futex: Avoid freeing an active timer
[linux-2.6-block.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
7ed20e1a 57#include <linux/signal.h>
9984de1a 58#include <linux/export.h>
fd5eea42 59#include <linux/magic.h>
b488893a
PE
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
bdbb776f 62#include <linux/ptrace.h>
8bd75c77 63#include <linux/sched/rt.h>
84f001e1 64#include <linux/sched/wake_q.h>
6e84f315 65#include <linux/sched/mm.h>
13d60f4b 66#include <linux/hugetlb.h>
88c8004f 67#include <linux/freezer.h>
a52b89eb 68#include <linux/bootmem.h>
ab51fbab 69#include <linux/fault-inject.h>
b488893a 70
4732efbe 71#include <asm/futex.h>
1da177e4 72
1696a8be 73#include "locking/rtmutex_common.h"
c87e2837 74
99b60ce6 75/*
d7e8af1a
DB
76 * READ this before attempting to hack on futexes!
77 *
78 * Basic futex operation and ordering guarantees
79 * =============================================
99b60ce6
TG
80 *
81 * The waiter reads the futex value in user space and calls
82 * futex_wait(). This function computes the hash bucket and acquires
83 * the hash bucket lock. After that it reads the futex user space value
b0c29f79
DB
84 * again and verifies that the data has not changed. If it has not changed
85 * it enqueues itself into the hash bucket, releases the hash bucket lock
86 * and schedules.
99b60ce6
TG
87 *
88 * The waker side modifies the user space value of the futex and calls
b0c29f79
DB
89 * futex_wake(). This function computes the hash bucket and acquires the
90 * hash bucket lock. Then it looks for waiters on that futex in the hash
91 * bucket and wakes them.
99b60ce6 92 *
b0c29f79
DB
93 * In futex wake up scenarios where no tasks are blocked on a futex, taking
94 * the hb spinlock can be avoided and simply return. In order for this
95 * optimization to work, ordering guarantees must exist so that the waiter
96 * being added to the list is acknowledged when the list is concurrently being
97 * checked by the waker, avoiding scenarios like the following:
99b60ce6
TG
98 *
99 * CPU 0 CPU 1
100 * val = *futex;
101 * sys_futex(WAIT, futex, val);
102 * futex_wait(futex, val);
103 * uval = *futex;
104 * *futex = newval;
105 * sys_futex(WAKE, futex);
106 * futex_wake(futex);
107 * if (queue_empty())
108 * return;
109 * if (uval == val)
110 * lock(hash_bucket(futex));
111 * queue();
112 * unlock(hash_bucket(futex));
113 * schedule();
114 *
115 * This would cause the waiter on CPU 0 to wait forever because it
116 * missed the transition of the user space value from val to newval
117 * and the waker did not find the waiter in the hash bucket queue.
99b60ce6 118 *
b0c29f79
DB
119 * The correct serialization ensures that a waiter either observes
120 * the changed user space value before blocking or is woken by a
121 * concurrent waker:
122 *
123 * CPU 0 CPU 1
99b60ce6
TG
124 * val = *futex;
125 * sys_futex(WAIT, futex, val);
126 * futex_wait(futex, val);
b0c29f79 127 *
d7e8af1a 128 * waiters++; (a)
8ad7b378
DB
129 * smp_mb(); (A) <-- paired with -.
130 * |
131 * lock(hash_bucket(futex)); |
132 * |
133 * uval = *futex; |
134 * | *futex = newval;
135 * | sys_futex(WAKE, futex);
136 * | futex_wake(futex);
137 * |
138 * `--------> smp_mb(); (B)
99b60ce6 139 * if (uval == val)
b0c29f79 140 * queue();
99b60ce6 141 * unlock(hash_bucket(futex));
b0c29f79
DB
142 * schedule(); if (waiters)
143 * lock(hash_bucket(futex));
d7e8af1a
DB
144 * else wake_waiters(futex);
145 * waiters--; (b) unlock(hash_bucket(futex));
b0c29f79 146 *
d7e8af1a
DB
147 * Where (A) orders the waiters increment and the futex value read through
148 * atomic operations (see hb_waiters_inc) and where (B) orders the write
993b2ff2
DB
149 * to futex and the waiters read -- this is done by the barriers for both
150 * shared and private futexes in get_futex_key_refs().
b0c29f79
DB
151 *
152 * This yields the following case (where X:=waiters, Y:=futex):
153 *
154 * X = Y = 0
155 *
156 * w[X]=1 w[Y]=1
157 * MB MB
158 * r[Y]=y r[X]=x
159 *
160 * Which guarantees that x==0 && y==0 is impossible; which translates back into
161 * the guarantee that we cannot both miss the futex variable change and the
162 * enqueue.
d7e8af1a
DB
163 *
164 * Note that a new waiter is accounted for in (a) even when it is possible that
165 * the wait call can return error, in which case we backtrack from it in (b).
166 * Refer to the comment in queue_lock().
167 *
168 * Similarly, in order to account for waiters being requeued on another
169 * address we always increment the waiters for the destination bucket before
170 * acquiring the lock. It then decrements them again after releasing it -
171 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
172 * will do the additional required waiter count housekeeping. This is done for
173 * double_lock_hb() and double_unlock_hb(), respectively.
99b60ce6
TG
174 */
175
03b8c7b6 176#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 177int __read_mostly futex_cmpxchg_enabled;
03b8c7b6 178#endif
a0c1e907 179
b41277dc
DH
180/*
181 * Futex flags used to encode options to functions and preserve them across
182 * restarts.
183 */
784bdf3b
TG
184#ifdef CONFIG_MMU
185# define FLAGS_SHARED 0x01
186#else
187/*
188 * NOMMU does not have per process address space. Let the compiler optimize
189 * code away.
190 */
191# define FLAGS_SHARED 0x00
192#endif
b41277dc
DH
193#define FLAGS_CLOCKRT 0x02
194#define FLAGS_HAS_TIMEOUT 0x04
195
c87e2837
IM
196/*
197 * Priority Inheritance state:
198 */
199struct futex_pi_state {
200 /*
201 * list of 'owned' pi_state instances - these have to be
202 * cleaned up in do_exit() if the task exits prematurely:
203 */
204 struct list_head list;
205
206 /*
207 * The PI object:
208 */
209 struct rt_mutex pi_mutex;
210
211 struct task_struct *owner;
212 atomic_t refcount;
213
214 union futex_key key;
215};
216
d8d88fbb
DH
217/**
218 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 219 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
220 * @task: the task waiting on the futex
221 * @lock_ptr: the hash bucket lock
222 * @key: the key the futex is hashed on
223 * @pi_state: optional priority inheritance state
224 * @rt_waiter: rt_waiter storage for use with requeue_pi
225 * @requeue_pi_key: the requeue_pi target futex key
226 * @bitset: bitset for the optional bitmasked wakeup
227 *
228 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
1da177e4
LT
229 * we can wake only the relevant ones (hashed queues may be shared).
230 *
231 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 232 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 233 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
234 * the second.
235 *
236 * PI futexes are typically woken before they are removed from the hash list via
237 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
238 */
239struct futex_q {
ec92d082 240 struct plist_node list;
1da177e4 241
d8d88fbb 242 struct task_struct *task;
1da177e4 243 spinlock_t *lock_ptr;
1da177e4 244 union futex_key key;
c87e2837 245 struct futex_pi_state *pi_state;
52400ba9 246 struct rt_mutex_waiter *rt_waiter;
84bc4af5 247 union futex_key *requeue_pi_key;
cd689985 248 u32 bitset;
1da177e4
LT
249};
250
5bdb05f9
DH
251static const struct futex_q futex_q_init = {
252 /* list gets initialized in queue_me()*/
253 .key = FUTEX_KEY_INIT,
254 .bitset = FUTEX_BITSET_MATCH_ANY
255};
256
1da177e4 257/*
b2d0994b
DH
258 * Hash buckets are shared by all the futex_keys that hash to the same
259 * location. Each key may have multiple futex_q structures, one for each task
260 * waiting on a futex.
1da177e4
LT
261 */
262struct futex_hash_bucket {
11d4616b 263 atomic_t waiters;
ec92d082
PP
264 spinlock_t lock;
265 struct plist_head chain;
a52b89eb 266} ____cacheline_aligned_in_smp;
1da177e4 267
ac742d37
RV
268/*
269 * The base of the bucket array and its size are always used together
270 * (after initialization only in hash_futex()), so ensure that they
271 * reside in the same cacheline.
272 */
273static struct {
274 struct futex_hash_bucket *queues;
275 unsigned long hashsize;
276} __futex_data __read_mostly __aligned(2*sizeof(long));
277#define futex_queues (__futex_data.queues)
278#define futex_hashsize (__futex_data.hashsize)
a52b89eb 279
1da177e4 280
ab51fbab
DB
281/*
282 * Fault injections for futexes.
283 */
284#ifdef CONFIG_FAIL_FUTEX
285
286static struct {
287 struct fault_attr attr;
288
621a5f7a 289 bool ignore_private;
ab51fbab
DB
290} fail_futex = {
291 .attr = FAULT_ATTR_INITIALIZER,
621a5f7a 292 .ignore_private = false,
ab51fbab
DB
293};
294
295static int __init setup_fail_futex(char *str)
296{
297 return setup_fault_attr(&fail_futex.attr, str);
298}
299__setup("fail_futex=", setup_fail_futex);
300
5d285a7f 301static bool should_fail_futex(bool fshared)
ab51fbab
DB
302{
303 if (fail_futex.ignore_private && !fshared)
304 return false;
305
306 return should_fail(&fail_futex.attr, 1);
307}
308
309#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
310
311static int __init fail_futex_debugfs(void)
312{
313 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
314 struct dentry *dir;
315
316 dir = fault_create_debugfs_attr("fail_futex", NULL,
317 &fail_futex.attr);
318 if (IS_ERR(dir))
319 return PTR_ERR(dir);
320
321 if (!debugfs_create_bool("ignore-private", mode, dir,
322 &fail_futex.ignore_private)) {
323 debugfs_remove_recursive(dir);
324 return -ENOMEM;
325 }
326
327 return 0;
328}
329
330late_initcall(fail_futex_debugfs);
331
332#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
333
334#else
335static inline bool should_fail_futex(bool fshared)
336{
337 return false;
338}
339#endif /* CONFIG_FAIL_FUTEX */
340
b0c29f79
DB
341static inline void futex_get_mm(union futex_key *key)
342{
f1f10076 343 mmgrab(key->private.mm);
b0c29f79
DB
344 /*
345 * Ensure futex_get_mm() implies a full barrier such that
346 * get_futex_key() implies a full barrier. This is relied upon
8ad7b378 347 * as smp_mb(); (B), see the ordering comment above.
b0c29f79 348 */
4e857c58 349 smp_mb__after_atomic();
b0c29f79
DB
350}
351
11d4616b
LT
352/*
353 * Reflects a new waiter being added to the waitqueue.
354 */
355static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
b0c29f79
DB
356{
357#ifdef CONFIG_SMP
11d4616b 358 atomic_inc(&hb->waiters);
b0c29f79 359 /*
11d4616b 360 * Full barrier (A), see the ordering comment above.
b0c29f79 361 */
4e857c58 362 smp_mb__after_atomic();
11d4616b
LT
363#endif
364}
365
366/*
367 * Reflects a waiter being removed from the waitqueue by wakeup
368 * paths.
369 */
370static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
371{
372#ifdef CONFIG_SMP
373 atomic_dec(&hb->waiters);
374#endif
375}
b0c29f79 376
11d4616b
LT
377static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
378{
379#ifdef CONFIG_SMP
380 return atomic_read(&hb->waiters);
b0c29f79 381#else
11d4616b 382 return 1;
b0c29f79
DB
383#endif
384}
385
e8b61b3f
TG
386/**
387 * hash_futex - Return the hash bucket in the global hash
388 * @key: Pointer to the futex key for which the hash is calculated
389 *
390 * We hash on the keys returned from get_futex_key (see below) and return the
391 * corresponding hash bucket in the global hash.
1da177e4
LT
392 */
393static struct futex_hash_bucket *hash_futex(union futex_key *key)
394{
395 u32 hash = jhash2((u32*)&key->both.word,
396 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
397 key->both.offset);
a52b89eb 398 return &futex_queues[hash & (futex_hashsize - 1)];
1da177e4
LT
399}
400
e8b61b3f
TG
401
402/**
403 * match_futex - Check whether two futex keys are equal
404 * @key1: Pointer to key1
405 * @key2: Pointer to key2
406 *
1da177e4
LT
407 * Return 1 if two futex_keys are equal, 0 otherwise.
408 */
409static inline int match_futex(union futex_key *key1, union futex_key *key2)
410{
2bc87203
DH
411 return (key1 && key2
412 && key1->both.word == key2->both.word
1da177e4
LT
413 && key1->both.ptr == key2->both.ptr
414 && key1->both.offset == key2->both.offset);
415}
416
38d47c1b
PZ
417/*
418 * Take a reference to the resource addressed by a key.
419 * Can be called while holding spinlocks.
420 *
421 */
422static void get_futex_key_refs(union futex_key *key)
423{
424 if (!key->both.ptr)
425 return;
426
784bdf3b
TG
427 /*
428 * On MMU less systems futexes are always "private" as there is no per
429 * process address space. We need the smp wmb nevertheless - yes,
430 * arch/blackfin has MMU less SMP ...
431 */
432 if (!IS_ENABLED(CONFIG_MMU)) {
433 smp_mb(); /* explicit smp_mb(); (B) */
434 return;
435 }
436
38d47c1b
PZ
437 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
438 case FUT_OFF_INODE:
8ad7b378 439 ihold(key->shared.inode); /* implies smp_mb(); (B) */
38d47c1b
PZ
440 break;
441 case FUT_OFF_MMSHARED:
8ad7b378 442 futex_get_mm(key); /* implies smp_mb(); (B) */
38d47c1b 443 break;
76835b0e 444 default:
993b2ff2
DB
445 /*
446 * Private futexes do not hold reference on an inode or
447 * mm, therefore the only purpose of calling get_futex_key_refs
448 * is because we need the barrier for the lockless waiter check.
449 */
8ad7b378 450 smp_mb(); /* explicit smp_mb(); (B) */
38d47c1b
PZ
451 }
452}
453
454/*
455 * Drop a reference to the resource addressed by a key.
993b2ff2
DB
456 * The hash bucket spinlock must not be held. This is
457 * a no-op for private futexes, see comment in the get
458 * counterpart.
38d47c1b
PZ
459 */
460static void drop_futex_key_refs(union futex_key *key)
461{
90621c40
DH
462 if (!key->both.ptr) {
463 /* If we're here then we tried to put a key we failed to get */
464 WARN_ON_ONCE(1);
38d47c1b 465 return;
90621c40 466 }
38d47c1b 467
784bdf3b
TG
468 if (!IS_ENABLED(CONFIG_MMU))
469 return;
470
38d47c1b
PZ
471 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
472 case FUT_OFF_INODE:
473 iput(key->shared.inode);
474 break;
475 case FUT_OFF_MMSHARED:
476 mmdrop(key->private.mm);
477 break;
478 }
479}
480
34f01cc1 481/**
d96ee56c
DH
482 * get_futex_key() - Get parameters which are the keys for a futex
483 * @uaddr: virtual address of the futex
484 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
485 * @key: address where result is stored.
9ea71503
SB
486 * @rw: mapping needs to be read/write (values: VERIFY_READ,
487 * VERIFY_WRITE)
34f01cc1 488 *
6c23cbbd
RD
489 * Return: a negative error code or 0
490 *
34f01cc1 491 * The key words are stored in *key on success.
1da177e4 492 *
6131ffaa 493 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
1da177e4
LT
494 * offset_within_page). For private mappings, it's (uaddr, current->mm).
495 * We can usually work out the index without swapping in the page.
496 *
b2d0994b 497 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 498 */
64d1304a 499static int
9ea71503 500get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
1da177e4 501{
e2970f2f 502 unsigned long address = (unsigned long)uaddr;
1da177e4 503 struct mm_struct *mm = current->mm;
077fa7ae 504 struct page *page, *tail;
14d27abd 505 struct address_space *mapping;
9ea71503 506 int err, ro = 0;
1da177e4
LT
507
508 /*
509 * The futex address must be "naturally" aligned.
510 */
e2970f2f 511 key->both.offset = address % PAGE_SIZE;
34f01cc1 512 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 513 return -EINVAL;
e2970f2f 514 address -= key->both.offset;
1da177e4 515
5cdec2d8
LT
516 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
517 return -EFAULT;
518
ab51fbab
DB
519 if (unlikely(should_fail_futex(fshared)))
520 return -EFAULT;
521
34f01cc1
ED
522 /*
523 * PROCESS_PRIVATE futexes are fast.
524 * As the mm cannot disappear under us and the 'key' only needs
525 * virtual address, we dont even have to find the underlying vma.
526 * Note : We do have to check 'uaddr' is a valid user address,
527 * but access_ok() should be faster than find_vma()
528 */
529 if (!fshared) {
34f01cc1
ED
530 key->private.mm = mm;
531 key->private.address = address;
8ad7b378 532 get_futex_key_refs(key); /* implies smp_mb(); (B) */
34f01cc1
ED
533 return 0;
534 }
1da177e4 535
38d47c1b 536again:
ab51fbab
DB
537 /* Ignore any VERIFY_READ mapping (futex common case) */
538 if (unlikely(should_fail_futex(fshared)))
539 return -EFAULT;
540
7485d0d3 541 err = get_user_pages_fast(address, 1, 1, &page);
9ea71503
SB
542 /*
543 * If write access is not required (eg. FUTEX_WAIT), try
544 * and get read-only access.
545 */
546 if (err == -EFAULT && rw == VERIFY_READ) {
547 err = get_user_pages_fast(address, 1, 0, &page);
548 ro = 1;
549 }
38d47c1b
PZ
550 if (err < 0)
551 return err;
9ea71503
SB
552 else
553 err = 0;
38d47c1b 554
65d8fc77
MG
555 /*
556 * The treatment of mapping from this point on is critical. The page
557 * lock protects many things but in this context the page lock
558 * stabilizes mapping, prevents inode freeing in the shared
559 * file-backed region case and guards against movement to swap cache.
560 *
561 * Strictly speaking the page lock is not needed in all cases being
562 * considered here and page lock forces unnecessarily serialization
563 * From this point on, mapping will be re-verified if necessary and
564 * page lock will be acquired only if it is unavoidable
077fa7ae
MG
565 *
566 * Mapping checks require the head page for any compound page so the
567 * head page and mapping is looked up now. For anonymous pages, it
568 * does not matter if the page splits in the future as the key is
569 * based on the address. For filesystem-backed pages, the tail is
570 * required as the index of the page determines the key. For
571 * base pages, there is no tail page and tail == page.
65d8fc77 572 */
077fa7ae 573 tail = page;
65d8fc77
MG
574 page = compound_head(page);
575 mapping = READ_ONCE(page->mapping);
576
e6780f72 577 /*
14d27abd 578 * If page->mapping is NULL, then it cannot be a PageAnon
e6780f72
HD
579 * page; but it might be the ZERO_PAGE or in the gate area or
580 * in a special mapping (all cases which we are happy to fail);
581 * or it may have been a good file page when get_user_pages_fast
582 * found it, but truncated or holepunched or subjected to
583 * invalidate_complete_page2 before we got the page lock (also
584 * cases which we are happy to fail). And we hold a reference,
585 * so refcount care in invalidate_complete_page's remove_mapping
586 * prevents drop_caches from setting mapping to NULL beneath us.
587 *
588 * The case we do have to guard against is when memory pressure made
589 * shmem_writepage move it from filecache to swapcache beneath us:
14d27abd 590 * an unlikely race, but we do need to retry for page->mapping.
e6780f72 591 */
65d8fc77
MG
592 if (unlikely(!mapping)) {
593 int shmem_swizzled;
594
595 /*
596 * Page lock is required to identify which special case above
597 * applies. If this is really a shmem page then the page lock
598 * will prevent unexpected transitions.
599 */
600 lock_page(page);
601 shmem_swizzled = PageSwapCache(page) || page->mapping;
14d27abd
KS
602 unlock_page(page);
603 put_page(page);
65d8fc77 604
e6780f72
HD
605 if (shmem_swizzled)
606 goto again;
65d8fc77 607
e6780f72 608 return -EFAULT;
38d47c1b 609 }
1da177e4
LT
610
611 /*
612 * Private mappings are handled in a simple way.
613 *
65d8fc77
MG
614 * If the futex key is stored on an anonymous page, then the associated
615 * object is the mm which is implicitly pinned by the calling process.
616 *
1da177e4
LT
617 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
618 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 619 * the object not the particular process.
1da177e4 620 */
14d27abd 621 if (PageAnon(page)) {
9ea71503
SB
622 /*
623 * A RO anonymous page will never change and thus doesn't make
624 * sense for futex operations.
625 */
ab51fbab 626 if (unlikely(should_fail_futex(fshared)) || ro) {
9ea71503
SB
627 err = -EFAULT;
628 goto out;
629 }
630
38d47c1b 631 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 632 key->private.mm = mm;
e2970f2f 633 key->private.address = address;
65d8fc77
MG
634
635 get_futex_key_refs(key); /* implies smp_mb(); (B) */
636
38d47c1b 637 } else {
65d8fc77
MG
638 struct inode *inode;
639
640 /*
641 * The associated futex object in this case is the inode and
642 * the page->mapping must be traversed. Ordinarily this should
643 * be stabilised under page lock but it's not strictly
644 * necessary in this case as we just want to pin the inode, not
645 * update the radix tree or anything like that.
646 *
647 * The RCU read lock is taken as the inode is finally freed
648 * under RCU. If the mapping still matches expectations then the
649 * mapping->host can be safely accessed as being a valid inode.
650 */
651 rcu_read_lock();
652
653 if (READ_ONCE(page->mapping) != mapping) {
654 rcu_read_unlock();
655 put_page(page);
656
657 goto again;
658 }
659
660 inode = READ_ONCE(mapping->host);
661 if (!inode) {
662 rcu_read_unlock();
663 put_page(page);
664
665 goto again;
666 }
667
668 /*
669 * Take a reference unless it is about to be freed. Previously
670 * this reference was taken by ihold under the page lock
671 * pinning the inode in place so i_lock was unnecessary. The
672 * only way for this check to fail is if the inode was
673 * truncated in parallel so warn for now if this happens.
674 *
675 * We are not calling into get_futex_key_refs() in file-backed
676 * cases, therefore a successful atomic_inc return below will
677 * guarantee that get_futex_key() will still imply smp_mb(); (B).
678 */
679 if (WARN_ON_ONCE(!atomic_inc_not_zero(&inode->i_count))) {
680 rcu_read_unlock();
681 put_page(page);
682
683 goto again;
684 }
685
686 /* Should be impossible but lets be paranoid for now */
687 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
688 err = -EFAULT;
689 rcu_read_unlock();
690 iput(inode);
691
692 goto out;
693 }
694
38d47c1b 695 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
65d8fc77 696 key->shared.inode = inode;
077fa7ae 697 key->shared.pgoff = basepage_index(tail);
65d8fc77 698 rcu_read_unlock();
1da177e4
LT
699 }
700
9ea71503 701out:
14d27abd 702 put_page(page);
9ea71503 703 return err;
1da177e4
LT
704}
705
ae791a2d 706static inline void put_futex_key(union futex_key *key)
1da177e4 707{
38d47c1b 708 drop_futex_key_refs(key);
1da177e4
LT
709}
710
d96ee56c
DH
711/**
712 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
713 * @uaddr: pointer to faulting user space address
714 *
715 * Slow path to fixup the fault we just took in the atomic write
716 * access to @uaddr.
717 *
fb62db2b 718 * We have no generic implementation of a non-destructive write to the
d0725992
TG
719 * user address. We know that we faulted in the atomic pagefault
720 * disabled section so we can as well avoid the #PF overhead by
721 * calling get_user_pages() right away.
722 */
723static int fault_in_user_writeable(u32 __user *uaddr)
724{
722d0172
AK
725 struct mm_struct *mm = current->mm;
726 int ret;
727
728 down_read(&mm->mmap_sem);
2efaca92 729 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
4a9e1cda 730 FAULT_FLAG_WRITE, NULL);
722d0172
AK
731 up_read(&mm->mmap_sem);
732
d0725992
TG
733 return ret < 0 ? ret : 0;
734}
735
4b1c486b
DH
736/**
737 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
738 * @hb: the hash bucket the futex_q's reside in
739 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
740 *
741 * Must be called with the hb lock held.
742 */
743static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
744 union futex_key *key)
745{
746 struct futex_q *this;
747
748 plist_for_each_entry(this, &hb->chain, list) {
749 if (match_futex(&this->key, key))
750 return this;
751 }
752 return NULL;
753}
754
37a9d912
ML
755static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
756 u32 uval, u32 newval)
36cf3b5c 757{
37a9d912 758 int ret;
36cf3b5c
TG
759
760 pagefault_disable();
37a9d912 761 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
762 pagefault_enable();
763
37a9d912 764 return ret;
36cf3b5c
TG
765}
766
767static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
768{
769 int ret;
770
a866374a 771 pagefault_disable();
bd28b145 772 ret = __get_user(*dest, from);
a866374a 773 pagefault_enable();
1da177e4
LT
774
775 return ret ? -EFAULT : 0;
776}
777
c87e2837
IM
778
779/*
780 * PI code:
781 */
782static int refill_pi_state_cache(void)
783{
784 struct futex_pi_state *pi_state;
785
786 if (likely(current->pi_state_cache))
787 return 0;
788
4668edc3 789 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
790
791 if (!pi_state)
792 return -ENOMEM;
793
c87e2837
IM
794 INIT_LIST_HEAD(&pi_state->list);
795 /* pi_mutex gets initialized later */
796 pi_state->owner = NULL;
797 atomic_set(&pi_state->refcount, 1);
38d47c1b 798 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
799
800 current->pi_state_cache = pi_state;
801
802 return 0;
803}
804
bf92cf3a 805static struct futex_pi_state *alloc_pi_state(void)
c87e2837
IM
806{
807 struct futex_pi_state *pi_state = current->pi_state_cache;
808
809 WARN_ON(!pi_state);
810 current->pi_state_cache = NULL;
811
812 return pi_state;
813}
814
bf92cf3a
PZ
815static void get_pi_state(struct futex_pi_state *pi_state)
816{
817 WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
818}
819
30a6b803 820/*
29e9ee5d
TG
821 * Drops a reference to the pi_state object and frees or caches it
822 * when the last reference is gone.
823 *
30a6b803
BS
824 * Must be called with the hb lock held.
825 */
29e9ee5d 826static void put_pi_state(struct futex_pi_state *pi_state)
c87e2837 827{
30a6b803
BS
828 if (!pi_state)
829 return;
830
c87e2837
IM
831 if (!atomic_dec_and_test(&pi_state->refcount))
832 return;
833
834 /*
835 * If pi_state->owner is NULL, the owner is most probably dying
836 * and has cleaned up the pi_state already
837 */
838 if (pi_state->owner) {
1d615482 839 raw_spin_lock_irq(&pi_state->owner->pi_lock);
c87e2837 840 list_del_init(&pi_state->list);
1d615482 841 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
c87e2837
IM
842
843 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
844 }
845
846 if (current->pi_state_cache)
847 kfree(pi_state);
848 else {
849 /*
850 * pi_state->list is already empty.
851 * clear pi_state->owner.
852 * refcount is at 0 - put it back to 1.
853 */
854 pi_state->owner = NULL;
855 atomic_set(&pi_state->refcount, 1);
856 current->pi_state_cache = pi_state;
857 }
858}
859
860/*
861 * Look up the task based on what TID userspace gave us.
862 * We dont trust it.
863 */
bf92cf3a 864static struct task_struct *futex_find_get_task(pid_t pid)
c87e2837
IM
865{
866 struct task_struct *p;
867
d359b549 868 rcu_read_lock();
228ebcbe 869 p = find_task_by_vpid(pid);
7a0ea09a
MH
870 if (p)
871 get_task_struct(p);
a06381fe 872
d359b549 873 rcu_read_unlock();
c87e2837
IM
874
875 return p;
876}
877
878/*
879 * This task is holding PI mutexes at exit time => bad.
880 * Kernel cleans up PI-state, but userspace is likely hosed.
881 * (Robust-futex cleanup is separate and might save the day for userspace.)
882 */
883void exit_pi_state_list(struct task_struct *curr)
884{
c87e2837
IM
885 struct list_head *next, *head = &curr->pi_state_list;
886 struct futex_pi_state *pi_state;
627371d7 887 struct futex_hash_bucket *hb;
38d47c1b 888 union futex_key key = FUTEX_KEY_INIT;
c87e2837 889
a0c1e907
TG
890 if (!futex_cmpxchg_enabled)
891 return;
c87e2837
IM
892 /*
893 * We are a ZOMBIE and nobody can enqueue itself on
894 * pi_state_list anymore, but we have to be careful
627371d7 895 * versus waiters unqueueing themselves:
c87e2837 896 */
1d615482 897 raw_spin_lock_irq(&curr->pi_lock);
c87e2837
IM
898 while (!list_empty(head)) {
899
900 next = head->next;
901 pi_state = list_entry(next, struct futex_pi_state, list);
902 key = pi_state->key;
627371d7 903 hb = hash_futex(&key);
1d615482 904 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 905
c87e2837
IM
906 spin_lock(&hb->lock);
907
1d615482 908 raw_spin_lock_irq(&curr->pi_lock);
627371d7
IM
909 /*
910 * We dropped the pi-lock, so re-check whether this
911 * task still owns the PI-state:
912 */
c87e2837
IM
913 if (head->next != next) {
914 spin_unlock(&hb->lock);
915 continue;
916 }
917
c87e2837 918 WARN_ON(pi_state->owner != curr);
627371d7
IM
919 WARN_ON(list_empty(&pi_state->list));
920 list_del_init(&pi_state->list);
c87e2837 921 pi_state->owner = NULL;
1d615482 922 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 923
16ffa12d 924 get_pi_state(pi_state);
c87e2837
IM
925 spin_unlock(&hb->lock);
926
16ffa12d
PZ
927 rt_mutex_futex_unlock(&pi_state->pi_mutex);
928 put_pi_state(pi_state);
929
1d615482 930 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 931 }
1d615482 932 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
933}
934
54a21788
TG
935/*
936 * We need to check the following states:
937 *
938 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
939 *
940 * [1] NULL | --- | --- | 0 | 0/1 | Valid
941 * [2] NULL | --- | --- | >0 | 0/1 | Valid
942 *
943 * [3] Found | NULL | -- | Any | 0/1 | Invalid
944 *
945 * [4] Found | Found | NULL | 0 | 1 | Valid
946 * [5] Found | Found | NULL | >0 | 1 | Invalid
947 *
948 * [6] Found | Found | task | 0 | 1 | Valid
949 *
950 * [7] Found | Found | NULL | Any | 0 | Invalid
951 *
952 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
953 * [9] Found | Found | task | 0 | 0 | Invalid
954 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
955 *
956 * [1] Indicates that the kernel can acquire the futex atomically. We
957 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
958 *
959 * [2] Valid, if TID does not belong to a kernel thread. If no matching
960 * thread is found then it indicates that the owner TID has died.
961 *
962 * [3] Invalid. The waiter is queued on a non PI futex
963 *
964 * [4] Valid state after exit_robust_list(), which sets the user space
965 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
966 *
967 * [5] The user space value got manipulated between exit_robust_list()
968 * and exit_pi_state_list()
969 *
970 * [6] Valid state after exit_pi_state_list() which sets the new owner in
971 * the pi_state but cannot access the user space value.
972 *
973 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
974 *
975 * [8] Owner and user space value match
976 *
977 * [9] There is no transient state which sets the user space TID to 0
978 * except exit_robust_list(), but this is indicated by the
979 * FUTEX_OWNER_DIED bit. See [4]
980 *
981 * [10] There is no transient state which leaves owner and user space
982 * TID out of sync.
734009e9
PZ
983 *
984 *
985 * Serialization and lifetime rules:
986 *
987 * hb->lock:
988 *
989 * hb -> futex_q, relation
990 * futex_q -> pi_state, relation
991 *
992 * (cannot be raw because hb can contain arbitrary amount
993 * of futex_q's)
994 *
995 * pi_mutex->wait_lock:
996 *
997 * {uval, pi_state}
998 *
999 * (and pi_mutex 'obviously')
1000 *
1001 * p->pi_lock:
1002 *
1003 * p->pi_state_list -> pi_state->list, relation
1004 *
1005 * pi_state->refcount:
1006 *
1007 * pi_state lifetime
1008 *
1009 *
1010 * Lock order:
1011 *
1012 * hb->lock
1013 * pi_mutex->wait_lock
1014 * p->pi_lock
1015 *
54a21788 1016 */
e60cbc5c
TG
1017
1018/*
1019 * Validate that the existing waiter has a pi_state and sanity check
1020 * the pi_state against the user space value. If correct, attach to
1021 * it.
1022 */
734009e9
PZ
1023static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1024 struct futex_pi_state *pi_state,
e60cbc5c 1025 struct futex_pi_state **ps)
c87e2837 1026{
778e9a9c 1027 pid_t pid = uval & FUTEX_TID_MASK;
734009e9 1028 int ret, uval2;
c87e2837 1029
e60cbc5c
TG
1030 /*
1031 * Userspace might have messed up non-PI and PI futexes [3]
1032 */
1033 if (unlikely(!pi_state))
1034 return -EINVAL;
06a9ec29 1035
734009e9
PZ
1036 /*
1037 * We get here with hb->lock held, and having found a
1038 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1039 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1040 * which in turn means that futex_lock_pi() still has a reference on
1041 * our pi_state.
16ffa12d
PZ
1042 *
1043 * The waiter holding a reference on @pi_state also protects against
1044 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1045 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1046 * free pi_state before we can take a reference ourselves.
734009e9 1047 */
e60cbc5c 1048 WARN_ON(!atomic_read(&pi_state->refcount));
59647b6a 1049
734009e9
PZ
1050 /*
1051 * Now that we have a pi_state, we can acquire wait_lock
1052 * and do the state validation.
1053 */
1054 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1055
1056 /*
1057 * Since {uval, pi_state} is serialized by wait_lock, and our current
1058 * uval was read without holding it, it can have changed. Verify it
1059 * still is what we expect it to be, otherwise retry the entire
1060 * operation.
1061 */
1062 if (get_futex_value_locked(&uval2, uaddr))
1063 goto out_efault;
1064
1065 if (uval != uval2)
1066 goto out_eagain;
1067
e60cbc5c
TG
1068 /*
1069 * Handle the owner died case:
1070 */
1071 if (uval & FUTEX_OWNER_DIED) {
bd1dbcc6 1072 /*
e60cbc5c
TG
1073 * exit_pi_state_list sets owner to NULL and wakes the
1074 * topmost waiter. The task which acquires the
1075 * pi_state->rt_mutex will fixup owner.
bd1dbcc6 1076 */
e60cbc5c 1077 if (!pi_state->owner) {
59647b6a 1078 /*
e60cbc5c
TG
1079 * No pi state owner, but the user space TID
1080 * is not 0. Inconsistent state. [5]
59647b6a 1081 */
e60cbc5c 1082 if (pid)
734009e9 1083 goto out_einval;
bd1dbcc6 1084 /*
e60cbc5c 1085 * Take a ref on the state and return success. [4]
866293ee 1086 */
734009e9 1087 goto out_attach;
c87e2837 1088 }
bd1dbcc6
TG
1089
1090 /*
e60cbc5c
TG
1091 * If TID is 0, then either the dying owner has not
1092 * yet executed exit_pi_state_list() or some waiter
1093 * acquired the rtmutex in the pi state, but did not
1094 * yet fixup the TID in user space.
1095 *
1096 * Take a ref on the state and return success. [6]
1097 */
1098 if (!pid)
734009e9 1099 goto out_attach;
e60cbc5c
TG
1100 } else {
1101 /*
1102 * If the owner died bit is not set, then the pi_state
1103 * must have an owner. [7]
bd1dbcc6 1104 */
e60cbc5c 1105 if (!pi_state->owner)
734009e9 1106 goto out_einval;
c87e2837
IM
1107 }
1108
e60cbc5c
TG
1109 /*
1110 * Bail out if user space manipulated the futex value. If pi
1111 * state exists then the owner TID must be the same as the
1112 * user space TID. [9/10]
1113 */
1114 if (pid != task_pid_vnr(pi_state->owner))
734009e9
PZ
1115 goto out_einval;
1116
1117out_attach:
bf92cf3a 1118 get_pi_state(pi_state);
734009e9 1119 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
e60cbc5c
TG
1120 *ps = pi_state;
1121 return 0;
734009e9
PZ
1122
1123out_einval:
1124 ret = -EINVAL;
1125 goto out_error;
1126
1127out_eagain:
1128 ret = -EAGAIN;
1129 goto out_error;
1130
1131out_efault:
1132 ret = -EFAULT;
1133 goto out_error;
1134
1135out_error:
1136 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1137 return ret;
e60cbc5c
TG
1138}
1139
04e1b2e5
TG
1140/*
1141 * Lookup the task for the TID provided from user space and attach to
1142 * it after doing proper sanity checks.
1143 */
1144static int attach_to_pi_owner(u32 uval, union futex_key *key,
1145 struct futex_pi_state **ps)
e60cbc5c 1146{
e60cbc5c 1147 pid_t pid = uval & FUTEX_TID_MASK;
04e1b2e5
TG
1148 struct futex_pi_state *pi_state;
1149 struct task_struct *p;
e60cbc5c 1150
c87e2837 1151 /*
e3f2ddea 1152 * We are the first waiter - try to look up the real owner and attach
54a21788 1153 * the new pi_state to it, but bail out when TID = 0 [1]
c87e2837 1154 */
778e9a9c 1155 if (!pid)
e3f2ddea 1156 return -ESRCH;
c87e2837 1157 p = futex_find_get_task(pid);
7a0ea09a
MH
1158 if (!p)
1159 return -ESRCH;
778e9a9c 1160
a2129464 1161 if (unlikely(p->flags & PF_KTHREAD)) {
f0d71b3d
TG
1162 put_task_struct(p);
1163 return -EPERM;
1164 }
1165
778e9a9c
AK
1166 /*
1167 * We need to look at the task state flags to figure out,
1168 * whether the task is exiting. To protect against the do_exit
1169 * change of the task flags, we do this protected by
1170 * p->pi_lock:
1171 */
1d615482 1172 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
1173 if (unlikely(p->flags & PF_EXITING)) {
1174 /*
1175 * The task is on the way out. When PF_EXITPIDONE is
1176 * set, we know that the task has finished the
1177 * cleanup:
1178 */
1179 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1180
1d615482 1181 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
1182 put_task_struct(p);
1183 return ret;
1184 }
c87e2837 1185
54a21788
TG
1186 /*
1187 * No existing pi state. First waiter. [2]
734009e9
PZ
1188 *
1189 * This creates pi_state, we have hb->lock held, this means nothing can
1190 * observe this state, wait_lock is irrelevant.
54a21788 1191 */
c87e2837
IM
1192 pi_state = alloc_pi_state();
1193
1194 /*
04e1b2e5 1195 * Initialize the pi_mutex in locked state and make @p
c87e2837
IM
1196 * the owner of it:
1197 */
1198 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1199
1200 /* Store the key for possible exit cleanups: */
d0aa7a70 1201 pi_state->key = *key;
c87e2837 1202
627371d7 1203 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1204 list_add(&pi_state->list, &p->pi_state_list);
1205 pi_state->owner = p;
1d615482 1206 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
1207
1208 put_task_struct(p);
1209
d0aa7a70 1210 *ps = pi_state;
c87e2837
IM
1211
1212 return 0;
1213}
1214
734009e9
PZ
1215static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1216 struct futex_hash_bucket *hb,
04e1b2e5
TG
1217 union futex_key *key, struct futex_pi_state **ps)
1218{
499f5aca 1219 struct futex_q *top_waiter = futex_top_waiter(hb, key);
04e1b2e5
TG
1220
1221 /*
1222 * If there is a waiter on that futex, validate it and
1223 * attach to the pi_state when the validation succeeds.
1224 */
499f5aca 1225 if (top_waiter)
734009e9 1226 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
04e1b2e5
TG
1227
1228 /*
1229 * We are the first waiter - try to look up the owner based on
1230 * @uval and attach to it.
1231 */
1232 return attach_to_pi_owner(uval, key, ps);
1233}
1234
af54d6a1
TG
1235static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1236{
1237 u32 uninitialized_var(curval);
1238
ab51fbab
DB
1239 if (unlikely(should_fail_futex(true)))
1240 return -EFAULT;
1241
af54d6a1
TG
1242 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1243 return -EFAULT;
1244
734009e9 1245 /* If user space value changed, let the caller retry */
af54d6a1
TG
1246 return curval != uval ? -EAGAIN : 0;
1247}
1248
1a52084d 1249/**
d96ee56c 1250 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
1251 * @uaddr: the pi futex user address
1252 * @hb: the pi futex hash bucket
1253 * @key: the futex key associated with uaddr and hb
1254 * @ps: the pi_state pointer where we store the result of the
1255 * lookup
1256 * @task: the task to perform the atomic lock work for. This will
1257 * be "current" except in the case of requeue pi.
1258 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 1259 *
6c23cbbd
RD
1260 * Return:
1261 * 0 - ready to wait;
1262 * 1 - acquired the lock;
1a52084d
DH
1263 * <0 - error
1264 *
1265 * The hb->lock and futex_key refs shall be held by the caller.
1266 */
1267static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1268 union futex_key *key,
1269 struct futex_pi_state **ps,
bab5bc9e 1270 struct task_struct *task, int set_waiters)
1a52084d 1271{
af54d6a1 1272 u32 uval, newval, vpid = task_pid_vnr(task);
499f5aca 1273 struct futex_q *top_waiter;
af54d6a1 1274 int ret;
1a52084d
DH
1275
1276 /*
af54d6a1
TG
1277 * Read the user space value first so we can validate a few
1278 * things before proceeding further.
1a52084d 1279 */
af54d6a1 1280 if (get_futex_value_locked(&uval, uaddr))
1a52084d
DH
1281 return -EFAULT;
1282
ab51fbab
DB
1283 if (unlikely(should_fail_futex(true)))
1284 return -EFAULT;
1285
1a52084d
DH
1286 /*
1287 * Detect deadlocks.
1288 */
af54d6a1 1289 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
1290 return -EDEADLK;
1291
ab51fbab
DB
1292 if ((unlikely(should_fail_futex(true))))
1293 return -EDEADLK;
1294
1a52084d 1295 /*
af54d6a1
TG
1296 * Lookup existing state first. If it exists, try to attach to
1297 * its pi_state.
1a52084d 1298 */
499f5aca
PZ
1299 top_waiter = futex_top_waiter(hb, key);
1300 if (top_waiter)
734009e9 1301 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1a52084d
DH
1302
1303 /*
af54d6a1
TG
1304 * No waiter and user TID is 0. We are here because the
1305 * waiters or the owner died bit is set or called from
1306 * requeue_cmp_pi or for whatever reason something took the
1307 * syscall.
1a52084d 1308 */
af54d6a1 1309 if (!(uval & FUTEX_TID_MASK)) {
59fa6245 1310 /*
af54d6a1
TG
1311 * We take over the futex. No other waiters and the user space
1312 * TID is 0. We preserve the owner died bit.
59fa6245 1313 */
af54d6a1
TG
1314 newval = uval & FUTEX_OWNER_DIED;
1315 newval |= vpid;
1a52084d 1316
af54d6a1
TG
1317 /* The futex requeue_pi code can enforce the waiters bit */
1318 if (set_waiters)
1319 newval |= FUTEX_WAITERS;
1320
1321 ret = lock_pi_update_atomic(uaddr, uval, newval);
1322 /* If the take over worked, return 1 */
1323 return ret < 0 ? ret : 1;
1324 }
1a52084d
DH
1325
1326 /*
af54d6a1
TG
1327 * First waiter. Set the waiters bit before attaching ourself to
1328 * the owner. If owner tries to unlock, it will be forced into
1329 * the kernel and blocked on hb->lock.
1a52084d 1330 */
af54d6a1
TG
1331 newval = uval | FUTEX_WAITERS;
1332 ret = lock_pi_update_atomic(uaddr, uval, newval);
1333 if (ret)
1334 return ret;
1a52084d 1335 /*
af54d6a1
TG
1336 * If the update of the user space value succeeded, we try to
1337 * attach to the owner. If that fails, no harm done, we only
1338 * set the FUTEX_WAITERS bit in the user space variable.
1a52084d 1339 */
af54d6a1 1340 return attach_to_pi_owner(uval, key, ps);
1a52084d
DH
1341}
1342
2e12978a
LJ
1343/**
1344 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1345 * @q: The futex_q to unqueue
1346 *
1347 * The q->lock_ptr must not be NULL and must be held by the caller.
1348 */
1349static void __unqueue_futex(struct futex_q *q)
1350{
1351 struct futex_hash_bucket *hb;
1352
29096202
SR
1353 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1354 || WARN_ON(plist_node_empty(&q->list)))
2e12978a
LJ
1355 return;
1356
1357 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1358 plist_del(&q->list, &hb->chain);
11d4616b 1359 hb_waiters_dec(hb);
2e12978a
LJ
1360}
1361
1da177e4
LT
1362/*
1363 * The hash bucket lock must be held when this is called.
1d0dcb3a
DB
1364 * Afterwards, the futex_q must not be accessed. Callers
1365 * must ensure to later call wake_up_q() for the actual
1366 * wakeups to occur.
1da177e4 1367 */
1d0dcb3a 1368static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1da177e4 1369{
f1a11e05
TG
1370 struct task_struct *p = q->task;
1371
aa10990e
DH
1372 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1373 return;
1374
1da177e4 1375 /*
1d0dcb3a
DB
1376 * Queue the task for later wakeup for after we've released
1377 * the hb->lock. wake_q_add() grabs reference to p.
1da177e4 1378 */
1d0dcb3a 1379 wake_q_add(wake_q, p);
2e12978a 1380 __unqueue_futex(q);
1da177e4 1381 /*
f1a11e05
TG
1382 * The waiting task can free the futex_q as soon as
1383 * q->lock_ptr = NULL is written, without taking any locks. A
1384 * memory barrier is required here to prevent the following
1385 * store to lock_ptr from getting ahead of the plist_del.
1da177e4 1386 */
1b367ece 1387 smp_store_release(&q->lock_ptr, NULL);
1da177e4
LT
1388}
1389
16ffa12d
PZ
1390/*
1391 * Caller must hold a reference on @pi_state.
1392 */
1393static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
c87e2837 1394{
7cfdaf38 1395 u32 uninitialized_var(curval), newval;
16ffa12d 1396 struct task_struct *new_owner;
aa2bfe55 1397 bool postunlock = false;
194a6b5b 1398 DEFINE_WAKE_Q(wake_q);
13fbca4c 1399 int ret = 0;
c87e2837 1400
c87e2837 1401 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
bebe5b51 1402 if (WARN_ON_ONCE(!new_owner)) {
16ffa12d 1403 /*
bebe5b51 1404 * As per the comment in futex_unlock_pi() this should not happen.
16ffa12d
PZ
1405 *
1406 * When this happens, give up our locks and try again, giving
1407 * the futex_lock_pi() instance time to complete, either by
1408 * waiting on the rtmutex or removing itself from the futex
1409 * queue.
1410 */
1411 ret = -EAGAIN;
1412 goto out_unlock;
73d786bd 1413 }
c87e2837
IM
1414
1415 /*
16ffa12d
PZ
1416 * We pass it to the next owner. The WAITERS bit is always kept
1417 * enabled while there is PI state around. We cleanup the owner
1418 * died bit, because we are the owner.
c87e2837 1419 */
13fbca4c 1420 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 1421
ab51fbab
DB
1422 if (unlikely(should_fail_futex(true)))
1423 ret = -EFAULT;
1424
89e9e66b 1425 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
13fbca4c 1426 ret = -EFAULT;
734009e9 1427
89e9e66b
SAS
1428 } else if (curval != uval) {
1429 /*
1430 * If a unconditional UNLOCK_PI operation (user space did not
1431 * try the TID->0 transition) raced with a waiter setting the
1432 * FUTEX_WAITERS flag between get_user() and locking the hash
1433 * bucket lock, retry the operation.
1434 */
1435 if ((FUTEX_TID_MASK & curval) == uval)
1436 ret = -EAGAIN;
1437 else
1438 ret = -EINVAL;
1439 }
734009e9 1440
16ffa12d
PZ
1441 if (ret)
1442 goto out_unlock;
c87e2837 1443
b4abf910 1444 raw_spin_lock(&pi_state->owner->pi_lock);
627371d7
IM
1445 WARN_ON(list_empty(&pi_state->list));
1446 list_del_init(&pi_state->list);
b4abf910 1447 raw_spin_unlock(&pi_state->owner->pi_lock);
627371d7 1448
b4abf910 1449 raw_spin_lock(&new_owner->pi_lock);
627371d7 1450 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1451 list_add(&pi_state->list, &new_owner->pi_state_list);
1452 pi_state->owner = new_owner;
b4abf910 1453 raw_spin_unlock(&new_owner->pi_lock);
627371d7 1454
802ab58d 1455 /*
5293c2ef 1456 * We've updated the uservalue, this unlock cannot fail.
802ab58d 1457 */
aa2bfe55 1458 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
5293c2ef 1459
16ffa12d 1460out_unlock:
5293c2ef 1461 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
5293c2ef 1462
aa2bfe55
PZ
1463 if (postunlock)
1464 rt_mutex_postunlock(&wake_q);
c87e2837 1465
16ffa12d 1466 return ret;
c87e2837
IM
1467}
1468
8b8f319f
IM
1469/*
1470 * Express the locking dependencies for lockdep:
1471 */
1472static inline void
1473double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1474{
1475 if (hb1 <= hb2) {
1476 spin_lock(&hb1->lock);
1477 if (hb1 < hb2)
1478 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1479 } else { /* hb1 > hb2 */
1480 spin_lock(&hb2->lock);
1481 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1482 }
1483}
1484
5eb3dc62
DH
1485static inline void
1486double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1487{
f061d351 1488 spin_unlock(&hb1->lock);
88f502fe
IM
1489 if (hb1 != hb2)
1490 spin_unlock(&hb2->lock);
5eb3dc62
DH
1491}
1492
1da177e4 1493/*
b2d0994b 1494 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1495 */
b41277dc
DH
1496static int
1497futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1498{
e2970f2f 1499 struct futex_hash_bucket *hb;
1da177e4 1500 struct futex_q *this, *next;
38d47c1b 1501 union futex_key key = FUTEX_KEY_INIT;
1da177e4 1502 int ret;
194a6b5b 1503 DEFINE_WAKE_Q(wake_q);
1da177e4 1504
cd689985
TG
1505 if (!bitset)
1506 return -EINVAL;
1507
9ea71503 1508 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1da177e4
LT
1509 if (unlikely(ret != 0))
1510 goto out;
1511
e2970f2f 1512 hb = hash_futex(&key);
b0c29f79
DB
1513
1514 /* Make sure we really have tasks to wakeup */
1515 if (!hb_waiters_pending(hb))
1516 goto out_put_key;
1517
e2970f2f 1518 spin_lock(&hb->lock);
1da177e4 1519
0d00c7b2 1520 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1da177e4 1521 if (match_futex (&this->key, &key)) {
52400ba9 1522 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1523 ret = -EINVAL;
1524 break;
1525 }
cd689985
TG
1526
1527 /* Check if one of the bits is set in both bitsets */
1528 if (!(this->bitset & bitset))
1529 continue;
1530
1d0dcb3a 1531 mark_wake_futex(&wake_q, this);
1da177e4
LT
1532 if (++ret >= nr_wake)
1533 break;
1534 }
1535 }
1536
e2970f2f 1537 spin_unlock(&hb->lock);
1d0dcb3a 1538 wake_up_q(&wake_q);
b0c29f79 1539out_put_key:
ae791a2d 1540 put_futex_key(&key);
42d35d48 1541out:
1da177e4
LT
1542 return ret;
1543}
1544
4732efbe
JJ
1545/*
1546 * Wake up all waiters hashed on the physical page that is mapped
1547 * to this virtual address:
1548 */
e2970f2f 1549static int
b41277dc 1550futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1551 int nr_wake, int nr_wake2, int op)
4732efbe 1552{
38d47c1b 1553 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1554 struct futex_hash_bucket *hb1, *hb2;
4732efbe 1555 struct futex_q *this, *next;
e4dc5b7a 1556 int ret, op_ret;
194a6b5b 1557 DEFINE_WAKE_Q(wake_q);
4732efbe 1558
e4dc5b7a 1559retry:
9ea71503 1560 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
4732efbe
JJ
1561 if (unlikely(ret != 0))
1562 goto out;
9ea71503 1563 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
4732efbe 1564 if (unlikely(ret != 0))
42d35d48 1565 goto out_put_key1;
4732efbe 1566
e2970f2f
IM
1567 hb1 = hash_futex(&key1);
1568 hb2 = hash_futex(&key2);
4732efbe 1569
e4dc5b7a 1570retry_private:
eaaea803 1571 double_lock_hb(hb1, hb2);
e2970f2f 1572 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1573 if (unlikely(op_ret < 0)) {
4732efbe 1574
5eb3dc62 1575 double_unlock_hb(hb1, hb2);
4732efbe 1576
7ee1dd3f 1577#ifndef CONFIG_MMU
e2970f2f
IM
1578 /*
1579 * we don't get EFAULT from MMU faults if we don't have an MMU,
1580 * but we might get them from range checking
1581 */
7ee1dd3f 1582 ret = op_ret;
42d35d48 1583 goto out_put_keys;
7ee1dd3f
DH
1584#endif
1585
796f8d9b
DG
1586 if (unlikely(op_ret != -EFAULT)) {
1587 ret = op_ret;
42d35d48 1588 goto out_put_keys;
796f8d9b
DG
1589 }
1590
d0725992 1591 ret = fault_in_user_writeable(uaddr2);
4732efbe 1592 if (ret)
de87fcc1 1593 goto out_put_keys;
4732efbe 1594
b41277dc 1595 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1596 goto retry_private;
1597
ae791a2d
TG
1598 put_futex_key(&key2);
1599 put_futex_key(&key1);
e4dc5b7a 1600 goto retry;
4732efbe
JJ
1601 }
1602
0d00c7b2 1603 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
4732efbe 1604 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1605 if (this->pi_state || this->rt_waiter) {
1606 ret = -EINVAL;
1607 goto out_unlock;
1608 }
1d0dcb3a 1609 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1610 if (++ret >= nr_wake)
1611 break;
1612 }
1613 }
1614
1615 if (op_ret > 0) {
4732efbe 1616 op_ret = 0;
0d00c7b2 1617 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
4732efbe 1618 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1619 if (this->pi_state || this->rt_waiter) {
1620 ret = -EINVAL;
1621 goto out_unlock;
1622 }
1d0dcb3a 1623 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1624 if (++op_ret >= nr_wake2)
1625 break;
1626 }
1627 }
1628 ret += op_ret;
1629 }
1630
aa10990e 1631out_unlock:
5eb3dc62 1632 double_unlock_hb(hb1, hb2);
1d0dcb3a 1633 wake_up_q(&wake_q);
42d35d48 1634out_put_keys:
ae791a2d 1635 put_futex_key(&key2);
42d35d48 1636out_put_key1:
ae791a2d 1637 put_futex_key(&key1);
42d35d48 1638out:
4732efbe
JJ
1639 return ret;
1640}
1641
9121e478
DH
1642/**
1643 * requeue_futex() - Requeue a futex_q from one hb to another
1644 * @q: the futex_q to requeue
1645 * @hb1: the source hash_bucket
1646 * @hb2: the target hash_bucket
1647 * @key2: the new key for the requeued futex_q
1648 */
1649static inline
1650void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1651 struct futex_hash_bucket *hb2, union futex_key *key2)
1652{
1653
1654 /*
1655 * If key1 and key2 hash to the same bucket, no need to
1656 * requeue.
1657 */
1658 if (likely(&hb1->chain != &hb2->chain)) {
1659 plist_del(&q->list, &hb1->chain);
11d4616b 1660 hb_waiters_dec(hb1);
11d4616b 1661 hb_waiters_inc(hb2);
fe1bce9e 1662 plist_add(&q->list, &hb2->chain);
9121e478 1663 q->lock_ptr = &hb2->lock;
9121e478
DH
1664 }
1665 get_futex_key_refs(key2);
1666 q->key = *key2;
1667}
1668
52400ba9
DH
1669/**
1670 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1671 * @q: the futex_q
1672 * @key: the key of the requeue target futex
1673 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1674 *
1675 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1676 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1677 * to the requeue target futex so the waiter can detect the wakeup on the right
1678 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1679 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1680 * to protect access to the pi_state to fixup the owner later. Must be called
1681 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1682 */
1683static inline
beda2c7e
DH
1684void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1685 struct futex_hash_bucket *hb)
52400ba9 1686{
52400ba9
DH
1687 get_futex_key_refs(key);
1688 q->key = *key;
1689
2e12978a 1690 __unqueue_futex(q);
52400ba9
DH
1691
1692 WARN_ON(!q->rt_waiter);
1693 q->rt_waiter = NULL;
1694
beda2c7e 1695 q->lock_ptr = &hb->lock;
beda2c7e 1696
f1a11e05 1697 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1698}
1699
1700/**
1701 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1702 * @pifutex: the user address of the to futex
1703 * @hb1: the from futex hash bucket, must be locked by the caller
1704 * @hb2: the to futex hash bucket, must be locked by the caller
1705 * @key1: the from futex key
1706 * @key2: the to futex key
1707 * @ps: address to store the pi_state pointer
1708 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1709 *
1710 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1711 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1712 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1713 * hb1 and hb2 must be held by the caller.
52400ba9 1714 *
6c23cbbd
RD
1715 * Return:
1716 * 0 - failed to acquire the lock atomically;
866293ee 1717 * >0 - acquired the lock, return value is vpid of the top_waiter
52400ba9
DH
1718 * <0 - error
1719 */
1720static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1721 struct futex_hash_bucket *hb1,
1722 struct futex_hash_bucket *hb2,
1723 union futex_key *key1, union futex_key *key2,
bab5bc9e 1724 struct futex_pi_state **ps, int set_waiters)
52400ba9 1725{
bab5bc9e 1726 struct futex_q *top_waiter = NULL;
52400ba9 1727 u32 curval;
866293ee 1728 int ret, vpid;
52400ba9
DH
1729
1730 if (get_futex_value_locked(&curval, pifutex))
1731 return -EFAULT;
1732
ab51fbab
DB
1733 if (unlikely(should_fail_futex(true)))
1734 return -EFAULT;
1735
bab5bc9e
DH
1736 /*
1737 * Find the top_waiter and determine if there are additional waiters.
1738 * If the caller intends to requeue more than 1 waiter to pifutex,
1739 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1740 * as we have means to handle the possible fault. If not, don't set
1741 * the bit unecessarily as it will force the subsequent unlock to enter
1742 * the kernel.
1743 */
52400ba9
DH
1744 top_waiter = futex_top_waiter(hb1, key1);
1745
1746 /* There are no waiters, nothing for us to do. */
1747 if (!top_waiter)
1748 return 0;
1749
84bc4af5
DH
1750 /* Ensure we requeue to the expected futex. */
1751 if (!match_futex(top_waiter->requeue_pi_key, key2))
1752 return -EINVAL;
1753
52400ba9 1754 /*
bab5bc9e
DH
1755 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1756 * the contended case or if set_waiters is 1. The pi_state is returned
1757 * in ps in contended cases.
52400ba9 1758 */
866293ee 1759 vpid = task_pid_vnr(top_waiter->task);
bab5bc9e
DH
1760 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1761 set_waiters);
866293ee 1762 if (ret == 1) {
beda2c7e 1763 requeue_pi_wake_futex(top_waiter, key2, hb2);
866293ee
TG
1764 return vpid;
1765 }
52400ba9
DH
1766 return ret;
1767}
1768
1769/**
1770 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1771 * @uaddr1: source futex user address
b41277dc 1772 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1773 * @uaddr2: target futex user address
1774 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1775 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1776 * @cmpval: @uaddr1 expected value (or %NULL)
1777 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1778 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1779 *
1780 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1781 * uaddr2 atomically on behalf of the top waiter.
1782 *
6c23cbbd
RD
1783 * Return:
1784 * >=0 - on success, the number of tasks requeued or woken;
52400ba9 1785 * <0 - on error
1da177e4 1786 */
b41277dc
DH
1787static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1788 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1789 u32 *cmpval, int requeue_pi)
1da177e4 1790{
38d47c1b 1791 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1792 int drop_count = 0, task_count = 0, ret;
1793 struct futex_pi_state *pi_state = NULL;
e2970f2f 1794 struct futex_hash_bucket *hb1, *hb2;
1da177e4 1795 struct futex_q *this, *next;
194a6b5b 1796 DEFINE_WAKE_Q(wake_q);
52400ba9
DH
1797
1798 if (requeue_pi) {
e9c243a5
TG
1799 /*
1800 * Requeue PI only works on two distinct uaddrs. This
1801 * check is only valid for private futexes. See below.
1802 */
1803 if (uaddr1 == uaddr2)
1804 return -EINVAL;
1805
52400ba9
DH
1806 /*
1807 * requeue_pi requires a pi_state, try to allocate it now
1808 * without any locks in case it fails.
1809 */
1810 if (refill_pi_state_cache())
1811 return -ENOMEM;
1812 /*
1813 * requeue_pi must wake as many tasks as it can, up to nr_wake
1814 * + nr_requeue, since it acquires the rt_mutex prior to
1815 * returning to userspace, so as to not leave the rt_mutex with
1816 * waiters and no owner. However, second and third wake-ups
1817 * cannot be predicted as they involve race conditions with the
1818 * first wake and a fault while looking up the pi_state. Both
1819 * pthread_cond_signal() and pthread_cond_broadcast() should
1820 * use nr_wake=1.
1821 */
1822 if (nr_wake != 1)
1823 return -EINVAL;
1824 }
1da177e4 1825
42d35d48 1826retry:
9ea71503 1827 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1da177e4
LT
1828 if (unlikely(ret != 0))
1829 goto out;
9ea71503
SB
1830 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1831 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1da177e4 1832 if (unlikely(ret != 0))
42d35d48 1833 goto out_put_key1;
1da177e4 1834
e9c243a5
TG
1835 /*
1836 * The check above which compares uaddrs is not sufficient for
1837 * shared futexes. We need to compare the keys:
1838 */
1839 if (requeue_pi && match_futex(&key1, &key2)) {
1840 ret = -EINVAL;
1841 goto out_put_keys;
1842 }
1843
e2970f2f
IM
1844 hb1 = hash_futex(&key1);
1845 hb2 = hash_futex(&key2);
1da177e4 1846
e4dc5b7a 1847retry_private:
69cd9eba 1848 hb_waiters_inc(hb2);
8b8f319f 1849 double_lock_hb(hb1, hb2);
1da177e4 1850
e2970f2f
IM
1851 if (likely(cmpval != NULL)) {
1852 u32 curval;
1da177e4 1853
e2970f2f 1854 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1855
1856 if (unlikely(ret)) {
5eb3dc62 1857 double_unlock_hb(hb1, hb2);
69cd9eba 1858 hb_waiters_dec(hb2);
1da177e4 1859
e2970f2f 1860 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1861 if (ret)
1862 goto out_put_keys;
1da177e4 1863
b41277dc 1864 if (!(flags & FLAGS_SHARED))
e4dc5b7a 1865 goto retry_private;
1da177e4 1866
ae791a2d
TG
1867 put_futex_key(&key2);
1868 put_futex_key(&key1);
e4dc5b7a 1869 goto retry;
1da177e4 1870 }
e2970f2f 1871 if (curval != *cmpval) {
1da177e4
LT
1872 ret = -EAGAIN;
1873 goto out_unlock;
1874 }
1875 }
1876
52400ba9 1877 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
1878 /*
1879 * Attempt to acquire uaddr2 and wake the top waiter. If we
1880 * intend to requeue waiters, force setting the FUTEX_WAITERS
1881 * bit. We force this here where we are able to easily handle
1882 * faults rather in the requeue loop below.
1883 */
52400ba9 1884 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 1885 &key2, &pi_state, nr_requeue);
52400ba9
DH
1886
1887 /*
1888 * At this point the top_waiter has either taken uaddr2 or is
1889 * waiting on it. If the former, then the pi_state will not
1890 * exist yet, look it up one more time to ensure we have a
866293ee
TG
1891 * reference to it. If the lock was taken, ret contains the
1892 * vpid of the top waiter task.
ecb38b78
TG
1893 * If the lock was not taken, we have pi_state and an initial
1894 * refcount on it. In case of an error we have nothing.
52400ba9 1895 */
866293ee 1896 if (ret > 0) {
52400ba9 1897 WARN_ON(pi_state);
89061d3d 1898 drop_count++;
52400ba9 1899 task_count++;
866293ee 1900 /*
ecb38b78
TG
1901 * If we acquired the lock, then the user space value
1902 * of uaddr2 should be vpid. It cannot be changed by
1903 * the top waiter as it is blocked on hb2 lock if it
1904 * tries to do so. If something fiddled with it behind
1905 * our back the pi state lookup might unearth it. So
1906 * we rather use the known value than rereading and
1907 * handing potential crap to lookup_pi_state.
1908 *
1909 * If that call succeeds then we have pi_state and an
1910 * initial refcount on it.
866293ee 1911 */
734009e9 1912 ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
52400ba9
DH
1913 }
1914
1915 switch (ret) {
1916 case 0:
ecb38b78 1917 /* We hold a reference on the pi state. */
52400ba9 1918 break;
4959f2de
TG
1919
1920 /* If the above failed, then pi_state is NULL */
52400ba9
DH
1921 case -EFAULT:
1922 double_unlock_hb(hb1, hb2);
69cd9eba 1923 hb_waiters_dec(hb2);
ae791a2d
TG
1924 put_futex_key(&key2);
1925 put_futex_key(&key1);
d0725992 1926 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
1927 if (!ret)
1928 goto retry;
1929 goto out;
1930 case -EAGAIN:
af54d6a1
TG
1931 /*
1932 * Two reasons for this:
1933 * - Owner is exiting and we just wait for the
1934 * exit to complete.
1935 * - The user space value changed.
1936 */
52400ba9 1937 double_unlock_hb(hb1, hb2);
69cd9eba 1938 hb_waiters_dec(hb2);
ae791a2d
TG
1939 put_futex_key(&key2);
1940 put_futex_key(&key1);
52400ba9
DH
1941 cond_resched();
1942 goto retry;
1943 default:
1944 goto out_unlock;
1945 }
1946 }
1947
0d00c7b2 1948 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
52400ba9
DH
1949 if (task_count - nr_wake >= nr_requeue)
1950 break;
1951
1952 if (!match_futex(&this->key, &key1))
1da177e4 1953 continue;
52400ba9 1954
392741e0
DH
1955 /*
1956 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1957 * be paired with each other and no other futex ops.
aa10990e
DH
1958 *
1959 * We should never be requeueing a futex_q with a pi_state,
1960 * which is awaiting a futex_unlock_pi().
392741e0
DH
1961 */
1962 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
1963 (!requeue_pi && this->rt_waiter) ||
1964 this->pi_state) {
392741e0
DH
1965 ret = -EINVAL;
1966 break;
1967 }
52400ba9
DH
1968
1969 /*
1970 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1971 * lock, we already woke the top_waiter. If not, it will be
1972 * woken by futex_unlock_pi().
1973 */
1974 if (++task_count <= nr_wake && !requeue_pi) {
1d0dcb3a 1975 mark_wake_futex(&wake_q, this);
52400ba9
DH
1976 continue;
1977 }
1da177e4 1978
84bc4af5
DH
1979 /* Ensure we requeue to the expected futex for requeue_pi. */
1980 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1981 ret = -EINVAL;
1982 break;
1983 }
1984
52400ba9
DH
1985 /*
1986 * Requeue nr_requeue waiters and possibly one more in the case
1987 * of requeue_pi if we couldn't acquire the lock atomically.
1988 */
1989 if (requeue_pi) {
ecb38b78
TG
1990 /*
1991 * Prepare the waiter to take the rt_mutex. Take a
1992 * refcount on the pi_state and store the pointer in
1993 * the futex_q object of the waiter.
1994 */
bf92cf3a 1995 get_pi_state(pi_state);
52400ba9
DH
1996 this->pi_state = pi_state;
1997 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1998 this->rt_waiter,
c051b21f 1999 this->task);
52400ba9 2000 if (ret == 1) {
ecb38b78
TG
2001 /*
2002 * We got the lock. We do neither drop the
2003 * refcount on pi_state nor clear
2004 * this->pi_state because the waiter needs the
2005 * pi_state for cleaning up the user space
2006 * value. It will drop the refcount after
2007 * doing so.
2008 */
beda2c7e 2009 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 2010 drop_count++;
52400ba9
DH
2011 continue;
2012 } else if (ret) {
ecb38b78
TG
2013 /*
2014 * rt_mutex_start_proxy_lock() detected a
2015 * potential deadlock when we tried to queue
2016 * that waiter. Drop the pi_state reference
2017 * which we took above and remove the pointer
2018 * to the state from the waiters futex_q
2019 * object.
2020 */
52400ba9 2021 this->pi_state = NULL;
29e9ee5d 2022 put_pi_state(pi_state);
885c2cb7
TG
2023 /*
2024 * We stop queueing more waiters and let user
2025 * space deal with the mess.
2026 */
2027 break;
52400ba9 2028 }
1da177e4 2029 }
52400ba9
DH
2030 requeue_futex(this, hb1, hb2, &key2);
2031 drop_count++;
1da177e4
LT
2032 }
2033
ecb38b78
TG
2034 /*
2035 * We took an extra initial reference to the pi_state either
2036 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2037 * need to drop it here again.
2038 */
29e9ee5d 2039 put_pi_state(pi_state);
885c2cb7
TG
2040
2041out_unlock:
5eb3dc62 2042 double_unlock_hb(hb1, hb2);
1d0dcb3a 2043 wake_up_q(&wake_q);
69cd9eba 2044 hb_waiters_dec(hb2);
1da177e4 2045
cd84a42f
DH
2046 /*
2047 * drop_futex_key_refs() must be called outside the spinlocks. During
2048 * the requeue we moved futex_q's from the hash bucket at key1 to the
2049 * one at key2 and updated their key pointer. We no longer need to
2050 * hold the references to key1.
2051 */
1da177e4 2052 while (--drop_count >= 0)
9adef58b 2053 drop_futex_key_refs(&key1);
1da177e4 2054
42d35d48 2055out_put_keys:
ae791a2d 2056 put_futex_key(&key2);
42d35d48 2057out_put_key1:
ae791a2d 2058 put_futex_key(&key1);
42d35d48 2059out:
52400ba9 2060 return ret ? ret : task_count;
1da177e4
LT
2061}
2062
2063/* The key must be already stored in q->key. */
82af7aca 2064static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 2065 __acquires(&hb->lock)
1da177e4 2066{
e2970f2f 2067 struct futex_hash_bucket *hb;
1da177e4 2068
e2970f2f 2069 hb = hash_futex(&q->key);
11d4616b
LT
2070
2071 /*
2072 * Increment the counter before taking the lock so that
2073 * a potential waker won't miss a to-be-slept task that is
2074 * waiting for the spinlock. This is safe as all queue_lock()
2075 * users end up calling queue_me(). Similarly, for housekeeping,
2076 * decrement the counter at queue_unlock() when some error has
2077 * occurred and we don't end up adding the task to the list.
2078 */
2079 hb_waiters_inc(hb);
2080
e2970f2f 2081 q->lock_ptr = &hb->lock;
1da177e4 2082
8ad7b378 2083 spin_lock(&hb->lock); /* implies smp_mb(); (A) */
e2970f2f 2084 return hb;
1da177e4
LT
2085}
2086
d40d65c8 2087static inline void
0d00c7b2 2088queue_unlock(struct futex_hash_bucket *hb)
15e408cd 2089 __releases(&hb->lock)
d40d65c8
DH
2090{
2091 spin_unlock(&hb->lock);
11d4616b 2092 hb_waiters_dec(hb);
d40d65c8
DH
2093}
2094
cfafcd11 2095static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 2096{
ec92d082
PP
2097 int prio;
2098
2099 /*
2100 * The priority used to register this element is
2101 * - either the real thread-priority for the real-time threads
2102 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2103 * - or MAX_RT_PRIO for non-RT threads.
2104 * Thus, all RT-threads are woken first in priority order, and
2105 * the others are woken last, in FIFO order.
2106 */
2107 prio = min(current->normal_prio, MAX_RT_PRIO);
2108
2109 plist_node_init(&q->list, prio);
ec92d082 2110 plist_add(&q->list, &hb->chain);
c87e2837 2111 q->task = current;
cfafcd11
PZ
2112}
2113
2114/**
2115 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2116 * @q: The futex_q to enqueue
2117 * @hb: The destination hash bucket
2118 *
2119 * The hb->lock must be held by the caller, and is released here. A call to
2120 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2121 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2122 * or nothing if the unqueue is done as part of the wake process and the unqueue
2123 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2124 * an example).
2125 */
2126static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2127 __releases(&hb->lock)
2128{
2129 __queue_me(q, hb);
e2970f2f 2130 spin_unlock(&hb->lock);
1da177e4
LT
2131}
2132
d40d65c8
DH
2133/**
2134 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2135 * @q: The futex_q to unqueue
2136 *
2137 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2138 * be paired with exactly one earlier call to queue_me().
2139 *
6c23cbbd
RD
2140 * Return:
2141 * 1 - if the futex_q was still queued (and we removed unqueued it);
d40d65c8 2142 * 0 - if the futex_q was already removed by the waking thread
1da177e4 2143 */
1da177e4
LT
2144static int unqueue_me(struct futex_q *q)
2145{
1da177e4 2146 spinlock_t *lock_ptr;
e2970f2f 2147 int ret = 0;
1da177e4
LT
2148
2149 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 2150retry:
29b75eb2
JZ
2151 /*
2152 * q->lock_ptr can change between this read and the following spin_lock.
2153 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2154 * optimizing lock_ptr out of the logic below.
2155 */
2156 lock_ptr = READ_ONCE(q->lock_ptr);
c80544dc 2157 if (lock_ptr != NULL) {
1da177e4
LT
2158 spin_lock(lock_ptr);
2159 /*
2160 * q->lock_ptr can change between reading it and
2161 * spin_lock(), causing us to take the wrong lock. This
2162 * corrects the race condition.
2163 *
2164 * Reasoning goes like this: if we have the wrong lock,
2165 * q->lock_ptr must have changed (maybe several times)
2166 * between reading it and the spin_lock(). It can
2167 * change again after the spin_lock() but only if it was
2168 * already changed before the spin_lock(). It cannot,
2169 * however, change back to the original value. Therefore
2170 * we can detect whether we acquired the correct lock.
2171 */
2172 if (unlikely(lock_ptr != q->lock_ptr)) {
2173 spin_unlock(lock_ptr);
2174 goto retry;
2175 }
2e12978a 2176 __unqueue_futex(q);
c87e2837
IM
2177
2178 BUG_ON(q->pi_state);
2179
1da177e4
LT
2180 spin_unlock(lock_ptr);
2181 ret = 1;
2182 }
2183
9adef58b 2184 drop_futex_key_refs(&q->key);
1da177e4
LT
2185 return ret;
2186}
2187
c87e2837
IM
2188/*
2189 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
2190 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2191 * and dropped here.
c87e2837 2192 */
d0aa7a70 2193static void unqueue_me_pi(struct futex_q *q)
15e408cd 2194 __releases(q->lock_ptr)
c87e2837 2195{
2e12978a 2196 __unqueue_futex(q);
c87e2837
IM
2197
2198 BUG_ON(!q->pi_state);
29e9ee5d 2199 put_pi_state(q->pi_state);
c87e2837
IM
2200 q->pi_state = NULL;
2201
d0aa7a70 2202 spin_unlock(q->lock_ptr);
c87e2837
IM
2203}
2204
d0aa7a70 2205/*
cdf71a10 2206 * Fixup the pi_state owner with the new owner.
d0aa7a70 2207 *
778e9a9c
AK
2208 * Must be called with hash bucket lock held and mm->sem held for non
2209 * private futexes.
d0aa7a70 2210 */
778e9a9c 2211static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
ae791a2d 2212 struct task_struct *newowner)
d0aa7a70 2213{
cdf71a10 2214 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 2215 struct futex_pi_state *pi_state = q->pi_state;
7cfdaf38 2216 u32 uval, uninitialized_var(curval), newval;
734009e9 2217 struct task_struct *oldowner;
e4dc5b7a 2218 int ret;
d0aa7a70 2219
734009e9
PZ
2220 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2221
2222 oldowner = pi_state->owner;
d0aa7a70 2223 /* Owner died? */
1b7558e4
TG
2224 if (!pi_state->owner)
2225 newtid |= FUTEX_OWNER_DIED;
2226
2227 /*
2228 * We are here either because we stole the rtmutex from the
8161239a 2229 * previous highest priority waiter or we are the highest priority
16ffa12d
PZ
2230 * waiter but have failed to get the rtmutex the first time.
2231 *
8161239a
LJ
2232 * We have to replace the newowner TID in the user space variable.
2233 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 2234 *
b2d0994b
DH
2235 * Note: We write the user space value _before_ changing the pi_state
2236 * because we can fault here. Imagine swapped out pages or a fork
2237 * that marked all the anonymous memory readonly for cow.
1b7558e4 2238 *
734009e9
PZ
2239 * Modifying pi_state _before_ the user space value would leave the
2240 * pi_state in an inconsistent state when we fault here, because we
2241 * need to drop the locks to handle the fault. This might be observed
2242 * in the PID check in lookup_pi_state.
1b7558e4
TG
2243 */
2244retry:
2245 if (get_futex_value_locked(&uval, uaddr))
2246 goto handle_fault;
2247
16ffa12d 2248 for (;;) {
1b7558e4
TG
2249 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2250
37a9d912 2251 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1b7558e4
TG
2252 goto handle_fault;
2253 if (curval == uval)
2254 break;
2255 uval = curval;
2256 }
2257
2258 /*
2259 * We fixed up user space. Now we need to fix the pi_state
2260 * itself.
2261 */
d0aa7a70 2262 if (pi_state->owner != NULL) {
734009e9 2263 raw_spin_lock(&pi_state->owner->pi_lock);
d0aa7a70
PP
2264 WARN_ON(list_empty(&pi_state->list));
2265 list_del_init(&pi_state->list);
734009e9 2266 raw_spin_unlock(&pi_state->owner->pi_lock);
1b7558e4 2267 }
d0aa7a70 2268
cdf71a10 2269 pi_state->owner = newowner;
d0aa7a70 2270
734009e9 2271 raw_spin_lock(&newowner->pi_lock);
d0aa7a70 2272 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 2273 list_add(&pi_state->list, &newowner->pi_state_list);
734009e9
PZ
2274 raw_spin_unlock(&newowner->pi_lock);
2275 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2276
1b7558e4 2277 return 0;
d0aa7a70 2278
d0aa7a70 2279 /*
734009e9
PZ
2280 * To handle the page fault we need to drop the locks here. That gives
2281 * the other task (either the highest priority waiter itself or the
2282 * task which stole the rtmutex) the chance to try the fixup of the
2283 * pi_state. So once we are back from handling the fault we need to
2284 * check the pi_state after reacquiring the locks and before trying to
2285 * do another fixup. When the fixup has been done already we simply
2286 * return.
2287 *
2288 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2289 * drop hb->lock since the caller owns the hb -> futex_q relation.
2290 * Dropping the pi_mutex->wait_lock requires the state revalidate.
d0aa7a70 2291 */
1b7558e4 2292handle_fault:
734009e9 2293 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1b7558e4 2294 spin_unlock(q->lock_ptr);
778e9a9c 2295
d0725992 2296 ret = fault_in_user_writeable(uaddr);
778e9a9c 2297
1b7558e4 2298 spin_lock(q->lock_ptr);
734009e9 2299 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
778e9a9c 2300
1b7558e4
TG
2301 /*
2302 * Check if someone else fixed it for us:
2303 */
734009e9
PZ
2304 if (pi_state->owner != oldowner) {
2305 ret = 0;
2306 goto out_unlock;
2307 }
1b7558e4
TG
2308
2309 if (ret)
734009e9 2310 goto out_unlock;
1b7558e4
TG
2311
2312 goto retry;
734009e9
PZ
2313
2314out_unlock:
2315 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2316 return ret;
d0aa7a70
PP
2317}
2318
72c1bbf3 2319static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 2320
dd973998
DH
2321/**
2322 * fixup_owner() - Post lock pi_state and corner case management
2323 * @uaddr: user address of the futex
dd973998
DH
2324 * @q: futex_q (contains pi_state and access to the rt_mutex)
2325 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2326 *
2327 * After attempting to lock an rt_mutex, this function is called to cleanup
2328 * the pi_state owner as well as handle race conditions that may allow us to
2329 * acquire the lock. Must be called with the hb lock held.
2330 *
6c23cbbd
RD
2331 * Return:
2332 * 1 - success, lock taken;
2333 * 0 - success, lock not taken;
dd973998
DH
2334 * <0 - on error (-EFAULT)
2335 */
ae791a2d 2336static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998 2337{
dd973998
DH
2338 int ret = 0;
2339
2340 if (locked) {
2341 /*
2342 * Got the lock. We might not be the anticipated owner if we
2343 * did a lock-steal - fix up the PI-state in that case:
16ffa12d
PZ
2344 *
2345 * We can safely read pi_state->owner without holding wait_lock
2346 * because we now own the rt_mutex, only the owner will attempt
2347 * to change it.
dd973998
DH
2348 */
2349 if (q->pi_state->owner != current)
ae791a2d 2350 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
2351 goto out;
2352 }
2353
dd973998
DH
2354 /*
2355 * Paranoia check. If we did not take the lock, then we should not be
8161239a 2356 * the owner of the rt_mutex.
dd973998 2357 */
73d786bd 2358 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
dd973998
DH
2359 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2360 "pi-state %p\n", ret,
2361 q->pi_state->pi_mutex.owner,
2362 q->pi_state->owner);
73d786bd 2363 }
dd973998
DH
2364
2365out:
2366 return ret ? ret : locked;
2367}
2368
ca5f9524
DH
2369/**
2370 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2371 * @hb: the futex hash bucket, must be locked by the caller
2372 * @q: the futex_q to queue up on
2373 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
2374 */
2375static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 2376 struct hrtimer_sleeper *timeout)
ca5f9524 2377{
9beba3c5
DH
2378 /*
2379 * The task state is guaranteed to be set before another task can
b92b8b35 2380 * wake it. set_current_state() is implemented using smp_store_mb() and
9beba3c5
DH
2381 * queue_me() calls spin_unlock() upon completion, both serializing
2382 * access to the hash list and forcing another memory barrier.
2383 */
f1a11e05 2384 set_current_state(TASK_INTERRUPTIBLE);
0729e196 2385 queue_me(q, hb);
ca5f9524
DH
2386
2387 /* Arm the timer */
2e4b0d3f 2388 if (timeout)
ca5f9524 2389 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
ca5f9524
DH
2390
2391 /*
0729e196
DH
2392 * If we have been removed from the hash list, then another task
2393 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
2394 */
2395 if (likely(!plist_node_empty(&q->list))) {
2396 /*
2397 * If the timer has already expired, current will already be
2398 * flagged for rescheduling. Only call schedule if there
2399 * is no timeout, or if it has yet to expire.
2400 */
2401 if (!timeout || timeout->task)
88c8004f 2402 freezable_schedule();
ca5f9524
DH
2403 }
2404 __set_current_state(TASK_RUNNING);
2405}
2406
f801073f
DH
2407/**
2408 * futex_wait_setup() - Prepare to wait on a futex
2409 * @uaddr: the futex userspace address
2410 * @val: the expected value
b41277dc 2411 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
2412 * @q: the associated futex_q
2413 * @hb: storage for hash_bucket pointer to be returned to caller
2414 *
2415 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2416 * compare it with the expected value. Handle atomic faults internally.
2417 * Return with the hb lock held and a q.key reference on success, and unlocked
2418 * with no q.key reference on failure.
2419 *
6c23cbbd
RD
2420 * Return:
2421 * 0 - uaddr contains val and hb has been locked;
ca4a04cf 2422 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 2423 */
b41277dc 2424static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 2425 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 2426{
e2970f2f
IM
2427 u32 uval;
2428 int ret;
1da177e4 2429
1da177e4 2430 /*
b2d0994b 2431 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
2432 * Order is important:
2433 *
2434 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2435 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2436 *
2437 * The basic logical guarantee of a futex is that it blocks ONLY
2438 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
2439 * any cond. If we locked the hash-bucket after testing *uaddr, that
2440 * would open a race condition where we could block indefinitely with
1da177e4
LT
2441 * cond(var) false, which would violate the guarantee.
2442 *
8fe8f545
ML
2443 * On the other hand, we insert q and release the hash-bucket only
2444 * after testing *uaddr. This guarantees that futex_wait() will NOT
2445 * absorb a wakeup if *uaddr does not match the desired values
2446 * while the syscall executes.
1da177e4 2447 */
f801073f 2448retry:
9ea71503 2449 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
f801073f 2450 if (unlikely(ret != 0))
a5a2a0c7 2451 return ret;
f801073f
DH
2452
2453retry_private:
2454 *hb = queue_lock(q);
2455
e2970f2f 2456 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 2457
f801073f 2458 if (ret) {
0d00c7b2 2459 queue_unlock(*hb);
1da177e4 2460
e2970f2f 2461 ret = get_user(uval, uaddr);
e4dc5b7a 2462 if (ret)
f801073f 2463 goto out;
1da177e4 2464
b41277dc 2465 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2466 goto retry_private;
2467
ae791a2d 2468 put_futex_key(&q->key);
e4dc5b7a 2469 goto retry;
1da177e4 2470 }
ca5f9524 2471
f801073f 2472 if (uval != val) {
0d00c7b2 2473 queue_unlock(*hb);
f801073f 2474 ret = -EWOULDBLOCK;
2fff78c7 2475 }
1da177e4 2476
f801073f
DH
2477out:
2478 if (ret)
ae791a2d 2479 put_futex_key(&q->key);
f801073f
DH
2480 return ret;
2481}
2482
b41277dc
DH
2483static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2484 ktime_t *abs_time, u32 bitset)
f801073f
DH
2485{
2486 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
2487 struct restart_block *restart;
2488 struct futex_hash_bucket *hb;
5bdb05f9 2489 struct futex_q q = futex_q_init;
f801073f
DH
2490 int ret;
2491
2492 if (!bitset)
2493 return -EINVAL;
f801073f
DH
2494 q.bitset = bitset;
2495
2496 if (abs_time) {
2497 to = &timeout;
2498
b41277dc
DH
2499 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2500 CLOCK_REALTIME : CLOCK_MONOTONIC,
2501 HRTIMER_MODE_ABS);
f801073f
DH
2502 hrtimer_init_sleeper(to, current);
2503 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2504 current->timer_slack_ns);
2505 }
2506
d58e6576 2507retry:
7ada876a
DH
2508 /*
2509 * Prepare to wait on uaddr. On success, holds hb lock and increments
2510 * q.key refs.
2511 */
b41277dc 2512 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
2513 if (ret)
2514 goto out;
2515
ca5f9524 2516 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 2517 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
2518
2519 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 2520 ret = 0;
7ada876a 2521 /* unqueue_me() drops q.key ref */
1da177e4 2522 if (!unqueue_me(&q))
7ada876a 2523 goto out;
2fff78c7 2524 ret = -ETIMEDOUT;
ca5f9524 2525 if (to && !to->task)
7ada876a 2526 goto out;
72c1bbf3 2527
e2970f2f 2528 /*
d58e6576
TG
2529 * We expect signal_pending(current), but we might be the
2530 * victim of a spurious wakeup as well.
e2970f2f 2531 */
7ada876a 2532 if (!signal_pending(current))
d58e6576 2533 goto retry;
d58e6576 2534
2fff78c7 2535 ret = -ERESTARTSYS;
c19384b5 2536 if (!abs_time)
7ada876a 2537 goto out;
1da177e4 2538
f56141e3 2539 restart = &current->restart_block;
2fff78c7 2540 restart->fn = futex_wait_restart;
a3c74c52 2541 restart->futex.uaddr = uaddr;
2fff78c7 2542 restart->futex.val = val;
2456e855 2543 restart->futex.time = *abs_time;
2fff78c7 2544 restart->futex.bitset = bitset;
0cd9c649 2545 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2546
2fff78c7
PZ
2547 ret = -ERESTART_RESTARTBLOCK;
2548
42d35d48 2549out:
ca5f9524
DH
2550 if (to) {
2551 hrtimer_cancel(&to->timer);
2552 destroy_hrtimer_on_stack(&to->timer);
2553 }
c87e2837
IM
2554 return ret;
2555}
2556
72c1bbf3
NP
2557
2558static long futex_wait_restart(struct restart_block *restart)
2559{
a3c74c52 2560 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2561 ktime_t t, *tp = NULL;
72c1bbf3 2562
a72188d8 2563 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2456e855 2564 t = restart->futex.time;
a72188d8
DH
2565 tp = &t;
2566 }
72c1bbf3 2567 restart->fn = do_no_restart_syscall;
b41277dc
DH
2568
2569 return (long)futex_wait(uaddr, restart->futex.flags,
2570 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2571}
2572
2573
c87e2837
IM
2574/*
2575 * Userspace tried a 0 -> TID atomic transition of the futex value
2576 * and failed. The kernel side here does the whole locking operation:
767f509c
DB
2577 * if there are waiters then it will block as a consequence of relying
2578 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2579 * a 0 value of the futex too.).
2580 *
2581 * Also serves as futex trylock_pi()'ing, and due semantics.
c87e2837 2582 */
996636dd 2583static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
b41277dc 2584 ktime_t *time, int trylock)
c87e2837 2585{
c5780e97 2586 struct hrtimer_sleeper timeout, *to = NULL;
16ffa12d 2587 struct futex_pi_state *pi_state = NULL;
cfafcd11 2588 struct rt_mutex_waiter rt_waiter;
c87e2837 2589 struct futex_hash_bucket *hb;
5bdb05f9 2590 struct futex_q q = futex_q_init;
dd973998 2591 int res, ret;
c87e2837
IM
2592
2593 if (refill_pi_state_cache())
2594 return -ENOMEM;
2595
c19384b5 2596 if (time) {
c5780e97 2597 to = &timeout;
237fc6e7
TG
2598 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2599 HRTIMER_MODE_ABS);
c5780e97 2600 hrtimer_init_sleeper(to, current);
cc584b21 2601 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
2602 }
2603
42d35d48 2604retry:
9ea71503 2605 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
c87e2837 2606 if (unlikely(ret != 0))
42d35d48 2607 goto out;
c87e2837 2608
e4dc5b7a 2609retry_private:
82af7aca 2610 hb = queue_lock(&q);
c87e2837 2611
bab5bc9e 2612 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 2613 if (unlikely(ret)) {
767f509c
DB
2614 /*
2615 * Atomic work succeeded and we got the lock,
2616 * or failed. Either way, we do _not_ block.
2617 */
778e9a9c 2618 switch (ret) {
1a52084d
DH
2619 case 1:
2620 /* We got the lock. */
2621 ret = 0;
2622 goto out_unlock_put_key;
2623 case -EFAULT:
2624 goto uaddr_faulted;
778e9a9c
AK
2625 case -EAGAIN:
2626 /*
af54d6a1
TG
2627 * Two reasons for this:
2628 * - Task is exiting and we just wait for the
2629 * exit to complete.
2630 * - The user space value changed.
778e9a9c 2631 */
0d00c7b2 2632 queue_unlock(hb);
ae791a2d 2633 put_futex_key(&q.key);
778e9a9c
AK
2634 cond_resched();
2635 goto retry;
778e9a9c 2636 default:
42d35d48 2637 goto out_unlock_put_key;
c87e2837 2638 }
c87e2837
IM
2639 }
2640
cfafcd11
PZ
2641 WARN_ON(!q.pi_state);
2642
c87e2837
IM
2643 /*
2644 * Only actually queue now that the atomic ops are done:
2645 */
cfafcd11 2646 __queue_me(&q, hb);
c87e2837 2647
cfafcd11 2648 if (trylock) {
5293c2ef 2649 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
c87e2837
IM
2650 /* Fixup the trylock return value: */
2651 ret = ret ? 0 : -EWOULDBLOCK;
cfafcd11 2652 goto no_block;
c87e2837
IM
2653 }
2654
56222b21
PZ
2655 rt_mutex_init_waiter(&rt_waiter);
2656
cfafcd11 2657 /*
56222b21
PZ
2658 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2659 * hold it while doing rt_mutex_start_proxy(), because then it will
2660 * include hb->lock in the blocking chain, even through we'll not in
2661 * fact hold it while blocking. This will lead it to report -EDEADLK
2662 * and BUG when futex_unlock_pi() interleaves with this.
2663 *
2664 * Therefore acquire wait_lock while holding hb->lock, but drop the
2665 * latter before calling rt_mutex_start_proxy_lock(). This still fully
2666 * serializes against futex_unlock_pi() as that does the exact same
2667 * lock handoff sequence.
cfafcd11 2668 */
56222b21
PZ
2669 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2670 spin_unlock(q.lock_ptr);
2671 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2672 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2673
cfafcd11
PZ
2674 if (ret) {
2675 if (ret == 1)
2676 ret = 0;
2677
56222b21 2678 spin_lock(q.lock_ptr);
cfafcd11
PZ
2679 goto no_block;
2680 }
2681
cfafcd11
PZ
2682
2683 if (unlikely(to))
2684 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2685
2686 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2687
a99e4e41 2688 spin_lock(q.lock_ptr);
cfafcd11
PZ
2689 /*
2690 * If we failed to acquire the lock (signal/timeout), we must
2691 * first acquire the hb->lock before removing the lock from the
2692 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
2693 * wait lists consistent.
56222b21
PZ
2694 *
2695 * In particular; it is important that futex_unlock_pi() can not
2696 * observe this inconsistency.
cfafcd11
PZ
2697 */
2698 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2699 ret = 0;
2700
2701no_block:
dd973998
DH
2702 /*
2703 * Fixup the pi_state owner and possibly acquire the lock if we
2704 * haven't already.
2705 */
ae791a2d 2706 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2707 /*
2708 * If fixup_owner() returned an error, proprogate that. If it acquired
2709 * the lock, clear our -ETIMEDOUT or -EINTR.
2710 */
2711 if (res)
2712 ret = (res < 0) ? res : 0;
c87e2837 2713
e8f6386c 2714 /*
dd973998
DH
2715 * If fixup_owner() faulted and was unable to handle the fault, unlock
2716 * it and return the fault to userspace.
e8f6386c 2717 */
16ffa12d
PZ
2718 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2719 pi_state = q.pi_state;
2720 get_pi_state(pi_state);
2721 }
e8f6386c 2722
778e9a9c
AK
2723 /* Unqueue and drop the lock */
2724 unqueue_me_pi(&q);
c87e2837 2725
16ffa12d
PZ
2726 if (pi_state) {
2727 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2728 put_pi_state(pi_state);
2729 }
2730
5ecb01cf 2731 goto out_put_key;
c87e2837 2732
42d35d48 2733out_unlock_put_key:
0d00c7b2 2734 queue_unlock(hb);
c87e2837 2735
42d35d48 2736out_put_key:
ae791a2d 2737 put_futex_key(&q.key);
42d35d48 2738out:
97181f9b
TG
2739 if (to) {
2740 hrtimer_cancel(&to->timer);
237fc6e7 2741 destroy_hrtimer_on_stack(&to->timer);
97181f9b 2742 }
dd973998 2743 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2744
42d35d48 2745uaddr_faulted:
0d00c7b2 2746 queue_unlock(hb);
778e9a9c 2747
d0725992 2748 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2749 if (ret)
2750 goto out_put_key;
c87e2837 2751
b41277dc 2752 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2753 goto retry_private;
2754
ae791a2d 2755 put_futex_key(&q.key);
e4dc5b7a 2756 goto retry;
c87e2837
IM
2757}
2758
c87e2837
IM
2759/*
2760 * Userspace attempted a TID -> 0 atomic transition, and failed.
2761 * This is the in-kernel slowpath: we look up the PI state (if any),
2762 * and do the rt-mutex unlock.
2763 */
b41277dc 2764static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837 2765{
ccf9e6a8 2766 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
38d47c1b 2767 union futex_key key = FUTEX_KEY_INIT;
ccf9e6a8 2768 struct futex_hash_bucket *hb;
499f5aca 2769 struct futex_q *top_waiter;
e4dc5b7a 2770 int ret;
c87e2837
IM
2771
2772retry:
2773 if (get_user(uval, uaddr))
2774 return -EFAULT;
2775 /*
2776 * We release only a lock we actually own:
2777 */
c0c9ed15 2778 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2779 return -EPERM;
c87e2837 2780
9ea71503 2781 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
ccf9e6a8
TG
2782 if (ret)
2783 return ret;
c87e2837
IM
2784
2785 hb = hash_futex(&key);
2786 spin_lock(&hb->lock);
2787
c87e2837 2788 /*
ccf9e6a8
TG
2789 * Check waiters first. We do not trust user space values at
2790 * all and we at least want to know if user space fiddled
2791 * with the futex value instead of blindly unlocking.
c87e2837 2792 */
499f5aca
PZ
2793 top_waiter = futex_top_waiter(hb, &key);
2794 if (top_waiter) {
16ffa12d
PZ
2795 struct futex_pi_state *pi_state = top_waiter->pi_state;
2796
2797 ret = -EINVAL;
2798 if (!pi_state)
2799 goto out_unlock;
2800
2801 /*
2802 * If current does not own the pi_state then the futex is
2803 * inconsistent and user space fiddled with the futex value.
2804 */
2805 if (pi_state->owner != current)
2806 goto out_unlock;
2807
bebe5b51 2808 get_pi_state(pi_state);
802ab58d 2809 /*
bebe5b51
PZ
2810 * By taking wait_lock while still holding hb->lock, we ensure
2811 * there is no point where we hold neither; and therefore
2812 * wake_futex_pi() must observe a state consistent with what we
2813 * observed.
16ffa12d 2814 */
bebe5b51 2815 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
16ffa12d
PZ
2816 spin_unlock(&hb->lock);
2817
2818 ret = wake_futex_pi(uaddr, uval, pi_state);
2819
2820 put_pi_state(pi_state);
2821
2822 /*
2823 * Success, we're done! No tricky corner cases.
802ab58d
SAS
2824 */
2825 if (!ret)
2826 goto out_putkey;
c87e2837 2827 /*
ccf9e6a8
TG
2828 * The atomic access to the futex value generated a
2829 * pagefault, so retry the user-access and the wakeup:
c87e2837
IM
2830 */
2831 if (ret == -EFAULT)
2832 goto pi_faulted;
89e9e66b
SAS
2833 /*
2834 * A unconditional UNLOCK_PI op raced against a waiter
2835 * setting the FUTEX_WAITERS bit. Try again.
2836 */
2837 if (ret == -EAGAIN) {
89e9e66b
SAS
2838 put_futex_key(&key);
2839 goto retry;
2840 }
802ab58d
SAS
2841 /*
2842 * wake_futex_pi has detected invalid state. Tell user
2843 * space.
2844 */
16ffa12d 2845 goto out_putkey;
c87e2837 2846 }
ccf9e6a8 2847
c87e2837 2848 /*
ccf9e6a8
TG
2849 * We have no kernel internal state, i.e. no waiters in the
2850 * kernel. Waiters which are about to queue themselves are stuck
2851 * on hb->lock. So we can safely ignore them. We do neither
2852 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2853 * owner.
c87e2837 2854 */
16ffa12d
PZ
2855 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
2856 spin_unlock(&hb->lock);
13fbca4c 2857 goto pi_faulted;
16ffa12d 2858 }
c87e2837 2859
ccf9e6a8
TG
2860 /*
2861 * If uval has changed, let user space handle it.
2862 */
2863 ret = (curval == uval) ? 0 : -EAGAIN;
2864
c87e2837
IM
2865out_unlock:
2866 spin_unlock(&hb->lock);
802ab58d 2867out_putkey:
ae791a2d 2868 put_futex_key(&key);
c87e2837
IM
2869 return ret;
2870
2871pi_faulted:
ae791a2d 2872 put_futex_key(&key);
c87e2837 2873
d0725992 2874 ret = fault_in_user_writeable(uaddr);
b5686363 2875 if (!ret)
c87e2837
IM
2876 goto retry;
2877
1da177e4
LT
2878 return ret;
2879}
2880
52400ba9
DH
2881/**
2882 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2883 * @hb: the hash_bucket futex_q was original enqueued on
2884 * @q: the futex_q woken while waiting to be requeued
2885 * @key2: the futex_key of the requeue target futex
2886 * @timeout: the timeout associated with the wait (NULL if none)
2887 *
2888 * Detect if the task was woken on the initial futex as opposed to the requeue
2889 * target futex. If so, determine if it was a timeout or a signal that caused
2890 * the wakeup and return the appropriate error code to the caller. Must be
2891 * called with the hb lock held.
2892 *
6c23cbbd
RD
2893 * Return:
2894 * 0 = no early wakeup detected;
2895 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
2896 */
2897static inline
2898int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2899 struct futex_q *q, union futex_key *key2,
2900 struct hrtimer_sleeper *timeout)
2901{
2902 int ret = 0;
2903
2904 /*
2905 * With the hb lock held, we avoid races while we process the wakeup.
2906 * We only need to hold hb (and not hb2) to ensure atomicity as the
2907 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2908 * It can't be requeued from uaddr2 to something else since we don't
2909 * support a PI aware source futex for requeue.
2910 */
2911 if (!match_futex(&q->key, key2)) {
2912 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2913 /*
2914 * We were woken prior to requeue by a timeout or a signal.
2915 * Unqueue the futex_q and determine which it was.
2916 */
2e12978a 2917 plist_del(&q->list, &hb->chain);
11d4616b 2918 hb_waiters_dec(hb);
52400ba9 2919
d58e6576 2920 /* Handle spurious wakeups gracefully */
11df6ddd 2921 ret = -EWOULDBLOCK;
52400ba9
DH
2922 if (timeout && !timeout->task)
2923 ret = -ETIMEDOUT;
d58e6576 2924 else if (signal_pending(current))
1c840c14 2925 ret = -ERESTARTNOINTR;
52400ba9
DH
2926 }
2927 return ret;
2928}
2929
2930/**
2931 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 2932 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 2933 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
ab51fbab 2934 * the same type, no requeueing from private to shared, etc.
52400ba9
DH
2935 * @val: the expected value of uaddr
2936 * @abs_time: absolute timeout
56ec1607 2937 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
2938 * @uaddr2: the pi futex we will take prior to returning to user-space
2939 *
2940 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
2941 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2942 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2943 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2944 * without one, the pi logic would not know which task to boost/deboost, if
2945 * there was a need to.
52400ba9
DH
2946 *
2947 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 2948 * via the following--
52400ba9 2949 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
2950 * 2) wakeup on uaddr2 after a requeue
2951 * 3) signal
2952 * 4) timeout
52400ba9 2953 *
cc6db4e6 2954 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
2955 *
2956 * If 2, we may then block on trying to take the rt_mutex and return via:
2957 * 5) successful lock
2958 * 6) signal
2959 * 7) timeout
2960 * 8) other lock acquisition failure
2961 *
cc6db4e6 2962 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
2963 *
2964 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2965 *
6c23cbbd
RD
2966 * Return:
2967 * 0 - On success;
52400ba9
DH
2968 * <0 - On error
2969 */
b41277dc 2970static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 2971 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 2972 u32 __user *uaddr2)
52400ba9
DH
2973{
2974 struct hrtimer_sleeper timeout, *to = NULL;
16ffa12d 2975 struct futex_pi_state *pi_state = NULL;
52400ba9 2976 struct rt_mutex_waiter rt_waiter;
52400ba9 2977 struct futex_hash_bucket *hb;
5bdb05f9
DH
2978 union futex_key key2 = FUTEX_KEY_INIT;
2979 struct futex_q q = futex_q_init;
52400ba9 2980 int res, ret;
52400ba9 2981
6f7b0a2a
DH
2982 if (uaddr == uaddr2)
2983 return -EINVAL;
2984
52400ba9
DH
2985 if (!bitset)
2986 return -EINVAL;
2987
2988 if (abs_time) {
2989 to = &timeout;
b41277dc
DH
2990 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2991 CLOCK_REALTIME : CLOCK_MONOTONIC,
2992 HRTIMER_MODE_ABS);
52400ba9
DH
2993 hrtimer_init_sleeper(to, current);
2994 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2995 current->timer_slack_ns);
2996 }
2997
2998 /*
2999 * The waiter is allocated on our stack, manipulated by the requeue
3000 * code while we sleep on uaddr.
3001 */
50809358 3002 rt_mutex_init_waiter(&rt_waiter);
52400ba9 3003
9ea71503 3004 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
52400ba9
DH
3005 if (unlikely(ret != 0))
3006 goto out;
3007
84bc4af5
DH
3008 q.bitset = bitset;
3009 q.rt_waiter = &rt_waiter;
3010 q.requeue_pi_key = &key2;
3011
7ada876a
DH
3012 /*
3013 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3014 * count.
3015 */
b41277dc 3016 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
3017 if (ret)
3018 goto out_key2;
52400ba9 3019
e9c243a5
TG
3020 /*
3021 * The check above which compares uaddrs is not sufficient for
3022 * shared futexes. We need to compare the keys:
3023 */
3024 if (match_futex(&q.key, &key2)) {
13c42c2f 3025 queue_unlock(hb);
e9c243a5
TG
3026 ret = -EINVAL;
3027 goto out_put_keys;
3028 }
3029
52400ba9 3030 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 3031 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
3032
3033 spin_lock(&hb->lock);
3034 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3035 spin_unlock(&hb->lock);
3036 if (ret)
3037 goto out_put_keys;
3038
3039 /*
3040 * In order for us to be here, we know our q.key == key2, and since
3041 * we took the hb->lock above, we also know that futex_requeue() has
3042 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
3043 * race with the atomic proxy lock acquisition by the requeue code. The
3044 * futex_requeue dropped our key1 reference and incremented our key2
3045 * reference count.
52400ba9
DH
3046 */
3047
3048 /* Check if the requeue code acquired the second futex for us. */
3049 if (!q.rt_waiter) {
3050 /*
3051 * Got the lock. We might not be the anticipated owner if we
3052 * did a lock-steal - fix up the PI-state in that case.
3053 */
3054 if (q.pi_state && (q.pi_state->owner != current)) {
3055 spin_lock(q.lock_ptr);
ae791a2d 3056 ret = fixup_pi_state_owner(uaddr2, &q, current);
16ffa12d
PZ
3057 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3058 pi_state = q.pi_state;
3059 get_pi_state(pi_state);
3060 }
fb75a428
TG
3061 /*
3062 * Drop the reference to the pi state which
3063 * the requeue_pi() code acquired for us.
3064 */
29e9ee5d 3065 put_pi_state(q.pi_state);
52400ba9
DH
3066 spin_unlock(q.lock_ptr);
3067 }
3068 } else {
c236c8e9
PZ
3069 struct rt_mutex *pi_mutex;
3070
52400ba9
DH
3071 /*
3072 * We have been woken up by futex_unlock_pi(), a timeout, or a
3073 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3074 * the pi_state.
3075 */
f27071cb 3076 WARN_ON(!q.pi_state);
52400ba9 3077 pi_mutex = &q.pi_state->pi_mutex;
38d589f2 3078 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
52400ba9
DH
3079
3080 spin_lock(q.lock_ptr);
38d589f2
PZ
3081 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3082 ret = 0;
3083
3084 debug_rt_mutex_free_waiter(&rt_waiter);
52400ba9
DH
3085 /*
3086 * Fixup the pi_state owner and possibly acquire the lock if we
3087 * haven't already.
3088 */
ae791a2d 3089 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
3090 /*
3091 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 3092 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
3093 */
3094 if (res)
3095 ret = (res < 0) ? res : 0;
3096
c236c8e9
PZ
3097 /*
3098 * If fixup_pi_state_owner() faulted and was unable to handle
3099 * the fault, unlock the rt_mutex and return the fault to
3100 * userspace.
3101 */
16ffa12d
PZ
3102 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3103 pi_state = q.pi_state;
3104 get_pi_state(pi_state);
3105 }
c236c8e9 3106
52400ba9
DH
3107 /* Unqueue and drop the lock. */
3108 unqueue_me_pi(&q);
3109 }
3110
16ffa12d
PZ
3111 if (pi_state) {
3112 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3113 put_pi_state(pi_state);
3114 }
3115
c236c8e9 3116 if (ret == -EINTR) {
52400ba9 3117 /*
cc6db4e6
DH
3118 * We've already been requeued, but cannot restart by calling
3119 * futex_lock_pi() directly. We could restart this syscall, but
3120 * it would detect that the user space "val" changed and return
3121 * -EWOULDBLOCK. Save the overhead of the restart and return
3122 * -EWOULDBLOCK directly.
52400ba9 3123 */
2070887f 3124 ret = -EWOULDBLOCK;
52400ba9
DH
3125 }
3126
3127out_put_keys:
ae791a2d 3128 put_futex_key(&q.key);
c8b15a70 3129out_key2:
ae791a2d 3130 put_futex_key(&key2);
52400ba9
DH
3131
3132out:
3133 if (to) {
3134 hrtimer_cancel(&to->timer);
3135 destroy_hrtimer_on_stack(&to->timer);
3136 }
3137 return ret;
3138}
3139
0771dfef
IM
3140/*
3141 * Support for robust futexes: the kernel cleans up held futexes at
3142 * thread exit time.
3143 *
3144 * Implementation: user-space maintains a per-thread list of locks it
3145 * is holding. Upon do_exit(), the kernel carefully walks this list,
3146 * and marks all locks that are owned by this thread with the
c87e2837 3147 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
3148 * always manipulated with the lock held, so the list is private and
3149 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3150 * field, to allow the kernel to clean up if the thread dies after
3151 * acquiring the lock, but just before it could have added itself to
3152 * the list. There can only be one such pending lock.
3153 */
3154
3155/**
d96ee56c
DH
3156 * sys_set_robust_list() - Set the robust-futex list head of a task
3157 * @head: pointer to the list-head
3158 * @len: length of the list-head, as userspace expects
0771dfef 3159 */
836f92ad
HC
3160SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3161 size_t, len)
0771dfef 3162{
a0c1e907
TG
3163 if (!futex_cmpxchg_enabled)
3164 return -ENOSYS;
0771dfef
IM
3165 /*
3166 * The kernel knows only one size for now:
3167 */
3168 if (unlikely(len != sizeof(*head)))
3169 return -EINVAL;
3170
3171 current->robust_list = head;
3172
3173 return 0;
3174}
3175
3176/**
d96ee56c
DH
3177 * sys_get_robust_list() - Get the robust-futex list head of a task
3178 * @pid: pid of the process [zero for current task]
3179 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3180 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 3181 */
836f92ad
HC
3182SYSCALL_DEFINE3(get_robust_list, int, pid,
3183 struct robust_list_head __user * __user *, head_ptr,
3184 size_t __user *, len_ptr)
0771dfef 3185{
ba46df98 3186 struct robust_list_head __user *head;
0771dfef 3187 unsigned long ret;
bdbb776f 3188 struct task_struct *p;
0771dfef 3189
a0c1e907
TG
3190 if (!futex_cmpxchg_enabled)
3191 return -ENOSYS;
3192
bdbb776f
KC
3193 rcu_read_lock();
3194
3195 ret = -ESRCH;
0771dfef 3196 if (!pid)
bdbb776f 3197 p = current;
0771dfef 3198 else {
228ebcbe 3199 p = find_task_by_vpid(pid);
0771dfef
IM
3200 if (!p)
3201 goto err_unlock;
0771dfef
IM
3202 }
3203
bdbb776f 3204 ret = -EPERM;
caaee623 3205 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
bdbb776f
KC
3206 goto err_unlock;
3207
3208 head = p->robust_list;
3209 rcu_read_unlock();
3210
0771dfef
IM
3211 if (put_user(sizeof(*head), len_ptr))
3212 return -EFAULT;
3213 return put_user(head, head_ptr);
3214
3215err_unlock:
aaa2a97e 3216 rcu_read_unlock();
0771dfef
IM
3217
3218 return ret;
3219}
3220
3221/*
3222 * Process a futex-list entry, check whether it's owned by the
3223 * dying task, and do notification if so:
3224 */
e3f2ddea 3225int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 3226{
7cfdaf38 3227 u32 uval, uninitialized_var(nval), mval;
0771dfef 3228
8f17d3a5
IM
3229retry:
3230 if (get_user(uval, uaddr))
0771dfef
IM
3231 return -1;
3232
b488893a 3233 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
3234 /*
3235 * Ok, this dying thread is truly holding a futex
3236 * of interest. Set the OWNER_DIED bit atomically
3237 * via cmpxchg, and if the value had FUTEX_WAITERS
3238 * set, wake up a waiter (if any). (We have to do a
3239 * futex_wake() even if OWNER_DIED is already set -
3240 * to handle the rare but possible case of recursive
3241 * thread-death.) The rest of the cleanup is done in
3242 * userspace.
3243 */
e3f2ddea 3244 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
6e0aa9f8
TG
3245 /*
3246 * We are not holding a lock here, but we want to have
3247 * the pagefault_disable/enable() protection because
3248 * we want to handle the fault gracefully. If the
3249 * access fails we try to fault in the futex with R/W
3250 * verification via get_user_pages. get_user() above
3251 * does not guarantee R/W access. If that fails we
3252 * give up and leave the futex locked.
3253 */
3254 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3255 if (fault_in_user_writeable(uaddr))
3256 return -1;
3257 goto retry;
3258 }
c87e2837 3259 if (nval != uval)
8f17d3a5 3260 goto retry;
0771dfef 3261
e3f2ddea
IM
3262 /*
3263 * Wake robust non-PI futexes here. The wakeup of
3264 * PI futexes happens in exit_pi_state():
3265 */
36cf3b5c 3266 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 3267 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
3268 }
3269 return 0;
3270}
3271
e3f2ddea
IM
3272/*
3273 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3274 */
3275static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 3276 struct robust_list __user * __user *head,
1dcc41bb 3277 unsigned int *pi)
e3f2ddea
IM
3278{
3279 unsigned long uentry;
3280
ba46df98 3281 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
3282 return -EFAULT;
3283
ba46df98 3284 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
3285 *pi = uentry & 1;
3286
3287 return 0;
3288}
3289
0771dfef
IM
3290/*
3291 * Walk curr->robust_list (very carefully, it's a userspace list!)
3292 * and mark any locks found there dead, and notify any waiters.
3293 *
3294 * We silently return on any sign of list-walking problem.
3295 */
3296void exit_robust_list(struct task_struct *curr)
3297{
3298 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 3299 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
3300 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3301 unsigned int uninitialized_var(next_pi);
0771dfef 3302 unsigned long futex_offset;
9f96cb1e 3303 int rc;
0771dfef 3304
a0c1e907
TG
3305 if (!futex_cmpxchg_enabled)
3306 return;
3307
0771dfef
IM
3308 /*
3309 * Fetch the list head (which was registered earlier, via
3310 * sys_set_robust_list()):
3311 */
e3f2ddea 3312 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
3313 return;
3314 /*
3315 * Fetch the relative futex offset:
3316 */
3317 if (get_user(futex_offset, &head->futex_offset))
3318 return;
3319 /*
3320 * Fetch any possibly pending lock-add first, and handle it
3321 * if it exists:
3322 */
e3f2ddea 3323 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 3324 return;
e3f2ddea 3325
9f96cb1e 3326 next_entry = NULL; /* avoid warning with gcc */
0771dfef 3327 while (entry != &head->list) {
9f96cb1e
MS
3328 /*
3329 * Fetch the next entry in the list before calling
3330 * handle_futex_death:
3331 */
3332 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
3333 /*
3334 * A pending lock might already be on the list, so
c87e2837 3335 * don't process it twice:
0771dfef
IM
3336 */
3337 if (entry != pending)
ba46df98 3338 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 3339 curr, pi))
0771dfef 3340 return;
9f96cb1e 3341 if (rc)
0771dfef 3342 return;
9f96cb1e
MS
3343 entry = next_entry;
3344 pi = next_pi;
0771dfef
IM
3345 /*
3346 * Avoid excessively long or circular lists:
3347 */
3348 if (!--limit)
3349 break;
3350
3351 cond_resched();
3352 }
9f96cb1e
MS
3353
3354 if (pending)
3355 handle_futex_death((void __user *)pending + futex_offset,
3356 curr, pip);
0771dfef
IM
3357}
3358
c19384b5 3359long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 3360 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 3361{
81b40539 3362 int cmd = op & FUTEX_CMD_MASK;
b41277dc 3363 unsigned int flags = 0;
34f01cc1
ED
3364
3365 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 3366 flags |= FLAGS_SHARED;
1da177e4 3367
b41277dc
DH
3368 if (op & FUTEX_CLOCK_REALTIME) {
3369 flags |= FLAGS_CLOCKRT;
337f1304
DH
3370 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3371 cmd != FUTEX_WAIT_REQUEUE_PI)
b41277dc
DH
3372 return -ENOSYS;
3373 }
1da177e4 3374
59263b51
TG
3375 switch (cmd) {
3376 case FUTEX_LOCK_PI:
3377 case FUTEX_UNLOCK_PI:
3378 case FUTEX_TRYLOCK_PI:
3379 case FUTEX_WAIT_REQUEUE_PI:
3380 case FUTEX_CMP_REQUEUE_PI:
3381 if (!futex_cmpxchg_enabled)
3382 return -ENOSYS;
3383 }
3384
34f01cc1 3385 switch (cmd) {
1da177e4 3386 case FUTEX_WAIT:
cd689985
TG
3387 val3 = FUTEX_BITSET_MATCH_ANY;
3388 case FUTEX_WAIT_BITSET:
81b40539 3389 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 3390 case FUTEX_WAKE:
cd689985
TG
3391 val3 = FUTEX_BITSET_MATCH_ANY;
3392 case FUTEX_WAKE_BITSET:
81b40539 3393 return futex_wake(uaddr, flags, val, val3);
1da177e4 3394 case FUTEX_REQUEUE:
81b40539 3395 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 3396 case FUTEX_CMP_REQUEUE:
81b40539 3397 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 3398 case FUTEX_WAKE_OP:
81b40539 3399 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 3400 case FUTEX_LOCK_PI:
996636dd 3401 return futex_lock_pi(uaddr, flags, timeout, 0);
c87e2837 3402 case FUTEX_UNLOCK_PI:
81b40539 3403 return futex_unlock_pi(uaddr, flags);
c87e2837 3404 case FUTEX_TRYLOCK_PI:
996636dd 3405 return futex_lock_pi(uaddr, flags, NULL, 1);
52400ba9
DH
3406 case FUTEX_WAIT_REQUEUE_PI:
3407 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
3408 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3409 uaddr2);
52400ba9 3410 case FUTEX_CMP_REQUEUE_PI:
81b40539 3411 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 3412 }
81b40539 3413 return -ENOSYS;
1da177e4
LT
3414}
3415
3416
17da2bd9
HC
3417SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3418 struct timespec __user *, utime, u32 __user *, uaddr2,
3419 u32, val3)
1da177e4 3420{
c19384b5
PP
3421 struct timespec ts;
3422 ktime_t t, *tp = NULL;
e2970f2f 3423 u32 val2 = 0;
34f01cc1 3424 int cmd = op & FUTEX_CMD_MASK;
1da177e4 3425
cd689985 3426 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
3427 cmd == FUTEX_WAIT_BITSET ||
3428 cmd == FUTEX_WAIT_REQUEUE_PI)) {
ab51fbab
DB
3429 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3430 return -EFAULT;
c19384b5 3431 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 3432 return -EFAULT;
c19384b5 3433 if (!timespec_valid(&ts))
9741ef96 3434 return -EINVAL;
c19384b5
PP
3435
3436 t = timespec_to_ktime(ts);
34f01cc1 3437 if (cmd == FUTEX_WAIT)
5a7780e7 3438 t = ktime_add_safe(ktime_get(), t);
c19384b5 3439 tp = &t;
1da177e4
LT
3440 }
3441 /*
52400ba9 3442 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 3443 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 3444 */
f54f0986 3445 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 3446 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 3447 val2 = (u32) (unsigned long) utime;
1da177e4 3448
c19384b5 3449 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
3450}
3451
03b8c7b6 3452static void __init futex_detect_cmpxchg(void)
1da177e4 3453{
03b8c7b6 3454#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 3455 u32 curval;
03b8c7b6
HC
3456
3457 /*
3458 * This will fail and we want it. Some arch implementations do
3459 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3460 * functionality. We want to know that before we call in any
3461 * of the complex code paths. Also we want to prevent
3462 * registration of robust lists in that case. NULL is
3463 * guaranteed to fault and we get -EFAULT on functional
3464 * implementation, the non-functional ones will return
3465 * -ENOSYS.
3466 */
3467 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3468 futex_cmpxchg_enabled = 1;
3469#endif
3470}
3471
3472static int __init futex_init(void)
3473{
63b1a816 3474 unsigned int futex_shift;
a52b89eb
DB
3475 unsigned long i;
3476
3477#if CONFIG_BASE_SMALL
3478 futex_hashsize = 16;
3479#else
3480 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3481#endif
3482
3483 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3484 futex_hashsize, 0,
3485 futex_hashsize < 256 ? HASH_SMALL : 0,
63b1a816
HC
3486 &futex_shift, NULL,
3487 futex_hashsize, futex_hashsize);
3488 futex_hashsize = 1UL << futex_shift;
03b8c7b6
HC
3489
3490 futex_detect_cmpxchg();
a0c1e907 3491
a52b89eb 3492 for (i = 0; i < futex_hashsize; i++) {
11d4616b 3493 atomic_set(&futex_queues[i].waiters, 0);
732375c6 3494 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
3495 spin_lock_init(&futex_queues[i].lock);
3496 }
3497
1da177e4
LT
3498 return 0;
3499}
25f71d1c 3500core_initcall(futex_init);