Merge tag 'auxdisplay-for-linus-v5.0-rc7' of git://github.com/ojeda/linux
[linux-2.6-block.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
04e7712f 47#include <linux/compat.h>
1da177e4
LT
48#include <linux/slab.h>
49#include <linux/poll.h>
50#include <linux/fs.h>
51#include <linux/file.h>
52#include <linux/jhash.h>
53#include <linux/init.h>
54#include <linux/futex.h>
55#include <linux/mount.h>
56#include <linux/pagemap.h>
57#include <linux/syscalls.h>
7ed20e1a 58#include <linux/signal.h>
9984de1a 59#include <linux/export.h>
fd5eea42 60#include <linux/magic.h>
b488893a
PE
61#include <linux/pid.h>
62#include <linux/nsproxy.h>
bdbb776f 63#include <linux/ptrace.h>
8bd75c77 64#include <linux/sched/rt.h>
84f001e1 65#include <linux/sched/wake_q.h>
6e84f315 66#include <linux/sched/mm.h>
13d60f4b 67#include <linux/hugetlb.h>
88c8004f 68#include <linux/freezer.h>
57c8a661 69#include <linux/memblock.h>
ab51fbab 70#include <linux/fault-inject.h>
b488893a 71
4732efbe 72#include <asm/futex.h>
1da177e4 73
1696a8be 74#include "locking/rtmutex_common.h"
c87e2837 75
99b60ce6 76/*
d7e8af1a
DB
77 * READ this before attempting to hack on futexes!
78 *
79 * Basic futex operation and ordering guarantees
80 * =============================================
99b60ce6
TG
81 *
82 * The waiter reads the futex value in user space and calls
83 * futex_wait(). This function computes the hash bucket and acquires
84 * the hash bucket lock. After that it reads the futex user space value
b0c29f79
DB
85 * again and verifies that the data has not changed. If it has not changed
86 * it enqueues itself into the hash bucket, releases the hash bucket lock
87 * and schedules.
99b60ce6
TG
88 *
89 * The waker side modifies the user space value of the futex and calls
b0c29f79
DB
90 * futex_wake(). This function computes the hash bucket and acquires the
91 * hash bucket lock. Then it looks for waiters on that futex in the hash
92 * bucket and wakes them.
99b60ce6 93 *
b0c29f79
DB
94 * In futex wake up scenarios where no tasks are blocked on a futex, taking
95 * the hb spinlock can be avoided and simply return. In order for this
96 * optimization to work, ordering guarantees must exist so that the waiter
97 * being added to the list is acknowledged when the list is concurrently being
98 * checked by the waker, avoiding scenarios like the following:
99b60ce6
TG
99 *
100 * CPU 0 CPU 1
101 * val = *futex;
102 * sys_futex(WAIT, futex, val);
103 * futex_wait(futex, val);
104 * uval = *futex;
105 * *futex = newval;
106 * sys_futex(WAKE, futex);
107 * futex_wake(futex);
108 * if (queue_empty())
109 * return;
110 * if (uval == val)
111 * lock(hash_bucket(futex));
112 * queue();
113 * unlock(hash_bucket(futex));
114 * schedule();
115 *
116 * This would cause the waiter on CPU 0 to wait forever because it
117 * missed the transition of the user space value from val to newval
118 * and the waker did not find the waiter in the hash bucket queue.
99b60ce6 119 *
b0c29f79
DB
120 * The correct serialization ensures that a waiter either observes
121 * the changed user space value before blocking or is woken by a
122 * concurrent waker:
123 *
124 * CPU 0 CPU 1
99b60ce6
TG
125 * val = *futex;
126 * sys_futex(WAIT, futex, val);
127 * futex_wait(futex, val);
b0c29f79 128 *
d7e8af1a 129 * waiters++; (a)
8ad7b378
DB
130 * smp_mb(); (A) <-- paired with -.
131 * |
132 * lock(hash_bucket(futex)); |
133 * |
134 * uval = *futex; |
135 * | *futex = newval;
136 * | sys_futex(WAKE, futex);
137 * | futex_wake(futex);
138 * |
139 * `--------> smp_mb(); (B)
99b60ce6 140 * if (uval == val)
b0c29f79 141 * queue();
99b60ce6 142 * unlock(hash_bucket(futex));
b0c29f79
DB
143 * schedule(); if (waiters)
144 * lock(hash_bucket(futex));
d7e8af1a
DB
145 * else wake_waiters(futex);
146 * waiters--; (b) unlock(hash_bucket(futex));
b0c29f79 147 *
d7e8af1a
DB
148 * Where (A) orders the waiters increment and the futex value read through
149 * atomic operations (see hb_waiters_inc) and where (B) orders the write
993b2ff2
DB
150 * to futex and the waiters read -- this is done by the barriers for both
151 * shared and private futexes in get_futex_key_refs().
b0c29f79
DB
152 *
153 * This yields the following case (where X:=waiters, Y:=futex):
154 *
155 * X = Y = 0
156 *
157 * w[X]=1 w[Y]=1
158 * MB MB
159 * r[Y]=y r[X]=x
160 *
161 * Which guarantees that x==0 && y==0 is impossible; which translates back into
162 * the guarantee that we cannot both miss the futex variable change and the
163 * enqueue.
d7e8af1a
DB
164 *
165 * Note that a new waiter is accounted for in (a) even when it is possible that
166 * the wait call can return error, in which case we backtrack from it in (b).
167 * Refer to the comment in queue_lock().
168 *
169 * Similarly, in order to account for waiters being requeued on another
170 * address we always increment the waiters for the destination bucket before
171 * acquiring the lock. It then decrements them again after releasing it -
172 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
173 * will do the additional required waiter count housekeeping. This is done for
174 * double_lock_hb() and double_unlock_hb(), respectively.
99b60ce6
TG
175 */
176
04e7712f
AB
177#ifdef CONFIG_HAVE_FUTEX_CMPXCHG
178#define futex_cmpxchg_enabled 1
179#else
180static int __read_mostly futex_cmpxchg_enabled;
03b8c7b6 181#endif
a0c1e907 182
b41277dc
DH
183/*
184 * Futex flags used to encode options to functions and preserve them across
185 * restarts.
186 */
784bdf3b
TG
187#ifdef CONFIG_MMU
188# define FLAGS_SHARED 0x01
189#else
190/*
191 * NOMMU does not have per process address space. Let the compiler optimize
192 * code away.
193 */
194# define FLAGS_SHARED 0x00
195#endif
b41277dc
DH
196#define FLAGS_CLOCKRT 0x02
197#define FLAGS_HAS_TIMEOUT 0x04
198
c87e2837
IM
199/*
200 * Priority Inheritance state:
201 */
202struct futex_pi_state {
203 /*
204 * list of 'owned' pi_state instances - these have to be
205 * cleaned up in do_exit() if the task exits prematurely:
206 */
207 struct list_head list;
208
209 /*
210 * The PI object:
211 */
212 struct rt_mutex pi_mutex;
213
214 struct task_struct *owner;
215 atomic_t refcount;
216
217 union futex_key key;
3859a271 218} __randomize_layout;
c87e2837 219
d8d88fbb
DH
220/**
221 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 222 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
223 * @task: the task waiting on the futex
224 * @lock_ptr: the hash bucket lock
225 * @key: the key the futex is hashed on
226 * @pi_state: optional priority inheritance state
227 * @rt_waiter: rt_waiter storage for use with requeue_pi
228 * @requeue_pi_key: the requeue_pi target futex key
229 * @bitset: bitset for the optional bitmasked wakeup
230 *
ac6424b9 231 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
1da177e4
LT
232 * we can wake only the relevant ones (hashed queues may be shared).
233 *
234 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 235 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 236 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
237 * the second.
238 *
239 * PI futexes are typically woken before they are removed from the hash list via
240 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
241 */
242struct futex_q {
ec92d082 243 struct plist_node list;
1da177e4 244
d8d88fbb 245 struct task_struct *task;
1da177e4 246 spinlock_t *lock_ptr;
1da177e4 247 union futex_key key;
c87e2837 248 struct futex_pi_state *pi_state;
52400ba9 249 struct rt_mutex_waiter *rt_waiter;
84bc4af5 250 union futex_key *requeue_pi_key;
cd689985 251 u32 bitset;
3859a271 252} __randomize_layout;
1da177e4 253
5bdb05f9
DH
254static const struct futex_q futex_q_init = {
255 /* list gets initialized in queue_me()*/
256 .key = FUTEX_KEY_INIT,
257 .bitset = FUTEX_BITSET_MATCH_ANY
258};
259
1da177e4 260/*
b2d0994b
DH
261 * Hash buckets are shared by all the futex_keys that hash to the same
262 * location. Each key may have multiple futex_q structures, one for each task
263 * waiting on a futex.
1da177e4
LT
264 */
265struct futex_hash_bucket {
11d4616b 266 atomic_t waiters;
ec92d082
PP
267 spinlock_t lock;
268 struct plist_head chain;
a52b89eb 269} ____cacheline_aligned_in_smp;
1da177e4 270
ac742d37
RV
271/*
272 * The base of the bucket array and its size are always used together
273 * (after initialization only in hash_futex()), so ensure that they
274 * reside in the same cacheline.
275 */
276static struct {
277 struct futex_hash_bucket *queues;
278 unsigned long hashsize;
279} __futex_data __read_mostly __aligned(2*sizeof(long));
280#define futex_queues (__futex_data.queues)
281#define futex_hashsize (__futex_data.hashsize)
a52b89eb 282
1da177e4 283
ab51fbab
DB
284/*
285 * Fault injections for futexes.
286 */
287#ifdef CONFIG_FAIL_FUTEX
288
289static struct {
290 struct fault_attr attr;
291
621a5f7a 292 bool ignore_private;
ab51fbab
DB
293} fail_futex = {
294 .attr = FAULT_ATTR_INITIALIZER,
621a5f7a 295 .ignore_private = false,
ab51fbab
DB
296};
297
298static int __init setup_fail_futex(char *str)
299{
300 return setup_fault_attr(&fail_futex.attr, str);
301}
302__setup("fail_futex=", setup_fail_futex);
303
5d285a7f 304static bool should_fail_futex(bool fshared)
ab51fbab
DB
305{
306 if (fail_futex.ignore_private && !fshared)
307 return false;
308
309 return should_fail(&fail_futex.attr, 1);
310}
311
312#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
313
314static int __init fail_futex_debugfs(void)
315{
316 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
317 struct dentry *dir;
318
319 dir = fault_create_debugfs_attr("fail_futex", NULL,
320 &fail_futex.attr);
321 if (IS_ERR(dir))
322 return PTR_ERR(dir);
323
324 if (!debugfs_create_bool("ignore-private", mode, dir,
325 &fail_futex.ignore_private)) {
326 debugfs_remove_recursive(dir);
327 return -ENOMEM;
328 }
329
330 return 0;
331}
332
333late_initcall(fail_futex_debugfs);
334
335#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
336
337#else
338static inline bool should_fail_futex(bool fshared)
339{
340 return false;
341}
342#endif /* CONFIG_FAIL_FUTEX */
343
b0c29f79
DB
344static inline void futex_get_mm(union futex_key *key)
345{
f1f10076 346 mmgrab(key->private.mm);
b0c29f79
DB
347 /*
348 * Ensure futex_get_mm() implies a full barrier such that
349 * get_futex_key() implies a full barrier. This is relied upon
8ad7b378 350 * as smp_mb(); (B), see the ordering comment above.
b0c29f79 351 */
4e857c58 352 smp_mb__after_atomic();
b0c29f79
DB
353}
354
11d4616b
LT
355/*
356 * Reflects a new waiter being added to the waitqueue.
357 */
358static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
b0c29f79
DB
359{
360#ifdef CONFIG_SMP
11d4616b 361 atomic_inc(&hb->waiters);
b0c29f79 362 /*
11d4616b 363 * Full barrier (A), see the ordering comment above.
b0c29f79 364 */
4e857c58 365 smp_mb__after_atomic();
11d4616b
LT
366#endif
367}
368
369/*
370 * Reflects a waiter being removed from the waitqueue by wakeup
371 * paths.
372 */
373static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
374{
375#ifdef CONFIG_SMP
376 atomic_dec(&hb->waiters);
377#endif
378}
b0c29f79 379
11d4616b
LT
380static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
381{
382#ifdef CONFIG_SMP
383 return atomic_read(&hb->waiters);
b0c29f79 384#else
11d4616b 385 return 1;
b0c29f79
DB
386#endif
387}
388
e8b61b3f
TG
389/**
390 * hash_futex - Return the hash bucket in the global hash
391 * @key: Pointer to the futex key for which the hash is calculated
392 *
393 * We hash on the keys returned from get_futex_key (see below) and return the
394 * corresponding hash bucket in the global hash.
1da177e4
LT
395 */
396static struct futex_hash_bucket *hash_futex(union futex_key *key)
397{
398 u32 hash = jhash2((u32*)&key->both.word,
399 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
400 key->both.offset);
a52b89eb 401 return &futex_queues[hash & (futex_hashsize - 1)];
1da177e4
LT
402}
403
e8b61b3f
TG
404
405/**
406 * match_futex - Check whether two futex keys are equal
407 * @key1: Pointer to key1
408 * @key2: Pointer to key2
409 *
1da177e4
LT
410 * Return 1 if two futex_keys are equal, 0 otherwise.
411 */
412static inline int match_futex(union futex_key *key1, union futex_key *key2)
413{
2bc87203
DH
414 return (key1 && key2
415 && key1->both.word == key2->both.word
1da177e4
LT
416 && key1->both.ptr == key2->both.ptr
417 && key1->both.offset == key2->both.offset);
418}
419
38d47c1b
PZ
420/*
421 * Take a reference to the resource addressed by a key.
422 * Can be called while holding spinlocks.
423 *
424 */
425static void get_futex_key_refs(union futex_key *key)
426{
427 if (!key->both.ptr)
428 return;
429
784bdf3b
TG
430 /*
431 * On MMU less systems futexes are always "private" as there is no per
432 * process address space. We need the smp wmb nevertheless - yes,
433 * arch/blackfin has MMU less SMP ...
434 */
435 if (!IS_ENABLED(CONFIG_MMU)) {
436 smp_mb(); /* explicit smp_mb(); (B) */
437 return;
438 }
439
38d47c1b
PZ
440 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
441 case FUT_OFF_INODE:
8ad7b378 442 ihold(key->shared.inode); /* implies smp_mb(); (B) */
38d47c1b
PZ
443 break;
444 case FUT_OFF_MMSHARED:
8ad7b378 445 futex_get_mm(key); /* implies smp_mb(); (B) */
38d47c1b 446 break;
76835b0e 447 default:
993b2ff2
DB
448 /*
449 * Private futexes do not hold reference on an inode or
450 * mm, therefore the only purpose of calling get_futex_key_refs
451 * is because we need the barrier for the lockless waiter check.
452 */
8ad7b378 453 smp_mb(); /* explicit smp_mb(); (B) */
38d47c1b
PZ
454 }
455}
456
457/*
458 * Drop a reference to the resource addressed by a key.
993b2ff2
DB
459 * The hash bucket spinlock must not be held. This is
460 * a no-op for private futexes, see comment in the get
461 * counterpart.
38d47c1b
PZ
462 */
463static void drop_futex_key_refs(union futex_key *key)
464{
90621c40
DH
465 if (!key->both.ptr) {
466 /* If we're here then we tried to put a key we failed to get */
467 WARN_ON_ONCE(1);
38d47c1b 468 return;
90621c40 469 }
38d47c1b 470
784bdf3b
TG
471 if (!IS_ENABLED(CONFIG_MMU))
472 return;
473
38d47c1b
PZ
474 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
475 case FUT_OFF_INODE:
476 iput(key->shared.inode);
477 break;
478 case FUT_OFF_MMSHARED:
479 mmdrop(key->private.mm);
480 break;
481 }
482}
483
96d4f267
LT
484enum futex_access {
485 FUTEX_READ,
486 FUTEX_WRITE
487};
488
34f01cc1 489/**
d96ee56c
DH
490 * get_futex_key() - Get parameters which are the keys for a futex
491 * @uaddr: virtual address of the futex
492 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
493 * @key: address where result is stored.
96d4f267
LT
494 * @rw: mapping needs to be read/write (values: FUTEX_READ,
495 * FUTEX_WRITE)
34f01cc1 496 *
6c23cbbd
RD
497 * Return: a negative error code or 0
498 *
7b4ff1ad 499 * The key words are stored in @key on success.
1da177e4 500 *
6131ffaa 501 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
1da177e4
LT
502 * offset_within_page). For private mappings, it's (uaddr, current->mm).
503 * We can usually work out the index without swapping in the page.
504 *
b2d0994b 505 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 506 */
64d1304a 507static int
96d4f267 508get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, enum futex_access rw)
1da177e4 509{
e2970f2f 510 unsigned long address = (unsigned long)uaddr;
1da177e4 511 struct mm_struct *mm = current->mm;
077fa7ae 512 struct page *page, *tail;
14d27abd 513 struct address_space *mapping;
9ea71503 514 int err, ro = 0;
1da177e4
LT
515
516 /*
517 * The futex address must be "naturally" aligned.
518 */
e2970f2f 519 key->both.offset = address % PAGE_SIZE;
34f01cc1 520 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 521 return -EINVAL;
e2970f2f 522 address -= key->both.offset;
1da177e4 523
96d4f267 524 if (unlikely(!access_ok(uaddr, sizeof(u32))))
5cdec2d8
LT
525 return -EFAULT;
526
ab51fbab
DB
527 if (unlikely(should_fail_futex(fshared)))
528 return -EFAULT;
529
34f01cc1
ED
530 /*
531 * PROCESS_PRIVATE futexes are fast.
532 * As the mm cannot disappear under us and the 'key' only needs
533 * virtual address, we dont even have to find the underlying vma.
534 * Note : We do have to check 'uaddr' is a valid user address,
535 * but access_ok() should be faster than find_vma()
536 */
537 if (!fshared) {
34f01cc1
ED
538 key->private.mm = mm;
539 key->private.address = address;
8ad7b378 540 get_futex_key_refs(key); /* implies smp_mb(); (B) */
34f01cc1
ED
541 return 0;
542 }
1da177e4 543
38d47c1b 544again:
ab51fbab
DB
545 /* Ignore any VERIFY_READ mapping (futex common case) */
546 if (unlikely(should_fail_futex(fshared)))
547 return -EFAULT;
548
7485d0d3 549 err = get_user_pages_fast(address, 1, 1, &page);
9ea71503
SB
550 /*
551 * If write access is not required (eg. FUTEX_WAIT), try
552 * and get read-only access.
553 */
96d4f267 554 if (err == -EFAULT && rw == FUTEX_READ) {
9ea71503
SB
555 err = get_user_pages_fast(address, 1, 0, &page);
556 ro = 1;
557 }
38d47c1b
PZ
558 if (err < 0)
559 return err;
9ea71503
SB
560 else
561 err = 0;
38d47c1b 562
65d8fc77
MG
563 /*
564 * The treatment of mapping from this point on is critical. The page
565 * lock protects many things but in this context the page lock
566 * stabilizes mapping, prevents inode freeing in the shared
567 * file-backed region case and guards against movement to swap cache.
568 *
569 * Strictly speaking the page lock is not needed in all cases being
570 * considered here and page lock forces unnecessarily serialization
571 * From this point on, mapping will be re-verified if necessary and
572 * page lock will be acquired only if it is unavoidable
077fa7ae
MG
573 *
574 * Mapping checks require the head page for any compound page so the
575 * head page and mapping is looked up now. For anonymous pages, it
576 * does not matter if the page splits in the future as the key is
577 * based on the address. For filesystem-backed pages, the tail is
578 * required as the index of the page determines the key. For
579 * base pages, there is no tail page and tail == page.
65d8fc77 580 */
077fa7ae 581 tail = page;
65d8fc77
MG
582 page = compound_head(page);
583 mapping = READ_ONCE(page->mapping);
584
e6780f72 585 /*
14d27abd 586 * If page->mapping is NULL, then it cannot be a PageAnon
e6780f72
HD
587 * page; but it might be the ZERO_PAGE or in the gate area or
588 * in a special mapping (all cases which we are happy to fail);
589 * or it may have been a good file page when get_user_pages_fast
590 * found it, but truncated or holepunched or subjected to
591 * invalidate_complete_page2 before we got the page lock (also
592 * cases which we are happy to fail). And we hold a reference,
593 * so refcount care in invalidate_complete_page's remove_mapping
594 * prevents drop_caches from setting mapping to NULL beneath us.
595 *
596 * The case we do have to guard against is when memory pressure made
597 * shmem_writepage move it from filecache to swapcache beneath us:
14d27abd 598 * an unlikely race, but we do need to retry for page->mapping.
e6780f72 599 */
65d8fc77
MG
600 if (unlikely(!mapping)) {
601 int shmem_swizzled;
602
603 /*
604 * Page lock is required to identify which special case above
605 * applies. If this is really a shmem page then the page lock
606 * will prevent unexpected transitions.
607 */
608 lock_page(page);
609 shmem_swizzled = PageSwapCache(page) || page->mapping;
14d27abd
KS
610 unlock_page(page);
611 put_page(page);
65d8fc77 612
e6780f72
HD
613 if (shmem_swizzled)
614 goto again;
65d8fc77 615
e6780f72 616 return -EFAULT;
38d47c1b 617 }
1da177e4
LT
618
619 /*
620 * Private mappings are handled in a simple way.
621 *
65d8fc77
MG
622 * If the futex key is stored on an anonymous page, then the associated
623 * object is the mm which is implicitly pinned by the calling process.
624 *
1da177e4
LT
625 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
626 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 627 * the object not the particular process.
1da177e4 628 */
14d27abd 629 if (PageAnon(page)) {
9ea71503
SB
630 /*
631 * A RO anonymous page will never change and thus doesn't make
632 * sense for futex operations.
633 */
ab51fbab 634 if (unlikely(should_fail_futex(fshared)) || ro) {
9ea71503
SB
635 err = -EFAULT;
636 goto out;
637 }
638
38d47c1b 639 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 640 key->private.mm = mm;
e2970f2f 641 key->private.address = address;
65d8fc77
MG
642
643 get_futex_key_refs(key); /* implies smp_mb(); (B) */
644
38d47c1b 645 } else {
65d8fc77
MG
646 struct inode *inode;
647
648 /*
649 * The associated futex object in this case is the inode and
650 * the page->mapping must be traversed. Ordinarily this should
651 * be stabilised under page lock but it's not strictly
652 * necessary in this case as we just want to pin the inode, not
653 * update the radix tree or anything like that.
654 *
655 * The RCU read lock is taken as the inode is finally freed
656 * under RCU. If the mapping still matches expectations then the
657 * mapping->host can be safely accessed as being a valid inode.
658 */
659 rcu_read_lock();
660
661 if (READ_ONCE(page->mapping) != mapping) {
662 rcu_read_unlock();
663 put_page(page);
664
665 goto again;
666 }
667
668 inode = READ_ONCE(mapping->host);
669 if (!inode) {
670 rcu_read_unlock();
671 put_page(page);
672
673 goto again;
674 }
675
676 /*
677 * Take a reference unless it is about to be freed. Previously
678 * this reference was taken by ihold under the page lock
679 * pinning the inode in place so i_lock was unnecessary. The
680 * only way for this check to fail is if the inode was
48fb6f4d
MG
681 * truncated in parallel which is almost certainly an
682 * application bug. In such a case, just retry.
65d8fc77
MG
683 *
684 * We are not calling into get_futex_key_refs() in file-backed
685 * cases, therefore a successful atomic_inc return below will
686 * guarantee that get_futex_key() will still imply smp_mb(); (B).
687 */
48fb6f4d 688 if (!atomic_inc_not_zero(&inode->i_count)) {
65d8fc77
MG
689 rcu_read_unlock();
690 put_page(page);
691
692 goto again;
693 }
694
695 /* Should be impossible but lets be paranoid for now */
696 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
697 err = -EFAULT;
698 rcu_read_unlock();
699 iput(inode);
700
701 goto out;
702 }
703
38d47c1b 704 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
65d8fc77 705 key->shared.inode = inode;
077fa7ae 706 key->shared.pgoff = basepage_index(tail);
65d8fc77 707 rcu_read_unlock();
1da177e4
LT
708 }
709
9ea71503 710out:
14d27abd 711 put_page(page);
9ea71503 712 return err;
1da177e4
LT
713}
714
ae791a2d 715static inline void put_futex_key(union futex_key *key)
1da177e4 716{
38d47c1b 717 drop_futex_key_refs(key);
1da177e4
LT
718}
719
d96ee56c
DH
720/**
721 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
722 * @uaddr: pointer to faulting user space address
723 *
724 * Slow path to fixup the fault we just took in the atomic write
725 * access to @uaddr.
726 *
fb62db2b 727 * We have no generic implementation of a non-destructive write to the
d0725992
TG
728 * user address. We know that we faulted in the atomic pagefault
729 * disabled section so we can as well avoid the #PF overhead by
730 * calling get_user_pages() right away.
731 */
732static int fault_in_user_writeable(u32 __user *uaddr)
733{
722d0172
AK
734 struct mm_struct *mm = current->mm;
735 int ret;
736
737 down_read(&mm->mmap_sem);
2efaca92 738 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
4a9e1cda 739 FAULT_FLAG_WRITE, NULL);
722d0172
AK
740 up_read(&mm->mmap_sem);
741
d0725992
TG
742 return ret < 0 ? ret : 0;
743}
744
4b1c486b
DH
745/**
746 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
747 * @hb: the hash bucket the futex_q's reside in
748 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
749 *
750 * Must be called with the hb lock held.
751 */
752static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
753 union futex_key *key)
754{
755 struct futex_q *this;
756
757 plist_for_each_entry(this, &hb->chain, list) {
758 if (match_futex(&this->key, key))
759 return this;
760 }
761 return NULL;
762}
763
37a9d912
ML
764static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
765 u32 uval, u32 newval)
36cf3b5c 766{
37a9d912 767 int ret;
36cf3b5c
TG
768
769 pagefault_disable();
37a9d912 770 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
771 pagefault_enable();
772
37a9d912 773 return ret;
36cf3b5c
TG
774}
775
776static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
777{
778 int ret;
779
a866374a 780 pagefault_disable();
bd28b145 781 ret = __get_user(*dest, from);
a866374a 782 pagefault_enable();
1da177e4
LT
783
784 return ret ? -EFAULT : 0;
785}
786
c87e2837
IM
787
788/*
789 * PI code:
790 */
791static int refill_pi_state_cache(void)
792{
793 struct futex_pi_state *pi_state;
794
795 if (likely(current->pi_state_cache))
796 return 0;
797
4668edc3 798 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
799
800 if (!pi_state)
801 return -ENOMEM;
802
c87e2837
IM
803 INIT_LIST_HEAD(&pi_state->list);
804 /* pi_mutex gets initialized later */
805 pi_state->owner = NULL;
806 atomic_set(&pi_state->refcount, 1);
38d47c1b 807 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
808
809 current->pi_state_cache = pi_state;
810
811 return 0;
812}
813
bf92cf3a 814static struct futex_pi_state *alloc_pi_state(void)
c87e2837
IM
815{
816 struct futex_pi_state *pi_state = current->pi_state_cache;
817
818 WARN_ON(!pi_state);
819 current->pi_state_cache = NULL;
820
821 return pi_state;
822}
823
bf92cf3a
PZ
824static void get_pi_state(struct futex_pi_state *pi_state)
825{
826 WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
827}
828
30a6b803 829/*
29e9ee5d
TG
830 * Drops a reference to the pi_state object and frees or caches it
831 * when the last reference is gone.
30a6b803 832 */
29e9ee5d 833static void put_pi_state(struct futex_pi_state *pi_state)
c87e2837 834{
30a6b803
BS
835 if (!pi_state)
836 return;
837
c87e2837
IM
838 if (!atomic_dec_and_test(&pi_state->refcount))
839 return;
840
841 /*
842 * If pi_state->owner is NULL, the owner is most probably dying
843 * and has cleaned up the pi_state already
844 */
845 if (pi_state->owner) {
c74aef2d 846 struct task_struct *owner;
c87e2837 847
c74aef2d
PZ
848 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
849 owner = pi_state->owner;
850 if (owner) {
851 raw_spin_lock(&owner->pi_lock);
852 list_del_init(&pi_state->list);
853 raw_spin_unlock(&owner->pi_lock);
854 }
855 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
856 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
857 }
858
c74aef2d 859 if (current->pi_state_cache) {
c87e2837 860 kfree(pi_state);
c74aef2d 861 } else {
c87e2837
IM
862 /*
863 * pi_state->list is already empty.
864 * clear pi_state->owner.
865 * refcount is at 0 - put it back to 1.
866 */
867 pi_state->owner = NULL;
868 atomic_set(&pi_state->refcount, 1);
869 current->pi_state_cache = pi_state;
870 }
871}
872
bc2eecd7
NP
873#ifdef CONFIG_FUTEX_PI
874
c87e2837
IM
875/*
876 * This task is holding PI mutexes at exit time => bad.
877 * Kernel cleans up PI-state, but userspace is likely hosed.
878 * (Robust-futex cleanup is separate and might save the day for userspace.)
879 */
880void exit_pi_state_list(struct task_struct *curr)
881{
c87e2837
IM
882 struct list_head *next, *head = &curr->pi_state_list;
883 struct futex_pi_state *pi_state;
627371d7 884 struct futex_hash_bucket *hb;
38d47c1b 885 union futex_key key = FUTEX_KEY_INIT;
c87e2837 886
a0c1e907
TG
887 if (!futex_cmpxchg_enabled)
888 return;
c87e2837
IM
889 /*
890 * We are a ZOMBIE and nobody can enqueue itself on
891 * pi_state_list anymore, but we have to be careful
627371d7 892 * versus waiters unqueueing themselves:
c87e2837 893 */
1d615482 894 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 895 while (!list_empty(head)) {
c87e2837
IM
896 next = head->next;
897 pi_state = list_entry(next, struct futex_pi_state, list);
898 key = pi_state->key;
627371d7 899 hb = hash_futex(&key);
153fbd12
PZ
900
901 /*
902 * We can race against put_pi_state() removing itself from the
903 * list (a waiter going away). put_pi_state() will first
904 * decrement the reference count and then modify the list, so
905 * its possible to see the list entry but fail this reference
906 * acquire.
907 *
908 * In that case; drop the locks to let put_pi_state() make
909 * progress and retry the loop.
910 */
911 if (!atomic_inc_not_zero(&pi_state->refcount)) {
912 raw_spin_unlock_irq(&curr->pi_lock);
913 cpu_relax();
914 raw_spin_lock_irq(&curr->pi_lock);
915 continue;
916 }
1d615482 917 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 918
c87e2837 919 spin_lock(&hb->lock);
c74aef2d
PZ
920 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
921 raw_spin_lock(&curr->pi_lock);
627371d7
IM
922 /*
923 * We dropped the pi-lock, so re-check whether this
924 * task still owns the PI-state:
925 */
c87e2837 926 if (head->next != next) {
153fbd12 927 /* retain curr->pi_lock for the loop invariant */
c74aef2d 928 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837 929 spin_unlock(&hb->lock);
153fbd12 930 put_pi_state(pi_state);
c87e2837
IM
931 continue;
932 }
933
c87e2837 934 WARN_ON(pi_state->owner != curr);
627371d7
IM
935 WARN_ON(list_empty(&pi_state->list));
936 list_del_init(&pi_state->list);
c87e2837 937 pi_state->owner = NULL;
c87e2837 938
153fbd12 939 raw_spin_unlock(&curr->pi_lock);
c74aef2d 940 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
941 spin_unlock(&hb->lock);
942
16ffa12d
PZ
943 rt_mutex_futex_unlock(&pi_state->pi_mutex);
944 put_pi_state(pi_state);
945
1d615482 946 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 947 }
1d615482 948 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
949}
950
bc2eecd7
NP
951#endif
952
54a21788
TG
953/*
954 * We need to check the following states:
955 *
956 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
957 *
958 * [1] NULL | --- | --- | 0 | 0/1 | Valid
959 * [2] NULL | --- | --- | >0 | 0/1 | Valid
960 *
961 * [3] Found | NULL | -- | Any | 0/1 | Invalid
962 *
963 * [4] Found | Found | NULL | 0 | 1 | Valid
964 * [5] Found | Found | NULL | >0 | 1 | Invalid
965 *
966 * [6] Found | Found | task | 0 | 1 | Valid
967 *
968 * [7] Found | Found | NULL | Any | 0 | Invalid
969 *
970 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
971 * [9] Found | Found | task | 0 | 0 | Invalid
972 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
973 *
974 * [1] Indicates that the kernel can acquire the futex atomically. We
975 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
976 *
977 * [2] Valid, if TID does not belong to a kernel thread. If no matching
978 * thread is found then it indicates that the owner TID has died.
979 *
980 * [3] Invalid. The waiter is queued on a non PI futex
981 *
982 * [4] Valid state after exit_robust_list(), which sets the user space
983 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
984 *
985 * [5] The user space value got manipulated between exit_robust_list()
986 * and exit_pi_state_list()
987 *
988 * [6] Valid state after exit_pi_state_list() which sets the new owner in
989 * the pi_state but cannot access the user space value.
990 *
991 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
992 *
993 * [8] Owner and user space value match
994 *
995 * [9] There is no transient state which sets the user space TID to 0
996 * except exit_robust_list(), but this is indicated by the
997 * FUTEX_OWNER_DIED bit. See [4]
998 *
999 * [10] There is no transient state which leaves owner and user space
1000 * TID out of sync.
734009e9
PZ
1001 *
1002 *
1003 * Serialization and lifetime rules:
1004 *
1005 * hb->lock:
1006 *
1007 * hb -> futex_q, relation
1008 * futex_q -> pi_state, relation
1009 *
1010 * (cannot be raw because hb can contain arbitrary amount
1011 * of futex_q's)
1012 *
1013 * pi_mutex->wait_lock:
1014 *
1015 * {uval, pi_state}
1016 *
1017 * (and pi_mutex 'obviously')
1018 *
1019 * p->pi_lock:
1020 *
1021 * p->pi_state_list -> pi_state->list, relation
1022 *
1023 * pi_state->refcount:
1024 *
1025 * pi_state lifetime
1026 *
1027 *
1028 * Lock order:
1029 *
1030 * hb->lock
1031 * pi_mutex->wait_lock
1032 * p->pi_lock
1033 *
54a21788 1034 */
e60cbc5c
TG
1035
1036/*
1037 * Validate that the existing waiter has a pi_state and sanity check
1038 * the pi_state against the user space value. If correct, attach to
1039 * it.
1040 */
734009e9
PZ
1041static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1042 struct futex_pi_state *pi_state,
e60cbc5c 1043 struct futex_pi_state **ps)
c87e2837 1044{
778e9a9c 1045 pid_t pid = uval & FUTEX_TID_MASK;
94ffac5d
PZ
1046 u32 uval2;
1047 int ret;
c87e2837 1048
e60cbc5c
TG
1049 /*
1050 * Userspace might have messed up non-PI and PI futexes [3]
1051 */
1052 if (unlikely(!pi_state))
1053 return -EINVAL;
06a9ec29 1054
734009e9
PZ
1055 /*
1056 * We get here with hb->lock held, and having found a
1057 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1058 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1059 * which in turn means that futex_lock_pi() still has a reference on
1060 * our pi_state.
16ffa12d
PZ
1061 *
1062 * The waiter holding a reference on @pi_state also protects against
1063 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1064 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1065 * free pi_state before we can take a reference ourselves.
734009e9 1066 */
e60cbc5c 1067 WARN_ON(!atomic_read(&pi_state->refcount));
59647b6a 1068
734009e9
PZ
1069 /*
1070 * Now that we have a pi_state, we can acquire wait_lock
1071 * and do the state validation.
1072 */
1073 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1074
1075 /*
1076 * Since {uval, pi_state} is serialized by wait_lock, and our current
1077 * uval was read without holding it, it can have changed. Verify it
1078 * still is what we expect it to be, otherwise retry the entire
1079 * operation.
1080 */
1081 if (get_futex_value_locked(&uval2, uaddr))
1082 goto out_efault;
1083
1084 if (uval != uval2)
1085 goto out_eagain;
1086
e60cbc5c
TG
1087 /*
1088 * Handle the owner died case:
1089 */
1090 if (uval & FUTEX_OWNER_DIED) {
bd1dbcc6 1091 /*
e60cbc5c
TG
1092 * exit_pi_state_list sets owner to NULL and wakes the
1093 * topmost waiter. The task which acquires the
1094 * pi_state->rt_mutex will fixup owner.
bd1dbcc6 1095 */
e60cbc5c 1096 if (!pi_state->owner) {
59647b6a 1097 /*
e60cbc5c
TG
1098 * No pi state owner, but the user space TID
1099 * is not 0. Inconsistent state. [5]
59647b6a 1100 */
e60cbc5c 1101 if (pid)
734009e9 1102 goto out_einval;
bd1dbcc6 1103 /*
e60cbc5c 1104 * Take a ref on the state and return success. [4]
866293ee 1105 */
734009e9 1106 goto out_attach;
c87e2837 1107 }
bd1dbcc6
TG
1108
1109 /*
e60cbc5c
TG
1110 * If TID is 0, then either the dying owner has not
1111 * yet executed exit_pi_state_list() or some waiter
1112 * acquired the rtmutex in the pi state, but did not
1113 * yet fixup the TID in user space.
1114 *
1115 * Take a ref on the state and return success. [6]
1116 */
1117 if (!pid)
734009e9 1118 goto out_attach;
e60cbc5c
TG
1119 } else {
1120 /*
1121 * If the owner died bit is not set, then the pi_state
1122 * must have an owner. [7]
bd1dbcc6 1123 */
e60cbc5c 1124 if (!pi_state->owner)
734009e9 1125 goto out_einval;
c87e2837
IM
1126 }
1127
e60cbc5c
TG
1128 /*
1129 * Bail out if user space manipulated the futex value. If pi
1130 * state exists then the owner TID must be the same as the
1131 * user space TID. [9/10]
1132 */
1133 if (pid != task_pid_vnr(pi_state->owner))
734009e9
PZ
1134 goto out_einval;
1135
1136out_attach:
bf92cf3a 1137 get_pi_state(pi_state);
734009e9 1138 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
e60cbc5c
TG
1139 *ps = pi_state;
1140 return 0;
734009e9
PZ
1141
1142out_einval:
1143 ret = -EINVAL;
1144 goto out_error;
1145
1146out_eagain:
1147 ret = -EAGAIN;
1148 goto out_error;
1149
1150out_efault:
1151 ret = -EFAULT;
1152 goto out_error;
1153
1154out_error:
1155 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1156 return ret;
e60cbc5c
TG
1157}
1158
da791a66
TG
1159static int handle_exit_race(u32 __user *uaddr, u32 uval,
1160 struct task_struct *tsk)
1161{
1162 u32 uval2;
1163
1164 /*
1165 * If PF_EXITPIDONE is not yet set, then try again.
1166 */
1167 if (tsk && !(tsk->flags & PF_EXITPIDONE))
1168 return -EAGAIN;
1169
1170 /*
1171 * Reread the user space value to handle the following situation:
1172 *
1173 * CPU0 CPU1
1174 *
1175 * sys_exit() sys_futex()
1176 * do_exit() futex_lock_pi()
1177 * futex_lock_pi_atomic()
1178 * exit_signals(tsk) No waiters:
1179 * tsk->flags |= PF_EXITING; *uaddr == 0x00000PID
1180 * mm_release(tsk) Set waiter bit
1181 * exit_robust_list(tsk) { *uaddr = 0x80000PID;
1182 * Set owner died attach_to_pi_owner() {
1183 * *uaddr = 0xC0000000; tsk = get_task(PID);
1184 * } if (!tsk->flags & PF_EXITING) {
1185 * ... attach();
1186 * tsk->flags |= PF_EXITPIDONE; } else {
1187 * if (!(tsk->flags & PF_EXITPIDONE))
1188 * return -EAGAIN;
1189 * return -ESRCH; <--- FAIL
1190 * }
1191 *
1192 * Returning ESRCH unconditionally is wrong here because the
1193 * user space value has been changed by the exiting task.
1194 *
1195 * The same logic applies to the case where the exiting task is
1196 * already gone.
1197 */
1198 if (get_futex_value_locked(&uval2, uaddr))
1199 return -EFAULT;
1200
1201 /* If the user space value has changed, try again. */
1202 if (uval2 != uval)
1203 return -EAGAIN;
1204
1205 /*
1206 * The exiting task did not have a robust list, the robust list was
1207 * corrupted or the user space value in *uaddr is simply bogus.
1208 * Give up and tell user space.
1209 */
1210 return -ESRCH;
1211}
1212
04e1b2e5
TG
1213/*
1214 * Lookup the task for the TID provided from user space and attach to
1215 * it after doing proper sanity checks.
1216 */
da791a66 1217static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
04e1b2e5 1218 struct futex_pi_state **ps)
e60cbc5c 1219{
e60cbc5c 1220 pid_t pid = uval & FUTEX_TID_MASK;
04e1b2e5
TG
1221 struct futex_pi_state *pi_state;
1222 struct task_struct *p;
e60cbc5c 1223
c87e2837 1224 /*
e3f2ddea 1225 * We are the first waiter - try to look up the real owner and attach
54a21788 1226 * the new pi_state to it, but bail out when TID = 0 [1]
da791a66
TG
1227 *
1228 * The !pid check is paranoid. None of the call sites should end up
1229 * with pid == 0, but better safe than sorry. Let the caller retry
c87e2837 1230 */
778e9a9c 1231 if (!pid)
da791a66 1232 return -EAGAIN;
2ee08260 1233 p = find_get_task_by_vpid(pid);
7a0ea09a 1234 if (!p)
da791a66 1235 return handle_exit_race(uaddr, uval, NULL);
778e9a9c 1236
a2129464 1237 if (unlikely(p->flags & PF_KTHREAD)) {
f0d71b3d
TG
1238 put_task_struct(p);
1239 return -EPERM;
1240 }
1241
778e9a9c
AK
1242 /*
1243 * We need to look at the task state flags to figure out,
1244 * whether the task is exiting. To protect against the do_exit
1245 * change of the task flags, we do this protected by
1246 * p->pi_lock:
1247 */
1d615482 1248 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
1249 if (unlikely(p->flags & PF_EXITING)) {
1250 /*
1251 * The task is on the way out. When PF_EXITPIDONE is
1252 * set, we know that the task has finished the
1253 * cleanup:
1254 */
da791a66 1255 int ret = handle_exit_race(uaddr, uval, p);
778e9a9c 1256
1d615482 1257 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
1258 put_task_struct(p);
1259 return ret;
1260 }
c87e2837 1261
54a21788
TG
1262 /*
1263 * No existing pi state. First waiter. [2]
734009e9
PZ
1264 *
1265 * This creates pi_state, we have hb->lock held, this means nothing can
1266 * observe this state, wait_lock is irrelevant.
54a21788 1267 */
c87e2837
IM
1268 pi_state = alloc_pi_state();
1269
1270 /*
04e1b2e5 1271 * Initialize the pi_mutex in locked state and make @p
c87e2837
IM
1272 * the owner of it:
1273 */
1274 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1275
1276 /* Store the key for possible exit cleanups: */
d0aa7a70 1277 pi_state->key = *key;
c87e2837 1278
627371d7 1279 WARN_ON(!list_empty(&pi_state->list));
c87e2837 1280 list_add(&pi_state->list, &p->pi_state_list);
c74aef2d
PZ
1281 /*
1282 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1283 * because there is no concurrency as the object is not published yet.
1284 */
c87e2837 1285 pi_state->owner = p;
1d615482 1286 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
1287
1288 put_task_struct(p);
1289
d0aa7a70 1290 *ps = pi_state;
c87e2837
IM
1291
1292 return 0;
1293}
1294
734009e9
PZ
1295static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1296 struct futex_hash_bucket *hb,
04e1b2e5
TG
1297 union futex_key *key, struct futex_pi_state **ps)
1298{
499f5aca 1299 struct futex_q *top_waiter = futex_top_waiter(hb, key);
04e1b2e5
TG
1300
1301 /*
1302 * If there is a waiter on that futex, validate it and
1303 * attach to the pi_state when the validation succeeds.
1304 */
499f5aca 1305 if (top_waiter)
734009e9 1306 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
04e1b2e5
TG
1307
1308 /*
1309 * We are the first waiter - try to look up the owner based on
1310 * @uval and attach to it.
1311 */
da791a66 1312 return attach_to_pi_owner(uaddr, uval, key, ps);
04e1b2e5
TG
1313}
1314
af54d6a1
TG
1315static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1316{
1317 u32 uninitialized_var(curval);
1318
ab51fbab
DB
1319 if (unlikely(should_fail_futex(true)))
1320 return -EFAULT;
1321
af54d6a1
TG
1322 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1323 return -EFAULT;
1324
734009e9 1325 /* If user space value changed, let the caller retry */
af54d6a1
TG
1326 return curval != uval ? -EAGAIN : 0;
1327}
1328
1a52084d 1329/**
d96ee56c 1330 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
1331 * @uaddr: the pi futex user address
1332 * @hb: the pi futex hash bucket
1333 * @key: the futex key associated with uaddr and hb
1334 * @ps: the pi_state pointer where we store the result of the
1335 * lookup
1336 * @task: the task to perform the atomic lock work for. This will
1337 * be "current" except in the case of requeue pi.
1338 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 1339 *
6c23cbbd 1340 * Return:
7b4ff1ad
MCC
1341 * - 0 - ready to wait;
1342 * - 1 - acquired the lock;
1343 * - <0 - error
1a52084d
DH
1344 *
1345 * The hb->lock and futex_key refs shall be held by the caller.
1346 */
1347static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1348 union futex_key *key,
1349 struct futex_pi_state **ps,
bab5bc9e 1350 struct task_struct *task, int set_waiters)
1a52084d 1351{
af54d6a1 1352 u32 uval, newval, vpid = task_pid_vnr(task);
499f5aca 1353 struct futex_q *top_waiter;
af54d6a1 1354 int ret;
1a52084d
DH
1355
1356 /*
af54d6a1
TG
1357 * Read the user space value first so we can validate a few
1358 * things before proceeding further.
1a52084d 1359 */
af54d6a1 1360 if (get_futex_value_locked(&uval, uaddr))
1a52084d
DH
1361 return -EFAULT;
1362
ab51fbab
DB
1363 if (unlikely(should_fail_futex(true)))
1364 return -EFAULT;
1365
1a52084d
DH
1366 /*
1367 * Detect deadlocks.
1368 */
af54d6a1 1369 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
1370 return -EDEADLK;
1371
ab51fbab
DB
1372 if ((unlikely(should_fail_futex(true))))
1373 return -EDEADLK;
1374
1a52084d 1375 /*
af54d6a1
TG
1376 * Lookup existing state first. If it exists, try to attach to
1377 * its pi_state.
1a52084d 1378 */
499f5aca
PZ
1379 top_waiter = futex_top_waiter(hb, key);
1380 if (top_waiter)
734009e9 1381 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1a52084d
DH
1382
1383 /*
af54d6a1
TG
1384 * No waiter and user TID is 0. We are here because the
1385 * waiters or the owner died bit is set or called from
1386 * requeue_cmp_pi or for whatever reason something took the
1387 * syscall.
1a52084d 1388 */
af54d6a1 1389 if (!(uval & FUTEX_TID_MASK)) {
59fa6245 1390 /*
af54d6a1
TG
1391 * We take over the futex. No other waiters and the user space
1392 * TID is 0. We preserve the owner died bit.
59fa6245 1393 */
af54d6a1
TG
1394 newval = uval & FUTEX_OWNER_DIED;
1395 newval |= vpid;
1a52084d 1396
af54d6a1
TG
1397 /* The futex requeue_pi code can enforce the waiters bit */
1398 if (set_waiters)
1399 newval |= FUTEX_WAITERS;
1400
1401 ret = lock_pi_update_atomic(uaddr, uval, newval);
1402 /* If the take over worked, return 1 */
1403 return ret < 0 ? ret : 1;
1404 }
1a52084d
DH
1405
1406 /*
af54d6a1
TG
1407 * First waiter. Set the waiters bit before attaching ourself to
1408 * the owner. If owner tries to unlock, it will be forced into
1409 * the kernel and blocked on hb->lock.
1a52084d 1410 */
af54d6a1
TG
1411 newval = uval | FUTEX_WAITERS;
1412 ret = lock_pi_update_atomic(uaddr, uval, newval);
1413 if (ret)
1414 return ret;
1a52084d 1415 /*
af54d6a1
TG
1416 * If the update of the user space value succeeded, we try to
1417 * attach to the owner. If that fails, no harm done, we only
1418 * set the FUTEX_WAITERS bit in the user space variable.
1a52084d 1419 */
da791a66 1420 return attach_to_pi_owner(uaddr, newval, key, ps);
1a52084d
DH
1421}
1422
2e12978a
LJ
1423/**
1424 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1425 * @q: The futex_q to unqueue
1426 *
1427 * The q->lock_ptr must not be NULL and must be held by the caller.
1428 */
1429static void __unqueue_futex(struct futex_q *q)
1430{
1431 struct futex_hash_bucket *hb;
1432
4de1a293 1433 if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
2e12978a 1434 return;
4de1a293 1435 lockdep_assert_held(q->lock_ptr);
2e12978a
LJ
1436
1437 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1438 plist_del(&q->list, &hb->chain);
11d4616b 1439 hb_waiters_dec(hb);
2e12978a
LJ
1440}
1441
1da177e4
LT
1442/*
1443 * The hash bucket lock must be held when this is called.
1d0dcb3a
DB
1444 * Afterwards, the futex_q must not be accessed. Callers
1445 * must ensure to later call wake_up_q() for the actual
1446 * wakeups to occur.
1da177e4 1447 */
1d0dcb3a 1448static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1da177e4 1449{
f1a11e05
TG
1450 struct task_struct *p = q->task;
1451
aa10990e
DH
1452 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1453 return;
1454
b061c38b 1455 get_task_struct(p);
2e12978a 1456 __unqueue_futex(q);
1da177e4 1457 /*
38fcd06e
DHV
1458 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1459 * is written, without taking any locks. This is possible in the event
1460 * of a spurious wakeup, for example. A memory barrier is required here
1461 * to prevent the following store to lock_ptr from getting ahead of the
1462 * plist_del in __unqueue_futex().
1da177e4 1463 */
1b367ece 1464 smp_store_release(&q->lock_ptr, NULL);
b061c38b
PZ
1465
1466 /*
1467 * Queue the task for later wakeup for after we've released
1468 * the hb->lock. wake_q_add() grabs reference to p.
1469 */
1470 wake_q_add(wake_q, p);
1471 put_task_struct(p);
1da177e4
LT
1472}
1473
16ffa12d
PZ
1474/*
1475 * Caller must hold a reference on @pi_state.
1476 */
1477static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
c87e2837 1478{
7cfdaf38 1479 u32 uninitialized_var(curval), newval;
16ffa12d 1480 struct task_struct *new_owner;
aa2bfe55 1481 bool postunlock = false;
194a6b5b 1482 DEFINE_WAKE_Q(wake_q);
13fbca4c 1483 int ret = 0;
c87e2837 1484
c87e2837 1485 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
bebe5b51 1486 if (WARN_ON_ONCE(!new_owner)) {
16ffa12d 1487 /*
bebe5b51 1488 * As per the comment in futex_unlock_pi() this should not happen.
16ffa12d
PZ
1489 *
1490 * When this happens, give up our locks and try again, giving
1491 * the futex_lock_pi() instance time to complete, either by
1492 * waiting on the rtmutex or removing itself from the futex
1493 * queue.
1494 */
1495 ret = -EAGAIN;
1496 goto out_unlock;
73d786bd 1497 }
c87e2837
IM
1498
1499 /*
16ffa12d
PZ
1500 * We pass it to the next owner. The WAITERS bit is always kept
1501 * enabled while there is PI state around. We cleanup the owner
1502 * died bit, because we are the owner.
c87e2837 1503 */
13fbca4c 1504 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 1505
ab51fbab
DB
1506 if (unlikely(should_fail_futex(true)))
1507 ret = -EFAULT;
1508
89e9e66b 1509 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
13fbca4c 1510 ret = -EFAULT;
734009e9 1511
89e9e66b
SAS
1512 } else if (curval != uval) {
1513 /*
1514 * If a unconditional UNLOCK_PI operation (user space did not
1515 * try the TID->0 transition) raced with a waiter setting the
1516 * FUTEX_WAITERS flag between get_user() and locking the hash
1517 * bucket lock, retry the operation.
1518 */
1519 if ((FUTEX_TID_MASK & curval) == uval)
1520 ret = -EAGAIN;
1521 else
1522 ret = -EINVAL;
1523 }
734009e9 1524
16ffa12d
PZ
1525 if (ret)
1526 goto out_unlock;
c87e2837 1527
94ffac5d
PZ
1528 /*
1529 * This is a point of no return; once we modify the uval there is no
1530 * going back and subsequent operations must not fail.
1531 */
1532
b4abf910 1533 raw_spin_lock(&pi_state->owner->pi_lock);
627371d7
IM
1534 WARN_ON(list_empty(&pi_state->list));
1535 list_del_init(&pi_state->list);
b4abf910 1536 raw_spin_unlock(&pi_state->owner->pi_lock);
627371d7 1537
b4abf910 1538 raw_spin_lock(&new_owner->pi_lock);
627371d7 1539 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1540 list_add(&pi_state->list, &new_owner->pi_state_list);
1541 pi_state->owner = new_owner;
b4abf910 1542 raw_spin_unlock(&new_owner->pi_lock);
627371d7 1543
aa2bfe55 1544 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
5293c2ef 1545
16ffa12d 1546out_unlock:
5293c2ef 1547 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
5293c2ef 1548
aa2bfe55
PZ
1549 if (postunlock)
1550 rt_mutex_postunlock(&wake_q);
c87e2837 1551
16ffa12d 1552 return ret;
c87e2837
IM
1553}
1554
8b8f319f
IM
1555/*
1556 * Express the locking dependencies for lockdep:
1557 */
1558static inline void
1559double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1560{
1561 if (hb1 <= hb2) {
1562 spin_lock(&hb1->lock);
1563 if (hb1 < hb2)
1564 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1565 } else { /* hb1 > hb2 */
1566 spin_lock(&hb2->lock);
1567 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1568 }
1569}
1570
5eb3dc62
DH
1571static inline void
1572double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1573{
f061d351 1574 spin_unlock(&hb1->lock);
88f502fe
IM
1575 if (hb1 != hb2)
1576 spin_unlock(&hb2->lock);
5eb3dc62
DH
1577}
1578
1da177e4 1579/*
b2d0994b 1580 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1581 */
b41277dc
DH
1582static int
1583futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1584{
e2970f2f 1585 struct futex_hash_bucket *hb;
1da177e4 1586 struct futex_q *this, *next;
38d47c1b 1587 union futex_key key = FUTEX_KEY_INIT;
1da177e4 1588 int ret;
194a6b5b 1589 DEFINE_WAKE_Q(wake_q);
1da177e4 1590
cd689985
TG
1591 if (!bitset)
1592 return -EINVAL;
1593
96d4f267 1594 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1da177e4
LT
1595 if (unlikely(ret != 0))
1596 goto out;
1597
e2970f2f 1598 hb = hash_futex(&key);
b0c29f79
DB
1599
1600 /* Make sure we really have tasks to wakeup */
1601 if (!hb_waiters_pending(hb))
1602 goto out_put_key;
1603
e2970f2f 1604 spin_lock(&hb->lock);
1da177e4 1605
0d00c7b2 1606 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1da177e4 1607 if (match_futex (&this->key, &key)) {
52400ba9 1608 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1609 ret = -EINVAL;
1610 break;
1611 }
cd689985
TG
1612
1613 /* Check if one of the bits is set in both bitsets */
1614 if (!(this->bitset & bitset))
1615 continue;
1616
1d0dcb3a 1617 mark_wake_futex(&wake_q, this);
1da177e4
LT
1618 if (++ret >= nr_wake)
1619 break;
1620 }
1621 }
1622
e2970f2f 1623 spin_unlock(&hb->lock);
1d0dcb3a 1624 wake_up_q(&wake_q);
b0c29f79 1625out_put_key:
ae791a2d 1626 put_futex_key(&key);
42d35d48 1627out:
1da177e4
LT
1628 return ret;
1629}
1630
30d6e0a4
JS
1631static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1632{
1633 unsigned int op = (encoded_op & 0x70000000) >> 28;
1634 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
d70ef228
JS
1635 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1636 int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
30d6e0a4
JS
1637 int oldval, ret;
1638
1639 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
e78c38f6
JS
1640 if (oparg < 0 || oparg > 31) {
1641 char comm[sizeof(current->comm)];
1642 /*
1643 * kill this print and return -EINVAL when userspace
1644 * is sane again
1645 */
1646 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1647 get_task_comm(comm, current), oparg);
1648 oparg &= 31;
1649 }
30d6e0a4
JS
1650 oparg = 1 << oparg;
1651 }
1652
96d4f267 1653 if (!access_ok(uaddr, sizeof(u32)))
30d6e0a4
JS
1654 return -EFAULT;
1655
1656 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1657 if (ret)
1658 return ret;
1659
1660 switch (cmp) {
1661 case FUTEX_OP_CMP_EQ:
1662 return oldval == cmparg;
1663 case FUTEX_OP_CMP_NE:
1664 return oldval != cmparg;
1665 case FUTEX_OP_CMP_LT:
1666 return oldval < cmparg;
1667 case FUTEX_OP_CMP_GE:
1668 return oldval >= cmparg;
1669 case FUTEX_OP_CMP_LE:
1670 return oldval <= cmparg;
1671 case FUTEX_OP_CMP_GT:
1672 return oldval > cmparg;
1673 default:
1674 return -ENOSYS;
1675 }
1676}
1677
4732efbe
JJ
1678/*
1679 * Wake up all waiters hashed on the physical page that is mapped
1680 * to this virtual address:
1681 */
e2970f2f 1682static int
b41277dc 1683futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1684 int nr_wake, int nr_wake2, int op)
4732efbe 1685{
38d47c1b 1686 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1687 struct futex_hash_bucket *hb1, *hb2;
4732efbe 1688 struct futex_q *this, *next;
e4dc5b7a 1689 int ret, op_ret;
194a6b5b 1690 DEFINE_WAKE_Q(wake_q);
4732efbe 1691
e4dc5b7a 1692retry:
96d4f267 1693 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
4732efbe
JJ
1694 if (unlikely(ret != 0))
1695 goto out;
96d4f267 1696 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
4732efbe 1697 if (unlikely(ret != 0))
42d35d48 1698 goto out_put_key1;
4732efbe 1699
e2970f2f
IM
1700 hb1 = hash_futex(&key1);
1701 hb2 = hash_futex(&key2);
4732efbe 1702
e4dc5b7a 1703retry_private:
eaaea803 1704 double_lock_hb(hb1, hb2);
e2970f2f 1705 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1706 if (unlikely(op_ret < 0)) {
4732efbe 1707
5eb3dc62 1708 double_unlock_hb(hb1, hb2);
4732efbe 1709
7ee1dd3f 1710#ifndef CONFIG_MMU
e2970f2f
IM
1711 /*
1712 * we don't get EFAULT from MMU faults if we don't have an MMU,
1713 * but we might get them from range checking
1714 */
7ee1dd3f 1715 ret = op_ret;
42d35d48 1716 goto out_put_keys;
7ee1dd3f
DH
1717#endif
1718
796f8d9b
DG
1719 if (unlikely(op_ret != -EFAULT)) {
1720 ret = op_ret;
42d35d48 1721 goto out_put_keys;
796f8d9b
DG
1722 }
1723
d0725992 1724 ret = fault_in_user_writeable(uaddr2);
4732efbe 1725 if (ret)
de87fcc1 1726 goto out_put_keys;
4732efbe 1727
b41277dc 1728 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1729 goto retry_private;
1730
ae791a2d
TG
1731 put_futex_key(&key2);
1732 put_futex_key(&key1);
e4dc5b7a 1733 goto retry;
4732efbe
JJ
1734 }
1735
0d00c7b2 1736 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
4732efbe 1737 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1738 if (this->pi_state || this->rt_waiter) {
1739 ret = -EINVAL;
1740 goto out_unlock;
1741 }
1d0dcb3a 1742 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1743 if (++ret >= nr_wake)
1744 break;
1745 }
1746 }
1747
1748 if (op_ret > 0) {
4732efbe 1749 op_ret = 0;
0d00c7b2 1750 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
4732efbe 1751 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1752 if (this->pi_state || this->rt_waiter) {
1753 ret = -EINVAL;
1754 goto out_unlock;
1755 }
1d0dcb3a 1756 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1757 if (++op_ret >= nr_wake2)
1758 break;
1759 }
1760 }
1761 ret += op_ret;
1762 }
1763
aa10990e 1764out_unlock:
5eb3dc62 1765 double_unlock_hb(hb1, hb2);
1d0dcb3a 1766 wake_up_q(&wake_q);
42d35d48 1767out_put_keys:
ae791a2d 1768 put_futex_key(&key2);
42d35d48 1769out_put_key1:
ae791a2d 1770 put_futex_key(&key1);
42d35d48 1771out:
4732efbe
JJ
1772 return ret;
1773}
1774
9121e478
DH
1775/**
1776 * requeue_futex() - Requeue a futex_q from one hb to another
1777 * @q: the futex_q to requeue
1778 * @hb1: the source hash_bucket
1779 * @hb2: the target hash_bucket
1780 * @key2: the new key for the requeued futex_q
1781 */
1782static inline
1783void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1784 struct futex_hash_bucket *hb2, union futex_key *key2)
1785{
1786
1787 /*
1788 * If key1 and key2 hash to the same bucket, no need to
1789 * requeue.
1790 */
1791 if (likely(&hb1->chain != &hb2->chain)) {
1792 plist_del(&q->list, &hb1->chain);
11d4616b 1793 hb_waiters_dec(hb1);
11d4616b 1794 hb_waiters_inc(hb2);
fe1bce9e 1795 plist_add(&q->list, &hb2->chain);
9121e478 1796 q->lock_ptr = &hb2->lock;
9121e478
DH
1797 }
1798 get_futex_key_refs(key2);
1799 q->key = *key2;
1800}
1801
52400ba9
DH
1802/**
1803 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1804 * @q: the futex_q
1805 * @key: the key of the requeue target futex
1806 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1807 *
1808 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1809 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1810 * to the requeue target futex so the waiter can detect the wakeup on the right
1811 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1812 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1813 * to protect access to the pi_state to fixup the owner later. Must be called
1814 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1815 */
1816static inline
beda2c7e
DH
1817void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1818 struct futex_hash_bucket *hb)
52400ba9 1819{
52400ba9
DH
1820 get_futex_key_refs(key);
1821 q->key = *key;
1822
2e12978a 1823 __unqueue_futex(q);
52400ba9
DH
1824
1825 WARN_ON(!q->rt_waiter);
1826 q->rt_waiter = NULL;
1827
beda2c7e 1828 q->lock_ptr = &hb->lock;
beda2c7e 1829
f1a11e05 1830 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1831}
1832
1833/**
1834 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1835 * @pifutex: the user address of the to futex
1836 * @hb1: the from futex hash bucket, must be locked by the caller
1837 * @hb2: the to futex hash bucket, must be locked by the caller
1838 * @key1: the from futex key
1839 * @key2: the to futex key
1840 * @ps: address to store the pi_state pointer
1841 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1842 *
1843 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1844 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1845 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1846 * hb1 and hb2 must be held by the caller.
52400ba9 1847 *
6c23cbbd 1848 * Return:
7b4ff1ad
MCC
1849 * - 0 - failed to acquire the lock atomically;
1850 * - >0 - acquired the lock, return value is vpid of the top_waiter
1851 * - <0 - error
52400ba9
DH
1852 */
1853static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1854 struct futex_hash_bucket *hb1,
1855 struct futex_hash_bucket *hb2,
1856 union futex_key *key1, union futex_key *key2,
bab5bc9e 1857 struct futex_pi_state **ps, int set_waiters)
52400ba9 1858{
bab5bc9e 1859 struct futex_q *top_waiter = NULL;
52400ba9 1860 u32 curval;
866293ee 1861 int ret, vpid;
52400ba9
DH
1862
1863 if (get_futex_value_locked(&curval, pifutex))
1864 return -EFAULT;
1865
ab51fbab
DB
1866 if (unlikely(should_fail_futex(true)))
1867 return -EFAULT;
1868
bab5bc9e
DH
1869 /*
1870 * Find the top_waiter and determine if there are additional waiters.
1871 * If the caller intends to requeue more than 1 waiter to pifutex,
1872 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1873 * as we have means to handle the possible fault. If not, don't set
1874 * the bit unecessarily as it will force the subsequent unlock to enter
1875 * the kernel.
1876 */
52400ba9
DH
1877 top_waiter = futex_top_waiter(hb1, key1);
1878
1879 /* There are no waiters, nothing for us to do. */
1880 if (!top_waiter)
1881 return 0;
1882
84bc4af5
DH
1883 /* Ensure we requeue to the expected futex. */
1884 if (!match_futex(top_waiter->requeue_pi_key, key2))
1885 return -EINVAL;
1886
52400ba9 1887 /*
bab5bc9e
DH
1888 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1889 * the contended case or if set_waiters is 1. The pi_state is returned
1890 * in ps in contended cases.
52400ba9 1891 */
866293ee 1892 vpid = task_pid_vnr(top_waiter->task);
bab5bc9e
DH
1893 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1894 set_waiters);
866293ee 1895 if (ret == 1) {
beda2c7e 1896 requeue_pi_wake_futex(top_waiter, key2, hb2);
866293ee
TG
1897 return vpid;
1898 }
52400ba9
DH
1899 return ret;
1900}
1901
1902/**
1903 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1904 * @uaddr1: source futex user address
b41277dc 1905 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1906 * @uaddr2: target futex user address
1907 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1908 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1909 * @cmpval: @uaddr1 expected value (or %NULL)
1910 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1911 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1912 *
1913 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1914 * uaddr2 atomically on behalf of the top waiter.
1915 *
6c23cbbd 1916 * Return:
7b4ff1ad
MCC
1917 * - >=0 - on success, the number of tasks requeued or woken;
1918 * - <0 - on error
1da177e4 1919 */
b41277dc
DH
1920static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1921 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1922 u32 *cmpval, int requeue_pi)
1da177e4 1923{
38d47c1b 1924 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1925 int drop_count = 0, task_count = 0, ret;
1926 struct futex_pi_state *pi_state = NULL;
e2970f2f 1927 struct futex_hash_bucket *hb1, *hb2;
1da177e4 1928 struct futex_q *this, *next;
194a6b5b 1929 DEFINE_WAKE_Q(wake_q);
52400ba9 1930
fbe0e839
LJ
1931 if (nr_wake < 0 || nr_requeue < 0)
1932 return -EINVAL;
1933
bc2eecd7
NP
1934 /*
1935 * When PI not supported: return -ENOSYS if requeue_pi is true,
1936 * consequently the compiler knows requeue_pi is always false past
1937 * this point which will optimize away all the conditional code
1938 * further down.
1939 */
1940 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1941 return -ENOSYS;
1942
52400ba9 1943 if (requeue_pi) {
e9c243a5
TG
1944 /*
1945 * Requeue PI only works on two distinct uaddrs. This
1946 * check is only valid for private futexes. See below.
1947 */
1948 if (uaddr1 == uaddr2)
1949 return -EINVAL;
1950
52400ba9
DH
1951 /*
1952 * requeue_pi requires a pi_state, try to allocate it now
1953 * without any locks in case it fails.
1954 */
1955 if (refill_pi_state_cache())
1956 return -ENOMEM;
1957 /*
1958 * requeue_pi must wake as many tasks as it can, up to nr_wake
1959 * + nr_requeue, since it acquires the rt_mutex prior to
1960 * returning to userspace, so as to not leave the rt_mutex with
1961 * waiters and no owner. However, second and third wake-ups
1962 * cannot be predicted as they involve race conditions with the
1963 * first wake and a fault while looking up the pi_state. Both
1964 * pthread_cond_signal() and pthread_cond_broadcast() should
1965 * use nr_wake=1.
1966 */
1967 if (nr_wake != 1)
1968 return -EINVAL;
1969 }
1da177e4 1970
42d35d48 1971retry:
96d4f267 1972 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1da177e4
LT
1973 if (unlikely(ret != 0))
1974 goto out;
9ea71503 1975 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
96d4f267 1976 requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1da177e4 1977 if (unlikely(ret != 0))
42d35d48 1978 goto out_put_key1;
1da177e4 1979
e9c243a5
TG
1980 /*
1981 * The check above which compares uaddrs is not sufficient for
1982 * shared futexes. We need to compare the keys:
1983 */
1984 if (requeue_pi && match_futex(&key1, &key2)) {
1985 ret = -EINVAL;
1986 goto out_put_keys;
1987 }
1988
e2970f2f
IM
1989 hb1 = hash_futex(&key1);
1990 hb2 = hash_futex(&key2);
1da177e4 1991
e4dc5b7a 1992retry_private:
69cd9eba 1993 hb_waiters_inc(hb2);
8b8f319f 1994 double_lock_hb(hb1, hb2);
1da177e4 1995
e2970f2f
IM
1996 if (likely(cmpval != NULL)) {
1997 u32 curval;
1da177e4 1998
e2970f2f 1999 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
2000
2001 if (unlikely(ret)) {
5eb3dc62 2002 double_unlock_hb(hb1, hb2);
69cd9eba 2003 hb_waiters_dec(hb2);
1da177e4 2004
e2970f2f 2005 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
2006 if (ret)
2007 goto out_put_keys;
1da177e4 2008
b41277dc 2009 if (!(flags & FLAGS_SHARED))
e4dc5b7a 2010 goto retry_private;
1da177e4 2011
ae791a2d
TG
2012 put_futex_key(&key2);
2013 put_futex_key(&key1);
e4dc5b7a 2014 goto retry;
1da177e4 2015 }
e2970f2f 2016 if (curval != *cmpval) {
1da177e4
LT
2017 ret = -EAGAIN;
2018 goto out_unlock;
2019 }
2020 }
2021
52400ba9 2022 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
2023 /*
2024 * Attempt to acquire uaddr2 and wake the top waiter. If we
2025 * intend to requeue waiters, force setting the FUTEX_WAITERS
2026 * bit. We force this here where we are able to easily handle
2027 * faults rather in the requeue loop below.
2028 */
52400ba9 2029 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 2030 &key2, &pi_state, nr_requeue);
52400ba9
DH
2031
2032 /*
2033 * At this point the top_waiter has either taken uaddr2 or is
2034 * waiting on it. If the former, then the pi_state will not
2035 * exist yet, look it up one more time to ensure we have a
866293ee
TG
2036 * reference to it. If the lock was taken, ret contains the
2037 * vpid of the top waiter task.
ecb38b78
TG
2038 * If the lock was not taken, we have pi_state and an initial
2039 * refcount on it. In case of an error we have nothing.
52400ba9 2040 */
866293ee 2041 if (ret > 0) {
52400ba9 2042 WARN_ON(pi_state);
89061d3d 2043 drop_count++;
52400ba9 2044 task_count++;
866293ee 2045 /*
ecb38b78
TG
2046 * If we acquired the lock, then the user space value
2047 * of uaddr2 should be vpid. It cannot be changed by
2048 * the top waiter as it is blocked on hb2 lock if it
2049 * tries to do so. If something fiddled with it behind
2050 * our back the pi state lookup might unearth it. So
2051 * we rather use the known value than rereading and
2052 * handing potential crap to lookup_pi_state.
2053 *
2054 * If that call succeeds then we have pi_state and an
2055 * initial refcount on it.
866293ee 2056 */
734009e9 2057 ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
52400ba9
DH
2058 }
2059
2060 switch (ret) {
2061 case 0:
ecb38b78 2062 /* We hold a reference on the pi state. */
52400ba9 2063 break;
4959f2de
TG
2064
2065 /* If the above failed, then pi_state is NULL */
52400ba9
DH
2066 case -EFAULT:
2067 double_unlock_hb(hb1, hb2);
69cd9eba 2068 hb_waiters_dec(hb2);
ae791a2d
TG
2069 put_futex_key(&key2);
2070 put_futex_key(&key1);
d0725992 2071 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
2072 if (!ret)
2073 goto retry;
2074 goto out;
2075 case -EAGAIN:
af54d6a1
TG
2076 /*
2077 * Two reasons for this:
2078 * - Owner is exiting and we just wait for the
2079 * exit to complete.
2080 * - The user space value changed.
2081 */
52400ba9 2082 double_unlock_hb(hb1, hb2);
69cd9eba 2083 hb_waiters_dec(hb2);
ae791a2d
TG
2084 put_futex_key(&key2);
2085 put_futex_key(&key1);
52400ba9
DH
2086 cond_resched();
2087 goto retry;
2088 default:
2089 goto out_unlock;
2090 }
2091 }
2092
0d00c7b2 2093 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
52400ba9
DH
2094 if (task_count - nr_wake >= nr_requeue)
2095 break;
2096
2097 if (!match_futex(&this->key, &key1))
1da177e4 2098 continue;
52400ba9 2099
392741e0
DH
2100 /*
2101 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2102 * be paired with each other and no other futex ops.
aa10990e
DH
2103 *
2104 * We should never be requeueing a futex_q with a pi_state,
2105 * which is awaiting a futex_unlock_pi().
392741e0
DH
2106 */
2107 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
2108 (!requeue_pi && this->rt_waiter) ||
2109 this->pi_state) {
392741e0
DH
2110 ret = -EINVAL;
2111 break;
2112 }
52400ba9
DH
2113
2114 /*
2115 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2116 * lock, we already woke the top_waiter. If not, it will be
2117 * woken by futex_unlock_pi().
2118 */
2119 if (++task_count <= nr_wake && !requeue_pi) {
1d0dcb3a 2120 mark_wake_futex(&wake_q, this);
52400ba9
DH
2121 continue;
2122 }
1da177e4 2123
84bc4af5
DH
2124 /* Ensure we requeue to the expected futex for requeue_pi. */
2125 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2126 ret = -EINVAL;
2127 break;
2128 }
2129
52400ba9
DH
2130 /*
2131 * Requeue nr_requeue waiters and possibly one more in the case
2132 * of requeue_pi if we couldn't acquire the lock atomically.
2133 */
2134 if (requeue_pi) {
ecb38b78
TG
2135 /*
2136 * Prepare the waiter to take the rt_mutex. Take a
2137 * refcount on the pi_state and store the pointer in
2138 * the futex_q object of the waiter.
2139 */
bf92cf3a 2140 get_pi_state(pi_state);
52400ba9
DH
2141 this->pi_state = pi_state;
2142 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2143 this->rt_waiter,
c051b21f 2144 this->task);
52400ba9 2145 if (ret == 1) {
ecb38b78
TG
2146 /*
2147 * We got the lock. We do neither drop the
2148 * refcount on pi_state nor clear
2149 * this->pi_state because the waiter needs the
2150 * pi_state for cleaning up the user space
2151 * value. It will drop the refcount after
2152 * doing so.
2153 */
beda2c7e 2154 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 2155 drop_count++;
52400ba9
DH
2156 continue;
2157 } else if (ret) {
ecb38b78
TG
2158 /*
2159 * rt_mutex_start_proxy_lock() detected a
2160 * potential deadlock when we tried to queue
2161 * that waiter. Drop the pi_state reference
2162 * which we took above and remove the pointer
2163 * to the state from the waiters futex_q
2164 * object.
2165 */
52400ba9 2166 this->pi_state = NULL;
29e9ee5d 2167 put_pi_state(pi_state);
885c2cb7
TG
2168 /*
2169 * We stop queueing more waiters and let user
2170 * space deal with the mess.
2171 */
2172 break;
52400ba9 2173 }
1da177e4 2174 }
52400ba9
DH
2175 requeue_futex(this, hb1, hb2, &key2);
2176 drop_count++;
1da177e4
LT
2177 }
2178
ecb38b78
TG
2179 /*
2180 * We took an extra initial reference to the pi_state either
2181 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2182 * need to drop it here again.
2183 */
29e9ee5d 2184 put_pi_state(pi_state);
885c2cb7
TG
2185
2186out_unlock:
5eb3dc62 2187 double_unlock_hb(hb1, hb2);
1d0dcb3a 2188 wake_up_q(&wake_q);
69cd9eba 2189 hb_waiters_dec(hb2);
1da177e4 2190
cd84a42f
DH
2191 /*
2192 * drop_futex_key_refs() must be called outside the spinlocks. During
2193 * the requeue we moved futex_q's from the hash bucket at key1 to the
2194 * one at key2 and updated their key pointer. We no longer need to
2195 * hold the references to key1.
2196 */
1da177e4 2197 while (--drop_count >= 0)
9adef58b 2198 drop_futex_key_refs(&key1);
1da177e4 2199
42d35d48 2200out_put_keys:
ae791a2d 2201 put_futex_key(&key2);
42d35d48 2202out_put_key1:
ae791a2d 2203 put_futex_key(&key1);
42d35d48 2204out:
52400ba9 2205 return ret ? ret : task_count;
1da177e4
LT
2206}
2207
2208/* The key must be already stored in q->key. */
82af7aca 2209static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 2210 __acquires(&hb->lock)
1da177e4 2211{
e2970f2f 2212 struct futex_hash_bucket *hb;
1da177e4 2213
e2970f2f 2214 hb = hash_futex(&q->key);
11d4616b
LT
2215
2216 /*
2217 * Increment the counter before taking the lock so that
2218 * a potential waker won't miss a to-be-slept task that is
2219 * waiting for the spinlock. This is safe as all queue_lock()
2220 * users end up calling queue_me(). Similarly, for housekeeping,
2221 * decrement the counter at queue_unlock() when some error has
2222 * occurred and we don't end up adding the task to the list.
2223 */
6f568ebe 2224 hb_waiters_inc(hb); /* implies smp_mb(); (A) */
11d4616b 2225
e2970f2f 2226 q->lock_ptr = &hb->lock;
1da177e4 2227
6f568ebe 2228 spin_lock(&hb->lock);
e2970f2f 2229 return hb;
1da177e4
LT
2230}
2231
d40d65c8 2232static inline void
0d00c7b2 2233queue_unlock(struct futex_hash_bucket *hb)
15e408cd 2234 __releases(&hb->lock)
d40d65c8
DH
2235{
2236 spin_unlock(&hb->lock);
11d4616b 2237 hb_waiters_dec(hb);
d40d65c8
DH
2238}
2239
cfafcd11 2240static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 2241{
ec92d082
PP
2242 int prio;
2243
2244 /*
2245 * The priority used to register this element is
2246 * - either the real thread-priority for the real-time threads
2247 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2248 * - or MAX_RT_PRIO for non-RT threads.
2249 * Thus, all RT-threads are woken first in priority order, and
2250 * the others are woken last, in FIFO order.
2251 */
2252 prio = min(current->normal_prio, MAX_RT_PRIO);
2253
2254 plist_node_init(&q->list, prio);
ec92d082 2255 plist_add(&q->list, &hb->chain);
c87e2837 2256 q->task = current;
cfafcd11
PZ
2257}
2258
2259/**
2260 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2261 * @q: The futex_q to enqueue
2262 * @hb: The destination hash bucket
2263 *
2264 * The hb->lock must be held by the caller, and is released here. A call to
2265 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2266 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2267 * or nothing if the unqueue is done as part of the wake process and the unqueue
2268 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2269 * an example).
2270 */
2271static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2272 __releases(&hb->lock)
2273{
2274 __queue_me(q, hb);
e2970f2f 2275 spin_unlock(&hb->lock);
1da177e4
LT
2276}
2277
d40d65c8
DH
2278/**
2279 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2280 * @q: The futex_q to unqueue
2281 *
2282 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2283 * be paired with exactly one earlier call to queue_me().
2284 *
6c23cbbd 2285 * Return:
7b4ff1ad
MCC
2286 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2287 * - 0 - if the futex_q was already removed by the waking thread
1da177e4 2288 */
1da177e4
LT
2289static int unqueue_me(struct futex_q *q)
2290{
1da177e4 2291 spinlock_t *lock_ptr;
e2970f2f 2292 int ret = 0;
1da177e4
LT
2293
2294 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 2295retry:
29b75eb2
JZ
2296 /*
2297 * q->lock_ptr can change between this read and the following spin_lock.
2298 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2299 * optimizing lock_ptr out of the logic below.
2300 */
2301 lock_ptr = READ_ONCE(q->lock_ptr);
c80544dc 2302 if (lock_ptr != NULL) {
1da177e4
LT
2303 spin_lock(lock_ptr);
2304 /*
2305 * q->lock_ptr can change between reading it and
2306 * spin_lock(), causing us to take the wrong lock. This
2307 * corrects the race condition.
2308 *
2309 * Reasoning goes like this: if we have the wrong lock,
2310 * q->lock_ptr must have changed (maybe several times)
2311 * between reading it and the spin_lock(). It can
2312 * change again after the spin_lock() but only if it was
2313 * already changed before the spin_lock(). It cannot,
2314 * however, change back to the original value. Therefore
2315 * we can detect whether we acquired the correct lock.
2316 */
2317 if (unlikely(lock_ptr != q->lock_ptr)) {
2318 spin_unlock(lock_ptr);
2319 goto retry;
2320 }
2e12978a 2321 __unqueue_futex(q);
c87e2837
IM
2322
2323 BUG_ON(q->pi_state);
2324
1da177e4
LT
2325 spin_unlock(lock_ptr);
2326 ret = 1;
2327 }
2328
9adef58b 2329 drop_futex_key_refs(&q->key);
1da177e4
LT
2330 return ret;
2331}
2332
c87e2837
IM
2333/*
2334 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
2335 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2336 * and dropped here.
c87e2837 2337 */
d0aa7a70 2338static void unqueue_me_pi(struct futex_q *q)
15e408cd 2339 __releases(q->lock_ptr)
c87e2837 2340{
2e12978a 2341 __unqueue_futex(q);
c87e2837
IM
2342
2343 BUG_ON(!q->pi_state);
29e9ee5d 2344 put_pi_state(q->pi_state);
c87e2837
IM
2345 q->pi_state = NULL;
2346
d0aa7a70 2347 spin_unlock(q->lock_ptr);
c87e2837
IM
2348}
2349
778e9a9c 2350static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
c1e2f0ea 2351 struct task_struct *argowner)
d0aa7a70 2352{
d0aa7a70 2353 struct futex_pi_state *pi_state = q->pi_state;
7cfdaf38 2354 u32 uval, uninitialized_var(curval), newval;
c1e2f0ea
PZ
2355 struct task_struct *oldowner, *newowner;
2356 u32 newtid;
e4dc5b7a 2357 int ret;
d0aa7a70 2358
c1e2f0ea
PZ
2359 lockdep_assert_held(q->lock_ptr);
2360
734009e9
PZ
2361 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2362
2363 oldowner = pi_state->owner;
1b7558e4
TG
2364
2365 /*
c1e2f0ea 2366 * We are here because either:
16ffa12d 2367 *
c1e2f0ea
PZ
2368 * - we stole the lock and pi_state->owner needs updating to reflect
2369 * that (@argowner == current),
2370 *
2371 * or:
2372 *
2373 * - someone stole our lock and we need to fix things to point to the
2374 * new owner (@argowner == NULL).
2375 *
2376 * Either way, we have to replace the TID in the user space variable.
8161239a 2377 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 2378 *
b2d0994b
DH
2379 * Note: We write the user space value _before_ changing the pi_state
2380 * because we can fault here. Imagine swapped out pages or a fork
2381 * that marked all the anonymous memory readonly for cow.
1b7558e4 2382 *
734009e9
PZ
2383 * Modifying pi_state _before_ the user space value would leave the
2384 * pi_state in an inconsistent state when we fault here, because we
2385 * need to drop the locks to handle the fault. This might be observed
2386 * in the PID check in lookup_pi_state.
1b7558e4
TG
2387 */
2388retry:
c1e2f0ea
PZ
2389 if (!argowner) {
2390 if (oldowner != current) {
2391 /*
2392 * We raced against a concurrent self; things are
2393 * already fixed up. Nothing to do.
2394 */
2395 ret = 0;
2396 goto out_unlock;
2397 }
2398
2399 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2400 /* We got the lock after all, nothing to fix. */
2401 ret = 0;
2402 goto out_unlock;
2403 }
2404
2405 /*
2406 * Since we just failed the trylock; there must be an owner.
2407 */
2408 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2409 BUG_ON(!newowner);
2410 } else {
2411 WARN_ON_ONCE(argowner != current);
2412 if (oldowner == current) {
2413 /*
2414 * We raced against a concurrent self; things are
2415 * already fixed up. Nothing to do.
2416 */
2417 ret = 0;
2418 goto out_unlock;
2419 }
2420 newowner = argowner;
2421 }
2422
2423 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
a97cb0e7
PZ
2424 /* Owner died? */
2425 if (!pi_state->owner)
2426 newtid |= FUTEX_OWNER_DIED;
c1e2f0ea 2427
1b7558e4
TG
2428 if (get_futex_value_locked(&uval, uaddr))
2429 goto handle_fault;
2430
16ffa12d 2431 for (;;) {
1b7558e4
TG
2432 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2433
37a9d912 2434 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1b7558e4
TG
2435 goto handle_fault;
2436 if (curval == uval)
2437 break;
2438 uval = curval;
2439 }
2440
2441 /*
2442 * We fixed up user space. Now we need to fix the pi_state
2443 * itself.
2444 */
d0aa7a70 2445 if (pi_state->owner != NULL) {
734009e9 2446 raw_spin_lock(&pi_state->owner->pi_lock);
d0aa7a70
PP
2447 WARN_ON(list_empty(&pi_state->list));
2448 list_del_init(&pi_state->list);
734009e9 2449 raw_spin_unlock(&pi_state->owner->pi_lock);
1b7558e4 2450 }
d0aa7a70 2451
cdf71a10 2452 pi_state->owner = newowner;
d0aa7a70 2453
734009e9 2454 raw_spin_lock(&newowner->pi_lock);
d0aa7a70 2455 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 2456 list_add(&pi_state->list, &newowner->pi_state_list);
734009e9
PZ
2457 raw_spin_unlock(&newowner->pi_lock);
2458 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2459
1b7558e4 2460 return 0;
d0aa7a70 2461
d0aa7a70 2462 /*
734009e9
PZ
2463 * To handle the page fault we need to drop the locks here. That gives
2464 * the other task (either the highest priority waiter itself or the
2465 * task which stole the rtmutex) the chance to try the fixup of the
2466 * pi_state. So once we are back from handling the fault we need to
2467 * check the pi_state after reacquiring the locks and before trying to
2468 * do another fixup. When the fixup has been done already we simply
2469 * return.
2470 *
2471 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2472 * drop hb->lock since the caller owns the hb -> futex_q relation.
2473 * Dropping the pi_mutex->wait_lock requires the state revalidate.
d0aa7a70 2474 */
1b7558e4 2475handle_fault:
734009e9 2476 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1b7558e4 2477 spin_unlock(q->lock_ptr);
778e9a9c 2478
d0725992 2479 ret = fault_in_user_writeable(uaddr);
778e9a9c 2480
1b7558e4 2481 spin_lock(q->lock_ptr);
734009e9 2482 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
778e9a9c 2483
1b7558e4
TG
2484 /*
2485 * Check if someone else fixed it for us:
2486 */
734009e9
PZ
2487 if (pi_state->owner != oldowner) {
2488 ret = 0;
2489 goto out_unlock;
2490 }
1b7558e4
TG
2491
2492 if (ret)
734009e9 2493 goto out_unlock;
1b7558e4
TG
2494
2495 goto retry;
734009e9
PZ
2496
2497out_unlock:
2498 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2499 return ret;
d0aa7a70
PP
2500}
2501
72c1bbf3 2502static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 2503
dd973998
DH
2504/**
2505 * fixup_owner() - Post lock pi_state and corner case management
2506 * @uaddr: user address of the futex
dd973998
DH
2507 * @q: futex_q (contains pi_state and access to the rt_mutex)
2508 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2509 *
2510 * After attempting to lock an rt_mutex, this function is called to cleanup
2511 * the pi_state owner as well as handle race conditions that may allow us to
2512 * acquire the lock. Must be called with the hb lock held.
2513 *
6c23cbbd 2514 * Return:
7b4ff1ad
MCC
2515 * - 1 - success, lock taken;
2516 * - 0 - success, lock not taken;
2517 * - <0 - on error (-EFAULT)
dd973998 2518 */
ae791a2d 2519static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998 2520{
dd973998
DH
2521 int ret = 0;
2522
2523 if (locked) {
2524 /*
2525 * Got the lock. We might not be the anticipated owner if we
2526 * did a lock-steal - fix up the PI-state in that case:
16ffa12d 2527 *
c1e2f0ea
PZ
2528 * Speculative pi_state->owner read (we don't hold wait_lock);
2529 * since we own the lock pi_state->owner == current is the
2530 * stable state, anything else needs more attention.
dd973998
DH
2531 */
2532 if (q->pi_state->owner != current)
ae791a2d 2533 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
2534 goto out;
2535 }
2536
c1e2f0ea
PZ
2537 /*
2538 * If we didn't get the lock; check if anybody stole it from us. In
2539 * that case, we need to fix up the uval to point to them instead of
2540 * us, otherwise bad things happen. [10]
2541 *
2542 * Another speculative read; pi_state->owner == current is unstable
2543 * but needs our attention.
2544 */
2545 if (q->pi_state->owner == current) {
2546 ret = fixup_pi_state_owner(uaddr, q, NULL);
2547 goto out;
2548 }
2549
dd973998
DH
2550 /*
2551 * Paranoia check. If we did not take the lock, then we should not be
8161239a 2552 * the owner of the rt_mutex.
dd973998 2553 */
73d786bd 2554 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
dd973998
DH
2555 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2556 "pi-state %p\n", ret,
2557 q->pi_state->pi_mutex.owner,
2558 q->pi_state->owner);
73d786bd 2559 }
dd973998
DH
2560
2561out:
2562 return ret ? ret : locked;
2563}
2564
ca5f9524
DH
2565/**
2566 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2567 * @hb: the futex hash bucket, must be locked by the caller
2568 * @q: the futex_q to queue up on
2569 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
2570 */
2571static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 2572 struct hrtimer_sleeper *timeout)
ca5f9524 2573{
9beba3c5
DH
2574 /*
2575 * The task state is guaranteed to be set before another task can
b92b8b35 2576 * wake it. set_current_state() is implemented using smp_store_mb() and
9beba3c5
DH
2577 * queue_me() calls spin_unlock() upon completion, both serializing
2578 * access to the hash list and forcing another memory barrier.
2579 */
f1a11e05 2580 set_current_state(TASK_INTERRUPTIBLE);
0729e196 2581 queue_me(q, hb);
ca5f9524
DH
2582
2583 /* Arm the timer */
2e4b0d3f 2584 if (timeout)
ca5f9524 2585 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
ca5f9524
DH
2586
2587 /*
0729e196
DH
2588 * If we have been removed from the hash list, then another task
2589 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
2590 */
2591 if (likely(!plist_node_empty(&q->list))) {
2592 /*
2593 * If the timer has already expired, current will already be
2594 * flagged for rescheduling. Only call schedule if there
2595 * is no timeout, or if it has yet to expire.
2596 */
2597 if (!timeout || timeout->task)
88c8004f 2598 freezable_schedule();
ca5f9524
DH
2599 }
2600 __set_current_state(TASK_RUNNING);
2601}
2602
f801073f
DH
2603/**
2604 * futex_wait_setup() - Prepare to wait on a futex
2605 * @uaddr: the futex userspace address
2606 * @val: the expected value
b41277dc 2607 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
2608 * @q: the associated futex_q
2609 * @hb: storage for hash_bucket pointer to be returned to caller
2610 *
2611 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2612 * compare it with the expected value. Handle atomic faults internally.
2613 * Return with the hb lock held and a q.key reference on success, and unlocked
2614 * with no q.key reference on failure.
2615 *
6c23cbbd 2616 * Return:
7b4ff1ad
MCC
2617 * - 0 - uaddr contains val and hb has been locked;
2618 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 2619 */
b41277dc 2620static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 2621 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 2622{
e2970f2f
IM
2623 u32 uval;
2624 int ret;
1da177e4 2625
1da177e4 2626 /*
b2d0994b 2627 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
2628 * Order is important:
2629 *
2630 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2631 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2632 *
2633 * The basic logical guarantee of a futex is that it blocks ONLY
2634 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
2635 * any cond. If we locked the hash-bucket after testing *uaddr, that
2636 * would open a race condition where we could block indefinitely with
1da177e4
LT
2637 * cond(var) false, which would violate the guarantee.
2638 *
8fe8f545
ML
2639 * On the other hand, we insert q and release the hash-bucket only
2640 * after testing *uaddr. This guarantees that futex_wait() will NOT
2641 * absorb a wakeup if *uaddr does not match the desired values
2642 * while the syscall executes.
1da177e4 2643 */
f801073f 2644retry:
96d4f267 2645 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
f801073f 2646 if (unlikely(ret != 0))
a5a2a0c7 2647 return ret;
f801073f
DH
2648
2649retry_private:
2650 *hb = queue_lock(q);
2651
e2970f2f 2652 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 2653
f801073f 2654 if (ret) {
0d00c7b2 2655 queue_unlock(*hb);
1da177e4 2656
e2970f2f 2657 ret = get_user(uval, uaddr);
e4dc5b7a 2658 if (ret)
f801073f 2659 goto out;
1da177e4 2660
b41277dc 2661 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2662 goto retry_private;
2663
ae791a2d 2664 put_futex_key(&q->key);
e4dc5b7a 2665 goto retry;
1da177e4 2666 }
ca5f9524 2667
f801073f 2668 if (uval != val) {
0d00c7b2 2669 queue_unlock(*hb);
f801073f 2670 ret = -EWOULDBLOCK;
2fff78c7 2671 }
1da177e4 2672
f801073f
DH
2673out:
2674 if (ret)
ae791a2d 2675 put_futex_key(&q->key);
f801073f
DH
2676 return ret;
2677}
2678
b41277dc
DH
2679static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2680 ktime_t *abs_time, u32 bitset)
f801073f
DH
2681{
2682 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
2683 struct restart_block *restart;
2684 struct futex_hash_bucket *hb;
5bdb05f9 2685 struct futex_q q = futex_q_init;
f801073f
DH
2686 int ret;
2687
2688 if (!bitset)
2689 return -EINVAL;
f801073f
DH
2690 q.bitset = bitset;
2691
2692 if (abs_time) {
2693 to = &timeout;
2694
b41277dc
DH
2695 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2696 CLOCK_REALTIME : CLOCK_MONOTONIC,
2697 HRTIMER_MODE_ABS);
f801073f
DH
2698 hrtimer_init_sleeper(to, current);
2699 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2700 current->timer_slack_ns);
2701 }
2702
d58e6576 2703retry:
7ada876a
DH
2704 /*
2705 * Prepare to wait on uaddr. On success, holds hb lock and increments
2706 * q.key refs.
2707 */
b41277dc 2708 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
2709 if (ret)
2710 goto out;
2711
ca5f9524 2712 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 2713 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
2714
2715 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 2716 ret = 0;
7ada876a 2717 /* unqueue_me() drops q.key ref */
1da177e4 2718 if (!unqueue_me(&q))
7ada876a 2719 goto out;
2fff78c7 2720 ret = -ETIMEDOUT;
ca5f9524 2721 if (to && !to->task)
7ada876a 2722 goto out;
72c1bbf3 2723
e2970f2f 2724 /*
d58e6576
TG
2725 * We expect signal_pending(current), but we might be the
2726 * victim of a spurious wakeup as well.
e2970f2f 2727 */
7ada876a 2728 if (!signal_pending(current))
d58e6576 2729 goto retry;
d58e6576 2730
2fff78c7 2731 ret = -ERESTARTSYS;
c19384b5 2732 if (!abs_time)
7ada876a 2733 goto out;
1da177e4 2734
f56141e3 2735 restart = &current->restart_block;
2fff78c7 2736 restart->fn = futex_wait_restart;
a3c74c52 2737 restart->futex.uaddr = uaddr;
2fff78c7 2738 restart->futex.val = val;
2456e855 2739 restart->futex.time = *abs_time;
2fff78c7 2740 restart->futex.bitset = bitset;
0cd9c649 2741 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2742
2fff78c7
PZ
2743 ret = -ERESTART_RESTARTBLOCK;
2744
42d35d48 2745out:
ca5f9524
DH
2746 if (to) {
2747 hrtimer_cancel(&to->timer);
2748 destroy_hrtimer_on_stack(&to->timer);
2749 }
c87e2837
IM
2750 return ret;
2751}
2752
72c1bbf3
NP
2753
2754static long futex_wait_restart(struct restart_block *restart)
2755{
a3c74c52 2756 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2757 ktime_t t, *tp = NULL;
72c1bbf3 2758
a72188d8 2759 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2456e855 2760 t = restart->futex.time;
a72188d8
DH
2761 tp = &t;
2762 }
72c1bbf3 2763 restart->fn = do_no_restart_syscall;
b41277dc
DH
2764
2765 return (long)futex_wait(uaddr, restart->futex.flags,
2766 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2767}
2768
2769
c87e2837
IM
2770/*
2771 * Userspace tried a 0 -> TID atomic transition of the futex value
2772 * and failed. The kernel side here does the whole locking operation:
767f509c
DB
2773 * if there are waiters then it will block as a consequence of relying
2774 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2775 * a 0 value of the futex too.).
2776 *
2777 * Also serves as futex trylock_pi()'ing, and due semantics.
c87e2837 2778 */
996636dd 2779static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
b41277dc 2780 ktime_t *time, int trylock)
c87e2837 2781{
c5780e97 2782 struct hrtimer_sleeper timeout, *to = NULL;
16ffa12d 2783 struct futex_pi_state *pi_state = NULL;
cfafcd11 2784 struct rt_mutex_waiter rt_waiter;
c87e2837 2785 struct futex_hash_bucket *hb;
5bdb05f9 2786 struct futex_q q = futex_q_init;
dd973998 2787 int res, ret;
c87e2837 2788
bc2eecd7
NP
2789 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2790 return -ENOSYS;
2791
c87e2837
IM
2792 if (refill_pi_state_cache())
2793 return -ENOMEM;
2794
c19384b5 2795 if (time) {
c5780e97 2796 to = &timeout;
237fc6e7
TG
2797 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2798 HRTIMER_MODE_ABS);
c5780e97 2799 hrtimer_init_sleeper(to, current);
cc584b21 2800 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
2801 }
2802
42d35d48 2803retry:
96d4f267 2804 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
c87e2837 2805 if (unlikely(ret != 0))
42d35d48 2806 goto out;
c87e2837 2807
e4dc5b7a 2808retry_private:
82af7aca 2809 hb = queue_lock(&q);
c87e2837 2810
bab5bc9e 2811 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 2812 if (unlikely(ret)) {
767f509c
DB
2813 /*
2814 * Atomic work succeeded and we got the lock,
2815 * or failed. Either way, we do _not_ block.
2816 */
778e9a9c 2817 switch (ret) {
1a52084d
DH
2818 case 1:
2819 /* We got the lock. */
2820 ret = 0;
2821 goto out_unlock_put_key;
2822 case -EFAULT:
2823 goto uaddr_faulted;
778e9a9c
AK
2824 case -EAGAIN:
2825 /*
af54d6a1
TG
2826 * Two reasons for this:
2827 * - Task is exiting and we just wait for the
2828 * exit to complete.
2829 * - The user space value changed.
778e9a9c 2830 */
0d00c7b2 2831 queue_unlock(hb);
ae791a2d 2832 put_futex_key(&q.key);
778e9a9c
AK
2833 cond_resched();
2834 goto retry;
778e9a9c 2835 default:
42d35d48 2836 goto out_unlock_put_key;
c87e2837 2837 }
c87e2837
IM
2838 }
2839
cfafcd11
PZ
2840 WARN_ON(!q.pi_state);
2841
c87e2837
IM
2842 /*
2843 * Only actually queue now that the atomic ops are done:
2844 */
cfafcd11 2845 __queue_me(&q, hb);
c87e2837 2846
cfafcd11 2847 if (trylock) {
5293c2ef 2848 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
c87e2837
IM
2849 /* Fixup the trylock return value: */
2850 ret = ret ? 0 : -EWOULDBLOCK;
cfafcd11 2851 goto no_block;
c87e2837
IM
2852 }
2853
56222b21
PZ
2854 rt_mutex_init_waiter(&rt_waiter);
2855
cfafcd11 2856 /*
56222b21
PZ
2857 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2858 * hold it while doing rt_mutex_start_proxy(), because then it will
2859 * include hb->lock in the blocking chain, even through we'll not in
2860 * fact hold it while blocking. This will lead it to report -EDEADLK
2861 * and BUG when futex_unlock_pi() interleaves with this.
2862 *
2863 * Therefore acquire wait_lock while holding hb->lock, but drop the
1a1fb985
TG
2864 * latter before calling __rt_mutex_start_proxy_lock(). This
2865 * interleaves with futex_unlock_pi() -- which does a similar lock
2866 * handoff -- such that the latter can observe the futex_q::pi_state
2867 * before __rt_mutex_start_proxy_lock() is done.
cfafcd11 2868 */
56222b21
PZ
2869 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2870 spin_unlock(q.lock_ptr);
1a1fb985
TG
2871 /*
2872 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2873 * such that futex_unlock_pi() is guaranteed to observe the waiter when
2874 * it sees the futex_q::pi_state.
2875 */
56222b21
PZ
2876 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2877 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2878
cfafcd11
PZ
2879 if (ret) {
2880 if (ret == 1)
2881 ret = 0;
1a1fb985 2882 goto cleanup;
cfafcd11
PZ
2883 }
2884
cfafcd11
PZ
2885 if (unlikely(to))
2886 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2887
2888 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2889
1a1fb985 2890cleanup:
a99e4e41 2891 spin_lock(q.lock_ptr);
cfafcd11 2892 /*
1a1fb985 2893 * If we failed to acquire the lock (deadlock/signal/timeout), we must
cfafcd11 2894 * first acquire the hb->lock before removing the lock from the
1a1fb985
TG
2895 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2896 * lists consistent.
56222b21
PZ
2897 *
2898 * In particular; it is important that futex_unlock_pi() can not
2899 * observe this inconsistency.
cfafcd11
PZ
2900 */
2901 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2902 ret = 0;
2903
2904no_block:
dd973998
DH
2905 /*
2906 * Fixup the pi_state owner and possibly acquire the lock if we
2907 * haven't already.
2908 */
ae791a2d 2909 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2910 /*
2911 * If fixup_owner() returned an error, proprogate that. If it acquired
2912 * the lock, clear our -ETIMEDOUT or -EINTR.
2913 */
2914 if (res)
2915 ret = (res < 0) ? res : 0;
c87e2837 2916
e8f6386c 2917 /*
dd973998
DH
2918 * If fixup_owner() faulted and was unable to handle the fault, unlock
2919 * it and return the fault to userspace.
e8f6386c 2920 */
16ffa12d
PZ
2921 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2922 pi_state = q.pi_state;
2923 get_pi_state(pi_state);
2924 }
e8f6386c 2925
778e9a9c
AK
2926 /* Unqueue and drop the lock */
2927 unqueue_me_pi(&q);
c87e2837 2928
16ffa12d
PZ
2929 if (pi_state) {
2930 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2931 put_pi_state(pi_state);
2932 }
2933
5ecb01cf 2934 goto out_put_key;
c87e2837 2935
42d35d48 2936out_unlock_put_key:
0d00c7b2 2937 queue_unlock(hb);
c87e2837 2938
42d35d48 2939out_put_key:
ae791a2d 2940 put_futex_key(&q.key);
42d35d48 2941out:
97181f9b
TG
2942 if (to) {
2943 hrtimer_cancel(&to->timer);
237fc6e7 2944 destroy_hrtimer_on_stack(&to->timer);
97181f9b 2945 }
dd973998 2946 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2947
42d35d48 2948uaddr_faulted:
0d00c7b2 2949 queue_unlock(hb);
778e9a9c 2950
d0725992 2951 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2952 if (ret)
2953 goto out_put_key;
c87e2837 2954
b41277dc 2955 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2956 goto retry_private;
2957
ae791a2d 2958 put_futex_key(&q.key);
e4dc5b7a 2959 goto retry;
c87e2837
IM
2960}
2961
c87e2837
IM
2962/*
2963 * Userspace attempted a TID -> 0 atomic transition, and failed.
2964 * This is the in-kernel slowpath: we look up the PI state (if any),
2965 * and do the rt-mutex unlock.
2966 */
b41277dc 2967static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837 2968{
ccf9e6a8 2969 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
38d47c1b 2970 union futex_key key = FUTEX_KEY_INIT;
ccf9e6a8 2971 struct futex_hash_bucket *hb;
499f5aca 2972 struct futex_q *top_waiter;
e4dc5b7a 2973 int ret;
c87e2837 2974
bc2eecd7
NP
2975 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2976 return -ENOSYS;
2977
c87e2837
IM
2978retry:
2979 if (get_user(uval, uaddr))
2980 return -EFAULT;
2981 /*
2982 * We release only a lock we actually own:
2983 */
c0c9ed15 2984 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2985 return -EPERM;
c87e2837 2986
96d4f267 2987 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
ccf9e6a8
TG
2988 if (ret)
2989 return ret;
c87e2837
IM
2990
2991 hb = hash_futex(&key);
2992 spin_lock(&hb->lock);
2993
c87e2837 2994 /*
ccf9e6a8
TG
2995 * Check waiters first. We do not trust user space values at
2996 * all and we at least want to know if user space fiddled
2997 * with the futex value instead of blindly unlocking.
c87e2837 2998 */
499f5aca
PZ
2999 top_waiter = futex_top_waiter(hb, &key);
3000 if (top_waiter) {
16ffa12d
PZ
3001 struct futex_pi_state *pi_state = top_waiter->pi_state;
3002
3003 ret = -EINVAL;
3004 if (!pi_state)
3005 goto out_unlock;
3006
3007 /*
3008 * If current does not own the pi_state then the futex is
3009 * inconsistent and user space fiddled with the futex value.
3010 */
3011 if (pi_state->owner != current)
3012 goto out_unlock;
3013
bebe5b51 3014 get_pi_state(pi_state);
802ab58d 3015 /*
bebe5b51
PZ
3016 * By taking wait_lock while still holding hb->lock, we ensure
3017 * there is no point where we hold neither; and therefore
3018 * wake_futex_pi() must observe a state consistent with what we
3019 * observed.
1a1fb985
TG
3020 *
3021 * In particular; this forces __rt_mutex_start_proxy() to
3022 * complete such that we're guaranteed to observe the
3023 * rt_waiter. Also see the WARN in wake_futex_pi().
16ffa12d 3024 */
bebe5b51 3025 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
16ffa12d
PZ
3026 spin_unlock(&hb->lock);
3027
c74aef2d 3028 /* drops pi_state->pi_mutex.wait_lock */
16ffa12d
PZ
3029 ret = wake_futex_pi(uaddr, uval, pi_state);
3030
3031 put_pi_state(pi_state);
3032
3033 /*
3034 * Success, we're done! No tricky corner cases.
802ab58d
SAS
3035 */
3036 if (!ret)
3037 goto out_putkey;
c87e2837 3038 /*
ccf9e6a8
TG
3039 * The atomic access to the futex value generated a
3040 * pagefault, so retry the user-access and the wakeup:
c87e2837
IM
3041 */
3042 if (ret == -EFAULT)
3043 goto pi_faulted;
89e9e66b
SAS
3044 /*
3045 * A unconditional UNLOCK_PI op raced against a waiter
3046 * setting the FUTEX_WAITERS bit. Try again.
3047 */
3048 if (ret == -EAGAIN) {
89e9e66b
SAS
3049 put_futex_key(&key);
3050 goto retry;
3051 }
802ab58d
SAS
3052 /*
3053 * wake_futex_pi has detected invalid state. Tell user
3054 * space.
3055 */
16ffa12d 3056 goto out_putkey;
c87e2837 3057 }
ccf9e6a8 3058
c87e2837 3059 /*
ccf9e6a8
TG
3060 * We have no kernel internal state, i.e. no waiters in the
3061 * kernel. Waiters which are about to queue themselves are stuck
3062 * on hb->lock. So we can safely ignore them. We do neither
3063 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3064 * owner.
c87e2837 3065 */
16ffa12d
PZ
3066 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
3067 spin_unlock(&hb->lock);
13fbca4c 3068 goto pi_faulted;
16ffa12d 3069 }
c87e2837 3070
ccf9e6a8
TG
3071 /*
3072 * If uval has changed, let user space handle it.
3073 */
3074 ret = (curval == uval) ? 0 : -EAGAIN;
3075
c87e2837
IM
3076out_unlock:
3077 spin_unlock(&hb->lock);
802ab58d 3078out_putkey:
ae791a2d 3079 put_futex_key(&key);
c87e2837
IM
3080 return ret;
3081
3082pi_faulted:
ae791a2d 3083 put_futex_key(&key);
c87e2837 3084
d0725992 3085 ret = fault_in_user_writeable(uaddr);
b5686363 3086 if (!ret)
c87e2837
IM
3087 goto retry;
3088
1da177e4
LT
3089 return ret;
3090}
3091
52400ba9
DH
3092/**
3093 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3094 * @hb: the hash_bucket futex_q was original enqueued on
3095 * @q: the futex_q woken while waiting to be requeued
3096 * @key2: the futex_key of the requeue target futex
3097 * @timeout: the timeout associated with the wait (NULL if none)
3098 *
3099 * Detect if the task was woken on the initial futex as opposed to the requeue
3100 * target futex. If so, determine if it was a timeout or a signal that caused
3101 * the wakeup and return the appropriate error code to the caller. Must be
3102 * called with the hb lock held.
3103 *
6c23cbbd 3104 * Return:
7b4ff1ad
MCC
3105 * - 0 = no early wakeup detected;
3106 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
3107 */
3108static inline
3109int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3110 struct futex_q *q, union futex_key *key2,
3111 struct hrtimer_sleeper *timeout)
3112{
3113 int ret = 0;
3114
3115 /*
3116 * With the hb lock held, we avoid races while we process the wakeup.
3117 * We only need to hold hb (and not hb2) to ensure atomicity as the
3118 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3119 * It can't be requeued from uaddr2 to something else since we don't
3120 * support a PI aware source futex for requeue.
3121 */
3122 if (!match_futex(&q->key, key2)) {
3123 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3124 /*
3125 * We were woken prior to requeue by a timeout or a signal.
3126 * Unqueue the futex_q and determine which it was.
3127 */
2e12978a 3128 plist_del(&q->list, &hb->chain);
11d4616b 3129 hb_waiters_dec(hb);
52400ba9 3130
d58e6576 3131 /* Handle spurious wakeups gracefully */
11df6ddd 3132 ret = -EWOULDBLOCK;
52400ba9
DH
3133 if (timeout && !timeout->task)
3134 ret = -ETIMEDOUT;
d58e6576 3135 else if (signal_pending(current))
1c840c14 3136 ret = -ERESTARTNOINTR;
52400ba9
DH
3137 }
3138 return ret;
3139}
3140
3141/**
3142 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 3143 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 3144 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
ab51fbab 3145 * the same type, no requeueing from private to shared, etc.
52400ba9
DH
3146 * @val: the expected value of uaddr
3147 * @abs_time: absolute timeout
56ec1607 3148 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
3149 * @uaddr2: the pi futex we will take prior to returning to user-space
3150 *
3151 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
3152 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3153 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3154 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3155 * without one, the pi logic would not know which task to boost/deboost, if
3156 * there was a need to.
52400ba9
DH
3157 *
3158 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 3159 * via the following--
52400ba9 3160 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
3161 * 2) wakeup on uaddr2 after a requeue
3162 * 3) signal
3163 * 4) timeout
52400ba9 3164 *
cc6db4e6 3165 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
3166 *
3167 * If 2, we may then block on trying to take the rt_mutex and return via:
3168 * 5) successful lock
3169 * 6) signal
3170 * 7) timeout
3171 * 8) other lock acquisition failure
3172 *
cc6db4e6 3173 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
3174 *
3175 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3176 *
6c23cbbd 3177 * Return:
7b4ff1ad
MCC
3178 * - 0 - On success;
3179 * - <0 - On error
52400ba9 3180 */
b41277dc 3181static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 3182 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 3183 u32 __user *uaddr2)
52400ba9
DH
3184{
3185 struct hrtimer_sleeper timeout, *to = NULL;
16ffa12d 3186 struct futex_pi_state *pi_state = NULL;
52400ba9 3187 struct rt_mutex_waiter rt_waiter;
52400ba9 3188 struct futex_hash_bucket *hb;
5bdb05f9
DH
3189 union futex_key key2 = FUTEX_KEY_INIT;
3190 struct futex_q q = futex_q_init;
52400ba9 3191 int res, ret;
52400ba9 3192
bc2eecd7
NP
3193 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3194 return -ENOSYS;
3195
6f7b0a2a
DH
3196 if (uaddr == uaddr2)
3197 return -EINVAL;
3198
52400ba9
DH
3199 if (!bitset)
3200 return -EINVAL;
3201
3202 if (abs_time) {
3203 to = &timeout;
b41277dc
DH
3204 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
3205 CLOCK_REALTIME : CLOCK_MONOTONIC,
3206 HRTIMER_MODE_ABS);
52400ba9
DH
3207 hrtimer_init_sleeper(to, current);
3208 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3209 current->timer_slack_ns);
3210 }
3211
3212 /*
3213 * The waiter is allocated on our stack, manipulated by the requeue
3214 * code while we sleep on uaddr.
3215 */
50809358 3216 rt_mutex_init_waiter(&rt_waiter);
52400ba9 3217
96d4f267 3218 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
52400ba9
DH
3219 if (unlikely(ret != 0))
3220 goto out;
3221
84bc4af5
DH
3222 q.bitset = bitset;
3223 q.rt_waiter = &rt_waiter;
3224 q.requeue_pi_key = &key2;
3225
7ada876a
DH
3226 /*
3227 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3228 * count.
3229 */
b41277dc 3230 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
3231 if (ret)
3232 goto out_key2;
52400ba9 3233
e9c243a5
TG
3234 /*
3235 * The check above which compares uaddrs is not sufficient for
3236 * shared futexes. We need to compare the keys:
3237 */
3238 if (match_futex(&q.key, &key2)) {
13c42c2f 3239 queue_unlock(hb);
e9c243a5
TG
3240 ret = -EINVAL;
3241 goto out_put_keys;
3242 }
3243
52400ba9 3244 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 3245 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
3246
3247 spin_lock(&hb->lock);
3248 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3249 spin_unlock(&hb->lock);
3250 if (ret)
3251 goto out_put_keys;
3252
3253 /*
3254 * In order for us to be here, we know our q.key == key2, and since
3255 * we took the hb->lock above, we also know that futex_requeue() has
3256 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
3257 * race with the atomic proxy lock acquisition by the requeue code. The
3258 * futex_requeue dropped our key1 reference and incremented our key2
3259 * reference count.
52400ba9
DH
3260 */
3261
3262 /* Check if the requeue code acquired the second futex for us. */
3263 if (!q.rt_waiter) {
3264 /*
3265 * Got the lock. We might not be the anticipated owner if we
3266 * did a lock-steal - fix up the PI-state in that case.
3267 */
3268 if (q.pi_state && (q.pi_state->owner != current)) {
3269 spin_lock(q.lock_ptr);
ae791a2d 3270 ret = fixup_pi_state_owner(uaddr2, &q, current);
16ffa12d
PZ
3271 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3272 pi_state = q.pi_state;
3273 get_pi_state(pi_state);
3274 }
fb75a428
TG
3275 /*
3276 * Drop the reference to the pi state which
3277 * the requeue_pi() code acquired for us.
3278 */
29e9ee5d 3279 put_pi_state(q.pi_state);
52400ba9
DH
3280 spin_unlock(q.lock_ptr);
3281 }
3282 } else {
c236c8e9
PZ
3283 struct rt_mutex *pi_mutex;
3284
52400ba9
DH
3285 /*
3286 * We have been woken up by futex_unlock_pi(), a timeout, or a
3287 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3288 * the pi_state.
3289 */
f27071cb 3290 WARN_ON(!q.pi_state);
52400ba9 3291 pi_mutex = &q.pi_state->pi_mutex;
38d589f2 3292 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
52400ba9
DH
3293
3294 spin_lock(q.lock_ptr);
38d589f2
PZ
3295 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3296 ret = 0;
3297
3298 debug_rt_mutex_free_waiter(&rt_waiter);
52400ba9
DH
3299 /*
3300 * Fixup the pi_state owner and possibly acquire the lock if we
3301 * haven't already.
3302 */
ae791a2d 3303 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
3304 /*
3305 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 3306 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
3307 */
3308 if (res)
3309 ret = (res < 0) ? res : 0;
3310
c236c8e9
PZ
3311 /*
3312 * If fixup_pi_state_owner() faulted and was unable to handle
3313 * the fault, unlock the rt_mutex and return the fault to
3314 * userspace.
3315 */
16ffa12d
PZ
3316 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3317 pi_state = q.pi_state;
3318 get_pi_state(pi_state);
3319 }
c236c8e9 3320
52400ba9
DH
3321 /* Unqueue and drop the lock. */
3322 unqueue_me_pi(&q);
3323 }
3324
16ffa12d
PZ
3325 if (pi_state) {
3326 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3327 put_pi_state(pi_state);
3328 }
3329
c236c8e9 3330 if (ret == -EINTR) {
52400ba9 3331 /*
cc6db4e6
DH
3332 * We've already been requeued, but cannot restart by calling
3333 * futex_lock_pi() directly. We could restart this syscall, but
3334 * it would detect that the user space "val" changed and return
3335 * -EWOULDBLOCK. Save the overhead of the restart and return
3336 * -EWOULDBLOCK directly.
52400ba9 3337 */
2070887f 3338 ret = -EWOULDBLOCK;
52400ba9
DH
3339 }
3340
3341out_put_keys:
ae791a2d 3342 put_futex_key(&q.key);
c8b15a70 3343out_key2:
ae791a2d 3344 put_futex_key(&key2);
52400ba9
DH
3345
3346out:
3347 if (to) {
3348 hrtimer_cancel(&to->timer);
3349 destroy_hrtimer_on_stack(&to->timer);
3350 }
3351 return ret;
3352}
3353
0771dfef
IM
3354/*
3355 * Support for robust futexes: the kernel cleans up held futexes at
3356 * thread exit time.
3357 *
3358 * Implementation: user-space maintains a per-thread list of locks it
3359 * is holding. Upon do_exit(), the kernel carefully walks this list,
3360 * and marks all locks that are owned by this thread with the
c87e2837 3361 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
3362 * always manipulated with the lock held, so the list is private and
3363 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3364 * field, to allow the kernel to clean up if the thread dies after
3365 * acquiring the lock, but just before it could have added itself to
3366 * the list. There can only be one such pending lock.
3367 */
3368
3369/**
d96ee56c
DH
3370 * sys_set_robust_list() - Set the robust-futex list head of a task
3371 * @head: pointer to the list-head
3372 * @len: length of the list-head, as userspace expects
0771dfef 3373 */
836f92ad
HC
3374SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3375 size_t, len)
0771dfef 3376{
a0c1e907
TG
3377 if (!futex_cmpxchg_enabled)
3378 return -ENOSYS;
0771dfef
IM
3379 /*
3380 * The kernel knows only one size for now:
3381 */
3382 if (unlikely(len != sizeof(*head)))
3383 return -EINVAL;
3384
3385 current->robust_list = head;
3386
3387 return 0;
3388}
3389
3390/**
d96ee56c
DH
3391 * sys_get_robust_list() - Get the robust-futex list head of a task
3392 * @pid: pid of the process [zero for current task]
3393 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3394 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 3395 */
836f92ad
HC
3396SYSCALL_DEFINE3(get_robust_list, int, pid,
3397 struct robust_list_head __user * __user *, head_ptr,
3398 size_t __user *, len_ptr)
0771dfef 3399{
ba46df98 3400 struct robust_list_head __user *head;
0771dfef 3401 unsigned long ret;
bdbb776f 3402 struct task_struct *p;
0771dfef 3403
a0c1e907
TG
3404 if (!futex_cmpxchg_enabled)
3405 return -ENOSYS;
3406
bdbb776f
KC
3407 rcu_read_lock();
3408
3409 ret = -ESRCH;
0771dfef 3410 if (!pid)
bdbb776f 3411 p = current;
0771dfef 3412 else {
228ebcbe 3413 p = find_task_by_vpid(pid);
0771dfef
IM
3414 if (!p)
3415 goto err_unlock;
0771dfef
IM
3416 }
3417
bdbb776f 3418 ret = -EPERM;
caaee623 3419 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
bdbb776f
KC
3420 goto err_unlock;
3421
3422 head = p->robust_list;
3423 rcu_read_unlock();
3424
0771dfef
IM
3425 if (put_user(sizeof(*head), len_ptr))
3426 return -EFAULT;
3427 return put_user(head, head_ptr);
3428
3429err_unlock:
aaa2a97e 3430 rcu_read_unlock();
0771dfef
IM
3431
3432 return ret;
3433}
3434
3435/*
3436 * Process a futex-list entry, check whether it's owned by the
3437 * dying task, and do notification if so:
3438 */
04e7712f 3439static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 3440{
7cfdaf38 3441 u32 uval, uninitialized_var(nval), mval;
0771dfef 3442
8f17d3a5
IM
3443retry:
3444 if (get_user(uval, uaddr))
0771dfef
IM
3445 return -1;
3446
b488893a 3447 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
3448 /*
3449 * Ok, this dying thread is truly holding a futex
3450 * of interest. Set the OWNER_DIED bit atomically
3451 * via cmpxchg, and if the value had FUTEX_WAITERS
3452 * set, wake up a waiter (if any). (We have to do a
3453 * futex_wake() even if OWNER_DIED is already set -
3454 * to handle the rare but possible case of recursive
3455 * thread-death.) The rest of the cleanup is done in
3456 * userspace.
3457 */
e3f2ddea 3458 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
6e0aa9f8
TG
3459 /*
3460 * We are not holding a lock here, but we want to have
3461 * the pagefault_disable/enable() protection because
3462 * we want to handle the fault gracefully. If the
3463 * access fails we try to fault in the futex with R/W
3464 * verification via get_user_pages. get_user() above
3465 * does not guarantee R/W access. If that fails we
3466 * give up and leave the futex locked.
3467 */
3468 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3469 if (fault_in_user_writeable(uaddr))
3470 return -1;
3471 goto retry;
3472 }
c87e2837 3473 if (nval != uval)
8f17d3a5 3474 goto retry;
0771dfef 3475
e3f2ddea
IM
3476 /*
3477 * Wake robust non-PI futexes here. The wakeup of
3478 * PI futexes happens in exit_pi_state():
3479 */
36cf3b5c 3480 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 3481 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
3482 }
3483 return 0;
3484}
3485
e3f2ddea
IM
3486/*
3487 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3488 */
3489static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 3490 struct robust_list __user * __user *head,
1dcc41bb 3491 unsigned int *pi)
e3f2ddea
IM
3492{
3493 unsigned long uentry;
3494
ba46df98 3495 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
3496 return -EFAULT;
3497
ba46df98 3498 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
3499 *pi = uentry & 1;
3500
3501 return 0;
3502}
3503
0771dfef
IM
3504/*
3505 * Walk curr->robust_list (very carefully, it's a userspace list!)
3506 * and mark any locks found there dead, and notify any waiters.
3507 *
3508 * We silently return on any sign of list-walking problem.
3509 */
3510void exit_robust_list(struct task_struct *curr)
3511{
3512 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 3513 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
3514 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3515 unsigned int uninitialized_var(next_pi);
0771dfef 3516 unsigned long futex_offset;
9f96cb1e 3517 int rc;
0771dfef 3518
a0c1e907
TG
3519 if (!futex_cmpxchg_enabled)
3520 return;
3521
0771dfef
IM
3522 /*
3523 * Fetch the list head (which was registered earlier, via
3524 * sys_set_robust_list()):
3525 */
e3f2ddea 3526 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
3527 return;
3528 /*
3529 * Fetch the relative futex offset:
3530 */
3531 if (get_user(futex_offset, &head->futex_offset))
3532 return;
3533 /*
3534 * Fetch any possibly pending lock-add first, and handle it
3535 * if it exists:
3536 */
e3f2ddea 3537 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 3538 return;
e3f2ddea 3539
9f96cb1e 3540 next_entry = NULL; /* avoid warning with gcc */
0771dfef 3541 while (entry != &head->list) {
9f96cb1e
MS
3542 /*
3543 * Fetch the next entry in the list before calling
3544 * handle_futex_death:
3545 */
3546 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
3547 /*
3548 * A pending lock might already be on the list, so
c87e2837 3549 * don't process it twice:
0771dfef
IM
3550 */
3551 if (entry != pending)
ba46df98 3552 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 3553 curr, pi))
0771dfef 3554 return;
9f96cb1e 3555 if (rc)
0771dfef 3556 return;
9f96cb1e
MS
3557 entry = next_entry;
3558 pi = next_pi;
0771dfef
IM
3559 /*
3560 * Avoid excessively long or circular lists:
3561 */
3562 if (!--limit)
3563 break;
3564
3565 cond_resched();
3566 }
9f96cb1e
MS
3567
3568 if (pending)
3569 handle_futex_death((void __user *)pending + futex_offset,
3570 curr, pip);
0771dfef
IM
3571}
3572
c19384b5 3573long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 3574 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 3575{
81b40539 3576 int cmd = op & FUTEX_CMD_MASK;
b41277dc 3577 unsigned int flags = 0;
34f01cc1
ED
3578
3579 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 3580 flags |= FLAGS_SHARED;
1da177e4 3581
b41277dc
DH
3582 if (op & FUTEX_CLOCK_REALTIME) {
3583 flags |= FLAGS_CLOCKRT;
337f1304
DH
3584 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3585 cmd != FUTEX_WAIT_REQUEUE_PI)
b41277dc
DH
3586 return -ENOSYS;
3587 }
1da177e4 3588
59263b51
TG
3589 switch (cmd) {
3590 case FUTEX_LOCK_PI:
3591 case FUTEX_UNLOCK_PI:
3592 case FUTEX_TRYLOCK_PI:
3593 case FUTEX_WAIT_REQUEUE_PI:
3594 case FUTEX_CMP_REQUEUE_PI:
3595 if (!futex_cmpxchg_enabled)
3596 return -ENOSYS;
3597 }
3598
34f01cc1 3599 switch (cmd) {
1da177e4 3600 case FUTEX_WAIT:
cd689985 3601 val3 = FUTEX_BITSET_MATCH_ANY;
b639186f 3602 /* fall through */
cd689985 3603 case FUTEX_WAIT_BITSET:
81b40539 3604 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 3605 case FUTEX_WAKE:
cd689985 3606 val3 = FUTEX_BITSET_MATCH_ANY;
b639186f 3607 /* fall through */
cd689985 3608 case FUTEX_WAKE_BITSET:
81b40539 3609 return futex_wake(uaddr, flags, val, val3);
1da177e4 3610 case FUTEX_REQUEUE:
81b40539 3611 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 3612 case FUTEX_CMP_REQUEUE:
81b40539 3613 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 3614 case FUTEX_WAKE_OP:
81b40539 3615 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 3616 case FUTEX_LOCK_PI:
996636dd 3617 return futex_lock_pi(uaddr, flags, timeout, 0);
c87e2837 3618 case FUTEX_UNLOCK_PI:
81b40539 3619 return futex_unlock_pi(uaddr, flags);
c87e2837 3620 case FUTEX_TRYLOCK_PI:
996636dd 3621 return futex_lock_pi(uaddr, flags, NULL, 1);
52400ba9
DH
3622 case FUTEX_WAIT_REQUEUE_PI:
3623 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
3624 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3625 uaddr2);
52400ba9 3626 case FUTEX_CMP_REQUEUE_PI:
81b40539 3627 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 3628 }
81b40539 3629 return -ENOSYS;
1da177e4
LT
3630}
3631
3632
17da2bd9 3633SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
bec2f7cb 3634 struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
17da2bd9 3635 u32, val3)
1da177e4 3636{
bec2f7cb 3637 struct timespec64 ts;
c19384b5 3638 ktime_t t, *tp = NULL;
e2970f2f 3639 u32 val2 = 0;
34f01cc1 3640 int cmd = op & FUTEX_CMD_MASK;
1da177e4 3641
cd689985 3642 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
3643 cmd == FUTEX_WAIT_BITSET ||
3644 cmd == FUTEX_WAIT_REQUEUE_PI)) {
ab51fbab
DB
3645 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3646 return -EFAULT;
bec2f7cb 3647 if (get_timespec64(&ts, utime))
1da177e4 3648 return -EFAULT;
bec2f7cb 3649 if (!timespec64_valid(&ts))
9741ef96 3650 return -EINVAL;
c19384b5 3651
bec2f7cb 3652 t = timespec64_to_ktime(ts);
34f01cc1 3653 if (cmd == FUTEX_WAIT)
5a7780e7 3654 t = ktime_add_safe(ktime_get(), t);
c19384b5 3655 tp = &t;
1da177e4
LT
3656 }
3657 /*
52400ba9 3658 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 3659 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 3660 */
f54f0986 3661 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 3662 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 3663 val2 = (u32) (unsigned long) utime;
1da177e4 3664
c19384b5 3665 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
3666}
3667
04e7712f
AB
3668#ifdef CONFIG_COMPAT
3669/*
3670 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3671 */
3672static inline int
3673compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3674 compat_uptr_t __user *head, unsigned int *pi)
3675{
3676 if (get_user(*uentry, head))
3677 return -EFAULT;
3678
3679 *entry = compat_ptr((*uentry) & ~1);
3680 *pi = (unsigned int)(*uentry) & 1;
3681
3682 return 0;
3683}
3684
3685static void __user *futex_uaddr(struct robust_list __user *entry,
3686 compat_long_t futex_offset)
3687{
3688 compat_uptr_t base = ptr_to_compat(entry);
3689 void __user *uaddr = compat_ptr(base + futex_offset);
3690
3691 return uaddr;
3692}
3693
3694/*
3695 * Walk curr->robust_list (very carefully, it's a userspace list!)
3696 * and mark any locks found there dead, and notify any waiters.
3697 *
3698 * We silently return on any sign of list-walking problem.
3699 */
3700void compat_exit_robust_list(struct task_struct *curr)
3701{
3702 struct compat_robust_list_head __user *head = curr->compat_robust_list;
3703 struct robust_list __user *entry, *next_entry, *pending;
3704 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3705 unsigned int uninitialized_var(next_pi);
3706 compat_uptr_t uentry, next_uentry, upending;
3707 compat_long_t futex_offset;
3708 int rc;
3709
3710 if (!futex_cmpxchg_enabled)
3711 return;
3712
3713 /*
3714 * Fetch the list head (which was registered earlier, via
3715 * sys_set_robust_list()):
3716 */
3717 if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3718 return;
3719 /*
3720 * Fetch the relative futex offset:
3721 */
3722 if (get_user(futex_offset, &head->futex_offset))
3723 return;
3724 /*
3725 * Fetch any possibly pending lock-add first, and handle it
3726 * if it exists:
3727 */
3728 if (compat_fetch_robust_entry(&upending, &pending,
3729 &head->list_op_pending, &pip))
3730 return;
3731
3732 next_entry = NULL; /* avoid warning with gcc */
3733 while (entry != (struct robust_list __user *) &head->list) {
3734 /*
3735 * Fetch the next entry in the list before calling
3736 * handle_futex_death:
3737 */
3738 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3739 (compat_uptr_t __user *)&entry->next, &next_pi);
3740 /*
3741 * A pending lock might already be on the list, so
3742 * dont process it twice:
3743 */
3744 if (entry != pending) {
3745 void __user *uaddr = futex_uaddr(entry, futex_offset);
3746
3747 if (handle_futex_death(uaddr, curr, pi))
3748 return;
3749 }
3750 if (rc)
3751 return;
3752 uentry = next_uentry;
3753 entry = next_entry;
3754 pi = next_pi;
3755 /*
3756 * Avoid excessively long or circular lists:
3757 */
3758 if (!--limit)
3759 break;
3760
3761 cond_resched();
3762 }
3763 if (pending) {
3764 void __user *uaddr = futex_uaddr(pending, futex_offset);
3765
3766 handle_futex_death(uaddr, curr, pip);
3767 }
3768}
3769
3770COMPAT_SYSCALL_DEFINE2(set_robust_list,
3771 struct compat_robust_list_head __user *, head,
3772 compat_size_t, len)
3773{
3774 if (!futex_cmpxchg_enabled)
3775 return -ENOSYS;
3776
3777 if (unlikely(len != sizeof(*head)))
3778 return -EINVAL;
3779
3780 current->compat_robust_list = head;
3781
3782 return 0;
3783}
3784
3785COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3786 compat_uptr_t __user *, head_ptr,
3787 compat_size_t __user *, len_ptr)
3788{
3789 struct compat_robust_list_head __user *head;
3790 unsigned long ret;
3791 struct task_struct *p;
3792
3793 if (!futex_cmpxchg_enabled)
3794 return -ENOSYS;
3795
3796 rcu_read_lock();
3797
3798 ret = -ESRCH;
3799 if (!pid)
3800 p = current;
3801 else {
3802 p = find_task_by_vpid(pid);
3803 if (!p)
3804 goto err_unlock;
3805 }
3806
3807 ret = -EPERM;
3808 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3809 goto err_unlock;
3810
3811 head = p->compat_robust_list;
3812 rcu_read_unlock();
3813
3814 if (put_user(sizeof(*head), len_ptr))
3815 return -EFAULT;
3816 return put_user(ptr_to_compat(head), head_ptr);
3817
3818err_unlock:
3819 rcu_read_unlock();
3820
3821 return ret;
3822}
bec2f7cb 3823#endif /* CONFIG_COMPAT */
04e7712f 3824
bec2f7cb 3825#ifdef CONFIG_COMPAT_32BIT_TIME
04e7712f
AB
3826COMPAT_SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3827 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
3828 u32, val3)
3829{
bec2f7cb 3830 struct timespec64 ts;
04e7712f
AB
3831 ktime_t t, *tp = NULL;
3832 int val2 = 0;
3833 int cmd = op & FUTEX_CMD_MASK;
3834
3835 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3836 cmd == FUTEX_WAIT_BITSET ||
3837 cmd == FUTEX_WAIT_REQUEUE_PI)) {
bec2f7cb 3838 if (get_old_timespec32(&ts, utime))
04e7712f 3839 return -EFAULT;
bec2f7cb 3840 if (!timespec64_valid(&ts))
04e7712f
AB
3841 return -EINVAL;
3842
bec2f7cb 3843 t = timespec64_to_ktime(ts);
04e7712f
AB
3844 if (cmd == FUTEX_WAIT)
3845 t = ktime_add_safe(ktime_get(), t);
3846 tp = &t;
3847 }
3848 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3849 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3850 val2 = (int) (unsigned long) utime;
3851
3852 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3853}
bec2f7cb 3854#endif /* CONFIG_COMPAT_32BIT_TIME */
04e7712f 3855
03b8c7b6 3856static void __init futex_detect_cmpxchg(void)
1da177e4 3857{
03b8c7b6 3858#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 3859 u32 curval;
03b8c7b6
HC
3860
3861 /*
3862 * This will fail and we want it. Some arch implementations do
3863 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3864 * functionality. We want to know that before we call in any
3865 * of the complex code paths. Also we want to prevent
3866 * registration of robust lists in that case. NULL is
3867 * guaranteed to fault and we get -EFAULT on functional
3868 * implementation, the non-functional ones will return
3869 * -ENOSYS.
3870 */
3871 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3872 futex_cmpxchg_enabled = 1;
3873#endif
3874}
3875
3876static int __init futex_init(void)
3877{
63b1a816 3878 unsigned int futex_shift;
a52b89eb
DB
3879 unsigned long i;
3880
3881#if CONFIG_BASE_SMALL
3882 futex_hashsize = 16;
3883#else
3884 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3885#endif
3886
3887 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3888 futex_hashsize, 0,
3889 futex_hashsize < 256 ? HASH_SMALL : 0,
63b1a816
HC
3890 &futex_shift, NULL,
3891 futex_hashsize, futex_hashsize);
3892 futex_hashsize = 1UL << futex_shift;
03b8c7b6
HC
3893
3894 futex_detect_cmpxchg();
a0c1e907 3895
a52b89eb 3896 for (i = 0; i < futex_hashsize; i++) {
11d4616b 3897 atomic_set(&futex_queues[i].waiters, 0);
732375c6 3898 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
3899 spin_lock_init(&futex_queues[i].lock);
3900 }
3901
1da177e4
LT
3902 return 0;
3903}
25f71d1c 3904core_initcall(futex_init);