sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[linux-2.6-block.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
7ed20e1a 57#include <linux/signal.h>
9984de1a 58#include <linux/export.h>
fd5eea42 59#include <linux/magic.h>
b488893a
PE
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
bdbb776f 62#include <linux/ptrace.h>
8bd75c77 63#include <linux/sched/rt.h>
84f001e1 64#include <linux/sched/wake_q.h>
13d60f4b 65#include <linux/hugetlb.h>
88c8004f 66#include <linux/freezer.h>
a52b89eb 67#include <linux/bootmem.h>
ab51fbab 68#include <linux/fault-inject.h>
b488893a 69
4732efbe 70#include <asm/futex.h>
1da177e4 71
1696a8be 72#include "locking/rtmutex_common.h"
c87e2837 73
99b60ce6 74/*
d7e8af1a
DB
75 * READ this before attempting to hack on futexes!
76 *
77 * Basic futex operation and ordering guarantees
78 * =============================================
99b60ce6
TG
79 *
80 * The waiter reads the futex value in user space and calls
81 * futex_wait(). This function computes the hash bucket and acquires
82 * the hash bucket lock. After that it reads the futex user space value
b0c29f79
DB
83 * again and verifies that the data has not changed. If it has not changed
84 * it enqueues itself into the hash bucket, releases the hash bucket lock
85 * and schedules.
99b60ce6
TG
86 *
87 * The waker side modifies the user space value of the futex and calls
b0c29f79
DB
88 * futex_wake(). This function computes the hash bucket and acquires the
89 * hash bucket lock. Then it looks for waiters on that futex in the hash
90 * bucket and wakes them.
99b60ce6 91 *
b0c29f79
DB
92 * In futex wake up scenarios where no tasks are blocked on a futex, taking
93 * the hb spinlock can be avoided and simply return. In order for this
94 * optimization to work, ordering guarantees must exist so that the waiter
95 * being added to the list is acknowledged when the list is concurrently being
96 * checked by the waker, avoiding scenarios like the following:
99b60ce6
TG
97 *
98 * CPU 0 CPU 1
99 * val = *futex;
100 * sys_futex(WAIT, futex, val);
101 * futex_wait(futex, val);
102 * uval = *futex;
103 * *futex = newval;
104 * sys_futex(WAKE, futex);
105 * futex_wake(futex);
106 * if (queue_empty())
107 * return;
108 * if (uval == val)
109 * lock(hash_bucket(futex));
110 * queue();
111 * unlock(hash_bucket(futex));
112 * schedule();
113 *
114 * This would cause the waiter on CPU 0 to wait forever because it
115 * missed the transition of the user space value from val to newval
116 * and the waker did not find the waiter in the hash bucket queue.
99b60ce6 117 *
b0c29f79
DB
118 * The correct serialization ensures that a waiter either observes
119 * the changed user space value before blocking or is woken by a
120 * concurrent waker:
121 *
122 * CPU 0 CPU 1
99b60ce6
TG
123 * val = *futex;
124 * sys_futex(WAIT, futex, val);
125 * futex_wait(futex, val);
b0c29f79 126 *
d7e8af1a 127 * waiters++; (a)
8ad7b378
DB
128 * smp_mb(); (A) <-- paired with -.
129 * |
130 * lock(hash_bucket(futex)); |
131 * |
132 * uval = *futex; |
133 * | *futex = newval;
134 * | sys_futex(WAKE, futex);
135 * | futex_wake(futex);
136 * |
137 * `--------> smp_mb(); (B)
99b60ce6 138 * if (uval == val)
b0c29f79 139 * queue();
99b60ce6 140 * unlock(hash_bucket(futex));
b0c29f79
DB
141 * schedule(); if (waiters)
142 * lock(hash_bucket(futex));
d7e8af1a
DB
143 * else wake_waiters(futex);
144 * waiters--; (b) unlock(hash_bucket(futex));
b0c29f79 145 *
d7e8af1a
DB
146 * Where (A) orders the waiters increment and the futex value read through
147 * atomic operations (see hb_waiters_inc) and where (B) orders the write
993b2ff2
DB
148 * to futex and the waiters read -- this is done by the barriers for both
149 * shared and private futexes in get_futex_key_refs().
b0c29f79
DB
150 *
151 * This yields the following case (where X:=waiters, Y:=futex):
152 *
153 * X = Y = 0
154 *
155 * w[X]=1 w[Y]=1
156 * MB MB
157 * r[Y]=y r[X]=x
158 *
159 * Which guarantees that x==0 && y==0 is impossible; which translates back into
160 * the guarantee that we cannot both miss the futex variable change and the
161 * enqueue.
d7e8af1a
DB
162 *
163 * Note that a new waiter is accounted for in (a) even when it is possible that
164 * the wait call can return error, in which case we backtrack from it in (b).
165 * Refer to the comment in queue_lock().
166 *
167 * Similarly, in order to account for waiters being requeued on another
168 * address we always increment the waiters for the destination bucket before
169 * acquiring the lock. It then decrements them again after releasing it -
170 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
171 * will do the additional required waiter count housekeeping. This is done for
172 * double_lock_hb() and double_unlock_hb(), respectively.
99b60ce6
TG
173 */
174
03b8c7b6 175#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 176int __read_mostly futex_cmpxchg_enabled;
03b8c7b6 177#endif
a0c1e907 178
b41277dc
DH
179/*
180 * Futex flags used to encode options to functions and preserve them across
181 * restarts.
182 */
784bdf3b
TG
183#ifdef CONFIG_MMU
184# define FLAGS_SHARED 0x01
185#else
186/*
187 * NOMMU does not have per process address space. Let the compiler optimize
188 * code away.
189 */
190# define FLAGS_SHARED 0x00
191#endif
b41277dc
DH
192#define FLAGS_CLOCKRT 0x02
193#define FLAGS_HAS_TIMEOUT 0x04
194
c87e2837
IM
195/*
196 * Priority Inheritance state:
197 */
198struct futex_pi_state {
199 /*
200 * list of 'owned' pi_state instances - these have to be
201 * cleaned up in do_exit() if the task exits prematurely:
202 */
203 struct list_head list;
204
205 /*
206 * The PI object:
207 */
208 struct rt_mutex pi_mutex;
209
210 struct task_struct *owner;
211 atomic_t refcount;
212
213 union futex_key key;
214};
215
d8d88fbb
DH
216/**
217 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 218 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
219 * @task: the task waiting on the futex
220 * @lock_ptr: the hash bucket lock
221 * @key: the key the futex is hashed on
222 * @pi_state: optional priority inheritance state
223 * @rt_waiter: rt_waiter storage for use with requeue_pi
224 * @requeue_pi_key: the requeue_pi target futex key
225 * @bitset: bitset for the optional bitmasked wakeup
226 *
227 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
1da177e4
LT
228 * we can wake only the relevant ones (hashed queues may be shared).
229 *
230 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 231 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 232 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
233 * the second.
234 *
235 * PI futexes are typically woken before they are removed from the hash list via
236 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
237 */
238struct futex_q {
ec92d082 239 struct plist_node list;
1da177e4 240
d8d88fbb 241 struct task_struct *task;
1da177e4 242 spinlock_t *lock_ptr;
1da177e4 243 union futex_key key;
c87e2837 244 struct futex_pi_state *pi_state;
52400ba9 245 struct rt_mutex_waiter *rt_waiter;
84bc4af5 246 union futex_key *requeue_pi_key;
cd689985 247 u32 bitset;
1da177e4
LT
248};
249
5bdb05f9
DH
250static const struct futex_q futex_q_init = {
251 /* list gets initialized in queue_me()*/
252 .key = FUTEX_KEY_INIT,
253 .bitset = FUTEX_BITSET_MATCH_ANY
254};
255
1da177e4 256/*
b2d0994b
DH
257 * Hash buckets are shared by all the futex_keys that hash to the same
258 * location. Each key may have multiple futex_q structures, one for each task
259 * waiting on a futex.
1da177e4
LT
260 */
261struct futex_hash_bucket {
11d4616b 262 atomic_t waiters;
ec92d082
PP
263 spinlock_t lock;
264 struct plist_head chain;
a52b89eb 265} ____cacheline_aligned_in_smp;
1da177e4 266
ac742d37
RV
267/*
268 * The base of the bucket array and its size are always used together
269 * (after initialization only in hash_futex()), so ensure that they
270 * reside in the same cacheline.
271 */
272static struct {
273 struct futex_hash_bucket *queues;
274 unsigned long hashsize;
275} __futex_data __read_mostly __aligned(2*sizeof(long));
276#define futex_queues (__futex_data.queues)
277#define futex_hashsize (__futex_data.hashsize)
a52b89eb 278
1da177e4 279
ab51fbab
DB
280/*
281 * Fault injections for futexes.
282 */
283#ifdef CONFIG_FAIL_FUTEX
284
285static struct {
286 struct fault_attr attr;
287
621a5f7a 288 bool ignore_private;
ab51fbab
DB
289} fail_futex = {
290 .attr = FAULT_ATTR_INITIALIZER,
621a5f7a 291 .ignore_private = false,
ab51fbab
DB
292};
293
294static int __init setup_fail_futex(char *str)
295{
296 return setup_fault_attr(&fail_futex.attr, str);
297}
298__setup("fail_futex=", setup_fail_futex);
299
5d285a7f 300static bool should_fail_futex(bool fshared)
ab51fbab
DB
301{
302 if (fail_futex.ignore_private && !fshared)
303 return false;
304
305 return should_fail(&fail_futex.attr, 1);
306}
307
308#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
309
310static int __init fail_futex_debugfs(void)
311{
312 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
313 struct dentry *dir;
314
315 dir = fault_create_debugfs_attr("fail_futex", NULL,
316 &fail_futex.attr);
317 if (IS_ERR(dir))
318 return PTR_ERR(dir);
319
320 if (!debugfs_create_bool("ignore-private", mode, dir,
321 &fail_futex.ignore_private)) {
322 debugfs_remove_recursive(dir);
323 return -ENOMEM;
324 }
325
326 return 0;
327}
328
329late_initcall(fail_futex_debugfs);
330
331#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
332
333#else
334static inline bool should_fail_futex(bool fshared)
335{
336 return false;
337}
338#endif /* CONFIG_FAIL_FUTEX */
339
b0c29f79
DB
340static inline void futex_get_mm(union futex_key *key)
341{
f1f10076 342 mmgrab(key->private.mm);
b0c29f79
DB
343 /*
344 * Ensure futex_get_mm() implies a full barrier such that
345 * get_futex_key() implies a full barrier. This is relied upon
8ad7b378 346 * as smp_mb(); (B), see the ordering comment above.
b0c29f79 347 */
4e857c58 348 smp_mb__after_atomic();
b0c29f79
DB
349}
350
11d4616b
LT
351/*
352 * Reflects a new waiter being added to the waitqueue.
353 */
354static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
b0c29f79
DB
355{
356#ifdef CONFIG_SMP
11d4616b 357 atomic_inc(&hb->waiters);
b0c29f79 358 /*
11d4616b 359 * Full barrier (A), see the ordering comment above.
b0c29f79 360 */
4e857c58 361 smp_mb__after_atomic();
11d4616b
LT
362#endif
363}
364
365/*
366 * Reflects a waiter being removed from the waitqueue by wakeup
367 * paths.
368 */
369static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
370{
371#ifdef CONFIG_SMP
372 atomic_dec(&hb->waiters);
373#endif
374}
b0c29f79 375
11d4616b
LT
376static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
377{
378#ifdef CONFIG_SMP
379 return atomic_read(&hb->waiters);
b0c29f79 380#else
11d4616b 381 return 1;
b0c29f79
DB
382#endif
383}
384
e8b61b3f
TG
385/**
386 * hash_futex - Return the hash bucket in the global hash
387 * @key: Pointer to the futex key for which the hash is calculated
388 *
389 * We hash on the keys returned from get_futex_key (see below) and return the
390 * corresponding hash bucket in the global hash.
1da177e4
LT
391 */
392static struct futex_hash_bucket *hash_futex(union futex_key *key)
393{
394 u32 hash = jhash2((u32*)&key->both.word,
395 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
396 key->both.offset);
a52b89eb 397 return &futex_queues[hash & (futex_hashsize - 1)];
1da177e4
LT
398}
399
e8b61b3f
TG
400
401/**
402 * match_futex - Check whether two futex keys are equal
403 * @key1: Pointer to key1
404 * @key2: Pointer to key2
405 *
1da177e4
LT
406 * Return 1 if two futex_keys are equal, 0 otherwise.
407 */
408static inline int match_futex(union futex_key *key1, union futex_key *key2)
409{
2bc87203
DH
410 return (key1 && key2
411 && key1->both.word == key2->both.word
1da177e4
LT
412 && key1->both.ptr == key2->both.ptr
413 && key1->both.offset == key2->both.offset);
414}
415
38d47c1b
PZ
416/*
417 * Take a reference to the resource addressed by a key.
418 * Can be called while holding spinlocks.
419 *
420 */
421static void get_futex_key_refs(union futex_key *key)
422{
423 if (!key->both.ptr)
424 return;
425
784bdf3b
TG
426 /*
427 * On MMU less systems futexes are always "private" as there is no per
428 * process address space. We need the smp wmb nevertheless - yes,
429 * arch/blackfin has MMU less SMP ...
430 */
431 if (!IS_ENABLED(CONFIG_MMU)) {
432 smp_mb(); /* explicit smp_mb(); (B) */
433 return;
434 }
435
38d47c1b
PZ
436 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
437 case FUT_OFF_INODE:
8ad7b378 438 ihold(key->shared.inode); /* implies smp_mb(); (B) */
38d47c1b
PZ
439 break;
440 case FUT_OFF_MMSHARED:
8ad7b378 441 futex_get_mm(key); /* implies smp_mb(); (B) */
38d47c1b 442 break;
76835b0e 443 default:
993b2ff2
DB
444 /*
445 * Private futexes do not hold reference on an inode or
446 * mm, therefore the only purpose of calling get_futex_key_refs
447 * is because we need the barrier for the lockless waiter check.
448 */
8ad7b378 449 smp_mb(); /* explicit smp_mb(); (B) */
38d47c1b
PZ
450 }
451}
452
453/*
454 * Drop a reference to the resource addressed by a key.
993b2ff2
DB
455 * The hash bucket spinlock must not be held. This is
456 * a no-op for private futexes, see comment in the get
457 * counterpart.
38d47c1b
PZ
458 */
459static void drop_futex_key_refs(union futex_key *key)
460{
90621c40
DH
461 if (!key->both.ptr) {
462 /* If we're here then we tried to put a key we failed to get */
463 WARN_ON_ONCE(1);
38d47c1b 464 return;
90621c40 465 }
38d47c1b 466
784bdf3b
TG
467 if (!IS_ENABLED(CONFIG_MMU))
468 return;
469
38d47c1b
PZ
470 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
471 case FUT_OFF_INODE:
472 iput(key->shared.inode);
473 break;
474 case FUT_OFF_MMSHARED:
475 mmdrop(key->private.mm);
476 break;
477 }
478}
479
34f01cc1 480/**
d96ee56c
DH
481 * get_futex_key() - Get parameters which are the keys for a futex
482 * @uaddr: virtual address of the futex
483 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
484 * @key: address where result is stored.
9ea71503
SB
485 * @rw: mapping needs to be read/write (values: VERIFY_READ,
486 * VERIFY_WRITE)
34f01cc1 487 *
6c23cbbd
RD
488 * Return: a negative error code or 0
489 *
34f01cc1 490 * The key words are stored in *key on success.
1da177e4 491 *
6131ffaa 492 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
1da177e4
LT
493 * offset_within_page). For private mappings, it's (uaddr, current->mm).
494 * We can usually work out the index without swapping in the page.
495 *
b2d0994b 496 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 497 */
64d1304a 498static int
9ea71503 499get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
1da177e4 500{
e2970f2f 501 unsigned long address = (unsigned long)uaddr;
1da177e4 502 struct mm_struct *mm = current->mm;
077fa7ae 503 struct page *page, *tail;
14d27abd 504 struct address_space *mapping;
9ea71503 505 int err, ro = 0;
1da177e4
LT
506
507 /*
508 * The futex address must be "naturally" aligned.
509 */
e2970f2f 510 key->both.offset = address % PAGE_SIZE;
34f01cc1 511 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 512 return -EINVAL;
e2970f2f 513 address -= key->both.offset;
1da177e4 514
5cdec2d8
LT
515 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
516 return -EFAULT;
517
ab51fbab
DB
518 if (unlikely(should_fail_futex(fshared)))
519 return -EFAULT;
520
34f01cc1
ED
521 /*
522 * PROCESS_PRIVATE futexes are fast.
523 * As the mm cannot disappear under us and the 'key' only needs
524 * virtual address, we dont even have to find the underlying vma.
525 * Note : We do have to check 'uaddr' is a valid user address,
526 * but access_ok() should be faster than find_vma()
527 */
528 if (!fshared) {
34f01cc1
ED
529 key->private.mm = mm;
530 key->private.address = address;
8ad7b378 531 get_futex_key_refs(key); /* implies smp_mb(); (B) */
34f01cc1
ED
532 return 0;
533 }
1da177e4 534
38d47c1b 535again:
ab51fbab
DB
536 /* Ignore any VERIFY_READ mapping (futex common case) */
537 if (unlikely(should_fail_futex(fshared)))
538 return -EFAULT;
539
7485d0d3 540 err = get_user_pages_fast(address, 1, 1, &page);
9ea71503
SB
541 /*
542 * If write access is not required (eg. FUTEX_WAIT), try
543 * and get read-only access.
544 */
545 if (err == -EFAULT && rw == VERIFY_READ) {
546 err = get_user_pages_fast(address, 1, 0, &page);
547 ro = 1;
548 }
38d47c1b
PZ
549 if (err < 0)
550 return err;
9ea71503
SB
551 else
552 err = 0;
38d47c1b 553
65d8fc77
MG
554 /*
555 * The treatment of mapping from this point on is critical. The page
556 * lock protects many things but in this context the page lock
557 * stabilizes mapping, prevents inode freeing in the shared
558 * file-backed region case and guards against movement to swap cache.
559 *
560 * Strictly speaking the page lock is not needed in all cases being
561 * considered here and page lock forces unnecessarily serialization
562 * From this point on, mapping will be re-verified if necessary and
563 * page lock will be acquired only if it is unavoidable
077fa7ae
MG
564 *
565 * Mapping checks require the head page for any compound page so the
566 * head page and mapping is looked up now. For anonymous pages, it
567 * does not matter if the page splits in the future as the key is
568 * based on the address. For filesystem-backed pages, the tail is
569 * required as the index of the page determines the key. For
570 * base pages, there is no tail page and tail == page.
65d8fc77 571 */
077fa7ae 572 tail = page;
65d8fc77
MG
573 page = compound_head(page);
574 mapping = READ_ONCE(page->mapping);
575
e6780f72 576 /*
14d27abd 577 * If page->mapping is NULL, then it cannot be a PageAnon
e6780f72
HD
578 * page; but it might be the ZERO_PAGE or in the gate area or
579 * in a special mapping (all cases which we are happy to fail);
580 * or it may have been a good file page when get_user_pages_fast
581 * found it, but truncated or holepunched or subjected to
582 * invalidate_complete_page2 before we got the page lock (also
583 * cases which we are happy to fail). And we hold a reference,
584 * so refcount care in invalidate_complete_page's remove_mapping
585 * prevents drop_caches from setting mapping to NULL beneath us.
586 *
587 * The case we do have to guard against is when memory pressure made
588 * shmem_writepage move it from filecache to swapcache beneath us:
14d27abd 589 * an unlikely race, but we do need to retry for page->mapping.
e6780f72 590 */
65d8fc77
MG
591 if (unlikely(!mapping)) {
592 int shmem_swizzled;
593
594 /*
595 * Page lock is required to identify which special case above
596 * applies. If this is really a shmem page then the page lock
597 * will prevent unexpected transitions.
598 */
599 lock_page(page);
600 shmem_swizzled = PageSwapCache(page) || page->mapping;
14d27abd
KS
601 unlock_page(page);
602 put_page(page);
65d8fc77 603
e6780f72
HD
604 if (shmem_swizzled)
605 goto again;
65d8fc77 606
e6780f72 607 return -EFAULT;
38d47c1b 608 }
1da177e4
LT
609
610 /*
611 * Private mappings are handled in a simple way.
612 *
65d8fc77
MG
613 * If the futex key is stored on an anonymous page, then the associated
614 * object is the mm which is implicitly pinned by the calling process.
615 *
1da177e4
LT
616 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
617 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 618 * the object not the particular process.
1da177e4 619 */
14d27abd 620 if (PageAnon(page)) {
9ea71503
SB
621 /*
622 * A RO anonymous page will never change and thus doesn't make
623 * sense for futex operations.
624 */
ab51fbab 625 if (unlikely(should_fail_futex(fshared)) || ro) {
9ea71503
SB
626 err = -EFAULT;
627 goto out;
628 }
629
38d47c1b 630 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 631 key->private.mm = mm;
e2970f2f 632 key->private.address = address;
65d8fc77
MG
633
634 get_futex_key_refs(key); /* implies smp_mb(); (B) */
635
38d47c1b 636 } else {
65d8fc77
MG
637 struct inode *inode;
638
639 /*
640 * The associated futex object in this case is the inode and
641 * the page->mapping must be traversed. Ordinarily this should
642 * be stabilised under page lock but it's not strictly
643 * necessary in this case as we just want to pin the inode, not
644 * update the radix tree or anything like that.
645 *
646 * The RCU read lock is taken as the inode is finally freed
647 * under RCU. If the mapping still matches expectations then the
648 * mapping->host can be safely accessed as being a valid inode.
649 */
650 rcu_read_lock();
651
652 if (READ_ONCE(page->mapping) != mapping) {
653 rcu_read_unlock();
654 put_page(page);
655
656 goto again;
657 }
658
659 inode = READ_ONCE(mapping->host);
660 if (!inode) {
661 rcu_read_unlock();
662 put_page(page);
663
664 goto again;
665 }
666
667 /*
668 * Take a reference unless it is about to be freed. Previously
669 * this reference was taken by ihold under the page lock
670 * pinning the inode in place so i_lock was unnecessary. The
671 * only way for this check to fail is if the inode was
672 * truncated in parallel so warn for now if this happens.
673 *
674 * We are not calling into get_futex_key_refs() in file-backed
675 * cases, therefore a successful atomic_inc return below will
676 * guarantee that get_futex_key() will still imply smp_mb(); (B).
677 */
678 if (WARN_ON_ONCE(!atomic_inc_not_zero(&inode->i_count))) {
679 rcu_read_unlock();
680 put_page(page);
681
682 goto again;
683 }
684
685 /* Should be impossible but lets be paranoid for now */
686 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
687 err = -EFAULT;
688 rcu_read_unlock();
689 iput(inode);
690
691 goto out;
692 }
693
38d47c1b 694 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
65d8fc77 695 key->shared.inode = inode;
077fa7ae 696 key->shared.pgoff = basepage_index(tail);
65d8fc77 697 rcu_read_unlock();
1da177e4
LT
698 }
699
9ea71503 700out:
14d27abd 701 put_page(page);
9ea71503 702 return err;
1da177e4
LT
703}
704
ae791a2d 705static inline void put_futex_key(union futex_key *key)
1da177e4 706{
38d47c1b 707 drop_futex_key_refs(key);
1da177e4
LT
708}
709
d96ee56c
DH
710/**
711 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
712 * @uaddr: pointer to faulting user space address
713 *
714 * Slow path to fixup the fault we just took in the atomic write
715 * access to @uaddr.
716 *
fb62db2b 717 * We have no generic implementation of a non-destructive write to the
d0725992
TG
718 * user address. We know that we faulted in the atomic pagefault
719 * disabled section so we can as well avoid the #PF overhead by
720 * calling get_user_pages() right away.
721 */
722static int fault_in_user_writeable(u32 __user *uaddr)
723{
722d0172
AK
724 struct mm_struct *mm = current->mm;
725 int ret;
726
727 down_read(&mm->mmap_sem);
2efaca92 728 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
4a9e1cda 729 FAULT_FLAG_WRITE, NULL);
722d0172
AK
730 up_read(&mm->mmap_sem);
731
d0725992
TG
732 return ret < 0 ? ret : 0;
733}
734
4b1c486b
DH
735/**
736 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
737 * @hb: the hash bucket the futex_q's reside in
738 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
739 *
740 * Must be called with the hb lock held.
741 */
742static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
743 union futex_key *key)
744{
745 struct futex_q *this;
746
747 plist_for_each_entry(this, &hb->chain, list) {
748 if (match_futex(&this->key, key))
749 return this;
750 }
751 return NULL;
752}
753
37a9d912
ML
754static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
755 u32 uval, u32 newval)
36cf3b5c 756{
37a9d912 757 int ret;
36cf3b5c
TG
758
759 pagefault_disable();
37a9d912 760 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
761 pagefault_enable();
762
37a9d912 763 return ret;
36cf3b5c
TG
764}
765
766static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
767{
768 int ret;
769
a866374a 770 pagefault_disable();
bd28b145 771 ret = __get_user(*dest, from);
a866374a 772 pagefault_enable();
1da177e4
LT
773
774 return ret ? -EFAULT : 0;
775}
776
c87e2837
IM
777
778/*
779 * PI code:
780 */
781static int refill_pi_state_cache(void)
782{
783 struct futex_pi_state *pi_state;
784
785 if (likely(current->pi_state_cache))
786 return 0;
787
4668edc3 788 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
789
790 if (!pi_state)
791 return -ENOMEM;
792
c87e2837
IM
793 INIT_LIST_HEAD(&pi_state->list);
794 /* pi_mutex gets initialized later */
795 pi_state->owner = NULL;
796 atomic_set(&pi_state->refcount, 1);
38d47c1b 797 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
798
799 current->pi_state_cache = pi_state;
800
801 return 0;
802}
803
804static struct futex_pi_state * alloc_pi_state(void)
805{
806 struct futex_pi_state *pi_state = current->pi_state_cache;
807
808 WARN_ON(!pi_state);
809 current->pi_state_cache = NULL;
810
811 return pi_state;
812}
813
30a6b803 814/*
29e9ee5d
TG
815 * Drops a reference to the pi_state object and frees or caches it
816 * when the last reference is gone.
817 *
30a6b803
BS
818 * Must be called with the hb lock held.
819 */
29e9ee5d 820static void put_pi_state(struct futex_pi_state *pi_state)
c87e2837 821{
30a6b803
BS
822 if (!pi_state)
823 return;
824
c87e2837
IM
825 if (!atomic_dec_and_test(&pi_state->refcount))
826 return;
827
828 /*
829 * If pi_state->owner is NULL, the owner is most probably dying
830 * and has cleaned up the pi_state already
831 */
832 if (pi_state->owner) {
1d615482 833 raw_spin_lock_irq(&pi_state->owner->pi_lock);
c87e2837 834 list_del_init(&pi_state->list);
1d615482 835 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
c87e2837
IM
836
837 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
838 }
839
840 if (current->pi_state_cache)
841 kfree(pi_state);
842 else {
843 /*
844 * pi_state->list is already empty.
845 * clear pi_state->owner.
846 * refcount is at 0 - put it back to 1.
847 */
848 pi_state->owner = NULL;
849 atomic_set(&pi_state->refcount, 1);
850 current->pi_state_cache = pi_state;
851 }
852}
853
854/*
855 * Look up the task based on what TID userspace gave us.
856 * We dont trust it.
857 */
858static struct task_struct * futex_find_get_task(pid_t pid)
859{
860 struct task_struct *p;
861
d359b549 862 rcu_read_lock();
228ebcbe 863 p = find_task_by_vpid(pid);
7a0ea09a
MH
864 if (p)
865 get_task_struct(p);
a06381fe 866
d359b549 867 rcu_read_unlock();
c87e2837
IM
868
869 return p;
870}
871
872/*
873 * This task is holding PI mutexes at exit time => bad.
874 * Kernel cleans up PI-state, but userspace is likely hosed.
875 * (Robust-futex cleanup is separate and might save the day for userspace.)
876 */
877void exit_pi_state_list(struct task_struct *curr)
878{
c87e2837
IM
879 struct list_head *next, *head = &curr->pi_state_list;
880 struct futex_pi_state *pi_state;
627371d7 881 struct futex_hash_bucket *hb;
38d47c1b 882 union futex_key key = FUTEX_KEY_INIT;
c87e2837 883
a0c1e907
TG
884 if (!futex_cmpxchg_enabled)
885 return;
c87e2837
IM
886 /*
887 * We are a ZOMBIE and nobody can enqueue itself on
888 * pi_state_list anymore, but we have to be careful
627371d7 889 * versus waiters unqueueing themselves:
c87e2837 890 */
1d615482 891 raw_spin_lock_irq(&curr->pi_lock);
c87e2837
IM
892 while (!list_empty(head)) {
893
894 next = head->next;
895 pi_state = list_entry(next, struct futex_pi_state, list);
896 key = pi_state->key;
627371d7 897 hb = hash_futex(&key);
1d615482 898 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 899
c87e2837
IM
900 spin_lock(&hb->lock);
901
1d615482 902 raw_spin_lock_irq(&curr->pi_lock);
627371d7
IM
903 /*
904 * We dropped the pi-lock, so re-check whether this
905 * task still owns the PI-state:
906 */
c87e2837
IM
907 if (head->next != next) {
908 spin_unlock(&hb->lock);
909 continue;
910 }
911
c87e2837 912 WARN_ON(pi_state->owner != curr);
627371d7
IM
913 WARN_ON(list_empty(&pi_state->list));
914 list_del_init(&pi_state->list);
c87e2837 915 pi_state->owner = NULL;
1d615482 916 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
917
918 rt_mutex_unlock(&pi_state->pi_mutex);
919
920 spin_unlock(&hb->lock);
921
1d615482 922 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 923 }
1d615482 924 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
925}
926
54a21788
TG
927/*
928 * We need to check the following states:
929 *
930 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
931 *
932 * [1] NULL | --- | --- | 0 | 0/1 | Valid
933 * [2] NULL | --- | --- | >0 | 0/1 | Valid
934 *
935 * [3] Found | NULL | -- | Any | 0/1 | Invalid
936 *
937 * [4] Found | Found | NULL | 0 | 1 | Valid
938 * [5] Found | Found | NULL | >0 | 1 | Invalid
939 *
940 * [6] Found | Found | task | 0 | 1 | Valid
941 *
942 * [7] Found | Found | NULL | Any | 0 | Invalid
943 *
944 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
945 * [9] Found | Found | task | 0 | 0 | Invalid
946 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
947 *
948 * [1] Indicates that the kernel can acquire the futex atomically. We
949 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
950 *
951 * [2] Valid, if TID does not belong to a kernel thread. If no matching
952 * thread is found then it indicates that the owner TID has died.
953 *
954 * [3] Invalid. The waiter is queued on a non PI futex
955 *
956 * [4] Valid state after exit_robust_list(), which sets the user space
957 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
958 *
959 * [5] The user space value got manipulated between exit_robust_list()
960 * and exit_pi_state_list()
961 *
962 * [6] Valid state after exit_pi_state_list() which sets the new owner in
963 * the pi_state but cannot access the user space value.
964 *
965 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
966 *
967 * [8] Owner and user space value match
968 *
969 * [9] There is no transient state which sets the user space TID to 0
970 * except exit_robust_list(), but this is indicated by the
971 * FUTEX_OWNER_DIED bit. See [4]
972 *
973 * [10] There is no transient state which leaves owner and user space
974 * TID out of sync.
975 */
e60cbc5c
TG
976
977/*
978 * Validate that the existing waiter has a pi_state and sanity check
979 * the pi_state against the user space value. If correct, attach to
980 * it.
981 */
982static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
983 struct futex_pi_state **ps)
c87e2837 984{
778e9a9c 985 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837 986
e60cbc5c
TG
987 /*
988 * Userspace might have messed up non-PI and PI futexes [3]
989 */
990 if (unlikely(!pi_state))
991 return -EINVAL;
06a9ec29 992
e60cbc5c 993 WARN_ON(!atomic_read(&pi_state->refcount));
59647b6a 994
e60cbc5c
TG
995 /*
996 * Handle the owner died case:
997 */
998 if (uval & FUTEX_OWNER_DIED) {
bd1dbcc6 999 /*
e60cbc5c
TG
1000 * exit_pi_state_list sets owner to NULL and wakes the
1001 * topmost waiter. The task which acquires the
1002 * pi_state->rt_mutex will fixup owner.
bd1dbcc6 1003 */
e60cbc5c 1004 if (!pi_state->owner) {
59647b6a 1005 /*
e60cbc5c
TG
1006 * No pi state owner, but the user space TID
1007 * is not 0. Inconsistent state. [5]
59647b6a 1008 */
e60cbc5c
TG
1009 if (pid)
1010 return -EINVAL;
bd1dbcc6 1011 /*
e60cbc5c 1012 * Take a ref on the state and return success. [4]
866293ee 1013 */
e60cbc5c 1014 goto out_state;
c87e2837 1015 }
bd1dbcc6
TG
1016
1017 /*
e60cbc5c
TG
1018 * If TID is 0, then either the dying owner has not
1019 * yet executed exit_pi_state_list() or some waiter
1020 * acquired the rtmutex in the pi state, but did not
1021 * yet fixup the TID in user space.
1022 *
1023 * Take a ref on the state and return success. [6]
1024 */
1025 if (!pid)
1026 goto out_state;
1027 } else {
1028 /*
1029 * If the owner died bit is not set, then the pi_state
1030 * must have an owner. [7]
bd1dbcc6 1031 */
e60cbc5c 1032 if (!pi_state->owner)
bd1dbcc6 1033 return -EINVAL;
c87e2837
IM
1034 }
1035
e60cbc5c
TG
1036 /*
1037 * Bail out if user space manipulated the futex value. If pi
1038 * state exists then the owner TID must be the same as the
1039 * user space TID. [9/10]
1040 */
1041 if (pid != task_pid_vnr(pi_state->owner))
1042 return -EINVAL;
1043out_state:
1044 atomic_inc(&pi_state->refcount);
1045 *ps = pi_state;
1046 return 0;
1047}
1048
04e1b2e5
TG
1049/*
1050 * Lookup the task for the TID provided from user space and attach to
1051 * it after doing proper sanity checks.
1052 */
1053static int attach_to_pi_owner(u32 uval, union futex_key *key,
1054 struct futex_pi_state **ps)
e60cbc5c 1055{
e60cbc5c 1056 pid_t pid = uval & FUTEX_TID_MASK;
04e1b2e5
TG
1057 struct futex_pi_state *pi_state;
1058 struct task_struct *p;
e60cbc5c 1059
c87e2837 1060 /*
e3f2ddea 1061 * We are the first waiter - try to look up the real owner and attach
54a21788 1062 * the new pi_state to it, but bail out when TID = 0 [1]
c87e2837 1063 */
778e9a9c 1064 if (!pid)
e3f2ddea 1065 return -ESRCH;
c87e2837 1066 p = futex_find_get_task(pid);
7a0ea09a
MH
1067 if (!p)
1068 return -ESRCH;
778e9a9c 1069
a2129464 1070 if (unlikely(p->flags & PF_KTHREAD)) {
f0d71b3d
TG
1071 put_task_struct(p);
1072 return -EPERM;
1073 }
1074
778e9a9c
AK
1075 /*
1076 * We need to look at the task state flags to figure out,
1077 * whether the task is exiting. To protect against the do_exit
1078 * change of the task flags, we do this protected by
1079 * p->pi_lock:
1080 */
1d615482 1081 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
1082 if (unlikely(p->flags & PF_EXITING)) {
1083 /*
1084 * The task is on the way out. When PF_EXITPIDONE is
1085 * set, we know that the task has finished the
1086 * cleanup:
1087 */
1088 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1089
1d615482 1090 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
1091 put_task_struct(p);
1092 return ret;
1093 }
c87e2837 1094
54a21788
TG
1095 /*
1096 * No existing pi state. First waiter. [2]
1097 */
c87e2837
IM
1098 pi_state = alloc_pi_state();
1099
1100 /*
04e1b2e5 1101 * Initialize the pi_mutex in locked state and make @p
c87e2837
IM
1102 * the owner of it:
1103 */
1104 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1105
1106 /* Store the key for possible exit cleanups: */
d0aa7a70 1107 pi_state->key = *key;
c87e2837 1108
627371d7 1109 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1110 list_add(&pi_state->list, &p->pi_state_list);
1111 pi_state->owner = p;
1d615482 1112 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
1113
1114 put_task_struct(p);
1115
d0aa7a70 1116 *ps = pi_state;
c87e2837
IM
1117
1118 return 0;
1119}
1120
04e1b2e5
TG
1121static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
1122 union futex_key *key, struct futex_pi_state **ps)
1123{
1124 struct futex_q *match = futex_top_waiter(hb, key);
1125
1126 /*
1127 * If there is a waiter on that futex, validate it and
1128 * attach to the pi_state when the validation succeeds.
1129 */
1130 if (match)
1131 return attach_to_pi_state(uval, match->pi_state, ps);
1132
1133 /*
1134 * We are the first waiter - try to look up the owner based on
1135 * @uval and attach to it.
1136 */
1137 return attach_to_pi_owner(uval, key, ps);
1138}
1139
af54d6a1
TG
1140static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1141{
1142 u32 uninitialized_var(curval);
1143
ab51fbab
DB
1144 if (unlikely(should_fail_futex(true)))
1145 return -EFAULT;
1146
af54d6a1
TG
1147 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1148 return -EFAULT;
1149
1150 /*If user space value changed, let the caller retry */
1151 return curval != uval ? -EAGAIN : 0;
1152}
1153
1a52084d 1154/**
d96ee56c 1155 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
1156 * @uaddr: the pi futex user address
1157 * @hb: the pi futex hash bucket
1158 * @key: the futex key associated with uaddr and hb
1159 * @ps: the pi_state pointer where we store the result of the
1160 * lookup
1161 * @task: the task to perform the atomic lock work for. This will
1162 * be "current" except in the case of requeue pi.
1163 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 1164 *
6c23cbbd
RD
1165 * Return:
1166 * 0 - ready to wait;
1167 * 1 - acquired the lock;
1a52084d
DH
1168 * <0 - error
1169 *
1170 * The hb->lock and futex_key refs shall be held by the caller.
1171 */
1172static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1173 union futex_key *key,
1174 struct futex_pi_state **ps,
bab5bc9e 1175 struct task_struct *task, int set_waiters)
1a52084d 1176{
af54d6a1
TG
1177 u32 uval, newval, vpid = task_pid_vnr(task);
1178 struct futex_q *match;
1179 int ret;
1a52084d
DH
1180
1181 /*
af54d6a1
TG
1182 * Read the user space value first so we can validate a few
1183 * things before proceeding further.
1a52084d 1184 */
af54d6a1 1185 if (get_futex_value_locked(&uval, uaddr))
1a52084d
DH
1186 return -EFAULT;
1187
ab51fbab
DB
1188 if (unlikely(should_fail_futex(true)))
1189 return -EFAULT;
1190
1a52084d
DH
1191 /*
1192 * Detect deadlocks.
1193 */
af54d6a1 1194 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
1195 return -EDEADLK;
1196
ab51fbab
DB
1197 if ((unlikely(should_fail_futex(true))))
1198 return -EDEADLK;
1199
1a52084d 1200 /*
af54d6a1
TG
1201 * Lookup existing state first. If it exists, try to attach to
1202 * its pi_state.
1a52084d 1203 */
af54d6a1
TG
1204 match = futex_top_waiter(hb, key);
1205 if (match)
1206 return attach_to_pi_state(uval, match->pi_state, ps);
1a52084d
DH
1207
1208 /*
af54d6a1
TG
1209 * No waiter and user TID is 0. We are here because the
1210 * waiters or the owner died bit is set or called from
1211 * requeue_cmp_pi or for whatever reason something took the
1212 * syscall.
1a52084d 1213 */
af54d6a1 1214 if (!(uval & FUTEX_TID_MASK)) {
59fa6245 1215 /*
af54d6a1
TG
1216 * We take over the futex. No other waiters and the user space
1217 * TID is 0. We preserve the owner died bit.
59fa6245 1218 */
af54d6a1
TG
1219 newval = uval & FUTEX_OWNER_DIED;
1220 newval |= vpid;
1a52084d 1221
af54d6a1
TG
1222 /* The futex requeue_pi code can enforce the waiters bit */
1223 if (set_waiters)
1224 newval |= FUTEX_WAITERS;
1225
1226 ret = lock_pi_update_atomic(uaddr, uval, newval);
1227 /* If the take over worked, return 1 */
1228 return ret < 0 ? ret : 1;
1229 }
1a52084d
DH
1230
1231 /*
af54d6a1
TG
1232 * First waiter. Set the waiters bit before attaching ourself to
1233 * the owner. If owner tries to unlock, it will be forced into
1234 * the kernel and blocked on hb->lock.
1a52084d 1235 */
af54d6a1
TG
1236 newval = uval | FUTEX_WAITERS;
1237 ret = lock_pi_update_atomic(uaddr, uval, newval);
1238 if (ret)
1239 return ret;
1a52084d 1240 /*
af54d6a1
TG
1241 * If the update of the user space value succeeded, we try to
1242 * attach to the owner. If that fails, no harm done, we only
1243 * set the FUTEX_WAITERS bit in the user space variable.
1a52084d 1244 */
af54d6a1 1245 return attach_to_pi_owner(uval, key, ps);
1a52084d
DH
1246}
1247
2e12978a
LJ
1248/**
1249 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1250 * @q: The futex_q to unqueue
1251 *
1252 * The q->lock_ptr must not be NULL and must be held by the caller.
1253 */
1254static void __unqueue_futex(struct futex_q *q)
1255{
1256 struct futex_hash_bucket *hb;
1257
29096202
SR
1258 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1259 || WARN_ON(plist_node_empty(&q->list)))
2e12978a
LJ
1260 return;
1261
1262 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1263 plist_del(&q->list, &hb->chain);
11d4616b 1264 hb_waiters_dec(hb);
2e12978a
LJ
1265}
1266
1da177e4
LT
1267/*
1268 * The hash bucket lock must be held when this is called.
1d0dcb3a
DB
1269 * Afterwards, the futex_q must not be accessed. Callers
1270 * must ensure to later call wake_up_q() for the actual
1271 * wakeups to occur.
1da177e4 1272 */
1d0dcb3a 1273static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1da177e4 1274{
f1a11e05
TG
1275 struct task_struct *p = q->task;
1276
aa10990e
DH
1277 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1278 return;
1279
1da177e4 1280 /*
1d0dcb3a
DB
1281 * Queue the task for later wakeup for after we've released
1282 * the hb->lock. wake_q_add() grabs reference to p.
1da177e4 1283 */
1d0dcb3a 1284 wake_q_add(wake_q, p);
2e12978a 1285 __unqueue_futex(q);
1da177e4 1286 /*
f1a11e05
TG
1287 * The waiting task can free the futex_q as soon as
1288 * q->lock_ptr = NULL is written, without taking any locks. A
1289 * memory barrier is required here to prevent the following
1290 * store to lock_ptr from getting ahead of the plist_del.
1da177e4 1291 */
ccdea2f8 1292 smp_wmb();
1da177e4
LT
1293 q->lock_ptr = NULL;
1294}
1295
802ab58d
SAS
1296static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this,
1297 struct futex_hash_bucket *hb)
c87e2837
IM
1298{
1299 struct task_struct *new_owner;
1300 struct futex_pi_state *pi_state = this->pi_state;
7cfdaf38 1301 u32 uninitialized_var(curval), newval;
194a6b5b 1302 DEFINE_WAKE_Q(wake_q);
802ab58d 1303 bool deboost;
13fbca4c 1304 int ret = 0;
c87e2837
IM
1305
1306 if (!pi_state)
1307 return -EINVAL;
1308
51246bfd
TG
1309 /*
1310 * If current does not own the pi_state then the futex is
1311 * inconsistent and user space fiddled with the futex value.
1312 */
1313 if (pi_state->owner != current)
1314 return -EINVAL;
1315
b4abf910 1316 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
1317 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1318
1319 /*
f123c98e
SR
1320 * It is possible that the next waiter (the one that brought
1321 * this owner to the kernel) timed out and is no longer
1322 * waiting on the lock.
c87e2837
IM
1323 */
1324 if (!new_owner)
1325 new_owner = this->task;
1326
1327 /*
13fbca4c
TG
1328 * We pass it to the next owner. The WAITERS bit is always
1329 * kept enabled while there is PI state around. We cleanup the
1330 * owner died bit, because we are the owner.
c87e2837 1331 */
13fbca4c 1332 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 1333
ab51fbab
DB
1334 if (unlikely(should_fail_futex(true)))
1335 ret = -EFAULT;
1336
89e9e66b 1337 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
13fbca4c 1338 ret = -EFAULT;
89e9e66b
SAS
1339 } else if (curval != uval) {
1340 /*
1341 * If a unconditional UNLOCK_PI operation (user space did not
1342 * try the TID->0 transition) raced with a waiter setting the
1343 * FUTEX_WAITERS flag between get_user() and locking the hash
1344 * bucket lock, retry the operation.
1345 */
1346 if ((FUTEX_TID_MASK & curval) == uval)
1347 ret = -EAGAIN;
1348 else
1349 ret = -EINVAL;
1350 }
13fbca4c 1351 if (ret) {
b4abf910 1352 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
13fbca4c 1353 return ret;
e3f2ddea 1354 }
c87e2837 1355
b4abf910 1356 raw_spin_lock(&pi_state->owner->pi_lock);
627371d7
IM
1357 WARN_ON(list_empty(&pi_state->list));
1358 list_del_init(&pi_state->list);
b4abf910 1359 raw_spin_unlock(&pi_state->owner->pi_lock);
627371d7 1360
b4abf910 1361 raw_spin_lock(&new_owner->pi_lock);
627371d7 1362 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1363 list_add(&pi_state->list, &new_owner->pi_state_list);
1364 pi_state->owner = new_owner;
b4abf910 1365 raw_spin_unlock(&new_owner->pi_lock);
627371d7 1366
b4abf910 1367 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
802ab58d
SAS
1368
1369 deboost = rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1370
1371 /*
1372 * First unlock HB so the waiter does not spin on it once he got woken
1373 * up. Second wake up the waiter before the priority is adjusted. If we
1374 * deboost first (and lose our higher priority), then the task might get
1375 * scheduled away before the wake up can take place.
1376 */
1377 spin_unlock(&hb->lock);
1378 wake_up_q(&wake_q);
1379 if (deboost)
1380 rt_mutex_adjust_prio(current);
c87e2837
IM
1381
1382 return 0;
1383}
1384
8b8f319f
IM
1385/*
1386 * Express the locking dependencies for lockdep:
1387 */
1388static inline void
1389double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1390{
1391 if (hb1 <= hb2) {
1392 spin_lock(&hb1->lock);
1393 if (hb1 < hb2)
1394 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1395 } else { /* hb1 > hb2 */
1396 spin_lock(&hb2->lock);
1397 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1398 }
1399}
1400
5eb3dc62
DH
1401static inline void
1402double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1403{
f061d351 1404 spin_unlock(&hb1->lock);
88f502fe
IM
1405 if (hb1 != hb2)
1406 spin_unlock(&hb2->lock);
5eb3dc62
DH
1407}
1408
1da177e4 1409/*
b2d0994b 1410 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1411 */
b41277dc
DH
1412static int
1413futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1414{
e2970f2f 1415 struct futex_hash_bucket *hb;
1da177e4 1416 struct futex_q *this, *next;
38d47c1b 1417 union futex_key key = FUTEX_KEY_INIT;
1da177e4 1418 int ret;
194a6b5b 1419 DEFINE_WAKE_Q(wake_q);
1da177e4 1420
cd689985
TG
1421 if (!bitset)
1422 return -EINVAL;
1423
9ea71503 1424 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1da177e4
LT
1425 if (unlikely(ret != 0))
1426 goto out;
1427
e2970f2f 1428 hb = hash_futex(&key);
b0c29f79
DB
1429
1430 /* Make sure we really have tasks to wakeup */
1431 if (!hb_waiters_pending(hb))
1432 goto out_put_key;
1433
e2970f2f 1434 spin_lock(&hb->lock);
1da177e4 1435
0d00c7b2 1436 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1da177e4 1437 if (match_futex (&this->key, &key)) {
52400ba9 1438 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1439 ret = -EINVAL;
1440 break;
1441 }
cd689985
TG
1442
1443 /* Check if one of the bits is set in both bitsets */
1444 if (!(this->bitset & bitset))
1445 continue;
1446
1d0dcb3a 1447 mark_wake_futex(&wake_q, this);
1da177e4
LT
1448 if (++ret >= nr_wake)
1449 break;
1450 }
1451 }
1452
e2970f2f 1453 spin_unlock(&hb->lock);
1d0dcb3a 1454 wake_up_q(&wake_q);
b0c29f79 1455out_put_key:
ae791a2d 1456 put_futex_key(&key);
42d35d48 1457out:
1da177e4
LT
1458 return ret;
1459}
1460
4732efbe
JJ
1461/*
1462 * Wake up all waiters hashed on the physical page that is mapped
1463 * to this virtual address:
1464 */
e2970f2f 1465static int
b41277dc 1466futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1467 int nr_wake, int nr_wake2, int op)
4732efbe 1468{
38d47c1b 1469 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1470 struct futex_hash_bucket *hb1, *hb2;
4732efbe 1471 struct futex_q *this, *next;
e4dc5b7a 1472 int ret, op_ret;
194a6b5b 1473 DEFINE_WAKE_Q(wake_q);
4732efbe 1474
e4dc5b7a 1475retry:
9ea71503 1476 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
4732efbe
JJ
1477 if (unlikely(ret != 0))
1478 goto out;
9ea71503 1479 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
4732efbe 1480 if (unlikely(ret != 0))
42d35d48 1481 goto out_put_key1;
4732efbe 1482
e2970f2f
IM
1483 hb1 = hash_futex(&key1);
1484 hb2 = hash_futex(&key2);
4732efbe 1485
e4dc5b7a 1486retry_private:
eaaea803 1487 double_lock_hb(hb1, hb2);
e2970f2f 1488 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1489 if (unlikely(op_ret < 0)) {
4732efbe 1490
5eb3dc62 1491 double_unlock_hb(hb1, hb2);
4732efbe 1492
7ee1dd3f 1493#ifndef CONFIG_MMU
e2970f2f
IM
1494 /*
1495 * we don't get EFAULT from MMU faults if we don't have an MMU,
1496 * but we might get them from range checking
1497 */
7ee1dd3f 1498 ret = op_ret;
42d35d48 1499 goto out_put_keys;
7ee1dd3f
DH
1500#endif
1501
796f8d9b
DG
1502 if (unlikely(op_ret != -EFAULT)) {
1503 ret = op_ret;
42d35d48 1504 goto out_put_keys;
796f8d9b
DG
1505 }
1506
d0725992 1507 ret = fault_in_user_writeable(uaddr2);
4732efbe 1508 if (ret)
de87fcc1 1509 goto out_put_keys;
4732efbe 1510
b41277dc 1511 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1512 goto retry_private;
1513
ae791a2d
TG
1514 put_futex_key(&key2);
1515 put_futex_key(&key1);
e4dc5b7a 1516 goto retry;
4732efbe
JJ
1517 }
1518
0d00c7b2 1519 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
4732efbe 1520 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1521 if (this->pi_state || this->rt_waiter) {
1522 ret = -EINVAL;
1523 goto out_unlock;
1524 }
1d0dcb3a 1525 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1526 if (++ret >= nr_wake)
1527 break;
1528 }
1529 }
1530
1531 if (op_ret > 0) {
4732efbe 1532 op_ret = 0;
0d00c7b2 1533 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
4732efbe 1534 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1535 if (this->pi_state || this->rt_waiter) {
1536 ret = -EINVAL;
1537 goto out_unlock;
1538 }
1d0dcb3a 1539 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1540 if (++op_ret >= nr_wake2)
1541 break;
1542 }
1543 }
1544 ret += op_ret;
1545 }
1546
aa10990e 1547out_unlock:
5eb3dc62 1548 double_unlock_hb(hb1, hb2);
1d0dcb3a 1549 wake_up_q(&wake_q);
42d35d48 1550out_put_keys:
ae791a2d 1551 put_futex_key(&key2);
42d35d48 1552out_put_key1:
ae791a2d 1553 put_futex_key(&key1);
42d35d48 1554out:
4732efbe
JJ
1555 return ret;
1556}
1557
9121e478
DH
1558/**
1559 * requeue_futex() - Requeue a futex_q from one hb to another
1560 * @q: the futex_q to requeue
1561 * @hb1: the source hash_bucket
1562 * @hb2: the target hash_bucket
1563 * @key2: the new key for the requeued futex_q
1564 */
1565static inline
1566void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1567 struct futex_hash_bucket *hb2, union futex_key *key2)
1568{
1569
1570 /*
1571 * If key1 and key2 hash to the same bucket, no need to
1572 * requeue.
1573 */
1574 if (likely(&hb1->chain != &hb2->chain)) {
1575 plist_del(&q->list, &hb1->chain);
11d4616b 1576 hb_waiters_dec(hb1);
11d4616b 1577 hb_waiters_inc(hb2);
fe1bce9e 1578 plist_add(&q->list, &hb2->chain);
9121e478 1579 q->lock_ptr = &hb2->lock;
9121e478
DH
1580 }
1581 get_futex_key_refs(key2);
1582 q->key = *key2;
1583}
1584
52400ba9
DH
1585/**
1586 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1587 * @q: the futex_q
1588 * @key: the key of the requeue target futex
1589 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1590 *
1591 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1592 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1593 * to the requeue target futex so the waiter can detect the wakeup on the right
1594 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1595 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1596 * to protect access to the pi_state to fixup the owner later. Must be called
1597 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1598 */
1599static inline
beda2c7e
DH
1600void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1601 struct futex_hash_bucket *hb)
52400ba9 1602{
52400ba9
DH
1603 get_futex_key_refs(key);
1604 q->key = *key;
1605
2e12978a 1606 __unqueue_futex(q);
52400ba9
DH
1607
1608 WARN_ON(!q->rt_waiter);
1609 q->rt_waiter = NULL;
1610
beda2c7e 1611 q->lock_ptr = &hb->lock;
beda2c7e 1612
f1a11e05 1613 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1614}
1615
1616/**
1617 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1618 * @pifutex: the user address of the to futex
1619 * @hb1: the from futex hash bucket, must be locked by the caller
1620 * @hb2: the to futex hash bucket, must be locked by the caller
1621 * @key1: the from futex key
1622 * @key2: the to futex key
1623 * @ps: address to store the pi_state pointer
1624 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1625 *
1626 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1627 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1628 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1629 * hb1 and hb2 must be held by the caller.
52400ba9 1630 *
6c23cbbd
RD
1631 * Return:
1632 * 0 - failed to acquire the lock atomically;
866293ee 1633 * >0 - acquired the lock, return value is vpid of the top_waiter
52400ba9
DH
1634 * <0 - error
1635 */
1636static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1637 struct futex_hash_bucket *hb1,
1638 struct futex_hash_bucket *hb2,
1639 union futex_key *key1, union futex_key *key2,
bab5bc9e 1640 struct futex_pi_state **ps, int set_waiters)
52400ba9 1641{
bab5bc9e 1642 struct futex_q *top_waiter = NULL;
52400ba9 1643 u32 curval;
866293ee 1644 int ret, vpid;
52400ba9
DH
1645
1646 if (get_futex_value_locked(&curval, pifutex))
1647 return -EFAULT;
1648
ab51fbab
DB
1649 if (unlikely(should_fail_futex(true)))
1650 return -EFAULT;
1651
bab5bc9e
DH
1652 /*
1653 * Find the top_waiter and determine if there are additional waiters.
1654 * If the caller intends to requeue more than 1 waiter to pifutex,
1655 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1656 * as we have means to handle the possible fault. If not, don't set
1657 * the bit unecessarily as it will force the subsequent unlock to enter
1658 * the kernel.
1659 */
52400ba9
DH
1660 top_waiter = futex_top_waiter(hb1, key1);
1661
1662 /* There are no waiters, nothing for us to do. */
1663 if (!top_waiter)
1664 return 0;
1665
84bc4af5
DH
1666 /* Ensure we requeue to the expected futex. */
1667 if (!match_futex(top_waiter->requeue_pi_key, key2))
1668 return -EINVAL;
1669
52400ba9 1670 /*
bab5bc9e
DH
1671 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1672 * the contended case or if set_waiters is 1. The pi_state is returned
1673 * in ps in contended cases.
52400ba9 1674 */
866293ee 1675 vpid = task_pid_vnr(top_waiter->task);
bab5bc9e
DH
1676 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1677 set_waiters);
866293ee 1678 if (ret == 1) {
beda2c7e 1679 requeue_pi_wake_futex(top_waiter, key2, hb2);
866293ee
TG
1680 return vpid;
1681 }
52400ba9
DH
1682 return ret;
1683}
1684
1685/**
1686 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1687 * @uaddr1: source futex user address
b41277dc 1688 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1689 * @uaddr2: target futex user address
1690 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1691 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1692 * @cmpval: @uaddr1 expected value (or %NULL)
1693 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1694 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1695 *
1696 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1697 * uaddr2 atomically on behalf of the top waiter.
1698 *
6c23cbbd
RD
1699 * Return:
1700 * >=0 - on success, the number of tasks requeued or woken;
52400ba9 1701 * <0 - on error
1da177e4 1702 */
b41277dc
DH
1703static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1704 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1705 u32 *cmpval, int requeue_pi)
1da177e4 1706{
38d47c1b 1707 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1708 int drop_count = 0, task_count = 0, ret;
1709 struct futex_pi_state *pi_state = NULL;
e2970f2f 1710 struct futex_hash_bucket *hb1, *hb2;
1da177e4 1711 struct futex_q *this, *next;
194a6b5b 1712 DEFINE_WAKE_Q(wake_q);
52400ba9
DH
1713
1714 if (requeue_pi) {
e9c243a5
TG
1715 /*
1716 * Requeue PI only works on two distinct uaddrs. This
1717 * check is only valid for private futexes. See below.
1718 */
1719 if (uaddr1 == uaddr2)
1720 return -EINVAL;
1721
52400ba9
DH
1722 /*
1723 * requeue_pi requires a pi_state, try to allocate it now
1724 * without any locks in case it fails.
1725 */
1726 if (refill_pi_state_cache())
1727 return -ENOMEM;
1728 /*
1729 * requeue_pi must wake as many tasks as it can, up to nr_wake
1730 * + nr_requeue, since it acquires the rt_mutex prior to
1731 * returning to userspace, so as to not leave the rt_mutex with
1732 * waiters and no owner. However, second and third wake-ups
1733 * cannot be predicted as they involve race conditions with the
1734 * first wake and a fault while looking up the pi_state. Both
1735 * pthread_cond_signal() and pthread_cond_broadcast() should
1736 * use nr_wake=1.
1737 */
1738 if (nr_wake != 1)
1739 return -EINVAL;
1740 }
1da177e4 1741
42d35d48 1742retry:
9ea71503 1743 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1da177e4
LT
1744 if (unlikely(ret != 0))
1745 goto out;
9ea71503
SB
1746 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1747 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1da177e4 1748 if (unlikely(ret != 0))
42d35d48 1749 goto out_put_key1;
1da177e4 1750
e9c243a5
TG
1751 /*
1752 * The check above which compares uaddrs is not sufficient for
1753 * shared futexes. We need to compare the keys:
1754 */
1755 if (requeue_pi && match_futex(&key1, &key2)) {
1756 ret = -EINVAL;
1757 goto out_put_keys;
1758 }
1759
e2970f2f
IM
1760 hb1 = hash_futex(&key1);
1761 hb2 = hash_futex(&key2);
1da177e4 1762
e4dc5b7a 1763retry_private:
69cd9eba 1764 hb_waiters_inc(hb2);
8b8f319f 1765 double_lock_hb(hb1, hb2);
1da177e4 1766
e2970f2f
IM
1767 if (likely(cmpval != NULL)) {
1768 u32 curval;
1da177e4 1769
e2970f2f 1770 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1771
1772 if (unlikely(ret)) {
5eb3dc62 1773 double_unlock_hb(hb1, hb2);
69cd9eba 1774 hb_waiters_dec(hb2);
1da177e4 1775
e2970f2f 1776 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1777 if (ret)
1778 goto out_put_keys;
1da177e4 1779
b41277dc 1780 if (!(flags & FLAGS_SHARED))
e4dc5b7a 1781 goto retry_private;
1da177e4 1782
ae791a2d
TG
1783 put_futex_key(&key2);
1784 put_futex_key(&key1);
e4dc5b7a 1785 goto retry;
1da177e4 1786 }
e2970f2f 1787 if (curval != *cmpval) {
1da177e4
LT
1788 ret = -EAGAIN;
1789 goto out_unlock;
1790 }
1791 }
1792
52400ba9 1793 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
1794 /*
1795 * Attempt to acquire uaddr2 and wake the top waiter. If we
1796 * intend to requeue waiters, force setting the FUTEX_WAITERS
1797 * bit. We force this here where we are able to easily handle
1798 * faults rather in the requeue loop below.
1799 */
52400ba9 1800 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 1801 &key2, &pi_state, nr_requeue);
52400ba9
DH
1802
1803 /*
1804 * At this point the top_waiter has either taken uaddr2 or is
1805 * waiting on it. If the former, then the pi_state will not
1806 * exist yet, look it up one more time to ensure we have a
866293ee
TG
1807 * reference to it. If the lock was taken, ret contains the
1808 * vpid of the top waiter task.
ecb38b78
TG
1809 * If the lock was not taken, we have pi_state and an initial
1810 * refcount on it. In case of an error we have nothing.
52400ba9 1811 */
866293ee 1812 if (ret > 0) {
52400ba9 1813 WARN_ON(pi_state);
89061d3d 1814 drop_count++;
52400ba9 1815 task_count++;
866293ee 1816 /*
ecb38b78
TG
1817 * If we acquired the lock, then the user space value
1818 * of uaddr2 should be vpid. It cannot be changed by
1819 * the top waiter as it is blocked on hb2 lock if it
1820 * tries to do so. If something fiddled with it behind
1821 * our back the pi state lookup might unearth it. So
1822 * we rather use the known value than rereading and
1823 * handing potential crap to lookup_pi_state.
1824 *
1825 * If that call succeeds then we have pi_state and an
1826 * initial refcount on it.
866293ee 1827 */
54a21788 1828 ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
52400ba9
DH
1829 }
1830
1831 switch (ret) {
1832 case 0:
ecb38b78 1833 /* We hold a reference on the pi state. */
52400ba9 1834 break;
4959f2de
TG
1835
1836 /* If the above failed, then pi_state is NULL */
52400ba9
DH
1837 case -EFAULT:
1838 double_unlock_hb(hb1, hb2);
69cd9eba 1839 hb_waiters_dec(hb2);
ae791a2d
TG
1840 put_futex_key(&key2);
1841 put_futex_key(&key1);
d0725992 1842 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
1843 if (!ret)
1844 goto retry;
1845 goto out;
1846 case -EAGAIN:
af54d6a1
TG
1847 /*
1848 * Two reasons for this:
1849 * - Owner is exiting and we just wait for the
1850 * exit to complete.
1851 * - The user space value changed.
1852 */
52400ba9 1853 double_unlock_hb(hb1, hb2);
69cd9eba 1854 hb_waiters_dec(hb2);
ae791a2d
TG
1855 put_futex_key(&key2);
1856 put_futex_key(&key1);
52400ba9
DH
1857 cond_resched();
1858 goto retry;
1859 default:
1860 goto out_unlock;
1861 }
1862 }
1863
0d00c7b2 1864 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
52400ba9
DH
1865 if (task_count - nr_wake >= nr_requeue)
1866 break;
1867
1868 if (!match_futex(&this->key, &key1))
1da177e4 1869 continue;
52400ba9 1870
392741e0
DH
1871 /*
1872 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1873 * be paired with each other and no other futex ops.
aa10990e
DH
1874 *
1875 * We should never be requeueing a futex_q with a pi_state,
1876 * which is awaiting a futex_unlock_pi().
392741e0
DH
1877 */
1878 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
1879 (!requeue_pi && this->rt_waiter) ||
1880 this->pi_state) {
392741e0
DH
1881 ret = -EINVAL;
1882 break;
1883 }
52400ba9
DH
1884
1885 /*
1886 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1887 * lock, we already woke the top_waiter. If not, it will be
1888 * woken by futex_unlock_pi().
1889 */
1890 if (++task_count <= nr_wake && !requeue_pi) {
1d0dcb3a 1891 mark_wake_futex(&wake_q, this);
52400ba9
DH
1892 continue;
1893 }
1da177e4 1894
84bc4af5
DH
1895 /* Ensure we requeue to the expected futex for requeue_pi. */
1896 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1897 ret = -EINVAL;
1898 break;
1899 }
1900
52400ba9
DH
1901 /*
1902 * Requeue nr_requeue waiters and possibly one more in the case
1903 * of requeue_pi if we couldn't acquire the lock atomically.
1904 */
1905 if (requeue_pi) {
ecb38b78
TG
1906 /*
1907 * Prepare the waiter to take the rt_mutex. Take a
1908 * refcount on the pi_state and store the pointer in
1909 * the futex_q object of the waiter.
1910 */
52400ba9
DH
1911 atomic_inc(&pi_state->refcount);
1912 this->pi_state = pi_state;
1913 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1914 this->rt_waiter,
c051b21f 1915 this->task);
52400ba9 1916 if (ret == 1) {
ecb38b78
TG
1917 /*
1918 * We got the lock. We do neither drop the
1919 * refcount on pi_state nor clear
1920 * this->pi_state because the waiter needs the
1921 * pi_state for cleaning up the user space
1922 * value. It will drop the refcount after
1923 * doing so.
1924 */
beda2c7e 1925 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 1926 drop_count++;
52400ba9
DH
1927 continue;
1928 } else if (ret) {
ecb38b78
TG
1929 /*
1930 * rt_mutex_start_proxy_lock() detected a
1931 * potential deadlock when we tried to queue
1932 * that waiter. Drop the pi_state reference
1933 * which we took above and remove the pointer
1934 * to the state from the waiters futex_q
1935 * object.
1936 */
52400ba9 1937 this->pi_state = NULL;
29e9ee5d 1938 put_pi_state(pi_state);
885c2cb7
TG
1939 /*
1940 * We stop queueing more waiters and let user
1941 * space deal with the mess.
1942 */
1943 break;
52400ba9 1944 }
1da177e4 1945 }
52400ba9
DH
1946 requeue_futex(this, hb1, hb2, &key2);
1947 drop_count++;
1da177e4
LT
1948 }
1949
ecb38b78
TG
1950 /*
1951 * We took an extra initial reference to the pi_state either
1952 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
1953 * need to drop it here again.
1954 */
29e9ee5d 1955 put_pi_state(pi_state);
885c2cb7
TG
1956
1957out_unlock:
5eb3dc62 1958 double_unlock_hb(hb1, hb2);
1d0dcb3a 1959 wake_up_q(&wake_q);
69cd9eba 1960 hb_waiters_dec(hb2);
1da177e4 1961
cd84a42f
DH
1962 /*
1963 * drop_futex_key_refs() must be called outside the spinlocks. During
1964 * the requeue we moved futex_q's from the hash bucket at key1 to the
1965 * one at key2 and updated their key pointer. We no longer need to
1966 * hold the references to key1.
1967 */
1da177e4 1968 while (--drop_count >= 0)
9adef58b 1969 drop_futex_key_refs(&key1);
1da177e4 1970
42d35d48 1971out_put_keys:
ae791a2d 1972 put_futex_key(&key2);
42d35d48 1973out_put_key1:
ae791a2d 1974 put_futex_key(&key1);
42d35d48 1975out:
52400ba9 1976 return ret ? ret : task_count;
1da177e4
LT
1977}
1978
1979/* The key must be already stored in q->key. */
82af7aca 1980static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 1981 __acquires(&hb->lock)
1da177e4 1982{
e2970f2f 1983 struct futex_hash_bucket *hb;
1da177e4 1984
e2970f2f 1985 hb = hash_futex(&q->key);
11d4616b
LT
1986
1987 /*
1988 * Increment the counter before taking the lock so that
1989 * a potential waker won't miss a to-be-slept task that is
1990 * waiting for the spinlock. This is safe as all queue_lock()
1991 * users end up calling queue_me(). Similarly, for housekeeping,
1992 * decrement the counter at queue_unlock() when some error has
1993 * occurred and we don't end up adding the task to the list.
1994 */
1995 hb_waiters_inc(hb);
1996
e2970f2f 1997 q->lock_ptr = &hb->lock;
1da177e4 1998
8ad7b378 1999 spin_lock(&hb->lock); /* implies smp_mb(); (A) */
e2970f2f 2000 return hb;
1da177e4
LT
2001}
2002
d40d65c8 2003static inline void
0d00c7b2 2004queue_unlock(struct futex_hash_bucket *hb)
15e408cd 2005 __releases(&hb->lock)
d40d65c8
DH
2006{
2007 spin_unlock(&hb->lock);
11d4616b 2008 hb_waiters_dec(hb);
d40d65c8
DH
2009}
2010
2011/**
2012 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2013 * @q: The futex_q to enqueue
2014 * @hb: The destination hash bucket
2015 *
2016 * The hb->lock must be held by the caller, and is released here. A call to
2017 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2018 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2019 * or nothing if the unqueue is done as part of the wake process and the unqueue
2020 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2021 * an example).
2022 */
82af7aca 2023static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
15e408cd 2024 __releases(&hb->lock)
1da177e4 2025{
ec92d082
PP
2026 int prio;
2027
2028 /*
2029 * The priority used to register this element is
2030 * - either the real thread-priority for the real-time threads
2031 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2032 * - or MAX_RT_PRIO for non-RT threads.
2033 * Thus, all RT-threads are woken first in priority order, and
2034 * the others are woken last, in FIFO order.
2035 */
2036 prio = min(current->normal_prio, MAX_RT_PRIO);
2037
2038 plist_node_init(&q->list, prio);
ec92d082 2039 plist_add(&q->list, &hb->chain);
c87e2837 2040 q->task = current;
e2970f2f 2041 spin_unlock(&hb->lock);
1da177e4
LT
2042}
2043
d40d65c8
DH
2044/**
2045 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2046 * @q: The futex_q to unqueue
2047 *
2048 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2049 * be paired with exactly one earlier call to queue_me().
2050 *
6c23cbbd
RD
2051 * Return:
2052 * 1 - if the futex_q was still queued (and we removed unqueued it);
d40d65c8 2053 * 0 - if the futex_q was already removed by the waking thread
1da177e4 2054 */
1da177e4
LT
2055static int unqueue_me(struct futex_q *q)
2056{
1da177e4 2057 spinlock_t *lock_ptr;
e2970f2f 2058 int ret = 0;
1da177e4
LT
2059
2060 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 2061retry:
29b75eb2
JZ
2062 /*
2063 * q->lock_ptr can change between this read and the following spin_lock.
2064 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2065 * optimizing lock_ptr out of the logic below.
2066 */
2067 lock_ptr = READ_ONCE(q->lock_ptr);
c80544dc 2068 if (lock_ptr != NULL) {
1da177e4
LT
2069 spin_lock(lock_ptr);
2070 /*
2071 * q->lock_ptr can change between reading it and
2072 * spin_lock(), causing us to take the wrong lock. This
2073 * corrects the race condition.
2074 *
2075 * Reasoning goes like this: if we have the wrong lock,
2076 * q->lock_ptr must have changed (maybe several times)
2077 * between reading it and the spin_lock(). It can
2078 * change again after the spin_lock() but only if it was
2079 * already changed before the spin_lock(). It cannot,
2080 * however, change back to the original value. Therefore
2081 * we can detect whether we acquired the correct lock.
2082 */
2083 if (unlikely(lock_ptr != q->lock_ptr)) {
2084 spin_unlock(lock_ptr);
2085 goto retry;
2086 }
2e12978a 2087 __unqueue_futex(q);
c87e2837
IM
2088
2089 BUG_ON(q->pi_state);
2090
1da177e4
LT
2091 spin_unlock(lock_ptr);
2092 ret = 1;
2093 }
2094
9adef58b 2095 drop_futex_key_refs(&q->key);
1da177e4
LT
2096 return ret;
2097}
2098
c87e2837
IM
2099/*
2100 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
2101 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2102 * and dropped here.
c87e2837 2103 */
d0aa7a70 2104static void unqueue_me_pi(struct futex_q *q)
15e408cd 2105 __releases(q->lock_ptr)
c87e2837 2106{
2e12978a 2107 __unqueue_futex(q);
c87e2837
IM
2108
2109 BUG_ON(!q->pi_state);
29e9ee5d 2110 put_pi_state(q->pi_state);
c87e2837
IM
2111 q->pi_state = NULL;
2112
d0aa7a70 2113 spin_unlock(q->lock_ptr);
c87e2837
IM
2114}
2115
d0aa7a70 2116/*
cdf71a10 2117 * Fixup the pi_state owner with the new owner.
d0aa7a70 2118 *
778e9a9c
AK
2119 * Must be called with hash bucket lock held and mm->sem held for non
2120 * private futexes.
d0aa7a70 2121 */
778e9a9c 2122static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
ae791a2d 2123 struct task_struct *newowner)
d0aa7a70 2124{
cdf71a10 2125 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 2126 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 2127 struct task_struct *oldowner = pi_state->owner;
7cfdaf38 2128 u32 uval, uninitialized_var(curval), newval;
e4dc5b7a 2129 int ret;
d0aa7a70
PP
2130
2131 /* Owner died? */
1b7558e4
TG
2132 if (!pi_state->owner)
2133 newtid |= FUTEX_OWNER_DIED;
2134
2135 /*
2136 * We are here either because we stole the rtmutex from the
8161239a
LJ
2137 * previous highest priority waiter or we are the highest priority
2138 * waiter but failed to get the rtmutex the first time.
2139 * We have to replace the newowner TID in the user space variable.
2140 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 2141 *
b2d0994b
DH
2142 * Note: We write the user space value _before_ changing the pi_state
2143 * because we can fault here. Imagine swapped out pages or a fork
2144 * that marked all the anonymous memory readonly for cow.
1b7558e4
TG
2145 *
2146 * Modifying pi_state _before_ the user space value would
2147 * leave the pi_state in an inconsistent state when we fault
2148 * here, because we need to drop the hash bucket lock to
2149 * handle the fault. This might be observed in the PID check
2150 * in lookup_pi_state.
2151 */
2152retry:
2153 if (get_futex_value_locked(&uval, uaddr))
2154 goto handle_fault;
2155
2156 while (1) {
2157 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2158
37a9d912 2159 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1b7558e4
TG
2160 goto handle_fault;
2161 if (curval == uval)
2162 break;
2163 uval = curval;
2164 }
2165
2166 /*
2167 * We fixed up user space. Now we need to fix the pi_state
2168 * itself.
2169 */
d0aa7a70 2170 if (pi_state->owner != NULL) {
1d615482 2171 raw_spin_lock_irq(&pi_state->owner->pi_lock);
d0aa7a70
PP
2172 WARN_ON(list_empty(&pi_state->list));
2173 list_del_init(&pi_state->list);
1d615482 2174 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 2175 }
d0aa7a70 2176
cdf71a10 2177 pi_state->owner = newowner;
d0aa7a70 2178
1d615482 2179 raw_spin_lock_irq(&newowner->pi_lock);
d0aa7a70 2180 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 2181 list_add(&pi_state->list, &newowner->pi_state_list);
1d615482 2182 raw_spin_unlock_irq(&newowner->pi_lock);
1b7558e4 2183 return 0;
d0aa7a70 2184
d0aa7a70 2185 /*
1b7558e4 2186 * To handle the page fault we need to drop the hash bucket
8161239a
LJ
2187 * lock here. That gives the other task (either the highest priority
2188 * waiter itself or the task which stole the rtmutex) the
1b7558e4
TG
2189 * chance to try the fixup of the pi_state. So once we are
2190 * back from handling the fault we need to check the pi_state
2191 * after reacquiring the hash bucket lock and before trying to
2192 * do another fixup. When the fixup has been done already we
2193 * simply return.
d0aa7a70 2194 */
1b7558e4
TG
2195handle_fault:
2196 spin_unlock(q->lock_ptr);
778e9a9c 2197
d0725992 2198 ret = fault_in_user_writeable(uaddr);
778e9a9c 2199
1b7558e4 2200 spin_lock(q->lock_ptr);
778e9a9c 2201
1b7558e4
TG
2202 /*
2203 * Check if someone else fixed it for us:
2204 */
2205 if (pi_state->owner != oldowner)
2206 return 0;
2207
2208 if (ret)
2209 return ret;
2210
2211 goto retry;
d0aa7a70
PP
2212}
2213
72c1bbf3 2214static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 2215
dd973998
DH
2216/**
2217 * fixup_owner() - Post lock pi_state and corner case management
2218 * @uaddr: user address of the futex
dd973998
DH
2219 * @q: futex_q (contains pi_state and access to the rt_mutex)
2220 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2221 *
2222 * After attempting to lock an rt_mutex, this function is called to cleanup
2223 * the pi_state owner as well as handle race conditions that may allow us to
2224 * acquire the lock. Must be called with the hb lock held.
2225 *
6c23cbbd
RD
2226 * Return:
2227 * 1 - success, lock taken;
2228 * 0 - success, lock not taken;
dd973998
DH
2229 * <0 - on error (-EFAULT)
2230 */
ae791a2d 2231static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998
DH
2232{
2233 struct task_struct *owner;
2234 int ret = 0;
2235
2236 if (locked) {
2237 /*
2238 * Got the lock. We might not be the anticipated owner if we
2239 * did a lock-steal - fix up the PI-state in that case:
2240 */
2241 if (q->pi_state->owner != current)
ae791a2d 2242 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
2243 goto out;
2244 }
2245
2246 /*
2247 * Catch the rare case, where the lock was released when we were on the
2248 * way back before we locked the hash bucket.
2249 */
2250 if (q->pi_state->owner == current) {
2251 /*
2252 * Try to get the rt_mutex now. This might fail as some other
2253 * task acquired the rt_mutex after we removed ourself from the
2254 * rt_mutex waiters list.
2255 */
2256 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2257 locked = 1;
2258 goto out;
2259 }
2260
2261 /*
2262 * pi_state is incorrect, some other task did a lock steal and
2263 * we returned due to timeout or signal without taking the
8161239a 2264 * rt_mutex. Too late.
dd973998 2265 */
b4abf910 2266 raw_spin_lock_irq(&q->pi_state->pi_mutex.wait_lock);
dd973998 2267 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
8161239a
LJ
2268 if (!owner)
2269 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
b4abf910 2270 raw_spin_unlock_irq(&q->pi_state->pi_mutex.wait_lock);
ae791a2d 2271 ret = fixup_pi_state_owner(uaddr, q, owner);
dd973998
DH
2272 goto out;
2273 }
2274
2275 /*
2276 * Paranoia check. If we did not take the lock, then we should not be
8161239a 2277 * the owner of the rt_mutex.
dd973998
DH
2278 */
2279 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2280 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2281 "pi-state %p\n", ret,
2282 q->pi_state->pi_mutex.owner,
2283 q->pi_state->owner);
2284
2285out:
2286 return ret ? ret : locked;
2287}
2288
ca5f9524
DH
2289/**
2290 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2291 * @hb: the futex hash bucket, must be locked by the caller
2292 * @q: the futex_q to queue up on
2293 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
2294 */
2295static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 2296 struct hrtimer_sleeper *timeout)
ca5f9524 2297{
9beba3c5
DH
2298 /*
2299 * The task state is guaranteed to be set before another task can
b92b8b35 2300 * wake it. set_current_state() is implemented using smp_store_mb() and
9beba3c5
DH
2301 * queue_me() calls spin_unlock() upon completion, both serializing
2302 * access to the hash list and forcing another memory barrier.
2303 */
f1a11e05 2304 set_current_state(TASK_INTERRUPTIBLE);
0729e196 2305 queue_me(q, hb);
ca5f9524
DH
2306
2307 /* Arm the timer */
2e4b0d3f 2308 if (timeout)
ca5f9524 2309 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
ca5f9524
DH
2310
2311 /*
0729e196
DH
2312 * If we have been removed from the hash list, then another task
2313 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
2314 */
2315 if (likely(!plist_node_empty(&q->list))) {
2316 /*
2317 * If the timer has already expired, current will already be
2318 * flagged for rescheduling. Only call schedule if there
2319 * is no timeout, or if it has yet to expire.
2320 */
2321 if (!timeout || timeout->task)
88c8004f 2322 freezable_schedule();
ca5f9524
DH
2323 }
2324 __set_current_state(TASK_RUNNING);
2325}
2326
f801073f
DH
2327/**
2328 * futex_wait_setup() - Prepare to wait on a futex
2329 * @uaddr: the futex userspace address
2330 * @val: the expected value
b41277dc 2331 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
2332 * @q: the associated futex_q
2333 * @hb: storage for hash_bucket pointer to be returned to caller
2334 *
2335 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2336 * compare it with the expected value. Handle atomic faults internally.
2337 * Return with the hb lock held and a q.key reference on success, and unlocked
2338 * with no q.key reference on failure.
2339 *
6c23cbbd
RD
2340 * Return:
2341 * 0 - uaddr contains val and hb has been locked;
ca4a04cf 2342 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 2343 */
b41277dc 2344static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 2345 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 2346{
e2970f2f
IM
2347 u32 uval;
2348 int ret;
1da177e4 2349
1da177e4 2350 /*
b2d0994b 2351 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
2352 * Order is important:
2353 *
2354 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2355 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2356 *
2357 * The basic logical guarantee of a futex is that it blocks ONLY
2358 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
2359 * any cond. If we locked the hash-bucket after testing *uaddr, that
2360 * would open a race condition where we could block indefinitely with
1da177e4
LT
2361 * cond(var) false, which would violate the guarantee.
2362 *
8fe8f545
ML
2363 * On the other hand, we insert q and release the hash-bucket only
2364 * after testing *uaddr. This guarantees that futex_wait() will NOT
2365 * absorb a wakeup if *uaddr does not match the desired values
2366 * while the syscall executes.
1da177e4 2367 */
f801073f 2368retry:
9ea71503 2369 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
f801073f 2370 if (unlikely(ret != 0))
a5a2a0c7 2371 return ret;
f801073f
DH
2372
2373retry_private:
2374 *hb = queue_lock(q);
2375
e2970f2f 2376 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 2377
f801073f 2378 if (ret) {
0d00c7b2 2379 queue_unlock(*hb);
1da177e4 2380
e2970f2f 2381 ret = get_user(uval, uaddr);
e4dc5b7a 2382 if (ret)
f801073f 2383 goto out;
1da177e4 2384
b41277dc 2385 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2386 goto retry_private;
2387
ae791a2d 2388 put_futex_key(&q->key);
e4dc5b7a 2389 goto retry;
1da177e4 2390 }
ca5f9524 2391
f801073f 2392 if (uval != val) {
0d00c7b2 2393 queue_unlock(*hb);
f801073f 2394 ret = -EWOULDBLOCK;
2fff78c7 2395 }
1da177e4 2396
f801073f
DH
2397out:
2398 if (ret)
ae791a2d 2399 put_futex_key(&q->key);
f801073f
DH
2400 return ret;
2401}
2402
b41277dc
DH
2403static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2404 ktime_t *abs_time, u32 bitset)
f801073f
DH
2405{
2406 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
2407 struct restart_block *restart;
2408 struct futex_hash_bucket *hb;
5bdb05f9 2409 struct futex_q q = futex_q_init;
f801073f
DH
2410 int ret;
2411
2412 if (!bitset)
2413 return -EINVAL;
f801073f
DH
2414 q.bitset = bitset;
2415
2416 if (abs_time) {
2417 to = &timeout;
2418
b41277dc
DH
2419 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2420 CLOCK_REALTIME : CLOCK_MONOTONIC,
2421 HRTIMER_MODE_ABS);
f801073f
DH
2422 hrtimer_init_sleeper(to, current);
2423 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2424 current->timer_slack_ns);
2425 }
2426
d58e6576 2427retry:
7ada876a
DH
2428 /*
2429 * Prepare to wait on uaddr. On success, holds hb lock and increments
2430 * q.key refs.
2431 */
b41277dc 2432 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
2433 if (ret)
2434 goto out;
2435
ca5f9524 2436 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 2437 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
2438
2439 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 2440 ret = 0;
7ada876a 2441 /* unqueue_me() drops q.key ref */
1da177e4 2442 if (!unqueue_me(&q))
7ada876a 2443 goto out;
2fff78c7 2444 ret = -ETIMEDOUT;
ca5f9524 2445 if (to && !to->task)
7ada876a 2446 goto out;
72c1bbf3 2447
e2970f2f 2448 /*
d58e6576
TG
2449 * We expect signal_pending(current), but we might be the
2450 * victim of a spurious wakeup as well.
e2970f2f 2451 */
7ada876a 2452 if (!signal_pending(current))
d58e6576 2453 goto retry;
d58e6576 2454
2fff78c7 2455 ret = -ERESTARTSYS;
c19384b5 2456 if (!abs_time)
7ada876a 2457 goto out;
1da177e4 2458
f56141e3 2459 restart = &current->restart_block;
2fff78c7 2460 restart->fn = futex_wait_restart;
a3c74c52 2461 restart->futex.uaddr = uaddr;
2fff78c7 2462 restart->futex.val = val;
2456e855 2463 restart->futex.time = *abs_time;
2fff78c7 2464 restart->futex.bitset = bitset;
0cd9c649 2465 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2466
2fff78c7
PZ
2467 ret = -ERESTART_RESTARTBLOCK;
2468
42d35d48 2469out:
ca5f9524
DH
2470 if (to) {
2471 hrtimer_cancel(&to->timer);
2472 destroy_hrtimer_on_stack(&to->timer);
2473 }
c87e2837
IM
2474 return ret;
2475}
2476
72c1bbf3
NP
2477
2478static long futex_wait_restart(struct restart_block *restart)
2479{
a3c74c52 2480 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2481 ktime_t t, *tp = NULL;
72c1bbf3 2482
a72188d8 2483 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2456e855 2484 t = restart->futex.time;
a72188d8
DH
2485 tp = &t;
2486 }
72c1bbf3 2487 restart->fn = do_no_restart_syscall;
b41277dc
DH
2488
2489 return (long)futex_wait(uaddr, restart->futex.flags,
2490 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2491}
2492
2493
c87e2837
IM
2494/*
2495 * Userspace tried a 0 -> TID atomic transition of the futex value
2496 * and failed. The kernel side here does the whole locking operation:
767f509c
DB
2497 * if there are waiters then it will block as a consequence of relying
2498 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2499 * a 0 value of the futex too.).
2500 *
2501 * Also serves as futex trylock_pi()'ing, and due semantics.
c87e2837 2502 */
996636dd 2503static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
b41277dc 2504 ktime_t *time, int trylock)
c87e2837 2505{
c5780e97 2506 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837 2507 struct futex_hash_bucket *hb;
5bdb05f9 2508 struct futex_q q = futex_q_init;
dd973998 2509 int res, ret;
c87e2837
IM
2510
2511 if (refill_pi_state_cache())
2512 return -ENOMEM;
2513
c19384b5 2514 if (time) {
c5780e97 2515 to = &timeout;
237fc6e7
TG
2516 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2517 HRTIMER_MODE_ABS);
c5780e97 2518 hrtimer_init_sleeper(to, current);
cc584b21 2519 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
2520 }
2521
42d35d48 2522retry:
9ea71503 2523 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
c87e2837 2524 if (unlikely(ret != 0))
42d35d48 2525 goto out;
c87e2837 2526
e4dc5b7a 2527retry_private:
82af7aca 2528 hb = queue_lock(&q);
c87e2837 2529
bab5bc9e 2530 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 2531 if (unlikely(ret)) {
767f509c
DB
2532 /*
2533 * Atomic work succeeded and we got the lock,
2534 * or failed. Either way, we do _not_ block.
2535 */
778e9a9c 2536 switch (ret) {
1a52084d
DH
2537 case 1:
2538 /* We got the lock. */
2539 ret = 0;
2540 goto out_unlock_put_key;
2541 case -EFAULT:
2542 goto uaddr_faulted;
778e9a9c
AK
2543 case -EAGAIN:
2544 /*
af54d6a1
TG
2545 * Two reasons for this:
2546 * - Task is exiting and we just wait for the
2547 * exit to complete.
2548 * - The user space value changed.
778e9a9c 2549 */
0d00c7b2 2550 queue_unlock(hb);
ae791a2d 2551 put_futex_key(&q.key);
778e9a9c
AK
2552 cond_resched();
2553 goto retry;
778e9a9c 2554 default:
42d35d48 2555 goto out_unlock_put_key;
c87e2837 2556 }
c87e2837
IM
2557 }
2558
2559 /*
2560 * Only actually queue now that the atomic ops are done:
2561 */
82af7aca 2562 queue_me(&q, hb);
c87e2837 2563
c87e2837
IM
2564 WARN_ON(!q.pi_state);
2565 /*
2566 * Block on the PI mutex:
2567 */
c051b21f
TG
2568 if (!trylock) {
2569 ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2570 } else {
c87e2837
IM
2571 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2572 /* Fixup the trylock return value: */
2573 ret = ret ? 0 : -EWOULDBLOCK;
2574 }
2575
a99e4e41 2576 spin_lock(q.lock_ptr);
dd973998
DH
2577 /*
2578 * Fixup the pi_state owner and possibly acquire the lock if we
2579 * haven't already.
2580 */
ae791a2d 2581 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2582 /*
2583 * If fixup_owner() returned an error, proprogate that. If it acquired
2584 * the lock, clear our -ETIMEDOUT or -EINTR.
2585 */
2586 if (res)
2587 ret = (res < 0) ? res : 0;
c87e2837 2588
e8f6386c 2589 /*
dd973998
DH
2590 * If fixup_owner() faulted and was unable to handle the fault, unlock
2591 * it and return the fault to userspace.
e8f6386c
DH
2592 */
2593 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2594 rt_mutex_unlock(&q.pi_state->pi_mutex);
2595
778e9a9c
AK
2596 /* Unqueue and drop the lock */
2597 unqueue_me_pi(&q);
c87e2837 2598
5ecb01cf 2599 goto out_put_key;
c87e2837 2600
42d35d48 2601out_unlock_put_key:
0d00c7b2 2602 queue_unlock(hb);
c87e2837 2603
42d35d48 2604out_put_key:
ae791a2d 2605 put_futex_key(&q.key);
42d35d48 2606out:
237fc6e7
TG
2607 if (to)
2608 destroy_hrtimer_on_stack(&to->timer);
dd973998 2609 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2610
42d35d48 2611uaddr_faulted:
0d00c7b2 2612 queue_unlock(hb);
778e9a9c 2613
d0725992 2614 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2615 if (ret)
2616 goto out_put_key;
c87e2837 2617
b41277dc 2618 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2619 goto retry_private;
2620
ae791a2d 2621 put_futex_key(&q.key);
e4dc5b7a 2622 goto retry;
c87e2837
IM
2623}
2624
c87e2837
IM
2625/*
2626 * Userspace attempted a TID -> 0 atomic transition, and failed.
2627 * This is the in-kernel slowpath: we look up the PI state (if any),
2628 * and do the rt-mutex unlock.
2629 */
b41277dc 2630static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837 2631{
ccf9e6a8 2632 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
38d47c1b 2633 union futex_key key = FUTEX_KEY_INIT;
ccf9e6a8
TG
2634 struct futex_hash_bucket *hb;
2635 struct futex_q *match;
e4dc5b7a 2636 int ret;
c87e2837
IM
2637
2638retry:
2639 if (get_user(uval, uaddr))
2640 return -EFAULT;
2641 /*
2642 * We release only a lock we actually own:
2643 */
c0c9ed15 2644 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2645 return -EPERM;
c87e2837 2646
9ea71503 2647 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
ccf9e6a8
TG
2648 if (ret)
2649 return ret;
c87e2837
IM
2650
2651 hb = hash_futex(&key);
2652 spin_lock(&hb->lock);
2653
c87e2837 2654 /*
ccf9e6a8
TG
2655 * Check waiters first. We do not trust user space values at
2656 * all and we at least want to know if user space fiddled
2657 * with the futex value instead of blindly unlocking.
c87e2837 2658 */
ccf9e6a8
TG
2659 match = futex_top_waiter(hb, &key);
2660 if (match) {
802ab58d
SAS
2661 ret = wake_futex_pi(uaddr, uval, match, hb);
2662 /*
2663 * In case of success wake_futex_pi dropped the hash
2664 * bucket lock.
2665 */
2666 if (!ret)
2667 goto out_putkey;
c87e2837 2668 /*
ccf9e6a8
TG
2669 * The atomic access to the futex value generated a
2670 * pagefault, so retry the user-access and the wakeup:
c87e2837
IM
2671 */
2672 if (ret == -EFAULT)
2673 goto pi_faulted;
89e9e66b
SAS
2674 /*
2675 * A unconditional UNLOCK_PI op raced against a waiter
2676 * setting the FUTEX_WAITERS bit. Try again.
2677 */
2678 if (ret == -EAGAIN) {
2679 spin_unlock(&hb->lock);
2680 put_futex_key(&key);
2681 goto retry;
2682 }
802ab58d
SAS
2683 /*
2684 * wake_futex_pi has detected invalid state. Tell user
2685 * space.
2686 */
c87e2837
IM
2687 goto out_unlock;
2688 }
ccf9e6a8 2689
c87e2837 2690 /*
ccf9e6a8
TG
2691 * We have no kernel internal state, i.e. no waiters in the
2692 * kernel. Waiters which are about to queue themselves are stuck
2693 * on hb->lock. So we can safely ignore them. We do neither
2694 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2695 * owner.
c87e2837 2696 */
ccf9e6a8 2697 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
13fbca4c 2698 goto pi_faulted;
c87e2837 2699
ccf9e6a8
TG
2700 /*
2701 * If uval has changed, let user space handle it.
2702 */
2703 ret = (curval == uval) ? 0 : -EAGAIN;
2704
c87e2837
IM
2705out_unlock:
2706 spin_unlock(&hb->lock);
802ab58d 2707out_putkey:
ae791a2d 2708 put_futex_key(&key);
c87e2837
IM
2709 return ret;
2710
2711pi_faulted:
778e9a9c 2712 spin_unlock(&hb->lock);
ae791a2d 2713 put_futex_key(&key);
c87e2837 2714
d0725992 2715 ret = fault_in_user_writeable(uaddr);
b5686363 2716 if (!ret)
c87e2837
IM
2717 goto retry;
2718
1da177e4
LT
2719 return ret;
2720}
2721
52400ba9
DH
2722/**
2723 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2724 * @hb: the hash_bucket futex_q was original enqueued on
2725 * @q: the futex_q woken while waiting to be requeued
2726 * @key2: the futex_key of the requeue target futex
2727 * @timeout: the timeout associated with the wait (NULL if none)
2728 *
2729 * Detect if the task was woken on the initial futex as opposed to the requeue
2730 * target futex. If so, determine if it was a timeout or a signal that caused
2731 * the wakeup and return the appropriate error code to the caller. Must be
2732 * called with the hb lock held.
2733 *
6c23cbbd
RD
2734 * Return:
2735 * 0 = no early wakeup detected;
2736 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
2737 */
2738static inline
2739int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2740 struct futex_q *q, union futex_key *key2,
2741 struct hrtimer_sleeper *timeout)
2742{
2743 int ret = 0;
2744
2745 /*
2746 * With the hb lock held, we avoid races while we process the wakeup.
2747 * We only need to hold hb (and not hb2) to ensure atomicity as the
2748 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2749 * It can't be requeued from uaddr2 to something else since we don't
2750 * support a PI aware source futex for requeue.
2751 */
2752 if (!match_futex(&q->key, key2)) {
2753 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2754 /*
2755 * We were woken prior to requeue by a timeout or a signal.
2756 * Unqueue the futex_q and determine which it was.
2757 */
2e12978a 2758 plist_del(&q->list, &hb->chain);
11d4616b 2759 hb_waiters_dec(hb);
52400ba9 2760
d58e6576 2761 /* Handle spurious wakeups gracefully */
11df6ddd 2762 ret = -EWOULDBLOCK;
52400ba9
DH
2763 if (timeout && !timeout->task)
2764 ret = -ETIMEDOUT;
d58e6576 2765 else if (signal_pending(current))
1c840c14 2766 ret = -ERESTARTNOINTR;
52400ba9
DH
2767 }
2768 return ret;
2769}
2770
2771/**
2772 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 2773 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 2774 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
ab51fbab 2775 * the same type, no requeueing from private to shared, etc.
52400ba9
DH
2776 * @val: the expected value of uaddr
2777 * @abs_time: absolute timeout
56ec1607 2778 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
2779 * @uaddr2: the pi futex we will take prior to returning to user-space
2780 *
2781 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
2782 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2783 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2784 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2785 * without one, the pi logic would not know which task to boost/deboost, if
2786 * there was a need to.
52400ba9
DH
2787 *
2788 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 2789 * via the following--
52400ba9 2790 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
2791 * 2) wakeup on uaddr2 after a requeue
2792 * 3) signal
2793 * 4) timeout
52400ba9 2794 *
cc6db4e6 2795 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
2796 *
2797 * If 2, we may then block on trying to take the rt_mutex and return via:
2798 * 5) successful lock
2799 * 6) signal
2800 * 7) timeout
2801 * 8) other lock acquisition failure
2802 *
cc6db4e6 2803 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
2804 *
2805 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2806 *
6c23cbbd
RD
2807 * Return:
2808 * 0 - On success;
52400ba9
DH
2809 * <0 - On error
2810 */
b41277dc 2811static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 2812 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 2813 u32 __user *uaddr2)
52400ba9
DH
2814{
2815 struct hrtimer_sleeper timeout, *to = NULL;
2816 struct rt_mutex_waiter rt_waiter;
2817 struct rt_mutex *pi_mutex = NULL;
52400ba9 2818 struct futex_hash_bucket *hb;
5bdb05f9
DH
2819 union futex_key key2 = FUTEX_KEY_INIT;
2820 struct futex_q q = futex_q_init;
52400ba9 2821 int res, ret;
52400ba9 2822
6f7b0a2a
DH
2823 if (uaddr == uaddr2)
2824 return -EINVAL;
2825
52400ba9
DH
2826 if (!bitset)
2827 return -EINVAL;
2828
2829 if (abs_time) {
2830 to = &timeout;
b41277dc
DH
2831 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2832 CLOCK_REALTIME : CLOCK_MONOTONIC,
2833 HRTIMER_MODE_ABS);
52400ba9
DH
2834 hrtimer_init_sleeper(to, current);
2835 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2836 current->timer_slack_ns);
2837 }
2838
2839 /*
2840 * The waiter is allocated on our stack, manipulated by the requeue
2841 * code while we sleep on uaddr.
2842 */
2843 debug_rt_mutex_init_waiter(&rt_waiter);
fb00aca4
PZ
2844 RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2845 RB_CLEAR_NODE(&rt_waiter.tree_entry);
52400ba9
DH
2846 rt_waiter.task = NULL;
2847
9ea71503 2848 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
52400ba9
DH
2849 if (unlikely(ret != 0))
2850 goto out;
2851
84bc4af5
DH
2852 q.bitset = bitset;
2853 q.rt_waiter = &rt_waiter;
2854 q.requeue_pi_key = &key2;
2855
7ada876a
DH
2856 /*
2857 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2858 * count.
2859 */
b41277dc 2860 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
2861 if (ret)
2862 goto out_key2;
52400ba9 2863
e9c243a5
TG
2864 /*
2865 * The check above which compares uaddrs is not sufficient for
2866 * shared futexes. We need to compare the keys:
2867 */
2868 if (match_futex(&q.key, &key2)) {
13c42c2f 2869 queue_unlock(hb);
e9c243a5
TG
2870 ret = -EINVAL;
2871 goto out_put_keys;
2872 }
2873
52400ba9 2874 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 2875 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
2876
2877 spin_lock(&hb->lock);
2878 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2879 spin_unlock(&hb->lock);
2880 if (ret)
2881 goto out_put_keys;
2882
2883 /*
2884 * In order for us to be here, we know our q.key == key2, and since
2885 * we took the hb->lock above, we also know that futex_requeue() has
2886 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
2887 * race with the atomic proxy lock acquisition by the requeue code. The
2888 * futex_requeue dropped our key1 reference and incremented our key2
2889 * reference count.
52400ba9
DH
2890 */
2891
2892 /* Check if the requeue code acquired the second futex for us. */
2893 if (!q.rt_waiter) {
2894 /*
2895 * Got the lock. We might not be the anticipated owner if we
2896 * did a lock-steal - fix up the PI-state in that case.
2897 */
2898 if (q.pi_state && (q.pi_state->owner != current)) {
2899 spin_lock(q.lock_ptr);
ae791a2d 2900 ret = fixup_pi_state_owner(uaddr2, &q, current);
fb75a428
TG
2901 /*
2902 * Drop the reference to the pi state which
2903 * the requeue_pi() code acquired for us.
2904 */
29e9ee5d 2905 put_pi_state(q.pi_state);
52400ba9
DH
2906 spin_unlock(q.lock_ptr);
2907 }
2908 } else {
2909 /*
2910 * We have been woken up by futex_unlock_pi(), a timeout, or a
2911 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2912 * the pi_state.
2913 */
f27071cb 2914 WARN_ON(!q.pi_state);
52400ba9 2915 pi_mutex = &q.pi_state->pi_mutex;
c051b21f 2916 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
52400ba9
DH
2917 debug_rt_mutex_free_waiter(&rt_waiter);
2918
2919 spin_lock(q.lock_ptr);
2920 /*
2921 * Fixup the pi_state owner and possibly acquire the lock if we
2922 * haven't already.
2923 */
ae791a2d 2924 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
2925 /*
2926 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 2927 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
2928 */
2929 if (res)
2930 ret = (res < 0) ? res : 0;
2931
2932 /* Unqueue and drop the lock. */
2933 unqueue_me_pi(&q);
2934 }
2935
2936 /*
2937 * If fixup_pi_state_owner() faulted and was unable to handle the
2938 * fault, unlock the rt_mutex and return the fault to userspace.
2939 */
2940 if (ret == -EFAULT) {
b6070a8d 2941 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
52400ba9
DH
2942 rt_mutex_unlock(pi_mutex);
2943 } else if (ret == -EINTR) {
52400ba9 2944 /*
cc6db4e6
DH
2945 * We've already been requeued, but cannot restart by calling
2946 * futex_lock_pi() directly. We could restart this syscall, but
2947 * it would detect that the user space "val" changed and return
2948 * -EWOULDBLOCK. Save the overhead of the restart and return
2949 * -EWOULDBLOCK directly.
52400ba9 2950 */
2070887f 2951 ret = -EWOULDBLOCK;
52400ba9
DH
2952 }
2953
2954out_put_keys:
ae791a2d 2955 put_futex_key(&q.key);
c8b15a70 2956out_key2:
ae791a2d 2957 put_futex_key(&key2);
52400ba9
DH
2958
2959out:
2960 if (to) {
2961 hrtimer_cancel(&to->timer);
2962 destroy_hrtimer_on_stack(&to->timer);
2963 }
2964 return ret;
2965}
2966
0771dfef
IM
2967/*
2968 * Support for robust futexes: the kernel cleans up held futexes at
2969 * thread exit time.
2970 *
2971 * Implementation: user-space maintains a per-thread list of locks it
2972 * is holding. Upon do_exit(), the kernel carefully walks this list,
2973 * and marks all locks that are owned by this thread with the
c87e2837 2974 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
2975 * always manipulated with the lock held, so the list is private and
2976 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2977 * field, to allow the kernel to clean up if the thread dies after
2978 * acquiring the lock, but just before it could have added itself to
2979 * the list. There can only be one such pending lock.
2980 */
2981
2982/**
d96ee56c
DH
2983 * sys_set_robust_list() - Set the robust-futex list head of a task
2984 * @head: pointer to the list-head
2985 * @len: length of the list-head, as userspace expects
0771dfef 2986 */
836f92ad
HC
2987SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2988 size_t, len)
0771dfef 2989{
a0c1e907
TG
2990 if (!futex_cmpxchg_enabled)
2991 return -ENOSYS;
0771dfef
IM
2992 /*
2993 * The kernel knows only one size for now:
2994 */
2995 if (unlikely(len != sizeof(*head)))
2996 return -EINVAL;
2997
2998 current->robust_list = head;
2999
3000 return 0;
3001}
3002
3003/**
d96ee56c
DH
3004 * sys_get_robust_list() - Get the robust-futex list head of a task
3005 * @pid: pid of the process [zero for current task]
3006 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3007 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 3008 */
836f92ad
HC
3009SYSCALL_DEFINE3(get_robust_list, int, pid,
3010 struct robust_list_head __user * __user *, head_ptr,
3011 size_t __user *, len_ptr)
0771dfef 3012{
ba46df98 3013 struct robust_list_head __user *head;
0771dfef 3014 unsigned long ret;
bdbb776f 3015 struct task_struct *p;
0771dfef 3016
a0c1e907
TG
3017 if (!futex_cmpxchg_enabled)
3018 return -ENOSYS;
3019
bdbb776f
KC
3020 rcu_read_lock();
3021
3022 ret = -ESRCH;
0771dfef 3023 if (!pid)
bdbb776f 3024 p = current;
0771dfef 3025 else {
228ebcbe 3026 p = find_task_by_vpid(pid);
0771dfef
IM
3027 if (!p)
3028 goto err_unlock;
0771dfef
IM
3029 }
3030
bdbb776f 3031 ret = -EPERM;
caaee623 3032 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
bdbb776f
KC
3033 goto err_unlock;
3034
3035 head = p->robust_list;
3036 rcu_read_unlock();
3037
0771dfef
IM
3038 if (put_user(sizeof(*head), len_ptr))
3039 return -EFAULT;
3040 return put_user(head, head_ptr);
3041
3042err_unlock:
aaa2a97e 3043 rcu_read_unlock();
0771dfef
IM
3044
3045 return ret;
3046}
3047
3048/*
3049 * Process a futex-list entry, check whether it's owned by the
3050 * dying task, and do notification if so:
3051 */
e3f2ddea 3052int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 3053{
7cfdaf38 3054 u32 uval, uninitialized_var(nval), mval;
0771dfef 3055
8f17d3a5
IM
3056retry:
3057 if (get_user(uval, uaddr))
0771dfef
IM
3058 return -1;
3059
b488893a 3060 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
3061 /*
3062 * Ok, this dying thread is truly holding a futex
3063 * of interest. Set the OWNER_DIED bit atomically
3064 * via cmpxchg, and if the value had FUTEX_WAITERS
3065 * set, wake up a waiter (if any). (We have to do a
3066 * futex_wake() even if OWNER_DIED is already set -
3067 * to handle the rare but possible case of recursive
3068 * thread-death.) The rest of the cleanup is done in
3069 * userspace.
3070 */
e3f2ddea 3071 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
6e0aa9f8
TG
3072 /*
3073 * We are not holding a lock here, but we want to have
3074 * the pagefault_disable/enable() protection because
3075 * we want to handle the fault gracefully. If the
3076 * access fails we try to fault in the futex with R/W
3077 * verification via get_user_pages. get_user() above
3078 * does not guarantee R/W access. If that fails we
3079 * give up and leave the futex locked.
3080 */
3081 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3082 if (fault_in_user_writeable(uaddr))
3083 return -1;
3084 goto retry;
3085 }
c87e2837 3086 if (nval != uval)
8f17d3a5 3087 goto retry;
0771dfef 3088
e3f2ddea
IM
3089 /*
3090 * Wake robust non-PI futexes here. The wakeup of
3091 * PI futexes happens in exit_pi_state():
3092 */
36cf3b5c 3093 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 3094 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
3095 }
3096 return 0;
3097}
3098
e3f2ddea
IM
3099/*
3100 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3101 */
3102static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 3103 struct robust_list __user * __user *head,
1dcc41bb 3104 unsigned int *pi)
e3f2ddea
IM
3105{
3106 unsigned long uentry;
3107
ba46df98 3108 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
3109 return -EFAULT;
3110
ba46df98 3111 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
3112 *pi = uentry & 1;
3113
3114 return 0;
3115}
3116
0771dfef
IM
3117/*
3118 * Walk curr->robust_list (very carefully, it's a userspace list!)
3119 * and mark any locks found there dead, and notify any waiters.
3120 *
3121 * We silently return on any sign of list-walking problem.
3122 */
3123void exit_robust_list(struct task_struct *curr)
3124{
3125 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 3126 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
3127 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3128 unsigned int uninitialized_var(next_pi);
0771dfef 3129 unsigned long futex_offset;
9f96cb1e 3130 int rc;
0771dfef 3131
a0c1e907
TG
3132 if (!futex_cmpxchg_enabled)
3133 return;
3134
0771dfef
IM
3135 /*
3136 * Fetch the list head (which was registered earlier, via
3137 * sys_set_robust_list()):
3138 */
e3f2ddea 3139 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
3140 return;
3141 /*
3142 * Fetch the relative futex offset:
3143 */
3144 if (get_user(futex_offset, &head->futex_offset))
3145 return;
3146 /*
3147 * Fetch any possibly pending lock-add first, and handle it
3148 * if it exists:
3149 */
e3f2ddea 3150 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 3151 return;
e3f2ddea 3152
9f96cb1e 3153 next_entry = NULL; /* avoid warning with gcc */
0771dfef 3154 while (entry != &head->list) {
9f96cb1e
MS
3155 /*
3156 * Fetch the next entry in the list before calling
3157 * handle_futex_death:
3158 */
3159 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
3160 /*
3161 * A pending lock might already be on the list, so
c87e2837 3162 * don't process it twice:
0771dfef
IM
3163 */
3164 if (entry != pending)
ba46df98 3165 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 3166 curr, pi))
0771dfef 3167 return;
9f96cb1e 3168 if (rc)
0771dfef 3169 return;
9f96cb1e
MS
3170 entry = next_entry;
3171 pi = next_pi;
0771dfef
IM
3172 /*
3173 * Avoid excessively long or circular lists:
3174 */
3175 if (!--limit)
3176 break;
3177
3178 cond_resched();
3179 }
9f96cb1e
MS
3180
3181 if (pending)
3182 handle_futex_death((void __user *)pending + futex_offset,
3183 curr, pip);
0771dfef
IM
3184}
3185
c19384b5 3186long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 3187 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 3188{
81b40539 3189 int cmd = op & FUTEX_CMD_MASK;
b41277dc 3190 unsigned int flags = 0;
34f01cc1
ED
3191
3192 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 3193 flags |= FLAGS_SHARED;
1da177e4 3194
b41277dc
DH
3195 if (op & FUTEX_CLOCK_REALTIME) {
3196 flags |= FLAGS_CLOCKRT;
337f1304
DH
3197 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3198 cmd != FUTEX_WAIT_REQUEUE_PI)
b41277dc
DH
3199 return -ENOSYS;
3200 }
1da177e4 3201
59263b51
TG
3202 switch (cmd) {
3203 case FUTEX_LOCK_PI:
3204 case FUTEX_UNLOCK_PI:
3205 case FUTEX_TRYLOCK_PI:
3206 case FUTEX_WAIT_REQUEUE_PI:
3207 case FUTEX_CMP_REQUEUE_PI:
3208 if (!futex_cmpxchg_enabled)
3209 return -ENOSYS;
3210 }
3211
34f01cc1 3212 switch (cmd) {
1da177e4 3213 case FUTEX_WAIT:
cd689985
TG
3214 val3 = FUTEX_BITSET_MATCH_ANY;
3215 case FUTEX_WAIT_BITSET:
81b40539 3216 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 3217 case FUTEX_WAKE:
cd689985
TG
3218 val3 = FUTEX_BITSET_MATCH_ANY;
3219 case FUTEX_WAKE_BITSET:
81b40539 3220 return futex_wake(uaddr, flags, val, val3);
1da177e4 3221 case FUTEX_REQUEUE:
81b40539 3222 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 3223 case FUTEX_CMP_REQUEUE:
81b40539 3224 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 3225 case FUTEX_WAKE_OP:
81b40539 3226 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 3227 case FUTEX_LOCK_PI:
996636dd 3228 return futex_lock_pi(uaddr, flags, timeout, 0);
c87e2837 3229 case FUTEX_UNLOCK_PI:
81b40539 3230 return futex_unlock_pi(uaddr, flags);
c87e2837 3231 case FUTEX_TRYLOCK_PI:
996636dd 3232 return futex_lock_pi(uaddr, flags, NULL, 1);
52400ba9
DH
3233 case FUTEX_WAIT_REQUEUE_PI:
3234 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
3235 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3236 uaddr2);
52400ba9 3237 case FUTEX_CMP_REQUEUE_PI:
81b40539 3238 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 3239 }
81b40539 3240 return -ENOSYS;
1da177e4
LT
3241}
3242
3243
17da2bd9
HC
3244SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3245 struct timespec __user *, utime, u32 __user *, uaddr2,
3246 u32, val3)
1da177e4 3247{
c19384b5
PP
3248 struct timespec ts;
3249 ktime_t t, *tp = NULL;
e2970f2f 3250 u32 val2 = 0;
34f01cc1 3251 int cmd = op & FUTEX_CMD_MASK;
1da177e4 3252
cd689985 3253 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
3254 cmd == FUTEX_WAIT_BITSET ||
3255 cmd == FUTEX_WAIT_REQUEUE_PI)) {
ab51fbab
DB
3256 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3257 return -EFAULT;
c19384b5 3258 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 3259 return -EFAULT;
c19384b5 3260 if (!timespec_valid(&ts))
9741ef96 3261 return -EINVAL;
c19384b5
PP
3262
3263 t = timespec_to_ktime(ts);
34f01cc1 3264 if (cmd == FUTEX_WAIT)
5a7780e7 3265 t = ktime_add_safe(ktime_get(), t);
c19384b5 3266 tp = &t;
1da177e4
LT
3267 }
3268 /*
52400ba9 3269 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 3270 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 3271 */
f54f0986 3272 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 3273 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 3274 val2 = (u32) (unsigned long) utime;
1da177e4 3275
c19384b5 3276 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
3277}
3278
03b8c7b6 3279static void __init futex_detect_cmpxchg(void)
1da177e4 3280{
03b8c7b6 3281#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 3282 u32 curval;
03b8c7b6
HC
3283
3284 /*
3285 * This will fail and we want it. Some arch implementations do
3286 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3287 * functionality. We want to know that before we call in any
3288 * of the complex code paths. Also we want to prevent
3289 * registration of robust lists in that case. NULL is
3290 * guaranteed to fault and we get -EFAULT on functional
3291 * implementation, the non-functional ones will return
3292 * -ENOSYS.
3293 */
3294 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3295 futex_cmpxchg_enabled = 1;
3296#endif
3297}
3298
3299static int __init futex_init(void)
3300{
63b1a816 3301 unsigned int futex_shift;
a52b89eb
DB
3302 unsigned long i;
3303
3304#if CONFIG_BASE_SMALL
3305 futex_hashsize = 16;
3306#else
3307 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3308#endif
3309
3310 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3311 futex_hashsize, 0,
3312 futex_hashsize < 256 ? HASH_SMALL : 0,
63b1a816
HC
3313 &futex_shift, NULL,
3314 futex_hashsize, futex_hashsize);
3315 futex_hashsize = 1UL << futex_shift;
03b8c7b6
HC
3316
3317 futex_detect_cmpxchg();
a0c1e907 3318
a52b89eb 3319 for (i = 0; i < futex_hashsize; i++) {
11d4616b 3320 atomic_set(&futex_queues[i].waiters, 0);
732375c6 3321 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
3322 spin_lock_init(&futex_queues[i].lock);
3323 }
3324
1da177e4
LT
3325 return 0;
3326}
25f71d1c 3327core_initcall(futex_init);