futexes: Document multiprocessor ordering guarantees
[linux-2.6-block.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
7ed20e1a 57#include <linux/signal.h>
9984de1a 58#include <linux/export.h>
fd5eea42 59#include <linux/magic.h>
b488893a
PE
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
bdbb776f 62#include <linux/ptrace.h>
8bd75c77 63#include <linux/sched/rt.h>
13d60f4b 64#include <linux/hugetlb.h>
88c8004f 65#include <linux/freezer.h>
a52b89eb 66#include <linux/bootmem.h>
b488893a 67
4732efbe 68#include <asm/futex.h>
1da177e4 69
1696a8be 70#include "locking/rtmutex_common.h"
c87e2837 71
99b60ce6
TG
72/*
73 * Basic futex operation and ordering guarantees:
74 *
75 * The waiter reads the futex value in user space and calls
76 * futex_wait(). This function computes the hash bucket and acquires
77 * the hash bucket lock. After that it reads the futex user space value
78 * again and verifies that the data has not changed. If it has not
79 * changed it enqueues itself into the hash bucket, releases the hash
80 * bucket lock and schedules.
81 *
82 * The waker side modifies the user space value of the futex and calls
83 * futex_wake(). This functions computes the hash bucket and acquires
84 * the hash bucket lock. Then it looks for waiters on that futex in the
85 * hash bucket and wakes them.
86 *
87 * Note that the spin_lock serializes waiters and wakers, so that the
88 * following scenario is avoided:
89 *
90 * CPU 0 CPU 1
91 * val = *futex;
92 * sys_futex(WAIT, futex, val);
93 * futex_wait(futex, val);
94 * uval = *futex;
95 * *futex = newval;
96 * sys_futex(WAKE, futex);
97 * futex_wake(futex);
98 * if (queue_empty())
99 * return;
100 * if (uval == val)
101 * lock(hash_bucket(futex));
102 * queue();
103 * unlock(hash_bucket(futex));
104 * schedule();
105 *
106 * This would cause the waiter on CPU 0 to wait forever because it
107 * missed the transition of the user space value from val to newval
108 * and the waker did not find the waiter in the hash bucket queue.
109 * The spinlock serializes that:
110 *
111 * CPU 0 CPU 1
112 * val = *futex;
113 * sys_futex(WAIT, futex, val);
114 * futex_wait(futex, val);
115 * lock(hash_bucket(futex));
116 * uval = *futex;
117 * *futex = newval;
118 * sys_futex(WAKE, futex);
119 * futex_wake(futex);
120 * lock(hash_bucket(futex));
121 * if (uval == val)
122 * queue();
123 * unlock(hash_bucket(futex));
124 * schedule(); if (!queue_empty())
125 * wake_waiters(futex);
126 * unlock(hash_bucket(futex));
127 */
128
a0c1e907
TG
129int __read_mostly futex_cmpxchg_enabled;
130
b41277dc
DH
131/*
132 * Futex flags used to encode options to functions and preserve them across
133 * restarts.
134 */
135#define FLAGS_SHARED 0x01
136#define FLAGS_CLOCKRT 0x02
137#define FLAGS_HAS_TIMEOUT 0x04
138
c87e2837
IM
139/*
140 * Priority Inheritance state:
141 */
142struct futex_pi_state {
143 /*
144 * list of 'owned' pi_state instances - these have to be
145 * cleaned up in do_exit() if the task exits prematurely:
146 */
147 struct list_head list;
148
149 /*
150 * The PI object:
151 */
152 struct rt_mutex pi_mutex;
153
154 struct task_struct *owner;
155 atomic_t refcount;
156
157 union futex_key key;
158};
159
d8d88fbb
DH
160/**
161 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 162 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
163 * @task: the task waiting on the futex
164 * @lock_ptr: the hash bucket lock
165 * @key: the key the futex is hashed on
166 * @pi_state: optional priority inheritance state
167 * @rt_waiter: rt_waiter storage for use with requeue_pi
168 * @requeue_pi_key: the requeue_pi target futex key
169 * @bitset: bitset for the optional bitmasked wakeup
170 *
171 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
1da177e4
LT
172 * we can wake only the relevant ones (hashed queues may be shared).
173 *
174 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 175 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 176 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
177 * the second.
178 *
179 * PI futexes are typically woken before they are removed from the hash list via
180 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
181 */
182struct futex_q {
ec92d082 183 struct plist_node list;
1da177e4 184
d8d88fbb 185 struct task_struct *task;
1da177e4 186 spinlock_t *lock_ptr;
1da177e4 187 union futex_key key;
c87e2837 188 struct futex_pi_state *pi_state;
52400ba9 189 struct rt_mutex_waiter *rt_waiter;
84bc4af5 190 union futex_key *requeue_pi_key;
cd689985 191 u32 bitset;
1da177e4
LT
192};
193
5bdb05f9
DH
194static const struct futex_q futex_q_init = {
195 /* list gets initialized in queue_me()*/
196 .key = FUTEX_KEY_INIT,
197 .bitset = FUTEX_BITSET_MATCH_ANY
198};
199
1da177e4 200/*
b2d0994b
DH
201 * Hash buckets are shared by all the futex_keys that hash to the same
202 * location. Each key may have multiple futex_q structures, one for each task
203 * waiting on a futex.
1da177e4
LT
204 */
205struct futex_hash_bucket {
ec92d082
PP
206 spinlock_t lock;
207 struct plist_head chain;
a52b89eb 208} ____cacheline_aligned_in_smp;
1da177e4 209
a52b89eb
DB
210static unsigned long __read_mostly futex_hashsize;
211
212static struct futex_hash_bucket *futex_queues;
1da177e4 213
1da177e4
LT
214/*
215 * We hash on the keys returned from get_futex_key (see below).
216 */
217static struct futex_hash_bucket *hash_futex(union futex_key *key)
218{
219 u32 hash = jhash2((u32*)&key->both.word,
220 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
221 key->both.offset);
a52b89eb 222 return &futex_queues[hash & (futex_hashsize - 1)];
1da177e4
LT
223}
224
225/*
226 * Return 1 if two futex_keys are equal, 0 otherwise.
227 */
228static inline int match_futex(union futex_key *key1, union futex_key *key2)
229{
2bc87203
DH
230 return (key1 && key2
231 && key1->both.word == key2->both.word
1da177e4
LT
232 && key1->both.ptr == key2->both.ptr
233 && key1->both.offset == key2->both.offset);
234}
235
38d47c1b
PZ
236/*
237 * Take a reference to the resource addressed by a key.
238 * Can be called while holding spinlocks.
239 *
240 */
241static void get_futex_key_refs(union futex_key *key)
242{
243 if (!key->both.ptr)
244 return;
245
246 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
247 case FUT_OFF_INODE:
7de9c6ee 248 ihold(key->shared.inode);
38d47c1b
PZ
249 break;
250 case FUT_OFF_MMSHARED:
251 atomic_inc(&key->private.mm->mm_count);
252 break;
253 }
254}
255
256/*
257 * Drop a reference to the resource addressed by a key.
258 * The hash bucket spinlock must not be held.
259 */
260static void drop_futex_key_refs(union futex_key *key)
261{
90621c40
DH
262 if (!key->both.ptr) {
263 /* If we're here then we tried to put a key we failed to get */
264 WARN_ON_ONCE(1);
38d47c1b 265 return;
90621c40 266 }
38d47c1b
PZ
267
268 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
269 case FUT_OFF_INODE:
270 iput(key->shared.inode);
271 break;
272 case FUT_OFF_MMSHARED:
273 mmdrop(key->private.mm);
274 break;
275 }
276}
277
34f01cc1 278/**
d96ee56c
DH
279 * get_futex_key() - Get parameters which are the keys for a futex
280 * @uaddr: virtual address of the futex
281 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
282 * @key: address where result is stored.
9ea71503
SB
283 * @rw: mapping needs to be read/write (values: VERIFY_READ,
284 * VERIFY_WRITE)
34f01cc1 285 *
6c23cbbd
RD
286 * Return: a negative error code or 0
287 *
34f01cc1 288 * The key words are stored in *key on success.
1da177e4 289 *
6131ffaa 290 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
1da177e4
LT
291 * offset_within_page). For private mappings, it's (uaddr, current->mm).
292 * We can usually work out the index without swapping in the page.
293 *
b2d0994b 294 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 295 */
64d1304a 296static int
9ea71503 297get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
1da177e4 298{
e2970f2f 299 unsigned long address = (unsigned long)uaddr;
1da177e4 300 struct mm_struct *mm = current->mm;
a5b338f2 301 struct page *page, *page_head;
9ea71503 302 int err, ro = 0;
1da177e4
LT
303
304 /*
305 * The futex address must be "naturally" aligned.
306 */
e2970f2f 307 key->both.offset = address % PAGE_SIZE;
34f01cc1 308 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 309 return -EINVAL;
e2970f2f 310 address -= key->both.offset;
1da177e4 311
5cdec2d8
LT
312 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
313 return -EFAULT;
314
34f01cc1
ED
315 /*
316 * PROCESS_PRIVATE futexes are fast.
317 * As the mm cannot disappear under us and the 'key' only needs
318 * virtual address, we dont even have to find the underlying vma.
319 * Note : We do have to check 'uaddr' is a valid user address,
320 * but access_ok() should be faster than find_vma()
321 */
322 if (!fshared) {
34f01cc1
ED
323 key->private.mm = mm;
324 key->private.address = address;
42569c39 325 get_futex_key_refs(key);
34f01cc1
ED
326 return 0;
327 }
1da177e4 328
38d47c1b 329again:
7485d0d3 330 err = get_user_pages_fast(address, 1, 1, &page);
9ea71503
SB
331 /*
332 * If write access is not required (eg. FUTEX_WAIT), try
333 * and get read-only access.
334 */
335 if (err == -EFAULT && rw == VERIFY_READ) {
336 err = get_user_pages_fast(address, 1, 0, &page);
337 ro = 1;
338 }
38d47c1b
PZ
339 if (err < 0)
340 return err;
9ea71503
SB
341 else
342 err = 0;
38d47c1b 343
a5b338f2
AA
344#ifdef CONFIG_TRANSPARENT_HUGEPAGE
345 page_head = page;
346 if (unlikely(PageTail(page))) {
38d47c1b 347 put_page(page);
a5b338f2
AA
348 /* serialize against __split_huge_page_splitting() */
349 local_irq_disable();
f12d5bfc 350 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
a5b338f2
AA
351 page_head = compound_head(page);
352 /*
353 * page_head is valid pointer but we must pin
354 * it before taking the PG_lock and/or
355 * PG_compound_lock. The moment we re-enable
356 * irqs __split_huge_page_splitting() can
357 * return and the head page can be freed from
358 * under us. We can't take the PG_lock and/or
359 * PG_compound_lock on a page that could be
360 * freed from under us.
361 */
362 if (page != page_head) {
363 get_page(page_head);
364 put_page(page);
365 }
366 local_irq_enable();
367 } else {
368 local_irq_enable();
369 goto again;
370 }
371 }
372#else
373 page_head = compound_head(page);
374 if (page != page_head) {
375 get_page(page_head);
376 put_page(page);
377 }
378#endif
379
380 lock_page(page_head);
e6780f72
HD
381
382 /*
383 * If page_head->mapping is NULL, then it cannot be a PageAnon
384 * page; but it might be the ZERO_PAGE or in the gate area or
385 * in a special mapping (all cases which we are happy to fail);
386 * or it may have been a good file page when get_user_pages_fast
387 * found it, but truncated or holepunched or subjected to
388 * invalidate_complete_page2 before we got the page lock (also
389 * cases which we are happy to fail). And we hold a reference,
390 * so refcount care in invalidate_complete_page's remove_mapping
391 * prevents drop_caches from setting mapping to NULL beneath us.
392 *
393 * The case we do have to guard against is when memory pressure made
394 * shmem_writepage move it from filecache to swapcache beneath us:
395 * an unlikely race, but we do need to retry for page_head->mapping.
396 */
a5b338f2 397 if (!page_head->mapping) {
e6780f72 398 int shmem_swizzled = PageSwapCache(page_head);
a5b338f2
AA
399 unlock_page(page_head);
400 put_page(page_head);
e6780f72
HD
401 if (shmem_swizzled)
402 goto again;
403 return -EFAULT;
38d47c1b 404 }
1da177e4
LT
405
406 /*
407 * Private mappings are handled in a simple way.
408 *
409 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
410 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 411 * the object not the particular process.
1da177e4 412 */
a5b338f2 413 if (PageAnon(page_head)) {
9ea71503
SB
414 /*
415 * A RO anonymous page will never change and thus doesn't make
416 * sense for futex operations.
417 */
418 if (ro) {
419 err = -EFAULT;
420 goto out;
421 }
422
38d47c1b 423 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 424 key->private.mm = mm;
e2970f2f 425 key->private.address = address;
38d47c1b
PZ
426 } else {
427 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
a5b338f2 428 key->shared.inode = page_head->mapping->host;
13d60f4b 429 key->shared.pgoff = basepage_index(page);
1da177e4
LT
430 }
431
38d47c1b 432 get_futex_key_refs(key);
1da177e4 433
9ea71503 434out:
a5b338f2
AA
435 unlock_page(page_head);
436 put_page(page_head);
9ea71503 437 return err;
1da177e4
LT
438}
439
ae791a2d 440static inline void put_futex_key(union futex_key *key)
1da177e4 441{
38d47c1b 442 drop_futex_key_refs(key);
1da177e4
LT
443}
444
d96ee56c
DH
445/**
446 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
447 * @uaddr: pointer to faulting user space address
448 *
449 * Slow path to fixup the fault we just took in the atomic write
450 * access to @uaddr.
451 *
fb62db2b 452 * We have no generic implementation of a non-destructive write to the
d0725992
TG
453 * user address. We know that we faulted in the atomic pagefault
454 * disabled section so we can as well avoid the #PF overhead by
455 * calling get_user_pages() right away.
456 */
457static int fault_in_user_writeable(u32 __user *uaddr)
458{
722d0172
AK
459 struct mm_struct *mm = current->mm;
460 int ret;
461
462 down_read(&mm->mmap_sem);
2efaca92
BH
463 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
464 FAULT_FLAG_WRITE);
722d0172
AK
465 up_read(&mm->mmap_sem);
466
d0725992
TG
467 return ret < 0 ? ret : 0;
468}
469
4b1c486b
DH
470/**
471 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
472 * @hb: the hash bucket the futex_q's reside in
473 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
474 *
475 * Must be called with the hb lock held.
476 */
477static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
478 union futex_key *key)
479{
480 struct futex_q *this;
481
482 plist_for_each_entry(this, &hb->chain, list) {
483 if (match_futex(&this->key, key))
484 return this;
485 }
486 return NULL;
487}
488
37a9d912
ML
489static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
490 u32 uval, u32 newval)
36cf3b5c 491{
37a9d912 492 int ret;
36cf3b5c
TG
493
494 pagefault_disable();
37a9d912 495 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
496 pagefault_enable();
497
37a9d912 498 return ret;
36cf3b5c
TG
499}
500
501static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
502{
503 int ret;
504
a866374a 505 pagefault_disable();
e2970f2f 506 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 507 pagefault_enable();
1da177e4
LT
508
509 return ret ? -EFAULT : 0;
510}
511
c87e2837
IM
512
513/*
514 * PI code:
515 */
516static int refill_pi_state_cache(void)
517{
518 struct futex_pi_state *pi_state;
519
520 if (likely(current->pi_state_cache))
521 return 0;
522
4668edc3 523 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
524
525 if (!pi_state)
526 return -ENOMEM;
527
c87e2837
IM
528 INIT_LIST_HEAD(&pi_state->list);
529 /* pi_mutex gets initialized later */
530 pi_state->owner = NULL;
531 atomic_set(&pi_state->refcount, 1);
38d47c1b 532 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
533
534 current->pi_state_cache = pi_state;
535
536 return 0;
537}
538
539static struct futex_pi_state * alloc_pi_state(void)
540{
541 struct futex_pi_state *pi_state = current->pi_state_cache;
542
543 WARN_ON(!pi_state);
544 current->pi_state_cache = NULL;
545
546 return pi_state;
547}
548
549static void free_pi_state(struct futex_pi_state *pi_state)
550{
551 if (!atomic_dec_and_test(&pi_state->refcount))
552 return;
553
554 /*
555 * If pi_state->owner is NULL, the owner is most probably dying
556 * and has cleaned up the pi_state already
557 */
558 if (pi_state->owner) {
1d615482 559 raw_spin_lock_irq(&pi_state->owner->pi_lock);
c87e2837 560 list_del_init(&pi_state->list);
1d615482 561 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
c87e2837
IM
562
563 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
564 }
565
566 if (current->pi_state_cache)
567 kfree(pi_state);
568 else {
569 /*
570 * pi_state->list is already empty.
571 * clear pi_state->owner.
572 * refcount is at 0 - put it back to 1.
573 */
574 pi_state->owner = NULL;
575 atomic_set(&pi_state->refcount, 1);
576 current->pi_state_cache = pi_state;
577 }
578}
579
580/*
581 * Look up the task based on what TID userspace gave us.
582 * We dont trust it.
583 */
584static struct task_struct * futex_find_get_task(pid_t pid)
585{
586 struct task_struct *p;
587
d359b549 588 rcu_read_lock();
228ebcbe 589 p = find_task_by_vpid(pid);
7a0ea09a
MH
590 if (p)
591 get_task_struct(p);
a06381fe 592
d359b549 593 rcu_read_unlock();
c87e2837
IM
594
595 return p;
596}
597
598/*
599 * This task is holding PI mutexes at exit time => bad.
600 * Kernel cleans up PI-state, but userspace is likely hosed.
601 * (Robust-futex cleanup is separate and might save the day for userspace.)
602 */
603void exit_pi_state_list(struct task_struct *curr)
604{
c87e2837
IM
605 struct list_head *next, *head = &curr->pi_state_list;
606 struct futex_pi_state *pi_state;
627371d7 607 struct futex_hash_bucket *hb;
38d47c1b 608 union futex_key key = FUTEX_KEY_INIT;
c87e2837 609
a0c1e907
TG
610 if (!futex_cmpxchg_enabled)
611 return;
c87e2837
IM
612 /*
613 * We are a ZOMBIE and nobody can enqueue itself on
614 * pi_state_list anymore, but we have to be careful
627371d7 615 * versus waiters unqueueing themselves:
c87e2837 616 */
1d615482 617 raw_spin_lock_irq(&curr->pi_lock);
c87e2837
IM
618 while (!list_empty(head)) {
619
620 next = head->next;
621 pi_state = list_entry(next, struct futex_pi_state, list);
622 key = pi_state->key;
627371d7 623 hb = hash_futex(&key);
1d615482 624 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 625
c87e2837
IM
626 spin_lock(&hb->lock);
627
1d615482 628 raw_spin_lock_irq(&curr->pi_lock);
627371d7
IM
629 /*
630 * We dropped the pi-lock, so re-check whether this
631 * task still owns the PI-state:
632 */
c87e2837
IM
633 if (head->next != next) {
634 spin_unlock(&hb->lock);
635 continue;
636 }
637
c87e2837 638 WARN_ON(pi_state->owner != curr);
627371d7
IM
639 WARN_ON(list_empty(&pi_state->list));
640 list_del_init(&pi_state->list);
c87e2837 641 pi_state->owner = NULL;
1d615482 642 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
643
644 rt_mutex_unlock(&pi_state->pi_mutex);
645
646 spin_unlock(&hb->lock);
647
1d615482 648 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 649 }
1d615482 650 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
651}
652
653static int
d0aa7a70
PP
654lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
655 union futex_key *key, struct futex_pi_state **ps)
c87e2837
IM
656{
657 struct futex_pi_state *pi_state = NULL;
658 struct futex_q *this, *next;
c87e2837 659 struct task_struct *p;
778e9a9c 660 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837 661
0d00c7b2 662 plist_for_each_entry_safe(this, next, &hb->chain, list) {
d0aa7a70 663 if (match_futex(&this->key, key)) {
c87e2837
IM
664 /*
665 * Another waiter already exists - bump up
666 * the refcount and return its pi_state:
667 */
668 pi_state = this->pi_state;
06a9ec29 669 /*
fb62db2b 670 * Userspace might have messed up non-PI and PI futexes
06a9ec29
TG
671 */
672 if (unlikely(!pi_state))
673 return -EINVAL;
674
627371d7 675 WARN_ON(!atomic_read(&pi_state->refcount));
59647b6a
TG
676
677 /*
678 * When pi_state->owner is NULL then the owner died
679 * and another waiter is on the fly. pi_state->owner
680 * is fixed up by the task which acquires
681 * pi_state->rt_mutex.
682 *
683 * We do not check for pid == 0 which can happen when
684 * the owner died and robust_list_exit() cleared the
685 * TID.
686 */
687 if (pid && pi_state->owner) {
688 /*
689 * Bail out if user space manipulated the
690 * futex value.
691 */
692 if (pid != task_pid_vnr(pi_state->owner))
693 return -EINVAL;
694 }
627371d7 695
c87e2837 696 atomic_inc(&pi_state->refcount);
d0aa7a70 697 *ps = pi_state;
c87e2837
IM
698
699 return 0;
700 }
701 }
702
703 /*
e3f2ddea 704 * We are the first waiter - try to look up the real owner and attach
778e9a9c 705 * the new pi_state to it, but bail out when TID = 0
c87e2837 706 */
778e9a9c 707 if (!pid)
e3f2ddea 708 return -ESRCH;
c87e2837 709 p = futex_find_get_task(pid);
7a0ea09a
MH
710 if (!p)
711 return -ESRCH;
778e9a9c
AK
712
713 /*
714 * We need to look at the task state flags to figure out,
715 * whether the task is exiting. To protect against the do_exit
716 * change of the task flags, we do this protected by
717 * p->pi_lock:
718 */
1d615482 719 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
720 if (unlikely(p->flags & PF_EXITING)) {
721 /*
722 * The task is on the way out. When PF_EXITPIDONE is
723 * set, we know that the task has finished the
724 * cleanup:
725 */
726 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
727
1d615482 728 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
729 put_task_struct(p);
730 return ret;
731 }
c87e2837
IM
732
733 pi_state = alloc_pi_state();
734
735 /*
736 * Initialize the pi_mutex in locked state and make 'p'
737 * the owner of it:
738 */
739 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
740
741 /* Store the key for possible exit cleanups: */
d0aa7a70 742 pi_state->key = *key;
c87e2837 743
627371d7 744 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
745 list_add(&pi_state->list, &p->pi_state_list);
746 pi_state->owner = p;
1d615482 747 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
748
749 put_task_struct(p);
750
d0aa7a70 751 *ps = pi_state;
c87e2837
IM
752
753 return 0;
754}
755
1a52084d 756/**
d96ee56c 757 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
758 * @uaddr: the pi futex user address
759 * @hb: the pi futex hash bucket
760 * @key: the futex key associated with uaddr and hb
761 * @ps: the pi_state pointer where we store the result of the
762 * lookup
763 * @task: the task to perform the atomic lock work for. This will
764 * be "current" except in the case of requeue pi.
765 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 766 *
6c23cbbd
RD
767 * Return:
768 * 0 - ready to wait;
769 * 1 - acquired the lock;
1a52084d
DH
770 * <0 - error
771 *
772 * The hb->lock and futex_key refs shall be held by the caller.
773 */
774static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
775 union futex_key *key,
776 struct futex_pi_state **ps,
bab5bc9e 777 struct task_struct *task, int set_waiters)
1a52084d 778{
59fa6245 779 int lock_taken, ret, force_take = 0;
c0c9ed15 780 u32 uval, newval, curval, vpid = task_pid_vnr(task);
1a52084d
DH
781
782retry:
783 ret = lock_taken = 0;
784
785 /*
786 * To avoid races, we attempt to take the lock here again
787 * (by doing a 0 -> TID atomic cmpxchg), while holding all
788 * the locks. It will most likely not succeed.
789 */
c0c9ed15 790 newval = vpid;
bab5bc9e
DH
791 if (set_waiters)
792 newval |= FUTEX_WAITERS;
1a52084d 793
37a9d912 794 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
1a52084d
DH
795 return -EFAULT;
796
797 /*
798 * Detect deadlocks.
799 */
c0c9ed15 800 if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
801 return -EDEADLK;
802
803 /*
804 * Surprise - we got the lock. Just return to userspace:
805 */
806 if (unlikely(!curval))
807 return 1;
808
809 uval = curval;
810
811 /*
812 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
813 * to wake at the next unlock.
814 */
815 newval = curval | FUTEX_WAITERS;
816
817 /*
59fa6245 818 * Should we force take the futex? See below.
1a52084d 819 */
59fa6245
TG
820 if (unlikely(force_take)) {
821 /*
822 * Keep the OWNER_DIED and the WAITERS bit and set the
823 * new TID value.
824 */
c0c9ed15 825 newval = (curval & ~FUTEX_TID_MASK) | vpid;
59fa6245 826 force_take = 0;
1a52084d
DH
827 lock_taken = 1;
828 }
829
37a9d912 830 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1a52084d
DH
831 return -EFAULT;
832 if (unlikely(curval != uval))
833 goto retry;
834
835 /*
59fa6245 836 * We took the lock due to forced take over.
1a52084d
DH
837 */
838 if (unlikely(lock_taken))
839 return 1;
840
841 /*
842 * We dont have the lock. Look up the PI state (or create it if
843 * we are the first waiter):
844 */
845 ret = lookup_pi_state(uval, hb, key, ps);
846
847 if (unlikely(ret)) {
848 switch (ret) {
849 case -ESRCH:
850 /*
59fa6245
TG
851 * We failed to find an owner for this
852 * futex. So we have no pi_state to block
853 * on. This can happen in two cases:
854 *
855 * 1) The owner died
856 * 2) A stale FUTEX_WAITERS bit
857 *
858 * Re-read the futex value.
1a52084d
DH
859 */
860 if (get_futex_value_locked(&curval, uaddr))
861 return -EFAULT;
862
863 /*
59fa6245
TG
864 * If the owner died or we have a stale
865 * WAITERS bit the owner TID in the user space
866 * futex is 0.
1a52084d 867 */
59fa6245
TG
868 if (!(curval & FUTEX_TID_MASK)) {
869 force_take = 1;
1a52084d
DH
870 goto retry;
871 }
872 default:
873 break;
874 }
875 }
876
877 return ret;
878}
879
2e12978a
LJ
880/**
881 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
882 * @q: The futex_q to unqueue
883 *
884 * The q->lock_ptr must not be NULL and must be held by the caller.
885 */
886static void __unqueue_futex(struct futex_q *q)
887{
888 struct futex_hash_bucket *hb;
889
29096202
SR
890 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
891 || WARN_ON(plist_node_empty(&q->list)))
2e12978a
LJ
892 return;
893
894 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
895 plist_del(&q->list, &hb->chain);
896}
897
1da177e4
LT
898/*
899 * The hash bucket lock must be held when this is called.
900 * Afterwards, the futex_q must not be accessed.
901 */
902static void wake_futex(struct futex_q *q)
903{
f1a11e05
TG
904 struct task_struct *p = q->task;
905
aa10990e
DH
906 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
907 return;
908
1da177e4 909 /*
f1a11e05 910 * We set q->lock_ptr = NULL _before_ we wake up the task. If
fb62db2b
RD
911 * a non-futex wake up happens on another CPU then the task
912 * might exit and p would dereference a non-existing task
f1a11e05
TG
913 * struct. Prevent this by holding a reference on p across the
914 * wake up.
1da177e4 915 */
f1a11e05
TG
916 get_task_struct(p);
917
2e12978a 918 __unqueue_futex(q);
1da177e4 919 /*
f1a11e05
TG
920 * The waiting task can free the futex_q as soon as
921 * q->lock_ptr = NULL is written, without taking any locks. A
922 * memory barrier is required here to prevent the following
923 * store to lock_ptr from getting ahead of the plist_del.
1da177e4 924 */
ccdea2f8 925 smp_wmb();
1da177e4 926 q->lock_ptr = NULL;
f1a11e05
TG
927
928 wake_up_state(p, TASK_NORMAL);
929 put_task_struct(p);
1da177e4
LT
930}
931
c87e2837
IM
932static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
933{
934 struct task_struct *new_owner;
935 struct futex_pi_state *pi_state = this->pi_state;
7cfdaf38 936 u32 uninitialized_var(curval), newval;
c87e2837
IM
937
938 if (!pi_state)
939 return -EINVAL;
940
51246bfd
TG
941 /*
942 * If current does not own the pi_state then the futex is
943 * inconsistent and user space fiddled with the futex value.
944 */
945 if (pi_state->owner != current)
946 return -EINVAL;
947
d209d74d 948 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
949 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
950
951 /*
f123c98e
SR
952 * It is possible that the next waiter (the one that brought
953 * this owner to the kernel) timed out and is no longer
954 * waiting on the lock.
c87e2837
IM
955 */
956 if (!new_owner)
957 new_owner = this->task;
958
959 /*
960 * We pass it to the next owner. (The WAITERS bit is always
961 * kept enabled while there is PI state around. We must also
962 * preserve the owner died bit.)
963 */
e3f2ddea 964 if (!(uval & FUTEX_OWNER_DIED)) {
778e9a9c
AK
965 int ret = 0;
966
b488893a 967 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 968
37a9d912 969 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
778e9a9c 970 ret = -EFAULT;
cde898fa 971 else if (curval != uval)
778e9a9c
AK
972 ret = -EINVAL;
973 if (ret) {
d209d74d 974 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
778e9a9c
AK
975 return ret;
976 }
e3f2ddea 977 }
c87e2837 978
1d615482 979 raw_spin_lock_irq(&pi_state->owner->pi_lock);
627371d7
IM
980 WARN_ON(list_empty(&pi_state->list));
981 list_del_init(&pi_state->list);
1d615482 982 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
627371d7 983
1d615482 984 raw_spin_lock_irq(&new_owner->pi_lock);
627371d7 985 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
986 list_add(&pi_state->list, &new_owner->pi_state_list);
987 pi_state->owner = new_owner;
1d615482 988 raw_spin_unlock_irq(&new_owner->pi_lock);
627371d7 989
d209d74d 990 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
991 rt_mutex_unlock(&pi_state->pi_mutex);
992
993 return 0;
994}
995
996static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
997{
7cfdaf38 998 u32 uninitialized_var(oldval);
c87e2837
IM
999
1000 /*
1001 * There is no waiter, so we unlock the futex. The owner died
1002 * bit has not to be preserved here. We are the owner:
1003 */
37a9d912
ML
1004 if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
1005 return -EFAULT;
c87e2837
IM
1006 if (oldval != uval)
1007 return -EAGAIN;
1008
1009 return 0;
1010}
1011
8b8f319f
IM
1012/*
1013 * Express the locking dependencies for lockdep:
1014 */
1015static inline void
1016double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1017{
1018 if (hb1 <= hb2) {
1019 spin_lock(&hb1->lock);
1020 if (hb1 < hb2)
1021 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1022 } else { /* hb1 > hb2 */
1023 spin_lock(&hb2->lock);
1024 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1025 }
1026}
1027
5eb3dc62
DH
1028static inline void
1029double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1030{
f061d351 1031 spin_unlock(&hb1->lock);
88f502fe
IM
1032 if (hb1 != hb2)
1033 spin_unlock(&hb2->lock);
5eb3dc62
DH
1034}
1035
1da177e4 1036/*
b2d0994b 1037 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1038 */
b41277dc
DH
1039static int
1040futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1041{
e2970f2f 1042 struct futex_hash_bucket *hb;
1da177e4 1043 struct futex_q *this, *next;
38d47c1b 1044 union futex_key key = FUTEX_KEY_INIT;
1da177e4
LT
1045 int ret;
1046
cd689985
TG
1047 if (!bitset)
1048 return -EINVAL;
1049
9ea71503 1050 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1da177e4
LT
1051 if (unlikely(ret != 0))
1052 goto out;
1053
e2970f2f
IM
1054 hb = hash_futex(&key);
1055 spin_lock(&hb->lock);
1da177e4 1056
0d00c7b2 1057 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1da177e4 1058 if (match_futex (&this->key, &key)) {
52400ba9 1059 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1060 ret = -EINVAL;
1061 break;
1062 }
cd689985
TG
1063
1064 /* Check if one of the bits is set in both bitsets */
1065 if (!(this->bitset & bitset))
1066 continue;
1067
1da177e4
LT
1068 wake_futex(this);
1069 if (++ret >= nr_wake)
1070 break;
1071 }
1072 }
1073
e2970f2f 1074 spin_unlock(&hb->lock);
ae791a2d 1075 put_futex_key(&key);
42d35d48 1076out:
1da177e4
LT
1077 return ret;
1078}
1079
4732efbe
JJ
1080/*
1081 * Wake up all waiters hashed on the physical page that is mapped
1082 * to this virtual address:
1083 */
e2970f2f 1084static int
b41277dc 1085futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1086 int nr_wake, int nr_wake2, int op)
4732efbe 1087{
38d47c1b 1088 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1089 struct futex_hash_bucket *hb1, *hb2;
4732efbe 1090 struct futex_q *this, *next;
e4dc5b7a 1091 int ret, op_ret;
4732efbe 1092
e4dc5b7a 1093retry:
9ea71503 1094 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
4732efbe
JJ
1095 if (unlikely(ret != 0))
1096 goto out;
9ea71503 1097 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
4732efbe 1098 if (unlikely(ret != 0))
42d35d48 1099 goto out_put_key1;
4732efbe 1100
e2970f2f
IM
1101 hb1 = hash_futex(&key1);
1102 hb2 = hash_futex(&key2);
4732efbe 1103
e4dc5b7a 1104retry_private:
eaaea803 1105 double_lock_hb(hb1, hb2);
e2970f2f 1106 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1107 if (unlikely(op_ret < 0)) {
4732efbe 1108
5eb3dc62 1109 double_unlock_hb(hb1, hb2);
4732efbe 1110
7ee1dd3f 1111#ifndef CONFIG_MMU
e2970f2f
IM
1112 /*
1113 * we don't get EFAULT from MMU faults if we don't have an MMU,
1114 * but we might get them from range checking
1115 */
7ee1dd3f 1116 ret = op_ret;
42d35d48 1117 goto out_put_keys;
7ee1dd3f
DH
1118#endif
1119
796f8d9b
DG
1120 if (unlikely(op_ret != -EFAULT)) {
1121 ret = op_ret;
42d35d48 1122 goto out_put_keys;
796f8d9b
DG
1123 }
1124
d0725992 1125 ret = fault_in_user_writeable(uaddr2);
4732efbe 1126 if (ret)
de87fcc1 1127 goto out_put_keys;
4732efbe 1128
b41277dc 1129 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1130 goto retry_private;
1131
ae791a2d
TG
1132 put_futex_key(&key2);
1133 put_futex_key(&key1);
e4dc5b7a 1134 goto retry;
4732efbe
JJ
1135 }
1136
0d00c7b2 1137 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
4732efbe 1138 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1139 if (this->pi_state || this->rt_waiter) {
1140 ret = -EINVAL;
1141 goto out_unlock;
1142 }
4732efbe
JJ
1143 wake_futex(this);
1144 if (++ret >= nr_wake)
1145 break;
1146 }
1147 }
1148
1149 if (op_ret > 0) {
4732efbe 1150 op_ret = 0;
0d00c7b2 1151 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
4732efbe 1152 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1153 if (this->pi_state || this->rt_waiter) {
1154 ret = -EINVAL;
1155 goto out_unlock;
1156 }
4732efbe
JJ
1157 wake_futex(this);
1158 if (++op_ret >= nr_wake2)
1159 break;
1160 }
1161 }
1162 ret += op_ret;
1163 }
1164
aa10990e 1165out_unlock:
5eb3dc62 1166 double_unlock_hb(hb1, hb2);
42d35d48 1167out_put_keys:
ae791a2d 1168 put_futex_key(&key2);
42d35d48 1169out_put_key1:
ae791a2d 1170 put_futex_key(&key1);
42d35d48 1171out:
4732efbe
JJ
1172 return ret;
1173}
1174
9121e478
DH
1175/**
1176 * requeue_futex() - Requeue a futex_q from one hb to another
1177 * @q: the futex_q to requeue
1178 * @hb1: the source hash_bucket
1179 * @hb2: the target hash_bucket
1180 * @key2: the new key for the requeued futex_q
1181 */
1182static inline
1183void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1184 struct futex_hash_bucket *hb2, union futex_key *key2)
1185{
1186
1187 /*
1188 * If key1 and key2 hash to the same bucket, no need to
1189 * requeue.
1190 */
1191 if (likely(&hb1->chain != &hb2->chain)) {
1192 plist_del(&q->list, &hb1->chain);
1193 plist_add(&q->list, &hb2->chain);
1194 q->lock_ptr = &hb2->lock;
9121e478
DH
1195 }
1196 get_futex_key_refs(key2);
1197 q->key = *key2;
1198}
1199
52400ba9
DH
1200/**
1201 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1202 * @q: the futex_q
1203 * @key: the key of the requeue target futex
1204 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1205 *
1206 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1207 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1208 * to the requeue target futex so the waiter can detect the wakeup on the right
1209 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1210 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1211 * to protect access to the pi_state to fixup the owner later. Must be called
1212 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1213 */
1214static inline
beda2c7e
DH
1215void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1216 struct futex_hash_bucket *hb)
52400ba9 1217{
52400ba9
DH
1218 get_futex_key_refs(key);
1219 q->key = *key;
1220
2e12978a 1221 __unqueue_futex(q);
52400ba9
DH
1222
1223 WARN_ON(!q->rt_waiter);
1224 q->rt_waiter = NULL;
1225
beda2c7e 1226 q->lock_ptr = &hb->lock;
beda2c7e 1227
f1a11e05 1228 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1229}
1230
1231/**
1232 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1233 * @pifutex: the user address of the to futex
1234 * @hb1: the from futex hash bucket, must be locked by the caller
1235 * @hb2: the to futex hash bucket, must be locked by the caller
1236 * @key1: the from futex key
1237 * @key2: the to futex key
1238 * @ps: address to store the pi_state pointer
1239 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1240 *
1241 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1242 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1243 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1244 * hb1 and hb2 must be held by the caller.
52400ba9 1245 *
6c23cbbd
RD
1246 * Return:
1247 * 0 - failed to acquire the lock atomically;
1248 * 1 - acquired the lock;
52400ba9
DH
1249 * <0 - error
1250 */
1251static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1252 struct futex_hash_bucket *hb1,
1253 struct futex_hash_bucket *hb2,
1254 union futex_key *key1, union futex_key *key2,
bab5bc9e 1255 struct futex_pi_state **ps, int set_waiters)
52400ba9 1256{
bab5bc9e 1257 struct futex_q *top_waiter = NULL;
52400ba9
DH
1258 u32 curval;
1259 int ret;
1260
1261 if (get_futex_value_locked(&curval, pifutex))
1262 return -EFAULT;
1263
bab5bc9e
DH
1264 /*
1265 * Find the top_waiter and determine if there are additional waiters.
1266 * If the caller intends to requeue more than 1 waiter to pifutex,
1267 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1268 * as we have means to handle the possible fault. If not, don't set
1269 * the bit unecessarily as it will force the subsequent unlock to enter
1270 * the kernel.
1271 */
52400ba9
DH
1272 top_waiter = futex_top_waiter(hb1, key1);
1273
1274 /* There are no waiters, nothing for us to do. */
1275 if (!top_waiter)
1276 return 0;
1277
84bc4af5
DH
1278 /* Ensure we requeue to the expected futex. */
1279 if (!match_futex(top_waiter->requeue_pi_key, key2))
1280 return -EINVAL;
1281
52400ba9 1282 /*
bab5bc9e
DH
1283 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1284 * the contended case or if set_waiters is 1. The pi_state is returned
1285 * in ps in contended cases.
52400ba9 1286 */
bab5bc9e
DH
1287 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1288 set_waiters);
52400ba9 1289 if (ret == 1)
beda2c7e 1290 requeue_pi_wake_futex(top_waiter, key2, hb2);
52400ba9
DH
1291
1292 return ret;
1293}
1294
1295/**
1296 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1297 * @uaddr1: source futex user address
b41277dc 1298 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1299 * @uaddr2: target futex user address
1300 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1301 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1302 * @cmpval: @uaddr1 expected value (or %NULL)
1303 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1304 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1305 *
1306 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1307 * uaddr2 atomically on behalf of the top waiter.
1308 *
6c23cbbd
RD
1309 * Return:
1310 * >=0 - on success, the number of tasks requeued or woken;
52400ba9 1311 * <0 - on error
1da177e4 1312 */
b41277dc
DH
1313static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1314 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1315 u32 *cmpval, int requeue_pi)
1da177e4 1316{
38d47c1b 1317 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1318 int drop_count = 0, task_count = 0, ret;
1319 struct futex_pi_state *pi_state = NULL;
e2970f2f 1320 struct futex_hash_bucket *hb1, *hb2;
1da177e4 1321 struct futex_q *this, *next;
52400ba9
DH
1322 u32 curval2;
1323
1324 if (requeue_pi) {
1325 /*
1326 * requeue_pi requires a pi_state, try to allocate it now
1327 * without any locks in case it fails.
1328 */
1329 if (refill_pi_state_cache())
1330 return -ENOMEM;
1331 /*
1332 * requeue_pi must wake as many tasks as it can, up to nr_wake
1333 * + nr_requeue, since it acquires the rt_mutex prior to
1334 * returning to userspace, so as to not leave the rt_mutex with
1335 * waiters and no owner. However, second and third wake-ups
1336 * cannot be predicted as they involve race conditions with the
1337 * first wake and a fault while looking up the pi_state. Both
1338 * pthread_cond_signal() and pthread_cond_broadcast() should
1339 * use nr_wake=1.
1340 */
1341 if (nr_wake != 1)
1342 return -EINVAL;
1343 }
1da177e4 1344
42d35d48 1345retry:
52400ba9
DH
1346 if (pi_state != NULL) {
1347 /*
1348 * We will have to lookup the pi_state again, so free this one
1349 * to keep the accounting correct.
1350 */
1351 free_pi_state(pi_state);
1352 pi_state = NULL;
1353 }
1354
9ea71503 1355 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1da177e4
LT
1356 if (unlikely(ret != 0))
1357 goto out;
9ea71503
SB
1358 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1359 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1da177e4 1360 if (unlikely(ret != 0))
42d35d48 1361 goto out_put_key1;
1da177e4 1362
e2970f2f
IM
1363 hb1 = hash_futex(&key1);
1364 hb2 = hash_futex(&key2);
1da177e4 1365
e4dc5b7a 1366retry_private:
8b8f319f 1367 double_lock_hb(hb1, hb2);
1da177e4 1368
e2970f2f
IM
1369 if (likely(cmpval != NULL)) {
1370 u32 curval;
1da177e4 1371
e2970f2f 1372 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1373
1374 if (unlikely(ret)) {
5eb3dc62 1375 double_unlock_hb(hb1, hb2);
1da177e4 1376
e2970f2f 1377 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1378 if (ret)
1379 goto out_put_keys;
1da177e4 1380
b41277dc 1381 if (!(flags & FLAGS_SHARED))
e4dc5b7a 1382 goto retry_private;
1da177e4 1383
ae791a2d
TG
1384 put_futex_key(&key2);
1385 put_futex_key(&key1);
e4dc5b7a 1386 goto retry;
1da177e4 1387 }
e2970f2f 1388 if (curval != *cmpval) {
1da177e4
LT
1389 ret = -EAGAIN;
1390 goto out_unlock;
1391 }
1392 }
1393
52400ba9 1394 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
1395 /*
1396 * Attempt to acquire uaddr2 and wake the top waiter. If we
1397 * intend to requeue waiters, force setting the FUTEX_WAITERS
1398 * bit. We force this here where we are able to easily handle
1399 * faults rather in the requeue loop below.
1400 */
52400ba9 1401 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 1402 &key2, &pi_state, nr_requeue);
52400ba9
DH
1403
1404 /*
1405 * At this point the top_waiter has either taken uaddr2 or is
1406 * waiting on it. If the former, then the pi_state will not
1407 * exist yet, look it up one more time to ensure we have a
1408 * reference to it.
1409 */
1410 if (ret == 1) {
1411 WARN_ON(pi_state);
89061d3d 1412 drop_count++;
52400ba9
DH
1413 task_count++;
1414 ret = get_futex_value_locked(&curval2, uaddr2);
1415 if (!ret)
1416 ret = lookup_pi_state(curval2, hb2, &key2,
1417 &pi_state);
1418 }
1419
1420 switch (ret) {
1421 case 0:
1422 break;
1423 case -EFAULT:
1424 double_unlock_hb(hb1, hb2);
ae791a2d
TG
1425 put_futex_key(&key2);
1426 put_futex_key(&key1);
d0725992 1427 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
1428 if (!ret)
1429 goto retry;
1430 goto out;
1431 case -EAGAIN:
1432 /* The owner was exiting, try again. */
1433 double_unlock_hb(hb1, hb2);
ae791a2d
TG
1434 put_futex_key(&key2);
1435 put_futex_key(&key1);
52400ba9
DH
1436 cond_resched();
1437 goto retry;
1438 default:
1439 goto out_unlock;
1440 }
1441 }
1442
0d00c7b2 1443 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
52400ba9
DH
1444 if (task_count - nr_wake >= nr_requeue)
1445 break;
1446
1447 if (!match_futex(&this->key, &key1))
1da177e4 1448 continue;
52400ba9 1449
392741e0
DH
1450 /*
1451 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1452 * be paired with each other and no other futex ops.
aa10990e
DH
1453 *
1454 * We should never be requeueing a futex_q with a pi_state,
1455 * which is awaiting a futex_unlock_pi().
392741e0
DH
1456 */
1457 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
1458 (!requeue_pi && this->rt_waiter) ||
1459 this->pi_state) {
392741e0
DH
1460 ret = -EINVAL;
1461 break;
1462 }
52400ba9
DH
1463
1464 /*
1465 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1466 * lock, we already woke the top_waiter. If not, it will be
1467 * woken by futex_unlock_pi().
1468 */
1469 if (++task_count <= nr_wake && !requeue_pi) {
1da177e4 1470 wake_futex(this);
52400ba9
DH
1471 continue;
1472 }
1da177e4 1473
84bc4af5
DH
1474 /* Ensure we requeue to the expected futex for requeue_pi. */
1475 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1476 ret = -EINVAL;
1477 break;
1478 }
1479
52400ba9
DH
1480 /*
1481 * Requeue nr_requeue waiters and possibly one more in the case
1482 * of requeue_pi if we couldn't acquire the lock atomically.
1483 */
1484 if (requeue_pi) {
1485 /* Prepare the waiter to take the rt_mutex. */
1486 atomic_inc(&pi_state->refcount);
1487 this->pi_state = pi_state;
1488 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1489 this->rt_waiter,
1490 this->task, 1);
1491 if (ret == 1) {
1492 /* We got the lock. */
beda2c7e 1493 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 1494 drop_count++;
52400ba9
DH
1495 continue;
1496 } else if (ret) {
1497 /* -EDEADLK */
1498 this->pi_state = NULL;
1499 free_pi_state(pi_state);
1500 goto out_unlock;
1501 }
1da177e4 1502 }
52400ba9
DH
1503 requeue_futex(this, hb1, hb2, &key2);
1504 drop_count++;
1da177e4
LT
1505 }
1506
1507out_unlock:
5eb3dc62 1508 double_unlock_hb(hb1, hb2);
1da177e4 1509
cd84a42f
DH
1510 /*
1511 * drop_futex_key_refs() must be called outside the spinlocks. During
1512 * the requeue we moved futex_q's from the hash bucket at key1 to the
1513 * one at key2 and updated their key pointer. We no longer need to
1514 * hold the references to key1.
1515 */
1da177e4 1516 while (--drop_count >= 0)
9adef58b 1517 drop_futex_key_refs(&key1);
1da177e4 1518
42d35d48 1519out_put_keys:
ae791a2d 1520 put_futex_key(&key2);
42d35d48 1521out_put_key1:
ae791a2d 1522 put_futex_key(&key1);
42d35d48 1523out:
52400ba9
DH
1524 if (pi_state != NULL)
1525 free_pi_state(pi_state);
1526 return ret ? ret : task_count;
1da177e4
LT
1527}
1528
1529/* The key must be already stored in q->key. */
82af7aca 1530static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 1531 __acquires(&hb->lock)
1da177e4 1532{
e2970f2f 1533 struct futex_hash_bucket *hb;
1da177e4 1534
e2970f2f
IM
1535 hb = hash_futex(&q->key);
1536 q->lock_ptr = &hb->lock;
1da177e4 1537
e2970f2f
IM
1538 spin_lock(&hb->lock);
1539 return hb;
1da177e4
LT
1540}
1541
d40d65c8 1542static inline void
0d00c7b2 1543queue_unlock(struct futex_hash_bucket *hb)
15e408cd 1544 __releases(&hb->lock)
d40d65c8
DH
1545{
1546 spin_unlock(&hb->lock);
d40d65c8
DH
1547}
1548
1549/**
1550 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1551 * @q: The futex_q to enqueue
1552 * @hb: The destination hash bucket
1553 *
1554 * The hb->lock must be held by the caller, and is released here. A call to
1555 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1556 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1557 * or nothing if the unqueue is done as part of the wake process and the unqueue
1558 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1559 * an example).
1560 */
82af7aca 1561static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
15e408cd 1562 __releases(&hb->lock)
1da177e4 1563{
ec92d082
PP
1564 int prio;
1565
1566 /*
1567 * The priority used to register this element is
1568 * - either the real thread-priority for the real-time threads
1569 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1570 * - or MAX_RT_PRIO for non-RT threads.
1571 * Thus, all RT-threads are woken first in priority order, and
1572 * the others are woken last, in FIFO order.
1573 */
1574 prio = min(current->normal_prio, MAX_RT_PRIO);
1575
1576 plist_node_init(&q->list, prio);
ec92d082 1577 plist_add(&q->list, &hb->chain);
c87e2837 1578 q->task = current;
e2970f2f 1579 spin_unlock(&hb->lock);
1da177e4
LT
1580}
1581
d40d65c8
DH
1582/**
1583 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1584 * @q: The futex_q to unqueue
1585 *
1586 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1587 * be paired with exactly one earlier call to queue_me().
1588 *
6c23cbbd
RD
1589 * Return:
1590 * 1 - if the futex_q was still queued (and we removed unqueued it);
d40d65c8 1591 * 0 - if the futex_q was already removed by the waking thread
1da177e4 1592 */
1da177e4
LT
1593static int unqueue_me(struct futex_q *q)
1594{
1da177e4 1595 spinlock_t *lock_ptr;
e2970f2f 1596 int ret = 0;
1da177e4
LT
1597
1598 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 1599retry:
1da177e4 1600 lock_ptr = q->lock_ptr;
e91467ec 1601 barrier();
c80544dc 1602 if (lock_ptr != NULL) {
1da177e4
LT
1603 spin_lock(lock_ptr);
1604 /*
1605 * q->lock_ptr can change between reading it and
1606 * spin_lock(), causing us to take the wrong lock. This
1607 * corrects the race condition.
1608 *
1609 * Reasoning goes like this: if we have the wrong lock,
1610 * q->lock_ptr must have changed (maybe several times)
1611 * between reading it and the spin_lock(). It can
1612 * change again after the spin_lock() but only if it was
1613 * already changed before the spin_lock(). It cannot,
1614 * however, change back to the original value. Therefore
1615 * we can detect whether we acquired the correct lock.
1616 */
1617 if (unlikely(lock_ptr != q->lock_ptr)) {
1618 spin_unlock(lock_ptr);
1619 goto retry;
1620 }
2e12978a 1621 __unqueue_futex(q);
c87e2837
IM
1622
1623 BUG_ON(q->pi_state);
1624
1da177e4
LT
1625 spin_unlock(lock_ptr);
1626 ret = 1;
1627 }
1628
9adef58b 1629 drop_futex_key_refs(&q->key);
1da177e4
LT
1630 return ret;
1631}
1632
c87e2837
IM
1633/*
1634 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1635 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1636 * and dropped here.
c87e2837 1637 */
d0aa7a70 1638static void unqueue_me_pi(struct futex_q *q)
15e408cd 1639 __releases(q->lock_ptr)
c87e2837 1640{
2e12978a 1641 __unqueue_futex(q);
c87e2837
IM
1642
1643 BUG_ON(!q->pi_state);
1644 free_pi_state(q->pi_state);
1645 q->pi_state = NULL;
1646
d0aa7a70 1647 spin_unlock(q->lock_ptr);
c87e2837
IM
1648}
1649
d0aa7a70 1650/*
cdf71a10 1651 * Fixup the pi_state owner with the new owner.
d0aa7a70 1652 *
778e9a9c
AK
1653 * Must be called with hash bucket lock held and mm->sem held for non
1654 * private futexes.
d0aa7a70 1655 */
778e9a9c 1656static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
ae791a2d 1657 struct task_struct *newowner)
d0aa7a70 1658{
cdf71a10 1659 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 1660 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 1661 struct task_struct *oldowner = pi_state->owner;
7cfdaf38 1662 u32 uval, uninitialized_var(curval), newval;
e4dc5b7a 1663 int ret;
d0aa7a70
PP
1664
1665 /* Owner died? */
1b7558e4
TG
1666 if (!pi_state->owner)
1667 newtid |= FUTEX_OWNER_DIED;
1668
1669 /*
1670 * We are here either because we stole the rtmutex from the
8161239a
LJ
1671 * previous highest priority waiter or we are the highest priority
1672 * waiter but failed to get the rtmutex the first time.
1673 * We have to replace the newowner TID in the user space variable.
1674 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 1675 *
b2d0994b
DH
1676 * Note: We write the user space value _before_ changing the pi_state
1677 * because we can fault here. Imagine swapped out pages or a fork
1678 * that marked all the anonymous memory readonly for cow.
1b7558e4
TG
1679 *
1680 * Modifying pi_state _before_ the user space value would
1681 * leave the pi_state in an inconsistent state when we fault
1682 * here, because we need to drop the hash bucket lock to
1683 * handle the fault. This might be observed in the PID check
1684 * in lookup_pi_state.
1685 */
1686retry:
1687 if (get_futex_value_locked(&uval, uaddr))
1688 goto handle_fault;
1689
1690 while (1) {
1691 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1692
37a9d912 1693 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1b7558e4
TG
1694 goto handle_fault;
1695 if (curval == uval)
1696 break;
1697 uval = curval;
1698 }
1699
1700 /*
1701 * We fixed up user space. Now we need to fix the pi_state
1702 * itself.
1703 */
d0aa7a70 1704 if (pi_state->owner != NULL) {
1d615482 1705 raw_spin_lock_irq(&pi_state->owner->pi_lock);
d0aa7a70
PP
1706 WARN_ON(list_empty(&pi_state->list));
1707 list_del_init(&pi_state->list);
1d615482 1708 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 1709 }
d0aa7a70 1710
cdf71a10 1711 pi_state->owner = newowner;
d0aa7a70 1712
1d615482 1713 raw_spin_lock_irq(&newowner->pi_lock);
d0aa7a70 1714 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 1715 list_add(&pi_state->list, &newowner->pi_state_list);
1d615482 1716 raw_spin_unlock_irq(&newowner->pi_lock);
1b7558e4 1717 return 0;
d0aa7a70 1718
d0aa7a70 1719 /*
1b7558e4 1720 * To handle the page fault we need to drop the hash bucket
8161239a
LJ
1721 * lock here. That gives the other task (either the highest priority
1722 * waiter itself or the task which stole the rtmutex) the
1b7558e4
TG
1723 * chance to try the fixup of the pi_state. So once we are
1724 * back from handling the fault we need to check the pi_state
1725 * after reacquiring the hash bucket lock and before trying to
1726 * do another fixup. When the fixup has been done already we
1727 * simply return.
d0aa7a70 1728 */
1b7558e4
TG
1729handle_fault:
1730 spin_unlock(q->lock_ptr);
778e9a9c 1731
d0725992 1732 ret = fault_in_user_writeable(uaddr);
778e9a9c 1733
1b7558e4 1734 spin_lock(q->lock_ptr);
778e9a9c 1735
1b7558e4
TG
1736 /*
1737 * Check if someone else fixed it for us:
1738 */
1739 if (pi_state->owner != oldowner)
1740 return 0;
1741
1742 if (ret)
1743 return ret;
1744
1745 goto retry;
d0aa7a70
PP
1746}
1747
72c1bbf3 1748static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 1749
dd973998
DH
1750/**
1751 * fixup_owner() - Post lock pi_state and corner case management
1752 * @uaddr: user address of the futex
dd973998
DH
1753 * @q: futex_q (contains pi_state and access to the rt_mutex)
1754 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1755 *
1756 * After attempting to lock an rt_mutex, this function is called to cleanup
1757 * the pi_state owner as well as handle race conditions that may allow us to
1758 * acquire the lock. Must be called with the hb lock held.
1759 *
6c23cbbd
RD
1760 * Return:
1761 * 1 - success, lock taken;
1762 * 0 - success, lock not taken;
dd973998
DH
1763 * <0 - on error (-EFAULT)
1764 */
ae791a2d 1765static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998
DH
1766{
1767 struct task_struct *owner;
1768 int ret = 0;
1769
1770 if (locked) {
1771 /*
1772 * Got the lock. We might not be the anticipated owner if we
1773 * did a lock-steal - fix up the PI-state in that case:
1774 */
1775 if (q->pi_state->owner != current)
ae791a2d 1776 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
1777 goto out;
1778 }
1779
1780 /*
1781 * Catch the rare case, where the lock was released when we were on the
1782 * way back before we locked the hash bucket.
1783 */
1784 if (q->pi_state->owner == current) {
1785 /*
1786 * Try to get the rt_mutex now. This might fail as some other
1787 * task acquired the rt_mutex after we removed ourself from the
1788 * rt_mutex waiters list.
1789 */
1790 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1791 locked = 1;
1792 goto out;
1793 }
1794
1795 /*
1796 * pi_state is incorrect, some other task did a lock steal and
1797 * we returned due to timeout or signal without taking the
8161239a 1798 * rt_mutex. Too late.
dd973998 1799 */
8161239a 1800 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
dd973998 1801 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
8161239a
LJ
1802 if (!owner)
1803 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1804 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
ae791a2d 1805 ret = fixup_pi_state_owner(uaddr, q, owner);
dd973998
DH
1806 goto out;
1807 }
1808
1809 /*
1810 * Paranoia check. If we did not take the lock, then we should not be
8161239a 1811 * the owner of the rt_mutex.
dd973998
DH
1812 */
1813 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1814 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1815 "pi-state %p\n", ret,
1816 q->pi_state->pi_mutex.owner,
1817 q->pi_state->owner);
1818
1819out:
1820 return ret ? ret : locked;
1821}
1822
ca5f9524
DH
1823/**
1824 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1825 * @hb: the futex hash bucket, must be locked by the caller
1826 * @q: the futex_q to queue up on
1827 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
1828 */
1829static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 1830 struct hrtimer_sleeper *timeout)
ca5f9524 1831{
9beba3c5
DH
1832 /*
1833 * The task state is guaranteed to be set before another task can
1834 * wake it. set_current_state() is implemented using set_mb() and
1835 * queue_me() calls spin_unlock() upon completion, both serializing
1836 * access to the hash list and forcing another memory barrier.
1837 */
f1a11e05 1838 set_current_state(TASK_INTERRUPTIBLE);
0729e196 1839 queue_me(q, hb);
ca5f9524
DH
1840
1841 /* Arm the timer */
1842 if (timeout) {
1843 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1844 if (!hrtimer_active(&timeout->timer))
1845 timeout->task = NULL;
1846 }
1847
1848 /*
0729e196
DH
1849 * If we have been removed from the hash list, then another task
1850 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
1851 */
1852 if (likely(!plist_node_empty(&q->list))) {
1853 /*
1854 * If the timer has already expired, current will already be
1855 * flagged for rescheduling. Only call schedule if there
1856 * is no timeout, or if it has yet to expire.
1857 */
1858 if (!timeout || timeout->task)
88c8004f 1859 freezable_schedule();
ca5f9524
DH
1860 }
1861 __set_current_state(TASK_RUNNING);
1862}
1863
f801073f
DH
1864/**
1865 * futex_wait_setup() - Prepare to wait on a futex
1866 * @uaddr: the futex userspace address
1867 * @val: the expected value
b41277dc 1868 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
1869 * @q: the associated futex_q
1870 * @hb: storage for hash_bucket pointer to be returned to caller
1871 *
1872 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1873 * compare it with the expected value. Handle atomic faults internally.
1874 * Return with the hb lock held and a q.key reference on success, and unlocked
1875 * with no q.key reference on failure.
1876 *
6c23cbbd
RD
1877 * Return:
1878 * 0 - uaddr contains val and hb has been locked;
ca4a04cf 1879 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 1880 */
b41277dc 1881static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 1882 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 1883{
e2970f2f
IM
1884 u32 uval;
1885 int ret;
1da177e4 1886
1da177e4 1887 /*
b2d0994b 1888 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
1889 * Order is important:
1890 *
1891 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1892 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1893 *
1894 * The basic logical guarantee of a futex is that it blocks ONLY
1895 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
1896 * any cond. If we locked the hash-bucket after testing *uaddr, that
1897 * would open a race condition where we could block indefinitely with
1da177e4
LT
1898 * cond(var) false, which would violate the guarantee.
1899 *
8fe8f545
ML
1900 * On the other hand, we insert q and release the hash-bucket only
1901 * after testing *uaddr. This guarantees that futex_wait() will NOT
1902 * absorb a wakeup if *uaddr does not match the desired values
1903 * while the syscall executes.
1da177e4 1904 */
f801073f 1905retry:
9ea71503 1906 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
f801073f 1907 if (unlikely(ret != 0))
a5a2a0c7 1908 return ret;
f801073f
DH
1909
1910retry_private:
1911 *hb = queue_lock(q);
1912
e2970f2f 1913 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 1914
f801073f 1915 if (ret) {
0d00c7b2 1916 queue_unlock(*hb);
1da177e4 1917
e2970f2f 1918 ret = get_user(uval, uaddr);
e4dc5b7a 1919 if (ret)
f801073f 1920 goto out;
1da177e4 1921
b41277dc 1922 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1923 goto retry_private;
1924
ae791a2d 1925 put_futex_key(&q->key);
e4dc5b7a 1926 goto retry;
1da177e4 1927 }
ca5f9524 1928
f801073f 1929 if (uval != val) {
0d00c7b2 1930 queue_unlock(*hb);
f801073f 1931 ret = -EWOULDBLOCK;
2fff78c7 1932 }
1da177e4 1933
f801073f
DH
1934out:
1935 if (ret)
ae791a2d 1936 put_futex_key(&q->key);
f801073f
DH
1937 return ret;
1938}
1939
b41277dc
DH
1940static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
1941 ktime_t *abs_time, u32 bitset)
f801073f
DH
1942{
1943 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
1944 struct restart_block *restart;
1945 struct futex_hash_bucket *hb;
5bdb05f9 1946 struct futex_q q = futex_q_init;
f801073f
DH
1947 int ret;
1948
1949 if (!bitset)
1950 return -EINVAL;
f801073f
DH
1951 q.bitset = bitset;
1952
1953 if (abs_time) {
1954 to = &timeout;
1955
b41277dc
DH
1956 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
1957 CLOCK_REALTIME : CLOCK_MONOTONIC,
1958 HRTIMER_MODE_ABS);
f801073f
DH
1959 hrtimer_init_sleeper(to, current);
1960 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1961 current->timer_slack_ns);
1962 }
1963
d58e6576 1964retry:
7ada876a
DH
1965 /*
1966 * Prepare to wait on uaddr. On success, holds hb lock and increments
1967 * q.key refs.
1968 */
b41277dc 1969 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
1970 if (ret)
1971 goto out;
1972
ca5f9524 1973 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 1974 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
1975
1976 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 1977 ret = 0;
7ada876a 1978 /* unqueue_me() drops q.key ref */
1da177e4 1979 if (!unqueue_me(&q))
7ada876a 1980 goto out;
2fff78c7 1981 ret = -ETIMEDOUT;
ca5f9524 1982 if (to && !to->task)
7ada876a 1983 goto out;
72c1bbf3 1984
e2970f2f 1985 /*
d58e6576
TG
1986 * We expect signal_pending(current), but we might be the
1987 * victim of a spurious wakeup as well.
e2970f2f 1988 */
7ada876a 1989 if (!signal_pending(current))
d58e6576 1990 goto retry;
d58e6576 1991
2fff78c7 1992 ret = -ERESTARTSYS;
c19384b5 1993 if (!abs_time)
7ada876a 1994 goto out;
1da177e4 1995
2fff78c7
PZ
1996 restart = &current_thread_info()->restart_block;
1997 restart->fn = futex_wait_restart;
a3c74c52 1998 restart->futex.uaddr = uaddr;
2fff78c7
PZ
1999 restart->futex.val = val;
2000 restart->futex.time = abs_time->tv64;
2001 restart->futex.bitset = bitset;
0cd9c649 2002 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2003
2fff78c7
PZ
2004 ret = -ERESTART_RESTARTBLOCK;
2005
42d35d48 2006out:
ca5f9524
DH
2007 if (to) {
2008 hrtimer_cancel(&to->timer);
2009 destroy_hrtimer_on_stack(&to->timer);
2010 }
c87e2837
IM
2011 return ret;
2012}
2013
72c1bbf3
NP
2014
2015static long futex_wait_restart(struct restart_block *restart)
2016{
a3c74c52 2017 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2018 ktime_t t, *tp = NULL;
72c1bbf3 2019
a72188d8
DH
2020 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2021 t.tv64 = restart->futex.time;
2022 tp = &t;
2023 }
72c1bbf3 2024 restart->fn = do_no_restart_syscall;
b41277dc
DH
2025
2026 return (long)futex_wait(uaddr, restart->futex.flags,
2027 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2028}
2029
2030
c87e2837
IM
2031/*
2032 * Userspace tried a 0 -> TID atomic transition of the futex value
2033 * and failed. The kernel side here does the whole locking operation:
2034 * if there are waiters then it will block, it does PI, etc. (Due to
2035 * races the kernel might see a 0 value of the futex too.)
2036 */
b41277dc
DH
2037static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2038 ktime_t *time, int trylock)
c87e2837 2039{
c5780e97 2040 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837 2041 struct futex_hash_bucket *hb;
5bdb05f9 2042 struct futex_q q = futex_q_init;
dd973998 2043 int res, ret;
c87e2837
IM
2044
2045 if (refill_pi_state_cache())
2046 return -ENOMEM;
2047
c19384b5 2048 if (time) {
c5780e97 2049 to = &timeout;
237fc6e7
TG
2050 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2051 HRTIMER_MODE_ABS);
c5780e97 2052 hrtimer_init_sleeper(to, current);
cc584b21 2053 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
2054 }
2055
42d35d48 2056retry:
9ea71503 2057 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
c87e2837 2058 if (unlikely(ret != 0))
42d35d48 2059 goto out;
c87e2837 2060
e4dc5b7a 2061retry_private:
82af7aca 2062 hb = queue_lock(&q);
c87e2837 2063
bab5bc9e 2064 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 2065 if (unlikely(ret)) {
778e9a9c 2066 switch (ret) {
1a52084d
DH
2067 case 1:
2068 /* We got the lock. */
2069 ret = 0;
2070 goto out_unlock_put_key;
2071 case -EFAULT:
2072 goto uaddr_faulted;
778e9a9c
AK
2073 case -EAGAIN:
2074 /*
2075 * Task is exiting and we just wait for the
2076 * exit to complete.
2077 */
0d00c7b2 2078 queue_unlock(hb);
ae791a2d 2079 put_futex_key(&q.key);
778e9a9c
AK
2080 cond_resched();
2081 goto retry;
778e9a9c 2082 default:
42d35d48 2083 goto out_unlock_put_key;
c87e2837 2084 }
c87e2837
IM
2085 }
2086
2087 /*
2088 * Only actually queue now that the atomic ops are done:
2089 */
82af7aca 2090 queue_me(&q, hb);
c87e2837 2091
c87e2837
IM
2092 WARN_ON(!q.pi_state);
2093 /*
2094 * Block on the PI mutex:
2095 */
2096 if (!trylock)
2097 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2098 else {
2099 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2100 /* Fixup the trylock return value: */
2101 ret = ret ? 0 : -EWOULDBLOCK;
2102 }
2103
a99e4e41 2104 spin_lock(q.lock_ptr);
dd973998
DH
2105 /*
2106 * Fixup the pi_state owner and possibly acquire the lock if we
2107 * haven't already.
2108 */
ae791a2d 2109 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2110 /*
2111 * If fixup_owner() returned an error, proprogate that. If it acquired
2112 * the lock, clear our -ETIMEDOUT or -EINTR.
2113 */
2114 if (res)
2115 ret = (res < 0) ? res : 0;
c87e2837 2116
e8f6386c 2117 /*
dd973998
DH
2118 * If fixup_owner() faulted and was unable to handle the fault, unlock
2119 * it and return the fault to userspace.
e8f6386c
DH
2120 */
2121 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2122 rt_mutex_unlock(&q.pi_state->pi_mutex);
2123
778e9a9c
AK
2124 /* Unqueue and drop the lock */
2125 unqueue_me_pi(&q);
c87e2837 2126
5ecb01cf 2127 goto out_put_key;
c87e2837 2128
42d35d48 2129out_unlock_put_key:
0d00c7b2 2130 queue_unlock(hb);
c87e2837 2131
42d35d48 2132out_put_key:
ae791a2d 2133 put_futex_key(&q.key);
42d35d48 2134out:
237fc6e7
TG
2135 if (to)
2136 destroy_hrtimer_on_stack(&to->timer);
dd973998 2137 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2138
42d35d48 2139uaddr_faulted:
0d00c7b2 2140 queue_unlock(hb);
778e9a9c 2141
d0725992 2142 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2143 if (ret)
2144 goto out_put_key;
c87e2837 2145
b41277dc 2146 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2147 goto retry_private;
2148
ae791a2d 2149 put_futex_key(&q.key);
e4dc5b7a 2150 goto retry;
c87e2837
IM
2151}
2152
c87e2837
IM
2153/*
2154 * Userspace attempted a TID -> 0 atomic transition, and failed.
2155 * This is the in-kernel slowpath: we look up the PI state (if any),
2156 * and do the rt-mutex unlock.
2157 */
b41277dc 2158static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837
IM
2159{
2160 struct futex_hash_bucket *hb;
2161 struct futex_q *this, *next;
38d47c1b 2162 union futex_key key = FUTEX_KEY_INIT;
c0c9ed15 2163 u32 uval, vpid = task_pid_vnr(current);
e4dc5b7a 2164 int ret;
c87e2837
IM
2165
2166retry:
2167 if (get_user(uval, uaddr))
2168 return -EFAULT;
2169 /*
2170 * We release only a lock we actually own:
2171 */
c0c9ed15 2172 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2173 return -EPERM;
c87e2837 2174
9ea71503 2175 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
c87e2837
IM
2176 if (unlikely(ret != 0))
2177 goto out;
2178
2179 hb = hash_futex(&key);
2180 spin_lock(&hb->lock);
2181
c87e2837
IM
2182 /*
2183 * To avoid races, try to do the TID -> 0 atomic transition
2184 * again. If it succeeds then we can return without waking
2185 * anyone else up:
2186 */
37a9d912
ML
2187 if (!(uval & FUTEX_OWNER_DIED) &&
2188 cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
c87e2837
IM
2189 goto pi_faulted;
2190 /*
2191 * Rare case: we managed to release the lock atomically,
2192 * no need to wake anyone else up:
2193 */
c0c9ed15 2194 if (unlikely(uval == vpid))
c87e2837
IM
2195 goto out_unlock;
2196
2197 /*
2198 * Ok, other tasks may need to be woken up - check waiters
2199 * and do the wakeup if necessary:
2200 */
0d00c7b2 2201 plist_for_each_entry_safe(this, next, &hb->chain, list) {
c87e2837
IM
2202 if (!match_futex (&this->key, &key))
2203 continue;
2204 ret = wake_futex_pi(uaddr, uval, this);
2205 /*
2206 * The atomic access to the futex value
2207 * generated a pagefault, so retry the
2208 * user-access and the wakeup:
2209 */
2210 if (ret == -EFAULT)
2211 goto pi_faulted;
2212 goto out_unlock;
2213 }
2214 /*
2215 * No waiters - kernel unlocks the futex:
2216 */
e3f2ddea
IM
2217 if (!(uval & FUTEX_OWNER_DIED)) {
2218 ret = unlock_futex_pi(uaddr, uval);
2219 if (ret == -EFAULT)
2220 goto pi_faulted;
2221 }
c87e2837
IM
2222
2223out_unlock:
2224 spin_unlock(&hb->lock);
ae791a2d 2225 put_futex_key(&key);
c87e2837 2226
42d35d48 2227out:
c87e2837
IM
2228 return ret;
2229
2230pi_faulted:
778e9a9c 2231 spin_unlock(&hb->lock);
ae791a2d 2232 put_futex_key(&key);
c87e2837 2233
d0725992 2234 ret = fault_in_user_writeable(uaddr);
b5686363 2235 if (!ret)
c87e2837
IM
2236 goto retry;
2237
1da177e4
LT
2238 return ret;
2239}
2240
52400ba9
DH
2241/**
2242 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2243 * @hb: the hash_bucket futex_q was original enqueued on
2244 * @q: the futex_q woken while waiting to be requeued
2245 * @key2: the futex_key of the requeue target futex
2246 * @timeout: the timeout associated with the wait (NULL if none)
2247 *
2248 * Detect if the task was woken on the initial futex as opposed to the requeue
2249 * target futex. If so, determine if it was a timeout or a signal that caused
2250 * the wakeup and return the appropriate error code to the caller. Must be
2251 * called with the hb lock held.
2252 *
6c23cbbd
RD
2253 * Return:
2254 * 0 = no early wakeup detected;
2255 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
2256 */
2257static inline
2258int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2259 struct futex_q *q, union futex_key *key2,
2260 struct hrtimer_sleeper *timeout)
2261{
2262 int ret = 0;
2263
2264 /*
2265 * With the hb lock held, we avoid races while we process the wakeup.
2266 * We only need to hold hb (and not hb2) to ensure atomicity as the
2267 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2268 * It can't be requeued from uaddr2 to something else since we don't
2269 * support a PI aware source futex for requeue.
2270 */
2271 if (!match_futex(&q->key, key2)) {
2272 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2273 /*
2274 * We were woken prior to requeue by a timeout or a signal.
2275 * Unqueue the futex_q and determine which it was.
2276 */
2e12978a 2277 plist_del(&q->list, &hb->chain);
52400ba9 2278
d58e6576 2279 /* Handle spurious wakeups gracefully */
11df6ddd 2280 ret = -EWOULDBLOCK;
52400ba9
DH
2281 if (timeout && !timeout->task)
2282 ret = -ETIMEDOUT;
d58e6576 2283 else if (signal_pending(current))
1c840c14 2284 ret = -ERESTARTNOINTR;
52400ba9
DH
2285 }
2286 return ret;
2287}
2288
2289/**
2290 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 2291 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 2292 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
52400ba9
DH
2293 * the same type, no requeueing from private to shared, etc.
2294 * @val: the expected value of uaddr
2295 * @abs_time: absolute timeout
56ec1607 2296 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
2297 * @uaddr2: the pi futex we will take prior to returning to user-space
2298 *
2299 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
2300 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2301 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2302 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2303 * without one, the pi logic would not know which task to boost/deboost, if
2304 * there was a need to.
52400ba9
DH
2305 *
2306 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 2307 * via the following--
52400ba9 2308 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
2309 * 2) wakeup on uaddr2 after a requeue
2310 * 3) signal
2311 * 4) timeout
52400ba9 2312 *
cc6db4e6 2313 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
2314 *
2315 * If 2, we may then block on trying to take the rt_mutex and return via:
2316 * 5) successful lock
2317 * 6) signal
2318 * 7) timeout
2319 * 8) other lock acquisition failure
2320 *
cc6db4e6 2321 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
2322 *
2323 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2324 *
6c23cbbd
RD
2325 * Return:
2326 * 0 - On success;
52400ba9
DH
2327 * <0 - On error
2328 */
b41277dc 2329static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 2330 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 2331 u32 __user *uaddr2)
52400ba9
DH
2332{
2333 struct hrtimer_sleeper timeout, *to = NULL;
2334 struct rt_mutex_waiter rt_waiter;
2335 struct rt_mutex *pi_mutex = NULL;
52400ba9 2336 struct futex_hash_bucket *hb;
5bdb05f9
DH
2337 union futex_key key2 = FUTEX_KEY_INIT;
2338 struct futex_q q = futex_q_init;
52400ba9 2339 int res, ret;
52400ba9 2340
6f7b0a2a
DH
2341 if (uaddr == uaddr2)
2342 return -EINVAL;
2343
52400ba9
DH
2344 if (!bitset)
2345 return -EINVAL;
2346
2347 if (abs_time) {
2348 to = &timeout;
b41277dc
DH
2349 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2350 CLOCK_REALTIME : CLOCK_MONOTONIC,
2351 HRTIMER_MODE_ABS);
52400ba9
DH
2352 hrtimer_init_sleeper(to, current);
2353 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2354 current->timer_slack_ns);
2355 }
2356
2357 /*
2358 * The waiter is allocated on our stack, manipulated by the requeue
2359 * code while we sleep on uaddr.
2360 */
2361 debug_rt_mutex_init_waiter(&rt_waiter);
2362 rt_waiter.task = NULL;
2363
9ea71503 2364 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
52400ba9
DH
2365 if (unlikely(ret != 0))
2366 goto out;
2367
84bc4af5
DH
2368 q.bitset = bitset;
2369 q.rt_waiter = &rt_waiter;
2370 q.requeue_pi_key = &key2;
2371
7ada876a
DH
2372 /*
2373 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2374 * count.
2375 */
b41277dc 2376 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
2377 if (ret)
2378 goto out_key2;
52400ba9
DH
2379
2380 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 2381 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
2382
2383 spin_lock(&hb->lock);
2384 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2385 spin_unlock(&hb->lock);
2386 if (ret)
2387 goto out_put_keys;
2388
2389 /*
2390 * In order for us to be here, we know our q.key == key2, and since
2391 * we took the hb->lock above, we also know that futex_requeue() has
2392 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
2393 * race with the atomic proxy lock acquisition by the requeue code. The
2394 * futex_requeue dropped our key1 reference and incremented our key2
2395 * reference count.
52400ba9
DH
2396 */
2397
2398 /* Check if the requeue code acquired the second futex for us. */
2399 if (!q.rt_waiter) {
2400 /*
2401 * Got the lock. We might not be the anticipated owner if we
2402 * did a lock-steal - fix up the PI-state in that case.
2403 */
2404 if (q.pi_state && (q.pi_state->owner != current)) {
2405 spin_lock(q.lock_ptr);
ae791a2d 2406 ret = fixup_pi_state_owner(uaddr2, &q, current);
52400ba9
DH
2407 spin_unlock(q.lock_ptr);
2408 }
2409 } else {
2410 /*
2411 * We have been woken up by futex_unlock_pi(), a timeout, or a
2412 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2413 * the pi_state.
2414 */
f27071cb 2415 WARN_ON(!q.pi_state);
52400ba9
DH
2416 pi_mutex = &q.pi_state->pi_mutex;
2417 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2418 debug_rt_mutex_free_waiter(&rt_waiter);
2419
2420 spin_lock(q.lock_ptr);
2421 /*
2422 * Fixup the pi_state owner and possibly acquire the lock if we
2423 * haven't already.
2424 */
ae791a2d 2425 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
2426 /*
2427 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 2428 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
2429 */
2430 if (res)
2431 ret = (res < 0) ? res : 0;
2432
2433 /* Unqueue and drop the lock. */
2434 unqueue_me_pi(&q);
2435 }
2436
2437 /*
2438 * If fixup_pi_state_owner() faulted and was unable to handle the
2439 * fault, unlock the rt_mutex and return the fault to userspace.
2440 */
2441 if (ret == -EFAULT) {
b6070a8d 2442 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
52400ba9
DH
2443 rt_mutex_unlock(pi_mutex);
2444 } else if (ret == -EINTR) {
52400ba9 2445 /*
cc6db4e6
DH
2446 * We've already been requeued, but cannot restart by calling
2447 * futex_lock_pi() directly. We could restart this syscall, but
2448 * it would detect that the user space "val" changed and return
2449 * -EWOULDBLOCK. Save the overhead of the restart and return
2450 * -EWOULDBLOCK directly.
52400ba9 2451 */
2070887f 2452 ret = -EWOULDBLOCK;
52400ba9
DH
2453 }
2454
2455out_put_keys:
ae791a2d 2456 put_futex_key(&q.key);
c8b15a70 2457out_key2:
ae791a2d 2458 put_futex_key(&key2);
52400ba9
DH
2459
2460out:
2461 if (to) {
2462 hrtimer_cancel(&to->timer);
2463 destroy_hrtimer_on_stack(&to->timer);
2464 }
2465 return ret;
2466}
2467
0771dfef
IM
2468/*
2469 * Support for robust futexes: the kernel cleans up held futexes at
2470 * thread exit time.
2471 *
2472 * Implementation: user-space maintains a per-thread list of locks it
2473 * is holding. Upon do_exit(), the kernel carefully walks this list,
2474 * and marks all locks that are owned by this thread with the
c87e2837 2475 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
2476 * always manipulated with the lock held, so the list is private and
2477 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2478 * field, to allow the kernel to clean up if the thread dies after
2479 * acquiring the lock, but just before it could have added itself to
2480 * the list. There can only be one such pending lock.
2481 */
2482
2483/**
d96ee56c
DH
2484 * sys_set_robust_list() - Set the robust-futex list head of a task
2485 * @head: pointer to the list-head
2486 * @len: length of the list-head, as userspace expects
0771dfef 2487 */
836f92ad
HC
2488SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2489 size_t, len)
0771dfef 2490{
a0c1e907
TG
2491 if (!futex_cmpxchg_enabled)
2492 return -ENOSYS;
0771dfef
IM
2493 /*
2494 * The kernel knows only one size for now:
2495 */
2496 if (unlikely(len != sizeof(*head)))
2497 return -EINVAL;
2498
2499 current->robust_list = head;
2500
2501 return 0;
2502}
2503
2504/**
d96ee56c
DH
2505 * sys_get_robust_list() - Get the robust-futex list head of a task
2506 * @pid: pid of the process [zero for current task]
2507 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2508 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 2509 */
836f92ad
HC
2510SYSCALL_DEFINE3(get_robust_list, int, pid,
2511 struct robust_list_head __user * __user *, head_ptr,
2512 size_t __user *, len_ptr)
0771dfef 2513{
ba46df98 2514 struct robust_list_head __user *head;
0771dfef 2515 unsigned long ret;
bdbb776f 2516 struct task_struct *p;
0771dfef 2517
a0c1e907
TG
2518 if (!futex_cmpxchg_enabled)
2519 return -ENOSYS;
2520
bdbb776f
KC
2521 rcu_read_lock();
2522
2523 ret = -ESRCH;
0771dfef 2524 if (!pid)
bdbb776f 2525 p = current;
0771dfef 2526 else {
228ebcbe 2527 p = find_task_by_vpid(pid);
0771dfef
IM
2528 if (!p)
2529 goto err_unlock;
0771dfef
IM
2530 }
2531
bdbb776f
KC
2532 ret = -EPERM;
2533 if (!ptrace_may_access(p, PTRACE_MODE_READ))
2534 goto err_unlock;
2535
2536 head = p->robust_list;
2537 rcu_read_unlock();
2538
0771dfef
IM
2539 if (put_user(sizeof(*head), len_ptr))
2540 return -EFAULT;
2541 return put_user(head, head_ptr);
2542
2543err_unlock:
aaa2a97e 2544 rcu_read_unlock();
0771dfef
IM
2545
2546 return ret;
2547}
2548
2549/*
2550 * Process a futex-list entry, check whether it's owned by the
2551 * dying task, and do notification if so:
2552 */
e3f2ddea 2553int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 2554{
7cfdaf38 2555 u32 uval, uninitialized_var(nval), mval;
0771dfef 2556
8f17d3a5
IM
2557retry:
2558 if (get_user(uval, uaddr))
0771dfef
IM
2559 return -1;
2560
b488893a 2561 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
2562 /*
2563 * Ok, this dying thread is truly holding a futex
2564 * of interest. Set the OWNER_DIED bit atomically
2565 * via cmpxchg, and if the value had FUTEX_WAITERS
2566 * set, wake up a waiter (if any). (We have to do a
2567 * futex_wake() even if OWNER_DIED is already set -
2568 * to handle the rare but possible case of recursive
2569 * thread-death.) The rest of the cleanup is done in
2570 * userspace.
2571 */
e3f2ddea 2572 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
6e0aa9f8
TG
2573 /*
2574 * We are not holding a lock here, but we want to have
2575 * the pagefault_disable/enable() protection because
2576 * we want to handle the fault gracefully. If the
2577 * access fails we try to fault in the futex with R/W
2578 * verification via get_user_pages. get_user() above
2579 * does not guarantee R/W access. If that fails we
2580 * give up and leave the futex locked.
2581 */
2582 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2583 if (fault_in_user_writeable(uaddr))
2584 return -1;
2585 goto retry;
2586 }
c87e2837 2587 if (nval != uval)
8f17d3a5 2588 goto retry;
0771dfef 2589
e3f2ddea
IM
2590 /*
2591 * Wake robust non-PI futexes here. The wakeup of
2592 * PI futexes happens in exit_pi_state():
2593 */
36cf3b5c 2594 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 2595 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
2596 }
2597 return 0;
2598}
2599
e3f2ddea
IM
2600/*
2601 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2602 */
2603static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 2604 struct robust_list __user * __user *head,
1dcc41bb 2605 unsigned int *pi)
e3f2ddea
IM
2606{
2607 unsigned long uentry;
2608
ba46df98 2609 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
2610 return -EFAULT;
2611
ba46df98 2612 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
2613 *pi = uentry & 1;
2614
2615 return 0;
2616}
2617
0771dfef
IM
2618/*
2619 * Walk curr->robust_list (very carefully, it's a userspace list!)
2620 * and mark any locks found there dead, and notify any waiters.
2621 *
2622 * We silently return on any sign of list-walking problem.
2623 */
2624void exit_robust_list(struct task_struct *curr)
2625{
2626 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 2627 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
2628 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2629 unsigned int uninitialized_var(next_pi);
0771dfef 2630 unsigned long futex_offset;
9f96cb1e 2631 int rc;
0771dfef 2632
a0c1e907
TG
2633 if (!futex_cmpxchg_enabled)
2634 return;
2635
0771dfef
IM
2636 /*
2637 * Fetch the list head (which was registered earlier, via
2638 * sys_set_robust_list()):
2639 */
e3f2ddea 2640 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
2641 return;
2642 /*
2643 * Fetch the relative futex offset:
2644 */
2645 if (get_user(futex_offset, &head->futex_offset))
2646 return;
2647 /*
2648 * Fetch any possibly pending lock-add first, and handle it
2649 * if it exists:
2650 */
e3f2ddea 2651 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 2652 return;
e3f2ddea 2653
9f96cb1e 2654 next_entry = NULL; /* avoid warning with gcc */
0771dfef 2655 while (entry != &head->list) {
9f96cb1e
MS
2656 /*
2657 * Fetch the next entry in the list before calling
2658 * handle_futex_death:
2659 */
2660 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
2661 /*
2662 * A pending lock might already be on the list, so
c87e2837 2663 * don't process it twice:
0771dfef
IM
2664 */
2665 if (entry != pending)
ba46df98 2666 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 2667 curr, pi))
0771dfef 2668 return;
9f96cb1e 2669 if (rc)
0771dfef 2670 return;
9f96cb1e
MS
2671 entry = next_entry;
2672 pi = next_pi;
0771dfef
IM
2673 /*
2674 * Avoid excessively long or circular lists:
2675 */
2676 if (!--limit)
2677 break;
2678
2679 cond_resched();
2680 }
9f96cb1e
MS
2681
2682 if (pending)
2683 handle_futex_death((void __user *)pending + futex_offset,
2684 curr, pip);
0771dfef
IM
2685}
2686
c19384b5 2687long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 2688 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 2689{
81b40539 2690 int cmd = op & FUTEX_CMD_MASK;
b41277dc 2691 unsigned int flags = 0;
34f01cc1
ED
2692
2693 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 2694 flags |= FLAGS_SHARED;
1da177e4 2695
b41277dc
DH
2696 if (op & FUTEX_CLOCK_REALTIME) {
2697 flags |= FLAGS_CLOCKRT;
2698 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2699 return -ENOSYS;
2700 }
1da177e4 2701
59263b51
TG
2702 switch (cmd) {
2703 case FUTEX_LOCK_PI:
2704 case FUTEX_UNLOCK_PI:
2705 case FUTEX_TRYLOCK_PI:
2706 case FUTEX_WAIT_REQUEUE_PI:
2707 case FUTEX_CMP_REQUEUE_PI:
2708 if (!futex_cmpxchg_enabled)
2709 return -ENOSYS;
2710 }
2711
34f01cc1 2712 switch (cmd) {
1da177e4 2713 case FUTEX_WAIT:
cd689985
TG
2714 val3 = FUTEX_BITSET_MATCH_ANY;
2715 case FUTEX_WAIT_BITSET:
81b40539 2716 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 2717 case FUTEX_WAKE:
cd689985
TG
2718 val3 = FUTEX_BITSET_MATCH_ANY;
2719 case FUTEX_WAKE_BITSET:
81b40539 2720 return futex_wake(uaddr, flags, val, val3);
1da177e4 2721 case FUTEX_REQUEUE:
81b40539 2722 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 2723 case FUTEX_CMP_REQUEUE:
81b40539 2724 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 2725 case FUTEX_WAKE_OP:
81b40539 2726 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 2727 case FUTEX_LOCK_PI:
81b40539 2728 return futex_lock_pi(uaddr, flags, val, timeout, 0);
c87e2837 2729 case FUTEX_UNLOCK_PI:
81b40539 2730 return futex_unlock_pi(uaddr, flags);
c87e2837 2731 case FUTEX_TRYLOCK_PI:
81b40539 2732 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
52400ba9
DH
2733 case FUTEX_WAIT_REQUEUE_PI:
2734 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
2735 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2736 uaddr2);
52400ba9 2737 case FUTEX_CMP_REQUEUE_PI:
81b40539 2738 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 2739 }
81b40539 2740 return -ENOSYS;
1da177e4
LT
2741}
2742
2743
17da2bd9
HC
2744SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2745 struct timespec __user *, utime, u32 __user *, uaddr2,
2746 u32, val3)
1da177e4 2747{
c19384b5
PP
2748 struct timespec ts;
2749 ktime_t t, *tp = NULL;
e2970f2f 2750 u32 val2 = 0;
34f01cc1 2751 int cmd = op & FUTEX_CMD_MASK;
1da177e4 2752
cd689985 2753 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
2754 cmd == FUTEX_WAIT_BITSET ||
2755 cmd == FUTEX_WAIT_REQUEUE_PI)) {
c19384b5 2756 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 2757 return -EFAULT;
c19384b5 2758 if (!timespec_valid(&ts))
9741ef96 2759 return -EINVAL;
c19384b5
PP
2760
2761 t = timespec_to_ktime(ts);
34f01cc1 2762 if (cmd == FUTEX_WAIT)
5a7780e7 2763 t = ktime_add_safe(ktime_get(), t);
c19384b5 2764 tp = &t;
1da177e4
LT
2765 }
2766 /*
52400ba9 2767 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 2768 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 2769 */
f54f0986 2770 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 2771 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 2772 val2 = (u32) (unsigned long) utime;
1da177e4 2773
c19384b5 2774 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
2775}
2776
f6d107fb 2777static int __init futex_init(void)
1da177e4 2778{
a0c1e907 2779 u32 curval;
a52b89eb
DB
2780 unsigned long i;
2781
2782#if CONFIG_BASE_SMALL
2783 futex_hashsize = 16;
2784#else
2785 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
2786#endif
2787
2788 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
2789 futex_hashsize, 0,
2790 futex_hashsize < 256 ? HASH_SMALL : 0,
2791 NULL, NULL, futex_hashsize, futex_hashsize);
95362fa9 2792
a0c1e907
TG
2793 /*
2794 * This will fail and we want it. Some arch implementations do
2795 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2796 * functionality. We want to know that before we call in any
2797 * of the complex code paths. Also we want to prevent
2798 * registration of robust lists in that case. NULL is
2799 * guaranteed to fault and we get -EFAULT on functional
fb62db2b 2800 * implementation, the non-functional ones will return
a0c1e907
TG
2801 * -ENOSYS.
2802 */
37a9d912 2803 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
a0c1e907
TG
2804 futex_cmpxchg_enabled = 1;
2805
a52b89eb 2806 for (i = 0; i < futex_hashsize; i++) {
732375c6 2807 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
2808 spin_lock_init(&futex_queues[i].lock);
2809 }
2810
1da177e4
LT
2811 return 0;
2812}
f6d107fb 2813__initcall(futex_init);