 245 struct futex_pi_state *pi_state;
52400ba9 246 struct rt_mutex_waiter *rt_waiter;
84bc4af5 247 union futex_key *requeue_pi_key;
cd689985 248 u32 bitset;
1da177e4
LT
249};
250
5bdb05f9
DH
251static const struct futex_q futex_q_init = {
252 /* list gets initialized in queue_me()*/
253 .key = FUTEX_KEY_INIT,
254 .bitset = FUTEX_BITSET_MATCH_ANY
255};
256
1da177e4 257/*
b2d0994b
DH
258 * Hash buckets are shared by all the futex_keys that hash to the same
259 * location. Each key may have multiple futex_q structures, one for each task
260 * waiting on a futex.
1da177e4
LT
261 */
262struct futex_hash_bucket {
11d4616b 263 atomic_t waiters;
ec92d082
PP
264 spinlock_t lock;
265 struct plist_head chain;
a52b89eb 266} ____cacheline_aligned_in_smp;
1da177e4 267
ac742d37
RV
268/*
269 * The base of the bucket array and its size are always used together
270 * (after initialization only in hash_futex()), so ensure that they
271 * reside in the same cacheline.
272 */
273static struct {
274 struct futex_hash_bucket *queues;
275 unsigned long hashsize;
276} __futex_data __read_mostly __aligned(2*sizeof(long));
277#define futex_queues (__futex_data.queues)
278#define futex_hashsize (__futex_data.hashsize)
a52b89eb 279
1da177e4 280
ab51fbab
DB
281/*
282 * Fault injections for futexes.
283 */
284#ifdef CONFIG_FAIL_FUTEX
285
286static struct {
287 struct fault_attr attr;
288
621a5f7a 289 bool ignore_private;
ab51fbab
DB
290} fail_futex = {
291 .attr = FAULT_ATTR_INITIALIZER,
621a5f7a 292 .ignore_private = false,
ab51fbab
DB
293};
294
295static int __init setup_fail_futex(char *str)
296{
297 return setup_fault_attr(&fail_futex.attr, str);
298}
299__setup("fail_futex=", setup_fail_futex);
300
5d285a7f 301static bool should_fail_futex(bool fshared)
ab51fbab
DB
302{
303 if (fail_futex.ignore_private && !fshared)
304 return false;
305
306 return should_fail(&fail_futex.attr, 1);
307}
308
309#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
310
311static int __init fail_futex_debugfs(void)
312{
313 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
314 struct dentry *dir;
315
316 dir = fault_create_debugfs_attr("fail_futex", NULL,
317 &fail_futex.attr);
318 if (IS_ERR(dir))
319 return PTR_ERR(dir);
320
321 if (!debugfs_create_bool("ignore-private", mode, dir,
322 &fail_futex.ignore_private)) {
323 debugfs_remove_recursive(dir);
324 return -ENOMEM;
325 }
326
327 return 0;
328}
329
330late_initcall(fail_futex_debugfs);
331
332#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
333
334#else
335static inline bool should_fail_futex(bool fshared)
336{
337 return false;
338}
339#endif /* CONFIG_FAIL_FUTEX */
340
b0c29f79
DB
341static inline void futex_get_mm(union futex_key *key)
342{
f1f10076 343 mmgrab(key->private.mm);
b0c29f79
DB
344 /*
345 * Ensure futex_get_mm() implies a full barrier such that
346 * get_futex_key() implies a full barrier. This is relied upon
8ad7b378 347 * as smp_mb(); (B), see the ordering comment above.
b0c29f79 348 */
4e857c58 349 smp_mb__after_atomic();
b0c29f79
DB
350}
351
11d4616b
LT
352/*
353 * Reflects a new waiter being added to the waitqueue.
354 */
355static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
b0c29f79
DB
356{
357#ifdef CONFIG_SMP
11d4616b 358 atomic_inc(&hb->waiters);
b0c29f79 359 /*
11d4616b 360 * Full barrier (A), see the ordering comment above.
b0c29f79 361 */
4e857c58 362 smp_mb__after_atomic();
11d4616b
LT
363#endif
364}
365
366/*
367 * Reflects a waiter being removed from the waitqueue by wakeup
368 * paths.
369 */
370static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
371{
372#ifdef CONFIG_SMP
373 atomic_dec(&hb->waiters);
374#endif
375}
b0c29f79 376
11d4616b
LT
377static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
378{
379#ifdef CONFIG_SMP
380 return atomic_read(&hb->waiters);
b0c29f79 381#else
11d4616b 382 return 1;
b0c29f79
DB
383#endif
384}
385
e8b61b3f
TG
386/**
387 * hash_futex - Return the hash bucket in the global hash
388 * @key: Pointer to the futex key for which the hash is calculated
389 *
390 * We hash on the keys returned from get_futex_key (see below) and return the
391 * corresponding hash bucket in the global hash.
1da177e4
LT
392 */
393static struct futex_hash_bucket *hash_futex(union futex_key *key)
394{
395 u32 hash = jhash2((u32*)&key->both.word,
396 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
397 key->both.offset);
a52b89eb 398 return &futex_queues[hash & (futex_hashsize - 1)];
1da177e4
LT
399}
400
e8b61b3f
TG
401
402/**
403 * match_futex - Check whether two futex keys are equal
404 * @key1: Pointer to key1
405 * @key2: Pointer to key2
406 *
1da177e4
LT
407 * Return 1 if two futex_keys are equal, 0 otherwise.
408 */
409static inline int match_futex(union futex_key *key1, union futex_key *key2)
410{
2bc87203
DH
411 return (key1 && key2
412 && key1->both.word == key2->both.word
1da177e4
LT
413 && key1->both.ptr == key2->both.ptr
414 && key1->both.offset == key2->both.offset);
415}
416
38d47c1b
PZ
417/*
418 * Take a reference to the resource addressed by a key.
419 * Can be called while holding spinlocks.
420 *
421 */
422static void get_futex_key_refs(union futex_key *key)
423{
424 if (!key->both.ptr)
425 return;
426
784bdf3b
TG
427 /*
428 * On MMU less systems futexes are always "private" as there is no per
429 * process address space. We need the smp wmb nevertheless - yes,
430 * arch/blackfin has MMU less SMP ...
431 */
432 if (!IS_ENABLED(CONFIG_MMU)) {
433 smp_mb(); /* explicit smp_mb(); (B) */
434 return;
435 }
436
38d47c1b
PZ
437 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
438 case FUT_OFF_INODE:
8ad7b378 439 ihold(key->shared.inode); /* implies smp_mb(); (B) */
38d47c1b
PZ
440 break;
441 case FUT_OFF_MMSHARED:
8ad7b378 442 futex_get_mm(key); /* implies smp_mb(); (B) */
38d47c1b 443 break;
76835b0e 444 default:
993b2ff2
DB
445 /*
446 * Private futexes do not hold reference on an inode or
447 * mm, therefore the only purpose of calling get_futex_key_refs
448 * is because we need the barrier for the lockless waiter check.
449 */
8ad7b378 450 smp_mb(); /* explicit smp_mb(); (B) */
38d47c1b
PZ
451 }
452}
453
454/*
455 * Drop a reference to the resource addressed by a key.
993b2ff2
DB
456 * The hash bucket spinlock must not be held. This is
457 * a no-op for private futexes, see comment in the get
458 * counterpart.
38d47c1b
PZ
459 */
460static void drop_futex_key_refs(union futex_key *key)
461{
90621c40
DH
462 if (!key->both.ptr) {
463 /* If we're here then we tried to put a key we failed to get */
464 WARN_ON_ONCE(1);
38d47c1b 465 return;
90621c40 466 }
38d47c1b 467
784bdf3b
TG
468 if (!IS_ENABLED(CONFIG_MMU))
469 return;
470
38d47c1b
PZ
471 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
472 case FUT_OFF_INODE:
473 iput(key->shared.inode);
474 break;
475 case FUT_OFF_MMSHARED:
476 mmdrop(key->private.mm);
477 break;
478 }
479}
480
34f01cc1 481/**
d96ee56c
DH
482 * get_futex_key() - Get parameters which are the keys for a futex
483 * @uaddr: virtual address of the futex
484 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
485 * @key: address where result is stored.
9ea71503
SB
486 * @rw: mapping needs to be read/write (values: VERIFY_READ,
487 * VERIFY_WRITE)
34f01cc1 488 *
6c23cbbd
RD
489 * Return: a negative error code or 0
490 *
34f01cc1 491 * The key words are stored in *key on success.
1da177e4 492 *
6131ffaa 493 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
1da177e4
LT
494 * offset_within_page). For private mappings, it's (uaddr, current->mm).
495 * We can usually work out the index without swapping in the page.
496 *
b2d0994b 497 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 498 */
64d1304a 499static int
9ea71503 500get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
1da177e4 501{
e2970f2f 502 unsigned long address = (unsigned long)uaddr;
1da177e4 503 struct mm_struct *mm = current->mm;
077fa7ae 504 struct page *page, *tail;
14d27abd 505 struct address_space *mapping;
9ea71503 506 int err, ro = 0;
1da177e4
LT
507
508 /*
509 * The futex address must be "naturally" aligned.
510 */
e2970f2f 511 key->both.offset = address % PAGE_SIZE;
34f01cc1 512 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 513 return -EINVAL;
e2970f2f 514 address -= key->both.offset;
1da177e4 515
5cdec2d8
LT
516 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
517 return -EFAULT;
518
ab51fbab
DB
519 if (unlikely(should_fail_futex(fshared)))
520 return -EFAULT;
521
34f01cc1
ED
522 /*
523 * PROCESS_PRIVATE futexes are fast.
524 * As the mm cannot disappear under us and the 'key' only needs
525 * virtual address, we dont even have to find the underlying vma.
526 * Note : We do have to check 'uaddr' is a valid user address,
527 * but access_ok() should be faster than find_vma()
528 */
529 if (!fshared) {
34f01cc1
ED
530 key->private.mm = mm;
531 key->private.address = address;
8ad7b378 532 get_futex_key_refs(key); /* implies smp_mb(); (B) */
34f01cc1
ED
533 return 0;
534 }
1da177e4 535
38d47c1b 536again:
ab51fbab
DB
537 /* Ignore any VERIFY_READ mapping (futex common case) */
538 if (unlikely(should_fail_futex(fshared)))
539 return -EFAULT;
540
7485d0d3 541 err = get_user_pages_fast(address, 1, 1, &page);
9ea71503
SB
542 /*
543 * If write access is not required (eg. FUTEX_WAIT), try
544 * and get read-only access.
545 */
546 if (err == -EFAULT && rw == VERIFY_READ) {
547 err = get_user_pages_fast(address, 1, 0, &page);
548 ro = 1;
549 }
38d47c1b
PZ
550 if (err < 0)
551 return err;
9ea71503
SB
552 else
553 err = 0;
38d47c1b 554
65d8fc77
MG
555 /*
556 * The treatment of mapping from this point on is critical. The page
557 * lock protects many things but in this context the page lock
558 * stabilizes mapping, prevents inode freeing in the shared
559 * file-backed region case and guards against movement to swap cache.
560 *
561 * Strictly speaking the page lock is not needed in all cases being
562 * considered here and page lock forces unnecessarily serialization
563 * From this point on, mapping will be re-verified if necessary and
564 * page lock will be acquired only if it is unavoidable
077fa7ae
MG
565 *
566 * Mapping checks require the head page for any compound page so the
567 * head page and mapping is looked up now. For anonymous pages, it
568 * does not matter if the page splits in the future as the key is
569 * based on the address. For filesystem-backed pages, the tail is
570 * required as the index of the page determines the key. For
571 * base pages, there is no tail page and tail == page.
65d8fc77 572 */
077fa7ae 573 tail = page;
65d8fc77
MG
574 page = compound_head(page);
575 mapping = READ_ONCE(page->mapping);
576
e6780f72 577 /*
14d27abd 578 * If page->mapping is NULL, then it cannot be a PageAnon
e6780f72
HD
579 * page; but it might be the ZERO_PAGE or in the gate area or
580 * in a special mapping (all cases which we are happy to fail);
581 * or it may have been a good file page when get_user_pages_fast
582 * found it, but truncated or holepunched or subjected to
583 * invalidate_complete_page2 before we got the page lock (also
584 * cases which we are happy to fail). And we hold a reference,
585 * so refcount care in invalidate_complete_page's remove_mapping
586 * prevents drop_caches from setting mapping to NULL beneath us.
587 *
588 * The case we do have to guard against is when memory pressure made
589 * shmem_writepage move it from filecache to swapcache beneath us:
14d27abd 590 * an unlikely race, but we do need to retry for page->mapping.
e6780f72 591 */
65d8fc77
MG
592 if (unlikely(!mapping)) {
593 int shmem_swizzled;
594
595 /*
596 * Page lock is required to identify which special case above
597 * applies. If this is really a shmem page then the page lock
598 * will prevent unexpected transitions.
599 */
600 lock_page(page);
601 shmem_swizzled = PageSwapCache(page) || page->mapping;
14d27abd
KS
602 unlock_page(page);
603 put_page(page);
65d8fc77 604
e6780f72
HD
605 if (shmem_swizzled)
606 goto again;
65d8fc77 607
e6780f72 608 return -EFAULT;
38d47c1b 609 }
1da177e4
LT
610
611 /*
612 * Private mappings are handled in a simple way.
613 *
65d8fc77
MG
614 * If the futex key is stored on an anonymous page, then the associated
615 * object is the mm which is implicitly pinned by the calling process.
616 *
1da177e4
LT
617 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
618 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 619 * the object not the particular process.
1da177e4 620 */
14d27abd 621 if (PageAnon(page)) {
9ea71503
SB
622 /*
623 * A RO anonymous page will never change and thus doesn't make
624 * sense for futex operations.
625 */
ab51fbab 626 if (unlikely(should_fail_futex(fshared)) || ro) {
9ea71503
SB
627 err = -EFAULT;
628 goto out;
629 }
630
38d47c1b 631 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 632 key->private.mm = mm;
e2970f2f 633 key->private.address = address;
65d8fc77
MG
634
635 get_futex_key_refs(key); /* implies smp_mb(); (B) */
636
38d47c1b 637 } else {
65d8fc77
MG
638 struct inode *inode;
639
640 /*
641 * The associated futex object in this case is the inode and
642 * the page->mapping must be traversed. Ordinarily this should
643 * be stabilised under page lock but it's not strictly
644 * necessary in this case as we just want to pin the inode, not
645 * update the radix tree or anything like that.
646 *
647 * The RCU read lock is taken as the inode is finally freed
648 * under RCU. If the mapping still matches expectations then the
649 * mapping->host can be safely accessed as being a valid inode.
650 */
651 rcu_read_lock();
652
653 if (READ_ONCE(page->mapping) != mapping) {
654 rcu_read_unlock();
655 put_page(page);
656
657 goto again;
658 }
659
660 inode = READ_ONCE(mapping->host);
661 if (!inode) {
662 rcu_read_unlock();
663 put_page(page);
664
665 goto again;
666 }
667
668 /*
669 * Take a reference unless it is about to be freed. Previously
670 * this reference was taken by ihold under the page lock
671 * pinning the inode in place so i_lock was unnecessary. The
672 * only way for this check to fail is if the inode was
673 * truncated in parallel so warn for now if this happens.
674 *
675 * We are not calling into get_futex_key_refs() in file-backed
676 * cases, therefore a successful atomic_inc return below will
677 * guarantee that get_futex_key() will still imply smp_mb(); (B).
678 */
679 if (WARN_ON_ONCE(!atomic_inc_not_zero(&inode->i_count))) {
680 rcu_read_unlock();
681 put_page(page);
682
683 goto again;
684 }
685
686 /* Should be impossible but lets be paranoid for now */
687 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
688 err = -EFAULT;
689 rcu_read_unlock();
690 iput(inode);
691
692 goto out;
693 }
694
38d47c1b 695 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
65d8fc77 696 key->shared.inode = inode;
077fa7ae 697 key->shared.pgoff = basepage_index(tail);
65d8fc77 698 rcu_read_unlock();
1da177e4
LT
699 }
700
9ea71503 701out:
14d27abd 702 put_page(page);
9ea71503 703 return err;
1da177e4
LT
704}
705
ae791a2d 706static inline void put_futex_key(union futex_key *key)
1da177e4 707{
38d47c1b 708 drop_futex_key_refs(key);
1da177e4
LT
709}
710
d96ee56c
DH
711/**
712 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
713 * @uaddr: pointer to faulting user space address
714 *
715 * Slow path to fixup the fault we just took in the atomic write
716 * access to @uaddr.
717 *
fb62db2b 718 * We have no generic implementation of a non-destructive write to the
d0725992
TG
719 * user address. We know that we faulted in the atomic pagefault
720 * disabled section so we can as well avoid the #PF overhead by
721 * calling get_user_pages() right away.
722 */
723static int fault_in_user_writeable(u32 __user *uaddr)
724{
722d0172
AK
725 struct mm_struct *mm = current->mm;
726 int ret;
727
728 down_read(&mm->mmap_sem);
2efaca92 729 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
4a9e1cda 730 FAULT_FLAG_WRITE, NULL);
722d0172
AK
731 up_read(&mm->mmap_sem);
732
d0725992
TG
733 return ret < 0 ? ret : 0;
734}
735
4b1c486b
DH
736/**
737 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
738 * @hb: the hash bucket the futex_q's reside in
739 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
740 *
741 * Must be called with the hb lock held.
742 */
743static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
744 union futex_key *key)
745{
746 struct futex_q *this;
747
748 plist_for_each_entry(this, &hb->chain, list) {
749 if (match_futex(&this->key, key))
750 return this;
751 }
752 return NULL;
753}
754
37a9d912
ML
755static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
756 u32 uval, u32 newval)
36cf3b5c 757{
37a9d912 758 int ret;
36cf3b5c
TG
759
760 pagefault_disable();
37a9d912 761 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
762 pagefault_enable();
763
37a9d912 764 return ret;
36cf3b5c
TG
765}
766
767static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
768{
769 int ret;
770
a866374a 771 pagefault_disable();
bd28b145 772 ret = __get_user(*dest, from);
a866374a 773 pagefault_enable();
1da177e4
LT
774
775 return ret ? -EFAULT : 0;
776}
777
c87e2837
IM
778
779/*
780 * PI code:
781 */
782static int refill_pi_state_cache(void)
783{
784 struct futex_pi_state *pi_state;
785
786 if (likely(current->pi_state_cache))
787 return 0;
788
4668edc3 789 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
790
791 if (!pi_state)
792 return -ENOMEM;
793
c87e2837
IM
794 INIT_LIST_HEAD(&pi_state->list);
795 /* pi_mutex gets initialized later */
796 pi_state->owner = NULL;
797 atomic_set(&pi_state->refcount, 1);
38d47c1b 798 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
799
800 current->pi_state_cache = pi_state;
801
802 return 0;
803}
804
bf92cf3a 805static struct futex_pi_state *alloc_pi_state(void)
c87e2837
IM
806{
807 struct futex_pi_state *pi_state = current->pi_state_cache;
808
809 WARN_ON(!pi_state);
810 current->pi_state_cache = NULL;
811
812 return pi_state;
813}
814
bf92cf3a
PZ
815static void get_pi_state(struct futex_pi_state *pi_state)
816{
817 WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
818}
819
30a6b803 820/*
29e9ee5d
TG
821 * Drops a reference to the pi_state object and frees or caches it
822 * when the last reference is gone.
823 *
30a6b803
BS
824 * Must be called with the hb lock held.
825 */
29e9ee5d 826static void put_pi_state(struct futex_pi_state *pi_state)
c87e2837 827{
30a6b803
BS
828 if (!pi_state)
829 return;
830
c87e2837
IM
831 if (!atomic_dec_and_test(&pi_state->refcount))
832 return;
833
834 /*
835 * If pi_state->owner is NULL, the owner is most probably dying
836 * and has cleaned up the pi_state already
837 */
838 if (pi_state->owner) {
1d615482 839 raw_spin_lock_irq(&pi_state->owner->pi_lock);
c87e2837 840 list_del_init(&pi_state->list);
1d615482 841 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
c87e2837
IM
842
843 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
844 }
845
846 if (current->pi_state_cache)
847 kfree(pi_state);
848 else {
849 /*
850 * pi_state->list is already empty.
851 * clear pi_state->owner.
852 * refcount is at 0 - put it back to 1.
853 */
854 pi_state->owner = NULL;
855 atomic_set(&pi_state->refcount, 1);
856 current->pi_state_cache = pi_state;
857 }
858}
859
860/*
861 * Look up the task based on what TID userspace gave us.
862 * We dont trust it.
863 */
bf92cf3a 864static struct task_struct *futex_find_get_task(pid_t pid)
c87e2837
IM
865{
866 struct task_struct *p;
867
d359b549 868 rcu_read_lock();
228ebcbe 869 p = find_task_by_vpid(pid);
7a0ea09a
MH
870 if (p)
871 get_task_struct(p);
a06381fe 872
d359b549 873 rcu_read_unlock();
c87e2837
IM
874
875 return p;
876}
877
878/*
879 * This task is holding PI mutexes at exit time => bad.
880 * Kernel cleans up PI-state, but userspace is likely hosed.
881 * (Robust-futex cleanup is separate and might save the day for userspace.)
882 */
883void exit_pi_state_list(struct task_struct *curr)
884{
c87e2837
IM
885 struct list_head *next, *head = &curr->pi_state_list;
886 struct futex_pi_state *pi_state;
627371d7 887 struct futex_hash_bucket *hb;
38d47c1b 888 union futex_key key = FUTEX_KEY_INIT;
c87e2837 889
a0c1e907
TG
890 if (!futex_cmpxchg_enabled)
891 return;
c87e2837
IM
892 /*
893 * We are a ZOMBIE and nobody can enqueue itself on
894 * pi_state_list anymore, but we have to be careful
627371d7 895 * versus waiters unqueueing themselves:
c87e2837 896 */
1d615482 897 raw_spin_lock_irq(&curr->pi_lock);
c87e2837
IM
898 while (!list_empty(head)) {
899
900 next = head->next;
901 pi_state = list_entry(next, struct futex_pi_state, list);
902 key = pi_state->key;
627371d7 903 hb = hash_futex(&key);
1d615482 904 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 905
c87e2837
IM
906 spin_lock(&hb->lock);
907
1d615482 908 raw_spin_lock_irq(&curr->pi_lock);
627371d7
IM
909 /*
910 * We dropped the pi-lock, so re-check whether this
911 * task still owns the PI-state:
912 */
c87e2837
IM
913 if (head->next != next) {
914 spin_unlock(&hb->lock);
915 continue;
916 }
917
c87e2837 918 WARN_ON(pi_state->owner != curr);
627371d7
IM
919 WARN_ON(list_empty(&pi_state->list));
920 list_del_init(&pi_state->list);
c87e2837 921 pi_state->owner = NULL;
1d615482 922 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 923
16ffa12d 924 get_pi_state(pi_state);
c87e2837
IM
925 spin_unlock(&hb->lock);
926
16ffa12d
PZ
927 rt_mutex_futex_unlock(&pi_state->pi_mutex);
928 put_pi_state(pi_state);
929
1d615482 930 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 931 }
1d615482 932 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
933}
934
54a21788
TG
935/*
936 * We need to check the following states:
937 *
938 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
939 *
940 * [1] NULL | --- | --- | 0 | 0/1 | Valid
941 * [2] NULL | --- | --- | >0 | 0/1 | Valid
942 *
943 * [3] Found | NULL | -- | Any | 0/1 | Invalid
944 *
945 * [4] Found | Found | NULL | 0 | 1 | Valid
946 * [5] Found | Found | NULL | >0 | 1 | Invalid
947 *
948 * [6] Found | Found | task | 0 | 1 | Valid
949 *
950 * [7] Found | Found | NULL | Any | 0 | Invalid
951 *
952 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
953 * [9] Found | Found | task | 0 | 0 | Invalid
954 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
955 *
956 * [1] Indicates that the kernel can acquire the futex atomically. We
957 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
958 *
959 * [2] Valid, if TID does not belong to a kernel thread. If no matching
960 * thread is found then it indicates that the owner TID has died.
961 *
962 * [3] Invalid. The waiter is queued on a non PI futex
963 *
964 * [4] Valid state after exit_robust_list(), which sets the user space
965 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
966 *
967 * [5] The user space value got manipulated between exit_robust_list()
968 * and exit_pi_state_list()
969 *
970 * [6] Valid state after exit_pi_state_list() which sets the new owner in
971 * the pi_state but cannot access the user space value.
972 *
973 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
974 *
975 * [8] Owner and user space value match
976 *
977 * [9] There is no transient state which sets the user space TID to 0
978 * except exit_robust_list(), but this is indicated by the
979 * FUTEX_OWNER_DIED bit. See [4]
980 *
981 * [10] There is no transient state which leaves owner and user space
982 * TID out of sync.
734009e9
PZ
983 *
984 *
985 * Serialization and lifetime rules:
986 *
987 * hb->lock:
988 *
989 * hb -> futex_q, relation
990 * futex_q -> pi_state, relation
991 *
992 * (cannot be raw because hb can contain arbitrary amount
993 * of futex_q's)
994 *
995 * pi_mutex->wait_lock:
996 *
997 * {uval, pi_state}
998 *
999 * (and pi_mutex 'obviously')
1000 *
1001 * p->pi_lock:
1002 *
1003 * p->pi_state_list -> pi_state->list, relation
1004 *
1005 * pi_state->refcount:
1006 *
1007 * pi_state lifetime
1008 *
1009 *
1010 * Lock order:
1011 *
1012 * hb->lock
1013 * pi_mutex->wait_lock
1014 * p->pi_lock
1015 *
54a21788 1016 */
e60cbc5c
TG
1017
1018/*
1019 * Validate that the existing waiter has a pi_state and sanity check
1020 * the pi_state against the user space value. If correct, attach to
1021 * it.
1022 */
734009e9
PZ
1023static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1024 struct futex_pi_state *pi_state,
e60cbc5c 1025 struct futex_pi_state **ps)
c87e2837 1026{
778e9a9c 1027 pid_t pid = uval & FUTEX_TID_MASK;
734009e9 1028 int ret, uval2;
c87e2837 1029
e60cbc5c
TG
1030 /*
1031 * Userspace might have messed up non-PI and PI futexes [3]
1032 */
1033 if (unlikely(!pi_state))
1034 return -EINVAL;
06a9ec29 1035
734009e9
PZ
1036 /*
1037 * We get here with hb->lock held, and having found a
1038 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1039 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1040 * which in turn means that futex_lock_pi() still has a reference on
1041 * our pi_state.
16ffa12d
PZ
1042 *
1043 * The waiter holding a reference on @pi_state also protects against
1044 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1045 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1046 * free pi_state before we can take a reference ourselves.
734009e9 1047 */
e60cbc5c 1048 WARN_ON(!atomic_read(&pi_state->refcount));
59647b6a 1049
734009e9
PZ
1050 /*
1051 * Now that we have a pi_state, we can acquire wait_lock
1052 * and do the state validation.
1053 */
1054 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1055
1056 /*
1057 * Since {uval, pi_state} is serialized by wait_lock, and our current
1058 * uval was read without holding it, it can have changed. Verify it
1059 * still is what we expect it to be, otherwise retry the entire
1060 * operation.
1061 */
1062 if (get_futex_value_locked(&uval2, uaddr))
1063 goto out_efault;
1064
1065 if (uval != uval2)
1066 goto out_eagain;
1067
e60cbc5c
TG
1068 /*
1069 * Handle the owner died case:
1070 */
1071 if (uval & FUTEX_OWNER_DIED) {
bd1dbcc6 1072 /*
e60cbc5c
TG
1073 * exit_pi_state_list sets owner to NULL and wakes the
1074 * topmost waiter. The task which acquires the
1075 * pi_state->rt_mutex will fixup owner.
bd1dbcc6 1076 */
e60cbc5c 1077 if (!pi_state->owner) {
59647b6a 1078 /*
e60cbc5c
TG
1079 * No pi state owner, but the user space TID
1080 * is not 0. Inconsistent state. [5]
59647b6a 1081 */
e60cbc5c 1082 if (pid)
734009e9 1083 goto out_einval;
bd1dbcc6 1084 /*
e60cbc5c 1085 * Take a ref on the state and return success. [4]
866293ee 1086 */
734009e9 1087 goto out_attach;
c87e2837 1088 }
bd1dbcc6
TG
1089
1090 /*
e60cbc5c
TG
1091 * If TID is 0, then either the dying owner has not
1092 * yet executed exit_pi_state_list() or some waiter
1093 * acquired the rtmutex in the pi state, but did not
1094 * yet fixup the TID in user space.
1095 *
1096 * Take a ref on the state and return success. [6]
1097 */
1098 if (!pid)
734009e9 1099 goto out_attach;
e60cbc5c
TG
1100 } else {
1101 /*
1102 * If the owner died bit is not set, then the pi_state
1103 * must have an owner. [7]
bd1dbcc6 1104 */
e60cbc5c 1105 if (!pi_state->owner)
734009e9 1106 goto out_einval;
c87e2837
IM
1107 }
1108
e60cbc5c
TG
1109 /*
1110 * Bail out if user space manipulated the futex value. If pi
1111 * state exists then the owner TID must be the same as the
1112 * user space TID. [9/10]
1113 */
1114 if (pid != task_pid_vnr(pi_state->owner))
734009e9
PZ
1115 goto out_einval;
1116
1117out_attach:
bf92cf3a 1118 get_pi_state(pi_state);
734009e9 1119 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
e60cbc5c
TG
1120 *ps = pi_state;
1121 return 0;
734009e9
PZ
1122
1123out_einval:
1124 ret = -EINVAL;
1125 goto out_error;
1126
1127out_eagain:
1128 ret = -EAGAIN;
1129 goto out_error;
1130
1131out_efault:
1132 ret = -EFAULT;
1133 goto out_error;
1134
1135out_error:
1136 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1137 return ret;
e60cbc5c
TG
1138}
1139
04e1b2e5
TG
1140/*
1141 * Lookup the task for the TID provided from user space and attach to
1142 * it after doing proper sanity checks.
1143 */
1144static int attach_to_pi_owner(u32 uval, union futex_key *key,
1145 struct futex_pi_state **ps)
e60cbc5c 1146{
e60cbc5c 1147 pid_t pid = uval & FUTEX_TID_MASK;
04e1b2e5
TG
1148 struct futex_pi_state *pi_state;
1149 struct task_struct *p;
e60cbc5c 1150
c87e2837 1151 /*
e3f2ddea 1152 * We are the first waiter - try to look up the real owner and attach
54a21788 1153 * the new pi_state to it, but bail out when TID = 0 [1]
c87e2837 1154 */
778e9a9c 1155 if (!pid)
e3f2ddea 1156 return -ESRCH;
c87e2837 1157 p = futex_find_get_task(pid);
7a0ea09a
MH
1158 if (!p)
1159 return -ESRCH;
778e9a9c 1160
a2129464 1161 if (unlikely(p->flags & PF_KTHREAD)) {
f0d71b3d
TG
1162 put_task_struct(p);
1163 return -EPERM;
1164 }
1165
778e9a9c
AK
1166 /*
1167 * We need to look at the task state flags to figure out,
1168 * whether the task is exiting. To protect against the do_exit
1169 * change of the task flags, we do this protected by
1170 * p->pi_lock:
1171 */
1d615482 1172 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
1173 if (unlikely(p->flags & PF_EXITING)) {
1174 /*
1175 * The task is on the way out. When PF_EXITPIDONE is
1176 * set, we know that the task has finished the
1177 * cleanup:
1178 */
1179 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1180
1d615482 1181 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
1182 put_task_struct(p);
1183 return ret;
1184 }
c87e2837 1185
54a21788
TG
1186 /*
1187 * No existing pi state. First waiter. [2]
734009e9
PZ
1188 *
1189 * This creates pi_state, we have hb->lock held, this means nothing can
1190 * observe this state, wait_lock is irrelevant.
54a21788 1191 */
c87e2837
IM
1192 pi_state = alloc_pi_state();
1193
1194 /*
04e1b2e5 1195 * Initialize the pi_mutex in locked state and make @p
c87e2837
IM
1196 * the owner of it:
1197 */
1198 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1199
1200 /* Store the key for possible exit cleanups: */
d0aa7a70 1201 pi_state->key = *key;
c87e2837 1202
627371d7 1203 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1204 list_add(&pi_state->list, &p->pi_state_list);
1205 pi_state->owner = p;
1d615482 1206 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
1207
1208 put_task_struct(p);
1209
d0aa7a70 1210 *ps = pi_state;
c87e2837
IM
1211
1212 return 0;
1213}
1214
734009e9
PZ
1215static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1216 struct futex_hash_bucket *hb,
04e1b2e5
TG
1217 union futex_key *key, struct futex_pi_state **ps)
1218{
499f5aca 1219 struct futex_q *top_waiter = futex_top_waiter(hb, key);
04e1b2e5
TG
1220
1221 /*
1222 * If there is a waiter on that futex, validate it and
1223 * attach to the pi_state when the validation succeeds.
1224 */
499f5aca 1225 if (top_waiter)
734009e9 1226 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
04e1b2e5
TG
1227
1228 /*
1229 * We are the first waiter - try to look up the owner based on
1230 * @uval and attach to it.
1231 */
1232 return attach_to_pi_owner(uval, key, ps);
1233}
1234
af54d6a1
TG
1235static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1236{
1237 u32 uninitialized_var(curval);
1238
ab51fbab
DB
1239 if (unlikely(should_fail_futex(true)))
1240 return -EFAULT;
1241
af54d6a1
TG
1242 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1243 return -EFAULT;
1244
734009e9 1245 /* If user space value changed, let the caller retry */
af54d6a1
TG
1246 return curval != uval ? -EAGAIN : 0;
1247}
1248
1a52084d 1249/**
d96ee56c 1250 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
1251 * @uaddr: the pi futex user address
1252 * @hb: the pi futex hash bucket
1253 * @key: the futex key associated with uaddr and hb
1254 * @ps: the pi_state pointer where we store the result of the
1255 * lookup
1256 * @task: the task to perform the atomic lock work for. This will
1257 * be "current" except in the case of requeue pi.
1258 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 1259 *
6c23cbbd
RD
1260 * Return:
1261 * 0 - ready to wait;
1262 * 1 - acquired the lock;
1a52084d
DH
1263 * <0 - error
1264 *
1265 * The hb->lock and futex_key refs shall be held by the caller.
1266 */
1267static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1268 union futex_key *key,
1269 struct futex_pi_state **ps,
bab5bc9e 1270 struct task_struct *task, int set_waiters)
1a52084d 1271{
af54d6a1 1272 u32 uval, newval, vpid = task_pid_vnr(task);
499f5aca 1273 struct futex_q *top_waiter;
af54d6a1 1274 int ret;
1a52084d
DH
1275
1276 /*
af54d6a1
TG
1277 * Read the user space value first so we can validate a few
1278 * things before proceeding further.
1a52084d 1279 */
af54d6a1 1280 if (get_futex_value_locked(&uval, uaddr))
1a52084d
DH
1281 return -EFAULT;
1282
ab51fbab
DB
1283 if (unlikely(should_fail_futex(true)))
1284 return -EFAULT;
1285
1a52084d
DH
1286 /*
1287 * Detect deadlocks.
1288 */
af54d6a1 1289 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
1290 return -EDEADLK;
1291
ab51fbab
DB
1292 if ((unlikely(should_fail_futex(true))))
1293 return -EDEADLK;
1294
1a52084d 1295 /*
af54d6a1
TG
1296 * Lookup existing state first. If it exists, try to attach to
1297 * its pi_state.
1a52084d 1298 */
499f5aca
PZ
1299 top_waiter = futex_top_waiter(hb, key);
1300 if (top_waiter)
734009e9 1301 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1a52084d
DH
1302
1303 /*
af54d6a1
TG
1304 * No waiter and user TID is 0. We are here because the
1305 * waiters or the owner died bit is set or called from
1306 * requeue_cmp_pi or for whatever reason something took the
1307 * syscall.
1a52084d 1308 */
af54d6a1 1309 if (!(uval & FUTEX_TID_MASK)) {
59fa6245 1310 /*
af54d6a1
TG
1311 * We take over the futex. No other waiters and the user space
1312 * TID is 0. We preserve the owner died bit.
59fa6245 1313 */
af54d6a1
TG
1314 newval = uval & FUTEX_OWNER_DIED;
1315 newval |= vpid;
1a52084d 1316
af54d6a1
TG
1317 /* The futex requeue_pi code can enforce the waiters bit */
1318 if (set_waiters)
1319 newval |= FUTEX_WAITERS;
1320
1321 ret = lock_pi_update_atomic(uaddr, uval, newval);
1322 /* If the take over worked, return 1 */
1323 return ret < 0 ? ret : 1;
1324 }
1a52084d
DH
1325
1326 /*
af54d6a1
TG
1327 * First waiter. Set the waiters bit before attaching ourself to
1328 * the owner. If owner tries to unlock, it will be forced into
1329 * the kernel and blocked on hb->lock.
1a52084d 1330 */
af54d6a1
TG
1331 newval = uval | FUTEX_WAITERS;
1332 ret = lock_pi_update_atomic(uaddr, uval, newval);
1333 if (ret)
1334 return ret;
1a52084d 1335 /*
af54d6a1
TG
1336 * If the update of the user space value succeeded, we try to
1337 * attach to the owner. If that fails, no harm done, we only
1338 * set the FUTEX_WAITERS bit in the user space variable.
1a52084d 1339 */
af54d6a1 1340 return attach_to_pi_owner(uval, key, ps);
1a52084d
DH
1341}
1342
2e12978a
LJ
1343/**
1344 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1345 * @q: The futex_q to unqueue
1346 *
1347 * The q->lock_ptr must not be NULL and must be held by the caller.
1348 */
1349static void __unqueue_futex(struct futex_q *q)
1350{
1351 struct futex_hash_bucket *hb;
1352
29096202
SR
1353 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1354 || WARN_ON(plist_node_empty(&q->list)))
2e12978a
LJ
1355 return;
1356
1357 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1358 plist_del(&q->list, &hb->chain);
11d4616b 1359 hb_waiters_dec(hb);
2e12978a
LJ
1360}
1361
1da177e4
LT
1362/*
1363 * The hash bucket lock must be held when this is called.
1d0dcb3a
DB
1364 * Afterwards, the futex_q must not be accessed. Callers
1365 * must ensure to later call wake_up_q() for the actual
1366 * wakeups to occur.
1da177e4 1367 */
1d0dcb3a 1368static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1da177e4 1369{
f1a11e05
TG
1370 struct task_struct *p = q->task;
1371
aa10990e
DH
1372 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1373 return;
1374
1da177e4 1375 /*
1d0dcb3a
DB
1376 * Queue the task for later wakeup for after we've released
1377 * the hb->lock. wake_q_add() grabs reference to p.
1da177e4 1378 */
1d0dcb3a 1379 wake_q_add(wake_q, p);
2e12978a 1380 __unqueue_futex(q);
1da177e4 1381 /*
f1a11e05
TG
1382 * The waiting task can free the futex_q as soon as
1383 * q->lock_ptr = NULL is written, without taking any locks. A
1384 * memory barrier is required here to prevent the following
1385 * store to lock_ptr from getting ahead of the plist_del.
1da177e4 1386 */
1b367ece 1387 smp_store_release(&q->lock_ptr, NULL);
1da177e4
LT
1388}
1389
16ffa12d
PZ
1390/*
1391 * Caller must hold a reference on @pi_state.
1392 */
1393static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
c87e2837 1394{
7cfdaf38 1395 u32 uninitialized_var(curval), newval;
16ffa12d
PZ
1396 struct task_struct *new_owner;
1397 bool deboost = false;
194a6b5b 1398 DEFINE_WAKE_Q(wake_q);
13fbca4c 1399 int ret = 0;
c87e2837 1400
c87e2837 1401 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
bebe5b51 1402 if (WARN_ON_ONCE(!new_owner)) {
16ffa12d 1403 /*
bebe5b51 1404 * As per the comment in futex_unlock_pi() this should not happen.
16ffa12d
PZ
1405 *
1406 * When this happens, give up our locks and try again, giving
1407 * the futex_lock_pi() instance time to complete, either by
1408 * waiting on the rtmutex or removing itself from the futex
1409 * queue.
1410 */
1411 ret = -EAGAIN;
1412 goto out_unlock;
73d786bd 1413 }
c87e2837
IM
1414
1415 /*
16ffa12d
PZ
1416 * We pass it to the next owner. The WAITERS bit is always kept
1417 * enabled while there is PI state around. We cleanup the owner
1418 * died bit, because we are the owner.
c87e2837 1419 */
13fbca4c 1420 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 1421
ab51fbab
DB
1422 if (unlikely(should_fail_futex(true)))
1423 ret = -EFAULT;
1424
89e9e66b 1425 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
13fbca4c 1426 ret = -EFAULT;
734009e9 1427
89e9e66b
SAS
1428 } else if (curval != uval) {
1429 /*
1430 * If a unconditional UNLOCK_PI operation (user space did not
1431 * try the TID->0 transition) raced with a waiter setting the
1432 * FUTEX_WAITERS flag between get_user() and locking the hash
1433 * bucket lock, retry the operation.
1434 */
1435 if ((FUTEX_TID_MASK & curval) == uval)
1436 ret = -EAGAIN;
1437 else
1438 ret = -EINVAL;
1439 }
734009e9 1440
16ffa12d
PZ
1441 if (ret)
1442 goto out_unlock;
c87e2837 1443
b4abf910 1444 raw_spin_lock(&pi_state->owner->pi_lock);
627371d7
IM
1445 WARN_ON(list_empty(&pi_state->list));
1446 list_del_init(&pi_state->list);
b4abf910 1447 raw_spin_unlock(&pi_state->owner->pi_lock);
627371d7 1448
b4abf910 1449 raw_spin_lock(&new_owner->pi_lock);
627371d7 1450 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1451 list_add(&pi_state->list, &new_owner->pi_state_list);
1452 pi_state->owner = new_owner;
b4abf910 1453 raw_spin_unlock(&new_owner->pi_lock);
627371d7 1454
802ab58d 1455 /*
5293c2ef 1456 * We've updated the uservalue, this unlock cannot fail.
802ab58d 1457 */
5293c2ef
PZ
1458 deboost = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1459
16ffa12d 1460out_unlock:
5293c2ef 1461 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
5293c2ef
PZ
1462
1463 if (deboost) {
1464 wake_up_q(&wake_q);
802ab58d 1465 rt_mutex_adjust_prio(current);
5293c2ef 1466 }
c87e2837 1467
16ffa12d 1468 return ret;
c87e2837
IM
1469}
1470
8b8f319f
IM
1471/*
1472 * Express the locking dependencies for lockdep:
1473 */
1474static inline void
1475double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1476{
1477 if (hb1 <= hb2) {
1478 spin_lock(&hb1->lock);
1479 if (hb1 < hb2)
1480 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1481 } else { /* hb1 > hb2 */
1482 spin_lock(&hb2->lock);
1483 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1484 }
1485}
1486
5eb3dc62
DH
1487static inline void
1488double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1489{
f061d351 1490 spin_unlock(&hb1->lock);
88f502fe
IM
1491 if (hb1 != hb2)
1492 spin_unlock(&hb2->lock);
5eb3dc62
DH
1493}
1494
1da177e4 1495/*
b2d0994b 1496 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1497 */
b41277dc
DH
1498static int
1499futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1500{
e2970f2f 1501 struct futex_hash_bucket *hb;
1da177e4 1502 struct futex_q *this, *next;
38d47c1b 1503 union futex_key key = FUTEX_KEY_INIT;
1da177e4 1504 int ret;
194a6b5b 1505 DEFINE_WAKE_Q(wake_q);
1da177e4 1506
cd689985
TG
1507 if (!bitset)
1508 return -EINVAL;
1509
9ea71503 1510 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1da177e4
LT
1511 if (unlikely(ret != 0))
1512 goto out;
1513
e2970f2f 1514 hb = hash_futex(&key);
b0c29f79
DB
1515
1516 /* Make sure we really have tasks to wakeup */
1517 if (!hb_waiters_pending(hb))
1518 goto out_put_key;
1519
e2970f2f 1520 spin_lock(&hb->lock);
1da177e4 1521
0d00c7b2 1522 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1da177e4 1523 if (match_futex (&this->key, &key)) {
52400ba9 1524 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1525 ret = -EINVAL;
1526 break;
1527 }
cd689985
TG
1528
1529 /* Check if one of the bits is set in both bitsets */
1530 if (!(this->bitset & bitset))
1531 continue;
1532
1d0dcb3a 1533 mark_wake_futex(&wake_q, this);
1da177e4
LT
1534 if (++ret >= nr_wake)
1535 break;
1536 }
1537 }
1538
e2970f2f 1539 spin_unlock(&hb->lock);
1d0dcb3a 1540 wake_up_q(&wake_q);
b0c29f79 1541out_put_key:
ae791a2d 1542 put_futex_key(&key);
42d35d48 1543out:
1da177e4
LT
1544 return ret;
1545}
1546
4732efbe
JJ
1547/*
1548 * Wake up all waiters hashed on the physical page that is mapped
1549 * to this virtual address:
1550 */
e2970f2f 1551static int
b41277dc 1552futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1553 int nr_wake, int nr_wake2, int op)
4732efbe 1554{
38d47c1b 1555 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1556 struct futex_hash_bucket *hb1, *hb2;
4732efbe 1557 struct futex_q *this, *next;
e4dc5b7a 1558 int ret, op_ret;
194a6b5b 1559 DEFINE_WAKE_Q(wake_q);
4732efbe 1560
e4dc5b7a 1561retry:
9ea71503 1562 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
4732efbe
JJ
1563 if (unlikely(ret != 0))
1564 goto out;
9ea71503 1565 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
4732efbe 1566 if (unlikely(ret != 0))
42d35d48 1567 goto out_put_key1;
4732efbe 1568
e2970f2f
IM
1569 hb1 = hash_futex(&key1);
1570 hb2 = hash_futex(&key2);
4732efbe 1571
e4dc5b7a 1572retry_private:
eaaea803 1573 double_lock_hb(hb1, hb2);
e2970f2f 1574 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1575 if (unlikely(op_ret < 0)) {
4732efbe 1576
5eb3dc62 1577 double_unlock_hb(hb1, hb2);
4732efbe 1578
7ee1dd3f 1579#ifndef CONFIG_MMU
e2970f2f
IM
1580 /*
1581 * we don't get EFAULT from MMU faults if we don't have an MMU,
1582 * but we might get them from range checking
1583 */
7ee1dd3f 1584 ret = op_ret;
42d35d48 1585 goto out_put_keys;
7ee1dd3f
DH
1586#endif
1587
796f8d9b
DG
1588 if (unlikely(op_ret != -EFAULT)) {
1589 ret = op_ret;
42d35d48 1590 goto out_put_keys;
796f8d9b
DG
1591 }
1592
d0725992 1593 ret = fault_in_user_writeable(uaddr2);
4732efbe 1594 if (ret)
de87fcc1 1595 goto out_put_keys;
4732efbe 1596
b41277dc 1597 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1598 goto retry_private;
1599
ae791a2d
TG
1600 put_futex_key(&key2);
1601 put_futex_key(&key1);
e4dc5b7a 1602 goto retry;
4732efbe
JJ
1603 }
1604
0d00c7b2 1605 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
4732efbe 1606 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1607 if (this->pi_state || this->rt_waiter) {
1608 ret = -EINVAL;
1609 goto out_unlock;
1610 }
1d0dcb3a 1611 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1612 if (++ret >= nr_wake)
1613 break;
1614 }
1615 }
1616
1617 if (op_ret > 0) {
4732efbe 1618 op_ret = 0;
0d00c7b2 1619 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
4732efbe 1620 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1621 if (this->pi_state || this->rt_waiter) {
1622 ret = -EINVAL;
1623 goto out_unlock;
1624 }
1d0dcb3a 1625 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1626 if (++op_ret >= nr_wake2)
1627 break;
1628 }
1629 }
1630 ret += op_ret;
1631 }
1632
aa10990e 1633out_unlock:
5eb3dc62 1634 double_unlock_hb(hb1, hb2);
1d0dcb3a 1635 wake_up_q(&wake_q);
42d35d48 1636out_put_keys:
ae791a2d 1637 put_futex_key(&key2);
42d35d48 1638out_put_key1:
ae791a2d 1639 put_futex_key(&key1);
42d35d48 1640out:
4732efbe
JJ
1641 return ret;
1642}
1643
9121e478
DH
1644/**
1645 * requeue_futex() - Requeue a futex_q from one hb to another
1646 * @q: the futex_q to requeue
1647 * @hb1: the source hash_bucket
1648 * @hb2: the target hash_bucket
1649 * @key2: the new key for the requeued futex_q
1650 */
1651static inline
1652void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1653 struct futex_hash_bucket *hb2, union futex_key *key2)
1654{
1655
1656 /*
1657 * If key1 and key2 hash to the same bucket, no need to
1658 * requeue.
1659 */
1660 if (likely(&hb1->chain != &hb2->chain)) {
1661 plist_del(&q->list, &hb1->chain);
11d4616b 1662 hb_waiters_dec(hb1);
11d4616b 1663 hb_waiters_inc(hb2);
fe1bce9e 1664 plist_add(&q->list, &hb2->chain);
9121e478 1665 q->lock_ptr = &hb2->lock;
9121e478
DH
1666 }
1667 get_futex_key_refs(key2);
1668 q->key = *key2;
1669}
1670
52400ba9
DH
1671/**
1672 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1673 * @q: the futex_q
1674 * @key: the key of the requeue target futex
1675 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1676 *
1677 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1678 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1679 * to the requeue target futex so the waiter can detect the wakeup on the right
1680 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1681 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1682 * to protect access to the pi_state to fixup the owner later. Must be called
1683 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1684 */
1685static inline
beda2c7e
DH
1686void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1687 struct futex_hash_bucket *hb)
52400ba9 1688{
52400ba9
DH
1689 get_futex_key_refs(key);
1690 q->key = *key;
1691
2e12978a 1692 __unqueue_futex(q);
52400ba9
DH
1693
1694 WARN_ON(!q->rt_waiter);
1695 q->rt_waiter = NULL;
1696
beda2c7e 1697 q->lock_ptr = &hb->lock;
beda2c7e 1698
f1a11e05 1699 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1700}
1701
1702/**
1703 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1704 * @pifutex: the user address of the to futex
1705 * @hb1: the from futex hash bucket, must be locked by the caller
1706 * @hb2: the to futex hash bucket, must be locked by the caller
1707 * @key1: the from futex key
1708 * @key2: the to futex key
1709 * @ps: address to store the pi_state pointer
1710 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1711 *
1712 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1713 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1714 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1715 * hb1 and hb2 must be held by the caller.
52400ba9 1716 *
6c23cbbd
RD
1717 * Return:
1718 * 0 - failed to acquire the lock atomically;
866293ee 1719 * >0 - acquired the lock, return value is vpid of the top_waiter
52400ba9
DH
1720 * <0 - error
1721 */
1722static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1723 struct futex_hash_bucket *hb1,
1724 struct futex_hash_bucket *hb2,
1725 union futex_key *key1, union futex_key *key2,
bab5bc9e 1726 struct futex_pi_state **ps, int set_waiters)
52400ba9 1727{
bab5bc9e 1728 struct futex_q *top_waiter = NULL;
52400ba9 1729 u32 curval;
866293ee 1730 int ret, vpid;
52400ba9
DH
1731
1732 if (get_futex_value_locked(&curval, pifutex))
1733 return -EFAULT;
1734
ab51fbab
DB
1735 if (unlikely(should_fail_futex(true)))
1736 return -EFAULT;
1737
bab5bc9e
DH
1738 /*
1739 * Find the top_waiter and determine if there are additional waiters.
1740 * If the caller intends to requeue more than 1 waiter to pifutex,
1741 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1742 * as we have means to handle the possible fault. If not, don't set
1743 * the bit unecessarily as it will force the subsequent unlock to enter
1744 * the kernel.
1745 */
52400ba9
DH
1746 top_waiter = futex_top_waiter(hb1, key1);
1747
1748 /* There are no waiters, nothing for us to do. */
1749 if (!top_waiter)
1750 return 0;
1751
84bc4af5
DH
1752 /* Ensure we requeue to the expected futex. */
1753 if (!match_futex(top_waiter->requeue_pi_key, key2))
1754 return -EINVAL;
1755
52400ba9 1756 /*
bab5bc9e
DH
1757 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1758 * the contended case or if set_waiters is 1. The pi_state is returned
1759 * in ps in contended cases.
52400ba9 1760 */
866293ee 1761 vpid = task_pid_vnr(top_waiter->task);
bab5bc9e
DH
1762 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1763 set_waiters);
866293ee 1764 if (ret == 1) {
beda2c7e 1765 requeue_pi_wake_futex(top_waiter, key2, hb2);
866293ee
TG
1766 return vpid;
1767 }
52400ba9
DH
1768 return ret;
1769}
1770
1771/**
1772 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1773 * @uaddr1: source futex user address
b41277dc 1774 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1775 * @uaddr2: target futex user address
1776 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1777 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1778 * @cmpval: @uaddr1 expected value (or %NULL)
1779 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1780 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1781 *
1782 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1783 * uaddr2 atomically on behalf of the top waiter.
1784 *
6c23cbbd
RD
1785 * Return:
1786 * >=0 - on success, the number of tasks requeued or woken;
52400ba9 1787 * <0 - on error
1da177e4 1788 */
b41277dc
DH
1789static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1790 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1791 u32 *cmpval, int requeue_pi)
1da177e4 1792{
38d47c1b 1793 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1794 int drop_count = 0, task_count = 0, ret;
1795 struct futex_pi_state *pi_state = NULL;
e2970f2f 1796 struct futex_hash_bucket *hb1, *hb2;
1da177e4 1797 struct futex_q *this, *next;
194a6b5b 1798 DEFINE_WAKE_Q(wake_q);
52400ba9
DH
1799
1800 if (requeue_pi) {
e9c243a5
TG
1801 /*
1802 * Requeue PI only works on two distinct uaddrs. This
1803 * check is only valid for private futexes. See below.
1804 */
1805 if (uaddr1 == uaddr2)
1806 return -EINVAL;
1807
52400ba9
DH
1808 /*
1809 * requeue_pi requires a pi_state, try to allocate it now
1810 * without any locks in case it fails.
1811 */
1812 if (refill_pi_state_cache())
1813 return -ENOMEM;
1814 /*
1815 * requeue_pi must wake as many tasks as it can, up to nr_wake
1816 * + nr_requeue, since it acquires the rt_mutex prior to
1817 * returning to userspace, so as to not leave the rt_mutex with
1818 * waiters and no owner. However, second and third wake-ups
1819 * cannot be predicted as they involve race conditions with the
1820 * first wake and a fault while looking up the pi_state. Both
1821 * pthread_cond_signal() and pthread_cond_broadcast() should
1822 * use nr_wake=1.
1823 */
1824 if (nr_wake != 1)
1825 return -EINVAL;
1826 }
1da177e4 1827
42d35d48 1828retry:
9ea71503 1829 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1da177e4
LT
1830 if (unlikely(ret != 0))
1831 goto out;
9ea71503
SB
1832 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1833 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1da177e4 1834 if (unlikely(ret != 0))
42d35d48 1835 goto out_put_key1;
1da177e4 1836
e9c243a5
TG
1837 /*
1838 * The check above which compares uaddrs is not sufficient for
1839 * shared futexes. We need to compare the keys:
1840 */
1841 if (requeue_pi && match_futex(&key1, &key2)) {
1842 ret = -EINVAL;
1843 goto out_put_keys;
1844 }
1845
e2970f2f
IM
1846 hb1 = hash_futex(&key1);
1847 hb2 = hash_futex(&key2);
1da177e4 1848
e4dc5b7a 1849retry_private:
69cd9eba 1850 hb_waiters_inc(hb2);
8b8f319f 1851 double_lock_hb(hb1, hb2);
1da177e4 1852
e2970f2f
IM
1853 if (likely(cmpval != NULL)) {
1854 u32 curval;
1da177e4 1855
e2970f2f 1856 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1857
1858 if (unlikely(ret)) {
5eb3dc62 1859 double_unlock_hb(hb1, hb2);
69cd9eba 1860 hb_waiters_dec(hb2);
1da177e4 1861
e2970f2f 1862 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1863 if (ret)
1864 goto out_put_keys;
1da177e4 1865
b41277dc 1866 if (!(flags & FLAGS_SHARED))
e4dc5b7a 1867 goto retry_private;
1da177e4 1868
ae791a2d
TG
1869 put_futex_key(&key2);
1870 put_futex_key(&key1);
e4dc5b7a 1871 goto retry;
1da177e4 1872 }
e2970f2f 1873 if (curval != *cmpval) {
1da177e4
LT
1874 ret = -EAGAIN;
1875 goto out_unlock;
1876 }
1877 }
1878
52400ba9 1879 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
1880 /*
1881 * Attempt to acquire uaddr2 and wake the top waiter. If we
1882 * intend to requeue waiters, force setting the FUTEX_WAITERS
1883 * bit. We force this here where we are able to easily handle
1884 * faults rather in the requeue loop below.
1885 */
52400ba9 1886 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 1887 &key2, &pi_state, nr_requeue);
52400ba9
DH
1888
1889 /*
1890 * At this point the top_waiter has either taken uaddr2 or is
1891 * waiting on it. If the former, then the pi_state will not
1892 * exist yet, look it up one more time to ensure we have a
866293ee
TG
1893 * reference to it. If the lock was taken, ret contains the
1894 * vpid of the top waiter task.
ecb38b78
TG
1895 * If the lock was not taken, we have pi_state and an initial
1896 * refcount on it. In case of an error we have nothing.
52400ba9 1897 */
866293ee 1898 if (ret > 0) {
52400ba9 1899 WARN_ON(pi_state);
89061d3d 1900 drop_count++;
52400ba9 1901 task_count++;
866293ee 1902 /*
ecb38b78
TG
1903 * If we acquired the lock, then the user space value
1904 * of uaddr2 should be vpid. It cannot be changed by
1905 * the top waiter as it is blocked on hb2 lock if it
1906 * tries to do so. If something fiddled with it behind
1907 * our back the pi state lookup might unearth it. So
1908 * we rather use the known value than rereading and
1909 * handing potential crap to lookup_pi_state.
1910 *
1911 * If that call succeeds then we have pi_state and an
1912 * initial refcount on it.
866293ee 1913 */
734009e9 1914 ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
52400ba9
DH
1915 }
1916
1917 switch (ret) {
1918 case 0:
ecb38b78 1919 /* We hold a reference on the pi state. */
52400ba9 1920 break;
4959f2de
TG
1921
1922 /* If the above failed, then pi_state is NULL */
52400ba9
DH
1923 case -EFAULT:
1924 double_unlock_hb(hb1, hb2);
69cd9eba 1925 hb_waiters_dec(hb2);
ae791a2d
TG
1926 put_futex_key(&key2);
1927 put_futex_key(&key1);
d0725992 1928 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
1929 if (!ret)
1930 goto retry;
1931 goto out;
1932 case -EAGAIN:
af54d6a1
TG
1933 /*
1934 * Two reasons for this:
1935 * - Owner is exiting and we just wait for the
1936 * exit to complete.
1937 * - The user space value changed.
1938 */
52400ba9 1939 double_unlock_hb(hb1, hb2);
69cd9eba 1940 hb_waiters_dec(hb2);
ae791a2d
TG
1941 put_futex_key(&key2);
1942 put_futex_key(&key1);
52400ba9
DH
1943 cond_resched();
1944 goto retry;
1945 default:
1946 goto out_unlock;
1947 }
1948 }
1949
0d00c7b2 1950 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
52400ba9
DH
1951 if (task_count - nr_wake >= nr_requeue)
1952 break;
1953
1954 if (!match_futex(&this->key, &key1))
1da177e4 1955 continue;
52400ba9 1956
392741e0
DH
1957 /*
1958 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1959 * be paired with each other and no other futex ops.
aa10990e
DH
1960 *
1961 * We should never be requeueing a futex_q with a pi_state,
1962 * which is awaiting a futex_unlock_pi().
392741e0
DH
1963 */
1964 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
1965 (!requeue_pi && this->rt_waiter) ||
1966 this->pi_state) {
392741e0
DH
1967 ret = -EINVAL;
1968 break;
1969 }
52400ba9
DH
1970
1971 /*
1972 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1973 * lock, we already woke the top_waiter. If not, it will be
1974 * woken by futex_unlock_pi().
1975 */
1976 if (++task_count <= nr_wake && !requeue_pi) {
1d0dcb3a 1977 mark_wake_futex(&wake_q, this);
52400ba9
DH
1978 continue;
1979 }
1da177e4 1980
84bc4af5
DH
1981 /* Ensure we requeue to the expected futex for requeue_pi. */
1982 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1983 ret = -EINVAL;
1984 break;
1985 }
1986
52400ba9
DH
1987 /*
1988 * Requeue nr_requeue waiters and possibly one more in the case
1989 * of requeue_pi if we couldn't acquire the lock atomically.
1990 */
1991 if (requeue_pi) {
ecb38b78
TG
1992 /*
1993 * Prepare the waiter to take the rt_mutex. Take a
1994 * refcount on the pi_state and store the pointer in
1995 * the futex_q object of the waiter.
1996 */
bf92cf3a 1997 get_pi_state(pi_state);
52400ba9
DH
1998 this->pi_state = pi_state;
1999 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2000 this->rt_waiter,
c051b21f 2001 this->task);
52400ba9 2002 if (ret == 1) {
ecb38b78
TG
2003 /*
2004 * We got the lock. We do neither drop the
2005 * refcount on pi_state nor clear
2006 * this->pi_state because the waiter needs the
2007 * pi_state for cleaning up the user space
2008 * value. It will drop the refcount after
2009 * doing so.
2010 */
beda2c7e 2011 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 2012 drop_count++;
52400ba9
DH
2013 continue;
2014 } else if (ret) {
ecb38b78
TG
2015 /*
2016 * rt_mutex_start_proxy_lock() detected a
2017 * potential deadlock when we tried to queue
2018 * that waiter. Drop the pi_state reference
2019 * which we took above and remove the pointer
2020 * to the state from the waiters futex_q
2021 * object.
2022 */
52400ba9 2023 this->pi_state = NULL;
29e9ee5d 2024 put_pi_state(pi_state);
885c2cb7
TG
2025 /*
2026 * We stop queueing more waiters and let user
2027 * space deal with the mess.
2028 */
2029 break;
52400ba9 2030 }
1da177e4 2031 }
52400ba9
DH
2032 requeue_futex(this, hb1, hb2, &key2);
2033 drop_count++;
1da177e4
LT
2034 }
2035
ecb38b78
TG
2036 /*
2037 * We took an extra initial reference to the pi_state either
2038 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2039 * need to drop it here again.
2040 */
29e9ee5d 2041 put_pi_state(pi_state);
885c2cb7
TG
2042
2043out_unlock:
5eb3dc62 2044 double_unlock_hb(hb1, hb2);
1d0dcb3a 2045 wake_up_q(&wake_q);
69cd9eba 2046 hb_waiters_dec(hb2);
1da177e4 2047
cd84a42f
DH
2048 /*
2049 * drop_futex_key_refs() must be called outside the spinlocks. During
2050 * the requeue we moved futex_q's from the hash bucket at key1 to the
2051 * one at key2 and updated their key pointer. We no longer need to
2052 * hold the references to key1.
2053 */
1da177e4 2054 while (--drop_count >= 0)
9adef58b 2055 drop_futex_key_refs(&key1);
1da177e4 2056
42d35d48 2057out_put_keys:
ae791a2d 2058 put_futex_key(&key2);
42d35d48 2059out_put_key1:
ae791a2d 2060 put_futex_key(&key1);
42d35d48 2061out:
52400ba9 2062 return ret ? ret : task_count;
1da177e4
LT
2063}
2064
2065/* The key must be already stored in q->key. */
82af7aca 2066static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 2067 __acquires(&hb->lock)
1da177e4 2068{
e2970f2f 2069 struct futex_hash_bucket *hb;
1da177e4 2070
e2970f2f 2071 hb = hash_futex(&q->key);
11d4616b
LT
2072
2073 /*
2074 * Increment the counter before taking the lock so that
2075 * a potential waker won't miss a to-be-slept task that is
2076 * waiting for the spinlock. This is safe as all queue_lock()
2077 * users end up calling queue_me(). Similarly, for housekeeping,
2078 * decrement the counter at queue_unlock() when some error has
2079 * occurred and we don't end up adding the task to the list.
2080 */
2081 hb_waiters_inc(hb);
2082
e2970f2f 2083 q->lock_ptr = &hb->lock;
1da177e4 2084
8ad7b378 2085 spin_lock(&hb->lock); /* implies smp_mb(); (A) */
e2970f2f 2086 return hb;
1da177e4
LT
2087}
2088
d40d65c8 2089static inline void
0d00c7b2 2090queue_unlock(struct futex_hash_bucket *hb)
15e408cd 2091 __releases(&hb->lock)
d40d65c8
DH
2092{
2093 spin_unlock(&hb->lock);
11d4616b 2094 hb_waiters_dec(hb);
d40d65c8
DH
2095}
2096
cfafcd11 2097static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 2098{
ec92d082
PP
2099 int prio;
2100
2101 /*
2102 * The priority used to register this element is
2103 * - either the real thread-priority for the real-time threads
2104 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2105 * - or MAX_RT_PRIO for non-RT threads.
2106 * Thus, all RT-threads are woken first in priority order, and
2107 * the others are woken last, in FIFO order.
2108 */
2109 prio = min(current->normal_prio, MAX_RT_PRIO);
2110
2111 plist_node_init(&q->list, prio);
ec92d082 2112 plist_add(&q->list, &hb->chain);
c87e2837 2113 q->task = current;
cfafcd11
PZ
2114}
2115
2116/**
2117 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2118 * @q: The futex_q to enqueue
2119 * @hb: The destination hash bucket
2120 *
2121 * The hb->lock must be held by the caller, and is released here. A call to
2122 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2123 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2124 * or nothing if the unqueue is done as part of the wake process and the unqueue
2125 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2126 * an example).
2127 */
2128static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2129 __releases(&hb->lock)
2130{
2131 __queue_me(q, hb);
e2970f2f 2132 spin_unlock(&hb->lock);
1da177e4
LT
2133}
2134
d40d65c8
DH
2135/**
2136 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2137 * @q: The futex_q to unqueue
2138 *
2139 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2140 * be paired with exactly one earlier call to queue_me().
2141 *
6c23cbbd
RD
2142 * Return:
2143 * 1 - if the futex_q was still queued (and we removed unqueued it);
d40d65c8 2144 * 0 - if the futex_q was already removed by the waking thread
1da177e4 2145 */
1da177e4
LT
2146static int unqueue_me(struct futex_q *q)
2147{
1da177e4 2148 spinlock_t *lock_ptr;
e2970f2f 2149 int ret = 0;
1da177e4
LT
2150
2151 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 2152retry:
29b75eb2
JZ
2153 /*
2154 * q->lock_ptr can change between this read and the following spin_lock.
2155 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2156 * optimizing lock_ptr out of the logic below.
2157 */
2158 lock_ptr = READ_ONCE(q->lock_ptr);
c80544dc 2159 if (lock_ptr != NULL) {
1da177e4
LT
2160 spin_lock(lock_ptr);
2161 /*
2162 * q->lock_ptr can change between reading it and
2163 * spin_lock(), causing us to take the wrong lock. This
2164 * corrects the race condition.
2165 *
2166 * Reasoning goes like this: if we have the wrong lock,
2167 * q->lock_ptr must have changed (maybe several times)
2168 * between reading it and the spin_lock(). It can
2169 * change again after the spin_lock() but only if it was
2170 * already changed before the spin_lock(). It cannot,
2171 * however, change back to the original value. Therefore
2172 * we can detect whether we acquired the correct lock.
2173 */
2174 if (unlikely(lock_ptr != q->lock_ptr)) {
2175 spin_unlock(lock_ptr);
2176 goto retry;
2177 }
2e12978a 2178 __unqueue_futex(q);
c87e2837
IM
2179
2180 BUG_ON(q->pi_state);
2181
1da177e4
LT
2182 spin_unlock(lock_ptr);
2183 ret = 1;
2184 }
2185
9adef58b 2186 drop_futex_key_refs(&q->key);
1da177e4
LT
2187 return ret;
2188}
2189
c87e2837
IM
2190/*
2191 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
2192 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2193 * and dropped here.
c87e2837 2194 */
d0aa7a70 2195static void unqueue_me_pi(struct futex_q *q)
15e408cd 2196 __releases(q->lock_ptr)
c87e2837 2197{
2e12978a 2198 __unqueue_futex(q);
c87e2837
IM
2199
2200 BUG_ON(!q->pi_state);
29e9ee5d 2201 put_pi_state(q->pi_state);
c87e2837
IM
2202 q->pi_state = NULL;
2203
d0aa7a70 2204 spin_unlock(q->lock_ptr);
c87e2837
IM
2205}
2206
d0aa7a70 2207/*
cdf71a10 2208 * Fixup the pi_state owner with the new owner.
d0aa7a70 2209 *
778e9a9c
AK
2210 * Must be called with hash bucket lock held and mm->sem held for non
2211 * private futexes.
d0aa7a70 2212 */
778e9a9c 2213static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
ae791a2d 2214 struct task_struct *newowner)
d0aa7a70 2215{
cdf71a10 2216 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 2217 struct futex_pi_state *pi_state = q->pi_state;
7cfdaf38 2218 u32 uval, uninitialized_var(curval), newval;
734009e9 2219 struct task_struct *oldowner;
e4dc5b7a 2220 int ret;
d0aa7a70 2221
734009e9
PZ
2222 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2223
2224 oldowner = pi_state->owner;
d0aa7a70 2225 /* Owner died? */
1b7558e4
TG
2226 if (!pi_state->owner)
2227 newtid |= FUTEX_OWNER_DIED;
2228
2229 /*
2230 * We are here either because we stole the rtmutex from the
8161239a 2231 * previous highest priority waiter or we are the highest priority
16ffa12d
PZ
2232 * waiter but have failed to get the rtmutex the first time.
2233 *
8161239a
LJ
2234 * We have to replace the newowner TID in the user space variable.
2235 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 2236 *
b2d0994b
DH
2237 * Note: We write the user space value _before_ changing the pi_state
2238 * because we can fault here. Imagine swapped out pages or a fork
2239 * that marked all the anonymous memory readonly for cow.
1b7558e4 2240 *
734009e9
PZ
2241 * Modifying pi_state _before_ the user space value would leave the
2242 * pi_state in an inconsistent state when we fault here, because we
2243 * need to drop the locks to handle the fault. This might be observed
2244 * in the PID check in lookup_pi_state.
1b7558e4
TG
2245 */
2246retry:
2247 if (get_futex_value_locked(&uval, uaddr))
2248 goto handle_fault;
2249
16ffa12d 2250 for (;;) {
1b7558e4
TG
2251 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2252
37a9d912 2253 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1b7558e4
TG
2254 goto handle_fault;
2255 if (curval == uval)
2256 break;
2257 uval = curval;
2258 }
2259
2260 /*
2261 * We fixed up user space. Now we need to fix the pi_state
2262 * itself.
2263 */
d0aa7a70 2264 if (pi_state->owner != NULL) {
734009e9 2265 raw_spin_lock(&pi_state->owner->pi_lock);
d0aa7a70
PP
2266 WARN_ON(list_empty(&pi_state->list));
2267 list_del_init(&pi_state->list);
734009e9 2268 raw_spin_unlock(&pi_state->owner->pi_lock);
1b7558e4 2269 }
d0aa7a70 2270
cdf71a10 2271 pi_state->owner = newowner;
d0aa7a70 2272
734009e9 2273 raw_spin_lock(&newowner->pi_lock);
d0aa7a70 2274 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 2275 list_add(&pi_state->list, &newowner->pi_state_list);
734009e9
PZ
2276 raw_spin_unlock(&newowner->pi_lock);
2277 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2278
1b7558e4 2279 return 0;
d0aa7a70 2280
d0aa7a70 2281 /*
734009e9
PZ
2282 * To handle the page fault we need to drop the locks here. That gives
2283 * the other task (either the highest priority waiter itself or the
2284 * task which stole the rtmutex) the chance to try the fixup of the
2285 * pi_state. So once we are back from handling the fault we need to
2286 * check the pi_state after reacquiring the locks and before trying to
2287 * do another fixup. When the fixup has been done already we simply
2288 * return.
2289 *
2290 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2291 * drop hb->lock since the caller owns the hb -> futex_q relation.
2292 * Dropping the pi_mutex->wait_lock requires the state revalidate.
d0aa7a70 2293 */
1b7558e4 2294handle_fault:
734009e9 2295 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1b7558e4 2296 spin_unlock(q->lock_ptr);
778e9a9c 2297
d0725992 2298 ret = fault_in_user_writeable(uaddr);
778e9a9c 2299
1b7558e4 2300 spin_lock(q->lock_ptr);
734009e9 2301 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
778e9a9c 2302
1b7558e4
TG
2303 /*
2304 * Check if someone else fixed it for us:
2305 */
734009e9
PZ
2306 if (pi_state->owner != oldowner) {
2307 ret = 0;
2308 goto out_unlock;
2309 }
1b7558e4
TG
2310
2311 if (ret)
734009e9 2312 goto out_unlock;
1b7558e4
TG
2313
2314 goto retry;
734009e9
PZ
2315
2316out_unlock:
2317 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2318 return ret;
d0aa7a70
PP
2319}
2320
72c1bbf3 2321static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 2322
dd973998
DH
2323/**
2324 * fixup_owner() - Post lock pi_state and corner case management
2325 * @uaddr: user address of the futex
dd973998
DH
2326 * @q: futex_q (contains pi_state and access to the rt_mutex)
2327 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2328 *
2329 * After attempting to lock an rt_mutex, this function is called to cleanup
2330 * the pi_state owner as well as handle race conditions that may allow us to
2331 * acquire the lock. Must be called with the hb lock held.
2332 *
6c23cbbd
RD
2333 * Return:
2334 * 1 - success, lock taken;
2335 * 0 - success, lock not taken;
dd973998
DH
2336 * <0 - on error (-EFAULT)
2337 */
ae791a2d 2338static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998 2339{
dd973998
DH
2340 int ret = 0;
2341
2342 if (locked) {
2343 /*
2344 * Got the lock. We might not be the anticipated owner if we
2345 * did a lock-steal - fix up the PI-state in that case:
16ffa12d
PZ
2346 *
2347 * We can safely read pi_state->owner without holding wait_lock
2348 * because we now own the rt_mutex, only the owner will attempt
2349 * to change it.
dd973998
DH
2350 */
2351 if (q->pi_state->owner != current)
ae791a2d 2352 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
2353 goto out;
2354 }
2355
dd973998
DH
2356 /*
2357 * Paranoia check. If we did not take the lock, then we should not be
8161239a 2358 * the owner of the rt_mutex.
dd973998 2359 */
73d786bd 2360 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
dd973998
DH
2361 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2362 "pi-state %p\n", ret,
2363 q->pi_state->pi_mutex.owner,
2364 q->pi_state->owner);
73d786bd 2365 }
dd973998
DH
2366
2367out:
2368 return ret ? ret : locked;
2369}
2370
ca5f9524
DH
2371/**
2372 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2373 * @hb: the futex hash bucket, must be locked by the caller
2374 * @q: the futex_q to queue up on
2375 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
2376 */
2377static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 2378 struct hrtimer_sleeper *timeout)
ca5f9524 2379{
9beba3c5
DH
2380 /*
2381 * The task state is guaranteed to be set before another task can
b92b8b35 2382 * wake it. set_current_state() is implemented using smp_store_mb() and
9beba3c5
DH
2383 * queue_me() calls spin_unlock() upon completion, both serializing
2384 * access to the hash list and forcing another memory barrier.
2385 */
f1a11e05 2386 set_current_state(TASK_INTERRUPTIBLE);
0729e196 2387 queue_me(q, hb);
ca5f9524
DH
2388
2389 /* Arm the timer */
2e4b0d3f 2390 if (timeout)
ca5f9524 2391 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
ca5f9524
DH
2392
2393 /*
0729e196
DH
2394 * If we have been removed from the hash list, then another task
2395 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
2396 */
2397 if (likely(!plist_node_empty(&q->list))) {
2398 /*
2399 * If the timer has already expired, current will already be
2400 * flagged for rescheduling. Only call schedule if there
2401 * is no timeout, or if it has yet to expire.
2402 */
2403 if (!timeout || timeout->task)
88c8004f 2404 freezable_schedule();
ca5f9524
DH
2405 }
2406 __set_current_state(TASK_RUNNING);
2407}
2408
f801073f
DH
2409/**
2410 * futex_wait_setup() - Prepare to wait on a futex
2411 * @uaddr: the futex userspace address
2412 * @val: the expected value
b41277dc 2413 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
2414 * @q: the associated futex_q
2415 * @hb: storage for hash_bucket pointer to be returned to caller
2416 *
2417 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2418 * compare it with the expected value. Handle atomic faults internally.
2419 * Return with the hb lock held and a q.key reference on success, and unlocked
2420 * with no q.key reference on failure.
2421 *
6c23cbbd
RD
2422 * Return:
2423 * 0 - uaddr contains val and hb has been locked;
ca4a04cf 2424 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 2425 */
b41277dc 2426static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 2427 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 2428{
e2970f2f
IM
2429 u32 uval;
2430 int ret;
1da177e4 2431
1da177e4 2432 /*
b2d0994b 2433 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
2434 * Order is important:
2435 *
2436 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2437 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2438 *
2439 * The basic logical guarantee of a futex is that it blocks ONLY
2440 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
2441 * any cond. If we locked the hash-bucket after testing *uaddr, that
2442 * would open a race condition where we could block indefinitely with
1da177e4
LT
2443 * cond(var) false, which would violate the guarantee.
2444 *
8fe8f545
ML
2445 * On the other hand, we insert q and release the hash-bucket only
2446 * after testing *uaddr. This guarantees that futex_wait() will NOT
2447 * absorb a wakeup if *uaddr does not match the desired values
2448 * while the syscall executes.
1da177e4 2449 */
f801073f 2450retry:
9ea71503 2451 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
f801073f 2452 if (unlikely(ret != 0))
a5a2a0c7 2453 return ret;
f801073f
DH
2454
2455retry_private:
2456 *hb = queue_lock(q);
2457
e2970f2f 2458 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 2459
f801073f 2460 if (ret) {
0d00c7b2 2461 queue_unlock(*hb);
1da177e4 2462
e2970f2f 2463 ret = get_user(uval, uaddr);
e4dc5b7a 2464 if (ret)
f801073f 2465 goto out;
1da177e4 2466
b41277dc 2467 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2468 goto retry_private;
2469
ae791a2d 2470 put_futex_key(&q->key);
e4dc5b7a 2471 goto retry;
1da177e4 2472 }
ca5f9524 2473
f801073f 2474 if (uval != val) {
0d00c7b2 2475 queue_unlock(*hb);
f801073f 2476 ret = -EWOULDBLOCK;
2fff78c7 2477 }
1da177e4 2478
f801073f
DH
2479out:
2480 if (ret)
ae791a2d 2481 put_futex_key(&q->key);
f801073f
DH
2482 return ret;
2483}
2484
b41277dc
DH
2485static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2486 ktime_t *abs_time, u32 bitset)
f801073f
DH
2487{
2488 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
2489 struct restart_block *restart;
2490 struct futex_hash_bucket *hb;
5bdb05f9 2491 struct futex_q q = futex_q_init;
f801073f
DH
2492 int ret;
2493
2494 if (!bitset)
2495 return -EINVAL;
f801073f
DH
2496 q.bitset = bitset;
2497
2498 if (abs_time) {
2499 to = &timeout;
2500
b41277dc
DH
2501 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2502 CLOCK_REALTIME : CLOCK_MONOTONIC,
2503 HRTIMER_MODE_ABS);
f801073f
DH
2504 hrtimer_init_sleeper(to, current);
2505 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2506 current->timer_slack_ns);
2507 }
2508
d58e6576 2509retry:
7ada876a
DH
2510 /*
2511 * Prepare to wait on uaddr. On success, holds hb lock and increments
2512 * q.key refs.
2513 */
b41277dc 2514 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
2515 if (ret)
2516 goto out;
2517
ca5f9524 2518 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 2519 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
2520
2521 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 2522 ret = 0;
7ada876a 2523 /* unqueue_me() drops q.key ref */
1da177e4 2524 if (!unqueue_me(&q))
7ada876a 2525 goto out;
2fff78c7 2526 ret = -ETIMEDOUT;
ca5f9524 2527 if (to && !to->task)
7ada876a 2528 goto out;
72c1bbf3 2529
e2970f2f 2530 /*
d58e6576
TG
2531 * We expect signal_pending(current), but we might be the
2532 * victim of a spurious wakeup as well.
e2970f2f 2533 */
7ada876a 2534 if (!signal_pending(current))
d58e6576 2535 goto retry;
d58e6576 2536
2fff78c7 2537 ret = -ERESTARTSYS;
c19384b5 2538 if (!abs_time)
7ada876a 2539 goto out;
1da177e4 2540
f56141e3 2541 restart = &current->restart_block;
2fff78c7 2542 restart->fn = futex_wait_restart;
a3c74c52 2543 restart->futex.uaddr = uaddr;
2fff78c7 2544 restart->futex.val = val;
2456e855 2545 restart->futex.time = *abs_time;
2fff78c7 2546 restart->futex.bitset = bitset;
0cd9c649 2547 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2548
2fff78c7
PZ
2549 ret = -ERESTART_RESTARTBLOCK;
2550
42d35d48 2551out:
ca5f9524
DH
2552 if (to) {
2553 hrtimer_cancel(&to->timer);
2554 destroy_hrtimer_on_stack(&to->timer);
2555 }
c87e2837
IM
2556 return ret;
2557}
2558
72c1bbf3
NP
2559
2560static long futex_wait_restart(struct restart_block *restart)
2561{
a3c74c52 2562 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2563 ktime_t t, *tp = NULL;
72c1bbf3 2564
a72188d8 2565 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2456e855 2566 t = restart->futex.time;
a72188d8
DH
2567 tp = &t;
2568 }
72c1bbf3 2569 restart->fn = do_no_restart_syscall;
b41277dc
DH
2570
2571 return (long)futex_wait(uaddr, restart->futex.flags,
2572 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2573}
2574
2575
c87e2837
IM
2576/*
2577 * Userspace tried a 0 -> TID atomic transition of the futex value
2578 * and failed. The kernel side here does the whole locking operation:
767f509c
DB
2579 * if there are waiters then it will block as a consequence of relying
2580 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2581 * a 0 value of the futex too.).
2582 *
2583 * Also serves as futex trylock_pi()'ing, and due semantics.
c87e2837 2584 */
996636dd 2585static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
b41277dc 2586 ktime_t *time, int trylock)
c87e2837 2587{
c5780e97 2588 struct hrtimer_sleeper timeout, *to = NULL;
16ffa12d 2589 struct futex_pi_state *pi_state = NULL;
cfafcd11 2590 struct rt_mutex_waiter rt_waiter;
c87e2837 2591 struct futex_hash_bucket *hb;
5bdb05f9 2592 struct futex_q q = futex_q_init;
dd973998 2593 int res, ret;
c87e2837
IM
2594
2595 if (refill_pi_state_cache())
2596 return -ENOMEM;
2597
c19384b5 2598 if (time) {
c5780e97 2599 to = &timeout;
237fc6e7
TG
2600 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2601 HRTIMER_MODE_ABS);
c5780e97 2602 hrtimer_init_sleeper(to, current);
cc584b21 2603 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
2604 }
2605
42d35d48 2606retry:
9ea71503 2607 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
c87e2837 2608 if (unlikely(ret != 0))
42d35d48 2609 goto out;
c87e2837 2610
e4dc5b7a 2611retry_private:
82af7aca 2612 hb = queue_lock(&q);
c87e2837 2613
bab5bc9e 2614 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 2615 if (unlikely(ret)) {
767f509c
DB
2616 /*
2617 * Atomic work succeeded and we got the lock,
2618 * or failed. Either way, we do _not_ block.
2619 */
778e9a9c 2620 switch (ret) {
1a52084d
DH
2621 case 1:
2622 /* We got the lock. */
2623 ret = 0;
2624 goto out_unlock_put_key;
2625 case -EFAULT:
2626 goto uaddr_faulted;
778e9a9c
AK
2627 case -EAGAIN:
2628 /*
af54d6a1
TG
2629 * Two reasons for this:
2630 * - Task is exiting and we just wait for the
2631 * exit to complete.
2632 * - The user space value changed.
778e9a9c 2633 */
0d00c7b2 2634 queue_unlock(hb);
ae791a2d 2635 put_futex_key(&q.key);
778e9a9c
AK
2636 cond_resched();
2637 goto retry;
778e9a9c 2638 default:
42d35d48 2639 goto out_unlock_put_key;
c87e2837 2640 }
c87e2837
IM
2641 }
2642
cfafcd11
PZ
2643 WARN_ON(!q.pi_state);
2644
c87e2837
IM
2645 /*
2646 * Only actually queue now that the atomic ops are done:
2647 */
cfafcd11 2648 __queue_me(&q, hb);
c87e2837 2649
cfafcd11 2650 if (trylock) {
5293c2ef 2651 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
c87e2837
IM
2652 /* Fixup the trylock return value: */
2653 ret = ret ? 0 : -EWOULDBLOCK;
cfafcd11 2654 goto no_block;
c87e2837
IM
2655 }
2656
cfafcd11
PZ
2657 /*
2658 * We must add ourselves to the rt_mutex waitlist while holding hb->lock
2659 * such that the hb and rt_mutex wait lists match.
2660 */
2661 rt_mutex_init_waiter(&rt_waiter);
2662 ret = rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2663 if (ret) {
2664 if (ret == 1)
2665 ret = 0;
2666
2667 goto no_block;
2668 }
2669
2670 spin_unlock(q.lock_ptr);
2671
2672 if (unlikely(to))
2673 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2674
2675 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2676
a99e4e41 2677 spin_lock(q.lock_ptr);
cfafcd11
PZ
2678 /*
2679 * If we failed to acquire the lock (signal/timeout), we must
2680 * first acquire the hb->lock before removing the lock from the
2681 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
2682 * wait lists consistent.
2683 */
2684 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2685 ret = 0;
2686
2687no_block:
dd973998
DH
2688 /*
2689 * Fixup the pi_state owner and possibly acquire the lock if we
2690 * haven't already.
2691 */
ae791a2d 2692 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2693 /*
2694 * If fixup_owner() returned an error, proprogate that. If it acquired
2695 * the lock, clear our -ETIMEDOUT or -EINTR.
2696 */
2697 if (res)
2698 ret = (res < 0) ? res : 0;
c87e2837 2699
e8f6386c 2700 /*
dd973998
DH
2701 * If fixup_owner() faulted and was unable to handle the fault, unlock
2702 * it and return the fault to userspace.
e8f6386c 2703 */
16ffa12d
PZ
2704 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2705 pi_state = q.pi_state;
2706 get_pi_state(pi_state);
2707 }
e8f6386c 2708
778e9a9c
AK
2709 /* Unqueue and drop the lock */
2710 unqueue_me_pi(&q);
c87e2837 2711
16ffa12d
PZ
2712 if (pi_state) {
2713 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2714 put_pi_state(pi_state);
2715 }
2716
5ecb01cf 2717 goto out_put_key;
c87e2837 2718
42d35d48 2719out_unlock_put_key:
0d00c7b2 2720 queue_unlock(hb);
c87e2837 2721
42d35d48 2722out_put_key:
ae791a2d 2723 put_futex_key(&q.key);
42d35d48 2724out:
237fc6e7
TG
2725 if (to)
2726 destroy_hrtimer_on_stack(&to->timer);
dd973998 2727 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2728
42d35d48 2729uaddr_faulted:
0d00c7b2 2730 queue_unlock(hb);
778e9a9c 2731
d0725992 2732 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2733 if (ret)
2734 goto out_put_key;
c87e2837 2735
b41277dc 2736 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2737 goto retry_private;
2738
ae791a2d 2739 put_futex_key(&q.key);
e4dc5b7a 2740 goto retry;
c87e2837
IM
2741}
2742
c87e2837
IM
2743/*
2744 * Userspace attempted a TID -> 0 atomic transition, and failed.
2745 * This is the in-kernel slowpath: we look up the PI state (if any),
2746 * and do the rt-mutex unlock.
2747 */
b41277dc 2748static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837 2749{
ccf9e6a8 2750 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
38d47c1b 2751 union futex_key key = FUTEX_KEY_INIT;
ccf9e6a8 2752 struct futex_hash_bucket *hb;
499f5aca 2753 struct futex_q *top_waiter;
e4dc5b7a 2754 int ret;
c87e2837
IM
2755
2756retry:
2757 if (get_user(uval, uaddr))
2758 return -EFAULT;
2759 /*
2760 * We release only a lock we actually own:
2761 */
c0c9ed15 2762 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2763 return -EPERM;
c87e2837 2764
9ea71503 2765 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
ccf9e6a8
TG
2766 if (ret)
2767 return ret;
c87e2837
IM
2768
2769 hb = hash_futex(&key);
2770 spin_lock(&hb->lock);
2771
c87e2837 2772 /*
ccf9e6a8
TG
2773 * Check waiters first. We do not trust user space values at
2774 * all and we at least want to know if user space fiddled
2775 * with the futex value instead of blindly unlocking.
c87e2837 2776 */
499f5aca
PZ
2777 top_waiter = futex_top_waiter(hb, &key);
2778 if (top_waiter) {
16ffa12d
PZ
2779 struct futex_pi_state *pi_state = top_waiter->pi_state;
2780
2781 ret = -EINVAL;
2782 if (!pi_state)
2783 goto out_unlock;
2784
2785 /*
2786 * If current does not own the pi_state then the futex is
2787 * inconsistent and user space fiddled with the futex value.
2788 */
2789 if (pi_state->owner != current)
2790 goto out_unlock;
2791
bebe5b51 2792 get_pi_state(pi_state);
802ab58d 2793 /*
bebe5b51
PZ
2794 * Since modifying the wait_list is done while holding both
2795 * hb->lock and wait_lock, holding either is sufficient to
2796 * observe it.
16ffa12d 2797 *
bebe5b51
PZ
2798 * By taking wait_lock while still holding hb->lock, we ensure
2799 * there is no point where we hold neither; and therefore
2800 * wake_futex_pi() must observe a state consistent with what we
2801 * observed.
16ffa12d 2802 */
bebe5b51 2803 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
16ffa12d
PZ
2804 spin_unlock(&hb->lock);
2805
2806 ret = wake_futex_pi(uaddr, uval, pi_state);
2807
2808 put_pi_state(pi_state);
2809
2810 /*
2811 * Success, we're done! No tricky corner cases.
802ab58d
SAS
2812 */
2813 if (!ret)
2814 goto out_putkey;
c87e2837 2815 /*
ccf9e6a8
TG
2816 * The atomic access to the futex value generated a
2817 * pagefault, so retry the user-access and the wakeup:
c87e2837
IM
2818 */
2819 if (ret == -EFAULT)
2820 goto pi_faulted;
89e9e66b
SAS
2821 /*
2822 * A unconditional UNLOCK_PI op raced against a waiter
2823 * setting the FUTEX_WAITERS bit. Try again.
2824 */
2825 if (ret == -EAGAIN) {
89e9e66b
SAS
2826 put_futex_key(&key);
2827 goto retry;
2828 }
802ab58d
SAS
2829 /*
2830 * wake_futex_pi has detected invalid state. Tell user
2831 * space.
2832 */
16ffa12d 2833 goto out_putkey;
c87e2837 2834 }
ccf9e6a8 2835
c87e2837 2836 /*
ccf9e6a8
TG
2837 * We have no kernel internal state, i.e. no waiters in the
2838 * kernel. Waiters which are about to queue themselves are stuck
2839 * on hb->lock. So we can safely ignore them. We do neither
2840 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2841 * owner.
c87e2837 2842 */
16ffa12d
PZ
2843 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
2844 spin_unlock(&hb->lock);
13fbca4c 2845 goto pi_faulted;
16ffa12d 2846 }
c87e2837 2847
ccf9e6a8
TG
2848 /*
2849 * If uval has changed, let user space handle it.
2850 */
2851 ret = (curval == uval) ? 0 : -EAGAIN;
2852
c87e2837
IM
2853out_unlock:
2854 spin_unlock(&hb->lock);
802ab58d 2855out_putkey:
ae791a2d 2856 put_futex_key(&key);
c87e2837
IM
2857 return ret;
2858
2859pi_faulted:
ae791a2d 2860 put_futex_key(&key);
c87e2837 2861
d0725992 2862 ret = fault_in_user_writeable(uaddr);
b5686363 2863 if (!ret)
c87e2837
IM
2864 goto retry;
2865
1da177e4
LT
2866 return ret;
2867}
2868
52400ba9
DH
2869/**
2870 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2871 * @hb: the hash_bucket futex_q was original enqueued on
2872 * @q: the futex_q woken while waiting to be requeued
2873 * @key2: the futex_key of the requeue target futex
2874 * @timeout: the timeout associated with the wait (NULL if none)
2875 *
2876 * Detect if the task was woken on the initial futex as opposed to the requeue
2877 * target futex. If so, determine if it was a timeout or a signal that caused
2878 * the wakeup and return the appropriate error code to the caller. Must be
2879 * called with the hb lock held.
2880 *
6c23cbbd
RD
2881 * Return:
2882 * 0 = no early wakeup detected;
2883 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
2884 */
2885static inline
2886int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2887 struct futex_q *q, union futex_key *key2,
2888 struct hrtimer_sleeper *timeout)
2889{
2890 int ret = 0;
2891
2892 /*
2893 * With the hb lock held, we avoid races while we process the wakeup.
2894 * We only need to hold hb (and not hb2) to ensure atomicity as the
2895 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2896 * It can't be requeued from uaddr2 to something else since we don't
2897 * support a PI aware source futex for requeue.
2898 */
2899 if (!match_futex(&q->key, key2)) {
2900 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2901 /*
2902 * We were woken prior to requeue by a timeout or a signal.
2903 * Unqueue the futex_q and determine which it was.
2904 */
2e12978a 2905 plist_del(&q->list, &hb->chain);
11d4616b 2906 hb_waiters_dec(hb);
52400ba9 2907
d58e6576 2908 /* Handle spurious wakeups gracefully */
11df6ddd 2909 ret = -EWOULDBLOCK;
52400ba9
DH
2910 if (timeout && !timeout->task)
2911 ret = -ETIMEDOUT;
d58e6576 2912 else if (signal_pending(current))
1c840c14 2913 ret = -ERESTARTNOINTR;
52400ba9
DH
2914 }
2915 return ret;
2916}
2917
2918/**
2919 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 2920 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 2921 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
ab51fbab 2922 * the same type, no requeueing from private to shared, etc.
52400ba9
DH
2923 * @val: the expected value of uaddr
2924 * @abs_time: absolute timeout
56ec1607 2925 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
2926 * @uaddr2: the pi futex we will take prior to returning to user-space
2927 *
2928 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
2929 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2930 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2931 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2932 * without one, the pi logic would not know which task to boost/deboost, if
2933 * there was a need to.
52400ba9
DH
2934 *
2935 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 2936 * via the following--
52400ba9 2937 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
2938 * 2) wakeup on uaddr2 after a requeue
2939 * 3) signal
2940 * 4) timeout
52400ba9 2941 *
cc6db4e6 2942 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
2943 *
2944 * If 2, we may then block on trying to take the rt_mutex and return via:
2945 * 5) successful lock
2946 * 6) signal
2947 * 7) timeout
2948 * 8) other lock acquisition failure
2949 *
cc6db4e6 2950 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
2951 *
2952 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2953 *
6c23cbbd
RD
2954 * Return:
2955 * 0 - On success;
52400ba9
DH
2956 * <0 - On error
2957 */
b41277dc 2958static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 2959 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 2960 u32 __user *uaddr2)
52400ba9
DH
2961{
2962 struct hrtimer_sleeper timeout, *to = NULL;
16ffa12d 2963 struct futex_pi_state *pi_state = NULL;
52400ba9 2964 struct rt_mutex_waiter rt_waiter;
52400ba9 2965 struct futex_hash_bucket *hb;
5bdb05f9
DH
2966 union futex_key key2 = FUTEX_KEY_INIT;
2967 struct futex_q q = futex_q_init;
52400ba9 2968 int res, ret;
52400ba9 2969
6f7b0a2a
DH
2970 if (uaddr == uaddr2)
2971 return -EINVAL;
2972
52400ba9
DH
2973 if (!bitset)
2974 return -EINVAL;
2975
2976 if (abs_time) {
2977 to = &timeout;
b41277dc
DH
2978 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2979 CLOCK_REALTIME : CLOCK_MONOTONIC,
2980 HRTIMER_MODE_ABS);
52400ba9
DH
2981 hrtimer_init_sleeper(to, current);
2982 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2983 current->timer_slack_ns);
2984 }
2985
2986 /*
2987 * The waiter is allocated on our stack, manipulated by the requeue
2988 * code while we sleep on uaddr.
2989 */
50809358 2990 rt_mutex_init_waiter(&rt_waiter);
52400ba9 2991
9ea71503 2992 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
52400ba9
DH
2993 if (unlikely(ret != 0))
2994 goto out;
2995
84bc4af5
DH
2996 q.bitset = bitset;
2997 q.rt_waiter = &rt_waiter;
2998 q.requeue_pi_key = &key2;
2999
7ada876a
DH
3000 /*
3001 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3002 * count.
3003 */
b41277dc 3004 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
3005 if (ret)
3006 goto out_key2;
52400ba9 3007
e9c243a5
TG
3008 /*
3009 * The check above which compares uaddrs is not sufficient for
3010 * shared futexes. We need to compare the keys:
3011 */
3012 if (match_futex(&q.key, &key2)) {
13c42c2f 3013 queue_unlock(hb);
e9c243a5
TG
3014 ret = -EINVAL;
3015 goto out_put_keys;
3016 }
3017
52400ba9 3018 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 3019 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
3020
3021 spin_lock(&hb->lock);
3022 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3023 spin_unlock(&hb->lock);
3024 if (ret)
3025 goto out_put_keys;
3026
3027 /*
3028 * In order for us to be here, we know our q.key == key2, and since
3029 * we took the hb->lock above, we also know that futex_requeue() has
3030 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
3031 * race with the atomic proxy lock acquisition by the requeue code. The
3032 * futex_requeue dropped our key1 reference and incremented our key2
3033 * reference count.
52400ba9
DH
3034 */
3035
3036 /* Check if the requeue code acquired the second futex for us. */
3037 if (!q.rt_waiter) {
3038 /*
3039 * Got the lock. We might not be the anticipated owner if we
3040 * did a lock-steal - fix up the PI-state in that case.
3041 */
3042 if (q.pi_state && (q.pi_state->owner != current)) {
3043 spin_lock(q.lock_ptr);
ae791a2d 3044 ret = fixup_pi_state_owner(uaddr2, &q, current);
16ffa12d
PZ
3045 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3046 pi_state = q.pi_state;
3047 get_pi_state(pi_state);
3048 }
fb75a428
TG
3049 /*
3050 * Drop the reference to the pi state which
3051 * the requeue_pi() code acquired for us.
3052 */
29e9ee5d 3053 put_pi_state(q.pi_state);
52400ba9
DH
3054 spin_unlock(q.lock_ptr);
3055 }
3056 } else {
c236c8e9
PZ
3057 struct rt_mutex *pi_mutex;
3058
52400ba9
DH
3059 /*
3060 * We have been woken up by futex_unlock_pi(), a timeout, or a
3061 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3062 * the pi_state.
3063 */
f27071cb 3064 WARN_ON(!q.pi_state);
52400ba9 3065 pi_mutex = &q.pi_state->pi_mutex;
38d589f2 3066 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
52400ba9
DH
3067
3068 spin_lock(q.lock_ptr);
38d589f2
PZ
3069 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3070 ret = 0;
3071
3072 debug_rt_mutex_free_waiter(&rt_waiter);
52400ba9
DH
3073 /*
3074 * Fixup the pi_state owner and possibly acquire the lock if we
3075 * haven't already.
3076 */
ae791a2d 3077 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
3078 /*
3079 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 3080 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
3081 */
3082 if (res)
3083 ret = (res < 0) ? res : 0;
3084
c236c8e9
PZ
3085 /*
3086 * If fixup_pi_state_owner() faulted and was unable to handle
3087 * the fault, unlock the rt_mutex and return the fault to
3088 * userspace.
3089 */
16ffa12d
PZ
3090 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3091 pi_state = q.pi_state;
3092 get_pi_state(pi_state);
3093 }
c236c8e9 3094
52400ba9
DH
3095 /* Unqueue and drop the lock. */
3096 unqueue_me_pi(&q);
3097 }
3098
16ffa12d
PZ
3099 if (pi_state) {
3100 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3101 put_pi_state(pi_state);
3102 }
3103
c236c8e9 3104 if (ret == -EINTR) {
52400ba9 3105 /*
cc6db4e6
DH
3106 * We've already been requeued, but cannot restart by calling
3107 * futex_lock_pi() directly. We could restart this syscall, but
3108 * it would detect that the user space "val" changed and return
3109 * -EWOULDBLOCK. Save the overhead of the restart and return
3110 * -EWOULDBLOCK directly.
52400ba9 3111 */
2070887f 3112 ret = -EWOULDBLOCK;
52400ba9
DH
3113 }
3114
3115out_put_keys:
ae791a2d 3116 put_futex_key(&q.key);
c8b15a70 3117out_key2:
ae791a2d 3118 put_futex_key(&key2);
52400ba9
DH
3119
3120out:
3121 if (to) {
3122 hrtimer_cancel(&to->timer);
3123 destroy_hrtimer_on_stack(&to->timer);
3124 }
3125 return ret;
3126}
3127
0771dfef
IM
3128/*
3129 * Support for robust futexes: the kernel cleans up held futexes at
3130 * thread exit time.
3131 *
3132 * Implementation: user-space maintains a per-thread list of locks it
3133 * is holding. Upon do_exit(), the kernel carefully walks this list,
3134 * and marks all locks that are owned by this thread with the
c87e2837 3135 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
3136 * always manipulated with the lock held, so the list is private and
3137 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3138 * field, to allow the kernel to clean up if the thread dies after
3139 * acquiring the lock, but just before it could have added itself to
3140 * the list. There can only be one such pending lock.
3141 */
3142
3143/**
d96ee56c
DH
3144 * sys_set_robust_list() - Set the robust-futex list head of a task
3145 * @head: pointer to the list-head
3146 * @len: length of the list-head, as userspace expects
0771dfef 3147 */
836f92ad
HC
3148SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3149 size_t, len)
0771dfef 3150{
a0c1e907
TG
3151 if (!futex_cmpxchg_enabled)
3152 return -ENOSYS;
0771dfef
IM
3153 /*
3154 * The kernel knows only one size for now:
3155 */
3156 if (unlikely(len != sizeof(*head)))
3157 return -EINVAL;
3158
3159 current->robust_list = head;
3160
3161 return 0;
3162}
3163
3164/**
d96ee56c
DH
3165 * sys_get_robust_list() - Get the robust-futex list head of a task
3166 * @pid: pid of the process [zero for current task]
3167 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3168 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 3169 */
836f92ad
HC
3170SYSCALL_DEFINE3(get_robust_list, int, pid,
3171 struct robust_list_head __user * __user *, head_ptr,
3172 size_t __user *, len_ptr)
0771dfef 3173{
ba46df98 3174 struct robust_list_head __user *head;
0771dfef 3175 unsigned long ret;
bdbb776f 3176 struct task_struct *p;
0771dfef 3177
a0c1e907
TG
3178 if (!futex_cmpxchg_enabled)
3179 return -ENOSYS;
3180
bdbb776f
KC
3181 rcu_read_lock();
3182
3183 ret = -ESRCH;
0771dfef 3184 if (!pid)
bdbb776f 3185 p = current;
0771dfef 3186 else {
228ebcbe 3187 p = find_task_by_vpid(pid);
0771dfef
IM
3188 if (!p)
3189 goto err_unlock;
0771dfef
IM
3190 }
3191
bdbb776f 3192 ret = -EPERM;
caaee623 3193 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
bdbb776f
KC
3194 goto err_unlock;
3195
3196 head = p->robust_list;
3197 rcu_read_unlock();
3198
0771dfef
IM
3199 if (put_user(sizeof(*head), len_ptr))
3200 return -EFAULT;
3201 return put_user(head, head_ptr);
3202
3203err_unlock:
aaa2a97e 3204 rcu_read_unlock();
0771dfef
IM
3205
3206 return ret;
3207}
3208
3209/*
3210 * Process a futex-list entry, check whether it's owned by the
3211 * dying task, and do notification if so:
3212 */
e3f2ddea 3213int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 3214{
7cfdaf38 3215 u32 uval, uninitialized_var(nval), mval;
0771dfef 3216
8f17d3a5
IM
3217retry:
3218 if (get_user(uval, uaddr))
0771dfef
IM
3219 return -1;
3220
b488893a 3221 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
3222 /*
3223 * Ok, this dying thread is truly holding a futex
3224 * of interest. Set the OWNER_DIED bit atomically
3225 * via cmpxchg, and if the value had FUTEX_WAITERS
3226 * set, wake up a waiter (if any). (We have to do a
3227 * futex_wake() even if OWNER_DIED is already set -
3228 * to handle the rare but possible case of recursive
3229 * thread-death.) The rest of the cleanup is done in
3230 * userspace.
3231 */
e3f2ddea 3232 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
6e0aa9f8
TG
3233 /*
3234 * We are not holding a lock here, but we want to have
3235 * the pagefault_disable/enable() protection because
3236 * we want to handle the fault gracefully. If the
3237 * access fails we try to fault in the futex with R/W
3238 * verification via get_user_pages. get_user() above
3239 * does not guarantee R/W access. If that fails we
3240 * give up and leave the futex locked.
3241 */
3242 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3243 if (fault_in_user_writeable(uaddr))
3244 return -1;
3245 goto retry;
3246 }
c87e2837 3247 if (nval != uval)
8f17d3a5 3248 goto retry;
0771dfef 3249
e3f2ddea
IM
3250 /*
3251 * Wake robust non-PI futexes here. The wakeup of
3252 * PI futexes happens in exit_pi_state():
3253 */
36cf3b5c 3254 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 3255 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
3256 }
3257 return 0;
3258}
3259
e3f2ddea
IM
3260/*
3261 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3262 */
3263static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 3264 struct robust_list __user * __user *head,
1dcc41bb 3265 unsigned int *pi)
e3f2ddea
IM
3266{
3267 unsigned long uentry;
3268
ba46df98 3269 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
3270 return -EFAULT;
3271
ba46df98 3272 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
3273 *pi = uentry & 1;
3274
3275 return 0;
3276}
3277
0771dfef
IM
3278/*
3279 * Walk curr->robust_list (very carefully, it's a userspace list!)
3280 * and mark any locks found there dead, and notify any waiters.
3281 *
3282 * We silently return on any sign of list-walking problem.
3283 */
3284void exit_robust_list(struct task_struct *curr)
3285{
3286 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 3287 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
3288 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3289 unsigned int uninitialized_var(next_pi);
0771dfef 3290 unsigned long futex_offset;
9f96cb1e 3291 int rc;
0771dfef 3292
a0c1e907
TG
3293 if (!futex_cmpxchg_enabled)
3294 return;
3295
0771dfef
IM
3296 /*
3297 * Fetch the list head (which was registered earlier, via
3298 * sys_set_robust_list()):
3299 */
e3f2ddea 3300 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
3301 return;
3302 /*
3303 * Fetch the relative futex offset:
3304 */
3305 if (get_user(futex_offset, &head->futex_offset))
3306 return;
3307 /*
3308 * Fetch any possibly pending lock-add first, and handle it
3309 * if it exists:
3310 */
e3f2ddea 3311 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 3312 return;
e3f2ddea 3313
9f96cb1e 3314 next_entry = NULL; /* avoid warning with gcc */
0771dfef 3315 while (entry != &head->list) {
9f96cb1e
MS
3316 /*
3317 * Fetch the next entry in the list before calling
3318 * handle_futex_death:
3319 */
3320 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
3321 /*
3322 * A pending lock might already be on the list, so
c87e2837 3323 * don't process it twice:
0771dfef
IM
3324 */
3325 if (entry != pending)
ba46df98 3326 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 3327 curr, pi))
0771dfef 3328 return;
9f96cb1e 3329 if (rc)
0771dfef 3330 return;
9f96cb1e
MS
3331 entry = next_entry;
3332 pi = next_pi;
0771dfef
IM
3333 /*
3334 * Avoid excessively long or circular lists:
3335 */
3336 if (!--limit)
3337 break;
3338
3339 cond_resched();
3340 }
9f96cb1e
MS
3341
3342 if (pending)
3343 handle_futex_death((void __user *)pending + futex_offset,
3344 curr, pip);
0771dfef
IM
3345}
3346
c19384b5 3347long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 3348 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 3349{
81b40539 3350 int cmd = op & FUTEX_CMD_MASK;
b41277dc 3351 unsigned int flags = 0;
34f01cc1
ED
3352
3353 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 3354 flags |= FLAGS_SHARED;
1da177e4 3355
b41277dc
DH
3356 if (op & FUTEX_CLOCK_REALTIME) {
3357 flags |= FLAGS_CLOCKRT;
337f1304
DH
3358 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3359 cmd != FUTEX_WAIT_REQUEUE_PI)
b41277dc
DH
3360 return -ENOSYS;
3361 }
1da177e4 3362
59263b51
TG
3363 switch (cmd) {
3364 case FUTEX_LOCK_PI:
3365 case FUTEX_UNLOCK_PI:
3366 case FUTEX_TRYLOCK_PI:
3367 case FUTEX_WAIT_REQUEUE_PI:
3368 case FUTEX_CMP_REQUEUE_PI:
3369 if (!futex_cmpxchg_enabled)
3370 return -ENOSYS;
3371 }
3372
34f01cc1 3373 switch (cmd) {
1da177e4 3374 case FUTEX_WAIT:
cd689985
TG
3375 val3 = FUTEX_BITSET_MATCH_ANY;
3376 case FUTEX_WAIT_BITSET:
81b40539 3377 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 3378 case FUTEX_WAKE:
cd689985
TG
3379 val3 = FUTEX_BITSET_MATCH_ANY;
3380 case FUTEX_WAKE_BITSET:
81b40539 3381 return futex_wake(uaddr, flags, val, val3);
1da177e4 3382 case FUTEX_REQUEUE:
81b40539 3383 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 3384 case FUTEX_CMP_REQUEUE:
81b40539 3385 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 3386 case FUTEX_WAKE_OP:
81b40539 3387 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 3388 case FUTEX_LOCK_PI:
996636dd 3389 return futex_lock_pi(uaddr, flags, timeout, 0);
c87e2837 3390 case FUTEX_UNLOCK_PI:
81b40539 3391 return futex_unlock_pi(uaddr, flags);
c87e2837 3392 case FUTEX_TRYLOCK_PI:
996636dd 3393 return futex_lock_pi(uaddr, flags, NULL, 1);
52400ba9
DH
3394 case FUTEX_WAIT_REQUEUE_PI:
3395 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
3396 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3397 uaddr2);
52400ba9 3398 case FUTEX_CMP_REQUEUE_PI:
81b40539 3399 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 3400 }
81b40539 3401 return -ENOSYS;
1da177e4
LT
3402}
3403
3404
17da2bd9
HC
3405SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3406 struct timespec __user *, utime, u32 __user *, uaddr2,
3407 u32, val3)
1da177e4 3408{
c19384b5
PP
3409 struct timespec ts;
3410 ktime_t t, *tp = NULL;
e2970f2f 3411 u32 val2 = 0;
34f01cc1 3412 int cmd = op & FUTEX_CMD_MASK;
1da177e4 3413
cd689985 3414 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
3415 cmd == FUTEX_WAIT_BITSET ||
3416 cmd == FUTEX_WAIT_REQUEUE_PI)) {
ab51fbab
DB
3417 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3418 return -EFAULT;
c19384b5 3419 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 3420 return -EFAULT;
c19384b5 3421 if (!timespec_valid(&ts))
9741ef96 3422 return -EINVAL;
c19384b5
PP
3423
3424 t = timespec_to_ktime(ts);
34f01cc1 3425 if (cmd == FUTEX_WAIT)
5a7780e7 3426 t = ktime_add_safe(ktime_get(), t);
c19384b5 3427 tp = &t;
1da177e4
LT
3428 }
3429 /*
52400ba9 3430 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 3431 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 3432 */
f54f0986 3433 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 3434 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 3435 val2 = (u32) (unsigned long) utime;
1da177e4 3436
c19384b5 3437 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
3438}
3439
03b8c7b6 3440static void __init futex_detect_cmpxchg(void)
1da177e4 3441{
03b8c7b6 3442#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 3443 u32 curval;
03b8c7b6
HC
3444
3445 /*
3446 * This will fail and we want it. Some arch implementations do
3447 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3448 * functionality. We want to know that before we call in any
3449 * of the complex code paths. Also we want to prevent
3450 * registration of robust lists in that case. NULL is
3451 * guaranteed to fault and we get -EFAULT on functional
3452 * implementation, the non-functional ones will return
3453 * -ENOSYS.
3454 */
3455 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3456 futex_cmpxchg_enabled = 1;
3457#endif
3458}
3459
3460static int __init futex_init(void)
3461{
63b1a816 3462 unsigned int futex_shift;
a52b89eb
DB
3463 unsigned long i;
3464
3465#if CONFIG_BASE_SMALL
3466 futex_hashsize = 16;
3467#else
3468 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3469#endif
3470
3471 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3472 futex_hashsize, 0,
3473 futex_hashsize < 256 ? HASH_SMALL : 0,
63b1a816
HC
3474 &futex_shift, NULL,
3475 futex_hashsize, futex_hashsize);
3476 futex_hashsize = 1UL << futex_shift;
03b8c7b6
HC
3477
3478 futex_detect_cmpxchg();
a0c1e907 3479
a52b89eb 3480 for (i = 0; i < futex_hashsize; i++) {
11d4616b 3481 atomic_set(&futex_queues[i].waiters, 0);
732375c6 3482 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
3483 spin_lock_init(&futex_queues[i].lock);
3484 }
3485
1da177e4
LT
3486 return 0;
3487}
25f71d1c 3488core_initcall(futex_init);