[PATCH] rtmutex: Propagate priority settings into PI lock chains
[linux-2.6-block.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
1da177e4
LT
19 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
20 * enough at me, Linus for the original (flawed) idea, Matthew
21 * Kirkwood for proof-of-concept implementation.
22 *
23 * "The futexes are also cursed."
24 * "But they come in a choice of three flavours!"
25 *
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License as published by
28 * the Free Software Foundation; either version 2 of the License, or
29 * (at your option) any later version.
30 *
31 * This program is distributed in the hope that it will be useful,
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
34 * GNU General Public License for more details.
35 *
36 * You should have received a copy of the GNU General Public License
37 * along with this program; if not, write to the Free Software
38 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
39 */
40#include <linux/slab.h>
41#include <linux/poll.h>
42#include <linux/fs.h>
43#include <linux/file.h>
44#include <linux/jhash.h>
45#include <linux/init.h>
46#include <linux/futex.h>
47#include <linux/mount.h>
48#include <linux/pagemap.h>
49#include <linux/syscalls.h>
7ed20e1a 50#include <linux/signal.h>
4732efbe 51#include <asm/futex.h>
1da177e4 52
c87e2837
IM
53#include "rtmutex_common.h"
54
1da177e4
LT
55#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
56
57/*
58 * Futexes are matched on equal values of this key.
59 * The key type depends on whether it's a shared or private mapping.
60 * Don't rearrange members without looking at hash_futex().
61 *
62 * offset is aligned to a multiple of sizeof(u32) (== 4) by definition.
63 * We set bit 0 to indicate if it's an inode-based key.
64 */
65union futex_key {
66 struct {
67 unsigned long pgoff;
68 struct inode *inode;
69 int offset;
70 } shared;
71 struct {
e2970f2f 72 unsigned long address;
1da177e4
LT
73 struct mm_struct *mm;
74 int offset;
75 } private;
76 struct {
77 unsigned long word;
78 void *ptr;
79 int offset;
80 } both;
81};
82
c87e2837
IM
83/*
84 * Priority Inheritance state:
85 */
86struct futex_pi_state {
87 /*
88 * list of 'owned' pi_state instances - these have to be
89 * cleaned up in do_exit() if the task exits prematurely:
90 */
91 struct list_head list;
92
93 /*
94 * The PI object:
95 */
96 struct rt_mutex pi_mutex;
97
98 struct task_struct *owner;
99 atomic_t refcount;
100
101 union futex_key key;
102};
103
1da177e4
LT
104/*
105 * We use this hashed waitqueue instead of a normal wait_queue_t, so
106 * we can wake only the relevant ones (hashed queues may be shared).
107 *
108 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
109 * It is considered woken when list_empty(&q->list) || q->lock_ptr == 0.
110 * The order of wakup is always to make the first condition true, then
111 * wake up q->waiters, then make the second condition true.
112 */
113struct futex_q {
114 struct list_head list;
115 wait_queue_head_t waiters;
116
e2970f2f 117 /* Which hash list lock to use: */
1da177e4
LT
118 spinlock_t *lock_ptr;
119
e2970f2f 120 /* Key which the futex is hashed on: */
1da177e4
LT
121 union futex_key key;
122
e2970f2f 123 /* For fd, sigio sent using these: */
1da177e4
LT
124 int fd;
125 struct file *filp;
c87e2837
IM
126
127 /* Optional priority inheritance state: */
128 struct futex_pi_state *pi_state;
129 struct task_struct *task;
1da177e4
LT
130};
131
132/*
133 * Split the global futex_lock into every hash list lock.
134 */
135struct futex_hash_bucket {
136 spinlock_t lock;
137 struct list_head chain;
138};
139
140static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
141
142/* Futex-fs vfsmount entry: */
143static struct vfsmount *futex_mnt;
144
145/*
146 * We hash on the keys returned from get_futex_key (see below).
147 */
148static struct futex_hash_bucket *hash_futex(union futex_key *key)
149{
150 u32 hash = jhash2((u32*)&key->both.word,
151 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
152 key->both.offset);
153 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
154}
155
156/*
157 * Return 1 if two futex_keys are equal, 0 otherwise.
158 */
159static inline int match_futex(union futex_key *key1, union futex_key *key2)
160{
161 return (key1->both.word == key2->both.word
162 && key1->both.ptr == key2->both.ptr
163 && key1->both.offset == key2->both.offset);
164}
165
166/*
167 * Get parameters which are the keys for a futex.
168 *
169 * For shared mappings, it's (page->index, vma->vm_file->f_dentry->d_inode,
170 * offset_within_page). For private mappings, it's (uaddr, current->mm).
171 * We can usually work out the index without swapping in the page.
172 *
173 * Returns: 0, or negative error code.
174 * The key words are stored in *key on success.
175 *
176 * Should be called with &current->mm->mmap_sem but NOT any spinlocks.
177 */
e2970f2f 178static int get_futex_key(u32 __user *uaddr, union futex_key *key)
1da177e4 179{
e2970f2f 180 unsigned long address = (unsigned long)uaddr;
1da177e4
LT
181 struct mm_struct *mm = current->mm;
182 struct vm_area_struct *vma;
183 struct page *page;
184 int err;
185
186 /*
187 * The futex address must be "naturally" aligned.
188 */
e2970f2f 189 key->both.offset = address % PAGE_SIZE;
1da177e4
LT
190 if (unlikely((key->both.offset % sizeof(u32)) != 0))
191 return -EINVAL;
e2970f2f 192 address -= key->both.offset;
1da177e4
LT
193
194 /*
195 * The futex is hashed differently depending on whether
196 * it's in a shared or private mapping. So check vma first.
197 */
e2970f2f 198 vma = find_extend_vma(mm, address);
1da177e4
LT
199 if (unlikely(!vma))
200 return -EFAULT;
201
202 /*
203 * Permissions.
204 */
205 if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
206 return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;
207
208 /*
209 * Private mappings are handled in a simple way.
210 *
211 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
212 * it's a read-only handle, it's expected that futexes attach to
213 * the object not the particular process. Therefore we use
214 * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
215 * mappings of _writable_ handles.
216 */
217 if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
218 key->private.mm = mm;
e2970f2f 219 key->private.address = address;
1da177e4
LT
220 return 0;
221 }
222
223 /*
224 * Linear file mappings are also simple.
225 */
226 key->shared.inode = vma->vm_file->f_dentry->d_inode;
227 key->both.offset++; /* Bit 0 of offset indicates inode-based key. */
228 if (likely(!(vma->vm_flags & VM_NONLINEAR))) {
e2970f2f 229 key->shared.pgoff = (((address - vma->vm_start) >> PAGE_SHIFT)
1da177e4
LT
230 + vma->vm_pgoff);
231 return 0;
232 }
233
234 /*
235 * We could walk the page table to read the non-linear
236 * pte, and get the page index without fetching the page
237 * from swap. But that's a lot of code to duplicate here
238 * for a rare case, so we simply fetch the page.
239 */
e2970f2f 240 err = get_user_pages(current, mm, address, 1, 0, 0, &page, NULL);
1da177e4
LT
241 if (err >= 0) {
242 key->shared.pgoff =
243 page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
244 put_page(page);
245 return 0;
246 }
247 return err;
248}
249
250/*
251 * Take a reference to the resource addressed by a key.
252 * Can be called while holding spinlocks.
253 *
254 * NOTE: mmap_sem MUST be held between get_futex_key() and calling this
255 * function, if it is called at all. mmap_sem keeps key->shared.inode valid.
256 */
257static inline void get_key_refs(union futex_key *key)
258{
259 if (key->both.ptr != 0) {
260 if (key->both.offset & 1)
261 atomic_inc(&key->shared.inode->i_count);
262 else
263 atomic_inc(&key->private.mm->mm_count);
264 }
265}
266
267/*
268 * Drop a reference to the resource addressed by a key.
269 * The hash bucket spinlock must not be held.
270 */
271static void drop_key_refs(union futex_key *key)
272{
273 if (key->both.ptr != 0) {
274 if (key->both.offset & 1)
275 iput(key->shared.inode);
276 else
277 mmdrop(key->private.mm);
278 }
279}
280
e2970f2f 281static inline int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
282{
283 int ret;
284
285 inc_preempt_count();
e2970f2f 286 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
1da177e4
LT
287 dec_preempt_count();
288
289 return ret ? -EFAULT : 0;
290}
291
c87e2837
IM
292/*
293 * Fault handling. Called with current->mm->mmap_sem held.
294 */
295static int futex_handle_fault(unsigned long address, int attempt)
296{
297 struct vm_area_struct * vma;
298 struct mm_struct *mm = current->mm;
299
300 if (attempt >= 2 || !(vma = find_vma(mm, address)) ||
301 vma->vm_start > address || !(vma->vm_flags & VM_WRITE))
302 return -EFAULT;
303
304 switch (handle_mm_fault(mm, vma, address, 1)) {
305 case VM_FAULT_MINOR:
306 current->min_flt++;
307 break;
308 case VM_FAULT_MAJOR:
309 current->maj_flt++;
310 break;
311 default:
312 return -EFAULT;
313 }
314 return 0;
315}
316
317/*
318 * PI code:
319 */
320static int refill_pi_state_cache(void)
321{
322 struct futex_pi_state *pi_state;
323
324 if (likely(current->pi_state_cache))
325 return 0;
326
327 pi_state = kmalloc(sizeof(*pi_state), GFP_KERNEL);
328
329 if (!pi_state)
330 return -ENOMEM;
331
332 memset(pi_state, 0, sizeof(*pi_state));
333 INIT_LIST_HEAD(&pi_state->list);
334 /* pi_mutex gets initialized later */
335 pi_state->owner = NULL;
336 atomic_set(&pi_state->refcount, 1);
337
338 current->pi_state_cache = pi_state;
339
340 return 0;
341}
342
343static struct futex_pi_state * alloc_pi_state(void)
344{
345 struct futex_pi_state *pi_state = current->pi_state_cache;
346
347 WARN_ON(!pi_state);
348 current->pi_state_cache = NULL;
349
350 return pi_state;
351}
352
353static void free_pi_state(struct futex_pi_state *pi_state)
354{
355 if (!atomic_dec_and_test(&pi_state->refcount))
356 return;
357
358 /*
359 * If pi_state->owner is NULL, the owner is most probably dying
360 * and has cleaned up the pi_state already
361 */
362 if (pi_state->owner) {
363 spin_lock_irq(&pi_state->owner->pi_lock);
364 list_del_init(&pi_state->list);
365 spin_unlock_irq(&pi_state->owner->pi_lock);
366
367 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
368 }
369
370 if (current->pi_state_cache)
371 kfree(pi_state);
372 else {
373 /*
374 * pi_state->list is already empty.
375 * clear pi_state->owner.
376 * refcount is at 0 - put it back to 1.
377 */
378 pi_state->owner = NULL;
379 atomic_set(&pi_state->refcount, 1);
380 current->pi_state_cache = pi_state;
381 }
382}
383
384/*
385 * Look up the task based on what TID userspace gave us.
386 * We dont trust it.
387 */
388static struct task_struct * futex_find_get_task(pid_t pid)
389{
390 struct task_struct *p;
391
392 read_lock(&tasklist_lock);
393 p = find_task_by_pid(pid);
394 if (!p)
395 goto out_unlock;
396 if ((current->euid != p->euid) && (current->euid != p->uid)) {
397 p = NULL;
398 goto out_unlock;
399 }
400 if (p->state == EXIT_ZOMBIE || p->exit_state == EXIT_ZOMBIE) {
401 p = NULL;
402 goto out_unlock;
403 }
404 get_task_struct(p);
405out_unlock:
406 read_unlock(&tasklist_lock);
407
408 return p;
409}
410
411/*
412 * This task is holding PI mutexes at exit time => bad.
413 * Kernel cleans up PI-state, but userspace is likely hosed.
414 * (Robust-futex cleanup is separate and might save the day for userspace.)
415 */
416void exit_pi_state_list(struct task_struct *curr)
417{
418 struct futex_hash_bucket *hb;
419 struct list_head *next, *head = &curr->pi_state_list;
420 struct futex_pi_state *pi_state;
421 union futex_key key;
422
423 /*
424 * We are a ZOMBIE and nobody can enqueue itself on
425 * pi_state_list anymore, but we have to be careful
426 * versus waiters unqueueing themselfs
427 */
428 spin_lock_irq(&curr->pi_lock);
429 while (!list_empty(head)) {
430
431 next = head->next;
432 pi_state = list_entry(next, struct futex_pi_state, list);
433 key = pi_state->key;
434 spin_unlock_irq(&curr->pi_lock);
435
436 hb = hash_futex(&key);
437 spin_lock(&hb->lock);
438
439 spin_lock_irq(&curr->pi_lock);
440 if (head->next != next) {
441 spin_unlock(&hb->lock);
442 continue;
443 }
444
445 list_del_init(&pi_state->list);
446
447 WARN_ON(pi_state->owner != curr);
448
449 pi_state->owner = NULL;
450 spin_unlock_irq(&curr->pi_lock);
451
452 rt_mutex_unlock(&pi_state->pi_mutex);
453
454 spin_unlock(&hb->lock);
455
456 spin_lock_irq(&curr->pi_lock);
457 }
458 spin_unlock_irq(&curr->pi_lock);
459}
460
461static int
462lookup_pi_state(u32 uval, struct futex_hash_bucket *hb, struct futex_q *me)
463{
464 struct futex_pi_state *pi_state = NULL;
465 struct futex_q *this, *next;
466 struct list_head *head;
467 struct task_struct *p;
468 pid_t pid;
469
470 head = &hb->chain;
471
472 list_for_each_entry_safe(this, next, head, list) {
473 if (match_futex (&this->key, &me->key)) {
474 /*
475 * Another waiter already exists - bump up
476 * the refcount and return its pi_state:
477 */
478 pi_state = this->pi_state;
479 atomic_inc(&pi_state->refcount);
480 me->pi_state = pi_state;
481
482 return 0;
483 }
484 }
485
486 /*
487 * We are the first waiter - try to look up the real owner and
488 * attach the new pi_state to it:
489 */
490 pid = uval & FUTEX_TID_MASK;
491 p = futex_find_get_task(pid);
492 if (!p)
493 return -ESRCH;
494
495 pi_state = alloc_pi_state();
496
497 /*
498 * Initialize the pi_mutex in locked state and make 'p'
499 * the owner of it:
500 */
501 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
502
503 /* Store the key for possible exit cleanups: */
504 pi_state->key = me->key;
505
506 spin_lock_irq(&p->pi_lock);
507 list_add(&pi_state->list, &p->pi_state_list);
508 pi_state->owner = p;
509 spin_unlock_irq(&p->pi_lock);
510
511 put_task_struct(p);
512
513 me->pi_state = pi_state;
514
515 return 0;
516}
517
1da177e4
LT
518/*
519 * The hash bucket lock must be held when this is called.
520 * Afterwards, the futex_q must not be accessed.
521 */
522static void wake_futex(struct futex_q *q)
523{
524 list_del_init(&q->list);
525 if (q->filp)
526 send_sigio(&q->filp->f_owner, q->fd, POLL_IN);
527 /*
528 * The lock in wake_up_all() is a crucial memory barrier after the
529 * list_del_init() and also before assigning to q->lock_ptr.
530 */
531 wake_up_all(&q->waiters);
532 /*
533 * The waiting task can free the futex_q as soon as this is written,
534 * without taking any locks. This must come last.
8e31108b
AM
535 *
536 * A memory barrier is required here to prevent the following store
537 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
538 * at the end of wake_up_all() does not prevent this store from
539 * moving.
1da177e4 540 */
8e31108b 541 wmb();
1da177e4
LT
542 q->lock_ptr = NULL;
543}
544
c87e2837
IM
545static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
546{
547 struct task_struct *new_owner;
548 struct futex_pi_state *pi_state = this->pi_state;
549 u32 curval, newval;
550
551 if (!pi_state)
552 return -EINVAL;
553
554 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
555
556 /*
557 * This happens when we have stolen the lock and the original
558 * pending owner did not enqueue itself back on the rt_mutex.
559 * Thats not a tragedy. We know that way, that a lock waiter
560 * is on the fly. We make the futex_q waiter the pending owner.
561 */
562 if (!new_owner)
563 new_owner = this->task;
564
565 /*
566 * We pass it to the next owner. (The WAITERS bit is always
567 * kept enabled while there is PI state around. We must also
568 * preserve the owner died bit.)
569 */
570 newval = (uval & FUTEX_OWNER_DIED) | FUTEX_WAITERS | new_owner->pid;
571
572 inc_preempt_count();
573 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
574 dec_preempt_count();
575
576 if (curval == -EFAULT)
577 return -EFAULT;
578 if (curval != uval)
579 return -EINVAL;
580
581 list_del_init(&pi_state->owner->pi_state_list);
582 list_add(&pi_state->list, &new_owner->pi_state_list);
583 pi_state->owner = new_owner;
584 rt_mutex_unlock(&pi_state->pi_mutex);
585
586 return 0;
587}
588
589static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
590{
591 u32 oldval;
592
593 /*
594 * There is no waiter, so we unlock the futex. The owner died
595 * bit has not to be preserved here. We are the owner:
596 */
597 inc_preempt_count();
598 oldval = futex_atomic_cmpxchg_inatomic(uaddr, uval, 0);
599 dec_preempt_count();
600
601 if (oldval == -EFAULT)
602 return oldval;
603 if (oldval != uval)
604 return -EAGAIN;
605
606 return 0;
607}
608
1da177e4
LT
609/*
610 * Wake up all waiters hashed on the physical page that is mapped
611 * to this virtual address:
612 */
e2970f2f 613static int futex_wake(u32 __user *uaddr, int nr_wake)
1da177e4 614{
e2970f2f 615 struct futex_hash_bucket *hb;
1da177e4 616 struct futex_q *this, *next;
e2970f2f
IM
617 struct list_head *head;
618 union futex_key key;
1da177e4
LT
619 int ret;
620
621 down_read(&current->mm->mmap_sem);
622
623 ret = get_futex_key(uaddr, &key);
624 if (unlikely(ret != 0))
625 goto out;
626
e2970f2f
IM
627 hb = hash_futex(&key);
628 spin_lock(&hb->lock);
629 head = &hb->chain;
1da177e4
LT
630
631 list_for_each_entry_safe(this, next, head, list) {
632 if (match_futex (&this->key, &key)) {
c87e2837
IM
633 if (this->pi_state)
634 return -EINVAL;
1da177e4
LT
635 wake_futex(this);
636 if (++ret >= nr_wake)
637 break;
638 }
639 }
640
e2970f2f 641 spin_unlock(&hb->lock);
1da177e4
LT
642out:
643 up_read(&current->mm->mmap_sem);
644 return ret;
645}
646
4732efbe
JJ
647/*
648 * Wake up all waiters hashed on the physical page that is mapped
649 * to this virtual address:
650 */
e2970f2f
IM
651static int
652futex_wake_op(u32 __user *uaddr1, u32 __user *uaddr2,
653 int nr_wake, int nr_wake2, int op)
4732efbe
JJ
654{
655 union futex_key key1, key2;
e2970f2f 656 struct futex_hash_bucket *hb1, *hb2;
4732efbe
JJ
657 struct list_head *head;
658 struct futex_q *this, *next;
659 int ret, op_ret, attempt = 0;
660
661retryfull:
662 down_read(&current->mm->mmap_sem);
663
664 ret = get_futex_key(uaddr1, &key1);
665 if (unlikely(ret != 0))
666 goto out;
667 ret = get_futex_key(uaddr2, &key2);
668 if (unlikely(ret != 0))
669 goto out;
670
e2970f2f
IM
671 hb1 = hash_futex(&key1);
672 hb2 = hash_futex(&key2);
4732efbe
JJ
673
674retry:
e2970f2f
IM
675 if (hb1 < hb2)
676 spin_lock(&hb1->lock);
677 spin_lock(&hb2->lock);
678 if (hb1 > hb2)
679 spin_lock(&hb1->lock);
4732efbe 680
e2970f2f 681 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 682 if (unlikely(op_ret < 0)) {
e2970f2f 683 u32 dummy;
4732efbe 684
e2970f2f
IM
685 spin_unlock(&hb1->lock);
686 if (hb1 != hb2)
687 spin_unlock(&hb2->lock);
4732efbe 688
7ee1dd3f 689#ifndef CONFIG_MMU
e2970f2f
IM
690 /*
691 * we don't get EFAULT from MMU faults if we don't have an MMU,
692 * but we might get them from range checking
693 */
7ee1dd3f
DH
694 ret = op_ret;
695 goto out;
696#endif
697
796f8d9b
DG
698 if (unlikely(op_ret != -EFAULT)) {
699 ret = op_ret;
700 goto out;
701 }
702
e2970f2f
IM
703 /*
704 * futex_atomic_op_inuser needs to both read and write
4732efbe
JJ
705 * *(int __user *)uaddr2, but we can't modify it
706 * non-atomically. Therefore, if get_user below is not
707 * enough, we need to handle the fault ourselves, while
e2970f2f
IM
708 * still holding the mmap_sem.
709 */
4732efbe 710 if (attempt++) {
c87e2837
IM
711 if (futex_handle_fault((unsigned long)uaddr2,
712 attempt))
4732efbe 713 goto out;
4732efbe
JJ
714 goto retry;
715 }
716
e2970f2f
IM
717 /*
718 * If we would have faulted, release mmap_sem,
719 * fault it in and start all over again.
720 */
4732efbe
JJ
721 up_read(&current->mm->mmap_sem);
722
e2970f2f 723 ret = get_user(dummy, uaddr2);
4732efbe
JJ
724 if (ret)
725 return ret;
726
727 goto retryfull;
728 }
729
e2970f2f 730 head = &hb1->chain;
4732efbe
JJ
731
732 list_for_each_entry_safe(this, next, head, list) {
733 if (match_futex (&this->key, &key1)) {
734 wake_futex(this);
735 if (++ret >= nr_wake)
736 break;
737 }
738 }
739
740 if (op_ret > 0) {
e2970f2f 741 head = &hb2->chain;
4732efbe
JJ
742
743 op_ret = 0;
744 list_for_each_entry_safe(this, next, head, list) {
745 if (match_futex (&this->key, &key2)) {
746 wake_futex(this);
747 if (++op_ret >= nr_wake2)
748 break;
749 }
750 }
751 ret += op_ret;
752 }
753
e2970f2f
IM
754 spin_unlock(&hb1->lock);
755 if (hb1 != hb2)
756 spin_unlock(&hb2->lock);
4732efbe
JJ
757out:
758 up_read(&current->mm->mmap_sem);
759 return ret;
760}
761
1da177e4
LT
762/*
763 * Requeue all waiters hashed on one physical page to another
764 * physical page.
765 */
e2970f2f
IM
766static int futex_requeue(u32 __user *uaddr1, u32 __user *uaddr2,
767 int nr_wake, int nr_requeue, u32 *cmpval)
1da177e4
LT
768{
769 union futex_key key1, key2;
e2970f2f 770 struct futex_hash_bucket *hb1, *hb2;
1da177e4
LT
771 struct list_head *head1;
772 struct futex_q *this, *next;
773 int ret, drop_count = 0;
774
775 retry:
776 down_read(&current->mm->mmap_sem);
777
778 ret = get_futex_key(uaddr1, &key1);
779 if (unlikely(ret != 0))
780 goto out;
781 ret = get_futex_key(uaddr2, &key2);
782 if (unlikely(ret != 0))
783 goto out;
784
e2970f2f
IM
785 hb1 = hash_futex(&key1);
786 hb2 = hash_futex(&key2);
1da177e4 787
e2970f2f
IM
788 if (hb1 < hb2)
789 spin_lock(&hb1->lock);
790 spin_lock(&hb2->lock);
791 if (hb1 > hb2)
792 spin_lock(&hb1->lock);
1da177e4 793
e2970f2f
IM
794 if (likely(cmpval != NULL)) {
795 u32 curval;
1da177e4 796
e2970f2f 797 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
798
799 if (unlikely(ret)) {
e2970f2f
IM
800 spin_unlock(&hb1->lock);
801 if (hb1 != hb2)
802 spin_unlock(&hb2->lock);
1da177e4 803
e2970f2f
IM
804 /*
805 * If we would have faulted, release mmap_sem, fault
1da177e4
LT
806 * it in and start all over again.
807 */
808 up_read(&current->mm->mmap_sem);
809
e2970f2f 810 ret = get_user(curval, uaddr1);
1da177e4
LT
811
812 if (!ret)
813 goto retry;
814
815 return ret;
816 }
e2970f2f 817 if (curval != *cmpval) {
1da177e4
LT
818 ret = -EAGAIN;
819 goto out_unlock;
820 }
821 }
822
e2970f2f 823 head1 = &hb1->chain;
1da177e4
LT
824 list_for_each_entry_safe(this, next, head1, list) {
825 if (!match_futex (&this->key, &key1))
826 continue;
827 if (++ret <= nr_wake) {
828 wake_futex(this);
829 } else {
e2970f2f
IM
830 list_move_tail(&this->list, &hb2->chain);
831 this->lock_ptr = &hb2->lock;
1da177e4
LT
832 this->key = key2;
833 get_key_refs(&key2);
834 drop_count++;
835
836 if (ret - nr_wake >= nr_requeue)
837 break;
e2970f2f
IM
838 /* Make sure to stop if key1 == key2: */
839 if (head1 == &hb2->chain && head1 != &next->list)
1da177e4
LT
840 head1 = &this->list;
841 }
842 }
843
844out_unlock:
e2970f2f
IM
845 spin_unlock(&hb1->lock);
846 if (hb1 != hb2)
847 spin_unlock(&hb2->lock);
1da177e4
LT
848
849 /* drop_key_refs() must be called outside the spinlocks. */
850 while (--drop_count >= 0)
851 drop_key_refs(&key1);
852
853out:
854 up_read(&current->mm->mmap_sem);
855 return ret;
856}
857
858/* The key must be already stored in q->key. */
859static inline struct futex_hash_bucket *
860queue_lock(struct futex_q *q, int fd, struct file *filp)
861{
e2970f2f 862 struct futex_hash_bucket *hb;
1da177e4
LT
863
864 q->fd = fd;
865 q->filp = filp;
866
867 init_waitqueue_head(&q->waiters);
868
869 get_key_refs(&q->key);
e2970f2f
IM
870 hb = hash_futex(&q->key);
871 q->lock_ptr = &hb->lock;
1da177e4 872
e2970f2f
IM
873 spin_lock(&hb->lock);
874 return hb;
1da177e4
LT
875}
876
e2970f2f 877static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 878{
e2970f2f 879 list_add_tail(&q->list, &hb->chain);
c87e2837 880 q->task = current;
e2970f2f 881 spin_unlock(&hb->lock);
1da177e4
LT
882}
883
884static inline void
e2970f2f 885queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 886{
e2970f2f 887 spin_unlock(&hb->lock);
1da177e4
LT
888 drop_key_refs(&q->key);
889}
890
891/*
892 * queue_me and unqueue_me must be called as a pair, each
893 * exactly once. They are called with the hashed spinlock held.
894 */
895
896/* The key must be already stored in q->key. */
897static void queue_me(struct futex_q *q, int fd, struct file *filp)
898{
e2970f2f
IM
899 struct futex_hash_bucket *hb;
900
901 hb = queue_lock(q, fd, filp);
902 __queue_me(q, hb);
1da177e4
LT
903}
904
905/* Return 1 if we were still queued (ie. 0 means we were woken) */
906static int unqueue_me(struct futex_q *q)
907{
1da177e4 908 spinlock_t *lock_ptr;
e2970f2f 909 int ret = 0;
1da177e4
LT
910
911 /* In the common case we don't take the spinlock, which is nice. */
912 retry:
913 lock_ptr = q->lock_ptr;
914 if (lock_ptr != 0) {
915 spin_lock(lock_ptr);
916 /*
917 * q->lock_ptr can change between reading it and
918 * spin_lock(), causing us to take the wrong lock. This
919 * corrects the race condition.
920 *
921 * Reasoning goes like this: if we have the wrong lock,
922 * q->lock_ptr must have changed (maybe several times)
923 * between reading it and the spin_lock(). It can
924 * change again after the spin_lock() but only if it was
925 * already changed before the spin_lock(). It cannot,
926 * however, change back to the original value. Therefore
927 * we can detect whether we acquired the correct lock.
928 */
929 if (unlikely(lock_ptr != q->lock_ptr)) {
930 spin_unlock(lock_ptr);
931 goto retry;
932 }
933 WARN_ON(list_empty(&q->list));
934 list_del(&q->list);
c87e2837
IM
935
936 BUG_ON(q->pi_state);
937
1da177e4
LT
938 spin_unlock(lock_ptr);
939 ret = 1;
940 }
941
942 drop_key_refs(&q->key);
943 return ret;
944}
945
c87e2837
IM
946/*
947 * PI futexes can not be requeued and must remove themself from the
948 * hash bucket. The hash bucket lock is held on entry and dropped here.
949 */
950static void unqueue_me_pi(struct futex_q *q, struct futex_hash_bucket *hb)
951{
952 WARN_ON(list_empty(&q->list));
953 list_del(&q->list);
954
955 BUG_ON(!q->pi_state);
956 free_pi_state(q->pi_state);
957 q->pi_state = NULL;
958
959 spin_unlock(&hb->lock);
960
961 drop_key_refs(&q->key);
962}
963
e2970f2f 964static int futex_wait(u32 __user *uaddr, u32 val, unsigned long time)
1da177e4 965{
c87e2837
IM
966 struct task_struct *curr = current;
967 DECLARE_WAITQUEUE(wait, curr);
e2970f2f 968 struct futex_hash_bucket *hb;
1da177e4 969 struct futex_q q;
e2970f2f
IM
970 u32 uval;
971 int ret;
1da177e4 972
c87e2837 973 q.pi_state = NULL;
1da177e4 974 retry:
c87e2837 975 down_read(&curr->mm->mmap_sem);
1da177e4
LT
976
977 ret = get_futex_key(uaddr, &q.key);
978 if (unlikely(ret != 0))
979 goto out_release_sem;
980
e2970f2f 981 hb = queue_lock(&q, -1, NULL);
1da177e4
LT
982
983 /*
984 * Access the page AFTER the futex is queued.
985 * Order is important:
986 *
987 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
988 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
989 *
990 * The basic logical guarantee of a futex is that it blocks ONLY
991 * if cond(var) is known to be true at the time of blocking, for
992 * any cond. If we queued after testing *uaddr, that would open
993 * a race condition where we could block indefinitely with
994 * cond(var) false, which would violate the guarantee.
995 *
996 * A consequence is that futex_wait() can return zero and absorb
997 * a wakeup when *uaddr != val on entry to the syscall. This is
998 * rare, but normal.
999 *
1000 * We hold the mmap semaphore, so the mapping cannot have changed
1001 * since we looked it up in get_futex_key.
1002 */
e2970f2f 1003 ret = get_futex_value_locked(&uval, uaddr);
1da177e4
LT
1004
1005 if (unlikely(ret)) {
e2970f2f 1006 queue_unlock(&q, hb);
1da177e4 1007
e2970f2f
IM
1008 /*
1009 * If we would have faulted, release mmap_sem, fault it in and
1da177e4
LT
1010 * start all over again.
1011 */
c87e2837 1012 up_read(&curr->mm->mmap_sem);
1da177e4 1013
e2970f2f 1014 ret = get_user(uval, uaddr);
1da177e4
LT
1015
1016 if (!ret)
1017 goto retry;
1018 return ret;
1019 }
c87e2837
IM
1020 ret = -EWOULDBLOCK;
1021 if (uval != val)
1022 goto out_unlock_release_sem;
1da177e4
LT
1023
1024 /* Only actually queue if *uaddr contained val. */
e2970f2f 1025 __queue_me(&q, hb);
1da177e4
LT
1026
1027 /*
1028 * Now the futex is queued and we have checked the data, we
1029 * don't want to hold mmap_sem while we sleep.
c87e2837
IM
1030 */
1031 up_read(&curr->mm->mmap_sem);
1da177e4
LT
1032
1033 /*
1034 * There might have been scheduling since the queue_me(), as we
1035 * cannot hold a spinlock across the get_user() in case it
1036 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1037 * queueing ourselves into the futex hash. This code thus has to
1038 * rely on the futex_wake() code removing us from hash when it
1039 * wakes us up.
1040 */
1041
1042 /* add_wait_queue is the barrier after __set_current_state. */
1043 __set_current_state(TASK_INTERRUPTIBLE);
1044 add_wait_queue(&q.waiters, &wait);
1045 /*
1046 * !list_empty() is safe here without any lock.
1047 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1048 */
1049 if (likely(!list_empty(&q.list)))
1050 time = schedule_timeout(time);
1051 __set_current_state(TASK_RUNNING);
1052
1053 /*
1054 * NOTE: we don't remove ourselves from the waitqueue because
1055 * we are the only user of it.
1056 */
1057
1058 /* If we were woken (and unqueued), we succeeded, whatever. */
1059 if (!unqueue_me(&q))
1060 return 0;
1061 if (time == 0)
1062 return -ETIMEDOUT;
e2970f2f
IM
1063 /*
1064 * We expect signal_pending(current), but another thread may
1065 * have handled it for us already.
1066 */
1da177e4
LT
1067 return -EINTR;
1068
c87e2837
IM
1069 out_unlock_release_sem:
1070 queue_unlock(&q, hb);
1071
1da177e4 1072 out_release_sem:
c87e2837
IM
1073 up_read(&curr->mm->mmap_sem);
1074 return ret;
1075}
1076
1077/*
1078 * Userspace tried a 0 -> TID atomic transition of the futex value
1079 * and failed. The kernel side here does the whole locking operation:
1080 * if there are waiters then it will block, it does PI, etc. (Due to
1081 * races the kernel might see a 0 value of the futex too.)
1082 */
1083static int do_futex_lock_pi(u32 __user *uaddr, int detect, int trylock,
1084 struct hrtimer_sleeper *to)
1085{
1086 struct task_struct *curr = current;
1087 struct futex_hash_bucket *hb;
1088 u32 uval, newval, curval;
1089 struct futex_q q;
1090 int ret, attempt = 0;
1091
1092 if (refill_pi_state_cache())
1093 return -ENOMEM;
1094
1095 q.pi_state = NULL;
1096 retry:
1097 down_read(&curr->mm->mmap_sem);
1098
1099 ret = get_futex_key(uaddr, &q.key);
1100 if (unlikely(ret != 0))
1101 goto out_release_sem;
1102
1103 hb = queue_lock(&q, -1, NULL);
1104
1105 retry_locked:
1106 /*
1107 * To avoid races, we attempt to take the lock here again
1108 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1109 * the locks. It will most likely not succeed.
1110 */
1111 newval = current->pid;
1112
1113 inc_preempt_count();
1114 curval = futex_atomic_cmpxchg_inatomic(uaddr, 0, newval);
1115 dec_preempt_count();
1116
1117 if (unlikely(curval == -EFAULT))
1118 goto uaddr_faulted;
1119
1120 /* We own the lock already */
1121 if (unlikely((curval & FUTEX_TID_MASK) == current->pid)) {
1122 if (!detect && 0)
1123 force_sig(SIGKILL, current);
1124 ret = -EDEADLK;
1125 goto out_unlock_release_sem;
1126 }
1127
1128 /*
1129 * Surprise - we got the lock. Just return
1130 * to userspace:
1131 */
1132 if (unlikely(!curval))
1133 goto out_unlock_release_sem;
1134
1135 uval = curval;
1136 newval = uval | FUTEX_WAITERS;
1137
1138 inc_preempt_count();
1139 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
1140 dec_preempt_count();
1141
1142 if (unlikely(curval == -EFAULT))
1143 goto uaddr_faulted;
1144 if (unlikely(curval != uval))
1145 goto retry_locked;
1146
1147 /*
1148 * We dont have the lock. Look up the PI state (or create it if
1149 * we are the first waiter):
1150 */
1151 ret = lookup_pi_state(uval, hb, &q);
1152
1153 if (unlikely(ret)) {
1154 /*
1155 * There were no waiters and the owner task lookup
1156 * failed. When the OWNER_DIED bit is set, then we
1157 * know that this is a robust futex and we actually
1158 * take the lock. This is safe as we are protected by
1159 * the hash bucket lock. We also set the waiters bit
1160 * unconditionally here, to simplify glibc handling of
1161 * multiple tasks racing to acquire the lock and
1162 * cleanup the problems which were left by the dead
1163 * owner.
1164 */
1165 if (curval & FUTEX_OWNER_DIED) {
1166 uval = newval;
1167 newval = current->pid |
1168 FUTEX_OWNER_DIED | FUTEX_WAITERS;
1169
1170 inc_preempt_count();
1171 curval = futex_atomic_cmpxchg_inatomic(uaddr,
1172 uval, newval);
1173 dec_preempt_count();
1174
1175 if (unlikely(curval == -EFAULT))
1176 goto uaddr_faulted;
1177 if (unlikely(curval != uval))
1178 goto retry_locked;
1179 ret = 0;
1180 }
1181 goto out_unlock_release_sem;
1182 }
1183
1184 /*
1185 * Only actually queue now that the atomic ops are done:
1186 */
1187 __queue_me(&q, hb);
1188
1189 /*
1190 * Now the futex is queued and we have checked the data, we
1191 * don't want to hold mmap_sem while we sleep.
1192 */
1193 up_read(&curr->mm->mmap_sem);
1194
1195 WARN_ON(!q.pi_state);
1196 /*
1197 * Block on the PI mutex:
1198 */
1199 if (!trylock)
1200 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1201 else {
1202 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1203 /* Fixup the trylock return value: */
1204 ret = ret ? 0 : -EWOULDBLOCK;
1205 }
1206
1207 down_read(&curr->mm->mmap_sem);
1208 hb = queue_lock(&q, -1, NULL);
1209
1210 /*
1211 * Got the lock. We might not be the anticipated owner if we
1212 * did a lock-steal - fix up the PI-state in that case.
1213 */
1214 if (!ret && q.pi_state->owner != curr) {
1215 u32 newtid = current->pid | FUTEX_WAITERS;
1216
1217 /* Owner died? */
1218 if (q.pi_state->owner != NULL) {
1219 spin_lock_irq(&q.pi_state->owner->pi_lock);
1220 list_del_init(&q.pi_state->list);
1221 spin_unlock_irq(&q.pi_state->owner->pi_lock);
1222 } else
1223 newtid |= FUTEX_OWNER_DIED;
1224
1225 q.pi_state->owner = current;
1226
1227 spin_lock_irq(&current->pi_lock);
1228 list_add(&q.pi_state->list, &current->pi_state_list);
1229 spin_unlock_irq(&current->pi_lock);
1230
1231 /* Unqueue and drop the lock */
1232 unqueue_me_pi(&q, hb);
1233 up_read(&curr->mm->mmap_sem);
1234 /*
1235 * We own it, so we have to replace the pending owner
1236 * TID. This must be atomic as we have preserve the
1237 * owner died bit here.
1238 */
1239 ret = get_user(uval, uaddr);
1240 while (!ret) {
1241 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1242 curval = futex_atomic_cmpxchg_inatomic(uaddr,
1243 uval, newval);
1244 if (curval == -EFAULT)
1245 ret = -EFAULT;
1246 if (curval == uval)
1247 break;
1248 uval = curval;
1249 }
1250 } else {
1251 /*
1252 * Catch the rare case, where the lock was released
1253 * when we were on the way back before we locked
1254 * the hash bucket.
1255 */
1256 if (ret && q.pi_state->owner == curr) {
1257 if (rt_mutex_trylock(&q.pi_state->pi_mutex))
1258 ret = 0;
1259 }
1260 /* Unqueue and drop the lock */
1261 unqueue_me_pi(&q, hb);
1262 up_read(&curr->mm->mmap_sem);
1263 }
1264
1265 if (!detect && ret == -EDEADLK && 0)
1266 force_sig(SIGKILL, current);
1267
1268 return ret;
1269
1270 out_unlock_release_sem:
1271 queue_unlock(&q, hb);
1272
1273 out_release_sem:
1274 up_read(&curr->mm->mmap_sem);
1275 return ret;
1276
1277 uaddr_faulted:
1278 /*
1279 * We have to r/w *(int __user *)uaddr, but we can't modify it
1280 * non-atomically. Therefore, if get_user below is not
1281 * enough, we need to handle the fault ourselves, while
1282 * still holding the mmap_sem.
1283 */
1284 if (attempt++) {
1285 if (futex_handle_fault((unsigned long)uaddr, attempt))
1286 goto out_unlock_release_sem;
1287
1288 goto retry_locked;
1289 }
1290
1291 queue_unlock(&q, hb);
1292 up_read(&curr->mm->mmap_sem);
1293
1294 ret = get_user(uval, uaddr);
1295 if (!ret && (uval != -EFAULT))
1296 goto retry;
1297
1298 return ret;
1299}
1300
1301/*
1302 * Restart handler
1303 */
1304static long futex_lock_pi_restart(struct restart_block *restart)
1305{
1306 struct hrtimer_sleeper timeout, *to = NULL;
1307 int ret;
1308
1309 restart->fn = do_no_restart_syscall;
1310
1311 if (restart->arg2 || restart->arg3) {
1312 to = &timeout;
1313 hrtimer_init(&to->timer, CLOCK_REALTIME, HRTIMER_ABS);
1314 hrtimer_init_sleeper(to, current);
1315 to->timer.expires.tv64 = ((u64)restart->arg1 << 32) |
1316 (u64) restart->arg0;
1317 }
1318
1319 pr_debug("lock_pi restart: %p, %d (%d)\n",
1320 (u32 __user *)restart->arg0, current->pid);
1321
1322 ret = do_futex_lock_pi((u32 __user *)restart->arg0, restart->arg1,
1323 0, to);
1324
1325 if (ret != -EINTR)
1326 return ret;
1327
1328 restart->fn = futex_lock_pi_restart;
1329
1330 /* The other values are filled in */
1331 return -ERESTART_RESTARTBLOCK;
1332}
1333
1334/*
1335 * Called from the syscall entry below.
1336 */
1337static int futex_lock_pi(u32 __user *uaddr, int detect, unsigned long sec,
1338 long nsec, int trylock)
1339{
1340 struct hrtimer_sleeper timeout, *to = NULL;
1341 struct restart_block *restart;
1342 int ret;
1343
1344 if (sec != MAX_SCHEDULE_TIMEOUT) {
1345 to = &timeout;
1346 hrtimer_init(&to->timer, CLOCK_REALTIME, HRTIMER_ABS);
1347 hrtimer_init_sleeper(to, current);
1348 to->timer.expires = ktime_set(sec, nsec);
1349 }
1350
1351 ret = do_futex_lock_pi(uaddr, detect, trylock, to);
1352
1353 if (ret != -EINTR)
1354 return ret;
1355
1356 pr_debug("lock_pi interrupted: %p, %d (%d)\n", uaddr, current->pid);
1357
1358 restart = &current_thread_info()->restart_block;
1359 restart->fn = futex_lock_pi_restart;
1360 restart->arg0 = (unsigned long) uaddr;
1361 restart->arg1 = detect;
1362 if (to) {
1363 restart->arg2 = to->timer.expires.tv64 & 0xFFFFFFFF;
1364 restart->arg3 = to->timer.expires.tv64 >> 32;
1365 } else
1366 restart->arg2 = restart->arg3 = 0;
1367
1368 return -ERESTART_RESTARTBLOCK;
1369}
1370
1371/*
1372 * Userspace attempted a TID -> 0 atomic transition, and failed.
1373 * This is the in-kernel slowpath: we look up the PI state (if any),
1374 * and do the rt-mutex unlock.
1375 */
1376static int futex_unlock_pi(u32 __user *uaddr)
1377{
1378 struct futex_hash_bucket *hb;
1379 struct futex_q *this, *next;
1380 u32 uval;
1381 struct list_head *head;
1382 union futex_key key;
1383 int ret, attempt = 0;
1384
1385retry:
1386 if (get_user(uval, uaddr))
1387 return -EFAULT;
1388 /*
1389 * We release only a lock we actually own:
1390 */
1391 if ((uval & FUTEX_TID_MASK) != current->pid)
1392 return -EPERM;
1393 /*
1394 * First take all the futex related locks:
1395 */
1396 down_read(&current->mm->mmap_sem);
1397
1398 ret = get_futex_key(uaddr, &key);
1399 if (unlikely(ret != 0))
1400 goto out;
1401
1402 hb = hash_futex(&key);
1403 spin_lock(&hb->lock);
1404
1405retry_locked:
1406 /*
1407 * To avoid races, try to do the TID -> 0 atomic transition
1408 * again. If it succeeds then we can return without waking
1409 * anyone else up:
1410 */
1411 inc_preempt_count();
1412 uval = futex_atomic_cmpxchg_inatomic(uaddr, current->pid, 0);
1413 dec_preempt_count();
1414
1415 if (unlikely(uval == -EFAULT))
1416 goto pi_faulted;
1417 /*
1418 * Rare case: we managed to release the lock atomically,
1419 * no need to wake anyone else up:
1420 */
1421 if (unlikely(uval == current->pid))
1422 goto out_unlock;
1423
1424 /*
1425 * Ok, other tasks may need to be woken up - check waiters
1426 * and do the wakeup if necessary:
1427 */
1428 head = &hb->chain;
1429
1430 list_for_each_entry_safe(this, next, head, list) {
1431 if (!match_futex (&this->key, &key))
1432 continue;
1433 ret = wake_futex_pi(uaddr, uval, this);
1434 /*
1435 * The atomic access to the futex value
1436 * generated a pagefault, so retry the
1437 * user-access and the wakeup:
1438 */
1439 if (ret == -EFAULT)
1440 goto pi_faulted;
1441 goto out_unlock;
1442 }
1443 /*
1444 * No waiters - kernel unlocks the futex:
1445 */
1446 ret = unlock_futex_pi(uaddr, uval);
1447 if (ret == -EFAULT)
1448 goto pi_faulted;
1449
1450out_unlock:
1451 spin_unlock(&hb->lock);
1452out:
1453 up_read(&current->mm->mmap_sem);
1454
1455 return ret;
1456
1457pi_faulted:
1458 /*
1459 * We have to r/w *(int __user *)uaddr, but we can't modify it
1460 * non-atomically. Therefore, if get_user below is not
1461 * enough, we need to handle the fault ourselves, while
1462 * still holding the mmap_sem.
1463 */
1464 if (attempt++) {
1465 if (futex_handle_fault((unsigned long)uaddr, attempt))
1466 goto out_unlock;
1467
1468 goto retry_locked;
1469 }
1470
1471 spin_unlock(&hb->lock);
1da177e4 1472 up_read(&current->mm->mmap_sem);
c87e2837
IM
1473
1474 ret = get_user(uval, uaddr);
1475 if (!ret && (uval != -EFAULT))
1476 goto retry;
1477
1da177e4
LT
1478 return ret;
1479}
1480
1481static int futex_close(struct inode *inode, struct file *filp)
1482{
1483 struct futex_q *q = filp->private_data;
1484
1485 unqueue_me(q);
1486 kfree(q);
e2970f2f 1487
1da177e4
LT
1488 return 0;
1489}
1490
1491/* This is one-shot: once it's gone off you need a new fd */
1492static unsigned int futex_poll(struct file *filp,
1493 struct poll_table_struct *wait)
1494{
1495 struct futex_q *q = filp->private_data;
1496 int ret = 0;
1497
1498 poll_wait(filp, &q->waiters, wait);
1499
1500 /*
1501 * list_empty() is safe here without any lock.
1502 * q->lock_ptr != 0 is not safe, because of ordering against wakeup.
1503 */
1504 if (list_empty(&q->list))
1505 ret = POLLIN | POLLRDNORM;
1506
1507 return ret;
1508}
1509
1510static struct file_operations futex_fops = {
1511 .release = futex_close,
1512 .poll = futex_poll,
1513};
1514
1515/*
1516 * Signal allows caller to avoid the race which would occur if they
1517 * set the sigio stuff up afterwards.
1518 */
e2970f2f 1519static int futex_fd(u32 __user *uaddr, int signal)
1da177e4
LT
1520{
1521 struct futex_q *q;
1522 struct file *filp;
1523 int ret, err;
1524
1525 ret = -EINVAL;
7ed20e1a 1526 if (!valid_signal(signal))
1da177e4
LT
1527 goto out;
1528
1529 ret = get_unused_fd();
1530 if (ret < 0)
1531 goto out;
1532 filp = get_empty_filp();
1533 if (!filp) {
1534 put_unused_fd(ret);
1535 ret = -ENFILE;
1536 goto out;
1537 }
1538 filp->f_op = &futex_fops;
1539 filp->f_vfsmnt = mntget(futex_mnt);
1540 filp->f_dentry = dget(futex_mnt->mnt_root);
1541 filp->f_mapping = filp->f_dentry->d_inode->i_mapping;
1542
1543 if (signal) {
1da177e4
LT
1544 err = f_setown(filp, current->pid, 1);
1545 if (err < 0) {
39ed3fde 1546 goto error;
1da177e4
LT
1547 }
1548 filp->f_owner.signum = signal;
1549 }
1550
1551 q = kmalloc(sizeof(*q), GFP_KERNEL);
1552 if (!q) {
39ed3fde
PE
1553 err = -ENOMEM;
1554 goto error;
1da177e4 1555 }
c87e2837 1556 q->pi_state = NULL;
1da177e4
LT
1557
1558 down_read(&current->mm->mmap_sem);
1559 err = get_futex_key(uaddr, &q->key);
1560
1561 if (unlikely(err != 0)) {
1562 up_read(&current->mm->mmap_sem);
1da177e4 1563 kfree(q);
39ed3fde 1564 goto error;
1da177e4
LT
1565 }
1566
1567 /*
1568 * queue_me() must be called before releasing mmap_sem, because
1569 * key->shared.inode needs to be referenced while holding it.
1570 */
1571 filp->private_data = q;
1572
1573 queue_me(q, ret, filp);
1574 up_read(&current->mm->mmap_sem);
1575
1576 /* Now we map fd to filp, so userspace can access it */
1577 fd_install(ret, filp);
1578out:
1579 return ret;
39ed3fde
PE
1580error:
1581 put_unused_fd(ret);
1582 put_filp(filp);
1583 ret = err;
1584 goto out;
1da177e4
LT
1585}
1586
0771dfef
IM
1587/*
1588 * Support for robust futexes: the kernel cleans up held futexes at
1589 * thread exit time.
1590 *
1591 * Implementation: user-space maintains a per-thread list of locks it
1592 * is holding. Upon do_exit(), the kernel carefully walks this list,
1593 * and marks all locks that are owned by this thread with the
c87e2837 1594 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
1595 * always manipulated with the lock held, so the list is private and
1596 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1597 * field, to allow the kernel to clean up if the thread dies after
1598 * acquiring the lock, but just before it could have added itself to
1599 * the list. There can only be one such pending lock.
1600 */
1601
1602/**
1603 * sys_set_robust_list - set the robust-futex list head of a task
1604 * @head: pointer to the list-head
1605 * @len: length of the list-head, as userspace expects
1606 */
1607asmlinkage long
1608sys_set_robust_list(struct robust_list_head __user *head,
1609 size_t len)
1610{
1611 /*
1612 * The kernel knows only one size for now:
1613 */
1614 if (unlikely(len != sizeof(*head)))
1615 return -EINVAL;
1616
1617 current->robust_list = head;
1618
1619 return 0;
1620}
1621
1622/**
1623 * sys_get_robust_list - get the robust-futex list head of a task
1624 * @pid: pid of the process [zero for current task]
1625 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1626 * @len_ptr: pointer to a length field, the kernel fills in the header size
1627 */
1628asmlinkage long
1629sys_get_robust_list(int pid, struct robust_list_head __user **head_ptr,
1630 size_t __user *len_ptr)
1631{
1632 struct robust_list_head *head;
1633 unsigned long ret;
1634
1635 if (!pid)
1636 head = current->robust_list;
1637 else {
1638 struct task_struct *p;
1639
1640 ret = -ESRCH;
1641 read_lock(&tasklist_lock);
1642 p = find_task_by_pid(pid);
1643 if (!p)
1644 goto err_unlock;
1645 ret = -EPERM;
1646 if ((current->euid != p->euid) && (current->euid != p->uid) &&
1647 !capable(CAP_SYS_PTRACE))
1648 goto err_unlock;
1649 head = p->robust_list;
1650 read_unlock(&tasklist_lock);
1651 }
1652
1653 if (put_user(sizeof(*head), len_ptr))
1654 return -EFAULT;
1655 return put_user(head, head_ptr);
1656
1657err_unlock:
1658 read_unlock(&tasklist_lock);
1659
1660 return ret;
1661}
1662
1663/*
1664 * Process a futex-list entry, check whether it's owned by the
1665 * dying task, and do notification if so:
1666 */
8f17d3a5 1667int handle_futex_death(u32 __user *uaddr, struct task_struct *curr)
0771dfef 1668{
c87e2837 1669 u32 uval, nval;
0771dfef 1670
8f17d3a5
IM
1671retry:
1672 if (get_user(uval, uaddr))
0771dfef
IM
1673 return -1;
1674
8f17d3a5 1675 if ((uval & FUTEX_TID_MASK) == curr->pid) {
0771dfef
IM
1676 /*
1677 * Ok, this dying thread is truly holding a futex
1678 * of interest. Set the OWNER_DIED bit atomically
1679 * via cmpxchg, and if the value had FUTEX_WAITERS
1680 * set, wake up a waiter (if any). (We have to do a
1681 * futex_wake() even if OWNER_DIED is already set -
1682 * to handle the rare but possible case of recursive
1683 * thread-death.) The rest of the cleanup is done in
1684 * userspace.
1685 */
c87e2837
IM
1686 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval,
1687 uval | FUTEX_OWNER_DIED);
1688 if (nval == -EFAULT)
1689 return -1;
1690
1691 if (nval != uval)
8f17d3a5 1692 goto retry;
0771dfef 1693
8f17d3a5 1694 if (uval & FUTEX_WAITERS)
e2970f2f 1695 futex_wake(uaddr, 1);
0771dfef
IM
1696 }
1697 return 0;
1698}
1699
1700/*
1701 * Walk curr->robust_list (very carefully, it's a userspace list!)
1702 * and mark any locks found there dead, and notify any waiters.
1703 *
1704 * We silently return on any sign of list-walking problem.
1705 */
1706void exit_robust_list(struct task_struct *curr)
1707{
1708 struct robust_list_head __user *head = curr->robust_list;
1709 struct robust_list __user *entry, *pending;
1710 unsigned int limit = ROBUST_LIST_LIMIT;
1711 unsigned long futex_offset;
1712
1713 /*
1714 * Fetch the list head (which was registered earlier, via
1715 * sys_set_robust_list()):
1716 */
1717 if (get_user(entry, &head->list.next))
1718 return;
1719 /*
1720 * Fetch the relative futex offset:
1721 */
1722 if (get_user(futex_offset, &head->futex_offset))
1723 return;
1724 /*
1725 * Fetch any possibly pending lock-add first, and handle it
1726 * if it exists:
1727 */
1728 if (get_user(pending, &head->list_op_pending))
1729 return;
1730 if (pending)
1731 handle_futex_death((void *)pending + futex_offset, curr);
1732
1733 while (entry != &head->list) {
1734 /*
1735 * A pending lock might already be on the list, so
c87e2837 1736 * don't process it twice:
0771dfef
IM
1737 */
1738 if (entry != pending)
1739 if (handle_futex_death((void *)entry + futex_offset,
1740 curr))
1741 return;
0771dfef
IM
1742 /*
1743 * Fetch the next entry in the list:
1744 */
1745 if (get_user(entry, &entry->next))
1746 return;
1747 /*
1748 * Avoid excessively long or circular lists:
1749 */
1750 if (!--limit)
1751 break;
1752
1753 cond_resched();
1754 }
1755}
1756
e2970f2f
IM
1757long do_futex(u32 __user *uaddr, int op, u32 val, unsigned long timeout,
1758 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4
LT
1759{
1760 int ret;
1761
1762 switch (op) {
1763 case FUTEX_WAIT:
1764 ret = futex_wait(uaddr, val, timeout);
1765 break;
1766 case FUTEX_WAKE:
1767 ret = futex_wake(uaddr, val);
1768 break;
1769 case FUTEX_FD:
1770 /* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
1771 ret = futex_fd(uaddr, val);
1772 break;
1773 case FUTEX_REQUEUE:
1774 ret = futex_requeue(uaddr, uaddr2, val, val2, NULL);
1775 break;
1776 case FUTEX_CMP_REQUEUE:
1777 ret = futex_requeue(uaddr, uaddr2, val, val2, &val3);
1778 break;
4732efbe
JJ
1779 case FUTEX_WAKE_OP:
1780 ret = futex_wake_op(uaddr, uaddr2, val, val2, val3);
1781 break;
c87e2837
IM
1782 case FUTEX_LOCK_PI:
1783 ret = futex_lock_pi(uaddr, val, timeout, val2, 0);
1784 break;
1785 case FUTEX_UNLOCK_PI:
1786 ret = futex_unlock_pi(uaddr);
1787 break;
1788 case FUTEX_TRYLOCK_PI:
1789 ret = futex_lock_pi(uaddr, 0, timeout, val2, 1);
1790 break;
1da177e4
LT
1791 default:
1792 ret = -ENOSYS;
1793 }
1794 return ret;
1795}
1796
1797
e2970f2f 1798asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
1da177e4 1799 struct timespec __user *utime, u32 __user *uaddr2,
e2970f2f 1800 u32 val3)
1da177e4
LT
1801{
1802 struct timespec t;
1803 unsigned long timeout = MAX_SCHEDULE_TIMEOUT;
e2970f2f 1804 u32 val2 = 0;
1da177e4 1805
c87e2837 1806 if (utime && (op == FUTEX_WAIT || op == FUTEX_LOCK_PI)) {
1da177e4
LT
1807 if (copy_from_user(&t, utime, sizeof(t)) != 0)
1808 return -EFAULT;
9741ef96
TG
1809 if (!timespec_valid(&t))
1810 return -EINVAL;
c87e2837
IM
1811 if (op == FUTEX_WAIT)
1812 timeout = timespec_to_jiffies(&t) + 1;
1813 else {
1814 timeout = t.tv_sec;
1815 val2 = t.tv_nsec;
1816 }
1da177e4
LT
1817 }
1818 /*
1819 * requeue parameter in 'utime' if op == FUTEX_REQUEUE.
1820 */
c87e2837 1821 if (op == FUTEX_REQUEUE || op == FUTEX_CMP_REQUEUE)
e2970f2f 1822 val2 = (u32) (unsigned long) utime;
1da177e4 1823
e2970f2f 1824 return do_futex(uaddr, op, val, timeout, uaddr2, val2, val3);
1da177e4
LT
1825}
1826
454e2398
DH
1827static int futexfs_get_sb(struct file_system_type *fs_type,
1828 int flags, const char *dev_name, void *data,
1829 struct vfsmount *mnt)
1da177e4 1830{
454e2398 1831 return get_sb_pseudo(fs_type, "futex", NULL, 0xBAD1DEA, mnt);
1da177e4
LT
1832}
1833
1834static struct file_system_type futex_fs_type = {
1835 .name = "futexfs",
1836 .get_sb = futexfs_get_sb,
1837 .kill_sb = kill_anon_super,
1838};
1839
1840static int __init init(void)
1841{
1842 unsigned int i;
1843
1844 register_filesystem(&futex_fs_type);
1845 futex_mnt = kern_mount(&futex_fs_type);
1846
1847 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
1848 INIT_LIST_HEAD(&futex_queues[i].chain);
1849 spin_lock_init(&futex_queues[i].lock);
1850 }
1851 return 0;
1852}
1853__initcall(init);