futex: Take hugepages into account when generating futex_key
[linux-2.6-block.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
7ed20e1a 57#include <linux/signal.h>
9984de1a 58#include <linux/export.h>
fd5eea42 59#include <linux/magic.h>
b488893a
PE
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
bdbb776f 62#include <linux/ptrace.h>
8bd75c77 63#include <linux/sched/rt.h>
13d60f4b 64#include <linux/hugetlb.h>
b488893a 65
4732efbe 66#include <asm/futex.h>
1da177e4 67
c87e2837
IM
68#include "rtmutex_common.h"
69
a0c1e907
TG
70int __read_mostly futex_cmpxchg_enabled;
71
1da177e4
LT
72#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
73
b41277dc
DH
74/*
75 * Futex flags used to encode options to functions and preserve them across
76 * restarts.
77 */
78#define FLAGS_SHARED 0x01
79#define FLAGS_CLOCKRT 0x02
80#define FLAGS_HAS_TIMEOUT 0x04
81
c87e2837
IM
82/*
83 * Priority Inheritance state:
84 */
85struct futex_pi_state {
86 /*
87 * list of 'owned' pi_state instances - these have to be
88 * cleaned up in do_exit() if the task exits prematurely:
89 */
90 struct list_head list;
91
92 /*
93 * The PI object:
94 */
95 struct rt_mutex pi_mutex;
96
97 struct task_struct *owner;
98 atomic_t refcount;
99
100 union futex_key key;
101};
102
d8d88fbb
DH
103/**
104 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 105 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
106 * @task: the task waiting on the futex
107 * @lock_ptr: the hash bucket lock
108 * @key: the key the futex is hashed on
109 * @pi_state: optional priority inheritance state
110 * @rt_waiter: rt_waiter storage for use with requeue_pi
111 * @requeue_pi_key: the requeue_pi target futex key
112 * @bitset: bitset for the optional bitmasked wakeup
113 *
114 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
1da177e4
LT
115 * we can wake only the relevant ones (hashed queues may be shared).
116 *
117 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 118 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 119 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
120 * the second.
121 *
122 * PI futexes are typically woken before they are removed from the hash list via
123 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
124 */
125struct futex_q {
ec92d082 126 struct plist_node list;
1da177e4 127
d8d88fbb 128 struct task_struct *task;
1da177e4 129 spinlock_t *lock_ptr;
1da177e4 130 union futex_key key;
c87e2837 131 struct futex_pi_state *pi_state;
52400ba9 132 struct rt_mutex_waiter *rt_waiter;
84bc4af5 133 union futex_key *requeue_pi_key;
cd689985 134 u32 bitset;
1da177e4
LT
135};
136
5bdb05f9
DH
137static const struct futex_q futex_q_init = {
138 /* list gets initialized in queue_me()*/
139 .key = FUTEX_KEY_INIT,
140 .bitset = FUTEX_BITSET_MATCH_ANY
141};
142
1da177e4 143/*
b2d0994b
DH
144 * Hash buckets are shared by all the futex_keys that hash to the same
145 * location. Each key may have multiple futex_q structures, one for each task
146 * waiting on a futex.
1da177e4
LT
147 */
148struct futex_hash_bucket {
ec92d082
PP
149 spinlock_t lock;
150 struct plist_head chain;
1da177e4
LT
151};
152
153static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
154
1da177e4
LT
155/*
156 * We hash on the keys returned from get_futex_key (see below).
157 */
158static struct futex_hash_bucket *hash_futex(union futex_key *key)
159{
160 u32 hash = jhash2((u32*)&key->both.word,
161 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
162 key->both.offset);
163 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
164}
165
166/*
167 * Return 1 if two futex_keys are equal, 0 otherwise.
168 */
169static inline int match_futex(union futex_key *key1, union futex_key *key2)
170{
2bc87203
DH
171 return (key1 && key2
172 && key1->both.word == key2->both.word
1da177e4
LT
173 && key1->both.ptr == key2->both.ptr
174 && key1->both.offset == key2->both.offset);
175}
176
38d47c1b
PZ
177/*
178 * Take a reference to the resource addressed by a key.
179 * Can be called while holding spinlocks.
180 *
181 */
182static void get_futex_key_refs(union futex_key *key)
183{
184 if (!key->both.ptr)
185 return;
186
187 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
188 case FUT_OFF_INODE:
7de9c6ee 189 ihold(key->shared.inode);
38d47c1b
PZ
190 break;
191 case FUT_OFF_MMSHARED:
192 atomic_inc(&key->private.mm->mm_count);
193 break;
194 }
195}
196
197/*
198 * Drop a reference to the resource addressed by a key.
199 * The hash bucket spinlock must not be held.
200 */
201static void drop_futex_key_refs(union futex_key *key)
202{
90621c40
DH
203 if (!key->both.ptr) {
204 /* If we're here then we tried to put a key we failed to get */
205 WARN_ON_ONCE(1);
38d47c1b 206 return;
90621c40 207 }
38d47c1b
PZ
208
209 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
210 case FUT_OFF_INODE:
211 iput(key->shared.inode);
212 break;
213 case FUT_OFF_MMSHARED:
214 mmdrop(key->private.mm);
215 break;
216 }
217}
218
34f01cc1 219/**
d96ee56c
DH
220 * get_futex_key() - Get parameters which are the keys for a futex
221 * @uaddr: virtual address of the futex
222 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
223 * @key: address where result is stored.
9ea71503
SB
224 * @rw: mapping needs to be read/write (values: VERIFY_READ,
225 * VERIFY_WRITE)
34f01cc1 226 *
6c23cbbd
RD
227 * Return: a negative error code or 0
228 *
34f01cc1 229 * The key words are stored in *key on success.
1da177e4 230 *
6131ffaa 231 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
1da177e4
LT
232 * offset_within_page). For private mappings, it's (uaddr, current->mm).
233 * We can usually work out the index without swapping in the page.
234 *
b2d0994b 235 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 236 */
64d1304a 237static int
9ea71503 238get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
1da177e4 239{
e2970f2f 240 unsigned long address = (unsigned long)uaddr;
1da177e4 241 struct mm_struct *mm = current->mm;
a5b338f2 242 struct page *page, *page_head;
9ea71503 243 int err, ro = 0;
1da177e4
LT
244
245 /*
246 * The futex address must be "naturally" aligned.
247 */
e2970f2f 248 key->both.offset = address % PAGE_SIZE;
34f01cc1 249 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 250 return -EINVAL;
e2970f2f 251 address -= key->both.offset;
1da177e4 252
34f01cc1
ED
253 /*
254 * PROCESS_PRIVATE futexes are fast.
255 * As the mm cannot disappear under us and the 'key' only needs
256 * virtual address, we dont even have to find the underlying vma.
257 * Note : We do have to check 'uaddr' is a valid user address,
258 * but access_ok() should be faster than find_vma()
259 */
260 if (!fshared) {
7485d0d3 261 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
34f01cc1
ED
262 return -EFAULT;
263 key->private.mm = mm;
264 key->private.address = address;
42569c39 265 get_futex_key_refs(key);
34f01cc1
ED
266 return 0;
267 }
1da177e4 268
38d47c1b 269again:
7485d0d3 270 err = get_user_pages_fast(address, 1, 1, &page);
9ea71503
SB
271 /*
272 * If write access is not required (eg. FUTEX_WAIT), try
273 * and get read-only access.
274 */
275 if (err == -EFAULT && rw == VERIFY_READ) {
276 err = get_user_pages_fast(address, 1, 0, &page);
277 ro = 1;
278 }
38d47c1b
PZ
279 if (err < 0)
280 return err;
9ea71503
SB
281 else
282 err = 0;
38d47c1b 283
a5b338f2
AA
284#ifdef CONFIG_TRANSPARENT_HUGEPAGE
285 page_head = page;
286 if (unlikely(PageTail(page))) {
38d47c1b 287 put_page(page);
a5b338f2
AA
288 /* serialize against __split_huge_page_splitting() */
289 local_irq_disable();
290 if (likely(__get_user_pages_fast(address, 1, 1, &page) == 1)) {
291 page_head = compound_head(page);
292 /*
293 * page_head is valid pointer but we must pin
294 * it before taking the PG_lock and/or
295 * PG_compound_lock. The moment we re-enable
296 * irqs __split_huge_page_splitting() can
297 * return and the head page can be freed from
298 * under us. We can't take the PG_lock and/or
299 * PG_compound_lock on a page that could be
300 * freed from under us.
301 */
302 if (page != page_head) {
303 get_page(page_head);
304 put_page(page);
305 }
306 local_irq_enable();
307 } else {
308 local_irq_enable();
309 goto again;
310 }
311 }
312#else
313 page_head = compound_head(page);
314 if (page != page_head) {
315 get_page(page_head);
316 put_page(page);
317 }
318#endif
319
320 lock_page(page_head);
e6780f72
HD
321
322 /*
323 * If page_head->mapping is NULL, then it cannot be a PageAnon
324 * page; but it might be the ZERO_PAGE or in the gate area or
325 * in a special mapping (all cases which we are happy to fail);
326 * or it may have been a good file page when get_user_pages_fast
327 * found it, but truncated or holepunched or subjected to
328 * invalidate_complete_page2 before we got the page lock (also
329 * cases which we are happy to fail). And we hold a reference,
330 * so refcount care in invalidate_complete_page's remove_mapping
331 * prevents drop_caches from setting mapping to NULL beneath us.
332 *
333 * The case we do have to guard against is when memory pressure made
334 * shmem_writepage move it from filecache to swapcache beneath us:
335 * an unlikely race, but we do need to retry for page_head->mapping.
336 */
a5b338f2 337 if (!page_head->mapping) {
e6780f72 338 int shmem_swizzled = PageSwapCache(page_head);
a5b338f2
AA
339 unlock_page(page_head);
340 put_page(page_head);
e6780f72
HD
341 if (shmem_swizzled)
342 goto again;
343 return -EFAULT;
38d47c1b 344 }
1da177e4
LT
345
346 /*
347 * Private mappings are handled in a simple way.
348 *
349 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
350 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 351 * the object not the particular process.
1da177e4 352 */
a5b338f2 353 if (PageAnon(page_head)) {
9ea71503
SB
354 /*
355 * A RO anonymous page will never change and thus doesn't make
356 * sense for futex operations.
357 */
358 if (ro) {
359 err = -EFAULT;
360 goto out;
361 }
362
38d47c1b 363 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 364 key->private.mm = mm;
e2970f2f 365 key->private.address = address;
38d47c1b
PZ
366 } else {
367 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
a5b338f2 368 key->shared.inode = page_head->mapping->host;
13d60f4b 369 key->shared.pgoff = basepage_index(page);
1da177e4
LT
370 }
371
38d47c1b 372 get_futex_key_refs(key);
1da177e4 373
9ea71503 374out:
a5b338f2
AA
375 unlock_page(page_head);
376 put_page(page_head);
9ea71503 377 return err;
1da177e4
LT
378}
379
ae791a2d 380static inline void put_futex_key(union futex_key *key)
1da177e4 381{
38d47c1b 382 drop_futex_key_refs(key);
1da177e4
LT
383}
384
d96ee56c
DH
385/**
386 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
387 * @uaddr: pointer to faulting user space address
388 *
389 * Slow path to fixup the fault we just took in the atomic write
390 * access to @uaddr.
391 *
fb62db2b 392 * We have no generic implementation of a non-destructive write to the
d0725992
TG
393 * user address. We know that we faulted in the atomic pagefault
394 * disabled section so we can as well avoid the #PF overhead by
395 * calling get_user_pages() right away.
396 */
397static int fault_in_user_writeable(u32 __user *uaddr)
398{
722d0172
AK
399 struct mm_struct *mm = current->mm;
400 int ret;
401
402 down_read(&mm->mmap_sem);
2efaca92
BH
403 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
404 FAULT_FLAG_WRITE);
722d0172
AK
405 up_read(&mm->mmap_sem);
406
d0725992
TG
407 return ret < 0 ? ret : 0;
408}
409
4b1c486b
DH
410/**
411 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
412 * @hb: the hash bucket the futex_q's reside in
413 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
414 *
415 * Must be called with the hb lock held.
416 */
417static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
418 union futex_key *key)
419{
420 struct futex_q *this;
421
422 plist_for_each_entry(this, &hb->chain, list) {
423 if (match_futex(&this->key, key))
424 return this;
425 }
426 return NULL;
427}
428
37a9d912
ML
429static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
430 u32 uval, u32 newval)
36cf3b5c 431{
37a9d912 432 int ret;
36cf3b5c
TG
433
434 pagefault_disable();
37a9d912 435 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
436 pagefault_enable();
437
37a9d912 438 return ret;
36cf3b5c
TG
439}
440
441static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
442{
443 int ret;
444
a866374a 445 pagefault_disable();
e2970f2f 446 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 447 pagefault_enable();
1da177e4
LT
448
449 return ret ? -EFAULT : 0;
450}
451
c87e2837
IM
452
453/*
454 * PI code:
455 */
456static int refill_pi_state_cache(void)
457{
458 struct futex_pi_state *pi_state;
459
460 if (likely(current->pi_state_cache))
461 return 0;
462
4668edc3 463 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
464
465 if (!pi_state)
466 return -ENOMEM;
467
c87e2837
IM
468 INIT_LIST_HEAD(&pi_state->list);
469 /* pi_mutex gets initialized later */
470 pi_state->owner = NULL;
471 atomic_set(&pi_state->refcount, 1);
38d47c1b 472 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
473
474 current->pi_state_cache = pi_state;
475
476 return 0;
477}
478
479static struct futex_pi_state * alloc_pi_state(void)
480{
481 struct futex_pi_state *pi_state = current->pi_state_cache;
482
483 WARN_ON(!pi_state);
484 current->pi_state_cache = NULL;
485
486 return pi_state;
487}
488
489static void free_pi_state(struct futex_pi_state *pi_state)
490{
491 if (!atomic_dec_and_test(&pi_state->refcount))
492 return;
493
494 /*
495 * If pi_state->owner is NULL, the owner is most probably dying
496 * and has cleaned up the pi_state already
497 */
498 if (pi_state->owner) {
1d615482 499 raw_spin_lock_irq(&pi_state->owner->pi_lock);
c87e2837 500 list_del_init(&pi_state->list);
1d615482 501 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
c87e2837
IM
502
503 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
504 }
505
506 if (current->pi_state_cache)
507 kfree(pi_state);
508 else {
509 /*
510 * pi_state->list is already empty.
511 * clear pi_state->owner.
512 * refcount is at 0 - put it back to 1.
513 */
514 pi_state->owner = NULL;
515 atomic_set(&pi_state->refcount, 1);
516 current->pi_state_cache = pi_state;
517 }
518}
519
520/*
521 * Look up the task based on what TID userspace gave us.
522 * We dont trust it.
523 */
524static struct task_struct * futex_find_get_task(pid_t pid)
525{
526 struct task_struct *p;
527
d359b549 528 rcu_read_lock();
228ebcbe 529 p = find_task_by_vpid(pid);
7a0ea09a
MH
530 if (p)
531 get_task_struct(p);
a06381fe 532
d359b549 533 rcu_read_unlock();
c87e2837
IM
534
535 return p;
536}
537
538/*
539 * This task is holding PI mutexes at exit time => bad.
540 * Kernel cleans up PI-state, but userspace is likely hosed.
541 * (Robust-futex cleanup is separate and might save the day for userspace.)
542 */
543void exit_pi_state_list(struct task_struct *curr)
544{
c87e2837
IM
545 struct list_head *next, *head = &curr->pi_state_list;
546 struct futex_pi_state *pi_state;
627371d7 547 struct futex_hash_bucket *hb;
38d47c1b 548 union futex_key key = FUTEX_KEY_INIT;
c87e2837 549
a0c1e907
TG
550 if (!futex_cmpxchg_enabled)
551 return;
c87e2837
IM
552 /*
553 * We are a ZOMBIE and nobody can enqueue itself on
554 * pi_state_list anymore, but we have to be careful
627371d7 555 * versus waiters unqueueing themselves:
c87e2837 556 */
1d615482 557 raw_spin_lock_irq(&curr->pi_lock);
c87e2837
IM
558 while (!list_empty(head)) {
559
560 next = head->next;
561 pi_state = list_entry(next, struct futex_pi_state, list);
562 key = pi_state->key;
627371d7 563 hb = hash_futex(&key);
1d615482 564 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 565
c87e2837
IM
566 spin_lock(&hb->lock);
567
1d615482 568 raw_spin_lock_irq(&curr->pi_lock);
627371d7
IM
569 /*
570 * We dropped the pi-lock, so re-check whether this
571 * task still owns the PI-state:
572 */
c87e2837
IM
573 if (head->next != next) {
574 spin_unlock(&hb->lock);
575 continue;
576 }
577
c87e2837 578 WARN_ON(pi_state->owner != curr);
627371d7
IM
579 WARN_ON(list_empty(&pi_state->list));
580 list_del_init(&pi_state->list);
c87e2837 581 pi_state->owner = NULL;
1d615482 582 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
583
584 rt_mutex_unlock(&pi_state->pi_mutex);
585
586 spin_unlock(&hb->lock);
587
1d615482 588 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 589 }
1d615482 590 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
591}
592
593static int
d0aa7a70
PP
594lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
595 union futex_key *key, struct futex_pi_state **ps)
c87e2837
IM
596{
597 struct futex_pi_state *pi_state = NULL;
598 struct futex_q *this, *next;
ec92d082 599 struct plist_head *head;
c87e2837 600 struct task_struct *p;
778e9a9c 601 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837
IM
602
603 head = &hb->chain;
604
ec92d082 605 plist_for_each_entry_safe(this, next, head, list) {
d0aa7a70 606 if (match_futex(&this->key, key)) {
c87e2837
IM
607 /*
608 * Another waiter already exists - bump up
609 * the refcount and return its pi_state:
610 */
611 pi_state = this->pi_state;
06a9ec29 612 /*
fb62db2b 613 * Userspace might have messed up non-PI and PI futexes
06a9ec29
TG
614 */
615 if (unlikely(!pi_state))
616 return -EINVAL;
617
627371d7 618 WARN_ON(!atomic_read(&pi_state->refcount));
59647b6a
TG
619
620 /*
621 * When pi_state->owner is NULL then the owner died
622 * and another waiter is on the fly. pi_state->owner
623 * is fixed up by the task which acquires
624 * pi_state->rt_mutex.
625 *
626 * We do not check for pid == 0 which can happen when
627 * the owner died and robust_list_exit() cleared the
628 * TID.
629 */
630 if (pid && pi_state->owner) {
631 /*
632 * Bail out if user space manipulated the
633 * futex value.
634 */
635 if (pid != task_pid_vnr(pi_state->owner))
636 return -EINVAL;
637 }
627371d7 638
c87e2837 639 atomic_inc(&pi_state->refcount);
d0aa7a70 640 *ps = pi_state;
c87e2837
IM
641
642 return 0;
643 }
644 }
645
646 /*
e3f2ddea 647 * We are the first waiter - try to look up the real owner and attach
778e9a9c 648 * the new pi_state to it, but bail out when TID = 0
c87e2837 649 */
778e9a9c 650 if (!pid)
e3f2ddea 651 return -ESRCH;
c87e2837 652 p = futex_find_get_task(pid);
7a0ea09a
MH
653 if (!p)
654 return -ESRCH;
778e9a9c
AK
655
656 /*
657 * We need to look at the task state flags to figure out,
658 * whether the task is exiting. To protect against the do_exit
659 * change of the task flags, we do this protected by
660 * p->pi_lock:
661 */
1d615482 662 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
663 if (unlikely(p->flags & PF_EXITING)) {
664 /*
665 * The task is on the way out. When PF_EXITPIDONE is
666 * set, we know that the task has finished the
667 * cleanup:
668 */
669 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
670
1d615482 671 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
672 put_task_struct(p);
673 return ret;
674 }
c87e2837
IM
675
676 pi_state = alloc_pi_state();
677
678 /*
679 * Initialize the pi_mutex in locked state and make 'p'
680 * the owner of it:
681 */
682 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
683
684 /* Store the key for possible exit cleanups: */
d0aa7a70 685 pi_state->key = *key;
c87e2837 686
627371d7 687 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
688 list_add(&pi_state->list, &p->pi_state_list);
689 pi_state->owner = p;
1d615482 690 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
691
692 put_task_struct(p);
693
d0aa7a70 694 *ps = pi_state;
c87e2837
IM
695
696 return 0;
697}
698
1a52084d 699/**
d96ee56c 700 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
701 * @uaddr: the pi futex user address
702 * @hb: the pi futex hash bucket
703 * @key: the futex key associated with uaddr and hb
704 * @ps: the pi_state pointer where we store the result of the
705 * lookup
706 * @task: the task to perform the atomic lock work for. This will
707 * be "current" except in the case of requeue pi.
708 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 709 *
6c23cbbd
RD
710 * Return:
711 * 0 - ready to wait;
712 * 1 - acquired the lock;
1a52084d
DH
713 * <0 - error
714 *
715 * The hb->lock and futex_key refs shall be held by the caller.
716 */
717static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
718 union futex_key *key,
719 struct futex_pi_state **ps,
bab5bc9e 720 struct task_struct *task, int set_waiters)
1a52084d 721{
59fa6245 722 int lock_taken, ret, force_take = 0;
c0c9ed15 723 u32 uval, newval, curval, vpid = task_pid_vnr(task);
1a52084d
DH
724
725retry:
726 ret = lock_taken = 0;
727
728 /*
729 * To avoid races, we attempt to take the lock here again
730 * (by doing a 0 -> TID atomic cmpxchg), while holding all
731 * the locks. It will most likely not succeed.
732 */
c0c9ed15 733 newval = vpid;
bab5bc9e
DH
734 if (set_waiters)
735 newval |= FUTEX_WAITERS;
1a52084d 736
37a9d912 737 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
1a52084d
DH
738 return -EFAULT;
739
740 /*
741 * Detect deadlocks.
742 */
c0c9ed15 743 if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
744 return -EDEADLK;
745
746 /*
747 * Surprise - we got the lock. Just return to userspace:
748 */
749 if (unlikely(!curval))
750 return 1;
751
752 uval = curval;
753
754 /*
755 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
756 * to wake at the next unlock.
757 */
758 newval = curval | FUTEX_WAITERS;
759
760 /*
59fa6245 761 * Should we force take the futex? See below.
1a52084d 762 */
59fa6245
TG
763 if (unlikely(force_take)) {
764 /*
765 * Keep the OWNER_DIED and the WAITERS bit and set the
766 * new TID value.
767 */
c0c9ed15 768 newval = (curval & ~FUTEX_TID_MASK) | vpid;
59fa6245 769 force_take = 0;
1a52084d
DH
770 lock_taken = 1;
771 }
772
37a9d912 773 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1a52084d
DH
774 return -EFAULT;
775 if (unlikely(curval != uval))
776 goto retry;
777
778 /*
59fa6245 779 * We took the lock due to forced take over.
1a52084d
DH
780 */
781 if (unlikely(lock_taken))
782 return 1;
783
784 /*
785 * We dont have the lock. Look up the PI state (or create it if
786 * we are the first waiter):
787 */
788 ret = lookup_pi_state(uval, hb, key, ps);
789
790 if (unlikely(ret)) {
791 switch (ret) {
792 case -ESRCH:
793 /*
59fa6245
TG
794 * We failed to find an owner for this
795 * futex. So we have no pi_state to block
796 * on. This can happen in two cases:
797 *
798 * 1) The owner died
799 * 2) A stale FUTEX_WAITERS bit
800 *
801 * Re-read the futex value.
1a52084d
DH
802 */
803 if (get_futex_value_locked(&curval, uaddr))
804 return -EFAULT;
805
806 /*
59fa6245
TG
807 * If the owner died or we have a stale
808 * WAITERS bit the owner TID in the user space
809 * futex is 0.
1a52084d 810 */
59fa6245
TG
811 if (!(curval & FUTEX_TID_MASK)) {
812 force_take = 1;
1a52084d
DH
813 goto retry;
814 }
815 default:
816 break;
817 }
818 }
819
820 return ret;
821}
822
2e12978a
LJ
823/**
824 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
825 * @q: The futex_q to unqueue
826 *
827 * The q->lock_ptr must not be NULL and must be held by the caller.
828 */
829static void __unqueue_futex(struct futex_q *q)
830{
831 struct futex_hash_bucket *hb;
832
29096202
SR
833 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
834 || WARN_ON(plist_node_empty(&q->list)))
2e12978a
LJ
835 return;
836
837 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
838 plist_del(&q->list, &hb->chain);
839}
840
1da177e4
LT
841/*
842 * The hash bucket lock must be held when this is called.
843 * Afterwards, the futex_q must not be accessed.
844 */
845static void wake_futex(struct futex_q *q)
846{
f1a11e05
TG
847 struct task_struct *p = q->task;
848
aa10990e
DH
849 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
850 return;
851
1da177e4 852 /*
f1a11e05 853 * We set q->lock_ptr = NULL _before_ we wake up the task. If
fb62db2b
RD
854 * a non-futex wake up happens on another CPU then the task
855 * might exit and p would dereference a non-existing task
f1a11e05
TG
856 * struct. Prevent this by holding a reference on p across the
857 * wake up.
1da177e4 858 */
f1a11e05
TG
859 get_task_struct(p);
860
2e12978a 861 __unqueue_futex(q);
1da177e4 862 /*
f1a11e05
TG
863 * The waiting task can free the futex_q as soon as
864 * q->lock_ptr = NULL is written, without taking any locks. A
865 * memory barrier is required here to prevent the following
866 * store to lock_ptr from getting ahead of the plist_del.
1da177e4 867 */
ccdea2f8 868 smp_wmb();
1da177e4 869 q->lock_ptr = NULL;
f1a11e05
TG
870
871 wake_up_state(p, TASK_NORMAL);
872 put_task_struct(p);
1da177e4
LT
873}
874
c87e2837
IM
875static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
876{
877 struct task_struct *new_owner;
878 struct futex_pi_state *pi_state = this->pi_state;
7cfdaf38 879 u32 uninitialized_var(curval), newval;
c87e2837
IM
880
881 if (!pi_state)
882 return -EINVAL;
883
51246bfd
TG
884 /*
885 * If current does not own the pi_state then the futex is
886 * inconsistent and user space fiddled with the futex value.
887 */
888 if (pi_state->owner != current)
889 return -EINVAL;
890
d209d74d 891 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
892 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
893
894 /*
f123c98e
SR
895 * It is possible that the next waiter (the one that brought
896 * this owner to the kernel) timed out and is no longer
897 * waiting on the lock.
c87e2837
IM
898 */
899 if (!new_owner)
900 new_owner = this->task;
901
902 /*
903 * We pass it to the next owner. (The WAITERS bit is always
904 * kept enabled while there is PI state around. We must also
905 * preserve the owner died bit.)
906 */
e3f2ddea 907 if (!(uval & FUTEX_OWNER_DIED)) {
778e9a9c
AK
908 int ret = 0;
909
b488893a 910 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 911
37a9d912 912 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
778e9a9c 913 ret = -EFAULT;
cde898fa 914 else if (curval != uval)
778e9a9c
AK
915 ret = -EINVAL;
916 if (ret) {
d209d74d 917 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
778e9a9c
AK
918 return ret;
919 }
e3f2ddea 920 }
c87e2837 921
1d615482 922 raw_spin_lock_irq(&pi_state->owner->pi_lock);
627371d7
IM
923 WARN_ON(list_empty(&pi_state->list));
924 list_del_init(&pi_state->list);
1d615482 925 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
627371d7 926
1d615482 927 raw_spin_lock_irq(&new_owner->pi_lock);
627371d7 928 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
929 list_add(&pi_state->list, &new_owner->pi_state_list);
930 pi_state->owner = new_owner;
1d615482 931 raw_spin_unlock_irq(&new_owner->pi_lock);
627371d7 932
d209d74d 933 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
934 rt_mutex_unlock(&pi_state->pi_mutex);
935
936 return 0;
937}
938
939static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
940{
7cfdaf38 941 u32 uninitialized_var(oldval);
c87e2837
IM
942
943 /*
944 * There is no waiter, so we unlock the futex. The owner died
945 * bit has not to be preserved here. We are the owner:
946 */
37a9d912
ML
947 if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
948 return -EFAULT;
c87e2837
IM
949 if (oldval != uval)
950 return -EAGAIN;
951
952 return 0;
953}
954
8b8f319f
IM
955/*
956 * Express the locking dependencies for lockdep:
957 */
958static inline void
959double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
960{
961 if (hb1 <= hb2) {
962 spin_lock(&hb1->lock);
963 if (hb1 < hb2)
964 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
965 } else { /* hb1 > hb2 */
966 spin_lock(&hb2->lock);
967 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
968 }
969}
970
5eb3dc62
DH
971static inline void
972double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
973{
f061d351 974 spin_unlock(&hb1->lock);
88f502fe
IM
975 if (hb1 != hb2)
976 spin_unlock(&hb2->lock);
5eb3dc62
DH
977}
978
1da177e4 979/*
b2d0994b 980 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 981 */
b41277dc
DH
982static int
983futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 984{
e2970f2f 985 struct futex_hash_bucket *hb;
1da177e4 986 struct futex_q *this, *next;
ec92d082 987 struct plist_head *head;
38d47c1b 988 union futex_key key = FUTEX_KEY_INIT;
1da177e4
LT
989 int ret;
990
cd689985
TG
991 if (!bitset)
992 return -EINVAL;
993
9ea71503 994 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1da177e4
LT
995 if (unlikely(ret != 0))
996 goto out;
997
e2970f2f
IM
998 hb = hash_futex(&key);
999 spin_lock(&hb->lock);
1000 head = &hb->chain;
1da177e4 1001
ec92d082 1002 plist_for_each_entry_safe(this, next, head, list) {
1da177e4 1003 if (match_futex (&this->key, &key)) {
52400ba9 1004 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1005 ret = -EINVAL;
1006 break;
1007 }
cd689985
TG
1008
1009 /* Check if one of the bits is set in both bitsets */
1010 if (!(this->bitset & bitset))
1011 continue;
1012
1da177e4
LT
1013 wake_futex(this);
1014 if (++ret >= nr_wake)
1015 break;
1016 }
1017 }
1018
e2970f2f 1019 spin_unlock(&hb->lock);
ae791a2d 1020 put_futex_key(&key);
42d35d48 1021out:
1da177e4
LT
1022 return ret;
1023}
1024
4732efbe
JJ
1025/*
1026 * Wake up all waiters hashed on the physical page that is mapped
1027 * to this virtual address:
1028 */
e2970f2f 1029static int
b41277dc 1030futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1031 int nr_wake, int nr_wake2, int op)
4732efbe 1032{
38d47c1b 1033 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1034 struct futex_hash_bucket *hb1, *hb2;
ec92d082 1035 struct plist_head *head;
4732efbe 1036 struct futex_q *this, *next;
e4dc5b7a 1037 int ret, op_ret;
4732efbe 1038
e4dc5b7a 1039retry:
9ea71503 1040 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
4732efbe
JJ
1041 if (unlikely(ret != 0))
1042 goto out;
9ea71503 1043 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
4732efbe 1044 if (unlikely(ret != 0))
42d35d48 1045 goto out_put_key1;
4732efbe 1046
e2970f2f
IM
1047 hb1 = hash_futex(&key1);
1048 hb2 = hash_futex(&key2);
4732efbe 1049
e4dc5b7a 1050retry_private:
eaaea803 1051 double_lock_hb(hb1, hb2);
e2970f2f 1052 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1053 if (unlikely(op_ret < 0)) {
4732efbe 1054
5eb3dc62 1055 double_unlock_hb(hb1, hb2);
4732efbe 1056
7ee1dd3f 1057#ifndef CONFIG_MMU
e2970f2f
IM
1058 /*
1059 * we don't get EFAULT from MMU faults if we don't have an MMU,
1060 * but we might get them from range checking
1061 */
7ee1dd3f 1062 ret = op_ret;
42d35d48 1063 goto out_put_keys;
7ee1dd3f
DH
1064#endif
1065
796f8d9b
DG
1066 if (unlikely(op_ret != -EFAULT)) {
1067 ret = op_ret;
42d35d48 1068 goto out_put_keys;
796f8d9b
DG
1069 }
1070
d0725992 1071 ret = fault_in_user_writeable(uaddr2);
4732efbe 1072 if (ret)
de87fcc1 1073 goto out_put_keys;
4732efbe 1074
b41277dc 1075 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1076 goto retry_private;
1077
ae791a2d
TG
1078 put_futex_key(&key2);
1079 put_futex_key(&key1);
e4dc5b7a 1080 goto retry;
4732efbe
JJ
1081 }
1082
e2970f2f 1083 head = &hb1->chain;
4732efbe 1084
ec92d082 1085 plist_for_each_entry_safe(this, next, head, list) {
4732efbe 1086 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1087 if (this->pi_state || this->rt_waiter) {
1088 ret = -EINVAL;
1089 goto out_unlock;
1090 }
4732efbe
JJ
1091 wake_futex(this);
1092 if (++ret >= nr_wake)
1093 break;
1094 }
1095 }
1096
1097 if (op_ret > 0) {
e2970f2f 1098 head = &hb2->chain;
4732efbe
JJ
1099
1100 op_ret = 0;
ec92d082 1101 plist_for_each_entry_safe(this, next, head, list) {
4732efbe 1102 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1103 if (this->pi_state || this->rt_waiter) {
1104 ret = -EINVAL;
1105 goto out_unlock;
1106 }
4732efbe
JJ
1107 wake_futex(this);
1108 if (++op_ret >= nr_wake2)
1109 break;
1110 }
1111 }
1112 ret += op_ret;
1113 }
1114
aa10990e 1115out_unlock:
5eb3dc62 1116 double_unlock_hb(hb1, hb2);
42d35d48 1117out_put_keys:
ae791a2d 1118 put_futex_key(&key2);
42d35d48 1119out_put_key1:
ae791a2d 1120 put_futex_key(&key1);
42d35d48 1121out:
4732efbe
JJ
1122 return ret;
1123}
1124
9121e478
DH
1125/**
1126 * requeue_futex() - Requeue a futex_q from one hb to another
1127 * @q: the futex_q to requeue
1128 * @hb1: the source hash_bucket
1129 * @hb2: the target hash_bucket
1130 * @key2: the new key for the requeued futex_q
1131 */
1132static inline
1133void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1134 struct futex_hash_bucket *hb2, union futex_key *key2)
1135{
1136
1137 /*
1138 * If key1 and key2 hash to the same bucket, no need to
1139 * requeue.
1140 */
1141 if (likely(&hb1->chain != &hb2->chain)) {
1142 plist_del(&q->list, &hb1->chain);
1143 plist_add(&q->list, &hb2->chain);
1144 q->lock_ptr = &hb2->lock;
9121e478
DH
1145 }
1146 get_futex_key_refs(key2);
1147 q->key = *key2;
1148}
1149
52400ba9
DH
1150/**
1151 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1152 * @q: the futex_q
1153 * @key: the key of the requeue target futex
1154 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1155 *
1156 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1157 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1158 * to the requeue target futex so the waiter can detect the wakeup on the right
1159 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1160 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1161 * to protect access to the pi_state to fixup the owner later. Must be called
1162 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1163 */
1164static inline
beda2c7e
DH
1165void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1166 struct futex_hash_bucket *hb)
52400ba9 1167{
52400ba9
DH
1168 get_futex_key_refs(key);
1169 q->key = *key;
1170
2e12978a 1171 __unqueue_futex(q);
52400ba9
DH
1172
1173 WARN_ON(!q->rt_waiter);
1174 q->rt_waiter = NULL;
1175
beda2c7e 1176 q->lock_ptr = &hb->lock;
beda2c7e 1177
f1a11e05 1178 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1179}
1180
1181/**
1182 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1183 * @pifutex: the user address of the to futex
1184 * @hb1: the from futex hash bucket, must be locked by the caller
1185 * @hb2: the to futex hash bucket, must be locked by the caller
1186 * @key1: the from futex key
1187 * @key2: the to futex key
1188 * @ps: address to store the pi_state pointer
1189 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1190 *
1191 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1192 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1193 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1194 * hb1 and hb2 must be held by the caller.
52400ba9 1195 *
6c23cbbd
RD
1196 * Return:
1197 * 0 - failed to acquire the lock atomically;
1198 * 1 - acquired the lock;
52400ba9
DH
1199 * <0 - error
1200 */
1201static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1202 struct futex_hash_bucket *hb1,
1203 struct futex_hash_bucket *hb2,
1204 union futex_key *key1, union futex_key *key2,
bab5bc9e 1205 struct futex_pi_state **ps, int set_waiters)
52400ba9 1206{
bab5bc9e 1207 struct futex_q *top_waiter = NULL;
52400ba9
DH
1208 u32 curval;
1209 int ret;
1210
1211 if (get_futex_value_locked(&curval, pifutex))
1212 return -EFAULT;
1213
bab5bc9e
DH
1214 /*
1215 * Find the top_waiter and determine if there are additional waiters.
1216 * If the caller intends to requeue more than 1 waiter to pifutex,
1217 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1218 * as we have means to handle the possible fault. If not, don't set
1219 * the bit unecessarily as it will force the subsequent unlock to enter
1220 * the kernel.
1221 */
52400ba9
DH
1222 top_waiter = futex_top_waiter(hb1, key1);
1223
1224 /* There are no waiters, nothing for us to do. */
1225 if (!top_waiter)
1226 return 0;
1227
84bc4af5
DH
1228 /* Ensure we requeue to the expected futex. */
1229 if (!match_futex(top_waiter->requeue_pi_key, key2))
1230 return -EINVAL;
1231
52400ba9 1232 /*
bab5bc9e
DH
1233 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1234 * the contended case or if set_waiters is 1. The pi_state is returned
1235 * in ps in contended cases.
52400ba9 1236 */
bab5bc9e
DH
1237 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1238 set_waiters);
52400ba9 1239 if (ret == 1)
beda2c7e 1240 requeue_pi_wake_futex(top_waiter, key2, hb2);
52400ba9
DH
1241
1242 return ret;
1243}
1244
1245/**
1246 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1247 * @uaddr1: source futex user address
b41277dc 1248 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1249 * @uaddr2: target futex user address
1250 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1251 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1252 * @cmpval: @uaddr1 expected value (or %NULL)
1253 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1254 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1255 *
1256 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1257 * uaddr2 atomically on behalf of the top waiter.
1258 *
6c23cbbd
RD
1259 * Return:
1260 * >=0 - on success, the number of tasks requeued or woken;
52400ba9 1261 * <0 - on error
1da177e4 1262 */
b41277dc
DH
1263static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1264 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1265 u32 *cmpval, int requeue_pi)
1da177e4 1266{
38d47c1b 1267 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1268 int drop_count = 0, task_count = 0, ret;
1269 struct futex_pi_state *pi_state = NULL;
e2970f2f 1270 struct futex_hash_bucket *hb1, *hb2;
ec92d082 1271 struct plist_head *head1;
1da177e4 1272 struct futex_q *this, *next;
52400ba9
DH
1273 u32 curval2;
1274
1275 if (requeue_pi) {
1276 /*
1277 * requeue_pi requires a pi_state, try to allocate it now
1278 * without any locks in case it fails.
1279 */
1280 if (refill_pi_state_cache())
1281 return -ENOMEM;
1282 /*
1283 * requeue_pi must wake as many tasks as it can, up to nr_wake
1284 * + nr_requeue, since it acquires the rt_mutex prior to
1285 * returning to userspace, so as to not leave the rt_mutex with
1286 * waiters and no owner. However, second and third wake-ups
1287 * cannot be predicted as they involve race conditions with the
1288 * first wake and a fault while looking up the pi_state. Both
1289 * pthread_cond_signal() and pthread_cond_broadcast() should
1290 * use nr_wake=1.
1291 */
1292 if (nr_wake != 1)
1293 return -EINVAL;
1294 }
1da177e4 1295
42d35d48 1296retry:
52400ba9
DH
1297 if (pi_state != NULL) {
1298 /*
1299 * We will have to lookup the pi_state again, so free this one
1300 * to keep the accounting correct.
1301 */
1302 free_pi_state(pi_state);
1303 pi_state = NULL;
1304 }
1305
9ea71503 1306 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1da177e4
LT
1307 if (unlikely(ret != 0))
1308 goto out;
9ea71503
SB
1309 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1310 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1da177e4 1311 if (unlikely(ret != 0))
42d35d48 1312 goto out_put_key1;
1da177e4 1313
e2970f2f
IM
1314 hb1 = hash_futex(&key1);
1315 hb2 = hash_futex(&key2);
1da177e4 1316
e4dc5b7a 1317retry_private:
8b8f319f 1318 double_lock_hb(hb1, hb2);
1da177e4 1319
e2970f2f
IM
1320 if (likely(cmpval != NULL)) {
1321 u32 curval;
1da177e4 1322
e2970f2f 1323 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1324
1325 if (unlikely(ret)) {
5eb3dc62 1326 double_unlock_hb(hb1, hb2);
1da177e4 1327
e2970f2f 1328 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1329 if (ret)
1330 goto out_put_keys;
1da177e4 1331
b41277dc 1332 if (!(flags & FLAGS_SHARED))
e4dc5b7a 1333 goto retry_private;
1da177e4 1334
ae791a2d
TG
1335 put_futex_key(&key2);
1336 put_futex_key(&key1);
e4dc5b7a 1337 goto retry;
1da177e4 1338 }
e2970f2f 1339 if (curval != *cmpval) {
1da177e4
LT
1340 ret = -EAGAIN;
1341 goto out_unlock;
1342 }
1343 }
1344
52400ba9 1345 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
1346 /*
1347 * Attempt to acquire uaddr2 and wake the top waiter. If we
1348 * intend to requeue waiters, force setting the FUTEX_WAITERS
1349 * bit. We force this here where we are able to easily handle
1350 * faults rather in the requeue loop below.
1351 */
52400ba9 1352 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 1353 &key2, &pi_state, nr_requeue);
52400ba9
DH
1354
1355 /*
1356 * At this point the top_waiter has either taken uaddr2 or is
1357 * waiting on it. If the former, then the pi_state will not
1358 * exist yet, look it up one more time to ensure we have a
1359 * reference to it.
1360 */
1361 if (ret == 1) {
1362 WARN_ON(pi_state);
89061d3d 1363 drop_count++;
52400ba9
DH
1364 task_count++;
1365 ret = get_futex_value_locked(&curval2, uaddr2);
1366 if (!ret)
1367 ret = lookup_pi_state(curval2, hb2, &key2,
1368 &pi_state);
1369 }
1370
1371 switch (ret) {
1372 case 0:
1373 break;
1374 case -EFAULT:
1375 double_unlock_hb(hb1, hb2);
ae791a2d
TG
1376 put_futex_key(&key2);
1377 put_futex_key(&key1);
d0725992 1378 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
1379 if (!ret)
1380 goto retry;
1381 goto out;
1382 case -EAGAIN:
1383 /* The owner was exiting, try again. */
1384 double_unlock_hb(hb1, hb2);
ae791a2d
TG
1385 put_futex_key(&key2);
1386 put_futex_key(&key1);
52400ba9
DH
1387 cond_resched();
1388 goto retry;
1389 default:
1390 goto out_unlock;
1391 }
1392 }
1393
e2970f2f 1394 head1 = &hb1->chain;
ec92d082 1395 plist_for_each_entry_safe(this, next, head1, list) {
52400ba9
DH
1396 if (task_count - nr_wake >= nr_requeue)
1397 break;
1398
1399 if (!match_futex(&this->key, &key1))
1da177e4 1400 continue;
52400ba9 1401
392741e0
DH
1402 /*
1403 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1404 * be paired with each other and no other futex ops.
aa10990e
DH
1405 *
1406 * We should never be requeueing a futex_q with a pi_state,
1407 * which is awaiting a futex_unlock_pi().
392741e0
DH
1408 */
1409 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
1410 (!requeue_pi && this->rt_waiter) ||
1411 this->pi_state) {
392741e0
DH
1412 ret = -EINVAL;
1413 break;
1414 }
52400ba9
DH
1415
1416 /*
1417 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1418 * lock, we already woke the top_waiter. If not, it will be
1419 * woken by futex_unlock_pi().
1420 */
1421 if (++task_count <= nr_wake && !requeue_pi) {
1da177e4 1422 wake_futex(this);
52400ba9
DH
1423 continue;
1424 }
1da177e4 1425
84bc4af5
DH
1426 /* Ensure we requeue to the expected futex for requeue_pi. */
1427 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1428 ret = -EINVAL;
1429 break;
1430 }
1431
52400ba9
DH
1432 /*
1433 * Requeue nr_requeue waiters and possibly one more in the case
1434 * of requeue_pi if we couldn't acquire the lock atomically.
1435 */
1436 if (requeue_pi) {
1437 /* Prepare the waiter to take the rt_mutex. */
1438 atomic_inc(&pi_state->refcount);
1439 this->pi_state = pi_state;
1440 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1441 this->rt_waiter,
1442 this->task, 1);
1443 if (ret == 1) {
1444 /* We got the lock. */
beda2c7e 1445 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 1446 drop_count++;
52400ba9
DH
1447 continue;
1448 } else if (ret) {
1449 /* -EDEADLK */
1450 this->pi_state = NULL;
1451 free_pi_state(pi_state);
1452 goto out_unlock;
1453 }
1da177e4 1454 }
52400ba9
DH
1455 requeue_futex(this, hb1, hb2, &key2);
1456 drop_count++;
1da177e4
LT
1457 }
1458
1459out_unlock:
5eb3dc62 1460 double_unlock_hb(hb1, hb2);
1da177e4 1461
cd84a42f
DH
1462 /*
1463 * drop_futex_key_refs() must be called outside the spinlocks. During
1464 * the requeue we moved futex_q's from the hash bucket at key1 to the
1465 * one at key2 and updated their key pointer. We no longer need to
1466 * hold the references to key1.
1467 */
1da177e4 1468 while (--drop_count >= 0)
9adef58b 1469 drop_futex_key_refs(&key1);
1da177e4 1470
42d35d48 1471out_put_keys:
ae791a2d 1472 put_futex_key(&key2);
42d35d48 1473out_put_key1:
ae791a2d 1474 put_futex_key(&key1);
42d35d48 1475out:
52400ba9
DH
1476 if (pi_state != NULL)
1477 free_pi_state(pi_state);
1478 return ret ? ret : task_count;
1da177e4
LT
1479}
1480
1481/* The key must be already stored in q->key. */
82af7aca 1482static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 1483 __acquires(&hb->lock)
1da177e4 1484{
e2970f2f 1485 struct futex_hash_bucket *hb;
1da177e4 1486
e2970f2f
IM
1487 hb = hash_futex(&q->key);
1488 q->lock_ptr = &hb->lock;
1da177e4 1489
e2970f2f
IM
1490 spin_lock(&hb->lock);
1491 return hb;
1da177e4
LT
1492}
1493
d40d65c8
DH
1494static inline void
1495queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
15e408cd 1496 __releases(&hb->lock)
d40d65c8
DH
1497{
1498 spin_unlock(&hb->lock);
d40d65c8
DH
1499}
1500
1501/**
1502 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1503 * @q: The futex_q to enqueue
1504 * @hb: The destination hash bucket
1505 *
1506 * The hb->lock must be held by the caller, and is released here. A call to
1507 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1508 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1509 * or nothing if the unqueue is done as part of the wake process and the unqueue
1510 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1511 * an example).
1512 */
82af7aca 1513static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
15e408cd 1514 __releases(&hb->lock)
1da177e4 1515{
ec92d082
PP
1516 int prio;
1517
1518 /*
1519 * The priority used to register this element is
1520 * - either the real thread-priority for the real-time threads
1521 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1522 * - or MAX_RT_PRIO for non-RT threads.
1523 * Thus, all RT-threads are woken first in priority order, and
1524 * the others are woken last, in FIFO order.
1525 */
1526 prio = min(current->normal_prio, MAX_RT_PRIO);
1527
1528 plist_node_init(&q->list, prio);
ec92d082 1529 plist_add(&q->list, &hb->chain);
c87e2837 1530 q->task = current;
e2970f2f 1531 spin_unlock(&hb->lock);
1da177e4
LT
1532}
1533
d40d65c8
DH
1534/**
1535 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1536 * @q: The futex_q to unqueue
1537 *
1538 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1539 * be paired with exactly one earlier call to queue_me().
1540 *
6c23cbbd
RD
1541 * Return:
1542 * 1 - if the futex_q was still queued (and we removed unqueued it);
d40d65c8 1543 * 0 - if the futex_q was already removed by the waking thread
1da177e4 1544 */
1da177e4
LT
1545static int unqueue_me(struct futex_q *q)
1546{
1da177e4 1547 spinlock_t *lock_ptr;
e2970f2f 1548 int ret = 0;
1da177e4
LT
1549
1550 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 1551retry:
1da177e4 1552 lock_ptr = q->lock_ptr;
e91467ec 1553 barrier();
c80544dc 1554 if (lock_ptr != NULL) {
1da177e4
LT
1555 spin_lock(lock_ptr);
1556 /*
1557 * q->lock_ptr can change between reading it and
1558 * spin_lock(), causing us to take the wrong lock. This
1559 * corrects the race condition.
1560 *
1561 * Reasoning goes like this: if we have the wrong lock,
1562 * q->lock_ptr must have changed (maybe several times)
1563 * between reading it and the spin_lock(). It can
1564 * change again after the spin_lock() but only if it was
1565 * already changed before the spin_lock(). It cannot,
1566 * however, change back to the original value. Therefore
1567 * we can detect whether we acquired the correct lock.
1568 */
1569 if (unlikely(lock_ptr != q->lock_ptr)) {
1570 spin_unlock(lock_ptr);
1571 goto retry;
1572 }
2e12978a 1573 __unqueue_futex(q);
c87e2837
IM
1574
1575 BUG_ON(q->pi_state);
1576
1da177e4
LT
1577 spin_unlock(lock_ptr);
1578 ret = 1;
1579 }
1580
9adef58b 1581 drop_futex_key_refs(&q->key);
1da177e4
LT
1582 return ret;
1583}
1584
c87e2837
IM
1585/*
1586 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1587 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1588 * and dropped here.
c87e2837 1589 */
d0aa7a70 1590static void unqueue_me_pi(struct futex_q *q)
15e408cd 1591 __releases(q->lock_ptr)
c87e2837 1592{
2e12978a 1593 __unqueue_futex(q);
c87e2837
IM
1594
1595 BUG_ON(!q->pi_state);
1596 free_pi_state(q->pi_state);
1597 q->pi_state = NULL;
1598
d0aa7a70 1599 spin_unlock(q->lock_ptr);
c87e2837
IM
1600}
1601
d0aa7a70 1602/*
cdf71a10 1603 * Fixup the pi_state owner with the new owner.
d0aa7a70 1604 *
778e9a9c
AK
1605 * Must be called with hash bucket lock held and mm->sem held for non
1606 * private futexes.
d0aa7a70 1607 */
778e9a9c 1608static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
ae791a2d 1609 struct task_struct *newowner)
d0aa7a70 1610{
cdf71a10 1611 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 1612 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 1613 struct task_struct *oldowner = pi_state->owner;
7cfdaf38 1614 u32 uval, uninitialized_var(curval), newval;
e4dc5b7a 1615 int ret;
d0aa7a70
PP
1616
1617 /* Owner died? */
1b7558e4
TG
1618 if (!pi_state->owner)
1619 newtid |= FUTEX_OWNER_DIED;
1620
1621 /*
1622 * We are here either because we stole the rtmutex from the
8161239a
LJ
1623 * previous highest priority waiter or we are the highest priority
1624 * waiter but failed to get the rtmutex the first time.
1625 * We have to replace the newowner TID in the user space variable.
1626 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 1627 *
b2d0994b
DH
1628 * Note: We write the user space value _before_ changing the pi_state
1629 * because we can fault here. Imagine swapped out pages or a fork
1630 * that marked all the anonymous memory readonly for cow.
1b7558e4
TG
1631 *
1632 * Modifying pi_state _before_ the user space value would
1633 * leave the pi_state in an inconsistent state when we fault
1634 * here, because we need to drop the hash bucket lock to
1635 * handle the fault. This might be observed in the PID check
1636 * in lookup_pi_state.
1637 */
1638retry:
1639 if (get_futex_value_locked(&uval, uaddr))
1640 goto handle_fault;
1641
1642 while (1) {
1643 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1644
37a9d912 1645 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1b7558e4
TG
1646 goto handle_fault;
1647 if (curval == uval)
1648 break;
1649 uval = curval;
1650 }
1651
1652 /*
1653 * We fixed up user space. Now we need to fix the pi_state
1654 * itself.
1655 */
d0aa7a70 1656 if (pi_state->owner != NULL) {
1d615482 1657 raw_spin_lock_irq(&pi_state->owner->pi_lock);
d0aa7a70
PP
1658 WARN_ON(list_empty(&pi_state->list));
1659 list_del_init(&pi_state->list);
1d615482 1660 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 1661 }
d0aa7a70 1662
cdf71a10 1663 pi_state->owner = newowner;
d0aa7a70 1664
1d615482 1665 raw_spin_lock_irq(&newowner->pi_lock);
d0aa7a70 1666 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 1667 list_add(&pi_state->list, &newowner->pi_state_list);
1d615482 1668 raw_spin_unlock_irq(&newowner->pi_lock);
1b7558e4 1669 return 0;
d0aa7a70 1670
d0aa7a70 1671 /*
1b7558e4 1672 * To handle the page fault we need to drop the hash bucket
8161239a
LJ
1673 * lock here. That gives the other task (either the highest priority
1674 * waiter itself or the task which stole the rtmutex) the
1b7558e4
TG
1675 * chance to try the fixup of the pi_state. So once we are
1676 * back from handling the fault we need to check the pi_state
1677 * after reacquiring the hash bucket lock and before trying to
1678 * do another fixup. When the fixup has been done already we
1679 * simply return.
d0aa7a70 1680 */
1b7558e4
TG
1681handle_fault:
1682 spin_unlock(q->lock_ptr);
778e9a9c 1683
d0725992 1684 ret = fault_in_user_writeable(uaddr);
778e9a9c 1685
1b7558e4 1686 spin_lock(q->lock_ptr);
778e9a9c 1687
1b7558e4
TG
1688 /*
1689 * Check if someone else fixed it for us:
1690 */
1691 if (pi_state->owner != oldowner)
1692 return 0;
1693
1694 if (ret)
1695 return ret;
1696
1697 goto retry;
d0aa7a70
PP
1698}
1699
72c1bbf3 1700static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 1701
dd973998
DH
1702/**
1703 * fixup_owner() - Post lock pi_state and corner case management
1704 * @uaddr: user address of the futex
dd973998
DH
1705 * @q: futex_q (contains pi_state and access to the rt_mutex)
1706 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1707 *
1708 * After attempting to lock an rt_mutex, this function is called to cleanup
1709 * the pi_state owner as well as handle race conditions that may allow us to
1710 * acquire the lock. Must be called with the hb lock held.
1711 *
6c23cbbd
RD
1712 * Return:
1713 * 1 - success, lock taken;
1714 * 0 - success, lock not taken;
dd973998
DH
1715 * <0 - on error (-EFAULT)
1716 */
ae791a2d 1717static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998
DH
1718{
1719 struct task_struct *owner;
1720 int ret = 0;
1721
1722 if (locked) {
1723 /*
1724 * Got the lock. We might not be the anticipated owner if we
1725 * did a lock-steal - fix up the PI-state in that case:
1726 */
1727 if (q->pi_state->owner != current)
ae791a2d 1728 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
1729 goto out;
1730 }
1731
1732 /*
1733 * Catch the rare case, where the lock was released when we were on the
1734 * way back before we locked the hash bucket.
1735 */
1736 if (q->pi_state->owner == current) {
1737 /*
1738 * Try to get the rt_mutex now. This might fail as some other
1739 * task acquired the rt_mutex after we removed ourself from the
1740 * rt_mutex waiters list.
1741 */
1742 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1743 locked = 1;
1744 goto out;
1745 }
1746
1747 /*
1748 * pi_state is incorrect, some other task did a lock steal and
1749 * we returned due to timeout or signal without taking the
8161239a 1750 * rt_mutex. Too late.
dd973998 1751 */
8161239a 1752 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
dd973998 1753 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
8161239a
LJ
1754 if (!owner)
1755 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1756 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
ae791a2d 1757 ret = fixup_pi_state_owner(uaddr, q, owner);
dd973998
DH
1758 goto out;
1759 }
1760
1761 /*
1762 * Paranoia check. If we did not take the lock, then we should not be
8161239a 1763 * the owner of the rt_mutex.
dd973998
DH
1764 */
1765 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1766 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1767 "pi-state %p\n", ret,
1768 q->pi_state->pi_mutex.owner,
1769 q->pi_state->owner);
1770
1771out:
1772 return ret ? ret : locked;
1773}
1774
ca5f9524
DH
1775/**
1776 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1777 * @hb: the futex hash bucket, must be locked by the caller
1778 * @q: the futex_q to queue up on
1779 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
1780 */
1781static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 1782 struct hrtimer_sleeper *timeout)
ca5f9524 1783{
9beba3c5
DH
1784 /*
1785 * The task state is guaranteed to be set before another task can
1786 * wake it. set_current_state() is implemented using set_mb() and
1787 * queue_me() calls spin_unlock() upon completion, both serializing
1788 * access to the hash list and forcing another memory barrier.
1789 */
f1a11e05 1790 set_current_state(TASK_INTERRUPTIBLE);
0729e196 1791 queue_me(q, hb);
ca5f9524
DH
1792
1793 /* Arm the timer */
1794 if (timeout) {
1795 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1796 if (!hrtimer_active(&timeout->timer))
1797 timeout->task = NULL;
1798 }
1799
1800 /*
0729e196
DH
1801 * If we have been removed from the hash list, then another task
1802 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
1803 */
1804 if (likely(!plist_node_empty(&q->list))) {
1805 /*
1806 * If the timer has already expired, current will already be
1807 * flagged for rescheduling. Only call schedule if there
1808 * is no timeout, or if it has yet to expire.
1809 */
1810 if (!timeout || timeout->task)
1811 schedule();
1812 }
1813 __set_current_state(TASK_RUNNING);
1814}
1815
f801073f
DH
1816/**
1817 * futex_wait_setup() - Prepare to wait on a futex
1818 * @uaddr: the futex userspace address
1819 * @val: the expected value
b41277dc 1820 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
1821 * @q: the associated futex_q
1822 * @hb: storage for hash_bucket pointer to be returned to caller
1823 *
1824 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1825 * compare it with the expected value. Handle atomic faults internally.
1826 * Return with the hb lock held and a q.key reference on success, and unlocked
1827 * with no q.key reference on failure.
1828 *
6c23cbbd
RD
1829 * Return:
1830 * 0 - uaddr contains val and hb has been locked;
ca4a04cf 1831 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 1832 */
b41277dc 1833static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 1834 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 1835{
e2970f2f
IM
1836 u32 uval;
1837 int ret;
1da177e4 1838
1da177e4 1839 /*
b2d0994b 1840 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
1841 * Order is important:
1842 *
1843 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1844 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1845 *
1846 * The basic logical guarantee of a futex is that it blocks ONLY
1847 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
1848 * any cond. If we locked the hash-bucket after testing *uaddr, that
1849 * would open a race condition where we could block indefinitely with
1da177e4
LT
1850 * cond(var) false, which would violate the guarantee.
1851 *
8fe8f545
ML
1852 * On the other hand, we insert q and release the hash-bucket only
1853 * after testing *uaddr. This guarantees that futex_wait() will NOT
1854 * absorb a wakeup if *uaddr does not match the desired values
1855 * while the syscall executes.
1da177e4 1856 */
f801073f 1857retry:
9ea71503 1858 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
f801073f 1859 if (unlikely(ret != 0))
a5a2a0c7 1860 return ret;
f801073f
DH
1861
1862retry_private:
1863 *hb = queue_lock(q);
1864
e2970f2f 1865 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 1866
f801073f
DH
1867 if (ret) {
1868 queue_unlock(q, *hb);
1da177e4 1869
e2970f2f 1870 ret = get_user(uval, uaddr);
e4dc5b7a 1871 if (ret)
f801073f 1872 goto out;
1da177e4 1873
b41277dc 1874 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1875 goto retry_private;
1876
ae791a2d 1877 put_futex_key(&q->key);
e4dc5b7a 1878 goto retry;
1da177e4 1879 }
ca5f9524 1880
f801073f
DH
1881 if (uval != val) {
1882 queue_unlock(q, *hb);
1883 ret = -EWOULDBLOCK;
2fff78c7 1884 }
1da177e4 1885
f801073f
DH
1886out:
1887 if (ret)
ae791a2d 1888 put_futex_key(&q->key);
f801073f
DH
1889 return ret;
1890}
1891
b41277dc
DH
1892static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
1893 ktime_t *abs_time, u32 bitset)
f801073f
DH
1894{
1895 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
1896 struct restart_block *restart;
1897 struct futex_hash_bucket *hb;
5bdb05f9 1898 struct futex_q q = futex_q_init;
f801073f
DH
1899 int ret;
1900
1901 if (!bitset)
1902 return -EINVAL;
f801073f
DH
1903 q.bitset = bitset;
1904
1905 if (abs_time) {
1906 to = &timeout;
1907
b41277dc
DH
1908 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
1909 CLOCK_REALTIME : CLOCK_MONOTONIC,
1910 HRTIMER_MODE_ABS);
f801073f
DH
1911 hrtimer_init_sleeper(to, current);
1912 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1913 current->timer_slack_ns);
1914 }
1915
d58e6576 1916retry:
7ada876a
DH
1917 /*
1918 * Prepare to wait on uaddr. On success, holds hb lock and increments
1919 * q.key refs.
1920 */
b41277dc 1921 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
1922 if (ret)
1923 goto out;
1924
ca5f9524 1925 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 1926 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
1927
1928 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 1929 ret = 0;
7ada876a 1930 /* unqueue_me() drops q.key ref */
1da177e4 1931 if (!unqueue_me(&q))
7ada876a 1932 goto out;
2fff78c7 1933 ret = -ETIMEDOUT;
ca5f9524 1934 if (to && !to->task)
7ada876a 1935 goto out;
72c1bbf3 1936
e2970f2f 1937 /*
d58e6576
TG
1938 * We expect signal_pending(current), but we might be the
1939 * victim of a spurious wakeup as well.
e2970f2f 1940 */
7ada876a 1941 if (!signal_pending(current))
d58e6576 1942 goto retry;
d58e6576 1943
2fff78c7 1944 ret = -ERESTARTSYS;
c19384b5 1945 if (!abs_time)
7ada876a 1946 goto out;
1da177e4 1947
2fff78c7
PZ
1948 restart = &current_thread_info()->restart_block;
1949 restart->fn = futex_wait_restart;
a3c74c52 1950 restart->futex.uaddr = uaddr;
2fff78c7
PZ
1951 restart->futex.val = val;
1952 restart->futex.time = abs_time->tv64;
1953 restart->futex.bitset = bitset;
0cd9c649 1954 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 1955
2fff78c7
PZ
1956 ret = -ERESTART_RESTARTBLOCK;
1957
42d35d48 1958out:
ca5f9524
DH
1959 if (to) {
1960 hrtimer_cancel(&to->timer);
1961 destroy_hrtimer_on_stack(&to->timer);
1962 }
c87e2837
IM
1963 return ret;
1964}
1965
72c1bbf3
NP
1966
1967static long futex_wait_restart(struct restart_block *restart)
1968{
a3c74c52 1969 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 1970 ktime_t t, *tp = NULL;
72c1bbf3 1971
a72188d8
DH
1972 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1973 t.tv64 = restart->futex.time;
1974 tp = &t;
1975 }
72c1bbf3 1976 restart->fn = do_no_restart_syscall;
b41277dc
DH
1977
1978 return (long)futex_wait(uaddr, restart->futex.flags,
1979 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
1980}
1981
1982
c87e2837
IM
1983/*
1984 * Userspace tried a 0 -> TID atomic transition of the futex value
1985 * and failed. The kernel side here does the whole locking operation:
1986 * if there are waiters then it will block, it does PI, etc. (Due to
1987 * races the kernel might see a 0 value of the futex too.)
1988 */
b41277dc
DH
1989static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
1990 ktime_t *time, int trylock)
c87e2837 1991{
c5780e97 1992 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837 1993 struct futex_hash_bucket *hb;
5bdb05f9 1994 struct futex_q q = futex_q_init;
dd973998 1995 int res, ret;
c87e2837
IM
1996
1997 if (refill_pi_state_cache())
1998 return -ENOMEM;
1999
c19384b5 2000 if (time) {
c5780e97 2001 to = &timeout;
237fc6e7
TG
2002 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2003 HRTIMER_MODE_ABS);
c5780e97 2004 hrtimer_init_sleeper(to, current);
cc584b21 2005 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
2006 }
2007
42d35d48 2008retry:
9ea71503 2009 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
c87e2837 2010 if (unlikely(ret != 0))
42d35d48 2011 goto out;
c87e2837 2012
e4dc5b7a 2013retry_private:
82af7aca 2014 hb = queue_lock(&q);
c87e2837 2015
bab5bc9e 2016 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 2017 if (unlikely(ret)) {
778e9a9c 2018 switch (ret) {
1a52084d
DH
2019 case 1:
2020 /* We got the lock. */
2021 ret = 0;
2022 goto out_unlock_put_key;
2023 case -EFAULT:
2024 goto uaddr_faulted;
778e9a9c
AK
2025 case -EAGAIN:
2026 /*
2027 * Task is exiting and we just wait for the
2028 * exit to complete.
2029 */
2030 queue_unlock(&q, hb);
ae791a2d 2031 put_futex_key(&q.key);
778e9a9c
AK
2032 cond_resched();
2033 goto retry;
778e9a9c 2034 default:
42d35d48 2035 goto out_unlock_put_key;
c87e2837 2036 }
c87e2837
IM
2037 }
2038
2039 /*
2040 * Only actually queue now that the atomic ops are done:
2041 */
82af7aca 2042 queue_me(&q, hb);
c87e2837 2043
c87e2837
IM
2044 WARN_ON(!q.pi_state);
2045 /*
2046 * Block on the PI mutex:
2047 */
2048 if (!trylock)
2049 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2050 else {
2051 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2052 /* Fixup the trylock return value: */
2053 ret = ret ? 0 : -EWOULDBLOCK;
2054 }
2055
a99e4e41 2056 spin_lock(q.lock_ptr);
dd973998
DH
2057 /*
2058 * Fixup the pi_state owner and possibly acquire the lock if we
2059 * haven't already.
2060 */
ae791a2d 2061 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2062 /*
2063 * If fixup_owner() returned an error, proprogate that. If it acquired
2064 * the lock, clear our -ETIMEDOUT or -EINTR.
2065 */
2066 if (res)
2067 ret = (res < 0) ? res : 0;
c87e2837 2068
e8f6386c 2069 /*
dd973998
DH
2070 * If fixup_owner() faulted and was unable to handle the fault, unlock
2071 * it and return the fault to userspace.
e8f6386c
DH
2072 */
2073 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2074 rt_mutex_unlock(&q.pi_state->pi_mutex);
2075
778e9a9c
AK
2076 /* Unqueue and drop the lock */
2077 unqueue_me_pi(&q);
c87e2837 2078
5ecb01cf 2079 goto out_put_key;
c87e2837 2080
42d35d48 2081out_unlock_put_key:
c87e2837
IM
2082 queue_unlock(&q, hb);
2083
42d35d48 2084out_put_key:
ae791a2d 2085 put_futex_key(&q.key);
42d35d48 2086out:
237fc6e7
TG
2087 if (to)
2088 destroy_hrtimer_on_stack(&to->timer);
dd973998 2089 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2090
42d35d48 2091uaddr_faulted:
778e9a9c
AK
2092 queue_unlock(&q, hb);
2093
d0725992 2094 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2095 if (ret)
2096 goto out_put_key;
c87e2837 2097
b41277dc 2098 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2099 goto retry_private;
2100
ae791a2d 2101 put_futex_key(&q.key);
e4dc5b7a 2102 goto retry;
c87e2837
IM
2103}
2104
c87e2837
IM
2105/*
2106 * Userspace attempted a TID -> 0 atomic transition, and failed.
2107 * This is the in-kernel slowpath: we look up the PI state (if any),
2108 * and do the rt-mutex unlock.
2109 */
b41277dc 2110static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837
IM
2111{
2112 struct futex_hash_bucket *hb;
2113 struct futex_q *this, *next;
ec92d082 2114 struct plist_head *head;
38d47c1b 2115 union futex_key key = FUTEX_KEY_INIT;
c0c9ed15 2116 u32 uval, vpid = task_pid_vnr(current);
e4dc5b7a 2117 int ret;
c87e2837
IM
2118
2119retry:
2120 if (get_user(uval, uaddr))
2121 return -EFAULT;
2122 /*
2123 * We release only a lock we actually own:
2124 */
c0c9ed15 2125 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2126 return -EPERM;
c87e2837 2127
9ea71503 2128 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
c87e2837
IM
2129 if (unlikely(ret != 0))
2130 goto out;
2131
2132 hb = hash_futex(&key);
2133 spin_lock(&hb->lock);
2134
c87e2837
IM
2135 /*
2136 * To avoid races, try to do the TID -> 0 atomic transition
2137 * again. If it succeeds then we can return without waking
2138 * anyone else up:
2139 */
37a9d912
ML
2140 if (!(uval & FUTEX_OWNER_DIED) &&
2141 cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
c87e2837
IM
2142 goto pi_faulted;
2143 /*
2144 * Rare case: we managed to release the lock atomically,
2145 * no need to wake anyone else up:
2146 */
c0c9ed15 2147 if (unlikely(uval == vpid))
c87e2837
IM
2148 goto out_unlock;
2149
2150 /*
2151 * Ok, other tasks may need to be woken up - check waiters
2152 * and do the wakeup if necessary:
2153 */
2154 head = &hb->chain;
2155
ec92d082 2156 plist_for_each_entry_safe(this, next, head, list) {
c87e2837
IM
2157 if (!match_futex (&this->key, &key))
2158 continue;
2159 ret = wake_futex_pi(uaddr, uval, this);
2160 /*
2161 * The atomic access to the futex value
2162 * generated a pagefault, so retry the
2163 * user-access and the wakeup:
2164 */
2165 if (ret == -EFAULT)
2166 goto pi_faulted;
2167 goto out_unlock;
2168 }
2169 /*
2170 * No waiters - kernel unlocks the futex:
2171 */
e3f2ddea
IM
2172 if (!(uval & FUTEX_OWNER_DIED)) {
2173 ret = unlock_futex_pi(uaddr, uval);
2174 if (ret == -EFAULT)
2175 goto pi_faulted;
2176 }
c87e2837
IM
2177
2178out_unlock:
2179 spin_unlock(&hb->lock);
ae791a2d 2180 put_futex_key(&key);
c87e2837 2181
42d35d48 2182out:
c87e2837
IM
2183 return ret;
2184
2185pi_faulted:
778e9a9c 2186 spin_unlock(&hb->lock);
ae791a2d 2187 put_futex_key(&key);
c87e2837 2188
d0725992 2189 ret = fault_in_user_writeable(uaddr);
b5686363 2190 if (!ret)
c87e2837
IM
2191 goto retry;
2192
1da177e4
LT
2193 return ret;
2194}
2195
52400ba9
DH
2196/**
2197 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2198 * @hb: the hash_bucket futex_q was original enqueued on
2199 * @q: the futex_q woken while waiting to be requeued
2200 * @key2: the futex_key of the requeue target futex
2201 * @timeout: the timeout associated with the wait (NULL if none)
2202 *
2203 * Detect if the task was woken on the initial futex as opposed to the requeue
2204 * target futex. If so, determine if it was a timeout or a signal that caused
2205 * the wakeup and return the appropriate error code to the caller. Must be
2206 * called with the hb lock held.
2207 *
6c23cbbd
RD
2208 * Return:
2209 * 0 = no early wakeup detected;
2210 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
2211 */
2212static inline
2213int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2214 struct futex_q *q, union futex_key *key2,
2215 struct hrtimer_sleeper *timeout)
2216{
2217 int ret = 0;
2218
2219 /*
2220 * With the hb lock held, we avoid races while we process the wakeup.
2221 * We only need to hold hb (and not hb2) to ensure atomicity as the
2222 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2223 * It can't be requeued from uaddr2 to something else since we don't
2224 * support a PI aware source futex for requeue.
2225 */
2226 if (!match_futex(&q->key, key2)) {
2227 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2228 /*
2229 * We were woken prior to requeue by a timeout or a signal.
2230 * Unqueue the futex_q and determine which it was.
2231 */
2e12978a 2232 plist_del(&q->list, &hb->chain);
52400ba9 2233
d58e6576 2234 /* Handle spurious wakeups gracefully */
11df6ddd 2235 ret = -EWOULDBLOCK;
52400ba9
DH
2236 if (timeout && !timeout->task)
2237 ret = -ETIMEDOUT;
d58e6576 2238 else if (signal_pending(current))
1c840c14 2239 ret = -ERESTARTNOINTR;
52400ba9
DH
2240 }
2241 return ret;
2242}
2243
2244/**
2245 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 2246 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 2247 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
52400ba9
DH
2248 * the same type, no requeueing from private to shared, etc.
2249 * @val: the expected value of uaddr
2250 * @abs_time: absolute timeout
56ec1607 2251 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
2252 * @uaddr2: the pi futex we will take prior to returning to user-space
2253 *
2254 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
2255 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2256 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2257 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2258 * without one, the pi logic would not know which task to boost/deboost, if
2259 * there was a need to.
52400ba9
DH
2260 *
2261 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 2262 * via the following--
52400ba9 2263 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
2264 * 2) wakeup on uaddr2 after a requeue
2265 * 3) signal
2266 * 4) timeout
52400ba9 2267 *
cc6db4e6 2268 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
2269 *
2270 * If 2, we may then block on trying to take the rt_mutex and return via:
2271 * 5) successful lock
2272 * 6) signal
2273 * 7) timeout
2274 * 8) other lock acquisition failure
2275 *
cc6db4e6 2276 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
2277 *
2278 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2279 *
6c23cbbd
RD
2280 * Return:
2281 * 0 - On success;
52400ba9
DH
2282 * <0 - On error
2283 */
b41277dc 2284static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 2285 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 2286 u32 __user *uaddr2)
52400ba9
DH
2287{
2288 struct hrtimer_sleeper timeout, *to = NULL;
2289 struct rt_mutex_waiter rt_waiter;
2290 struct rt_mutex *pi_mutex = NULL;
52400ba9 2291 struct futex_hash_bucket *hb;
5bdb05f9
DH
2292 union futex_key key2 = FUTEX_KEY_INIT;
2293 struct futex_q q = futex_q_init;
52400ba9 2294 int res, ret;
52400ba9 2295
6f7b0a2a
DH
2296 if (uaddr == uaddr2)
2297 return -EINVAL;
2298
52400ba9
DH
2299 if (!bitset)
2300 return -EINVAL;
2301
2302 if (abs_time) {
2303 to = &timeout;
b41277dc
DH
2304 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2305 CLOCK_REALTIME : CLOCK_MONOTONIC,
2306 HRTIMER_MODE_ABS);
52400ba9
DH
2307 hrtimer_init_sleeper(to, current);
2308 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2309 current->timer_slack_ns);
2310 }
2311
2312 /*
2313 * The waiter is allocated on our stack, manipulated by the requeue
2314 * code while we sleep on uaddr.
2315 */
2316 debug_rt_mutex_init_waiter(&rt_waiter);
2317 rt_waiter.task = NULL;
2318
9ea71503 2319 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
52400ba9
DH
2320 if (unlikely(ret != 0))
2321 goto out;
2322
84bc4af5
DH
2323 q.bitset = bitset;
2324 q.rt_waiter = &rt_waiter;
2325 q.requeue_pi_key = &key2;
2326
7ada876a
DH
2327 /*
2328 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2329 * count.
2330 */
b41277dc 2331 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
2332 if (ret)
2333 goto out_key2;
52400ba9
DH
2334
2335 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 2336 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
2337
2338 spin_lock(&hb->lock);
2339 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2340 spin_unlock(&hb->lock);
2341 if (ret)
2342 goto out_put_keys;
2343
2344 /*
2345 * In order for us to be here, we know our q.key == key2, and since
2346 * we took the hb->lock above, we also know that futex_requeue() has
2347 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
2348 * race with the atomic proxy lock acquisition by the requeue code. The
2349 * futex_requeue dropped our key1 reference and incremented our key2
2350 * reference count.
52400ba9
DH
2351 */
2352
2353 /* Check if the requeue code acquired the second futex for us. */
2354 if (!q.rt_waiter) {
2355 /*
2356 * Got the lock. We might not be the anticipated owner if we
2357 * did a lock-steal - fix up the PI-state in that case.
2358 */
2359 if (q.pi_state && (q.pi_state->owner != current)) {
2360 spin_lock(q.lock_ptr);
ae791a2d 2361 ret = fixup_pi_state_owner(uaddr2, &q, current);
52400ba9
DH
2362 spin_unlock(q.lock_ptr);
2363 }
2364 } else {
2365 /*
2366 * We have been woken up by futex_unlock_pi(), a timeout, or a
2367 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2368 * the pi_state.
2369 */
f27071cb 2370 WARN_ON(!q.pi_state);
52400ba9
DH
2371 pi_mutex = &q.pi_state->pi_mutex;
2372 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2373 debug_rt_mutex_free_waiter(&rt_waiter);
2374
2375 spin_lock(q.lock_ptr);
2376 /*
2377 * Fixup the pi_state owner and possibly acquire the lock if we
2378 * haven't already.
2379 */
ae791a2d 2380 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
2381 /*
2382 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 2383 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
2384 */
2385 if (res)
2386 ret = (res < 0) ? res : 0;
2387
2388 /* Unqueue and drop the lock. */
2389 unqueue_me_pi(&q);
2390 }
2391
2392 /*
2393 * If fixup_pi_state_owner() faulted and was unable to handle the
2394 * fault, unlock the rt_mutex and return the fault to userspace.
2395 */
2396 if (ret == -EFAULT) {
b6070a8d 2397 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
52400ba9
DH
2398 rt_mutex_unlock(pi_mutex);
2399 } else if (ret == -EINTR) {
52400ba9 2400 /*
cc6db4e6
DH
2401 * We've already been requeued, but cannot restart by calling
2402 * futex_lock_pi() directly. We could restart this syscall, but
2403 * it would detect that the user space "val" changed and return
2404 * -EWOULDBLOCK. Save the overhead of the restart and return
2405 * -EWOULDBLOCK directly.
52400ba9 2406 */
2070887f 2407 ret = -EWOULDBLOCK;
52400ba9
DH
2408 }
2409
2410out_put_keys:
ae791a2d 2411 put_futex_key(&q.key);
c8b15a70 2412out_key2:
ae791a2d 2413 put_futex_key(&key2);
52400ba9
DH
2414
2415out:
2416 if (to) {
2417 hrtimer_cancel(&to->timer);
2418 destroy_hrtimer_on_stack(&to->timer);
2419 }
2420 return ret;
2421}
2422
0771dfef
IM
2423/*
2424 * Support for robust futexes: the kernel cleans up held futexes at
2425 * thread exit time.
2426 *
2427 * Implementation: user-space maintains a per-thread list of locks it
2428 * is holding. Upon do_exit(), the kernel carefully walks this list,
2429 * and marks all locks that are owned by this thread with the
c87e2837 2430 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
2431 * always manipulated with the lock held, so the list is private and
2432 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2433 * field, to allow the kernel to clean up if the thread dies after
2434 * acquiring the lock, but just before it could have added itself to
2435 * the list. There can only be one such pending lock.
2436 */
2437
2438/**
d96ee56c
DH
2439 * sys_set_robust_list() - Set the robust-futex list head of a task
2440 * @head: pointer to the list-head
2441 * @len: length of the list-head, as userspace expects
0771dfef 2442 */
836f92ad
HC
2443SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2444 size_t, len)
0771dfef 2445{
a0c1e907
TG
2446 if (!futex_cmpxchg_enabled)
2447 return -ENOSYS;
0771dfef
IM
2448 /*
2449 * The kernel knows only one size for now:
2450 */
2451 if (unlikely(len != sizeof(*head)))
2452 return -EINVAL;
2453
2454 current->robust_list = head;
2455
2456 return 0;
2457}
2458
2459/**
d96ee56c
DH
2460 * sys_get_robust_list() - Get the robust-futex list head of a task
2461 * @pid: pid of the process [zero for current task]
2462 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2463 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 2464 */
836f92ad
HC
2465SYSCALL_DEFINE3(get_robust_list, int, pid,
2466 struct robust_list_head __user * __user *, head_ptr,
2467 size_t __user *, len_ptr)
0771dfef 2468{
ba46df98 2469 struct robust_list_head __user *head;
0771dfef 2470 unsigned long ret;
bdbb776f 2471 struct task_struct *p;
0771dfef 2472
a0c1e907
TG
2473 if (!futex_cmpxchg_enabled)
2474 return -ENOSYS;
2475
bdbb776f
KC
2476 rcu_read_lock();
2477
2478 ret = -ESRCH;
0771dfef 2479 if (!pid)
bdbb776f 2480 p = current;
0771dfef 2481 else {
228ebcbe 2482 p = find_task_by_vpid(pid);
0771dfef
IM
2483 if (!p)
2484 goto err_unlock;
0771dfef
IM
2485 }
2486
bdbb776f
KC
2487 ret = -EPERM;
2488 if (!ptrace_may_access(p, PTRACE_MODE_READ))
2489 goto err_unlock;
2490
2491 head = p->robust_list;
2492 rcu_read_unlock();
2493
0771dfef
IM
2494 if (put_user(sizeof(*head), len_ptr))
2495 return -EFAULT;
2496 return put_user(head, head_ptr);
2497
2498err_unlock:
aaa2a97e 2499 rcu_read_unlock();
0771dfef
IM
2500
2501 return ret;
2502}
2503
2504/*
2505 * Process a futex-list entry, check whether it's owned by the
2506 * dying task, and do notification if so:
2507 */
e3f2ddea 2508int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 2509{
7cfdaf38 2510 u32 uval, uninitialized_var(nval), mval;
0771dfef 2511
8f17d3a5
IM
2512retry:
2513 if (get_user(uval, uaddr))
0771dfef
IM
2514 return -1;
2515
b488893a 2516 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
2517 /*
2518 * Ok, this dying thread is truly holding a futex
2519 * of interest. Set the OWNER_DIED bit atomically
2520 * via cmpxchg, and if the value had FUTEX_WAITERS
2521 * set, wake up a waiter (if any). (We have to do a
2522 * futex_wake() even if OWNER_DIED is already set -
2523 * to handle the rare but possible case of recursive
2524 * thread-death.) The rest of the cleanup is done in
2525 * userspace.
2526 */
e3f2ddea 2527 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
6e0aa9f8
TG
2528 /*
2529 * We are not holding a lock here, but we want to have
2530 * the pagefault_disable/enable() protection because
2531 * we want to handle the fault gracefully. If the
2532 * access fails we try to fault in the futex with R/W
2533 * verification via get_user_pages. get_user() above
2534 * does not guarantee R/W access. If that fails we
2535 * give up and leave the futex locked.
2536 */
2537 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2538 if (fault_in_user_writeable(uaddr))
2539 return -1;
2540 goto retry;
2541 }
c87e2837 2542 if (nval != uval)
8f17d3a5 2543 goto retry;
0771dfef 2544
e3f2ddea
IM
2545 /*
2546 * Wake robust non-PI futexes here. The wakeup of
2547 * PI futexes happens in exit_pi_state():
2548 */
36cf3b5c 2549 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 2550 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
2551 }
2552 return 0;
2553}
2554
e3f2ddea
IM
2555/*
2556 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2557 */
2558static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 2559 struct robust_list __user * __user *head,
1dcc41bb 2560 unsigned int *pi)
e3f2ddea
IM
2561{
2562 unsigned long uentry;
2563
ba46df98 2564 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
2565 return -EFAULT;
2566
ba46df98 2567 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
2568 *pi = uentry & 1;
2569
2570 return 0;
2571}
2572
0771dfef
IM
2573/*
2574 * Walk curr->robust_list (very carefully, it's a userspace list!)
2575 * and mark any locks found there dead, and notify any waiters.
2576 *
2577 * We silently return on any sign of list-walking problem.
2578 */
2579void exit_robust_list(struct task_struct *curr)
2580{
2581 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 2582 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
2583 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2584 unsigned int uninitialized_var(next_pi);
0771dfef 2585 unsigned long futex_offset;
9f96cb1e 2586 int rc;
0771dfef 2587
a0c1e907
TG
2588 if (!futex_cmpxchg_enabled)
2589 return;
2590
0771dfef
IM
2591 /*
2592 * Fetch the list head (which was registered earlier, via
2593 * sys_set_robust_list()):
2594 */
e3f2ddea 2595 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
2596 return;
2597 /*
2598 * Fetch the relative futex offset:
2599 */
2600 if (get_user(futex_offset, &head->futex_offset))
2601 return;
2602 /*
2603 * Fetch any possibly pending lock-add first, and handle it
2604 * if it exists:
2605 */
e3f2ddea 2606 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 2607 return;
e3f2ddea 2608
9f96cb1e 2609 next_entry = NULL; /* avoid warning with gcc */
0771dfef 2610 while (entry != &head->list) {
9f96cb1e
MS
2611 /*
2612 * Fetch the next entry in the list before calling
2613 * handle_futex_death:
2614 */
2615 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
2616 /*
2617 * A pending lock might already be on the list, so
c87e2837 2618 * don't process it twice:
0771dfef
IM
2619 */
2620 if (entry != pending)
ba46df98 2621 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 2622 curr, pi))
0771dfef 2623 return;
9f96cb1e 2624 if (rc)
0771dfef 2625 return;
9f96cb1e
MS
2626 entry = next_entry;
2627 pi = next_pi;
0771dfef
IM
2628 /*
2629 * Avoid excessively long or circular lists:
2630 */
2631 if (!--limit)
2632 break;
2633
2634 cond_resched();
2635 }
9f96cb1e
MS
2636
2637 if (pending)
2638 handle_futex_death((void __user *)pending + futex_offset,
2639 curr, pip);
0771dfef
IM
2640}
2641
c19384b5 2642long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 2643 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 2644{
81b40539 2645 int cmd = op & FUTEX_CMD_MASK;
b41277dc 2646 unsigned int flags = 0;
34f01cc1
ED
2647
2648 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 2649 flags |= FLAGS_SHARED;
1da177e4 2650
b41277dc
DH
2651 if (op & FUTEX_CLOCK_REALTIME) {
2652 flags |= FLAGS_CLOCKRT;
2653 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2654 return -ENOSYS;
2655 }
1da177e4 2656
59263b51
TG
2657 switch (cmd) {
2658 case FUTEX_LOCK_PI:
2659 case FUTEX_UNLOCK_PI:
2660 case FUTEX_TRYLOCK_PI:
2661 case FUTEX_WAIT_REQUEUE_PI:
2662 case FUTEX_CMP_REQUEUE_PI:
2663 if (!futex_cmpxchg_enabled)
2664 return -ENOSYS;
2665 }
2666
34f01cc1 2667 switch (cmd) {
1da177e4 2668 case FUTEX_WAIT:
cd689985
TG
2669 val3 = FUTEX_BITSET_MATCH_ANY;
2670 case FUTEX_WAIT_BITSET:
81b40539 2671 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 2672 case FUTEX_WAKE:
cd689985
TG
2673 val3 = FUTEX_BITSET_MATCH_ANY;
2674 case FUTEX_WAKE_BITSET:
81b40539 2675 return futex_wake(uaddr, flags, val, val3);
1da177e4 2676 case FUTEX_REQUEUE:
81b40539 2677 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 2678 case FUTEX_CMP_REQUEUE:
81b40539 2679 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 2680 case FUTEX_WAKE_OP:
81b40539 2681 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 2682 case FUTEX_LOCK_PI:
81b40539 2683 return futex_lock_pi(uaddr, flags, val, timeout, 0);
c87e2837 2684 case FUTEX_UNLOCK_PI:
81b40539 2685 return futex_unlock_pi(uaddr, flags);
c87e2837 2686 case FUTEX_TRYLOCK_PI:
81b40539 2687 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
52400ba9
DH
2688 case FUTEX_WAIT_REQUEUE_PI:
2689 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
2690 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2691 uaddr2);
52400ba9 2692 case FUTEX_CMP_REQUEUE_PI:
81b40539 2693 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 2694 }
81b40539 2695 return -ENOSYS;
1da177e4
LT
2696}
2697
2698
17da2bd9
HC
2699SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2700 struct timespec __user *, utime, u32 __user *, uaddr2,
2701 u32, val3)
1da177e4 2702{
c19384b5
PP
2703 struct timespec ts;
2704 ktime_t t, *tp = NULL;
e2970f2f 2705 u32 val2 = 0;
34f01cc1 2706 int cmd = op & FUTEX_CMD_MASK;
1da177e4 2707
cd689985 2708 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
2709 cmd == FUTEX_WAIT_BITSET ||
2710 cmd == FUTEX_WAIT_REQUEUE_PI)) {
c19384b5 2711 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 2712 return -EFAULT;
c19384b5 2713 if (!timespec_valid(&ts))
9741ef96 2714 return -EINVAL;
c19384b5
PP
2715
2716 t = timespec_to_ktime(ts);
34f01cc1 2717 if (cmd == FUTEX_WAIT)
5a7780e7 2718 t = ktime_add_safe(ktime_get(), t);
c19384b5 2719 tp = &t;
1da177e4
LT
2720 }
2721 /*
52400ba9 2722 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 2723 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 2724 */
f54f0986 2725 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 2726 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 2727 val2 = (u32) (unsigned long) utime;
1da177e4 2728
c19384b5 2729 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
2730}
2731
f6d107fb 2732static int __init futex_init(void)
1da177e4 2733{
a0c1e907 2734 u32 curval;
3e4ab747 2735 int i;
95362fa9 2736
a0c1e907
TG
2737 /*
2738 * This will fail and we want it. Some arch implementations do
2739 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2740 * functionality. We want to know that before we call in any
2741 * of the complex code paths. Also we want to prevent
2742 * registration of robust lists in that case. NULL is
2743 * guaranteed to fault and we get -EFAULT on functional
fb62db2b 2744 * implementation, the non-functional ones will return
a0c1e907
TG
2745 * -ENOSYS.
2746 */
37a9d912 2747 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
a0c1e907
TG
2748 futex_cmpxchg_enabled = 1;
2749
3e4ab747 2750 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
732375c6 2751 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
2752 spin_lock_init(&futex_queues[i].lock);
2753 }
2754
1da177e4
LT
2755 return 0;
2756}
f6d107fb 2757__initcall(futex_init);