futex: use fast_gup()
[linux-2.6-block.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
1da177e4
LT
22 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23 * enough at me, Linus for the original (flawed) idea, Matthew
24 * Kirkwood for proof-of-concept implementation.
25 *
26 * "The futexes are also cursed."
27 * "But they come in a choice of three flavours!"
28 *
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License as published by
31 * the Free Software Foundation; either version 2 of the License, or
32 * (at your option) any later version.
33 *
34 * This program is distributed in the hope that it will be useful,
35 * but WITHOUT ANY WARRANTY; without even the implied warranty of
36 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
37 * GNU General Public License for more details.
38 *
39 * You should have received a copy of the GNU General Public License
40 * along with this program; if not, write to the Free Software
41 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
42 */
43#include <linux/slab.h>
44#include <linux/poll.h>
45#include <linux/fs.h>
46#include <linux/file.h>
47#include <linux/jhash.h>
48#include <linux/init.h>
49#include <linux/futex.h>
50#include <linux/mount.h>
51#include <linux/pagemap.h>
52#include <linux/syscalls.h>
7ed20e1a 53#include <linux/signal.h>
9adef58b 54#include <linux/module.h>
fd5eea42 55#include <linux/magic.h>
b488893a
PE
56#include <linux/pid.h>
57#include <linux/nsproxy.h>
58
4732efbe 59#include <asm/futex.h>
1da177e4 60
c87e2837
IM
61#include "rtmutex_common.h"
62
a0c1e907
TG
63int __read_mostly futex_cmpxchg_enabled;
64
1da177e4
LT
65#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
66
c87e2837
IM
67/*
68 * Priority Inheritance state:
69 */
70struct futex_pi_state {
71 /*
72 * list of 'owned' pi_state instances - these have to be
73 * cleaned up in do_exit() if the task exits prematurely:
74 */
75 struct list_head list;
76
77 /*
78 * The PI object:
79 */
80 struct rt_mutex pi_mutex;
81
82 struct task_struct *owner;
83 atomic_t refcount;
84
85 union futex_key key;
86};
87
1da177e4
LT
88/*
89 * We use this hashed waitqueue instead of a normal wait_queue_t, so
90 * we can wake only the relevant ones (hashed queues may be shared).
91 *
92 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 93 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
1da177e4
LT
94 * The order of wakup is always to make the first condition true, then
95 * wake up q->waiters, then make the second condition true.
96 */
97struct futex_q {
ec92d082 98 struct plist_node list;
1da177e4
LT
99 wait_queue_head_t waiters;
100
e2970f2f 101 /* Which hash list lock to use: */
1da177e4
LT
102 spinlock_t *lock_ptr;
103
e2970f2f 104 /* Key which the futex is hashed on: */
1da177e4
LT
105 union futex_key key;
106
c87e2837
IM
107 /* Optional priority inheritance state: */
108 struct futex_pi_state *pi_state;
109 struct task_struct *task;
cd689985
TG
110
111 /* Bitset for the optional bitmasked wakeup */
112 u32 bitset;
1da177e4
LT
113};
114
115/*
116 * Split the global futex_lock into every hash list lock.
117 */
118struct futex_hash_bucket {
ec92d082
PP
119 spinlock_t lock;
120 struct plist_head chain;
1da177e4
LT
121};
122
123static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
124
1da177e4
LT
125/*
126 * We hash on the keys returned from get_futex_key (see below).
127 */
128static struct futex_hash_bucket *hash_futex(union futex_key *key)
129{
130 u32 hash = jhash2((u32*)&key->both.word,
131 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
132 key->both.offset);
133 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
134}
135
136/*
137 * Return 1 if two futex_keys are equal, 0 otherwise.
138 */
139static inline int match_futex(union futex_key *key1, union futex_key *key2)
140{
141 return (key1->both.word == key2->both.word
142 && key1->both.ptr == key2->both.ptr
143 && key1->both.offset == key2->both.offset);
144}
145
38d47c1b
PZ
146/*
147 * Take a reference to the resource addressed by a key.
148 * Can be called while holding spinlocks.
149 *
150 */
151static void get_futex_key_refs(union futex_key *key)
152{
153 if (!key->both.ptr)
154 return;
155
156 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
157 case FUT_OFF_INODE:
158 atomic_inc(&key->shared.inode->i_count);
159 break;
160 case FUT_OFF_MMSHARED:
161 atomic_inc(&key->private.mm->mm_count);
162 break;
163 }
164}
165
166/*
167 * Drop a reference to the resource addressed by a key.
168 * The hash bucket spinlock must not be held.
169 */
170static void drop_futex_key_refs(union futex_key *key)
171{
172 if (!key->both.ptr)
173 return;
174
175 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
176 case FUT_OFF_INODE:
177 iput(key->shared.inode);
178 break;
179 case FUT_OFF_MMSHARED:
180 mmdrop(key->private.mm);
181 break;
182 }
183}
184
34f01cc1
ED
185/**
186 * get_futex_key - Get parameters which are the keys for a futex.
187 * @uaddr: virtual address of the futex
188 * @shared: NULL for a PROCESS_PRIVATE futex,
189 * &current->mm->mmap_sem for a PROCESS_SHARED futex
190 * @key: address where result is stored.
191 *
192 * Returns a negative error code or 0
193 * The key words are stored in *key on success.
1da177e4 194 *
f3a43f3f 195 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
1da177e4
LT
196 * offset_within_page). For private mappings, it's (uaddr, current->mm).
197 * We can usually work out the index without swapping in the page.
198 *
34f01cc1
ED
199 * fshared is NULL for PROCESS_PRIVATE futexes
200 * For other futexes, it points to &current->mm->mmap_sem and
201 * caller must have taken the reader lock. but NOT any spinlocks.
1da177e4 202 */
fad23fc7
AB
203static int get_futex_key(u32 __user *uaddr, struct rw_semaphore *fshared,
204 union futex_key *key)
1da177e4 205{
e2970f2f 206 unsigned long address = (unsigned long)uaddr;
1da177e4 207 struct mm_struct *mm = current->mm;
1da177e4
LT
208 struct page *page;
209 int err;
210
211 /*
212 * The futex address must be "naturally" aligned.
213 */
e2970f2f 214 key->both.offset = address % PAGE_SIZE;
34f01cc1 215 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 216 return -EINVAL;
e2970f2f 217 address -= key->both.offset;
1da177e4 218
34f01cc1
ED
219 /*
220 * PROCESS_PRIVATE futexes are fast.
221 * As the mm cannot disappear under us and the 'key' only needs
222 * virtual address, we dont even have to find the underlying vma.
223 * Note : We do have to check 'uaddr' is a valid user address,
224 * but access_ok() should be faster than find_vma()
225 */
226 if (!fshared) {
227 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
228 return -EFAULT;
229 key->private.mm = mm;
230 key->private.address = address;
231 return 0;
232 }
1da177e4 233
38d47c1b 234again:
734b05b1 235 err = get_user_pages_fast(address, 1, 0, &page);
38d47c1b
PZ
236 if (err < 0)
237 return err;
238
239 lock_page(page);
240 if (!page->mapping) {
241 unlock_page(page);
242 put_page(page);
243 goto again;
244 }
1da177e4
LT
245
246 /*
247 * Private mappings are handled in a simple way.
248 *
249 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
250 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 251 * the object not the particular process.
1da177e4 252 */
38d47c1b
PZ
253 if (PageAnon(page)) {
254 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 255 key->private.mm = mm;
e2970f2f 256 key->private.address = address;
38d47c1b
PZ
257 } else {
258 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
259 key->shared.inode = page->mapping->host;
260 key->shared.pgoff = page->index;
1da177e4
LT
261 }
262
38d47c1b 263 get_futex_key_refs(key);
1da177e4 264
38d47c1b
PZ
265 unlock_page(page);
266 put_page(page);
267 return 0;
1da177e4
LT
268}
269
38d47c1b
PZ
270static inline
271void put_futex_key(struct rw_semaphore *fshared, union futex_key *key)
1da177e4 272{
38d47c1b 273 drop_futex_key_refs(key);
1da177e4
LT
274}
275
36cf3b5c
TG
276static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
277{
278 u32 curval;
279
280 pagefault_disable();
281 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
282 pagefault_enable();
283
284 return curval;
285}
286
287static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
288{
289 int ret;
290
a866374a 291 pagefault_disable();
e2970f2f 292 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 293 pagefault_enable();
1da177e4
LT
294
295 return ret ? -EFAULT : 0;
296}
297
c87e2837 298/*
34f01cc1
ED
299 * Fault handling.
300 * if fshared is non NULL, current->mm->mmap_sem is already held
c87e2837 301 */
34f01cc1
ED
302static int futex_handle_fault(unsigned long address,
303 struct rw_semaphore *fshared, int attempt)
c87e2837
IM
304{
305 struct vm_area_struct * vma;
306 struct mm_struct *mm = current->mm;
34f01cc1 307 int ret = -EFAULT;
c87e2837 308
34f01cc1
ED
309 if (attempt > 2)
310 return ret;
c87e2837 311
61270708 312 down_read(&mm->mmap_sem);
34f01cc1
ED
313 vma = find_vma(mm, address);
314 if (vma && address >= vma->vm_start &&
315 (vma->vm_flags & VM_WRITE)) {
83c54070
NP
316 int fault;
317 fault = handle_mm_fault(mm, vma, address, 1);
318 if (unlikely((fault & VM_FAULT_ERROR))) {
319#if 0
320 /* XXX: let's do this when we verify it is OK */
321 if (ret & VM_FAULT_OOM)
322 ret = -ENOMEM;
323#endif
324 } else {
34f01cc1 325 ret = 0;
83c54070
NP
326 if (fault & VM_FAULT_MAJOR)
327 current->maj_flt++;
328 else
329 current->min_flt++;
34f01cc1 330 }
c87e2837 331 }
61270708 332 up_read(&mm->mmap_sem);
34f01cc1 333 return ret;
c87e2837
IM
334}
335
336/*
337 * PI code:
338 */
339static int refill_pi_state_cache(void)
340{
341 struct futex_pi_state *pi_state;
342
343 if (likely(current->pi_state_cache))
344 return 0;
345
4668edc3 346 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
347
348 if (!pi_state)
349 return -ENOMEM;
350
c87e2837
IM
351 INIT_LIST_HEAD(&pi_state->list);
352 /* pi_mutex gets initialized later */
353 pi_state->owner = NULL;
354 atomic_set(&pi_state->refcount, 1);
38d47c1b 355 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
356
357 current->pi_state_cache = pi_state;
358
359 return 0;
360}
361
362static struct futex_pi_state * alloc_pi_state(void)
363{
364 struct futex_pi_state *pi_state = current->pi_state_cache;
365
366 WARN_ON(!pi_state);
367 current->pi_state_cache = NULL;
368
369 return pi_state;
370}
371
372static void free_pi_state(struct futex_pi_state *pi_state)
373{
374 if (!atomic_dec_and_test(&pi_state->refcount))
375 return;
376
377 /*
378 * If pi_state->owner is NULL, the owner is most probably dying
379 * and has cleaned up the pi_state already
380 */
381 if (pi_state->owner) {
382 spin_lock_irq(&pi_state->owner->pi_lock);
383 list_del_init(&pi_state->list);
384 spin_unlock_irq(&pi_state->owner->pi_lock);
385
386 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
387 }
388
389 if (current->pi_state_cache)
390 kfree(pi_state);
391 else {
392 /*
393 * pi_state->list is already empty.
394 * clear pi_state->owner.
395 * refcount is at 0 - put it back to 1.
396 */
397 pi_state->owner = NULL;
398 atomic_set(&pi_state->refcount, 1);
399 current->pi_state_cache = pi_state;
400 }
401}
402
403/*
404 * Look up the task based on what TID userspace gave us.
405 * We dont trust it.
406 */
407static struct task_struct * futex_find_get_task(pid_t pid)
408{
409 struct task_struct *p;
410
d359b549 411 rcu_read_lock();
228ebcbe 412 p = find_task_by_vpid(pid);
a06381fe
TG
413 if (!p || ((current->euid != p->euid) && (current->euid != p->uid)))
414 p = ERR_PTR(-ESRCH);
415 else
416 get_task_struct(p);
417
d359b549 418 rcu_read_unlock();
c87e2837
IM
419
420 return p;
421}
422
423/*
424 * This task is holding PI mutexes at exit time => bad.
425 * Kernel cleans up PI-state, but userspace is likely hosed.
426 * (Robust-futex cleanup is separate and might save the day for userspace.)
427 */
428void exit_pi_state_list(struct task_struct *curr)
429{
c87e2837
IM
430 struct list_head *next, *head = &curr->pi_state_list;
431 struct futex_pi_state *pi_state;
627371d7 432 struct futex_hash_bucket *hb;
38d47c1b 433 union futex_key key = FUTEX_KEY_INIT;
c87e2837 434
a0c1e907
TG
435 if (!futex_cmpxchg_enabled)
436 return;
c87e2837
IM
437 /*
438 * We are a ZOMBIE and nobody can enqueue itself on
439 * pi_state_list anymore, but we have to be careful
627371d7 440 * versus waiters unqueueing themselves:
c87e2837
IM
441 */
442 spin_lock_irq(&curr->pi_lock);
443 while (!list_empty(head)) {
444
445 next = head->next;
446 pi_state = list_entry(next, struct futex_pi_state, list);
447 key = pi_state->key;
627371d7 448 hb = hash_futex(&key);
c87e2837
IM
449 spin_unlock_irq(&curr->pi_lock);
450
c87e2837
IM
451 spin_lock(&hb->lock);
452
453 spin_lock_irq(&curr->pi_lock);
627371d7
IM
454 /*
455 * We dropped the pi-lock, so re-check whether this
456 * task still owns the PI-state:
457 */
c87e2837
IM
458 if (head->next != next) {
459 spin_unlock(&hb->lock);
460 continue;
461 }
462
c87e2837 463 WARN_ON(pi_state->owner != curr);
627371d7
IM
464 WARN_ON(list_empty(&pi_state->list));
465 list_del_init(&pi_state->list);
c87e2837
IM
466 pi_state->owner = NULL;
467 spin_unlock_irq(&curr->pi_lock);
468
469 rt_mutex_unlock(&pi_state->pi_mutex);
470
471 spin_unlock(&hb->lock);
472
473 spin_lock_irq(&curr->pi_lock);
474 }
475 spin_unlock_irq(&curr->pi_lock);
476}
477
478static int
d0aa7a70
PP
479lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
480 union futex_key *key, struct futex_pi_state **ps)
c87e2837
IM
481{
482 struct futex_pi_state *pi_state = NULL;
483 struct futex_q *this, *next;
ec92d082 484 struct plist_head *head;
c87e2837 485 struct task_struct *p;
778e9a9c 486 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837
IM
487
488 head = &hb->chain;
489
ec92d082 490 plist_for_each_entry_safe(this, next, head, list) {
d0aa7a70 491 if (match_futex(&this->key, key)) {
c87e2837
IM
492 /*
493 * Another waiter already exists - bump up
494 * the refcount and return its pi_state:
495 */
496 pi_state = this->pi_state;
06a9ec29
TG
497 /*
498 * Userspace might have messed up non PI and PI futexes
499 */
500 if (unlikely(!pi_state))
501 return -EINVAL;
502
627371d7 503 WARN_ON(!atomic_read(&pi_state->refcount));
778e9a9c
AK
504 WARN_ON(pid && pi_state->owner &&
505 pi_state->owner->pid != pid);
627371d7 506
c87e2837 507 atomic_inc(&pi_state->refcount);
d0aa7a70 508 *ps = pi_state;
c87e2837
IM
509
510 return 0;
511 }
512 }
513
514 /*
e3f2ddea 515 * We are the first waiter - try to look up the real owner and attach
778e9a9c 516 * the new pi_state to it, but bail out when TID = 0
c87e2837 517 */
778e9a9c 518 if (!pid)
e3f2ddea 519 return -ESRCH;
c87e2837 520 p = futex_find_get_task(pid);
778e9a9c
AK
521 if (IS_ERR(p))
522 return PTR_ERR(p);
523
524 /*
525 * We need to look at the task state flags to figure out,
526 * whether the task is exiting. To protect against the do_exit
527 * change of the task flags, we do this protected by
528 * p->pi_lock:
529 */
530 spin_lock_irq(&p->pi_lock);
531 if (unlikely(p->flags & PF_EXITING)) {
532 /*
533 * The task is on the way out. When PF_EXITPIDONE is
534 * set, we know that the task has finished the
535 * cleanup:
536 */
537 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
538
539 spin_unlock_irq(&p->pi_lock);
540 put_task_struct(p);
541 return ret;
542 }
c87e2837
IM
543
544 pi_state = alloc_pi_state();
545
546 /*
547 * Initialize the pi_mutex in locked state and make 'p'
548 * the owner of it:
549 */
550 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
551
552 /* Store the key for possible exit cleanups: */
d0aa7a70 553 pi_state->key = *key;
c87e2837 554
627371d7 555 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
556 list_add(&pi_state->list, &p->pi_state_list);
557 pi_state->owner = p;
558 spin_unlock_irq(&p->pi_lock);
559
560 put_task_struct(p);
561
d0aa7a70 562 *ps = pi_state;
c87e2837
IM
563
564 return 0;
565}
566
1da177e4
LT
567/*
568 * The hash bucket lock must be held when this is called.
569 * Afterwards, the futex_q must not be accessed.
570 */
571static void wake_futex(struct futex_q *q)
572{
ec92d082 573 plist_del(&q->list, &q->list.plist);
1da177e4
LT
574 /*
575 * The lock in wake_up_all() is a crucial memory barrier after the
ec92d082 576 * plist_del() and also before assigning to q->lock_ptr.
1da177e4
LT
577 */
578 wake_up_all(&q->waiters);
579 /*
580 * The waiting task can free the futex_q as soon as this is written,
581 * without taking any locks. This must come last.
8e31108b
AM
582 *
583 * A memory barrier is required here to prevent the following store
584 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
585 * at the end of wake_up_all() does not prevent this store from
586 * moving.
1da177e4 587 */
ccdea2f8 588 smp_wmb();
1da177e4
LT
589 q->lock_ptr = NULL;
590}
591
c87e2837
IM
592static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
593{
594 struct task_struct *new_owner;
595 struct futex_pi_state *pi_state = this->pi_state;
596 u32 curval, newval;
597
598 if (!pi_state)
599 return -EINVAL;
600
21778867 601 spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
602 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
603
604 /*
605 * This happens when we have stolen the lock and the original
606 * pending owner did not enqueue itself back on the rt_mutex.
607 * Thats not a tragedy. We know that way, that a lock waiter
608 * is on the fly. We make the futex_q waiter the pending owner.
609 */
610 if (!new_owner)
611 new_owner = this->task;
612
613 /*
614 * We pass it to the next owner. (The WAITERS bit is always
615 * kept enabled while there is PI state around. We must also
616 * preserve the owner died bit.)
617 */
e3f2ddea 618 if (!(uval & FUTEX_OWNER_DIED)) {
778e9a9c
AK
619 int ret = 0;
620
b488893a 621 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 622
36cf3b5c 623 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
778e9a9c 624
e3f2ddea 625 if (curval == -EFAULT)
778e9a9c 626 ret = -EFAULT;
cde898fa 627 else if (curval != uval)
778e9a9c
AK
628 ret = -EINVAL;
629 if (ret) {
630 spin_unlock(&pi_state->pi_mutex.wait_lock);
631 return ret;
632 }
e3f2ddea 633 }
c87e2837 634
627371d7
IM
635 spin_lock_irq(&pi_state->owner->pi_lock);
636 WARN_ON(list_empty(&pi_state->list));
637 list_del_init(&pi_state->list);
638 spin_unlock_irq(&pi_state->owner->pi_lock);
639
640 spin_lock_irq(&new_owner->pi_lock);
641 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
642 list_add(&pi_state->list, &new_owner->pi_state_list);
643 pi_state->owner = new_owner;
627371d7
IM
644 spin_unlock_irq(&new_owner->pi_lock);
645
21778867 646 spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
647 rt_mutex_unlock(&pi_state->pi_mutex);
648
649 return 0;
650}
651
652static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
653{
654 u32 oldval;
655
656 /*
657 * There is no waiter, so we unlock the futex. The owner died
658 * bit has not to be preserved here. We are the owner:
659 */
36cf3b5c 660 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
c87e2837
IM
661
662 if (oldval == -EFAULT)
663 return oldval;
664 if (oldval != uval)
665 return -EAGAIN;
666
667 return 0;
668}
669
8b8f319f
IM
670/*
671 * Express the locking dependencies for lockdep:
672 */
673static inline void
674double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
675{
676 if (hb1 <= hb2) {
677 spin_lock(&hb1->lock);
678 if (hb1 < hb2)
679 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
680 } else { /* hb1 > hb2 */
681 spin_lock(&hb2->lock);
682 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
683 }
684}
685
1da177e4
LT
686/*
687 * Wake up all waiters hashed on the physical page that is mapped
688 * to this virtual address:
689 */
34f01cc1 690static int futex_wake(u32 __user *uaddr, struct rw_semaphore *fshared,
cd689985 691 int nr_wake, u32 bitset)
1da177e4 692{
e2970f2f 693 struct futex_hash_bucket *hb;
1da177e4 694 struct futex_q *this, *next;
ec92d082 695 struct plist_head *head;
38d47c1b 696 union futex_key key = FUTEX_KEY_INIT;
1da177e4
LT
697 int ret;
698
cd689985
TG
699 if (!bitset)
700 return -EINVAL;
701
34f01cc1 702 ret = get_futex_key(uaddr, fshared, &key);
1da177e4
LT
703 if (unlikely(ret != 0))
704 goto out;
705
e2970f2f
IM
706 hb = hash_futex(&key);
707 spin_lock(&hb->lock);
708 head = &hb->chain;
1da177e4 709
ec92d082 710 plist_for_each_entry_safe(this, next, head, list) {
1da177e4 711 if (match_futex (&this->key, &key)) {
ed6f7b10
IM
712 if (this->pi_state) {
713 ret = -EINVAL;
714 break;
715 }
cd689985
TG
716
717 /* Check if one of the bits is set in both bitsets */
718 if (!(this->bitset & bitset))
719 continue;
720
1da177e4
LT
721 wake_futex(this);
722 if (++ret >= nr_wake)
723 break;
724 }
725 }
726
e2970f2f 727 spin_unlock(&hb->lock);
1da177e4 728out:
38d47c1b 729 put_futex_key(fshared, &key);
1da177e4
LT
730 return ret;
731}
732
4732efbe
JJ
733/*
734 * Wake up all waiters hashed on the physical page that is mapped
735 * to this virtual address:
736 */
e2970f2f 737static int
34f01cc1
ED
738futex_wake_op(u32 __user *uaddr1, struct rw_semaphore *fshared,
739 u32 __user *uaddr2,
e2970f2f 740 int nr_wake, int nr_wake2, int op)
4732efbe 741{
38d47c1b 742 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 743 struct futex_hash_bucket *hb1, *hb2;
ec92d082 744 struct plist_head *head;
4732efbe
JJ
745 struct futex_q *this, *next;
746 int ret, op_ret, attempt = 0;
747
748retryfull:
34f01cc1 749 ret = get_futex_key(uaddr1, fshared, &key1);
4732efbe
JJ
750 if (unlikely(ret != 0))
751 goto out;
34f01cc1 752 ret = get_futex_key(uaddr2, fshared, &key2);
4732efbe
JJ
753 if (unlikely(ret != 0))
754 goto out;
755
e2970f2f
IM
756 hb1 = hash_futex(&key1);
757 hb2 = hash_futex(&key2);
4732efbe
JJ
758
759retry:
8b8f319f 760 double_lock_hb(hb1, hb2);
4732efbe 761
e2970f2f 762 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 763 if (unlikely(op_ret < 0)) {
e2970f2f 764 u32 dummy;
4732efbe 765
e2970f2f
IM
766 spin_unlock(&hb1->lock);
767 if (hb1 != hb2)
768 spin_unlock(&hb2->lock);
4732efbe 769
7ee1dd3f 770#ifndef CONFIG_MMU
e2970f2f
IM
771 /*
772 * we don't get EFAULT from MMU faults if we don't have an MMU,
773 * but we might get them from range checking
774 */
7ee1dd3f
DH
775 ret = op_ret;
776 goto out;
777#endif
778
796f8d9b
DG
779 if (unlikely(op_ret != -EFAULT)) {
780 ret = op_ret;
781 goto out;
782 }
783
e2970f2f
IM
784 /*
785 * futex_atomic_op_inuser needs to both read and write
4732efbe
JJ
786 * *(int __user *)uaddr2, but we can't modify it
787 * non-atomically. Therefore, if get_user below is not
788 * enough, we need to handle the fault ourselves, while
e2970f2f
IM
789 * still holding the mmap_sem.
790 */
4732efbe 791 if (attempt++) {
34f01cc1 792 ret = futex_handle_fault((unsigned long)uaddr2,
36cf3b5c 793 fshared, attempt);
34f01cc1 794 if (ret)
4732efbe 795 goto out;
4732efbe
JJ
796 goto retry;
797 }
798
e2970f2f 799 ret = get_user(dummy, uaddr2);
4732efbe
JJ
800 if (ret)
801 return ret;
802
803 goto retryfull;
804 }
805
e2970f2f 806 head = &hb1->chain;
4732efbe 807
ec92d082 808 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
809 if (match_futex (&this->key, &key1)) {
810 wake_futex(this);
811 if (++ret >= nr_wake)
812 break;
813 }
814 }
815
816 if (op_ret > 0) {
e2970f2f 817 head = &hb2->chain;
4732efbe
JJ
818
819 op_ret = 0;
ec92d082 820 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
821 if (match_futex (&this->key, &key2)) {
822 wake_futex(this);
823 if (++op_ret >= nr_wake2)
824 break;
825 }
826 }
827 ret += op_ret;
828 }
829
e2970f2f
IM
830 spin_unlock(&hb1->lock);
831 if (hb1 != hb2)
832 spin_unlock(&hb2->lock);
4732efbe 833out:
38d47c1b
PZ
834 put_futex_key(fshared, &key2);
835 put_futex_key(fshared, &key1);
36cf3b5c 836
4732efbe
JJ
837 return ret;
838}
839
1da177e4
LT
840/*
841 * Requeue all waiters hashed on one physical page to another
842 * physical page.
843 */
34f01cc1
ED
844static int futex_requeue(u32 __user *uaddr1, struct rw_semaphore *fshared,
845 u32 __user *uaddr2,
e2970f2f 846 int nr_wake, int nr_requeue, u32 *cmpval)
1da177e4 847{
38d47c1b 848 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 849 struct futex_hash_bucket *hb1, *hb2;
ec92d082 850 struct plist_head *head1;
1da177e4
LT
851 struct futex_q *this, *next;
852 int ret, drop_count = 0;
853
854 retry:
34f01cc1 855 ret = get_futex_key(uaddr1, fshared, &key1);
1da177e4
LT
856 if (unlikely(ret != 0))
857 goto out;
34f01cc1 858 ret = get_futex_key(uaddr2, fshared, &key2);
1da177e4
LT
859 if (unlikely(ret != 0))
860 goto out;
861
e2970f2f
IM
862 hb1 = hash_futex(&key1);
863 hb2 = hash_futex(&key2);
1da177e4 864
8b8f319f 865 double_lock_hb(hb1, hb2);
1da177e4 866
e2970f2f
IM
867 if (likely(cmpval != NULL)) {
868 u32 curval;
1da177e4 869
e2970f2f 870 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
871
872 if (unlikely(ret)) {
e2970f2f
IM
873 spin_unlock(&hb1->lock);
874 if (hb1 != hb2)
875 spin_unlock(&hb2->lock);
1da177e4 876
e2970f2f 877 ret = get_user(curval, uaddr1);
1da177e4
LT
878
879 if (!ret)
880 goto retry;
881
882 return ret;
883 }
e2970f2f 884 if (curval != *cmpval) {
1da177e4
LT
885 ret = -EAGAIN;
886 goto out_unlock;
887 }
888 }
889
e2970f2f 890 head1 = &hb1->chain;
ec92d082 891 plist_for_each_entry_safe(this, next, head1, list) {
1da177e4
LT
892 if (!match_futex (&this->key, &key1))
893 continue;
894 if (++ret <= nr_wake) {
895 wake_futex(this);
896 } else {
59e0e0ac
SD
897 /*
898 * If key1 and key2 hash to the same bucket, no need to
899 * requeue.
900 */
901 if (likely(head1 != &hb2->chain)) {
ec92d082
PP
902 plist_del(&this->list, &hb1->chain);
903 plist_add(&this->list, &hb2->chain);
59e0e0ac 904 this->lock_ptr = &hb2->lock;
ec92d082
PP
905#ifdef CONFIG_DEBUG_PI_LIST
906 this->list.plist.lock = &hb2->lock;
907#endif
778e9a9c 908 }
1da177e4 909 this->key = key2;
9adef58b 910 get_futex_key_refs(&key2);
1da177e4
LT
911 drop_count++;
912
913 if (ret - nr_wake >= nr_requeue)
914 break;
1da177e4
LT
915 }
916 }
917
918out_unlock:
e2970f2f
IM
919 spin_unlock(&hb1->lock);
920 if (hb1 != hb2)
921 spin_unlock(&hb2->lock);
1da177e4 922
9adef58b 923 /* drop_futex_key_refs() must be called outside the spinlocks. */
1da177e4 924 while (--drop_count >= 0)
9adef58b 925 drop_futex_key_refs(&key1);
1da177e4
LT
926
927out:
38d47c1b
PZ
928 put_futex_key(fshared, &key2);
929 put_futex_key(fshared, &key1);
1da177e4
LT
930 return ret;
931}
932
933/* The key must be already stored in q->key. */
82af7aca 934static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1da177e4 935{
e2970f2f 936 struct futex_hash_bucket *hb;
1da177e4 937
1da177e4
LT
938 init_waitqueue_head(&q->waiters);
939
9adef58b 940 get_futex_key_refs(&q->key);
e2970f2f
IM
941 hb = hash_futex(&q->key);
942 q->lock_ptr = &hb->lock;
1da177e4 943
e2970f2f
IM
944 spin_lock(&hb->lock);
945 return hb;
1da177e4
LT
946}
947
82af7aca 948static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 949{
ec92d082
PP
950 int prio;
951
952 /*
953 * The priority used to register this element is
954 * - either the real thread-priority for the real-time threads
955 * (i.e. threads with a priority lower than MAX_RT_PRIO)
956 * - or MAX_RT_PRIO for non-RT threads.
957 * Thus, all RT-threads are woken first in priority order, and
958 * the others are woken last, in FIFO order.
959 */
960 prio = min(current->normal_prio, MAX_RT_PRIO);
961
962 plist_node_init(&q->list, prio);
963#ifdef CONFIG_DEBUG_PI_LIST
964 q->list.plist.lock = &hb->lock;
965#endif
966 plist_add(&q->list, &hb->chain);
c87e2837 967 q->task = current;
e2970f2f 968 spin_unlock(&hb->lock);
1da177e4
LT
969}
970
971static inline void
e2970f2f 972queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 973{
e2970f2f 974 spin_unlock(&hb->lock);
9adef58b 975 drop_futex_key_refs(&q->key);
1da177e4
LT
976}
977
978/*
979 * queue_me and unqueue_me must be called as a pair, each
980 * exactly once. They are called with the hashed spinlock held.
981 */
982
1da177e4
LT
983/* Return 1 if we were still queued (ie. 0 means we were woken) */
984static int unqueue_me(struct futex_q *q)
985{
1da177e4 986 spinlock_t *lock_ptr;
e2970f2f 987 int ret = 0;
1da177e4
LT
988
989 /* In the common case we don't take the spinlock, which is nice. */
990 retry:
991 lock_ptr = q->lock_ptr;
e91467ec 992 barrier();
c80544dc 993 if (lock_ptr != NULL) {
1da177e4
LT
994 spin_lock(lock_ptr);
995 /*
996 * q->lock_ptr can change between reading it and
997 * spin_lock(), causing us to take the wrong lock. This
998 * corrects the race condition.
999 *
1000 * Reasoning goes like this: if we have the wrong lock,
1001 * q->lock_ptr must have changed (maybe several times)
1002 * between reading it and the spin_lock(). It can
1003 * change again after the spin_lock() but only if it was
1004 * already changed before the spin_lock(). It cannot,
1005 * however, change back to the original value. Therefore
1006 * we can detect whether we acquired the correct lock.
1007 */
1008 if (unlikely(lock_ptr != q->lock_ptr)) {
1009 spin_unlock(lock_ptr);
1010 goto retry;
1011 }
ec92d082
PP
1012 WARN_ON(plist_node_empty(&q->list));
1013 plist_del(&q->list, &q->list.plist);
c87e2837
IM
1014
1015 BUG_ON(q->pi_state);
1016
1da177e4
LT
1017 spin_unlock(lock_ptr);
1018 ret = 1;
1019 }
1020
9adef58b 1021 drop_futex_key_refs(&q->key);
1da177e4
LT
1022 return ret;
1023}
1024
c87e2837
IM
1025/*
1026 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1027 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1028 * and dropped here.
c87e2837 1029 */
d0aa7a70 1030static void unqueue_me_pi(struct futex_q *q)
c87e2837 1031{
ec92d082
PP
1032 WARN_ON(plist_node_empty(&q->list));
1033 plist_del(&q->list, &q->list.plist);
c87e2837
IM
1034
1035 BUG_ON(!q->pi_state);
1036 free_pi_state(q->pi_state);
1037 q->pi_state = NULL;
1038
d0aa7a70 1039 spin_unlock(q->lock_ptr);
c87e2837 1040
9adef58b 1041 drop_futex_key_refs(&q->key);
c87e2837
IM
1042}
1043
d0aa7a70 1044/*
cdf71a10 1045 * Fixup the pi_state owner with the new owner.
d0aa7a70 1046 *
778e9a9c
AK
1047 * Must be called with hash bucket lock held and mm->sem held for non
1048 * private futexes.
d0aa7a70 1049 */
778e9a9c 1050static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1b7558e4
TG
1051 struct task_struct *newowner,
1052 struct rw_semaphore *fshared)
d0aa7a70 1053{
cdf71a10 1054 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 1055 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 1056 struct task_struct *oldowner = pi_state->owner;
d0aa7a70 1057 u32 uval, curval, newval;
1b7558e4 1058 int ret, attempt = 0;
d0aa7a70
PP
1059
1060 /* Owner died? */
1b7558e4
TG
1061 if (!pi_state->owner)
1062 newtid |= FUTEX_OWNER_DIED;
1063
1064 /*
1065 * We are here either because we stole the rtmutex from the
1066 * pending owner or we are the pending owner which failed to
1067 * get the rtmutex. We have to replace the pending owner TID
1068 * in the user space variable. This must be atomic as we have
1069 * to preserve the owner died bit here.
1070 *
1071 * Note: We write the user space value _before_ changing the
1072 * pi_state because we can fault here. Imagine swapped out
1073 * pages or a fork, which was running right before we acquired
1074 * mmap_sem, that marked all the anonymous memory readonly for
1075 * cow.
1076 *
1077 * Modifying pi_state _before_ the user space value would
1078 * leave the pi_state in an inconsistent state when we fault
1079 * here, because we need to drop the hash bucket lock to
1080 * handle the fault. This might be observed in the PID check
1081 * in lookup_pi_state.
1082 */
1083retry:
1084 if (get_futex_value_locked(&uval, uaddr))
1085 goto handle_fault;
1086
1087 while (1) {
1088 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1089
1090 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1091
1092 if (curval == -EFAULT)
1093 goto handle_fault;
1094 if (curval == uval)
1095 break;
1096 uval = curval;
1097 }
1098
1099 /*
1100 * We fixed up user space. Now we need to fix the pi_state
1101 * itself.
1102 */
d0aa7a70
PP
1103 if (pi_state->owner != NULL) {
1104 spin_lock_irq(&pi_state->owner->pi_lock);
1105 WARN_ON(list_empty(&pi_state->list));
1106 list_del_init(&pi_state->list);
1107 spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 1108 }
d0aa7a70 1109
cdf71a10 1110 pi_state->owner = newowner;
d0aa7a70 1111
cdf71a10 1112 spin_lock_irq(&newowner->pi_lock);
d0aa7a70 1113 WARN_ON(!list_empty(&pi_state->list));
cdf71a10
TG
1114 list_add(&pi_state->list, &newowner->pi_state_list);
1115 spin_unlock_irq(&newowner->pi_lock);
1b7558e4 1116 return 0;
d0aa7a70 1117
d0aa7a70 1118 /*
1b7558e4
TG
1119 * To handle the page fault we need to drop the hash bucket
1120 * lock here. That gives the other task (either the pending
1121 * owner itself or the task which stole the rtmutex) the
1122 * chance to try the fixup of the pi_state. So once we are
1123 * back from handling the fault we need to check the pi_state
1124 * after reacquiring the hash bucket lock and before trying to
1125 * do another fixup. When the fixup has been done already we
1126 * simply return.
d0aa7a70 1127 */
1b7558e4
TG
1128handle_fault:
1129 spin_unlock(q->lock_ptr);
778e9a9c 1130
1b7558e4 1131 ret = futex_handle_fault((unsigned long)uaddr, fshared, attempt++);
778e9a9c 1132
1b7558e4 1133 spin_lock(q->lock_ptr);
778e9a9c 1134
1b7558e4
TG
1135 /*
1136 * Check if someone else fixed it for us:
1137 */
1138 if (pi_state->owner != oldowner)
1139 return 0;
1140
1141 if (ret)
1142 return ret;
1143
1144 goto retry;
d0aa7a70
PP
1145}
1146
34f01cc1
ED
1147/*
1148 * In case we must use restart_block to restart a futex_wait,
ce6bd420 1149 * we encode in the 'flags' shared capability
34f01cc1 1150 */
ce6bd420 1151#define FLAGS_SHARED 1
34f01cc1 1152
72c1bbf3 1153static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 1154
34f01cc1 1155static int futex_wait(u32 __user *uaddr, struct rw_semaphore *fshared,
cd689985 1156 u32 val, ktime_t *abs_time, u32 bitset)
1da177e4 1157{
c87e2837
IM
1158 struct task_struct *curr = current;
1159 DECLARE_WAITQUEUE(wait, curr);
e2970f2f 1160 struct futex_hash_bucket *hb;
1da177e4 1161 struct futex_q q;
e2970f2f
IM
1162 u32 uval;
1163 int ret;
bd197234 1164 struct hrtimer_sleeper t;
c19384b5 1165 int rem = 0;
1da177e4 1166
cd689985
TG
1167 if (!bitset)
1168 return -EINVAL;
1169
c87e2837 1170 q.pi_state = NULL;
cd689985 1171 q.bitset = bitset;
1da177e4 1172 retry:
38d47c1b 1173 q.key = FUTEX_KEY_INIT;
34f01cc1 1174 ret = get_futex_key(uaddr, fshared, &q.key);
1da177e4
LT
1175 if (unlikely(ret != 0))
1176 goto out_release_sem;
1177
82af7aca 1178 hb = queue_lock(&q);
1da177e4
LT
1179
1180 /*
1181 * Access the page AFTER the futex is queued.
1182 * Order is important:
1183 *
1184 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1185 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1186 *
1187 * The basic logical guarantee of a futex is that it blocks ONLY
1188 * if cond(var) is known to be true at the time of blocking, for
1189 * any cond. If we queued after testing *uaddr, that would open
1190 * a race condition where we could block indefinitely with
1191 * cond(var) false, which would violate the guarantee.
1192 *
1193 * A consequence is that futex_wait() can return zero and absorb
1194 * a wakeup when *uaddr != val on entry to the syscall. This is
1195 * rare, but normal.
1196 *
34f01cc1
ED
1197 * for shared futexes, we hold the mmap semaphore, so the mapping
1198 * cannot have changed since we looked it up in get_futex_key.
1da177e4 1199 */
e2970f2f 1200 ret = get_futex_value_locked(&uval, uaddr);
1da177e4
LT
1201
1202 if (unlikely(ret)) {
e2970f2f 1203 queue_unlock(&q, hb);
1da177e4 1204
e2970f2f 1205 ret = get_user(uval, uaddr);
1da177e4
LT
1206
1207 if (!ret)
1208 goto retry;
1209 return ret;
1210 }
c87e2837
IM
1211 ret = -EWOULDBLOCK;
1212 if (uval != val)
1213 goto out_unlock_release_sem;
1da177e4
LT
1214
1215 /* Only actually queue if *uaddr contained val. */
82af7aca 1216 queue_me(&q, hb);
1da177e4 1217
1da177e4
LT
1218 /*
1219 * There might have been scheduling since the queue_me(), as we
1220 * cannot hold a spinlock across the get_user() in case it
1221 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1222 * queueing ourselves into the futex hash. This code thus has to
1223 * rely on the futex_wake() code removing us from hash when it
1224 * wakes us up.
1225 */
1226
1227 /* add_wait_queue is the barrier after __set_current_state. */
1228 __set_current_state(TASK_INTERRUPTIBLE);
1229 add_wait_queue(&q.waiters, &wait);
1230 /*
ec92d082 1231 * !plist_node_empty() is safe here without any lock.
1da177e4
LT
1232 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1233 */
ec92d082 1234 if (likely(!plist_node_empty(&q.list))) {
c19384b5
PP
1235 if (!abs_time)
1236 schedule();
1237 else {
237fc6e7
TG
1238 hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC,
1239 HRTIMER_MODE_ABS);
c19384b5
PP
1240 hrtimer_init_sleeper(&t, current);
1241 t.timer.expires = *abs_time;
1242
237fc6e7
TG
1243 hrtimer_start(&t.timer, t.timer.expires,
1244 HRTIMER_MODE_ABS);
3588a085
PZ
1245 if (!hrtimer_active(&t.timer))
1246 t.task = NULL;
c19384b5
PP
1247
1248 /*
1249 * the timer could have already expired, in which
1250 * case current would be flagged for rescheduling.
1251 * Don't bother calling schedule.
1252 */
1253 if (likely(t.task))
1254 schedule();
1255
1256 hrtimer_cancel(&t.timer);
72c1bbf3 1257
c19384b5
PP
1258 /* Flag if a timeout occured */
1259 rem = (t.task == NULL);
237fc6e7
TG
1260
1261 destroy_hrtimer_on_stack(&t.timer);
c19384b5 1262 }
72c1bbf3 1263 }
1da177e4
LT
1264 __set_current_state(TASK_RUNNING);
1265
1266 /*
1267 * NOTE: we don't remove ourselves from the waitqueue because
1268 * we are the only user of it.
1269 */
1270
1271 /* If we were woken (and unqueued), we succeeded, whatever. */
1272 if (!unqueue_me(&q))
1273 return 0;
c19384b5 1274 if (rem)
1da177e4 1275 return -ETIMEDOUT;
72c1bbf3 1276
e2970f2f
IM
1277 /*
1278 * We expect signal_pending(current), but another thread may
1279 * have handled it for us already.
1280 */
c19384b5 1281 if (!abs_time)
72c1bbf3
NP
1282 return -ERESTARTSYS;
1283 else {
1284 struct restart_block *restart;
1285 restart = &current_thread_info()->restart_block;
1286 restart->fn = futex_wait_restart;
ce6bd420
SR
1287 restart->futex.uaddr = (u32 *)uaddr;
1288 restart->futex.val = val;
1289 restart->futex.time = abs_time->tv64;
cd689985 1290 restart->futex.bitset = bitset;
ce6bd420
SR
1291 restart->futex.flags = 0;
1292
34f01cc1 1293 if (fshared)
ce6bd420 1294 restart->futex.flags |= FLAGS_SHARED;
72c1bbf3
NP
1295 return -ERESTART_RESTARTBLOCK;
1296 }
1da177e4 1297
c87e2837
IM
1298 out_unlock_release_sem:
1299 queue_unlock(&q, hb);
1300
1da177e4 1301 out_release_sem:
38d47c1b 1302 put_futex_key(fshared, &q.key);
c87e2837
IM
1303 return ret;
1304}
1305
72c1bbf3
NP
1306
1307static long futex_wait_restart(struct restart_block *restart)
1308{
ce6bd420 1309 u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
34f01cc1 1310 struct rw_semaphore *fshared = NULL;
ce6bd420 1311 ktime_t t;
72c1bbf3 1312
ce6bd420 1313 t.tv64 = restart->futex.time;
72c1bbf3 1314 restart->fn = do_no_restart_syscall;
ce6bd420 1315 if (restart->futex.flags & FLAGS_SHARED)
34f01cc1 1316 fshared = &current->mm->mmap_sem;
cd689985
TG
1317 return (long)futex_wait(uaddr, fshared, restart->futex.val, &t,
1318 restart->futex.bitset);
72c1bbf3
NP
1319}
1320
1321
c87e2837
IM
1322/*
1323 * Userspace tried a 0 -> TID atomic transition of the futex value
1324 * and failed. The kernel side here does the whole locking operation:
1325 * if there are waiters then it will block, it does PI, etc. (Due to
1326 * races the kernel might see a 0 value of the futex too.)
1327 */
34f01cc1
ED
1328static int futex_lock_pi(u32 __user *uaddr, struct rw_semaphore *fshared,
1329 int detect, ktime_t *time, int trylock)
c87e2837 1330{
c5780e97 1331 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837
IM
1332 struct task_struct *curr = current;
1333 struct futex_hash_bucket *hb;
1334 u32 uval, newval, curval;
1335 struct futex_q q;
778e9a9c 1336 int ret, lock_taken, ownerdied = 0, attempt = 0;
c87e2837
IM
1337
1338 if (refill_pi_state_cache())
1339 return -ENOMEM;
1340
c19384b5 1341 if (time) {
c5780e97 1342 to = &timeout;
237fc6e7
TG
1343 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1344 HRTIMER_MODE_ABS);
c5780e97 1345 hrtimer_init_sleeper(to, current);
c19384b5 1346 to->timer.expires = *time;
c5780e97
TG
1347 }
1348
c87e2837
IM
1349 q.pi_state = NULL;
1350 retry:
38d47c1b 1351 q.key = FUTEX_KEY_INIT;
34f01cc1 1352 ret = get_futex_key(uaddr, fshared, &q.key);
c87e2837
IM
1353 if (unlikely(ret != 0))
1354 goto out_release_sem;
1355
778e9a9c 1356 retry_unlocked:
82af7aca 1357 hb = queue_lock(&q);
c87e2837
IM
1358
1359 retry_locked:
778e9a9c 1360 ret = lock_taken = 0;
d0aa7a70 1361
c87e2837
IM
1362 /*
1363 * To avoid races, we attempt to take the lock here again
1364 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1365 * the locks. It will most likely not succeed.
1366 */
b488893a 1367 newval = task_pid_vnr(current);
c87e2837 1368
36cf3b5c 1369 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
c87e2837
IM
1370
1371 if (unlikely(curval == -EFAULT))
1372 goto uaddr_faulted;
1373
778e9a9c
AK
1374 /*
1375 * Detect deadlocks. In case of REQUEUE_PI this is a valid
1376 * situation and we return success to user space.
1377 */
b488893a 1378 if (unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(current))) {
bd197234 1379 ret = -EDEADLK;
c87e2837
IM
1380 goto out_unlock_release_sem;
1381 }
1382
1383 /*
778e9a9c 1384 * Surprise - we got the lock. Just return to userspace:
c87e2837
IM
1385 */
1386 if (unlikely(!curval))
1387 goto out_unlock_release_sem;
1388
1389 uval = curval;
778e9a9c 1390
d0aa7a70 1391 /*
778e9a9c
AK
1392 * Set the WAITERS flag, so the owner will know it has someone
1393 * to wake at next unlock
d0aa7a70 1394 */
778e9a9c
AK
1395 newval = curval | FUTEX_WAITERS;
1396
1397 /*
1398 * There are two cases, where a futex might have no owner (the
bd197234
TG
1399 * owner TID is 0): OWNER_DIED. We take over the futex in this
1400 * case. We also do an unconditional take over, when the owner
1401 * of the futex died.
778e9a9c
AK
1402 *
1403 * This is safe as we are protected by the hash bucket lock !
1404 */
1405 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
bd197234 1406 /* Keep the OWNER_DIED bit */
b488893a 1407 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(current);
778e9a9c
AK
1408 ownerdied = 0;
1409 lock_taken = 1;
1410 }
c87e2837 1411
36cf3b5c 1412 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
c87e2837
IM
1413
1414 if (unlikely(curval == -EFAULT))
1415 goto uaddr_faulted;
1416 if (unlikely(curval != uval))
1417 goto retry_locked;
1418
778e9a9c 1419 /*
bd197234 1420 * We took the lock due to owner died take over.
778e9a9c 1421 */
bd197234 1422 if (unlikely(lock_taken))
d0aa7a70 1423 goto out_unlock_release_sem;
d0aa7a70 1424
c87e2837
IM
1425 /*
1426 * We dont have the lock. Look up the PI state (or create it if
1427 * we are the first waiter):
1428 */
d0aa7a70 1429 ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
c87e2837
IM
1430
1431 if (unlikely(ret)) {
778e9a9c 1432 switch (ret) {
c87e2837 1433
778e9a9c
AK
1434 case -EAGAIN:
1435 /*
1436 * Task is exiting and we just wait for the
1437 * exit to complete.
1438 */
1439 queue_unlock(&q, hb);
778e9a9c
AK
1440 cond_resched();
1441 goto retry;
c87e2837 1442
778e9a9c
AK
1443 case -ESRCH:
1444 /*
1445 * No owner found for this futex. Check if the
1446 * OWNER_DIED bit is set to figure out whether
1447 * this is a robust futex or not.
1448 */
1449 if (get_futex_value_locked(&curval, uaddr))
c87e2837 1450 goto uaddr_faulted;
778e9a9c
AK
1451
1452 /*
1453 * We simply start over in case of a robust
1454 * futex. The code above will take the futex
1455 * and return happy.
1456 */
1457 if (curval & FUTEX_OWNER_DIED) {
1458 ownerdied = 1;
c87e2837 1459 goto retry_locked;
778e9a9c
AK
1460 }
1461 default:
1462 goto out_unlock_release_sem;
c87e2837 1463 }
c87e2837
IM
1464 }
1465
1466 /*
1467 * Only actually queue now that the atomic ops are done:
1468 */
82af7aca 1469 queue_me(&q, hb);
c87e2837 1470
c87e2837
IM
1471 WARN_ON(!q.pi_state);
1472 /*
1473 * Block on the PI mutex:
1474 */
1475 if (!trylock)
1476 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1477 else {
1478 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1479 /* Fixup the trylock return value: */
1480 ret = ret ? 0 : -EWOULDBLOCK;
1481 }
1482
a99e4e41 1483 spin_lock(q.lock_ptr);
c87e2837 1484
778e9a9c
AK
1485 if (!ret) {
1486 /*
1487 * Got the lock. We might not be the anticipated owner
1488 * if we did a lock-steal - fix up the PI-state in
1489 * that case:
1490 */
1491 if (q.pi_state->owner != curr)
1b7558e4 1492 ret = fixup_pi_state_owner(uaddr, &q, curr, fshared);
778e9a9c 1493 } else {
c87e2837
IM
1494 /*
1495 * Catch the rare case, where the lock was released
778e9a9c
AK
1496 * when we were on the way back before we locked the
1497 * hash bucket.
c87e2837 1498 */
cdf71a10
TG
1499 if (q.pi_state->owner == curr) {
1500 /*
1501 * Try to get the rt_mutex now. This might
1502 * fail as some other task acquired the
1503 * rt_mutex after we removed ourself from the
1504 * rt_mutex waiters list.
1505 */
1506 if (rt_mutex_trylock(&q.pi_state->pi_mutex))
1507 ret = 0;
1508 else {
1509 /*
1510 * pi_state is incorrect, some other
1511 * task did a lock steal and we
1512 * returned due to timeout or signal
1513 * without taking the rt_mutex. Too
1514 * late. We can access the
1515 * rt_mutex_owner without locking, as
1516 * the other task is now blocked on
1517 * the hash bucket lock. Fix the state
1518 * up.
1519 */
1520 struct task_struct *owner;
1521 int res;
1522
1523 owner = rt_mutex_owner(&q.pi_state->pi_mutex);
1b7558e4
TG
1524 res = fixup_pi_state_owner(uaddr, &q, owner,
1525 fshared);
cdf71a10 1526
cdf71a10
TG
1527 /* propagate -EFAULT, if the fixup failed */
1528 if (res)
1529 ret = res;
1530 }
778e9a9c
AK
1531 } else {
1532 /*
1533 * Paranoia check. If we did not take the lock
1534 * in the trylock above, then we should not be
1535 * the owner of the rtmutex, neither the real
1536 * nor the pending one:
1537 */
1538 if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr)
1539 printk(KERN_ERR "futex_lock_pi: ret = %d "
1540 "pi-mutex: %p pi-state %p\n", ret,
1541 q.pi_state->pi_mutex.owner,
1542 q.pi_state->owner);
c87e2837 1543 }
c87e2837
IM
1544 }
1545
778e9a9c
AK
1546 /* Unqueue and drop the lock */
1547 unqueue_me_pi(&q);
c87e2837 1548
237fc6e7
TG
1549 if (to)
1550 destroy_hrtimer_on_stack(&to->timer);
c5780e97 1551 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837
IM
1552
1553 out_unlock_release_sem:
1554 queue_unlock(&q, hb);
1555
1556 out_release_sem:
38d47c1b 1557 put_futex_key(fshared, &q.key);
237fc6e7
TG
1558 if (to)
1559 destroy_hrtimer_on_stack(&to->timer);
c87e2837
IM
1560 return ret;
1561
1562 uaddr_faulted:
1563 /*
1564 * We have to r/w *(int __user *)uaddr, but we can't modify it
1565 * non-atomically. Therefore, if get_user below is not
1566 * enough, we need to handle the fault ourselves, while
1567 * still holding the mmap_sem.
778e9a9c
AK
1568 *
1569 * ... and hb->lock. :-) --ANK
c87e2837 1570 */
778e9a9c
AK
1571 queue_unlock(&q, hb);
1572
c87e2837 1573 if (attempt++) {
34f01cc1
ED
1574 ret = futex_handle_fault((unsigned long)uaddr, fshared,
1575 attempt);
1576 if (ret)
778e9a9c
AK
1577 goto out_release_sem;
1578 goto retry_unlocked;
c87e2837
IM
1579 }
1580
c87e2837
IM
1581 ret = get_user(uval, uaddr);
1582 if (!ret && (uval != -EFAULT))
1583 goto retry;
1584
237fc6e7
TG
1585 if (to)
1586 destroy_hrtimer_on_stack(&to->timer);
c87e2837
IM
1587 return ret;
1588}
1589
c87e2837
IM
1590/*
1591 * Userspace attempted a TID -> 0 atomic transition, and failed.
1592 * This is the in-kernel slowpath: we look up the PI state (if any),
1593 * and do the rt-mutex unlock.
1594 */
34f01cc1 1595static int futex_unlock_pi(u32 __user *uaddr, struct rw_semaphore *fshared)
c87e2837
IM
1596{
1597 struct futex_hash_bucket *hb;
1598 struct futex_q *this, *next;
1599 u32 uval;
ec92d082 1600 struct plist_head *head;
38d47c1b 1601 union futex_key key = FUTEX_KEY_INIT;
c87e2837
IM
1602 int ret, attempt = 0;
1603
1604retry:
1605 if (get_user(uval, uaddr))
1606 return -EFAULT;
1607 /*
1608 * We release only a lock we actually own:
1609 */
b488893a 1610 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
c87e2837 1611 return -EPERM;
c87e2837 1612
34f01cc1 1613 ret = get_futex_key(uaddr, fshared, &key);
c87e2837
IM
1614 if (unlikely(ret != 0))
1615 goto out;
1616
1617 hb = hash_futex(&key);
778e9a9c 1618retry_unlocked:
c87e2837
IM
1619 spin_lock(&hb->lock);
1620
c87e2837
IM
1621 /*
1622 * To avoid races, try to do the TID -> 0 atomic transition
1623 * again. If it succeeds then we can return without waking
1624 * anyone else up:
1625 */
36cf3b5c 1626 if (!(uval & FUTEX_OWNER_DIED))
b488893a 1627 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
36cf3b5c 1628
c87e2837
IM
1629
1630 if (unlikely(uval == -EFAULT))
1631 goto pi_faulted;
1632 /*
1633 * Rare case: we managed to release the lock atomically,
1634 * no need to wake anyone else up:
1635 */
b488893a 1636 if (unlikely(uval == task_pid_vnr(current)))
c87e2837
IM
1637 goto out_unlock;
1638
1639 /*
1640 * Ok, other tasks may need to be woken up - check waiters
1641 * and do the wakeup if necessary:
1642 */
1643 head = &hb->chain;
1644
ec92d082 1645 plist_for_each_entry_safe(this, next, head, list) {
c87e2837
IM
1646 if (!match_futex (&this->key, &key))
1647 continue;
1648 ret = wake_futex_pi(uaddr, uval, this);
1649 /*
1650 * The atomic access to the futex value
1651 * generated a pagefault, so retry the
1652 * user-access and the wakeup:
1653 */
1654 if (ret == -EFAULT)
1655 goto pi_faulted;
1656 goto out_unlock;
1657 }
1658 /*
1659 * No waiters - kernel unlocks the futex:
1660 */
e3f2ddea
IM
1661 if (!(uval & FUTEX_OWNER_DIED)) {
1662 ret = unlock_futex_pi(uaddr, uval);
1663 if (ret == -EFAULT)
1664 goto pi_faulted;
1665 }
c87e2837
IM
1666
1667out_unlock:
1668 spin_unlock(&hb->lock);
1669out:
38d47c1b 1670 put_futex_key(fshared, &key);
c87e2837
IM
1671
1672 return ret;
1673
1674pi_faulted:
1675 /*
1676 * We have to r/w *(int __user *)uaddr, but we can't modify it
1677 * non-atomically. Therefore, if get_user below is not
1678 * enough, we need to handle the fault ourselves, while
1679 * still holding the mmap_sem.
778e9a9c
AK
1680 *
1681 * ... and hb->lock. --ANK
c87e2837 1682 */
778e9a9c
AK
1683 spin_unlock(&hb->lock);
1684
c87e2837 1685 if (attempt++) {
34f01cc1
ED
1686 ret = futex_handle_fault((unsigned long)uaddr, fshared,
1687 attempt);
1688 if (ret)
778e9a9c 1689 goto out;
187226f5 1690 uval = 0;
778e9a9c 1691 goto retry_unlocked;
c87e2837
IM
1692 }
1693
c87e2837
IM
1694 ret = get_user(uval, uaddr);
1695 if (!ret && (uval != -EFAULT))
1696 goto retry;
1697
1da177e4
LT
1698 return ret;
1699}
1700
0771dfef
IM
1701/*
1702 * Support for robust futexes: the kernel cleans up held futexes at
1703 * thread exit time.
1704 *
1705 * Implementation: user-space maintains a per-thread list of locks it
1706 * is holding. Upon do_exit(), the kernel carefully walks this list,
1707 * and marks all locks that are owned by this thread with the
c87e2837 1708 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
1709 * always manipulated with the lock held, so the list is private and
1710 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1711 * field, to allow the kernel to clean up if the thread dies after
1712 * acquiring the lock, but just before it could have added itself to
1713 * the list. There can only be one such pending lock.
1714 */
1715
1716/**
1717 * sys_set_robust_list - set the robust-futex list head of a task
1718 * @head: pointer to the list-head
1719 * @len: length of the list-head, as userspace expects
1720 */
1721asmlinkage long
1722sys_set_robust_list(struct robust_list_head __user *head,
1723 size_t len)
1724{
a0c1e907
TG
1725 if (!futex_cmpxchg_enabled)
1726 return -ENOSYS;
0771dfef
IM
1727 /*
1728 * The kernel knows only one size for now:
1729 */
1730 if (unlikely(len != sizeof(*head)))
1731 return -EINVAL;
1732
1733 current->robust_list = head;
1734
1735 return 0;
1736}
1737
1738/**
1739 * sys_get_robust_list - get the robust-futex list head of a task
1740 * @pid: pid of the process [zero for current task]
1741 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1742 * @len_ptr: pointer to a length field, the kernel fills in the header size
1743 */
1744asmlinkage long
ba46df98 1745sys_get_robust_list(int pid, struct robust_list_head __user * __user *head_ptr,
0771dfef
IM
1746 size_t __user *len_ptr)
1747{
ba46df98 1748 struct robust_list_head __user *head;
0771dfef
IM
1749 unsigned long ret;
1750
a0c1e907
TG
1751 if (!futex_cmpxchg_enabled)
1752 return -ENOSYS;
1753
0771dfef
IM
1754 if (!pid)
1755 head = current->robust_list;
1756 else {
1757 struct task_struct *p;
1758
1759 ret = -ESRCH;
aaa2a97e 1760 rcu_read_lock();
228ebcbe 1761 p = find_task_by_vpid(pid);
0771dfef
IM
1762 if (!p)
1763 goto err_unlock;
1764 ret = -EPERM;
1765 if ((current->euid != p->euid) && (current->euid != p->uid) &&
1766 !capable(CAP_SYS_PTRACE))
1767 goto err_unlock;
1768 head = p->robust_list;
aaa2a97e 1769 rcu_read_unlock();
0771dfef
IM
1770 }
1771
1772 if (put_user(sizeof(*head), len_ptr))
1773 return -EFAULT;
1774 return put_user(head, head_ptr);
1775
1776err_unlock:
aaa2a97e 1777 rcu_read_unlock();
0771dfef
IM
1778
1779 return ret;
1780}
1781
1782/*
1783 * Process a futex-list entry, check whether it's owned by the
1784 * dying task, and do notification if so:
1785 */
e3f2ddea 1786int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 1787{
e3f2ddea 1788 u32 uval, nval, mval;
0771dfef 1789
8f17d3a5
IM
1790retry:
1791 if (get_user(uval, uaddr))
0771dfef
IM
1792 return -1;
1793
b488893a 1794 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
1795 /*
1796 * Ok, this dying thread is truly holding a futex
1797 * of interest. Set the OWNER_DIED bit atomically
1798 * via cmpxchg, and if the value had FUTEX_WAITERS
1799 * set, wake up a waiter (if any). (We have to do a
1800 * futex_wake() even if OWNER_DIED is already set -
1801 * to handle the rare but possible case of recursive
1802 * thread-death.) The rest of the cleanup is done in
1803 * userspace.
1804 */
e3f2ddea
IM
1805 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1806 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
1807
c87e2837
IM
1808 if (nval == -EFAULT)
1809 return -1;
1810
1811 if (nval != uval)
8f17d3a5 1812 goto retry;
0771dfef 1813
e3f2ddea
IM
1814 /*
1815 * Wake robust non-PI futexes here. The wakeup of
1816 * PI futexes happens in exit_pi_state():
1817 */
36cf3b5c 1818 if (!pi && (uval & FUTEX_WAITERS))
cd689985
TG
1819 futex_wake(uaddr, &curr->mm->mmap_sem, 1,
1820 FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
1821 }
1822 return 0;
1823}
1824
e3f2ddea
IM
1825/*
1826 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1827 */
1828static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98
AV
1829 struct robust_list __user * __user *head,
1830 int *pi)
e3f2ddea
IM
1831{
1832 unsigned long uentry;
1833
ba46df98 1834 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
1835 return -EFAULT;
1836
ba46df98 1837 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
1838 *pi = uentry & 1;
1839
1840 return 0;
1841}
1842
0771dfef
IM
1843/*
1844 * Walk curr->robust_list (very carefully, it's a userspace list!)
1845 * and mark any locks found there dead, and notify any waiters.
1846 *
1847 * We silently return on any sign of list-walking problem.
1848 */
1849void exit_robust_list(struct task_struct *curr)
1850{
1851 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e
MS
1852 struct robust_list __user *entry, *next_entry, *pending;
1853 unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
0771dfef 1854 unsigned long futex_offset;
9f96cb1e 1855 int rc;
0771dfef 1856
a0c1e907
TG
1857 if (!futex_cmpxchg_enabled)
1858 return;
1859
0771dfef
IM
1860 /*
1861 * Fetch the list head (which was registered earlier, via
1862 * sys_set_robust_list()):
1863 */
e3f2ddea 1864 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
1865 return;
1866 /*
1867 * Fetch the relative futex offset:
1868 */
1869 if (get_user(futex_offset, &head->futex_offset))
1870 return;
1871 /*
1872 * Fetch any possibly pending lock-add first, and handle it
1873 * if it exists:
1874 */
e3f2ddea 1875 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 1876 return;
e3f2ddea 1877
9f96cb1e 1878 next_entry = NULL; /* avoid warning with gcc */
0771dfef 1879 while (entry != &head->list) {
9f96cb1e
MS
1880 /*
1881 * Fetch the next entry in the list before calling
1882 * handle_futex_death:
1883 */
1884 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
1885 /*
1886 * A pending lock might already be on the list, so
c87e2837 1887 * don't process it twice:
0771dfef
IM
1888 */
1889 if (entry != pending)
ba46df98 1890 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 1891 curr, pi))
0771dfef 1892 return;
9f96cb1e 1893 if (rc)
0771dfef 1894 return;
9f96cb1e
MS
1895 entry = next_entry;
1896 pi = next_pi;
0771dfef
IM
1897 /*
1898 * Avoid excessively long or circular lists:
1899 */
1900 if (!--limit)
1901 break;
1902
1903 cond_resched();
1904 }
9f96cb1e
MS
1905
1906 if (pending)
1907 handle_futex_death((void __user *)pending + futex_offset,
1908 curr, pip);
0771dfef
IM
1909}
1910
c19384b5 1911long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 1912 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 1913{
a0c1e907 1914 int ret = -ENOSYS;
34f01cc1
ED
1915 int cmd = op & FUTEX_CMD_MASK;
1916 struct rw_semaphore *fshared = NULL;
1917
1918 if (!(op & FUTEX_PRIVATE_FLAG))
1919 fshared = &current->mm->mmap_sem;
1da177e4 1920
34f01cc1 1921 switch (cmd) {
1da177e4 1922 case FUTEX_WAIT:
cd689985
TG
1923 val3 = FUTEX_BITSET_MATCH_ANY;
1924 case FUTEX_WAIT_BITSET:
1925 ret = futex_wait(uaddr, fshared, val, timeout, val3);
1da177e4
LT
1926 break;
1927 case FUTEX_WAKE:
cd689985
TG
1928 val3 = FUTEX_BITSET_MATCH_ANY;
1929 case FUTEX_WAKE_BITSET:
1930 ret = futex_wake(uaddr, fshared, val, val3);
1da177e4 1931 break;
1da177e4 1932 case FUTEX_REQUEUE:
34f01cc1 1933 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
1da177e4
LT
1934 break;
1935 case FUTEX_CMP_REQUEUE:
34f01cc1 1936 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
1da177e4 1937 break;
4732efbe 1938 case FUTEX_WAKE_OP:
34f01cc1 1939 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
4732efbe 1940 break;
c87e2837 1941 case FUTEX_LOCK_PI:
a0c1e907
TG
1942 if (futex_cmpxchg_enabled)
1943 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
c87e2837
IM
1944 break;
1945 case FUTEX_UNLOCK_PI:
a0c1e907
TG
1946 if (futex_cmpxchg_enabled)
1947 ret = futex_unlock_pi(uaddr, fshared);
c87e2837
IM
1948 break;
1949 case FUTEX_TRYLOCK_PI:
a0c1e907
TG
1950 if (futex_cmpxchg_enabled)
1951 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
c87e2837 1952 break;
1da177e4
LT
1953 default:
1954 ret = -ENOSYS;
1955 }
1956 return ret;
1957}
1958
1959
e2970f2f 1960asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
1da177e4 1961 struct timespec __user *utime, u32 __user *uaddr2,
e2970f2f 1962 u32 val3)
1da177e4 1963{
c19384b5
PP
1964 struct timespec ts;
1965 ktime_t t, *tp = NULL;
e2970f2f 1966 u32 val2 = 0;
34f01cc1 1967 int cmd = op & FUTEX_CMD_MASK;
1da177e4 1968
cd689985
TG
1969 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
1970 cmd == FUTEX_WAIT_BITSET)) {
c19384b5 1971 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 1972 return -EFAULT;
c19384b5 1973 if (!timespec_valid(&ts))
9741ef96 1974 return -EINVAL;
c19384b5
PP
1975
1976 t = timespec_to_ktime(ts);
34f01cc1 1977 if (cmd == FUTEX_WAIT)
5a7780e7 1978 t = ktime_add_safe(ktime_get(), t);
c19384b5 1979 tp = &t;
1da177e4
LT
1980 }
1981 /*
34f01cc1 1982 * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
f54f0986 1983 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 1984 */
f54f0986
AS
1985 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
1986 cmd == FUTEX_WAKE_OP)
e2970f2f 1987 val2 = (u32) (unsigned long) utime;
1da177e4 1988
c19384b5 1989 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
1990}
1991
f6d107fb 1992static int __init futex_init(void)
1da177e4 1993{
a0c1e907 1994 u32 curval;
3e4ab747 1995 int i;
95362fa9 1996
a0c1e907
TG
1997 /*
1998 * This will fail and we want it. Some arch implementations do
1999 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2000 * functionality. We want to know that before we call in any
2001 * of the complex code paths. Also we want to prevent
2002 * registration of robust lists in that case. NULL is
2003 * guaranteed to fault and we get -EFAULT on functional
2004 * implementation, the non functional ones will return
2005 * -ENOSYS.
2006 */
2007 curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2008 if (curval == -EFAULT)
2009 futex_cmpxchg_enabled = 1;
2010
3e4ab747
TG
2011 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2012 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2013 spin_lock_init(&futex_queues[i].lock);
2014 }
2015
1da177e4
LT
2016 return 0;
2017}
f6d107fb 2018__initcall(futex_init);