futexes: Clean up various details
[linux-2.6-block.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
7ed20e1a 57#include <linux/signal.h>
9984de1a 58#include <linux/export.h>
fd5eea42 59#include <linux/magic.h>
b488893a
PE
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
bdbb776f 62#include <linux/ptrace.h>
8bd75c77 63#include <linux/sched/rt.h>
13d60f4b 64#include <linux/hugetlb.h>
88c8004f 65#include <linux/freezer.h>
b488893a 66
4732efbe 67#include <asm/futex.h>
1da177e4 68
1696a8be 69#include "locking/rtmutex_common.h"
c87e2837 70
a0c1e907
TG
71int __read_mostly futex_cmpxchg_enabled;
72
1da177e4
LT
73#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
74
b41277dc
DH
75/*
76 * Futex flags used to encode options to functions and preserve them across
77 * restarts.
78 */
79#define FLAGS_SHARED 0x01
80#define FLAGS_CLOCKRT 0x02
81#define FLAGS_HAS_TIMEOUT 0x04
82
c87e2837
IM
83/*
84 * Priority Inheritance state:
85 */
86struct futex_pi_state {
87 /*
88 * list of 'owned' pi_state instances - these have to be
89 * cleaned up in do_exit() if the task exits prematurely:
90 */
91 struct list_head list;
92
93 /*
94 * The PI object:
95 */
96 struct rt_mutex pi_mutex;
97
98 struct task_struct *owner;
99 atomic_t refcount;
100
101 union futex_key key;
102};
103
d8d88fbb
DH
104/**
105 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 106 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
107 * @task: the task waiting on the futex
108 * @lock_ptr: the hash bucket lock
109 * @key: the key the futex is hashed on
110 * @pi_state: optional priority inheritance state
111 * @rt_waiter: rt_waiter storage for use with requeue_pi
112 * @requeue_pi_key: the requeue_pi target futex key
113 * @bitset: bitset for the optional bitmasked wakeup
114 *
115 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
1da177e4
LT
116 * we can wake only the relevant ones (hashed queues may be shared).
117 *
118 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 119 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 120 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
121 * the second.
122 *
123 * PI futexes are typically woken before they are removed from the hash list via
124 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
125 */
126struct futex_q {
ec92d082 127 struct plist_node list;
1da177e4 128
d8d88fbb 129 struct task_struct *task;
1da177e4 130 spinlock_t *lock_ptr;
1da177e4 131 union futex_key key;
c87e2837 132 struct futex_pi_state *pi_state;
52400ba9 133 struct rt_mutex_waiter *rt_waiter;
84bc4af5 134 union futex_key *requeue_pi_key;
cd689985 135 u32 bitset;
1da177e4
LT
136};
137
5bdb05f9
DH
138static const struct futex_q futex_q_init = {
139 /* list gets initialized in queue_me()*/
140 .key = FUTEX_KEY_INIT,
141 .bitset = FUTEX_BITSET_MATCH_ANY
142};
143
1da177e4 144/*
b2d0994b
DH
145 * Hash buckets are shared by all the futex_keys that hash to the same
146 * location. Each key may have multiple futex_q structures, one for each task
147 * waiting on a futex.
1da177e4
LT
148 */
149struct futex_hash_bucket {
ec92d082
PP
150 spinlock_t lock;
151 struct plist_head chain;
1da177e4
LT
152};
153
154static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
155
1da177e4
LT
156/*
157 * We hash on the keys returned from get_futex_key (see below).
158 */
159static struct futex_hash_bucket *hash_futex(union futex_key *key)
160{
161 u32 hash = jhash2((u32*)&key->both.word,
162 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
163 key->both.offset);
164 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
165}
166
167/*
168 * Return 1 if two futex_keys are equal, 0 otherwise.
169 */
170static inline int match_futex(union futex_key *key1, union futex_key *key2)
171{
2bc87203
DH
172 return (key1 && key2
173 && key1->both.word == key2->both.word
1da177e4
LT
174 && key1->both.ptr == key2->both.ptr
175 && key1->both.offset == key2->both.offset);
176}
177
38d47c1b
PZ
178/*
179 * Take a reference to the resource addressed by a key.
180 * Can be called while holding spinlocks.
181 *
182 */
183static void get_futex_key_refs(union futex_key *key)
184{
185 if (!key->both.ptr)
186 return;
187
188 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
189 case FUT_OFF_INODE:
7de9c6ee 190 ihold(key->shared.inode);
38d47c1b
PZ
191 break;
192 case FUT_OFF_MMSHARED:
193 atomic_inc(&key->private.mm->mm_count);
194 break;
195 }
196}
197
198/*
199 * Drop a reference to the resource addressed by a key.
200 * The hash bucket spinlock must not be held.
201 */
202static void drop_futex_key_refs(union futex_key *key)
203{
90621c40
DH
204 if (!key->both.ptr) {
205 /* If we're here then we tried to put a key we failed to get */
206 WARN_ON_ONCE(1);
38d47c1b 207 return;
90621c40 208 }
38d47c1b
PZ
209
210 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
211 case FUT_OFF_INODE:
212 iput(key->shared.inode);
213 break;
214 case FUT_OFF_MMSHARED:
215 mmdrop(key->private.mm);
216 break;
217 }
218}
219
34f01cc1 220/**
d96ee56c
DH
221 * get_futex_key() - Get parameters which are the keys for a futex
222 * @uaddr: virtual address of the futex
223 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
224 * @key: address where result is stored.
9ea71503
SB
225 * @rw: mapping needs to be read/write (values: VERIFY_READ,
226 * VERIFY_WRITE)
34f01cc1 227 *
6c23cbbd
RD
228 * Return: a negative error code or 0
229 *
34f01cc1 230 * The key words are stored in *key on success.
1da177e4 231 *
6131ffaa 232 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
1da177e4
LT
233 * offset_within_page). For private mappings, it's (uaddr, current->mm).
234 * We can usually work out the index without swapping in the page.
235 *
b2d0994b 236 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 237 */
64d1304a 238static int
9ea71503 239get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
1da177e4 240{
e2970f2f 241 unsigned long address = (unsigned long)uaddr;
1da177e4 242 struct mm_struct *mm = current->mm;
a5b338f2 243 struct page *page, *page_head;
9ea71503 244 int err, ro = 0;
1da177e4
LT
245
246 /*
247 * The futex address must be "naturally" aligned.
248 */
e2970f2f 249 key->both.offset = address % PAGE_SIZE;
34f01cc1 250 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 251 return -EINVAL;
e2970f2f 252 address -= key->both.offset;
1da177e4 253
5cdec2d8
LT
254 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
255 return -EFAULT;
256
34f01cc1
ED
257 /*
258 * PROCESS_PRIVATE futexes are fast.
259 * As the mm cannot disappear under us and the 'key' only needs
260 * virtual address, we dont even have to find the underlying vma.
261 * Note : We do have to check 'uaddr' is a valid user address,
262 * but access_ok() should be faster than find_vma()
263 */
264 if (!fshared) {
34f01cc1
ED
265 key->private.mm = mm;
266 key->private.address = address;
42569c39 267 get_futex_key_refs(key);
34f01cc1
ED
268 return 0;
269 }
1da177e4 270
38d47c1b 271again:
7485d0d3 272 err = get_user_pages_fast(address, 1, 1, &page);
9ea71503
SB
273 /*
274 * If write access is not required (eg. FUTEX_WAIT), try
275 * and get read-only access.
276 */
277 if (err == -EFAULT && rw == VERIFY_READ) {
278 err = get_user_pages_fast(address, 1, 0, &page);
279 ro = 1;
280 }
38d47c1b
PZ
281 if (err < 0)
282 return err;
9ea71503
SB
283 else
284 err = 0;
38d47c1b 285
a5b338f2
AA
286#ifdef CONFIG_TRANSPARENT_HUGEPAGE
287 page_head = page;
288 if (unlikely(PageTail(page))) {
38d47c1b 289 put_page(page);
a5b338f2
AA
290 /* serialize against __split_huge_page_splitting() */
291 local_irq_disable();
f12d5bfc 292 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
a5b338f2
AA
293 page_head = compound_head(page);
294 /*
295 * page_head is valid pointer but we must pin
296 * it before taking the PG_lock and/or
297 * PG_compound_lock. The moment we re-enable
298 * irqs __split_huge_page_splitting() can
299 * return and the head page can be freed from
300 * under us. We can't take the PG_lock and/or
301 * PG_compound_lock on a page that could be
302 * freed from under us.
303 */
304 if (page != page_head) {
305 get_page(page_head);
306 put_page(page);
307 }
308 local_irq_enable();
309 } else {
310 local_irq_enable();
311 goto again;
312 }
313 }
314#else
315 page_head = compound_head(page);
316 if (page != page_head) {
317 get_page(page_head);
318 put_page(page);
319 }
320#endif
321
322 lock_page(page_head);
e6780f72
HD
323
324 /*
325 * If page_head->mapping is NULL, then it cannot be a PageAnon
326 * page; but it might be the ZERO_PAGE or in the gate area or
327 * in a special mapping (all cases which we are happy to fail);
328 * or it may have been a good file page when get_user_pages_fast
329 * found it, but truncated or holepunched or subjected to
330 * invalidate_complete_page2 before we got the page lock (also
331 * cases which we are happy to fail). And we hold a reference,
332 * so refcount care in invalidate_complete_page's remove_mapping
333 * prevents drop_caches from setting mapping to NULL beneath us.
334 *
335 * The case we do have to guard against is when memory pressure made
336 * shmem_writepage move it from filecache to swapcache beneath us:
337 * an unlikely race, but we do need to retry for page_head->mapping.
338 */
a5b338f2 339 if (!page_head->mapping) {
e6780f72 340 int shmem_swizzled = PageSwapCache(page_head);
a5b338f2
AA
341 unlock_page(page_head);
342 put_page(page_head);
e6780f72
HD
343 if (shmem_swizzled)
344 goto again;
345 return -EFAULT;
38d47c1b 346 }
1da177e4
LT
347
348 /*
349 * Private mappings are handled in a simple way.
350 *
351 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
352 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 353 * the object not the particular process.
1da177e4 354 */
a5b338f2 355 if (PageAnon(page_head)) {
9ea71503
SB
356 /*
357 * A RO anonymous page will never change and thus doesn't make
358 * sense for futex operations.
359 */
360 if (ro) {
361 err = -EFAULT;
362 goto out;
363 }
364
38d47c1b 365 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 366 key->private.mm = mm;
e2970f2f 367 key->private.address = address;
38d47c1b
PZ
368 } else {
369 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
a5b338f2 370 key->shared.inode = page_head->mapping->host;
13d60f4b 371 key->shared.pgoff = basepage_index(page);
1da177e4
LT
372 }
373
38d47c1b 374 get_futex_key_refs(key);
1da177e4 375
9ea71503 376out:
a5b338f2
AA
377 unlock_page(page_head);
378 put_page(page_head);
9ea71503 379 return err;
1da177e4
LT
380}
381
ae791a2d 382static inline void put_futex_key(union futex_key *key)
1da177e4 383{
38d47c1b 384 drop_futex_key_refs(key);
1da177e4
LT
385}
386
d96ee56c
DH
387/**
388 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
389 * @uaddr: pointer to faulting user space address
390 *
391 * Slow path to fixup the fault we just took in the atomic write
392 * access to @uaddr.
393 *
fb62db2b 394 * We have no generic implementation of a non-destructive write to the
d0725992
TG
395 * user address. We know that we faulted in the atomic pagefault
396 * disabled section so we can as well avoid the #PF overhead by
397 * calling get_user_pages() right away.
398 */
399static int fault_in_user_writeable(u32 __user *uaddr)
400{
722d0172
AK
401 struct mm_struct *mm = current->mm;
402 int ret;
403
404 down_read(&mm->mmap_sem);
2efaca92
BH
405 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
406 FAULT_FLAG_WRITE);
722d0172
AK
407 up_read(&mm->mmap_sem);
408
d0725992
TG
409 return ret < 0 ? ret : 0;
410}
411
4b1c486b
DH
412/**
413 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
414 * @hb: the hash bucket the futex_q's reside in
415 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
416 *
417 * Must be called with the hb lock held.
418 */
419static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
420 union futex_key *key)
421{
422 struct futex_q *this;
423
424 plist_for_each_entry(this, &hb->chain, list) {
425 if (match_futex(&this->key, key))
426 return this;
427 }
428 return NULL;
429}
430
37a9d912
ML
431static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
432 u32 uval, u32 newval)
36cf3b5c 433{
37a9d912 434 int ret;
36cf3b5c
TG
435
436 pagefault_disable();
37a9d912 437 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
438 pagefault_enable();
439
37a9d912 440 return ret;
36cf3b5c
TG
441}
442
443static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
444{
445 int ret;
446
a866374a 447 pagefault_disable();
e2970f2f 448 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 449 pagefault_enable();
1da177e4
LT
450
451 return ret ? -EFAULT : 0;
452}
453
c87e2837
IM
454
455/*
456 * PI code:
457 */
458static int refill_pi_state_cache(void)
459{
460 struct futex_pi_state *pi_state;
461
462 if (likely(current->pi_state_cache))
463 return 0;
464
4668edc3 465 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
466
467 if (!pi_state)
468 return -ENOMEM;
469
c87e2837
IM
470 INIT_LIST_HEAD(&pi_state->list);
471 /* pi_mutex gets initialized later */
472 pi_state->owner = NULL;
473 atomic_set(&pi_state->refcount, 1);
38d47c1b 474 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
475
476 current->pi_state_cache = pi_state;
477
478 return 0;
479}
480
481static struct futex_pi_state * alloc_pi_state(void)
482{
483 struct futex_pi_state *pi_state = current->pi_state_cache;
484
485 WARN_ON(!pi_state);
486 current->pi_state_cache = NULL;
487
488 return pi_state;
489}
490
491static void free_pi_state(struct futex_pi_state *pi_state)
492{
493 if (!atomic_dec_and_test(&pi_state->refcount))
494 return;
495
496 /*
497 * If pi_state->owner is NULL, the owner is most probably dying
498 * and has cleaned up the pi_state already
499 */
500 if (pi_state->owner) {
1d615482 501 raw_spin_lock_irq(&pi_state->owner->pi_lock);
c87e2837 502 list_del_init(&pi_state->list);
1d615482 503 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
c87e2837
IM
504
505 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
506 }
507
508 if (current->pi_state_cache)
509 kfree(pi_state);
510 else {
511 /*
512 * pi_state->list is already empty.
513 * clear pi_state->owner.
514 * refcount is at 0 - put it back to 1.
515 */
516 pi_state->owner = NULL;
517 atomic_set(&pi_state->refcount, 1);
518 current->pi_state_cache = pi_state;
519 }
520}
521
522/*
523 * Look up the task based on what TID userspace gave us.
524 * We dont trust it.
525 */
526static struct task_struct * futex_find_get_task(pid_t pid)
527{
528 struct task_struct *p;
529
d359b549 530 rcu_read_lock();
228ebcbe 531 p = find_task_by_vpid(pid);
7a0ea09a
MH
532 if (p)
533 get_task_struct(p);
a06381fe 534
d359b549 535 rcu_read_unlock();
c87e2837
IM
536
537 return p;
538}
539
540/*
541 * This task is holding PI mutexes at exit time => bad.
542 * Kernel cleans up PI-state, but userspace is likely hosed.
543 * (Robust-futex cleanup is separate and might save the day for userspace.)
544 */
545void exit_pi_state_list(struct task_struct *curr)
546{
c87e2837
IM
547 struct list_head *next, *head = &curr->pi_state_list;
548 struct futex_pi_state *pi_state;
627371d7 549 struct futex_hash_bucket *hb;
38d47c1b 550 union futex_key key = FUTEX_KEY_INIT;
c87e2837 551
a0c1e907
TG
552 if (!futex_cmpxchg_enabled)
553 return;
c87e2837
IM
554 /*
555 * We are a ZOMBIE and nobody can enqueue itself on
556 * pi_state_list anymore, but we have to be careful
627371d7 557 * versus waiters unqueueing themselves:
c87e2837 558 */
1d615482 559 raw_spin_lock_irq(&curr->pi_lock);
c87e2837
IM
560 while (!list_empty(head)) {
561
562 next = head->next;
563 pi_state = list_entry(next, struct futex_pi_state, list);
564 key = pi_state->key;
627371d7 565 hb = hash_futex(&key);
1d615482 566 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 567
c87e2837
IM
568 spin_lock(&hb->lock);
569
1d615482 570 raw_spin_lock_irq(&curr->pi_lock);
627371d7
IM
571 /*
572 * We dropped the pi-lock, so re-check whether this
573 * task still owns the PI-state:
574 */
c87e2837
IM
575 if (head->next != next) {
576 spin_unlock(&hb->lock);
577 continue;
578 }
579
c87e2837 580 WARN_ON(pi_state->owner != curr);
627371d7
IM
581 WARN_ON(list_empty(&pi_state->list));
582 list_del_init(&pi_state->list);
c87e2837 583 pi_state->owner = NULL;
1d615482 584 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
585
586 rt_mutex_unlock(&pi_state->pi_mutex);
587
588 spin_unlock(&hb->lock);
589
1d615482 590 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 591 }
1d615482 592 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
593}
594
595static int
d0aa7a70
PP
596lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
597 union futex_key *key, struct futex_pi_state **ps)
c87e2837
IM
598{
599 struct futex_pi_state *pi_state = NULL;
600 struct futex_q *this, *next;
c87e2837 601 struct task_struct *p;
778e9a9c 602 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837 603
0d00c7b2 604 plist_for_each_entry_safe(this, next, &hb->chain, list) {
d0aa7a70 605 if (match_futex(&this->key, key)) {
c87e2837
IM
606 /*
607 * Another waiter already exists - bump up
608 * the refcount and return its pi_state:
609 */
610 pi_state = this->pi_state;
06a9ec29 611 /*
fb62db2b 612 * Userspace might have messed up non-PI and PI futexes
06a9ec29
TG
613 */
614 if (unlikely(!pi_state))
615 return -EINVAL;
616
627371d7 617 WARN_ON(!atomic_read(&pi_state->refcount));
59647b6a
TG
618
619 /*
620 * When pi_state->owner is NULL then the owner died
621 * and another waiter is on the fly. pi_state->owner
622 * is fixed up by the task which acquires
623 * pi_state->rt_mutex.
624 *
625 * We do not check for pid == 0 which can happen when
626 * the owner died and robust_list_exit() cleared the
627 * TID.
628 */
629 if (pid && pi_state->owner) {
630 /*
631 * Bail out if user space manipulated the
632 * futex value.
633 */
634 if (pid != task_pid_vnr(pi_state->owner))
635 return -EINVAL;
636 }
627371d7 637
c87e2837 638 atomic_inc(&pi_state->refcount);
d0aa7a70 639 *ps = pi_state;
c87e2837
IM
640
641 return 0;
642 }
643 }
644
645 /*
e3f2ddea 646 * We are the first waiter - try to look up the real owner and attach
778e9a9c 647 * the new pi_state to it, but bail out when TID = 0
c87e2837 648 */
778e9a9c 649 if (!pid)
e3f2ddea 650 return -ESRCH;
c87e2837 651 p = futex_find_get_task(pid);
7a0ea09a
MH
652 if (!p)
653 return -ESRCH;
778e9a9c
AK
654
655 /*
656 * We need to look at the task state flags to figure out,
657 * whether the task is exiting. To protect against the do_exit
658 * change of the task flags, we do this protected by
659 * p->pi_lock:
660 */
1d615482 661 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
662 if (unlikely(p->flags & PF_EXITING)) {
663 /*
664 * The task is on the way out. When PF_EXITPIDONE is
665 * set, we know that the task has finished the
666 * cleanup:
667 */
668 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
669
1d615482 670 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
671 put_task_struct(p);
672 return ret;
673 }
c87e2837
IM
674
675 pi_state = alloc_pi_state();
676
677 /*
678 * Initialize the pi_mutex in locked state and make 'p'
679 * the owner of it:
680 */
681 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
682
683 /* Store the key for possible exit cleanups: */
d0aa7a70 684 pi_state->key = *key;
c87e2837 685
627371d7 686 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
687 list_add(&pi_state->list, &p->pi_state_list);
688 pi_state->owner = p;
1d615482 689 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
690
691 put_task_struct(p);
692
d0aa7a70 693 *ps = pi_state;
c87e2837
IM
694
695 return 0;
696}
697
1a52084d 698/**
d96ee56c 699 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
700 * @uaddr: the pi futex user address
701 * @hb: the pi futex hash bucket
702 * @key: the futex key associated with uaddr and hb
703 * @ps: the pi_state pointer where we store the result of the
704 * lookup
705 * @task: the task to perform the atomic lock work for. This will
706 * be "current" except in the case of requeue pi.
707 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 708 *
6c23cbbd
RD
709 * Return:
710 * 0 - ready to wait;
711 * 1 - acquired the lock;
1a52084d
DH
712 * <0 - error
713 *
714 * The hb->lock and futex_key refs shall be held by the caller.
715 */
716static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
717 union futex_key *key,
718 struct futex_pi_state **ps,
bab5bc9e 719 struct task_struct *task, int set_waiters)
1a52084d 720{
59fa6245 721 int lock_taken, ret, force_take = 0;
c0c9ed15 722 u32 uval, newval, curval, vpid = task_pid_vnr(task);
1a52084d
DH
723
724retry:
725 ret = lock_taken = 0;
726
727 /*
728 * To avoid races, we attempt to take the lock here again
729 * (by doing a 0 -> TID atomic cmpxchg), while holding all
730 * the locks. It will most likely not succeed.
731 */
c0c9ed15 732 newval = vpid;
bab5bc9e
DH
733 if (set_waiters)
734 newval |= FUTEX_WAITERS;
1a52084d 735
37a9d912 736 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
1a52084d
DH
737 return -EFAULT;
738
739 /*
740 * Detect deadlocks.
741 */
c0c9ed15 742 if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
743 return -EDEADLK;
744
745 /*
746 * Surprise - we got the lock. Just return to userspace:
747 */
748 if (unlikely(!curval))
749 return 1;
750
751 uval = curval;
752
753 /*
754 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
755 * to wake at the next unlock.
756 */
757 newval = curval | FUTEX_WAITERS;
758
759 /*
59fa6245 760 * Should we force take the futex? See below.
1a52084d 761 */
59fa6245
TG
762 if (unlikely(force_take)) {
763 /*
764 * Keep the OWNER_DIED and the WAITERS bit and set the
765 * new TID value.
766 */
c0c9ed15 767 newval = (curval & ~FUTEX_TID_MASK) | vpid;
59fa6245 768 force_take = 0;
1a52084d
DH
769 lock_taken = 1;
770 }
771
37a9d912 772 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1a52084d
DH
773 return -EFAULT;
774 if (unlikely(curval != uval))
775 goto retry;
776
777 /*
59fa6245 778 * We took the lock due to forced take over.
1a52084d
DH
779 */
780 if (unlikely(lock_taken))
781 return 1;
782
783 /*
784 * We dont have the lock. Look up the PI state (or create it if
785 * we are the first waiter):
786 */
787 ret = lookup_pi_state(uval, hb, key, ps);
788
789 if (unlikely(ret)) {
790 switch (ret) {
791 case -ESRCH:
792 /*
59fa6245
TG
793 * We failed to find an owner for this
794 * futex. So we have no pi_state to block
795 * on. This can happen in two cases:
796 *
797 * 1) The owner died
798 * 2) A stale FUTEX_WAITERS bit
799 *
800 * Re-read the futex value.
1a52084d
DH
801 */
802 if (get_futex_value_locked(&curval, uaddr))
803 return -EFAULT;
804
805 /*
59fa6245
TG
806 * If the owner died or we have a stale
807 * WAITERS bit the owner TID in the user space
808 * futex is 0.
1a52084d 809 */
59fa6245
TG
810 if (!(curval & FUTEX_TID_MASK)) {
811 force_take = 1;
1a52084d
DH
812 goto retry;
813 }
814 default:
815 break;
816 }
817 }
818
819 return ret;
820}
821
2e12978a
LJ
822/**
823 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
824 * @q: The futex_q to unqueue
825 *
826 * The q->lock_ptr must not be NULL and must be held by the caller.
827 */
828static void __unqueue_futex(struct futex_q *q)
829{
830 struct futex_hash_bucket *hb;
831
29096202
SR
832 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
833 || WARN_ON(plist_node_empty(&q->list)))
2e12978a
LJ
834 return;
835
836 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
837 plist_del(&q->list, &hb->chain);
838}
839
1da177e4
LT
840/*
841 * The hash bucket lock must be held when this is called.
842 * Afterwards, the futex_q must not be accessed.
843 */
844static void wake_futex(struct futex_q *q)
845{
f1a11e05
TG
846 struct task_struct *p = q->task;
847
aa10990e
DH
848 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
849 return;
850
1da177e4 851 /*
f1a11e05 852 * We set q->lock_ptr = NULL _before_ we wake up the task. If
fb62db2b
RD
853 * a non-futex wake up happens on another CPU then the task
854 * might exit and p would dereference a non-existing task
f1a11e05
TG
855 * struct. Prevent this by holding a reference on p across the
856 * wake up.
1da177e4 857 */
f1a11e05
TG
858 get_task_struct(p);
859
2e12978a 860 __unqueue_futex(q);
1da177e4 861 /*
f1a11e05
TG
862 * The waiting task can free the futex_q as soon as
863 * q->lock_ptr = NULL is written, without taking any locks. A
864 * memory barrier is required here to prevent the following
865 * store to lock_ptr from getting ahead of the plist_del.
1da177e4 866 */
ccdea2f8 867 smp_wmb();
1da177e4 868 q->lock_ptr = NULL;
f1a11e05
TG
869
870 wake_up_state(p, TASK_NORMAL);
871 put_task_struct(p);
1da177e4
LT
872}
873
c87e2837
IM
874static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
875{
876 struct task_struct *new_owner;
877 struct futex_pi_state *pi_state = this->pi_state;
7cfdaf38 878 u32 uninitialized_var(curval), newval;
c87e2837
IM
879
880 if (!pi_state)
881 return -EINVAL;
882
51246bfd
TG
883 /*
884 * If current does not own the pi_state then the futex is
885 * inconsistent and user space fiddled with the futex value.
886 */
887 if (pi_state->owner != current)
888 return -EINVAL;
889
d209d74d 890 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
891 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
892
893 /*
f123c98e
SR
894 * It is possible that the next waiter (the one that brought
895 * this owner to the kernel) timed out and is no longer
896 * waiting on the lock.
c87e2837
IM
897 */
898 if (!new_owner)
899 new_owner = this->task;
900
901 /*
902 * We pass it to the next owner. (The WAITERS bit is always
903 * kept enabled while there is PI state around. We must also
904 * preserve the owner died bit.)
905 */
e3f2ddea 906 if (!(uval & FUTEX_OWNER_DIED)) {
778e9a9c
AK
907 int ret = 0;
908
b488893a 909 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 910
37a9d912 911 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
778e9a9c 912 ret = -EFAULT;
cde898fa 913 else if (curval != uval)
778e9a9c
AK
914 ret = -EINVAL;
915 if (ret) {
d209d74d 916 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
778e9a9c
AK
917 return ret;
918 }
e3f2ddea 919 }
c87e2837 920
1d615482 921 raw_spin_lock_irq(&pi_state->owner->pi_lock);
627371d7
IM
922 WARN_ON(list_empty(&pi_state->list));
923 list_del_init(&pi_state->list);
1d615482 924 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
627371d7 925
1d615482 926 raw_spin_lock_irq(&new_owner->pi_lock);
627371d7 927 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
928 list_add(&pi_state->list, &new_owner->pi_state_list);
929 pi_state->owner = new_owner;
1d615482 930 raw_spin_unlock_irq(&new_owner->pi_lock);
627371d7 931
d209d74d 932 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
933 rt_mutex_unlock(&pi_state->pi_mutex);
934
935 return 0;
936}
937
938static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
939{
7cfdaf38 940 u32 uninitialized_var(oldval);
c87e2837
IM
941
942 /*
943 * There is no waiter, so we unlock the futex. The owner died
944 * bit has not to be preserved here. We are the owner:
945 */
37a9d912
ML
946 if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
947 return -EFAULT;
c87e2837
IM
948 if (oldval != uval)
949 return -EAGAIN;
950
951 return 0;
952}
953
8b8f319f
IM
954/*
955 * Express the locking dependencies for lockdep:
956 */
957static inline void
958double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
959{
960 if (hb1 <= hb2) {
961 spin_lock(&hb1->lock);
962 if (hb1 < hb2)
963 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
964 } else { /* hb1 > hb2 */
965 spin_lock(&hb2->lock);
966 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
967 }
968}
969
5eb3dc62
DH
970static inline void
971double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
972{
f061d351 973 spin_unlock(&hb1->lock);
88f502fe
IM
974 if (hb1 != hb2)
975 spin_unlock(&hb2->lock);
5eb3dc62
DH
976}
977
1da177e4 978/*
b2d0994b 979 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 980 */
b41277dc
DH
981static int
982futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 983{
e2970f2f 984 struct futex_hash_bucket *hb;
1da177e4 985 struct futex_q *this, *next;
38d47c1b 986 union futex_key key = FUTEX_KEY_INIT;
1da177e4
LT
987 int ret;
988
cd689985
TG
989 if (!bitset)
990 return -EINVAL;
991
9ea71503 992 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1da177e4
LT
993 if (unlikely(ret != 0))
994 goto out;
995
e2970f2f
IM
996 hb = hash_futex(&key);
997 spin_lock(&hb->lock);
1da177e4 998
0d00c7b2 999 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1da177e4 1000 if (match_futex (&this->key, &key)) {
52400ba9 1001 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1002 ret = -EINVAL;
1003 break;
1004 }
cd689985
TG
1005
1006 /* Check if one of the bits is set in both bitsets */
1007 if (!(this->bitset & bitset))
1008 continue;
1009
1da177e4
LT
1010 wake_futex(this);
1011 if (++ret >= nr_wake)
1012 break;
1013 }
1014 }
1015
e2970f2f 1016 spin_unlock(&hb->lock);
ae791a2d 1017 put_futex_key(&key);
42d35d48 1018out:
1da177e4
LT
1019 return ret;
1020}
1021
4732efbe
JJ
1022/*
1023 * Wake up all waiters hashed on the physical page that is mapped
1024 * to this virtual address:
1025 */
e2970f2f 1026static int
b41277dc 1027futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1028 int nr_wake, int nr_wake2, int op)
4732efbe 1029{
38d47c1b 1030 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1031 struct futex_hash_bucket *hb1, *hb2;
4732efbe 1032 struct futex_q *this, *next;
e4dc5b7a 1033 int ret, op_ret;
4732efbe 1034
e4dc5b7a 1035retry:
9ea71503 1036 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
4732efbe
JJ
1037 if (unlikely(ret != 0))
1038 goto out;
9ea71503 1039 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
4732efbe 1040 if (unlikely(ret != 0))
42d35d48 1041 goto out_put_key1;
4732efbe 1042
e2970f2f
IM
1043 hb1 = hash_futex(&key1);
1044 hb2 = hash_futex(&key2);
4732efbe 1045
e4dc5b7a 1046retry_private:
eaaea803 1047 double_lock_hb(hb1, hb2);
e2970f2f 1048 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1049 if (unlikely(op_ret < 0)) {
4732efbe 1050
5eb3dc62 1051 double_unlock_hb(hb1, hb2);
4732efbe 1052
7ee1dd3f 1053#ifndef CONFIG_MMU
e2970f2f
IM
1054 /*
1055 * we don't get EFAULT from MMU faults if we don't have an MMU,
1056 * but we might get them from range checking
1057 */
7ee1dd3f 1058 ret = op_ret;
42d35d48 1059 goto out_put_keys;
7ee1dd3f
DH
1060#endif
1061
796f8d9b
DG
1062 if (unlikely(op_ret != -EFAULT)) {
1063 ret = op_ret;
42d35d48 1064 goto out_put_keys;
796f8d9b
DG
1065 }
1066
d0725992 1067 ret = fault_in_user_writeable(uaddr2);
4732efbe 1068 if (ret)
de87fcc1 1069 goto out_put_keys;
4732efbe 1070
b41277dc 1071 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1072 goto retry_private;
1073
ae791a2d
TG
1074 put_futex_key(&key2);
1075 put_futex_key(&key1);
e4dc5b7a 1076 goto retry;
4732efbe
JJ
1077 }
1078
0d00c7b2 1079 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
4732efbe 1080 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1081 if (this->pi_state || this->rt_waiter) {
1082 ret = -EINVAL;
1083 goto out_unlock;
1084 }
4732efbe
JJ
1085 wake_futex(this);
1086 if (++ret >= nr_wake)
1087 break;
1088 }
1089 }
1090
1091 if (op_ret > 0) {
4732efbe 1092 op_ret = 0;
0d00c7b2 1093 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
4732efbe 1094 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1095 if (this->pi_state || this->rt_waiter) {
1096 ret = -EINVAL;
1097 goto out_unlock;
1098 }
4732efbe
JJ
1099 wake_futex(this);
1100 if (++op_ret >= nr_wake2)
1101 break;
1102 }
1103 }
1104 ret += op_ret;
1105 }
1106
aa10990e 1107out_unlock:
5eb3dc62 1108 double_unlock_hb(hb1, hb2);
42d35d48 1109out_put_keys:
ae791a2d 1110 put_futex_key(&key2);
42d35d48 1111out_put_key1:
ae791a2d 1112 put_futex_key(&key1);
42d35d48 1113out:
4732efbe
JJ
1114 return ret;
1115}
1116
9121e478
DH
1117/**
1118 * requeue_futex() - Requeue a futex_q from one hb to another
1119 * @q: the futex_q to requeue
1120 * @hb1: the source hash_bucket
1121 * @hb2: the target hash_bucket
1122 * @key2: the new key for the requeued futex_q
1123 */
1124static inline
1125void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1126 struct futex_hash_bucket *hb2, union futex_key *key2)
1127{
1128
1129 /*
1130 * If key1 and key2 hash to the same bucket, no need to
1131 * requeue.
1132 */
1133 if (likely(&hb1->chain != &hb2->chain)) {
1134 plist_del(&q->list, &hb1->chain);
1135 plist_add(&q->list, &hb2->chain);
1136 q->lock_ptr = &hb2->lock;
9121e478
DH
1137 }
1138 get_futex_key_refs(key2);
1139 q->key = *key2;
1140}
1141
52400ba9
DH
1142/**
1143 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1144 * @q: the futex_q
1145 * @key: the key of the requeue target futex
1146 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1147 *
1148 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1149 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1150 * to the requeue target futex so the waiter can detect the wakeup on the right
1151 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1152 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1153 * to protect access to the pi_state to fixup the owner later. Must be called
1154 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1155 */
1156static inline
beda2c7e
DH
1157void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1158 struct futex_hash_bucket *hb)
52400ba9 1159{
52400ba9
DH
1160 get_futex_key_refs(key);
1161 q->key = *key;
1162
2e12978a 1163 __unqueue_futex(q);
52400ba9
DH
1164
1165 WARN_ON(!q->rt_waiter);
1166 q->rt_waiter = NULL;
1167
beda2c7e 1168 q->lock_ptr = &hb->lock;
beda2c7e 1169
f1a11e05 1170 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1171}
1172
1173/**
1174 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1175 * @pifutex: the user address of the to futex
1176 * @hb1: the from futex hash bucket, must be locked by the caller
1177 * @hb2: the to futex hash bucket, must be locked by the caller
1178 * @key1: the from futex key
1179 * @key2: the to futex key
1180 * @ps: address to store the pi_state pointer
1181 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1182 *
1183 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1184 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1185 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1186 * hb1 and hb2 must be held by the caller.
52400ba9 1187 *
6c23cbbd
RD
1188 * Return:
1189 * 0 - failed to acquire the lock atomically;
1190 * 1 - acquired the lock;
52400ba9
DH
1191 * <0 - error
1192 */
1193static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1194 struct futex_hash_bucket *hb1,
1195 struct futex_hash_bucket *hb2,
1196 union futex_key *key1, union futex_key *key2,
bab5bc9e 1197 struct futex_pi_state **ps, int set_waiters)
52400ba9 1198{
bab5bc9e 1199 struct futex_q *top_waiter = NULL;
52400ba9
DH
1200 u32 curval;
1201 int ret;
1202
1203 if (get_futex_value_locked(&curval, pifutex))
1204 return -EFAULT;
1205
bab5bc9e
DH
1206 /*
1207 * Find the top_waiter and determine if there are additional waiters.
1208 * If the caller intends to requeue more than 1 waiter to pifutex,
1209 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1210 * as we have means to handle the possible fault. If not, don't set
1211 * the bit unecessarily as it will force the subsequent unlock to enter
1212 * the kernel.
1213 */
52400ba9
DH
1214 top_waiter = futex_top_waiter(hb1, key1);
1215
1216 /* There are no waiters, nothing for us to do. */
1217 if (!top_waiter)
1218 return 0;
1219
84bc4af5
DH
1220 /* Ensure we requeue to the expected futex. */
1221 if (!match_futex(top_waiter->requeue_pi_key, key2))
1222 return -EINVAL;
1223
52400ba9 1224 /*
bab5bc9e
DH
1225 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1226 * the contended case or if set_waiters is 1. The pi_state is returned
1227 * in ps in contended cases.
52400ba9 1228 */
bab5bc9e
DH
1229 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1230 set_waiters);
52400ba9 1231 if (ret == 1)
beda2c7e 1232 requeue_pi_wake_futex(top_waiter, key2, hb2);
52400ba9
DH
1233
1234 return ret;
1235}
1236
1237/**
1238 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1239 * @uaddr1: source futex user address
b41277dc 1240 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1241 * @uaddr2: target futex user address
1242 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1243 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1244 * @cmpval: @uaddr1 expected value (or %NULL)
1245 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1246 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1247 *
1248 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1249 * uaddr2 atomically on behalf of the top waiter.
1250 *
6c23cbbd
RD
1251 * Return:
1252 * >=0 - on success, the number of tasks requeued or woken;
52400ba9 1253 * <0 - on error
1da177e4 1254 */
b41277dc
DH
1255static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1256 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1257 u32 *cmpval, int requeue_pi)
1da177e4 1258{
38d47c1b 1259 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1260 int drop_count = 0, task_count = 0, ret;
1261 struct futex_pi_state *pi_state = NULL;
e2970f2f 1262 struct futex_hash_bucket *hb1, *hb2;
1da177e4 1263 struct futex_q *this, *next;
52400ba9
DH
1264 u32 curval2;
1265
1266 if (requeue_pi) {
1267 /*
1268 * requeue_pi requires a pi_state, try to allocate it now
1269 * without any locks in case it fails.
1270 */
1271 if (refill_pi_state_cache())
1272 return -ENOMEM;
1273 /*
1274 * requeue_pi must wake as many tasks as it can, up to nr_wake
1275 * + nr_requeue, since it acquires the rt_mutex prior to
1276 * returning to userspace, so as to not leave the rt_mutex with
1277 * waiters and no owner. However, second and third wake-ups
1278 * cannot be predicted as they involve race conditions with the
1279 * first wake and a fault while looking up the pi_state. Both
1280 * pthread_cond_signal() and pthread_cond_broadcast() should
1281 * use nr_wake=1.
1282 */
1283 if (nr_wake != 1)
1284 return -EINVAL;
1285 }
1da177e4 1286
42d35d48 1287retry:
52400ba9
DH
1288 if (pi_state != NULL) {
1289 /*
1290 * We will have to lookup the pi_state again, so free this one
1291 * to keep the accounting correct.
1292 */
1293 free_pi_state(pi_state);
1294 pi_state = NULL;
1295 }
1296
9ea71503 1297 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1da177e4
LT
1298 if (unlikely(ret != 0))
1299 goto out;
9ea71503
SB
1300 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1301 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1da177e4 1302 if (unlikely(ret != 0))
42d35d48 1303 goto out_put_key1;
1da177e4 1304
e2970f2f
IM
1305 hb1 = hash_futex(&key1);
1306 hb2 = hash_futex(&key2);
1da177e4 1307
e4dc5b7a 1308retry_private:
8b8f319f 1309 double_lock_hb(hb1, hb2);
1da177e4 1310
e2970f2f
IM
1311 if (likely(cmpval != NULL)) {
1312 u32 curval;
1da177e4 1313
e2970f2f 1314 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1315
1316 if (unlikely(ret)) {
5eb3dc62 1317 double_unlock_hb(hb1, hb2);
1da177e4 1318
e2970f2f 1319 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1320 if (ret)
1321 goto out_put_keys;
1da177e4 1322
b41277dc 1323 if (!(flags & FLAGS_SHARED))
e4dc5b7a 1324 goto retry_private;
1da177e4 1325
ae791a2d
TG
1326 put_futex_key(&key2);
1327 put_futex_key(&key1);
e4dc5b7a 1328 goto retry;
1da177e4 1329 }
e2970f2f 1330 if (curval != *cmpval) {
1da177e4
LT
1331 ret = -EAGAIN;
1332 goto out_unlock;
1333 }
1334 }
1335
52400ba9 1336 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
1337 /*
1338 * Attempt to acquire uaddr2 and wake the top waiter. If we
1339 * intend to requeue waiters, force setting the FUTEX_WAITERS
1340 * bit. We force this here where we are able to easily handle
1341 * faults rather in the requeue loop below.
1342 */
52400ba9 1343 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 1344 &key2, &pi_state, nr_requeue);
52400ba9
DH
1345
1346 /*
1347 * At this point the top_waiter has either taken uaddr2 or is
1348 * waiting on it. If the former, then the pi_state will not
1349 * exist yet, look it up one more time to ensure we have a
1350 * reference to it.
1351 */
1352 if (ret == 1) {
1353 WARN_ON(pi_state);
89061d3d 1354 drop_count++;
52400ba9
DH
1355 task_count++;
1356 ret = get_futex_value_locked(&curval2, uaddr2);
1357 if (!ret)
1358 ret = lookup_pi_state(curval2, hb2, &key2,
1359 &pi_state);
1360 }
1361
1362 switch (ret) {
1363 case 0:
1364 break;
1365 case -EFAULT:
1366 double_unlock_hb(hb1, hb2);
ae791a2d
TG
1367 put_futex_key(&key2);
1368 put_futex_key(&key1);
d0725992 1369 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
1370 if (!ret)
1371 goto retry;
1372 goto out;
1373 case -EAGAIN:
1374 /* The owner was exiting, try again. */
1375 double_unlock_hb(hb1, hb2);
ae791a2d
TG
1376 put_futex_key(&key2);
1377 put_futex_key(&key1);
52400ba9
DH
1378 cond_resched();
1379 goto retry;
1380 default:
1381 goto out_unlock;
1382 }
1383 }
1384
0d00c7b2 1385 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
52400ba9
DH
1386 if (task_count - nr_wake >= nr_requeue)
1387 break;
1388
1389 if (!match_futex(&this->key, &key1))
1da177e4 1390 continue;
52400ba9 1391
392741e0
DH
1392 /*
1393 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1394 * be paired with each other and no other futex ops.
aa10990e
DH
1395 *
1396 * We should never be requeueing a futex_q with a pi_state,
1397 * which is awaiting a futex_unlock_pi().
392741e0
DH
1398 */
1399 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
1400 (!requeue_pi && this->rt_waiter) ||
1401 this->pi_state) {
392741e0
DH
1402 ret = -EINVAL;
1403 break;
1404 }
52400ba9
DH
1405
1406 /*
1407 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1408 * lock, we already woke the top_waiter. If not, it will be
1409 * woken by futex_unlock_pi().
1410 */
1411 if (++task_count <= nr_wake && !requeue_pi) {
1da177e4 1412 wake_futex(this);
52400ba9
DH
1413 continue;
1414 }
1da177e4 1415
84bc4af5
DH
1416 /* Ensure we requeue to the expected futex for requeue_pi. */
1417 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1418 ret = -EINVAL;
1419 break;
1420 }
1421
52400ba9
DH
1422 /*
1423 * Requeue nr_requeue waiters and possibly one more in the case
1424 * of requeue_pi if we couldn't acquire the lock atomically.
1425 */
1426 if (requeue_pi) {
1427 /* Prepare the waiter to take the rt_mutex. */
1428 atomic_inc(&pi_state->refcount);
1429 this->pi_state = pi_state;
1430 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1431 this->rt_waiter,
1432 this->task, 1);
1433 if (ret == 1) {
1434 /* We got the lock. */
beda2c7e 1435 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 1436 drop_count++;
52400ba9
DH
1437 continue;
1438 } else if (ret) {
1439 /* -EDEADLK */
1440 this->pi_state = NULL;
1441 free_pi_state(pi_state);
1442 goto out_unlock;
1443 }
1da177e4 1444 }
52400ba9
DH
1445 requeue_futex(this, hb1, hb2, &key2);
1446 drop_count++;
1da177e4
LT
1447 }
1448
1449out_unlock:
5eb3dc62 1450 double_unlock_hb(hb1, hb2);
1da177e4 1451
cd84a42f
DH
1452 /*
1453 * drop_futex_key_refs() must be called outside the spinlocks. During
1454 * the requeue we moved futex_q's from the hash bucket at key1 to the
1455 * one at key2 and updated their key pointer. We no longer need to
1456 * hold the references to key1.
1457 */
1da177e4 1458 while (--drop_count >= 0)
9adef58b 1459 drop_futex_key_refs(&key1);
1da177e4 1460
42d35d48 1461out_put_keys:
ae791a2d 1462 put_futex_key(&key2);
42d35d48 1463out_put_key1:
ae791a2d 1464 put_futex_key(&key1);
42d35d48 1465out:
52400ba9
DH
1466 if (pi_state != NULL)
1467 free_pi_state(pi_state);
1468 return ret ? ret : task_count;
1da177e4
LT
1469}
1470
1471/* The key must be already stored in q->key. */
82af7aca 1472static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 1473 __acquires(&hb->lock)
1da177e4 1474{
e2970f2f 1475 struct futex_hash_bucket *hb;
1da177e4 1476
e2970f2f
IM
1477 hb = hash_futex(&q->key);
1478 q->lock_ptr = &hb->lock;
1da177e4 1479
e2970f2f
IM
1480 spin_lock(&hb->lock);
1481 return hb;
1da177e4
LT
1482}
1483
d40d65c8 1484static inline void
0d00c7b2 1485queue_unlock(struct futex_hash_bucket *hb)
15e408cd 1486 __releases(&hb->lock)
d40d65c8
DH
1487{
1488 spin_unlock(&hb->lock);
d40d65c8
DH
1489}
1490
1491/**
1492 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1493 * @q: The futex_q to enqueue
1494 * @hb: The destination hash bucket
1495 *
1496 * The hb->lock must be held by the caller, and is released here. A call to
1497 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1498 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1499 * or nothing if the unqueue is done as part of the wake process and the unqueue
1500 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1501 * an example).
1502 */
82af7aca 1503static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
15e408cd 1504 __releases(&hb->lock)
1da177e4 1505{
ec92d082
PP
1506 int prio;
1507
1508 /*
1509 * The priority used to register this element is
1510 * - either the real thread-priority for the real-time threads
1511 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1512 * - or MAX_RT_PRIO for non-RT threads.
1513 * Thus, all RT-threads are woken first in priority order, and
1514 * the others are woken last, in FIFO order.
1515 */
1516 prio = min(current->normal_prio, MAX_RT_PRIO);
1517
1518 plist_node_init(&q->list, prio);
ec92d082 1519 plist_add(&q->list, &hb->chain);
c87e2837 1520 q->task = current;
e2970f2f 1521 spin_unlock(&hb->lock);
1da177e4
LT
1522}
1523
d40d65c8
DH
1524/**
1525 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1526 * @q: The futex_q to unqueue
1527 *
1528 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1529 * be paired with exactly one earlier call to queue_me().
1530 *
6c23cbbd
RD
1531 * Return:
1532 * 1 - if the futex_q was still queued (and we removed unqueued it);
d40d65c8 1533 * 0 - if the futex_q was already removed by the waking thread
1da177e4 1534 */
1da177e4
LT
1535static int unqueue_me(struct futex_q *q)
1536{
1da177e4 1537 spinlock_t *lock_ptr;
e2970f2f 1538 int ret = 0;
1da177e4
LT
1539
1540 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 1541retry:
1da177e4 1542 lock_ptr = q->lock_ptr;
e91467ec 1543 barrier();
c80544dc 1544 if (lock_ptr != NULL) {
1da177e4
LT
1545 spin_lock(lock_ptr);
1546 /*
1547 * q->lock_ptr can change between reading it and
1548 * spin_lock(), causing us to take the wrong lock. This
1549 * corrects the race condition.
1550 *
1551 * Reasoning goes like this: if we have the wrong lock,
1552 * q->lock_ptr must have changed (maybe several times)
1553 * between reading it and the spin_lock(). It can
1554 * change again after the spin_lock() but only if it was
1555 * already changed before the spin_lock(). It cannot,
1556 * however, change back to the original value. Therefore
1557 * we can detect whether we acquired the correct lock.
1558 */
1559 if (unlikely(lock_ptr != q->lock_ptr)) {
1560 spin_unlock(lock_ptr);
1561 goto retry;
1562 }
2e12978a 1563 __unqueue_futex(q);
c87e2837
IM
1564
1565 BUG_ON(q->pi_state);
1566
1da177e4
LT
1567 spin_unlock(lock_ptr);
1568 ret = 1;
1569 }
1570
9adef58b 1571 drop_futex_key_refs(&q->key);
1da177e4
LT
1572 return ret;
1573}
1574
c87e2837
IM
1575/*
1576 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1577 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1578 * and dropped here.
c87e2837 1579 */
d0aa7a70 1580static void unqueue_me_pi(struct futex_q *q)
15e408cd 1581 __releases(q->lock_ptr)
c87e2837 1582{
2e12978a 1583 __unqueue_futex(q);
c87e2837
IM
1584
1585 BUG_ON(!q->pi_state);
1586 free_pi_state(q->pi_state);
1587 q->pi_state = NULL;
1588
d0aa7a70 1589 spin_unlock(q->lock_ptr);
c87e2837
IM
1590}
1591
d0aa7a70 1592/*
cdf71a10 1593 * Fixup the pi_state owner with the new owner.
d0aa7a70 1594 *
778e9a9c
AK
1595 * Must be called with hash bucket lock held and mm->sem held for non
1596 * private futexes.
d0aa7a70 1597 */
778e9a9c 1598static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
ae791a2d 1599 struct task_struct *newowner)
d0aa7a70 1600{
cdf71a10 1601 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 1602 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 1603 struct task_struct *oldowner = pi_state->owner;
7cfdaf38 1604 u32 uval, uninitialized_var(curval), newval;
e4dc5b7a 1605 int ret;
d0aa7a70
PP
1606
1607 /* Owner died? */
1b7558e4
TG
1608 if (!pi_state->owner)
1609 newtid |= FUTEX_OWNER_DIED;
1610
1611 /*
1612 * We are here either because we stole the rtmutex from the
8161239a
LJ
1613 * previous highest priority waiter or we are the highest priority
1614 * waiter but failed to get the rtmutex the first time.
1615 * We have to replace the newowner TID in the user space variable.
1616 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 1617 *
b2d0994b
DH
1618 * Note: We write the user space value _before_ changing the pi_state
1619 * because we can fault here. Imagine swapped out pages or a fork
1620 * that marked all the anonymous memory readonly for cow.
1b7558e4
TG
1621 *
1622 * Modifying pi_state _before_ the user space value would
1623 * leave the pi_state in an inconsistent state when we fault
1624 * here, because we need to drop the hash bucket lock to
1625 * handle the fault. This might be observed in the PID check
1626 * in lookup_pi_state.
1627 */
1628retry:
1629 if (get_futex_value_locked(&uval, uaddr))
1630 goto handle_fault;
1631
1632 while (1) {
1633 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1634
37a9d912 1635 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1b7558e4
TG
1636 goto handle_fault;
1637 if (curval == uval)
1638 break;
1639 uval = curval;
1640 }
1641
1642 /*
1643 * We fixed up user space. Now we need to fix the pi_state
1644 * itself.
1645 */
d0aa7a70 1646 if (pi_state->owner != NULL) {
1d615482 1647 raw_spin_lock_irq(&pi_state->owner->pi_lock);
d0aa7a70
PP
1648 WARN_ON(list_empty(&pi_state->list));
1649 list_del_init(&pi_state->list);
1d615482 1650 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 1651 }
d0aa7a70 1652
cdf71a10 1653 pi_state->owner = newowner;
d0aa7a70 1654
1d615482 1655 raw_spin_lock_irq(&newowner->pi_lock);
d0aa7a70 1656 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 1657 list_add(&pi_state->list, &newowner->pi_state_list);
1d615482 1658 raw_spin_unlock_irq(&newowner->pi_lock);
1b7558e4 1659 return 0;
d0aa7a70 1660
d0aa7a70 1661 /*
1b7558e4 1662 * To handle the page fault we need to drop the hash bucket
8161239a
LJ
1663 * lock here. That gives the other task (either the highest priority
1664 * waiter itself or the task which stole the rtmutex) the
1b7558e4
TG
1665 * chance to try the fixup of the pi_state. So once we are
1666 * back from handling the fault we need to check the pi_state
1667 * after reacquiring the hash bucket lock and before trying to
1668 * do another fixup. When the fixup has been done already we
1669 * simply return.
d0aa7a70 1670 */
1b7558e4
TG
1671handle_fault:
1672 spin_unlock(q->lock_ptr);
778e9a9c 1673
d0725992 1674 ret = fault_in_user_writeable(uaddr);
778e9a9c 1675
1b7558e4 1676 spin_lock(q->lock_ptr);
778e9a9c 1677
1b7558e4
TG
1678 /*
1679 * Check if someone else fixed it for us:
1680 */
1681 if (pi_state->owner != oldowner)
1682 return 0;
1683
1684 if (ret)
1685 return ret;
1686
1687 goto retry;
d0aa7a70
PP
1688}
1689
72c1bbf3 1690static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 1691
dd973998
DH
1692/**
1693 * fixup_owner() - Post lock pi_state and corner case management
1694 * @uaddr: user address of the futex
dd973998
DH
1695 * @q: futex_q (contains pi_state and access to the rt_mutex)
1696 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1697 *
1698 * After attempting to lock an rt_mutex, this function is called to cleanup
1699 * the pi_state owner as well as handle race conditions that may allow us to
1700 * acquire the lock. Must be called with the hb lock held.
1701 *
6c23cbbd
RD
1702 * Return:
1703 * 1 - success, lock taken;
1704 * 0 - success, lock not taken;
dd973998
DH
1705 * <0 - on error (-EFAULT)
1706 */
ae791a2d 1707static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998
DH
1708{
1709 struct task_struct *owner;
1710 int ret = 0;
1711
1712 if (locked) {
1713 /*
1714 * Got the lock. We might not be the anticipated owner if we
1715 * did a lock-steal - fix up the PI-state in that case:
1716 */
1717 if (q->pi_state->owner != current)
ae791a2d 1718 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
1719 goto out;
1720 }
1721
1722 /*
1723 * Catch the rare case, where the lock was released when we were on the
1724 * way back before we locked the hash bucket.
1725 */
1726 if (q->pi_state->owner == current) {
1727 /*
1728 * Try to get the rt_mutex now. This might fail as some other
1729 * task acquired the rt_mutex after we removed ourself from the
1730 * rt_mutex waiters list.
1731 */
1732 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1733 locked = 1;
1734 goto out;
1735 }
1736
1737 /*
1738 * pi_state is incorrect, some other task did a lock steal and
1739 * we returned due to timeout or signal without taking the
8161239a 1740 * rt_mutex. Too late.
dd973998 1741 */
8161239a 1742 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
dd973998 1743 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
8161239a
LJ
1744 if (!owner)
1745 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1746 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
ae791a2d 1747 ret = fixup_pi_state_owner(uaddr, q, owner);
dd973998
DH
1748 goto out;
1749 }
1750
1751 /*
1752 * Paranoia check. If we did not take the lock, then we should not be
8161239a 1753 * the owner of the rt_mutex.
dd973998
DH
1754 */
1755 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1756 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1757 "pi-state %p\n", ret,
1758 q->pi_state->pi_mutex.owner,
1759 q->pi_state->owner);
1760
1761out:
1762 return ret ? ret : locked;
1763}
1764
ca5f9524
DH
1765/**
1766 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1767 * @hb: the futex hash bucket, must be locked by the caller
1768 * @q: the futex_q to queue up on
1769 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
1770 */
1771static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 1772 struct hrtimer_sleeper *timeout)
ca5f9524 1773{
9beba3c5
DH
1774 /*
1775 * The task state is guaranteed to be set before another task can
1776 * wake it. set_current_state() is implemented using set_mb() and
1777 * queue_me() calls spin_unlock() upon completion, both serializing
1778 * access to the hash list and forcing another memory barrier.
1779 */
f1a11e05 1780 set_current_state(TASK_INTERRUPTIBLE);
0729e196 1781 queue_me(q, hb);
ca5f9524
DH
1782
1783 /* Arm the timer */
1784 if (timeout) {
1785 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1786 if (!hrtimer_active(&timeout->timer))
1787 timeout->task = NULL;
1788 }
1789
1790 /*
0729e196
DH
1791 * If we have been removed from the hash list, then another task
1792 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
1793 */
1794 if (likely(!plist_node_empty(&q->list))) {
1795 /*
1796 * If the timer has already expired, current will already be
1797 * flagged for rescheduling. Only call schedule if there
1798 * is no timeout, or if it has yet to expire.
1799 */
1800 if (!timeout || timeout->task)
88c8004f 1801 freezable_schedule();
ca5f9524
DH
1802 }
1803 __set_current_state(TASK_RUNNING);
1804}
1805
f801073f
DH
1806/**
1807 * futex_wait_setup() - Prepare to wait on a futex
1808 * @uaddr: the futex userspace address
1809 * @val: the expected value
b41277dc 1810 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
1811 * @q: the associated futex_q
1812 * @hb: storage for hash_bucket pointer to be returned to caller
1813 *
1814 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1815 * compare it with the expected value. Handle atomic faults internally.
1816 * Return with the hb lock held and a q.key reference on success, and unlocked
1817 * with no q.key reference on failure.
1818 *
6c23cbbd
RD
1819 * Return:
1820 * 0 - uaddr contains val and hb has been locked;
ca4a04cf 1821 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 1822 */
b41277dc 1823static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 1824 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 1825{
e2970f2f
IM
1826 u32 uval;
1827 int ret;
1da177e4 1828
1da177e4 1829 /*
b2d0994b 1830 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
1831 * Order is important:
1832 *
1833 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1834 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1835 *
1836 * The basic logical guarantee of a futex is that it blocks ONLY
1837 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
1838 * any cond. If we locked the hash-bucket after testing *uaddr, that
1839 * would open a race condition where we could block indefinitely with
1da177e4
LT
1840 * cond(var) false, which would violate the guarantee.
1841 *
8fe8f545
ML
1842 * On the other hand, we insert q and release the hash-bucket only
1843 * after testing *uaddr. This guarantees that futex_wait() will NOT
1844 * absorb a wakeup if *uaddr does not match the desired values
1845 * while the syscall executes.
1da177e4 1846 */
f801073f 1847retry:
9ea71503 1848 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
f801073f 1849 if (unlikely(ret != 0))
a5a2a0c7 1850 return ret;
f801073f
DH
1851
1852retry_private:
1853 *hb = queue_lock(q);
1854
e2970f2f 1855 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 1856
f801073f 1857 if (ret) {
0d00c7b2 1858 queue_unlock(*hb);
1da177e4 1859
e2970f2f 1860 ret = get_user(uval, uaddr);
e4dc5b7a 1861 if (ret)
f801073f 1862 goto out;
1da177e4 1863
b41277dc 1864 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1865 goto retry_private;
1866
ae791a2d 1867 put_futex_key(&q->key);
e4dc5b7a 1868 goto retry;
1da177e4 1869 }
ca5f9524 1870
f801073f 1871 if (uval != val) {
0d00c7b2 1872 queue_unlock(*hb);
f801073f 1873 ret = -EWOULDBLOCK;
2fff78c7 1874 }
1da177e4 1875
f801073f
DH
1876out:
1877 if (ret)
ae791a2d 1878 put_futex_key(&q->key);
f801073f
DH
1879 return ret;
1880}
1881
b41277dc
DH
1882static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
1883 ktime_t *abs_time, u32 bitset)
f801073f
DH
1884{
1885 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
1886 struct restart_block *restart;
1887 struct futex_hash_bucket *hb;
5bdb05f9 1888 struct futex_q q = futex_q_init;
f801073f
DH
1889 int ret;
1890
1891 if (!bitset)
1892 return -EINVAL;
f801073f
DH
1893 q.bitset = bitset;
1894
1895 if (abs_time) {
1896 to = &timeout;
1897
b41277dc
DH
1898 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
1899 CLOCK_REALTIME : CLOCK_MONOTONIC,
1900 HRTIMER_MODE_ABS);
f801073f
DH
1901 hrtimer_init_sleeper(to, current);
1902 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1903 current->timer_slack_ns);
1904 }
1905
d58e6576 1906retry:
7ada876a
DH
1907 /*
1908 * Prepare to wait on uaddr. On success, holds hb lock and increments
1909 * q.key refs.
1910 */
b41277dc 1911 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
1912 if (ret)
1913 goto out;
1914
ca5f9524 1915 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 1916 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
1917
1918 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 1919 ret = 0;
7ada876a 1920 /* unqueue_me() drops q.key ref */
1da177e4 1921 if (!unqueue_me(&q))
7ada876a 1922 goto out;
2fff78c7 1923 ret = -ETIMEDOUT;
ca5f9524 1924 if (to && !to->task)
7ada876a 1925 goto out;
72c1bbf3 1926
e2970f2f 1927 /*
d58e6576
TG
1928 * We expect signal_pending(current), but we might be the
1929 * victim of a spurious wakeup as well.
e2970f2f 1930 */
7ada876a 1931 if (!signal_pending(current))
d58e6576 1932 goto retry;
d58e6576 1933
2fff78c7 1934 ret = -ERESTARTSYS;
c19384b5 1935 if (!abs_time)
7ada876a 1936 goto out;
1da177e4 1937
2fff78c7
PZ
1938 restart = &current_thread_info()->restart_block;
1939 restart->fn = futex_wait_restart;
a3c74c52 1940 restart->futex.uaddr = uaddr;
2fff78c7
PZ
1941 restart->futex.val = val;
1942 restart->futex.time = abs_time->tv64;
1943 restart->futex.bitset = bitset;
0cd9c649 1944 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 1945
2fff78c7
PZ
1946 ret = -ERESTART_RESTARTBLOCK;
1947
42d35d48 1948out:
ca5f9524
DH
1949 if (to) {
1950 hrtimer_cancel(&to->timer);
1951 destroy_hrtimer_on_stack(&to->timer);
1952 }
c87e2837
IM
1953 return ret;
1954}
1955
72c1bbf3
NP
1956
1957static long futex_wait_restart(struct restart_block *restart)
1958{
a3c74c52 1959 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 1960 ktime_t t, *tp = NULL;
72c1bbf3 1961
a72188d8
DH
1962 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1963 t.tv64 = restart->futex.time;
1964 tp = &t;
1965 }
72c1bbf3 1966 restart->fn = do_no_restart_syscall;
b41277dc
DH
1967
1968 return (long)futex_wait(uaddr, restart->futex.flags,
1969 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
1970}
1971
1972
c87e2837
IM
1973/*
1974 * Userspace tried a 0 -> TID atomic transition of the futex value
1975 * and failed. The kernel side here does the whole locking operation:
1976 * if there are waiters then it will block, it does PI, etc. (Due to
1977 * races the kernel might see a 0 value of the futex too.)
1978 */
b41277dc
DH
1979static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
1980 ktime_t *time, int trylock)
c87e2837 1981{
c5780e97 1982 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837 1983 struct futex_hash_bucket *hb;
5bdb05f9 1984 struct futex_q q = futex_q_init;
dd973998 1985 int res, ret;
c87e2837
IM
1986
1987 if (refill_pi_state_cache())
1988 return -ENOMEM;
1989
c19384b5 1990 if (time) {
c5780e97 1991 to = &timeout;
237fc6e7
TG
1992 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1993 HRTIMER_MODE_ABS);
c5780e97 1994 hrtimer_init_sleeper(to, current);
cc584b21 1995 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
1996 }
1997
42d35d48 1998retry:
9ea71503 1999 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
c87e2837 2000 if (unlikely(ret != 0))
42d35d48 2001 goto out;
c87e2837 2002
e4dc5b7a 2003retry_private:
82af7aca 2004 hb = queue_lock(&q);
c87e2837 2005
bab5bc9e 2006 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 2007 if (unlikely(ret)) {
778e9a9c 2008 switch (ret) {
1a52084d
DH
2009 case 1:
2010 /* We got the lock. */
2011 ret = 0;
2012 goto out_unlock_put_key;
2013 case -EFAULT:
2014 goto uaddr_faulted;
778e9a9c
AK
2015 case -EAGAIN:
2016 /*
2017 * Task is exiting and we just wait for the
2018 * exit to complete.
2019 */
0d00c7b2 2020 queue_unlock(hb);
ae791a2d 2021 put_futex_key(&q.key);
778e9a9c
AK
2022 cond_resched();
2023 goto retry;
778e9a9c 2024 default:
42d35d48 2025 goto out_unlock_put_key;
c87e2837 2026 }
c87e2837
IM
2027 }
2028
2029 /*
2030 * Only actually queue now that the atomic ops are done:
2031 */
82af7aca 2032 queue_me(&q, hb);
c87e2837 2033
c87e2837
IM
2034 WARN_ON(!q.pi_state);
2035 /*
2036 * Block on the PI mutex:
2037 */
2038 if (!trylock)
2039 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2040 else {
2041 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2042 /* Fixup the trylock return value: */
2043 ret = ret ? 0 : -EWOULDBLOCK;
2044 }
2045
a99e4e41 2046 spin_lock(q.lock_ptr);
dd973998
DH
2047 /*
2048 * Fixup the pi_state owner and possibly acquire the lock if we
2049 * haven't already.
2050 */
ae791a2d 2051 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2052 /*
2053 * If fixup_owner() returned an error, proprogate that. If it acquired
2054 * the lock, clear our -ETIMEDOUT or -EINTR.
2055 */
2056 if (res)
2057 ret = (res < 0) ? res : 0;
c87e2837 2058
e8f6386c 2059 /*
dd973998
DH
2060 * If fixup_owner() faulted and was unable to handle the fault, unlock
2061 * it and return the fault to userspace.
e8f6386c
DH
2062 */
2063 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2064 rt_mutex_unlock(&q.pi_state->pi_mutex);
2065
778e9a9c
AK
2066 /* Unqueue and drop the lock */
2067 unqueue_me_pi(&q);
c87e2837 2068
5ecb01cf 2069 goto out_put_key;
c87e2837 2070
42d35d48 2071out_unlock_put_key:
0d00c7b2 2072 queue_unlock(hb);
c87e2837 2073
42d35d48 2074out_put_key:
ae791a2d 2075 put_futex_key(&q.key);
42d35d48 2076out:
237fc6e7
TG
2077 if (to)
2078 destroy_hrtimer_on_stack(&to->timer);
dd973998 2079 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2080
42d35d48 2081uaddr_faulted:
0d00c7b2 2082 queue_unlock(hb);
778e9a9c 2083
d0725992 2084 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2085 if (ret)
2086 goto out_put_key;
c87e2837 2087
b41277dc 2088 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2089 goto retry_private;
2090
ae791a2d 2091 put_futex_key(&q.key);
e4dc5b7a 2092 goto retry;
c87e2837
IM
2093}
2094
c87e2837
IM
2095/*
2096 * Userspace attempted a TID -> 0 atomic transition, and failed.
2097 * This is the in-kernel slowpath: we look up the PI state (if any),
2098 * and do the rt-mutex unlock.
2099 */
b41277dc 2100static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837
IM
2101{
2102 struct futex_hash_bucket *hb;
2103 struct futex_q *this, *next;
38d47c1b 2104 union futex_key key = FUTEX_KEY_INIT;
c0c9ed15 2105 u32 uval, vpid = task_pid_vnr(current);
e4dc5b7a 2106 int ret;
c87e2837
IM
2107
2108retry:
2109 if (get_user(uval, uaddr))
2110 return -EFAULT;
2111 /*
2112 * We release only a lock we actually own:
2113 */
c0c9ed15 2114 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2115 return -EPERM;
c87e2837 2116
9ea71503 2117 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
c87e2837
IM
2118 if (unlikely(ret != 0))
2119 goto out;
2120
2121 hb = hash_futex(&key);
2122 spin_lock(&hb->lock);
2123
c87e2837
IM
2124 /*
2125 * To avoid races, try to do the TID -> 0 atomic transition
2126 * again. If it succeeds then we can return without waking
2127 * anyone else up:
2128 */
37a9d912
ML
2129 if (!(uval & FUTEX_OWNER_DIED) &&
2130 cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
c87e2837
IM
2131 goto pi_faulted;
2132 /*
2133 * Rare case: we managed to release the lock atomically,
2134 * no need to wake anyone else up:
2135 */
c0c9ed15 2136 if (unlikely(uval == vpid))
c87e2837
IM
2137 goto out_unlock;
2138
2139 /*
2140 * Ok, other tasks may need to be woken up - check waiters
2141 * and do the wakeup if necessary:
2142 */
0d00c7b2 2143 plist_for_each_entry_safe(this, next, &hb->chain, list) {
c87e2837
IM
2144 if (!match_futex (&this->key, &key))
2145 continue;
2146 ret = wake_futex_pi(uaddr, uval, this);
2147 /*
2148 * The atomic access to the futex value
2149 * generated a pagefault, so retry the
2150 * user-access and the wakeup:
2151 */
2152 if (ret == -EFAULT)
2153 goto pi_faulted;
2154 goto out_unlock;
2155 }
2156 /*
2157 * No waiters - kernel unlocks the futex:
2158 */
e3f2ddea
IM
2159 if (!(uval & FUTEX_OWNER_DIED)) {
2160 ret = unlock_futex_pi(uaddr, uval);
2161 if (ret == -EFAULT)
2162 goto pi_faulted;
2163 }
c87e2837
IM
2164
2165out_unlock:
2166 spin_unlock(&hb->lock);
ae791a2d 2167 put_futex_key(&key);
c87e2837 2168
42d35d48 2169out:
c87e2837
IM
2170 return ret;
2171
2172pi_faulted:
778e9a9c 2173 spin_unlock(&hb->lock);
ae791a2d 2174 put_futex_key(&key);
c87e2837 2175
d0725992 2176 ret = fault_in_user_writeable(uaddr);
b5686363 2177 if (!ret)
c87e2837
IM
2178 goto retry;
2179
1da177e4
LT
2180 return ret;
2181}
2182
52400ba9
DH
2183/**
2184 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2185 * @hb: the hash_bucket futex_q was original enqueued on
2186 * @q: the futex_q woken while waiting to be requeued
2187 * @key2: the futex_key of the requeue target futex
2188 * @timeout: the timeout associated with the wait (NULL if none)
2189 *
2190 * Detect if the task was woken on the initial futex as opposed to the requeue
2191 * target futex. If so, determine if it was a timeout or a signal that caused
2192 * the wakeup and return the appropriate error code to the caller. Must be
2193 * called with the hb lock held.
2194 *
6c23cbbd
RD
2195 * Return:
2196 * 0 = no early wakeup detected;
2197 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
2198 */
2199static inline
2200int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2201 struct futex_q *q, union futex_key *key2,
2202 struct hrtimer_sleeper *timeout)
2203{
2204 int ret = 0;
2205
2206 /*
2207 * With the hb lock held, we avoid races while we process the wakeup.
2208 * We only need to hold hb (and not hb2) to ensure atomicity as the
2209 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2210 * It can't be requeued from uaddr2 to something else since we don't
2211 * support a PI aware source futex for requeue.
2212 */
2213 if (!match_futex(&q->key, key2)) {
2214 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2215 /*
2216 * We were woken prior to requeue by a timeout or a signal.
2217 * Unqueue the futex_q and determine which it was.
2218 */
2e12978a 2219 plist_del(&q->list, &hb->chain);
52400ba9 2220
d58e6576 2221 /* Handle spurious wakeups gracefully */
11df6ddd 2222 ret = -EWOULDBLOCK;
52400ba9
DH
2223 if (timeout && !timeout->task)
2224 ret = -ETIMEDOUT;
d58e6576 2225 else if (signal_pending(current))
1c840c14 2226 ret = -ERESTARTNOINTR;
52400ba9
DH
2227 }
2228 return ret;
2229}
2230
2231/**
2232 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 2233 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 2234 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
52400ba9
DH
2235 * the same type, no requeueing from private to shared, etc.
2236 * @val: the expected value of uaddr
2237 * @abs_time: absolute timeout
56ec1607 2238 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
2239 * @uaddr2: the pi futex we will take prior to returning to user-space
2240 *
2241 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
2242 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2243 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2244 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2245 * without one, the pi logic would not know which task to boost/deboost, if
2246 * there was a need to.
52400ba9
DH
2247 *
2248 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 2249 * via the following--
52400ba9 2250 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
2251 * 2) wakeup on uaddr2 after a requeue
2252 * 3) signal
2253 * 4) timeout
52400ba9 2254 *
cc6db4e6 2255 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
2256 *
2257 * If 2, we may then block on trying to take the rt_mutex and return via:
2258 * 5) successful lock
2259 * 6) signal
2260 * 7) timeout
2261 * 8) other lock acquisition failure
2262 *
cc6db4e6 2263 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
2264 *
2265 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2266 *
6c23cbbd
RD
2267 * Return:
2268 * 0 - On success;
52400ba9
DH
2269 * <0 - On error
2270 */
b41277dc 2271static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 2272 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 2273 u32 __user *uaddr2)
52400ba9
DH
2274{
2275 struct hrtimer_sleeper timeout, *to = NULL;
2276 struct rt_mutex_waiter rt_waiter;
2277 struct rt_mutex *pi_mutex = NULL;
52400ba9 2278 struct futex_hash_bucket *hb;
5bdb05f9
DH
2279 union futex_key key2 = FUTEX_KEY_INIT;
2280 struct futex_q q = futex_q_init;
52400ba9 2281 int res, ret;
52400ba9 2282
6f7b0a2a
DH
2283 if (uaddr == uaddr2)
2284 return -EINVAL;
2285
52400ba9
DH
2286 if (!bitset)
2287 return -EINVAL;
2288
2289 if (abs_time) {
2290 to = &timeout;
b41277dc
DH
2291 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2292 CLOCK_REALTIME : CLOCK_MONOTONIC,
2293 HRTIMER_MODE_ABS);
52400ba9
DH
2294 hrtimer_init_sleeper(to, current);
2295 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2296 current->timer_slack_ns);
2297 }
2298
2299 /*
2300 * The waiter is allocated on our stack, manipulated by the requeue
2301 * code while we sleep on uaddr.
2302 */
2303 debug_rt_mutex_init_waiter(&rt_waiter);
2304 rt_waiter.task = NULL;
2305
9ea71503 2306 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
52400ba9
DH
2307 if (unlikely(ret != 0))
2308 goto out;
2309
84bc4af5
DH
2310 q.bitset = bitset;
2311 q.rt_waiter = &rt_waiter;
2312 q.requeue_pi_key = &key2;
2313
7ada876a
DH
2314 /*
2315 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2316 * count.
2317 */
b41277dc 2318 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
2319 if (ret)
2320 goto out_key2;
52400ba9
DH
2321
2322 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 2323 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
2324
2325 spin_lock(&hb->lock);
2326 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2327 spin_unlock(&hb->lock);
2328 if (ret)
2329 goto out_put_keys;
2330
2331 /*
2332 * In order for us to be here, we know our q.key == key2, and since
2333 * we took the hb->lock above, we also know that futex_requeue() has
2334 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
2335 * race with the atomic proxy lock acquisition by the requeue code. The
2336 * futex_requeue dropped our key1 reference and incremented our key2
2337 * reference count.
52400ba9
DH
2338 */
2339
2340 /* Check if the requeue code acquired the second futex for us. */
2341 if (!q.rt_waiter) {
2342 /*
2343 * Got the lock. We might not be the anticipated owner if we
2344 * did a lock-steal - fix up the PI-state in that case.
2345 */
2346 if (q.pi_state && (q.pi_state->owner != current)) {
2347 spin_lock(q.lock_ptr);
ae791a2d 2348 ret = fixup_pi_state_owner(uaddr2, &q, current);
52400ba9
DH
2349 spin_unlock(q.lock_ptr);
2350 }
2351 } else {
2352 /*
2353 * We have been woken up by futex_unlock_pi(), a timeout, or a
2354 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2355 * the pi_state.
2356 */
f27071cb 2357 WARN_ON(!q.pi_state);
52400ba9
DH
2358 pi_mutex = &q.pi_state->pi_mutex;
2359 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2360 debug_rt_mutex_free_waiter(&rt_waiter);
2361
2362 spin_lock(q.lock_ptr);
2363 /*
2364 * Fixup the pi_state owner and possibly acquire the lock if we
2365 * haven't already.
2366 */
ae791a2d 2367 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
2368 /*
2369 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 2370 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
2371 */
2372 if (res)
2373 ret = (res < 0) ? res : 0;
2374
2375 /* Unqueue and drop the lock. */
2376 unqueue_me_pi(&q);
2377 }
2378
2379 /*
2380 * If fixup_pi_state_owner() faulted and was unable to handle the
2381 * fault, unlock the rt_mutex and return the fault to userspace.
2382 */
2383 if (ret == -EFAULT) {
b6070a8d 2384 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
52400ba9
DH
2385 rt_mutex_unlock(pi_mutex);
2386 } else if (ret == -EINTR) {
52400ba9 2387 /*
cc6db4e6
DH
2388 * We've already been requeued, but cannot restart by calling
2389 * futex_lock_pi() directly. We could restart this syscall, but
2390 * it would detect that the user space "val" changed and return
2391 * -EWOULDBLOCK. Save the overhead of the restart and return
2392 * -EWOULDBLOCK directly.
52400ba9 2393 */
2070887f 2394 ret = -EWOULDBLOCK;
52400ba9
DH
2395 }
2396
2397out_put_keys:
ae791a2d 2398 put_futex_key(&q.key);
c8b15a70 2399out_key2:
ae791a2d 2400 put_futex_key(&key2);
52400ba9
DH
2401
2402out:
2403 if (to) {
2404 hrtimer_cancel(&to->timer);
2405 destroy_hrtimer_on_stack(&to->timer);
2406 }
2407 return ret;
2408}
2409
0771dfef
IM
2410/*
2411 * Support for robust futexes: the kernel cleans up held futexes at
2412 * thread exit time.
2413 *
2414 * Implementation: user-space maintains a per-thread list of locks it
2415 * is holding. Upon do_exit(), the kernel carefully walks this list,
2416 * and marks all locks that are owned by this thread with the
c87e2837 2417 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
2418 * always manipulated with the lock held, so the list is private and
2419 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2420 * field, to allow the kernel to clean up if the thread dies after
2421 * acquiring the lock, but just before it could have added itself to
2422 * the list. There can only be one such pending lock.
2423 */
2424
2425/**
d96ee56c
DH
2426 * sys_set_robust_list() - Set the robust-futex list head of a task
2427 * @head: pointer to the list-head
2428 * @len: length of the list-head, as userspace expects
0771dfef 2429 */
836f92ad
HC
2430SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2431 size_t, len)
0771dfef 2432{
a0c1e907
TG
2433 if (!futex_cmpxchg_enabled)
2434 return -ENOSYS;
0771dfef
IM
2435 /*
2436 * The kernel knows only one size for now:
2437 */
2438 if (unlikely(len != sizeof(*head)))
2439 return -EINVAL;
2440
2441 current->robust_list = head;
2442
2443 return 0;
2444}
2445
2446/**
d96ee56c
DH
2447 * sys_get_robust_list() - Get the robust-futex list head of a task
2448 * @pid: pid of the process [zero for current task]
2449 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2450 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 2451 */
836f92ad
HC
2452SYSCALL_DEFINE3(get_robust_list, int, pid,
2453 struct robust_list_head __user * __user *, head_ptr,
2454 size_t __user *, len_ptr)
0771dfef 2455{
ba46df98 2456 struct robust_list_head __user *head;
0771dfef 2457 unsigned long ret;
bdbb776f 2458 struct task_struct *p;
0771dfef 2459
a0c1e907
TG
2460 if (!futex_cmpxchg_enabled)
2461 return -ENOSYS;
2462
bdbb776f
KC
2463 rcu_read_lock();
2464
2465 ret = -ESRCH;
0771dfef 2466 if (!pid)
bdbb776f 2467 p = current;
0771dfef 2468 else {
228ebcbe 2469 p = find_task_by_vpid(pid);
0771dfef
IM
2470 if (!p)
2471 goto err_unlock;
0771dfef
IM
2472 }
2473
bdbb776f
KC
2474 ret = -EPERM;
2475 if (!ptrace_may_access(p, PTRACE_MODE_READ))
2476 goto err_unlock;
2477
2478 head = p->robust_list;
2479 rcu_read_unlock();
2480
0771dfef
IM
2481 if (put_user(sizeof(*head), len_ptr))
2482 return -EFAULT;
2483 return put_user(head, head_ptr);
2484
2485err_unlock:
aaa2a97e 2486 rcu_read_unlock();
0771dfef
IM
2487
2488 return ret;
2489}
2490
2491/*
2492 * Process a futex-list entry, check whether it's owned by the
2493 * dying task, and do notification if so:
2494 */
e3f2ddea 2495int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 2496{
7cfdaf38 2497 u32 uval, uninitialized_var(nval), mval;
0771dfef 2498
8f17d3a5
IM
2499retry:
2500 if (get_user(uval, uaddr))
0771dfef
IM
2501 return -1;
2502
b488893a 2503 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
2504 /*
2505 * Ok, this dying thread is truly holding a futex
2506 * of interest. Set the OWNER_DIED bit atomically
2507 * via cmpxchg, and if the value had FUTEX_WAITERS
2508 * set, wake up a waiter (if any). (We have to do a
2509 * futex_wake() even if OWNER_DIED is already set -
2510 * to handle the rare but possible case of recursive
2511 * thread-death.) The rest of the cleanup is done in
2512 * userspace.
2513 */
e3f2ddea 2514 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
6e0aa9f8
TG
2515 /*
2516 * We are not holding a lock here, but we want to have
2517 * the pagefault_disable/enable() protection because
2518 * we want to handle the fault gracefully. If the
2519 * access fails we try to fault in the futex with R/W
2520 * verification via get_user_pages. get_user() above
2521 * does not guarantee R/W access. If that fails we
2522 * give up and leave the futex locked.
2523 */
2524 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2525 if (fault_in_user_writeable(uaddr))
2526 return -1;
2527 goto retry;
2528 }
c87e2837 2529 if (nval != uval)
8f17d3a5 2530 goto retry;
0771dfef 2531
e3f2ddea
IM
2532 /*
2533 * Wake robust non-PI futexes here. The wakeup of
2534 * PI futexes happens in exit_pi_state():
2535 */
36cf3b5c 2536 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 2537 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
2538 }
2539 return 0;
2540}
2541
e3f2ddea
IM
2542/*
2543 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2544 */
2545static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 2546 struct robust_list __user * __user *head,
1dcc41bb 2547 unsigned int *pi)
e3f2ddea
IM
2548{
2549 unsigned long uentry;
2550
ba46df98 2551 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
2552 return -EFAULT;
2553
ba46df98 2554 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
2555 *pi = uentry & 1;
2556
2557 return 0;
2558}
2559
0771dfef
IM
2560/*
2561 * Walk curr->robust_list (very carefully, it's a userspace list!)
2562 * and mark any locks found there dead, and notify any waiters.
2563 *
2564 * We silently return on any sign of list-walking problem.
2565 */
2566void exit_robust_list(struct task_struct *curr)
2567{
2568 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 2569 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
2570 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2571 unsigned int uninitialized_var(next_pi);
0771dfef 2572 unsigned long futex_offset;
9f96cb1e 2573 int rc;
0771dfef 2574
a0c1e907
TG
2575 if (!futex_cmpxchg_enabled)
2576 return;
2577
0771dfef
IM
2578 /*
2579 * Fetch the list head (which was registered earlier, via
2580 * sys_set_robust_list()):
2581 */
e3f2ddea 2582 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
2583 return;
2584 /*
2585 * Fetch the relative futex offset:
2586 */
2587 if (get_user(futex_offset, &head->futex_offset))
2588 return;
2589 /*
2590 * Fetch any possibly pending lock-add first, and handle it
2591 * if it exists:
2592 */
e3f2ddea 2593 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 2594 return;
e3f2ddea 2595
9f96cb1e 2596 next_entry = NULL; /* avoid warning with gcc */
0771dfef 2597 while (entry != &head->list) {
9f96cb1e
MS
2598 /*
2599 * Fetch the next entry in the list before calling
2600 * handle_futex_death:
2601 */
2602 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
2603 /*
2604 * A pending lock might already be on the list, so
c87e2837 2605 * don't process it twice:
0771dfef
IM
2606 */
2607 if (entry != pending)
ba46df98 2608 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 2609 curr, pi))
0771dfef 2610 return;
9f96cb1e 2611 if (rc)
0771dfef 2612 return;
9f96cb1e
MS
2613 entry = next_entry;
2614 pi = next_pi;
0771dfef
IM
2615 /*
2616 * Avoid excessively long or circular lists:
2617 */
2618 if (!--limit)
2619 break;
2620
2621 cond_resched();
2622 }
9f96cb1e
MS
2623
2624 if (pending)
2625 handle_futex_death((void __user *)pending + futex_offset,
2626 curr, pip);
0771dfef
IM
2627}
2628
c19384b5 2629long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 2630 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 2631{
81b40539 2632 int cmd = op & FUTEX_CMD_MASK;
b41277dc 2633 unsigned int flags = 0;
34f01cc1
ED
2634
2635 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 2636 flags |= FLAGS_SHARED;
1da177e4 2637
b41277dc
DH
2638 if (op & FUTEX_CLOCK_REALTIME) {
2639 flags |= FLAGS_CLOCKRT;
2640 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2641 return -ENOSYS;
2642 }
1da177e4 2643
59263b51
TG
2644 switch (cmd) {
2645 case FUTEX_LOCK_PI:
2646 case FUTEX_UNLOCK_PI:
2647 case FUTEX_TRYLOCK_PI:
2648 case FUTEX_WAIT_REQUEUE_PI:
2649 case FUTEX_CMP_REQUEUE_PI:
2650 if (!futex_cmpxchg_enabled)
2651 return -ENOSYS;
2652 }
2653
34f01cc1 2654 switch (cmd) {
1da177e4 2655 case FUTEX_WAIT:
cd689985
TG
2656 val3 = FUTEX_BITSET_MATCH_ANY;
2657 case FUTEX_WAIT_BITSET:
81b40539 2658 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 2659 case FUTEX_WAKE:
cd689985
TG
2660 val3 = FUTEX_BITSET_MATCH_ANY;
2661 case FUTEX_WAKE_BITSET:
81b40539 2662 return futex_wake(uaddr, flags, val, val3);
1da177e4 2663 case FUTEX_REQUEUE:
81b40539 2664 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 2665 case FUTEX_CMP_REQUEUE:
81b40539 2666 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 2667 case FUTEX_WAKE_OP:
81b40539 2668 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 2669 case FUTEX_LOCK_PI:
81b40539 2670 return futex_lock_pi(uaddr, flags, val, timeout, 0);
c87e2837 2671 case FUTEX_UNLOCK_PI:
81b40539 2672 return futex_unlock_pi(uaddr, flags);
c87e2837 2673 case FUTEX_TRYLOCK_PI:
81b40539 2674 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
52400ba9
DH
2675 case FUTEX_WAIT_REQUEUE_PI:
2676 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
2677 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2678 uaddr2);
52400ba9 2679 case FUTEX_CMP_REQUEUE_PI:
81b40539 2680 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 2681 }
81b40539 2682 return -ENOSYS;
1da177e4
LT
2683}
2684
2685
17da2bd9
HC
2686SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2687 struct timespec __user *, utime, u32 __user *, uaddr2,
2688 u32, val3)
1da177e4 2689{
c19384b5
PP
2690 struct timespec ts;
2691 ktime_t t, *tp = NULL;
e2970f2f 2692 u32 val2 = 0;
34f01cc1 2693 int cmd = op & FUTEX_CMD_MASK;
1da177e4 2694
cd689985 2695 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
2696 cmd == FUTEX_WAIT_BITSET ||
2697 cmd == FUTEX_WAIT_REQUEUE_PI)) {
c19384b5 2698 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 2699 return -EFAULT;
c19384b5 2700 if (!timespec_valid(&ts))
9741ef96 2701 return -EINVAL;
c19384b5
PP
2702
2703 t = timespec_to_ktime(ts);
34f01cc1 2704 if (cmd == FUTEX_WAIT)
5a7780e7 2705 t = ktime_add_safe(ktime_get(), t);
c19384b5 2706 tp = &t;
1da177e4
LT
2707 }
2708 /*
52400ba9 2709 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 2710 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 2711 */
f54f0986 2712 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 2713 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 2714 val2 = (u32) (unsigned long) utime;
1da177e4 2715
c19384b5 2716 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
2717}
2718
f6d107fb 2719static int __init futex_init(void)
1da177e4 2720{
a0c1e907 2721 u32 curval;
3e4ab747 2722 int i;
95362fa9 2723
a0c1e907
TG
2724 /*
2725 * This will fail and we want it. Some arch implementations do
2726 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2727 * functionality. We want to know that before we call in any
2728 * of the complex code paths. Also we want to prevent
2729 * registration of robust lists in that case. NULL is
2730 * guaranteed to fault and we get -EFAULT on functional
fb62db2b 2731 * implementation, the non-functional ones will return
a0c1e907
TG
2732 * -ENOSYS.
2733 */
37a9d912 2734 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
a0c1e907
TG
2735 futex_cmpxchg_enabled = 1;
2736
3e4ab747 2737 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
732375c6 2738 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
2739 spin_lock_init(&futex_queues[i].lock);
2740 }
2741
1da177e4
LT
2742 return 0;
2743}
f6d107fb 2744__initcall(futex_init);