y2038: futex: Move compat implementation into futex.c
[linux-2.6-block.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
04e7712f 47#include <linux/compat.h>
1da177e4
LT
48#include <linux/slab.h>
49#include <linux/poll.h>
50#include <linux/fs.h>
51#include <linux/file.h>
52#include <linux/jhash.h>
53#include <linux/init.h>
54#include <linux/futex.h>
55#include <linux/mount.h>
56#include <linux/pagemap.h>
57#include <linux/syscalls.h>
7ed20e1a 58#include <linux/signal.h>
9984de1a 59#include <linux/export.h>
fd5eea42 60#include <linux/magic.h>
b488893a
PE
61#include <linux/pid.h>
62#include <linux/nsproxy.h>
bdbb776f 63#include <linux/ptrace.h>
8bd75c77 64#include <linux/sched/rt.h>
84f001e1 65#include <linux/sched/wake_q.h>
6e84f315 66#include <linux/sched/mm.h>
13d60f4b 67#include <linux/hugetlb.h>
88c8004f 68#include <linux/freezer.h>
57c8a661 69#include <linux/memblock.h>
ab51fbab 70#include <linux/fault-inject.h>
b488893a 71
4732efbe 72#include <asm/futex.h>
1da177e4 73
1696a8be 74#include "locking/rtmutex_common.h"
c87e2837 75
99b60ce6 76/*
d7e8af1a
DB
77 * READ this before attempting to hack on futexes!
78 *
79 * Basic futex operation and ordering guarantees
80 * =============================================
99b60ce6
TG
81 *
82 * The waiter reads the futex value in user space and calls
83 * futex_wait(). This function computes the hash bucket and acquires
84 * the hash bucket lock. After that it reads the futex user space value
b0c29f79
DB
85 * again and verifies that the data has not changed. If it has not changed
86 * it enqueues itself into the hash bucket, releases the hash bucket lock
87 * and schedules.
99b60ce6
TG
88 *
89 * The waker side modifies the user space value of the futex and calls
b0c29f79
DB
90 * futex_wake(). This function computes the hash bucket and acquires the
91 * hash bucket lock. Then it looks for waiters on that futex in the hash
92 * bucket and wakes them.
99b60ce6 93 *
b0c29f79
DB
94 * In futex wake up scenarios where no tasks are blocked on a futex, taking
95 * the hb spinlock can be avoided and simply return. In order for this
96 * optimization to work, ordering guarantees must exist so that the waiter
97 * being added to the list is acknowledged when the list is concurrently being
98 * checked by the waker, avoiding scenarios like the following:
99b60ce6
TG
99 *
100 * CPU 0 CPU 1
101 * val = *futex;
102 * sys_futex(WAIT, futex, val);
103 * futex_wait(futex, val);
104 * uval = *futex;
105 * *futex = newval;
106 * sys_futex(WAKE, futex);
107 * futex_wake(futex);
108 * if (queue_empty())
109 * return;
110 * if (uval == val)
111 * lock(hash_bucket(futex));
112 * queue();
113 * unlock(hash_bucket(futex));
114 * schedule();
115 *
116 * This would cause the waiter on CPU 0 to wait forever because it
117 * missed the transition of the user space value from val to newval
118 * and the waker did not find the waiter in the hash bucket queue.
99b60ce6 119 *
b0c29f79
DB
120 * The correct serialization ensures that a waiter either observes
121 * the changed user space value before blocking or is woken by a
122 * concurrent waker:
123 *
124 * CPU 0 CPU 1
99b60ce6
TG
125 * val = *futex;
126 * sys_futex(WAIT, futex, val);
127 * futex_wait(futex, val);
b0c29f79 128 *
d7e8af1a 129 * waiters++; (a)
8ad7b378
DB
130 * smp_mb(); (A) <-- paired with -.
131 * |
132 * lock(hash_bucket(futex)); |
133 * |
134 * uval = *futex; |
135 * | *futex = newval;
136 * | sys_futex(WAKE, futex);
137 * | futex_wake(futex);
138 * |
139 * `--------> smp_mb(); (B)
99b60ce6 140 * if (uval == val)
b0c29f79 141 * queue();
99b60ce6 142 * unlock(hash_bucket(futex));
b0c29f79
DB
143 * schedule(); if (waiters)
144 * lock(hash_bucket(futex));
d7e8af1a
DB
145 * else wake_waiters(futex);
146 * waiters--; (b) unlock(hash_bucket(futex));
b0c29f79 147 *
d7e8af1a
DB
148 * Where (A) orders the waiters increment and the futex value read through
149 * atomic operations (see hb_waiters_inc) and where (B) orders the write
993b2ff2
DB
150 * to futex and the waiters read -- this is done by the barriers for both
151 * shared and private futexes in get_futex_key_refs().
b0c29f79
DB
152 *
153 * This yields the following case (where X:=waiters, Y:=futex):
154 *
155 * X = Y = 0
156 *
157 * w[X]=1 w[Y]=1
158 * MB MB
159 * r[Y]=y r[X]=x
160 *
161 * Which guarantees that x==0 && y==0 is impossible; which translates back into
162 * the guarantee that we cannot both miss the futex variable change and the
163 * enqueue.
d7e8af1a
DB
164 *
165 * Note that a new waiter is accounted for in (a) even when it is possible that
166 * the wait call can return error, in which case we backtrack from it in (b).
167 * Refer to the comment in queue_lock().
168 *
169 * Similarly, in order to account for waiters being requeued on another
170 * address we always increment the waiters for the destination bucket before
171 * acquiring the lock. It then decrements them again after releasing it -
172 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
173 * will do the additional required waiter count housekeeping. This is done for
174 * double_lock_hb() and double_unlock_hb(), respectively.
99b60ce6
TG
175 */
176
04e7712f
AB
177#ifdef CONFIG_HAVE_FUTEX_CMPXCHG
178#define futex_cmpxchg_enabled 1
179#else
180static int __read_mostly futex_cmpxchg_enabled;
03b8c7b6 181#endif
a0c1e907 182
b41277dc
DH
183/*
184 * Futex flags used to encode options to functions and preserve them across
185 * restarts.
186 */
784bdf3b
TG
187#ifdef CONFIG_MMU
188# define FLAGS_SHARED 0x01
189#else
190/*
191 * NOMMU does not have per process address space. Let the compiler optimize
192 * code away.
193 */
194# define FLAGS_SHARED 0x00
195#endif
b41277dc
DH
196#define FLAGS_CLOCKRT 0x02
197#define FLAGS_HAS_TIMEOUT 0x04
198
c87e2837
IM
199/*
200 * Priority Inheritance state:
201 */
202struct futex_pi_state {
203 /*
204 * list of 'owned' pi_state instances - these have to be
205 * cleaned up in do_exit() if the task exits prematurely:
206 */
207 struct list_head list;
208
209 /*
210 * The PI object:
211 */
212 struct rt_mutex pi_mutex;
213
214 struct task_struct *owner;
215 atomic_t refcount;
216
217 union futex_key key;
3859a271 218} __randomize_layout;
c87e2837 219
d8d88fbb
DH
220/**
221 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 222 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
223 * @task: the task waiting on the futex
224 * @lock_ptr: the hash bucket lock
225 * @key: the key the futex is hashed on
226 * @pi_state: optional priority inheritance state
227 * @rt_waiter: rt_waiter storage for use with requeue_pi
228 * @requeue_pi_key: the requeue_pi target futex key
229 * @bitset: bitset for the optional bitmasked wakeup
230 *
ac6424b9 231 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
1da177e4
LT
232 * we can wake only the relevant ones (hashed queues may be shared).
233 *
234 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 235 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 236 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
237 * the second.
238 *
239 * PI futexes are typically woken before they are removed from the hash list via
240 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
241 */
242struct futex_q {
ec92d082 243 struct plist_node list;
1da177e4 244
d8d88fbb 245 struct task_struct *task;
1da177e4 246 spinlock_t *lock_ptr;
1da177e4 247 union futex_key key;
c87e2837 248 struct futex_pi_state *pi_state;
52400ba9 249 struct rt_mutex_waiter *rt_waiter;
84bc4af5 250 union futex_key *requeue_pi_key;
cd689985 251 u32 bitset;
3859a271 252} __randomize_layout;
1da177e4 253
5bdb05f9
DH
254static const struct futex_q futex_q_init = {
255 /* list gets initialized in queue_me()*/
256 .key = FUTEX_KEY_INIT,
257 .bitset = FUTEX_BITSET_MATCH_ANY
258};
259
1da177e4 260/*
b2d0994b
DH
261 * Hash buckets are shared by all the futex_keys that hash to the same
262 * location. Each key may have multiple futex_q structures, one for each task
263 * waiting on a futex.
1da177e4
LT
264 */
265struct futex_hash_bucket {
11d4616b 266 atomic_t waiters;
ec92d082
PP
267 spinlock_t lock;
268 struct plist_head chain;
a52b89eb 269} ____cacheline_aligned_in_smp;
1da177e4 270
ac742d37
RV
271/*
272 * The base of the bucket array and its size are always used together
273 * (after initialization only in hash_futex()), so ensure that they
274 * reside in the same cacheline.
275 */
276static struct {
277 struct futex_hash_bucket *queues;
278 unsigned long hashsize;
279} __futex_data __read_mostly __aligned(2*sizeof(long));
280#define futex_queues (__futex_data.queues)
281#define futex_hashsize (__futex_data.hashsize)
a52b89eb 282
1da177e4 283
ab51fbab
DB
284/*
285 * Fault injections for futexes.
286 */
287#ifdef CONFIG_FAIL_FUTEX
288
289static struct {
290 struct fault_attr attr;
291
621a5f7a 292 bool ignore_private;
ab51fbab
DB
293} fail_futex = {
294 .attr = FAULT_ATTR_INITIALIZER,
621a5f7a 295 .ignore_private = false,
ab51fbab
DB
296};
297
298static int __init setup_fail_futex(char *str)
299{
300 return setup_fault_attr(&fail_futex.attr, str);
301}
302__setup("fail_futex=", setup_fail_futex);
303
5d285a7f 304static bool should_fail_futex(bool fshared)
ab51fbab
DB
305{
306 if (fail_futex.ignore_private && !fshared)
307 return false;
308
309 return should_fail(&fail_futex.attr, 1);
310}
311
312#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
313
314static int __init fail_futex_debugfs(void)
315{
316 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
317 struct dentry *dir;
318
319 dir = fault_create_debugfs_attr("fail_futex", NULL,
320 &fail_futex.attr);
321 if (IS_ERR(dir))
322 return PTR_ERR(dir);
323
324 if (!debugfs_create_bool("ignore-private", mode, dir,
325 &fail_futex.ignore_private)) {
326 debugfs_remove_recursive(dir);
327 return -ENOMEM;
328 }
329
330 return 0;
331}
332
333late_initcall(fail_futex_debugfs);
334
335#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
336
337#else
338static inline bool should_fail_futex(bool fshared)
339{
340 return false;
341}
342#endif /* CONFIG_FAIL_FUTEX */
343
b0c29f79
DB
344static inline void futex_get_mm(union futex_key *key)
345{
f1f10076 346 mmgrab(key->private.mm);
b0c29f79
DB
347 /*
348 * Ensure futex_get_mm() implies a full barrier such that
349 * get_futex_key() implies a full barrier. This is relied upon
8ad7b378 350 * as smp_mb(); (B), see the ordering comment above.
b0c29f79 351 */
4e857c58 352 smp_mb__after_atomic();
b0c29f79
DB
353}
354
11d4616b
LT
355/*
356 * Reflects a new waiter being added to the waitqueue.
357 */
358static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
b0c29f79
DB
359{
360#ifdef CONFIG_SMP
11d4616b 361 atomic_inc(&hb->waiters);
b0c29f79 362 /*
11d4616b 363 * Full barrier (A), see the ordering comment above.
b0c29f79 364 */
4e857c58 365 smp_mb__after_atomic();
11d4616b
LT
366#endif
367}
368
369/*
370 * Reflects a waiter being removed from the waitqueue by wakeup
371 * paths.
372 */
373static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
374{
375#ifdef CONFIG_SMP
376 atomic_dec(&hb->waiters);
377#endif
378}
b0c29f79 379
11d4616b
LT
380static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
381{
382#ifdef CONFIG_SMP
383 return atomic_read(&hb->waiters);
b0c29f79 384#else
11d4616b 385 return 1;
b0c29f79
DB
386#endif
387}
388
e8b61b3f
TG
389/**
390 * hash_futex - Return the hash bucket in the global hash
391 * @key: Pointer to the futex key for which the hash is calculated
392 *
393 * We hash on the keys returned from get_futex_key (see below) and return the
394 * corresponding hash bucket in the global hash.
1da177e4
LT
395 */
396static struct futex_hash_bucket *hash_futex(union futex_key *key)
397{
398 u32 hash = jhash2((u32*)&key->both.word,
399 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
400 key->both.offset);
a52b89eb 401 return &futex_queues[hash & (futex_hashsize - 1)];
1da177e4
LT
402}
403
e8b61b3f
TG
404
405/**
406 * match_futex - Check whether two futex keys are equal
407 * @key1: Pointer to key1
408 * @key2: Pointer to key2
409 *
1da177e4
LT
410 * Return 1 if two futex_keys are equal, 0 otherwise.
411 */
412static inline int match_futex(union futex_key *key1, union futex_key *key2)
413{
2bc87203
DH
414 return (key1 && key2
415 && key1->both.word == key2->both.word
1da177e4
LT
416 && key1->both.ptr == key2->both.ptr
417 && key1->both.offset == key2->both.offset);
418}
419
38d47c1b
PZ
420/*
421 * Take a reference to the resource addressed by a key.
422 * Can be called while holding spinlocks.
423 *
424 */
425static void get_futex_key_refs(union futex_key *key)
426{
427 if (!key->both.ptr)
428 return;
429
784bdf3b
TG
430 /*
431 * On MMU less systems futexes are always "private" as there is no per
432 * process address space. We need the smp wmb nevertheless - yes,
433 * arch/blackfin has MMU less SMP ...
434 */
435 if (!IS_ENABLED(CONFIG_MMU)) {
436 smp_mb(); /* explicit smp_mb(); (B) */
437 return;
438 }
439
38d47c1b
PZ
440 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
441 case FUT_OFF_INODE:
8ad7b378 442 ihold(key->shared.inode); /* implies smp_mb(); (B) */
38d47c1b
PZ
443 break;
444 case FUT_OFF_MMSHARED:
8ad7b378 445 futex_get_mm(key); /* implies smp_mb(); (B) */
38d47c1b 446 break;
76835b0e 447 default:
993b2ff2
DB
448 /*
449 * Private futexes do not hold reference on an inode or
450 * mm, therefore the only purpose of calling get_futex_key_refs
451 * is because we need the barrier for the lockless waiter check.
452 */
8ad7b378 453 smp_mb(); /* explicit smp_mb(); (B) */
38d47c1b
PZ
454 }
455}
456
457/*
458 * Drop a reference to the resource addressed by a key.
993b2ff2
DB
459 * The hash bucket spinlock must not be held. This is
460 * a no-op for private futexes, see comment in the get
461 * counterpart.
38d47c1b
PZ
462 */
463static void drop_futex_key_refs(union futex_key *key)
464{
90621c40
DH
465 if (!key->both.ptr) {
466 /* If we're here then we tried to put a key we failed to get */
467 WARN_ON_ONCE(1);
38d47c1b 468 return;
90621c40 469 }
38d47c1b 470
784bdf3b
TG
471 if (!IS_ENABLED(CONFIG_MMU))
472 return;
473
38d47c1b
PZ
474 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
475 case FUT_OFF_INODE:
476 iput(key->shared.inode);
477 break;
478 case FUT_OFF_MMSHARED:
479 mmdrop(key->private.mm);
480 break;
481 }
482}
483
34f01cc1 484/**
d96ee56c
DH
485 * get_futex_key() - Get parameters which are the keys for a futex
486 * @uaddr: virtual address of the futex
487 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
488 * @key: address where result is stored.
9ea71503
SB
489 * @rw: mapping needs to be read/write (values: VERIFY_READ,
490 * VERIFY_WRITE)
34f01cc1 491 *
6c23cbbd
RD
492 * Return: a negative error code or 0
493 *
7b4ff1ad 494 * The key words are stored in @key on success.
1da177e4 495 *
6131ffaa 496 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
1da177e4
LT
497 * offset_within_page). For private mappings, it's (uaddr, current->mm).
498 * We can usually work out the index without swapping in the page.
499 *
b2d0994b 500 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 501 */
64d1304a 502static int
9ea71503 503get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
1da177e4 504{
e2970f2f 505 unsigned long address = (unsigned long)uaddr;
1da177e4 506 struct mm_struct *mm = current->mm;
077fa7ae 507 struct page *page, *tail;
14d27abd 508 struct address_space *mapping;
9ea71503 509 int err, ro = 0;
1da177e4
LT
510
511 /*
512 * The futex address must be "naturally" aligned.
513 */
e2970f2f 514 key->both.offset = address % PAGE_SIZE;
34f01cc1 515 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 516 return -EINVAL;
e2970f2f 517 address -= key->both.offset;
1da177e4 518
5cdec2d8
LT
519 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
520 return -EFAULT;
521
ab51fbab
DB
522 if (unlikely(should_fail_futex(fshared)))
523 return -EFAULT;
524
34f01cc1
ED
525 /*
526 * PROCESS_PRIVATE futexes are fast.
527 * As the mm cannot disappear under us and the 'key' only needs
528 * virtual address, we dont even have to find the underlying vma.
529 * Note : We do have to check 'uaddr' is a valid user address,
530 * but access_ok() should be faster than find_vma()
531 */
532 if (!fshared) {
34f01cc1
ED
533 key->private.mm = mm;
534 key->private.address = address;
8ad7b378 535 get_futex_key_refs(key); /* implies smp_mb(); (B) */
34f01cc1
ED
536 return 0;
537 }
1da177e4 538
38d47c1b 539again:
ab51fbab
DB
540 /* Ignore any VERIFY_READ mapping (futex common case) */
541 if (unlikely(should_fail_futex(fshared)))
542 return -EFAULT;
543
7485d0d3 544 err = get_user_pages_fast(address, 1, 1, &page);
9ea71503
SB
545 /*
546 * If write access is not required (eg. FUTEX_WAIT), try
547 * and get read-only access.
548 */
549 if (err == -EFAULT && rw == VERIFY_READ) {
550 err = get_user_pages_fast(address, 1, 0, &page);
551 ro = 1;
552 }
38d47c1b
PZ
553 if (err < 0)
554 return err;
9ea71503
SB
555 else
556 err = 0;
38d47c1b 557
65d8fc77
MG
558 /*
559 * The treatment of mapping from this point on is critical. The page
560 * lock protects many things but in this context the page lock
561 * stabilizes mapping, prevents inode freeing in the shared
562 * file-backed region case and guards against movement to swap cache.
563 *
564 * Strictly speaking the page lock is not needed in all cases being
565 * considered here and page lock forces unnecessarily serialization
566 * From this point on, mapping will be re-verified if necessary and
567 * page lock will be acquired only if it is unavoidable
077fa7ae
MG
568 *
569 * Mapping checks require the head page for any compound page so the
570 * head page and mapping is looked up now. For anonymous pages, it
571 * does not matter if the page splits in the future as the key is
572 * based on the address. For filesystem-backed pages, the tail is
573 * required as the index of the page determines the key. For
574 * base pages, there is no tail page and tail == page.
65d8fc77 575 */
077fa7ae 576 tail = page;
65d8fc77
MG
577 page = compound_head(page);
578 mapping = READ_ONCE(page->mapping);
579
e6780f72 580 /*
14d27abd 581 * If page->mapping is NULL, then it cannot be a PageAnon
e6780f72
HD
582 * page; but it might be the ZERO_PAGE or in the gate area or
583 * in a special mapping (all cases which we are happy to fail);
584 * or it may have been a good file page when get_user_pages_fast
585 * found it, but truncated or holepunched or subjected to
586 * invalidate_complete_page2 before we got the page lock (also
587 * cases which we are happy to fail). And we hold a reference,
588 * so refcount care in invalidate_complete_page's remove_mapping
589 * prevents drop_caches from setting mapping to NULL beneath us.
590 *
591 * The case we do have to guard against is when memory pressure made
592 * shmem_writepage move it from filecache to swapcache beneath us:
14d27abd 593 * an unlikely race, but we do need to retry for page->mapping.
e6780f72 594 */
65d8fc77
MG
595 if (unlikely(!mapping)) {
596 int shmem_swizzled;
597
598 /*
599 * Page lock is required to identify which special case above
600 * applies. If this is really a shmem page then the page lock
601 * will prevent unexpected transitions.
602 */
603 lock_page(page);
604 shmem_swizzled = PageSwapCache(page) || page->mapping;
14d27abd
KS
605 unlock_page(page);
606 put_page(page);
65d8fc77 607
e6780f72
HD
608 if (shmem_swizzled)
609 goto again;
65d8fc77 610
e6780f72 611 return -EFAULT;
38d47c1b 612 }
1da177e4
LT
613
614 /*
615 * Private mappings are handled in a simple way.
616 *
65d8fc77
MG
617 * If the futex key is stored on an anonymous page, then the associated
618 * object is the mm which is implicitly pinned by the calling process.
619 *
1da177e4
LT
620 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
621 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 622 * the object not the particular process.
1da177e4 623 */
14d27abd 624 if (PageAnon(page)) {
9ea71503
SB
625 /*
626 * A RO anonymous page will never change and thus doesn't make
627 * sense for futex operations.
628 */
ab51fbab 629 if (unlikely(should_fail_futex(fshared)) || ro) {
9ea71503
SB
630 err = -EFAULT;
631 goto out;
632 }
633
38d47c1b 634 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 635 key->private.mm = mm;
e2970f2f 636 key->private.address = address;
65d8fc77
MG
637
638 get_futex_key_refs(key); /* implies smp_mb(); (B) */
639
38d47c1b 640 } else {
65d8fc77
MG
641 struct inode *inode;
642
643 /*
644 * The associated futex object in this case is the inode and
645 * the page->mapping must be traversed. Ordinarily this should
646 * be stabilised under page lock but it's not strictly
647 * necessary in this case as we just want to pin the inode, not
648 * update the radix tree or anything like that.
649 *
650 * The RCU read lock is taken as the inode is finally freed
651 * under RCU. If the mapping still matches expectations then the
652 * mapping->host can be safely accessed as being a valid inode.
653 */
654 rcu_read_lock();
655
656 if (READ_ONCE(page->mapping) != mapping) {
657 rcu_read_unlock();
658 put_page(page);
659
660 goto again;
661 }
662
663 inode = READ_ONCE(mapping->host);
664 if (!inode) {
665 rcu_read_unlock();
666 put_page(page);
667
668 goto again;
669 }
670
671 /*
672 * Take a reference unless it is about to be freed. Previously
673 * this reference was taken by ihold under the page lock
674 * pinning the inode in place so i_lock was unnecessary. The
675 * only way for this check to fail is if the inode was
48fb6f4d
MG
676 * truncated in parallel which is almost certainly an
677 * application bug. In such a case, just retry.
65d8fc77
MG
678 *
679 * We are not calling into get_futex_key_refs() in file-backed
680 * cases, therefore a successful atomic_inc return below will
681 * guarantee that get_futex_key() will still imply smp_mb(); (B).
682 */
48fb6f4d 683 if (!atomic_inc_not_zero(&inode->i_count)) {
65d8fc77
MG
684 rcu_read_unlock();
685 put_page(page);
686
687 goto again;
688 }
689
690 /* Should be impossible but lets be paranoid for now */
691 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
692 err = -EFAULT;
693 rcu_read_unlock();
694 iput(inode);
695
696 goto out;
697 }
698
38d47c1b 699 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
65d8fc77 700 key->shared.inode = inode;
077fa7ae 701 key->shared.pgoff = basepage_index(tail);
65d8fc77 702 rcu_read_unlock();
1da177e4
LT
703 }
704
9ea71503 705out:
14d27abd 706 put_page(page);
9ea71503 707 return err;
1da177e4
LT
708}
709
ae791a2d 710static inline void put_futex_key(union futex_key *key)
1da177e4 711{
38d47c1b 712 drop_futex_key_refs(key);
1da177e4
LT
713}
714
d96ee56c
DH
715/**
716 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
717 * @uaddr: pointer to faulting user space address
718 *
719 * Slow path to fixup the fault we just took in the atomic write
720 * access to @uaddr.
721 *
fb62db2b 722 * We have no generic implementation of a non-destructive write to the
d0725992
TG
723 * user address. We know that we faulted in the atomic pagefault
724 * disabled section so we can as well avoid the #PF overhead by
725 * calling get_user_pages() right away.
726 */
727static int fault_in_user_writeable(u32 __user *uaddr)
728{
722d0172
AK
729 struct mm_struct *mm = current->mm;
730 int ret;
731
732 down_read(&mm->mmap_sem);
2efaca92 733 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
4a9e1cda 734 FAULT_FLAG_WRITE, NULL);
722d0172
AK
735 up_read(&mm->mmap_sem);
736
d0725992
TG
737 return ret < 0 ? ret : 0;
738}
739
4b1c486b
DH
740/**
741 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
742 * @hb: the hash bucket the futex_q's reside in
743 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
744 *
745 * Must be called with the hb lock held.
746 */
747static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
748 union futex_key *key)
749{
750 struct futex_q *this;
751
752 plist_for_each_entry(this, &hb->chain, list) {
753 if (match_futex(&this->key, key))
754 return this;
755 }
756 return NULL;
757}
758
37a9d912
ML
759static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
760 u32 uval, u32 newval)
36cf3b5c 761{
37a9d912 762 int ret;
36cf3b5c
TG
763
764 pagefault_disable();
37a9d912 765 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
766 pagefault_enable();
767
37a9d912 768 return ret;
36cf3b5c
TG
769}
770
771static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
772{
773 int ret;
774
a866374a 775 pagefault_disable();
bd28b145 776 ret = __get_user(*dest, from);
a866374a 777 pagefault_enable();
1da177e4
LT
778
779 return ret ? -EFAULT : 0;
780}
781
c87e2837
IM
782
783/*
784 * PI code:
785 */
786static int refill_pi_state_cache(void)
787{
788 struct futex_pi_state *pi_state;
789
790 if (likely(current->pi_state_cache))
791 return 0;
792
4668edc3 793 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
794
795 if (!pi_state)
796 return -ENOMEM;
797
c87e2837
IM
798 INIT_LIST_HEAD(&pi_state->list);
799 /* pi_mutex gets initialized later */
800 pi_state->owner = NULL;
801 atomic_set(&pi_state->refcount, 1);
38d47c1b 802 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
803
804 current->pi_state_cache = pi_state;
805
806 return 0;
807}
808
bf92cf3a 809static struct futex_pi_state *alloc_pi_state(void)
c87e2837
IM
810{
811 struct futex_pi_state *pi_state = current->pi_state_cache;
812
813 WARN_ON(!pi_state);
814 current->pi_state_cache = NULL;
815
816 return pi_state;
817}
818
bf92cf3a
PZ
819static void get_pi_state(struct futex_pi_state *pi_state)
820{
821 WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
822}
823
30a6b803 824/*
29e9ee5d
TG
825 * Drops a reference to the pi_state object and frees or caches it
826 * when the last reference is gone.
30a6b803 827 */
29e9ee5d 828static void put_pi_state(struct futex_pi_state *pi_state)
c87e2837 829{
30a6b803
BS
830 if (!pi_state)
831 return;
832
c87e2837
IM
833 if (!atomic_dec_and_test(&pi_state->refcount))
834 return;
835
836 /*
837 * If pi_state->owner is NULL, the owner is most probably dying
838 * and has cleaned up the pi_state already
839 */
840 if (pi_state->owner) {
c74aef2d 841 struct task_struct *owner;
c87e2837 842
c74aef2d
PZ
843 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
844 owner = pi_state->owner;
845 if (owner) {
846 raw_spin_lock(&owner->pi_lock);
847 list_del_init(&pi_state->list);
848 raw_spin_unlock(&owner->pi_lock);
849 }
850 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
851 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
852 }
853
c74aef2d 854 if (current->pi_state_cache) {
c87e2837 855 kfree(pi_state);
c74aef2d 856 } else {
c87e2837
IM
857 /*
858 * pi_state->list is already empty.
859 * clear pi_state->owner.
860 * refcount is at 0 - put it back to 1.
861 */
862 pi_state->owner = NULL;
863 atomic_set(&pi_state->refcount, 1);
864 current->pi_state_cache = pi_state;
865 }
866}
867
bc2eecd7
NP
868#ifdef CONFIG_FUTEX_PI
869
c87e2837
IM
870/*
871 * This task is holding PI mutexes at exit time => bad.
872 * Kernel cleans up PI-state, but userspace is likely hosed.
873 * (Robust-futex cleanup is separate and might save the day for userspace.)
874 */
875void exit_pi_state_list(struct task_struct *curr)
876{
c87e2837
IM
877 struct list_head *next, *head = &curr->pi_state_list;
878 struct futex_pi_state *pi_state;
627371d7 879 struct futex_hash_bucket *hb;
38d47c1b 880 union futex_key key = FUTEX_KEY_INIT;
c87e2837 881
a0c1e907
TG
882 if (!futex_cmpxchg_enabled)
883 return;
c87e2837
IM
884 /*
885 * We are a ZOMBIE and nobody can enqueue itself on
886 * pi_state_list anymore, but we have to be careful
627371d7 887 * versus waiters unqueueing themselves:
c87e2837 888 */
1d615482 889 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 890 while (!list_empty(head)) {
c87e2837
IM
891 next = head->next;
892 pi_state = list_entry(next, struct futex_pi_state, list);
893 key = pi_state->key;
627371d7 894 hb = hash_futex(&key);
153fbd12
PZ
895
896 /*
897 * We can race against put_pi_state() removing itself from the
898 * list (a waiter going away). put_pi_state() will first
899 * decrement the reference count and then modify the list, so
900 * its possible to see the list entry but fail this reference
901 * acquire.
902 *
903 * In that case; drop the locks to let put_pi_state() make
904 * progress and retry the loop.
905 */
906 if (!atomic_inc_not_zero(&pi_state->refcount)) {
907 raw_spin_unlock_irq(&curr->pi_lock);
908 cpu_relax();
909 raw_spin_lock_irq(&curr->pi_lock);
910 continue;
911 }
1d615482 912 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 913
c87e2837 914 spin_lock(&hb->lock);
c74aef2d
PZ
915 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
916 raw_spin_lock(&curr->pi_lock);
627371d7
IM
917 /*
918 * We dropped the pi-lock, so re-check whether this
919 * task still owns the PI-state:
920 */
c87e2837 921 if (head->next != next) {
153fbd12 922 /* retain curr->pi_lock for the loop invariant */
c74aef2d 923 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837 924 spin_unlock(&hb->lock);
153fbd12 925 put_pi_state(pi_state);
c87e2837
IM
926 continue;
927 }
928
c87e2837 929 WARN_ON(pi_state->owner != curr);
627371d7
IM
930 WARN_ON(list_empty(&pi_state->list));
931 list_del_init(&pi_state->list);
c87e2837 932 pi_state->owner = NULL;
c87e2837 933
153fbd12 934 raw_spin_unlock(&curr->pi_lock);
c74aef2d 935 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
936 spin_unlock(&hb->lock);
937
16ffa12d
PZ
938 rt_mutex_futex_unlock(&pi_state->pi_mutex);
939 put_pi_state(pi_state);
940
1d615482 941 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 942 }
1d615482 943 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
944}
945
bc2eecd7
NP
946#endif
947
54a21788
TG
948/*
949 * We need to check the following states:
950 *
951 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
952 *
953 * [1] NULL | --- | --- | 0 | 0/1 | Valid
954 * [2] NULL | --- | --- | >0 | 0/1 | Valid
955 *
956 * [3] Found | NULL | -- | Any | 0/1 | Invalid
957 *
958 * [4] Found | Found | NULL | 0 | 1 | Valid
959 * [5] Found | Found | NULL | >0 | 1 | Invalid
960 *
961 * [6] Found | Found | task | 0 | 1 | Valid
962 *
963 * [7] Found | Found | NULL | Any | 0 | Invalid
964 *
965 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
966 * [9] Found | Found | task | 0 | 0 | Invalid
967 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
968 *
969 * [1] Indicates that the kernel can acquire the futex atomically. We
970 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
971 *
972 * [2] Valid, if TID does not belong to a kernel thread. If no matching
973 * thread is found then it indicates that the owner TID has died.
974 *
975 * [3] Invalid. The waiter is queued on a non PI futex
976 *
977 * [4] Valid state after exit_robust_list(), which sets the user space
978 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
979 *
980 * [5] The user space value got manipulated between exit_robust_list()
981 * and exit_pi_state_list()
982 *
983 * [6] Valid state after exit_pi_state_list() which sets the new owner in
984 * the pi_state but cannot access the user space value.
985 *
986 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
987 *
988 * [8] Owner and user space value match
989 *
990 * [9] There is no transient state which sets the user space TID to 0
991 * except exit_robust_list(), but this is indicated by the
992 * FUTEX_OWNER_DIED bit. See [4]
993 *
994 * [10] There is no transient state which leaves owner and user space
995 * TID out of sync.
734009e9
PZ
996 *
997 *
998 * Serialization and lifetime rules:
999 *
1000 * hb->lock:
1001 *
1002 * hb -> futex_q, relation
1003 * futex_q -> pi_state, relation
1004 *
1005 * (cannot be raw because hb can contain arbitrary amount
1006 * of futex_q's)
1007 *
1008 * pi_mutex->wait_lock:
1009 *
1010 * {uval, pi_state}
1011 *
1012 * (and pi_mutex 'obviously')
1013 *
1014 * p->pi_lock:
1015 *
1016 * p->pi_state_list -> pi_state->list, relation
1017 *
1018 * pi_state->refcount:
1019 *
1020 * pi_state lifetime
1021 *
1022 *
1023 * Lock order:
1024 *
1025 * hb->lock
1026 * pi_mutex->wait_lock
1027 * p->pi_lock
1028 *
54a21788 1029 */
e60cbc5c
TG
1030
1031/*
1032 * Validate that the existing waiter has a pi_state and sanity check
1033 * the pi_state against the user space value. If correct, attach to
1034 * it.
1035 */
734009e9
PZ
1036static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1037 struct futex_pi_state *pi_state,
e60cbc5c 1038 struct futex_pi_state **ps)
c87e2837 1039{
778e9a9c 1040 pid_t pid = uval & FUTEX_TID_MASK;
94ffac5d
PZ
1041 u32 uval2;
1042 int ret;
c87e2837 1043
e60cbc5c
TG
1044 /*
1045 * Userspace might have messed up non-PI and PI futexes [3]
1046 */
1047 if (unlikely(!pi_state))
1048 return -EINVAL;
06a9ec29 1049
734009e9
PZ
1050 /*
1051 * We get here with hb->lock held, and having found a
1052 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1053 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1054 * which in turn means that futex_lock_pi() still has a reference on
1055 * our pi_state.
16ffa12d
PZ
1056 *
1057 * The waiter holding a reference on @pi_state also protects against
1058 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1059 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1060 * free pi_state before we can take a reference ourselves.
734009e9 1061 */
e60cbc5c 1062 WARN_ON(!atomic_read(&pi_state->refcount));
59647b6a 1063
734009e9
PZ
1064 /*
1065 * Now that we have a pi_state, we can acquire wait_lock
1066 * and do the state validation.
1067 */
1068 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1069
1070 /*
1071 * Since {uval, pi_state} is serialized by wait_lock, and our current
1072 * uval was read without holding it, it can have changed. Verify it
1073 * still is what we expect it to be, otherwise retry the entire
1074 * operation.
1075 */
1076 if (get_futex_value_locked(&uval2, uaddr))
1077 goto out_efault;
1078
1079 if (uval != uval2)
1080 goto out_eagain;
1081
e60cbc5c
TG
1082 /*
1083 * Handle the owner died case:
1084 */
1085 if (uval & FUTEX_OWNER_DIED) {
bd1dbcc6 1086 /*
e60cbc5c
TG
1087 * exit_pi_state_list sets owner to NULL and wakes the
1088 * topmost waiter. The task which acquires the
1089 * pi_state->rt_mutex will fixup owner.
bd1dbcc6 1090 */
e60cbc5c 1091 if (!pi_state->owner) {
59647b6a 1092 /*
e60cbc5c
TG
1093 * No pi state owner, but the user space TID
1094 * is not 0. Inconsistent state. [5]
59647b6a 1095 */
e60cbc5c 1096 if (pid)
734009e9 1097 goto out_einval;
bd1dbcc6 1098 /*
e60cbc5c 1099 * Take a ref on the state and return success. [4]
866293ee 1100 */
734009e9 1101 goto out_attach;
c87e2837 1102 }
bd1dbcc6
TG
1103
1104 /*
e60cbc5c
TG
1105 * If TID is 0, then either the dying owner has not
1106 * yet executed exit_pi_state_list() or some waiter
1107 * acquired the rtmutex in the pi state, but did not
1108 * yet fixup the TID in user space.
1109 *
1110 * Take a ref on the state and return success. [6]
1111 */
1112 if (!pid)
734009e9 1113 goto out_attach;
e60cbc5c
TG
1114 } else {
1115 /*
1116 * If the owner died bit is not set, then the pi_state
1117 * must have an owner. [7]
bd1dbcc6 1118 */
e60cbc5c 1119 if (!pi_state->owner)
734009e9 1120 goto out_einval;
c87e2837
IM
1121 }
1122
e60cbc5c
TG
1123 /*
1124 * Bail out if user space manipulated the futex value. If pi
1125 * state exists then the owner TID must be the same as the
1126 * user space TID. [9/10]
1127 */
1128 if (pid != task_pid_vnr(pi_state->owner))
734009e9
PZ
1129 goto out_einval;
1130
1131out_attach:
bf92cf3a 1132 get_pi_state(pi_state);
734009e9 1133 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
e60cbc5c
TG
1134 *ps = pi_state;
1135 return 0;
734009e9
PZ
1136
1137out_einval:
1138 ret = -EINVAL;
1139 goto out_error;
1140
1141out_eagain:
1142 ret = -EAGAIN;
1143 goto out_error;
1144
1145out_efault:
1146 ret = -EFAULT;
1147 goto out_error;
1148
1149out_error:
1150 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1151 return ret;
e60cbc5c
TG
1152}
1153
04e1b2e5
TG
1154/*
1155 * Lookup the task for the TID provided from user space and attach to
1156 * it after doing proper sanity checks.
1157 */
1158static int attach_to_pi_owner(u32 uval, union futex_key *key,
1159 struct futex_pi_state **ps)
e60cbc5c 1160{
e60cbc5c 1161 pid_t pid = uval & FUTEX_TID_MASK;
04e1b2e5
TG
1162 struct futex_pi_state *pi_state;
1163 struct task_struct *p;
e60cbc5c 1164
c87e2837 1165 /*
e3f2ddea 1166 * We are the first waiter - try to look up the real owner and attach
54a21788 1167 * the new pi_state to it, but bail out when TID = 0 [1]
c87e2837 1168 */
778e9a9c 1169 if (!pid)
e3f2ddea 1170 return -ESRCH;
2ee08260 1171 p = find_get_task_by_vpid(pid);
7a0ea09a
MH
1172 if (!p)
1173 return -ESRCH;
778e9a9c 1174
a2129464 1175 if (unlikely(p->flags & PF_KTHREAD)) {
f0d71b3d
TG
1176 put_task_struct(p);
1177 return -EPERM;
1178 }
1179
778e9a9c
AK
1180 /*
1181 * We need to look at the task state flags to figure out,
1182 * whether the task is exiting. To protect against the do_exit
1183 * change of the task flags, we do this protected by
1184 * p->pi_lock:
1185 */
1d615482 1186 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
1187 if (unlikely(p->flags & PF_EXITING)) {
1188 /*
1189 * The task is on the way out. When PF_EXITPIDONE is
1190 * set, we know that the task has finished the
1191 * cleanup:
1192 */
1193 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1194
1d615482 1195 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
1196 put_task_struct(p);
1197 return ret;
1198 }
c87e2837 1199
54a21788
TG
1200 /*
1201 * No existing pi state. First waiter. [2]
734009e9
PZ
1202 *
1203 * This creates pi_state, we have hb->lock held, this means nothing can
1204 * observe this state, wait_lock is irrelevant.
54a21788 1205 */
c87e2837
IM
1206 pi_state = alloc_pi_state();
1207
1208 /*
04e1b2e5 1209 * Initialize the pi_mutex in locked state and make @p
c87e2837
IM
1210 * the owner of it:
1211 */
1212 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1213
1214 /* Store the key for possible exit cleanups: */
d0aa7a70 1215 pi_state->key = *key;
c87e2837 1216
627371d7 1217 WARN_ON(!list_empty(&pi_state->list));
c87e2837 1218 list_add(&pi_state->list, &p->pi_state_list);
c74aef2d
PZ
1219 /*
1220 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1221 * because there is no concurrency as the object is not published yet.
1222 */
c87e2837 1223 pi_state->owner = p;
1d615482 1224 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
1225
1226 put_task_struct(p);
1227
d0aa7a70 1228 *ps = pi_state;
c87e2837
IM
1229
1230 return 0;
1231}
1232
734009e9
PZ
1233static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1234 struct futex_hash_bucket *hb,
04e1b2e5
TG
1235 union futex_key *key, struct futex_pi_state **ps)
1236{
499f5aca 1237 struct futex_q *top_waiter = futex_top_waiter(hb, key);
04e1b2e5
TG
1238
1239 /*
1240 * If there is a waiter on that futex, validate it and
1241 * attach to the pi_state when the validation succeeds.
1242 */
499f5aca 1243 if (top_waiter)
734009e9 1244 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
04e1b2e5
TG
1245
1246 /*
1247 * We are the first waiter - try to look up the owner based on
1248 * @uval and attach to it.
1249 */
1250 return attach_to_pi_owner(uval, key, ps);
1251}
1252
af54d6a1
TG
1253static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1254{
1255 u32 uninitialized_var(curval);
1256
ab51fbab
DB
1257 if (unlikely(should_fail_futex(true)))
1258 return -EFAULT;
1259
af54d6a1
TG
1260 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1261 return -EFAULT;
1262
734009e9 1263 /* If user space value changed, let the caller retry */
af54d6a1
TG
1264 return curval != uval ? -EAGAIN : 0;
1265}
1266
1a52084d 1267/**
d96ee56c 1268 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
1269 * @uaddr: the pi futex user address
1270 * @hb: the pi futex hash bucket
1271 * @key: the futex key associated with uaddr and hb
1272 * @ps: the pi_state pointer where we store the result of the
1273 * lookup
1274 * @task: the task to perform the atomic lock work for. This will
1275 * be "current" except in the case of requeue pi.
1276 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 1277 *
6c23cbbd 1278 * Return:
7b4ff1ad
MCC
1279 * - 0 - ready to wait;
1280 * - 1 - acquired the lock;
1281 * - <0 - error
1a52084d
DH
1282 *
1283 * The hb->lock and futex_key refs shall be held by the caller.
1284 */
1285static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1286 union futex_key *key,
1287 struct futex_pi_state **ps,
bab5bc9e 1288 struct task_struct *task, int set_waiters)
1a52084d 1289{
af54d6a1 1290 u32 uval, newval, vpid = task_pid_vnr(task);
499f5aca 1291 struct futex_q *top_waiter;
af54d6a1 1292 int ret;
1a52084d
DH
1293
1294 /*
af54d6a1
TG
1295 * Read the user space value first so we can validate a few
1296 * things before proceeding further.
1a52084d 1297 */
af54d6a1 1298 if (get_futex_value_locked(&uval, uaddr))
1a52084d
DH
1299 return -EFAULT;
1300
ab51fbab
DB
1301 if (unlikely(should_fail_futex(true)))
1302 return -EFAULT;
1303
1a52084d
DH
1304 /*
1305 * Detect deadlocks.
1306 */
af54d6a1 1307 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
1308 return -EDEADLK;
1309
ab51fbab
DB
1310 if ((unlikely(should_fail_futex(true))))
1311 return -EDEADLK;
1312
1a52084d 1313 /*
af54d6a1
TG
1314 * Lookup existing state first. If it exists, try to attach to
1315 * its pi_state.
1a52084d 1316 */
499f5aca
PZ
1317 top_waiter = futex_top_waiter(hb, key);
1318 if (top_waiter)
734009e9 1319 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1a52084d
DH
1320
1321 /*
af54d6a1
TG
1322 * No waiter and user TID is 0. We are here because the
1323 * waiters or the owner died bit is set or called from
1324 * requeue_cmp_pi or for whatever reason something took the
1325 * syscall.
1a52084d 1326 */
af54d6a1 1327 if (!(uval & FUTEX_TID_MASK)) {
59fa6245 1328 /*
af54d6a1
TG
1329 * We take over the futex. No other waiters and the user space
1330 * TID is 0. We preserve the owner died bit.
59fa6245 1331 */
af54d6a1
TG
1332 newval = uval & FUTEX_OWNER_DIED;
1333 newval |= vpid;
1a52084d 1334
af54d6a1
TG
1335 /* The futex requeue_pi code can enforce the waiters bit */
1336 if (set_waiters)
1337 newval |= FUTEX_WAITERS;
1338
1339 ret = lock_pi_update_atomic(uaddr, uval, newval);
1340 /* If the take over worked, return 1 */
1341 return ret < 0 ? ret : 1;
1342 }
1a52084d
DH
1343
1344 /*
af54d6a1
TG
1345 * First waiter. Set the waiters bit before attaching ourself to
1346 * the owner. If owner tries to unlock, it will be forced into
1347 * the kernel and blocked on hb->lock.
1a52084d 1348 */
af54d6a1
TG
1349 newval = uval | FUTEX_WAITERS;
1350 ret = lock_pi_update_atomic(uaddr, uval, newval);
1351 if (ret)
1352 return ret;
1a52084d 1353 /*
af54d6a1
TG
1354 * If the update of the user space value succeeded, we try to
1355 * attach to the owner. If that fails, no harm done, we only
1356 * set the FUTEX_WAITERS bit in the user space variable.
1a52084d 1357 */
af54d6a1 1358 return attach_to_pi_owner(uval, key, ps);
1a52084d
DH
1359}
1360
2e12978a
LJ
1361/**
1362 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1363 * @q: The futex_q to unqueue
1364 *
1365 * The q->lock_ptr must not be NULL and must be held by the caller.
1366 */
1367static void __unqueue_futex(struct futex_q *q)
1368{
1369 struct futex_hash_bucket *hb;
1370
4de1a293 1371 if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
2e12978a 1372 return;
4de1a293 1373 lockdep_assert_held(q->lock_ptr);
2e12978a
LJ
1374
1375 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1376 plist_del(&q->list, &hb->chain);
11d4616b 1377 hb_waiters_dec(hb);
2e12978a
LJ
1378}
1379
1da177e4
LT
1380/*
1381 * The hash bucket lock must be held when this is called.
1d0dcb3a
DB
1382 * Afterwards, the futex_q must not be accessed. Callers
1383 * must ensure to later call wake_up_q() for the actual
1384 * wakeups to occur.
1da177e4 1385 */
1d0dcb3a 1386static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1da177e4 1387{
f1a11e05
TG
1388 struct task_struct *p = q->task;
1389
aa10990e
DH
1390 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1391 return;
1392
1da177e4 1393 /*
1d0dcb3a
DB
1394 * Queue the task for later wakeup for after we've released
1395 * the hb->lock. wake_q_add() grabs reference to p.
1da177e4 1396 */
1d0dcb3a 1397 wake_q_add(wake_q, p);
2e12978a 1398 __unqueue_futex(q);
1da177e4 1399 /*
38fcd06e
DHV
1400 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1401 * is written, without taking any locks. This is possible in the event
1402 * of a spurious wakeup, for example. A memory barrier is required here
1403 * to prevent the following store to lock_ptr from getting ahead of the
1404 * plist_del in __unqueue_futex().
1da177e4 1405 */
1b367ece 1406 smp_store_release(&q->lock_ptr, NULL);
1da177e4
LT
1407}
1408
16ffa12d
PZ
1409/*
1410 * Caller must hold a reference on @pi_state.
1411 */
1412static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
c87e2837 1413{
7cfdaf38 1414 u32 uninitialized_var(curval), newval;
16ffa12d 1415 struct task_struct *new_owner;
aa2bfe55 1416 bool postunlock = false;
194a6b5b 1417 DEFINE_WAKE_Q(wake_q);
13fbca4c 1418 int ret = 0;
c87e2837 1419
c87e2837 1420 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
bebe5b51 1421 if (WARN_ON_ONCE(!new_owner)) {
16ffa12d 1422 /*
bebe5b51 1423 * As per the comment in futex_unlock_pi() this should not happen.
16ffa12d
PZ
1424 *
1425 * When this happens, give up our locks and try again, giving
1426 * the futex_lock_pi() instance time to complete, either by
1427 * waiting on the rtmutex or removing itself from the futex
1428 * queue.
1429 */
1430 ret = -EAGAIN;
1431 goto out_unlock;
73d786bd 1432 }
c87e2837
IM
1433
1434 /*
16ffa12d
PZ
1435 * We pass it to the next owner. The WAITERS bit is always kept
1436 * enabled while there is PI state around. We cleanup the owner
1437 * died bit, because we are the owner.
c87e2837 1438 */
13fbca4c 1439 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 1440
ab51fbab
DB
1441 if (unlikely(should_fail_futex(true)))
1442 ret = -EFAULT;
1443
89e9e66b 1444 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
13fbca4c 1445 ret = -EFAULT;
734009e9 1446
89e9e66b
SAS
1447 } else if (curval != uval) {
1448 /*
1449 * If a unconditional UNLOCK_PI operation (user space did not
1450 * try the TID->0 transition) raced with a waiter setting the
1451 * FUTEX_WAITERS flag between get_user() and locking the hash
1452 * bucket lock, retry the operation.
1453 */
1454 if ((FUTEX_TID_MASK & curval) == uval)
1455 ret = -EAGAIN;
1456 else
1457 ret = -EINVAL;
1458 }
734009e9 1459
16ffa12d
PZ
1460 if (ret)
1461 goto out_unlock;
c87e2837 1462
94ffac5d
PZ
1463 /*
1464 * This is a point of no return; once we modify the uval there is no
1465 * going back and subsequent operations must not fail.
1466 */
1467
b4abf910 1468 raw_spin_lock(&pi_state->owner->pi_lock);
627371d7
IM
1469 WARN_ON(list_empty(&pi_state->list));
1470 list_del_init(&pi_state->list);
b4abf910 1471 raw_spin_unlock(&pi_state->owner->pi_lock);
627371d7 1472
b4abf910 1473 raw_spin_lock(&new_owner->pi_lock);
627371d7 1474 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1475 list_add(&pi_state->list, &new_owner->pi_state_list);
1476 pi_state->owner = new_owner;
b4abf910 1477 raw_spin_unlock(&new_owner->pi_lock);
627371d7 1478
aa2bfe55 1479 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
5293c2ef 1480
16ffa12d 1481out_unlock:
5293c2ef 1482 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
5293c2ef 1483
aa2bfe55
PZ
1484 if (postunlock)
1485 rt_mutex_postunlock(&wake_q);
c87e2837 1486
16ffa12d 1487 return ret;
c87e2837
IM
1488}
1489
8b8f319f
IM
1490/*
1491 * Express the locking dependencies for lockdep:
1492 */
1493static inline void
1494double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1495{
1496 if (hb1 <= hb2) {
1497 spin_lock(&hb1->lock);
1498 if (hb1 < hb2)
1499 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1500 } else { /* hb1 > hb2 */
1501 spin_lock(&hb2->lock);
1502 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1503 }
1504}
1505
5eb3dc62
DH
1506static inline void
1507double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1508{
f061d351 1509 spin_unlock(&hb1->lock);
88f502fe
IM
1510 if (hb1 != hb2)
1511 spin_unlock(&hb2->lock);
5eb3dc62
DH
1512}
1513
1da177e4 1514/*
b2d0994b 1515 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1516 */
b41277dc
DH
1517static int
1518futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1519{
e2970f2f 1520 struct futex_hash_bucket *hb;
1da177e4 1521 struct futex_q *this, *next;
38d47c1b 1522 union futex_key key = FUTEX_KEY_INIT;
1da177e4 1523 int ret;
194a6b5b 1524 DEFINE_WAKE_Q(wake_q);
1da177e4 1525
cd689985
TG
1526 if (!bitset)
1527 return -EINVAL;
1528
9ea71503 1529 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1da177e4
LT
1530 if (unlikely(ret != 0))
1531 goto out;
1532
e2970f2f 1533 hb = hash_futex(&key);
b0c29f79
DB
1534
1535 /* Make sure we really have tasks to wakeup */
1536 if (!hb_waiters_pending(hb))
1537 goto out_put_key;
1538
e2970f2f 1539 spin_lock(&hb->lock);
1da177e4 1540
0d00c7b2 1541 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1da177e4 1542 if (match_futex (&this->key, &key)) {
52400ba9 1543 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1544 ret = -EINVAL;
1545 break;
1546 }
cd689985
TG
1547
1548 /* Check if one of the bits is set in both bitsets */
1549 if (!(this->bitset & bitset))
1550 continue;
1551
1d0dcb3a 1552 mark_wake_futex(&wake_q, this);
1da177e4
LT
1553 if (++ret >= nr_wake)
1554 break;
1555 }
1556 }
1557
e2970f2f 1558 spin_unlock(&hb->lock);
1d0dcb3a 1559 wake_up_q(&wake_q);
b0c29f79 1560out_put_key:
ae791a2d 1561 put_futex_key(&key);
42d35d48 1562out:
1da177e4
LT
1563 return ret;
1564}
1565
30d6e0a4
JS
1566static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1567{
1568 unsigned int op = (encoded_op & 0x70000000) >> 28;
1569 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
d70ef228
JS
1570 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1571 int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
30d6e0a4
JS
1572 int oldval, ret;
1573
1574 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
e78c38f6
JS
1575 if (oparg < 0 || oparg > 31) {
1576 char comm[sizeof(current->comm)];
1577 /*
1578 * kill this print and return -EINVAL when userspace
1579 * is sane again
1580 */
1581 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1582 get_task_comm(comm, current), oparg);
1583 oparg &= 31;
1584 }
30d6e0a4
JS
1585 oparg = 1 << oparg;
1586 }
1587
1588 if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
1589 return -EFAULT;
1590
1591 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1592 if (ret)
1593 return ret;
1594
1595 switch (cmp) {
1596 case FUTEX_OP_CMP_EQ:
1597 return oldval == cmparg;
1598 case FUTEX_OP_CMP_NE:
1599 return oldval != cmparg;
1600 case FUTEX_OP_CMP_LT:
1601 return oldval < cmparg;
1602 case FUTEX_OP_CMP_GE:
1603 return oldval >= cmparg;
1604 case FUTEX_OP_CMP_LE:
1605 return oldval <= cmparg;
1606 case FUTEX_OP_CMP_GT:
1607 return oldval > cmparg;
1608 default:
1609 return -ENOSYS;
1610 }
1611}
1612
4732efbe
JJ
1613/*
1614 * Wake up all waiters hashed on the physical page that is mapped
1615 * to this virtual address:
1616 */
e2970f2f 1617static int
b41277dc 1618futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1619 int nr_wake, int nr_wake2, int op)
4732efbe 1620{
38d47c1b 1621 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1622 struct futex_hash_bucket *hb1, *hb2;
4732efbe 1623 struct futex_q *this, *next;
e4dc5b7a 1624 int ret, op_ret;
194a6b5b 1625 DEFINE_WAKE_Q(wake_q);
4732efbe 1626
e4dc5b7a 1627retry:
9ea71503 1628 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
4732efbe
JJ
1629 if (unlikely(ret != 0))
1630 goto out;
9ea71503 1631 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
4732efbe 1632 if (unlikely(ret != 0))
42d35d48 1633 goto out_put_key1;
4732efbe 1634
e2970f2f
IM
1635 hb1 = hash_futex(&key1);
1636 hb2 = hash_futex(&key2);
4732efbe 1637
e4dc5b7a 1638retry_private:
eaaea803 1639 double_lock_hb(hb1, hb2);
e2970f2f 1640 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1641 if (unlikely(op_ret < 0)) {
4732efbe 1642
5eb3dc62 1643 double_unlock_hb(hb1, hb2);
4732efbe 1644
7ee1dd3f 1645#ifndef CONFIG_MMU
e2970f2f
IM
1646 /*
1647 * we don't get EFAULT from MMU faults if we don't have an MMU,
1648 * but we might get them from range checking
1649 */
7ee1dd3f 1650 ret = op_ret;
42d35d48 1651 goto out_put_keys;
7ee1dd3f
DH
1652#endif
1653
796f8d9b
DG
1654 if (unlikely(op_ret != -EFAULT)) {
1655 ret = op_ret;
42d35d48 1656 goto out_put_keys;
796f8d9b
DG
1657 }
1658
d0725992 1659 ret = fault_in_user_writeable(uaddr2);
4732efbe 1660 if (ret)
de87fcc1 1661 goto out_put_keys;
4732efbe 1662
b41277dc 1663 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1664 goto retry_private;
1665
ae791a2d
TG
1666 put_futex_key(&key2);
1667 put_futex_key(&key1);
e4dc5b7a 1668 goto retry;
4732efbe
JJ
1669 }
1670
0d00c7b2 1671 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
4732efbe 1672 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1673 if (this->pi_state || this->rt_waiter) {
1674 ret = -EINVAL;
1675 goto out_unlock;
1676 }
1d0dcb3a 1677 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1678 if (++ret >= nr_wake)
1679 break;
1680 }
1681 }
1682
1683 if (op_ret > 0) {
4732efbe 1684 op_ret = 0;
0d00c7b2 1685 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
4732efbe 1686 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1687 if (this->pi_state || this->rt_waiter) {
1688 ret = -EINVAL;
1689 goto out_unlock;
1690 }
1d0dcb3a 1691 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1692 if (++op_ret >= nr_wake2)
1693 break;
1694 }
1695 }
1696 ret += op_ret;
1697 }
1698
aa10990e 1699out_unlock:
5eb3dc62 1700 double_unlock_hb(hb1, hb2);
1d0dcb3a 1701 wake_up_q(&wake_q);
42d35d48 1702out_put_keys:
ae791a2d 1703 put_futex_key(&key2);
42d35d48 1704out_put_key1:
ae791a2d 1705 put_futex_key(&key1);
42d35d48 1706out:
4732efbe
JJ
1707 return ret;
1708}
1709
9121e478
DH
1710/**
1711 * requeue_futex() - Requeue a futex_q from one hb to another
1712 * @q: the futex_q to requeue
1713 * @hb1: the source hash_bucket
1714 * @hb2: the target hash_bucket
1715 * @key2: the new key for the requeued futex_q
1716 */
1717static inline
1718void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1719 struct futex_hash_bucket *hb2, union futex_key *key2)
1720{
1721
1722 /*
1723 * If key1 and key2 hash to the same bucket, no need to
1724 * requeue.
1725 */
1726 if (likely(&hb1->chain != &hb2->chain)) {
1727 plist_del(&q->list, &hb1->chain);
11d4616b 1728 hb_waiters_dec(hb1);
11d4616b 1729 hb_waiters_inc(hb2);
fe1bce9e 1730 plist_add(&q->list, &hb2->chain);
9121e478 1731 q->lock_ptr = &hb2->lock;
9121e478
DH
1732 }
1733 get_futex_key_refs(key2);
1734 q->key = *key2;
1735}
1736
52400ba9
DH
1737/**
1738 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1739 * @q: the futex_q
1740 * @key: the key of the requeue target futex
1741 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1742 *
1743 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1744 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1745 * to the requeue target futex so the waiter can detect the wakeup on the right
1746 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1747 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1748 * to protect access to the pi_state to fixup the owner later. Must be called
1749 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1750 */
1751static inline
beda2c7e
DH
1752void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1753 struct futex_hash_bucket *hb)
52400ba9 1754{
52400ba9
DH
1755 get_futex_key_refs(key);
1756 q->key = *key;
1757
2e12978a 1758 __unqueue_futex(q);
52400ba9
DH
1759
1760 WARN_ON(!q->rt_waiter);
1761 q->rt_waiter = NULL;
1762
beda2c7e 1763 q->lock_ptr = &hb->lock;
beda2c7e 1764
f1a11e05 1765 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1766}
1767
1768/**
1769 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1770 * @pifutex: the user address of the to futex
1771 * @hb1: the from futex hash bucket, must be locked by the caller
1772 * @hb2: the to futex hash bucket, must be locked by the caller
1773 * @key1: the from futex key
1774 * @key2: the to futex key
1775 * @ps: address to store the pi_state pointer
1776 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1777 *
1778 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1779 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1780 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1781 * hb1 and hb2 must be held by the caller.
52400ba9 1782 *
6c23cbbd 1783 * Return:
7b4ff1ad
MCC
1784 * - 0 - failed to acquire the lock atomically;
1785 * - >0 - acquired the lock, return value is vpid of the top_waiter
1786 * - <0 - error
52400ba9
DH
1787 */
1788static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1789 struct futex_hash_bucket *hb1,
1790 struct futex_hash_bucket *hb2,
1791 union futex_key *key1, union futex_key *key2,
bab5bc9e 1792 struct futex_pi_state **ps, int set_waiters)
52400ba9 1793{
bab5bc9e 1794 struct futex_q *top_waiter = NULL;
52400ba9 1795 u32 curval;
866293ee 1796 int ret, vpid;
52400ba9
DH
1797
1798 if (get_futex_value_locked(&curval, pifutex))
1799 return -EFAULT;
1800
ab51fbab
DB
1801 if (unlikely(should_fail_futex(true)))
1802 return -EFAULT;
1803
bab5bc9e
DH
1804 /*
1805 * Find the top_waiter and determine if there are additional waiters.
1806 * If the caller intends to requeue more than 1 waiter to pifutex,
1807 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1808 * as we have means to handle the possible fault. If not, don't set
1809 * the bit unecessarily as it will force the subsequent unlock to enter
1810 * the kernel.
1811 */
52400ba9
DH
1812 top_waiter = futex_top_waiter(hb1, key1);
1813
1814 /* There are no waiters, nothing for us to do. */
1815 if (!top_waiter)
1816 return 0;
1817
84bc4af5
DH
1818 /* Ensure we requeue to the expected futex. */
1819 if (!match_futex(top_waiter->requeue_pi_key, key2))
1820 return -EINVAL;
1821
52400ba9 1822 /*
bab5bc9e
DH
1823 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1824 * the contended case or if set_waiters is 1. The pi_state is returned
1825 * in ps in contended cases.
52400ba9 1826 */
866293ee 1827 vpid = task_pid_vnr(top_waiter->task);
bab5bc9e
DH
1828 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1829 set_waiters);
866293ee 1830 if (ret == 1) {
beda2c7e 1831 requeue_pi_wake_futex(top_waiter, key2, hb2);
866293ee
TG
1832 return vpid;
1833 }
52400ba9
DH
1834 return ret;
1835}
1836
1837/**
1838 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1839 * @uaddr1: source futex user address
b41277dc 1840 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1841 * @uaddr2: target futex user address
1842 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1843 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1844 * @cmpval: @uaddr1 expected value (or %NULL)
1845 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1846 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1847 *
1848 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1849 * uaddr2 atomically on behalf of the top waiter.
1850 *
6c23cbbd 1851 * Return:
7b4ff1ad
MCC
1852 * - >=0 - on success, the number of tasks requeued or woken;
1853 * - <0 - on error
1da177e4 1854 */
b41277dc
DH
1855static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1856 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1857 u32 *cmpval, int requeue_pi)
1da177e4 1858{
38d47c1b 1859 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1860 int drop_count = 0, task_count = 0, ret;
1861 struct futex_pi_state *pi_state = NULL;
e2970f2f 1862 struct futex_hash_bucket *hb1, *hb2;
1da177e4 1863 struct futex_q *this, *next;
194a6b5b 1864 DEFINE_WAKE_Q(wake_q);
52400ba9 1865
fbe0e839
LJ
1866 if (nr_wake < 0 || nr_requeue < 0)
1867 return -EINVAL;
1868
bc2eecd7
NP
1869 /*
1870 * When PI not supported: return -ENOSYS if requeue_pi is true,
1871 * consequently the compiler knows requeue_pi is always false past
1872 * this point which will optimize away all the conditional code
1873 * further down.
1874 */
1875 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1876 return -ENOSYS;
1877
52400ba9 1878 if (requeue_pi) {
e9c243a5
TG
1879 /*
1880 * Requeue PI only works on two distinct uaddrs. This
1881 * check is only valid for private futexes. See below.
1882 */
1883 if (uaddr1 == uaddr2)
1884 return -EINVAL;
1885
52400ba9
DH
1886 /*
1887 * requeue_pi requires a pi_state, try to allocate it now
1888 * without any locks in case it fails.
1889 */
1890 if (refill_pi_state_cache())
1891 return -ENOMEM;
1892 /*
1893 * requeue_pi must wake as many tasks as it can, up to nr_wake
1894 * + nr_requeue, since it acquires the rt_mutex prior to
1895 * returning to userspace, so as to not leave the rt_mutex with
1896 * waiters and no owner. However, second and third wake-ups
1897 * cannot be predicted as they involve race conditions with the
1898 * first wake and a fault while looking up the pi_state. Both
1899 * pthread_cond_signal() and pthread_cond_broadcast() should
1900 * use nr_wake=1.
1901 */
1902 if (nr_wake != 1)
1903 return -EINVAL;
1904 }
1da177e4 1905
42d35d48 1906retry:
9ea71503 1907 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1da177e4
LT
1908 if (unlikely(ret != 0))
1909 goto out;
9ea71503
SB
1910 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1911 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1da177e4 1912 if (unlikely(ret != 0))
42d35d48 1913 goto out_put_key1;
1da177e4 1914
e9c243a5
TG
1915 /*
1916 * The check above which compares uaddrs is not sufficient for
1917 * shared futexes. We need to compare the keys:
1918 */
1919 if (requeue_pi && match_futex(&key1, &key2)) {
1920 ret = -EINVAL;
1921 goto out_put_keys;
1922 }
1923
e2970f2f
IM
1924 hb1 = hash_futex(&key1);
1925 hb2 = hash_futex(&key2);
1da177e4 1926
e4dc5b7a 1927retry_private:
69cd9eba 1928 hb_waiters_inc(hb2);
8b8f319f 1929 double_lock_hb(hb1, hb2);
1da177e4 1930
e2970f2f
IM
1931 if (likely(cmpval != NULL)) {
1932 u32 curval;
1da177e4 1933
e2970f2f 1934 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1935
1936 if (unlikely(ret)) {
5eb3dc62 1937 double_unlock_hb(hb1, hb2);
69cd9eba 1938 hb_waiters_dec(hb2);
1da177e4 1939
e2970f2f 1940 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1941 if (ret)
1942 goto out_put_keys;
1da177e4 1943
b41277dc 1944 if (!(flags & FLAGS_SHARED))
e4dc5b7a 1945 goto retry_private;
1da177e4 1946
ae791a2d
TG
1947 put_futex_key(&key2);
1948 put_futex_key(&key1);
e4dc5b7a 1949 goto retry;
1da177e4 1950 }
e2970f2f 1951 if (curval != *cmpval) {
1da177e4
LT
1952 ret = -EAGAIN;
1953 goto out_unlock;
1954 }
1955 }
1956
52400ba9 1957 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
1958 /*
1959 * Attempt to acquire uaddr2 and wake the top waiter. If we
1960 * intend to requeue waiters, force setting the FUTEX_WAITERS
1961 * bit. We force this here where we are able to easily handle
1962 * faults rather in the requeue loop below.
1963 */
52400ba9 1964 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 1965 &key2, &pi_state, nr_requeue);
52400ba9
DH
1966
1967 /*
1968 * At this point the top_waiter has either taken uaddr2 or is
1969 * waiting on it. If the former, then the pi_state will not
1970 * exist yet, look it up one more time to ensure we have a
866293ee
TG
1971 * reference to it. If the lock was taken, ret contains the
1972 * vpid of the top waiter task.
ecb38b78
TG
1973 * If the lock was not taken, we have pi_state and an initial
1974 * refcount on it. In case of an error we have nothing.
52400ba9 1975 */
866293ee 1976 if (ret > 0) {
52400ba9 1977 WARN_ON(pi_state);
89061d3d 1978 drop_count++;
52400ba9 1979 task_count++;
866293ee 1980 /*
ecb38b78
TG
1981 * If we acquired the lock, then the user space value
1982 * of uaddr2 should be vpid. It cannot be changed by
1983 * the top waiter as it is blocked on hb2 lock if it
1984 * tries to do so. If something fiddled with it behind
1985 * our back the pi state lookup might unearth it. So
1986 * we rather use the known value than rereading and
1987 * handing potential crap to lookup_pi_state.
1988 *
1989 * If that call succeeds then we have pi_state and an
1990 * initial refcount on it.
866293ee 1991 */
734009e9 1992 ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
52400ba9
DH
1993 }
1994
1995 switch (ret) {
1996 case 0:
ecb38b78 1997 /* We hold a reference on the pi state. */
52400ba9 1998 break;
4959f2de
TG
1999
2000 /* If the above failed, then pi_state is NULL */
52400ba9
DH
2001 case -EFAULT:
2002 double_unlock_hb(hb1, hb2);
69cd9eba 2003 hb_waiters_dec(hb2);
ae791a2d
TG
2004 put_futex_key(&key2);
2005 put_futex_key(&key1);
d0725992 2006 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
2007 if (!ret)
2008 goto retry;
2009 goto out;
2010 case -EAGAIN:
af54d6a1
TG
2011 /*
2012 * Two reasons for this:
2013 * - Owner is exiting and we just wait for the
2014 * exit to complete.
2015 * - The user space value changed.
2016 */
52400ba9 2017 double_unlock_hb(hb1, hb2);
69cd9eba 2018 hb_waiters_dec(hb2);
ae791a2d
TG
2019 put_futex_key(&key2);
2020 put_futex_key(&key1);
52400ba9
DH
2021 cond_resched();
2022 goto retry;
2023 default:
2024 goto out_unlock;
2025 }
2026 }
2027
0d00c7b2 2028 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
52400ba9
DH
2029 if (task_count - nr_wake >= nr_requeue)
2030 break;
2031
2032 if (!match_futex(&this->key, &key1))
1da177e4 2033 continue;
52400ba9 2034
392741e0
DH
2035 /*
2036 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2037 * be paired with each other and no other futex ops.
aa10990e
DH
2038 *
2039 * We should never be requeueing a futex_q with a pi_state,
2040 * which is awaiting a futex_unlock_pi().
392741e0
DH
2041 */
2042 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
2043 (!requeue_pi && this->rt_waiter) ||
2044 this->pi_state) {
392741e0
DH
2045 ret = -EINVAL;
2046 break;
2047 }
52400ba9
DH
2048
2049 /*
2050 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2051 * lock, we already woke the top_waiter. If not, it will be
2052 * woken by futex_unlock_pi().
2053 */
2054 if (++task_count <= nr_wake && !requeue_pi) {
1d0dcb3a 2055 mark_wake_futex(&wake_q, this);
52400ba9
DH
2056 continue;
2057 }
1da177e4 2058
84bc4af5
DH
2059 /* Ensure we requeue to the expected futex for requeue_pi. */
2060 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2061 ret = -EINVAL;
2062 break;
2063 }
2064
52400ba9
DH
2065 /*
2066 * Requeue nr_requeue waiters and possibly one more in the case
2067 * of requeue_pi if we couldn't acquire the lock atomically.
2068 */
2069 if (requeue_pi) {
ecb38b78
TG
2070 /*
2071 * Prepare the waiter to take the rt_mutex. Take a
2072 * refcount on the pi_state and store the pointer in
2073 * the futex_q object of the waiter.
2074 */
bf92cf3a 2075 get_pi_state(pi_state);
52400ba9
DH
2076 this->pi_state = pi_state;
2077 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2078 this->rt_waiter,
c051b21f 2079 this->task);
52400ba9 2080 if (ret == 1) {
ecb38b78
TG
2081 /*
2082 * We got the lock. We do neither drop the
2083 * refcount on pi_state nor clear
2084 * this->pi_state because the waiter needs the
2085 * pi_state for cleaning up the user space
2086 * value. It will drop the refcount after
2087 * doing so.
2088 */
beda2c7e 2089 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 2090 drop_count++;
52400ba9
DH
2091 continue;
2092 } else if (ret) {
ecb38b78
TG
2093 /*
2094 * rt_mutex_start_proxy_lock() detected a
2095 * potential deadlock when we tried to queue
2096 * that waiter. Drop the pi_state reference
2097 * which we took above and remove the pointer
2098 * to the state from the waiters futex_q
2099 * object.
2100 */
52400ba9 2101 this->pi_state = NULL;
29e9ee5d 2102 put_pi_state(pi_state);
885c2cb7
TG
2103 /*
2104 * We stop queueing more waiters and let user
2105 * space deal with the mess.
2106 */
2107 break;
52400ba9 2108 }
1da177e4 2109 }
52400ba9
DH
2110 requeue_futex(this, hb1, hb2, &key2);
2111 drop_count++;
1da177e4
LT
2112 }
2113
ecb38b78
TG
2114 /*
2115 * We took an extra initial reference to the pi_state either
2116 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2117 * need to drop it here again.
2118 */
29e9ee5d 2119 put_pi_state(pi_state);
885c2cb7
TG
2120
2121out_unlock:
5eb3dc62 2122 double_unlock_hb(hb1, hb2);
1d0dcb3a 2123 wake_up_q(&wake_q);
69cd9eba 2124 hb_waiters_dec(hb2);
1da177e4 2125
cd84a42f
DH
2126 /*
2127 * drop_futex_key_refs() must be called outside the spinlocks. During
2128 * the requeue we moved futex_q's from the hash bucket at key1 to the
2129 * one at key2 and updated their key pointer. We no longer need to
2130 * hold the references to key1.
2131 */
1da177e4 2132 while (--drop_count >= 0)
9adef58b 2133 drop_futex_key_refs(&key1);
1da177e4 2134
42d35d48 2135out_put_keys:
ae791a2d 2136 put_futex_key(&key2);
42d35d48 2137out_put_key1:
ae791a2d 2138 put_futex_key(&key1);
42d35d48 2139out:
52400ba9 2140 return ret ? ret : task_count;
1da177e4
LT
2141}
2142
2143/* The key must be already stored in q->key. */
82af7aca 2144static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 2145 __acquires(&hb->lock)
1da177e4 2146{
e2970f2f 2147 struct futex_hash_bucket *hb;
1da177e4 2148
e2970f2f 2149 hb = hash_futex(&q->key);
11d4616b
LT
2150
2151 /*
2152 * Increment the counter before taking the lock so that
2153 * a potential waker won't miss a to-be-slept task that is
2154 * waiting for the spinlock. This is safe as all queue_lock()
2155 * users end up calling queue_me(). Similarly, for housekeeping,
2156 * decrement the counter at queue_unlock() when some error has
2157 * occurred and we don't end up adding the task to the list.
2158 */
2159 hb_waiters_inc(hb);
2160
e2970f2f 2161 q->lock_ptr = &hb->lock;
1da177e4 2162
8ad7b378 2163 spin_lock(&hb->lock); /* implies smp_mb(); (A) */
e2970f2f 2164 return hb;
1da177e4
LT
2165}
2166
d40d65c8 2167static inline void
0d00c7b2 2168queue_unlock(struct futex_hash_bucket *hb)
15e408cd 2169 __releases(&hb->lock)
d40d65c8
DH
2170{
2171 spin_unlock(&hb->lock);
11d4616b 2172 hb_waiters_dec(hb);
d40d65c8
DH
2173}
2174
cfafcd11 2175static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 2176{
ec92d082
PP
2177 int prio;
2178
2179 /*
2180 * The priority used to register this element is
2181 * - either the real thread-priority for the real-time threads
2182 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2183 * - or MAX_RT_PRIO for non-RT threads.
2184 * Thus, all RT-threads are woken first in priority order, and
2185 * the others are woken last, in FIFO order.
2186 */
2187 prio = min(current->normal_prio, MAX_RT_PRIO);
2188
2189 plist_node_init(&q->list, prio);
ec92d082 2190 plist_add(&q->list, &hb->chain);
c87e2837 2191 q->task = current;
cfafcd11
PZ
2192}
2193
2194/**
2195 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2196 * @q: The futex_q to enqueue
2197 * @hb: The destination hash bucket
2198 *
2199 * The hb->lock must be held by the caller, and is released here. A call to
2200 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2201 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2202 * or nothing if the unqueue is done as part of the wake process and the unqueue
2203 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2204 * an example).
2205 */
2206static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2207 __releases(&hb->lock)
2208{
2209 __queue_me(q, hb);
e2970f2f 2210 spin_unlock(&hb->lock);
1da177e4
LT
2211}
2212
d40d65c8
DH
2213/**
2214 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2215 * @q: The futex_q to unqueue
2216 *
2217 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2218 * be paired with exactly one earlier call to queue_me().
2219 *
6c23cbbd 2220 * Return:
7b4ff1ad
MCC
2221 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2222 * - 0 - if the futex_q was already removed by the waking thread
1da177e4 2223 */
1da177e4
LT
2224static int unqueue_me(struct futex_q *q)
2225{
1da177e4 2226 spinlock_t *lock_ptr;
e2970f2f 2227 int ret = 0;
1da177e4
LT
2228
2229 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 2230retry:
29b75eb2
JZ
2231 /*
2232 * q->lock_ptr can change between this read and the following spin_lock.
2233 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2234 * optimizing lock_ptr out of the logic below.
2235 */
2236 lock_ptr = READ_ONCE(q->lock_ptr);
c80544dc 2237 if (lock_ptr != NULL) {
1da177e4
LT
2238 spin_lock(lock_ptr);
2239 /*
2240 * q->lock_ptr can change between reading it and
2241 * spin_lock(), causing us to take the wrong lock. This
2242 * corrects the race condition.
2243 *
2244 * Reasoning goes like this: if we have the wrong lock,
2245 * q->lock_ptr must have changed (maybe several times)
2246 * between reading it and the spin_lock(). It can
2247 * change again after the spin_lock() but only if it was
2248 * already changed before the spin_lock(). It cannot,
2249 * however, change back to the original value. Therefore
2250 * we can detect whether we acquired the correct lock.
2251 */
2252 if (unlikely(lock_ptr != q->lock_ptr)) {
2253 spin_unlock(lock_ptr);
2254 goto retry;
2255 }
2e12978a 2256 __unqueue_futex(q);
c87e2837
IM
2257
2258 BUG_ON(q->pi_state);
2259
1da177e4
LT
2260 spin_unlock(lock_ptr);
2261 ret = 1;
2262 }
2263
9adef58b 2264 drop_futex_key_refs(&q->key);
1da177e4
LT
2265 return ret;
2266}
2267
c87e2837
IM
2268/*
2269 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
2270 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2271 * and dropped here.
c87e2837 2272 */
d0aa7a70 2273static void unqueue_me_pi(struct futex_q *q)
15e408cd 2274 __releases(q->lock_ptr)
c87e2837 2275{
2e12978a 2276 __unqueue_futex(q);
c87e2837
IM
2277
2278 BUG_ON(!q->pi_state);
29e9ee5d 2279 put_pi_state(q->pi_state);
c87e2837
IM
2280 q->pi_state = NULL;
2281
d0aa7a70 2282 spin_unlock(q->lock_ptr);
c87e2837
IM
2283}
2284
778e9a9c 2285static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
c1e2f0ea 2286 struct task_struct *argowner)
d0aa7a70 2287{
d0aa7a70 2288 struct futex_pi_state *pi_state = q->pi_state;
7cfdaf38 2289 u32 uval, uninitialized_var(curval), newval;
c1e2f0ea
PZ
2290 struct task_struct *oldowner, *newowner;
2291 u32 newtid;
e4dc5b7a 2292 int ret;
d0aa7a70 2293
c1e2f0ea
PZ
2294 lockdep_assert_held(q->lock_ptr);
2295
734009e9
PZ
2296 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2297
2298 oldowner = pi_state->owner;
1b7558e4
TG
2299
2300 /*
c1e2f0ea 2301 * We are here because either:
16ffa12d 2302 *
c1e2f0ea
PZ
2303 * - we stole the lock and pi_state->owner needs updating to reflect
2304 * that (@argowner == current),
2305 *
2306 * or:
2307 *
2308 * - someone stole our lock and we need to fix things to point to the
2309 * new owner (@argowner == NULL).
2310 *
2311 * Either way, we have to replace the TID in the user space variable.
8161239a 2312 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 2313 *
b2d0994b
DH
2314 * Note: We write the user space value _before_ changing the pi_state
2315 * because we can fault here. Imagine swapped out pages or a fork
2316 * that marked all the anonymous memory readonly for cow.
1b7558e4 2317 *
734009e9
PZ
2318 * Modifying pi_state _before_ the user space value would leave the
2319 * pi_state in an inconsistent state when we fault here, because we
2320 * need to drop the locks to handle the fault. This might be observed
2321 * in the PID check in lookup_pi_state.
1b7558e4
TG
2322 */
2323retry:
c1e2f0ea
PZ
2324 if (!argowner) {
2325 if (oldowner != current) {
2326 /*
2327 * We raced against a concurrent self; things are
2328 * already fixed up. Nothing to do.
2329 */
2330 ret = 0;
2331 goto out_unlock;
2332 }
2333
2334 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2335 /* We got the lock after all, nothing to fix. */
2336 ret = 0;
2337 goto out_unlock;
2338 }
2339
2340 /*
2341 * Since we just failed the trylock; there must be an owner.
2342 */
2343 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2344 BUG_ON(!newowner);
2345 } else {
2346 WARN_ON_ONCE(argowner != current);
2347 if (oldowner == current) {
2348 /*
2349 * We raced against a concurrent self; things are
2350 * already fixed up. Nothing to do.
2351 */
2352 ret = 0;
2353 goto out_unlock;
2354 }
2355 newowner = argowner;
2356 }
2357
2358 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
a97cb0e7
PZ
2359 /* Owner died? */
2360 if (!pi_state->owner)
2361 newtid |= FUTEX_OWNER_DIED;
c1e2f0ea 2362
1b7558e4
TG
2363 if (get_futex_value_locked(&uval, uaddr))
2364 goto handle_fault;
2365
16ffa12d 2366 for (;;) {
1b7558e4
TG
2367 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2368
37a9d912 2369 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1b7558e4
TG
2370 goto handle_fault;
2371 if (curval == uval)
2372 break;
2373 uval = curval;
2374 }
2375
2376 /*
2377 * We fixed up user space. Now we need to fix the pi_state
2378 * itself.
2379 */
d0aa7a70 2380 if (pi_state->owner != NULL) {
734009e9 2381 raw_spin_lock(&pi_state->owner->pi_lock);
d0aa7a70
PP
2382 WARN_ON(list_empty(&pi_state->list));
2383 list_del_init(&pi_state->list);
734009e9 2384 raw_spin_unlock(&pi_state->owner->pi_lock);
1b7558e4 2385 }
d0aa7a70 2386
cdf71a10 2387 pi_state->owner = newowner;
d0aa7a70 2388
734009e9 2389 raw_spin_lock(&newowner->pi_lock);
d0aa7a70 2390 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 2391 list_add(&pi_state->list, &newowner->pi_state_list);
734009e9
PZ
2392 raw_spin_unlock(&newowner->pi_lock);
2393 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2394
1b7558e4 2395 return 0;
d0aa7a70 2396
d0aa7a70 2397 /*
734009e9
PZ
2398 * To handle the page fault we need to drop the locks here. That gives
2399 * the other task (either the highest priority waiter itself or the
2400 * task which stole the rtmutex) the chance to try the fixup of the
2401 * pi_state. So once we are back from handling the fault we need to
2402 * check the pi_state after reacquiring the locks and before trying to
2403 * do another fixup. When the fixup has been done already we simply
2404 * return.
2405 *
2406 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2407 * drop hb->lock since the caller owns the hb -> futex_q relation.
2408 * Dropping the pi_mutex->wait_lock requires the state revalidate.
d0aa7a70 2409 */
1b7558e4 2410handle_fault:
734009e9 2411 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1b7558e4 2412 spin_unlock(q->lock_ptr);
778e9a9c 2413
d0725992 2414 ret = fault_in_user_writeable(uaddr);
778e9a9c 2415
1b7558e4 2416 spin_lock(q->lock_ptr);
734009e9 2417 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
778e9a9c 2418
1b7558e4
TG
2419 /*
2420 * Check if someone else fixed it for us:
2421 */
734009e9
PZ
2422 if (pi_state->owner != oldowner) {
2423 ret = 0;
2424 goto out_unlock;
2425 }
1b7558e4
TG
2426
2427 if (ret)
734009e9 2428 goto out_unlock;
1b7558e4
TG
2429
2430 goto retry;
734009e9
PZ
2431
2432out_unlock:
2433 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2434 return ret;
d0aa7a70
PP
2435}
2436
72c1bbf3 2437static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 2438
dd973998
DH
2439/**
2440 * fixup_owner() - Post lock pi_state and corner case management
2441 * @uaddr: user address of the futex
dd973998
DH
2442 * @q: futex_q (contains pi_state and access to the rt_mutex)
2443 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2444 *
2445 * After attempting to lock an rt_mutex, this function is called to cleanup
2446 * the pi_state owner as well as handle race conditions that may allow us to
2447 * acquire the lock. Must be called with the hb lock held.
2448 *
6c23cbbd 2449 * Return:
7b4ff1ad
MCC
2450 * - 1 - success, lock taken;
2451 * - 0 - success, lock not taken;
2452 * - <0 - on error (-EFAULT)
dd973998 2453 */
ae791a2d 2454static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998 2455{
dd973998
DH
2456 int ret = 0;
2457
2458 if (locked) {
2459 /*
2460 * Got the lock. We might not be the anticipated owner if we
2461 * did a lock-steal - fix up the PI-state in that case:
16ffa12d 2462 *
c1e2f0ea
PZ
2463 * Speculative pi_state->owner read (we don't hold wait_lock);
2464 * since we own the lock pi_state->owner == current is the
2465 * stable state, anything else needs more attention.
dd973998
DH
2466 */
2467 if (q->pi_state->owner != current)
ae791a2d 2468 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
2469 goto out;
2470 }
2471
c1e2f0ea
PZ
2472 /*
2473 * If we didn't get the lock; check if anybody stole it from us. In
2474 * that case, we need to fix up the uval to point to them instead of
2475 * us, otherwise bad things happen. [10]
2476 *
2477 * Another speculative read; pi_state->owner == current is unstable
2478 * but needs our attention.
2479 */
2480 if (q->pi_state->owner == current) {
2481 ret = fixup_pi_state_owner(uaddr, q, NULL);
2482 goto out;
2483 }
2484
dd973998
DH
2485 /*
2486 * Paranoia check. If we did not take the lock, then we should not be
8161239a 2487 * the owner of the rt_mutex.
dd973998 2488 */
73d786bd 2489 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
dd973998
DH
2490 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2491 "pi-state %p\n", ret,
2492 q->pi_state->pi_mutex.owner,
2493 q->pi_state->owner);
73d786bd 2494 }
dd973998
DH
2495
2496out:
2497 return ret ? ret : locked;
2498}
2499
ca5f9524
DH
2500/**
2501 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2502 * @hb: the futex hash bucket, must be locked by the caller
2503 * @q: the futex_q to queue up on
2504 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
2505 */
2506static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 2507 struct hrtimer_sleeper *timeout)
ca5f9524 2508{
9beba3c5
DH
2509 /*
2510 * The task state is guaranteed to be set before another task can
b92b8b35 2511 * wake it. set_current_state() is implemented using smp_store_mb() and
9beba3c5
DH
2512 * queue_me() calls spin_unlock() upon completion, both serializing
2513 * access to the hash list and forcing another memory barrier.
2514 */
f1a11e05 2515 set_current_state(TASK_INTERRUPTIBLE);
0729e196 2516 queue_me(q, hb);
ca5f9524
DH
2517
2518 /* Arm the timer */
2e4b0d3f 2519 if (timeout)
ca5f9524 2520 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
ca5f9524
DH
2521
2522 /*
0729e196
DH
2523 * If we have been removed from the hash list, then another task
2524 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
2525 */
2526 if (likely(!plist_node_empty(&q->list))) {
2527 /*
2528 * If the timer has already expired, current will already be
2529 * flagged for rescheduling. Only call schedule if there
2530 * is no timeout, or if it has yet to expire.
2531 */
2532 if (!timeout || timeout->task)
88c8004f 2533 freezable_schedule();
ca5f9524
DH
2534 }
2535 __set_current_state(TASK_RUNNING);
2536}
2537
f801073f
DH
2538/**
2539 * futex_wait_setup() - Prepare to wait on a futex
2540 * @uaddr: the futex userspace address
2541 * @val: the expected value
b41277dc 2542 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
2543 * @q: the associated futex_q
2544 * @hb: storage for hash_bucket pointer to be returned to caller
2545 *
2546 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2547 * compare it with the expected value. Handle atomic faults internally.
2548 * Return with the hb lock held and a q.key reference on success, and unlocked
2549 * with no q.key reference on failure.
2550 *
6c23cbbd 2551 * Return:
7b4ff1ad
MCC
2552 * - 0 - uaddr contains val and hb has been locked;
2553 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 2554 */
b41277dc 2555static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 2556 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 2557{
e2970f2f
IM
2558 u32 uval;
2559 int ret;
1da177e4 2560
1da177e4 2561 /*
b2d0994b 2562 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
2563 * Order is important:
2564 *
2565 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2566 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2567 *
2568 * The basic logical guarantee of a futex is that it blocks ONLY
2569 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
2570 * any cond. If we locked the hash-bucket after testing *uaddr, that
2571 * would open a race condition where we could block indefinitely with
1da177e4
LT
2572 * cond(var) false, which would violate the guarantee.
2573 *
8fe8f545
ML
2574 * On the other hand, we insert q and release the hash-bucket only
2575 * after testing *uaddr. This guarantees that futex_wait() will NOT
2576 * absorb a wakeup if *uaddr does not match the desired values
2577 * while the syscall executes.
1da177e4 2578 */
f801073f 2579retry:
9ea71503 2580 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
f801073f 2581 if (unlikely(ret != 0))
a5a2a0c7 2582 return ret;
f801073f
DH
2583
2584retry_private:
2585 *hb = queue_lock(q);
2586
e2970f2f 2587 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 2588
f801073f 2589 if (ret) {
0d00c7b2 2590 queue_unlock(*hb);
1da177e4 2591
e2970f2f 2592 ret = get_user(uval, uaddr);
e4dc5b7a 2593 if (ret)
f801073f 2594 goto out;
1da177e4 2595
b41277dc 2596 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2597 goto retry_private;
2598
ae791a2d 2599 put_futex_key(&q->key);
e4dc5b7a 2600 goto retry;
1da177e4 2601 }
ca5f9524 2602
f801073f 2603 if (uval != val) {
0d00c7b2 2604 queue_unlock(*hb);
f801073f 2605 ret = -EWOULDBLOCK;
2fff78c7 2606 }
1da177e4 2607
f801073f
DH
2608out:
2609 if (ret)
ae791a2d 2610 put_futex_key(&q->key);
f801073f
DH
2611 return ret;
2612}
2613
b41277dc
DH
2614static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2615 ktime_t *abs_time, u32 bitset)
f801073f
DH
2616{
2617 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
2618 struct restart_block *restart;
2619 struct futex_hash_bucket *hb;
5bdb05f9 2620 struct futex_q q = futex_q_init;
f801073f
DH
2621 int ret;
2622
2623 if (!bitset)
2624 return -EINVAL;
f801073f
DH
2625 q.bitset = bitset;
2626
2627 if (abs_time) {
2628 to = &timeout;
2629
b41277dc
DH
2630 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2631 CLOCK_REALTIME : CLOCK_MONOTONIC,
2632 HRTIMER_MODE_ABS);
f801073f
DH
2633 hrtimer_init_sleeper(to, current);
2634 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2635 current->timer_slack_ns);
2636 }
2637
d58e6576 2638retry:
7ada876a
DH
2639 /*
2640 * Prepare to wait on uaddr. On success, holds hb lock and increments
2641 * q.key refs.
2642 */
b41277dc 2643 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
2644 if (ret)
2645 goto out;
2646
ca5f9524 2647 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 2648 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
2649
2650 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 2651 ret = 0;
7ada876a 2652 /* unqueue_me() drops q.key ref */
1da177e4 2653 if (!unqueue_me(&q))
7ada876a 2654 goto out;
2fff78c7 2655 ret = -ETIMEDOUT;
ca5f9524 2656 if (to && !to->task)
7ada876a 2657 goto out;
72c1bbf3 2658
e2970f2f 2659 /*
d58e6576
TG
2660 * We expect signal_pending(current), but we might be the
2661 * victim of a spurious wakeup as well.
e2970f2f 2662 */
7ada876a 2663 if (!signal_pending(current))
d58e6576 2664 goto retry;
d58e6576 2665
2fff78c7 2666 ret = -ERESTARTSYS;
c19384b5 2667 if (!abs_time)
7ada876a 2668 goto out;
1da177e4 2669
f56141e3 2670 restart = &current->restart_block;
2fff78c7 2671 restart->fn = futex_wait_restart;
a3c74c52 2672 restart->futex.uaddr = uaddr;
2fff78c7 2673 restart->futex.val = val;
2456e855 2674 restart->futex.time = *abs_time;
2fff78c7 2675 restart->futex.bitset = bitset;
0cd9c649 2676 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2677
2fff78c7
PZ
2678 ret = -ERESTART_RESTARTBLOCK;
2679
42d35d48 2680out:
ca5f9524
DH
2681 if (to) {
2682 hrtimer_cancel(&to->timer);
2683 destroy_hrtimer_on_stack(&to->timer);
2684 }
c87e2837
IM
2685 return ret;
2686}
2687
72c1bbf3
NP
2688
2689static long futex_wait_restart(struct restart_block *restart)
2690{
a3c74c52 2691 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2692 ktime_t t, *tp = NULL;
72c1bbf3 2693
a72188d8 2694 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2456e855 2695 t = restart->futex.time;
a72188d8
DH
2696 tp = &t;
2697 }
72c1bbf3 2698 restart->fn = do_no_restart_syscall;
b41277dc
DH
2699
2700 return (long)futex_wait(uaddr, restart->futex.flags,
2701 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2702}
2703
2704
c87e2837
IM
2705/*
2706 * Userspace tried a 0 -> TID atomic transition of the futex value
2707 * and failed. The kernel side here does the whole locking operation:
767f509c
DB
2708 * if there are waiters then it will block as a consequence of relying
2709 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2710 * a 0 value of the futex too.).
2711 *
2712 * Also serves as futex trylock_pi()'ing, and due semantics.
c87e2837 2713 */
996636dd 2714static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
b41277dc 2715 ktime_t *time, int trylock)
c87e2837 2716{
c5780e97 2717 struct hrtimer_sleeper timeout, *to = NULL;
16ffa12d 2718 struct futex_pi_state *pi_state = NULL;
cfafcd11 2719 struct rt_mutex_waiter rt_waiter;
c87e2837 2720 struct futex_hash_bucket *hb;
5bdb05f9 2721 struct futex_q q = futex_q_init;
dd973998 2722 int res, ret;
c87e2837 2723
bc2eecd7
NP
2724 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2725 return -ENOSYS;
2726
c87e2837
IM
2727 if (refill_pi_state_cache())
2728 return -ENOMEM;
2729
c19384b5 2730 if (time) {
c5780e97 2731 to = &timeout;
237fc6e7
TG
2732 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2733 HRTIMER_MODE_ABS);
c5780e97 2734 hrtimer_init_sleeper(to, current);
cc584b21 2735 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
2736 }
2737
42d35d48 2738retry:
9ea71503 2739 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
c87e2837 2740 if (unlikely(ret != 0))
42d35d48 2741 goto out;
c87e2837 2742
e4dc5b7a 2743retry_private:
82af7aca 2744 hb = queue_lock(&q);
c87e2837 2745
bab5bc9e 2746 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 2747 if (unlikely(ret)) {
767f509c
DB
2748 /*
2749 * Atomic work succeeded and we got the lock,
2750 * or failed. Either way, we do _not_ block.
2751 */
778e9a9c 2752 switch (ret) {
1a52084d
DH
2753 case 1:
2754 /* We got the lock. */
2755 ret = 0;
2756 goto out_unlock_put_key;
2757 case -EFAULT:
2758 goto uaddr_faulted;
778e9a9c
AK
2759 case -EAGAIN:
2760 /*
af54d6a1
TG
2761 * Two reasons for this:
2762 * - Task is exiting and we just wait for the
2763 * exit to complete.
2764 * - The user space value changed.
778e9a9c 2765 */
0d00c7b2 2766 queue_unlock(hb);
ae791a2d 2767 put_futex_key(&q.key);
778e9a9c
AK
2768 cond_resched();
2769 goto retry;
778e9a9c 2770 default:
42d35d48 2771 goto out_unlock_put_key;
c87e2837 2772 }
c87e2837
IM
2773 }
2774
cfafcd11
PZ
2775 WARN_ON(!q.pi_state);
2776
c87e2837
IM
2777 /*
2778 * Only actually queue now that the atomic ops are done:
2779 */
cfafcd11 2780 __queue_me(&q, hb);
c87e2837 2781
cfafcd11 2782 if (trylock) {
5293c2ef 2783 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
c87e2837
IM
2784 /* Fixup the trylock return value: */
2785 ret = ret ? 0 : -EWOULDBLOCK;
cfafcd11 2786 goto no_block;
c87e2837
IM
2787 }
2788
56222b21
PZ
2789 rt_mutex_init_waiter(&rt_waiter);
2790
cfafcd11 2791 /*
56222b21
PZ
2792 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2793 * hold it while doing rt_mutex_start_proxy(), because then it will
2794 * include hb->lock in the blocking chain, even through we'll not in
2795 * fact hold it while blocking. This will lead it to report -EDEADLK
2796 * and BUG when futex_unlock_pi() interleaves with this.
2797 *
2798 * Therefore acquire wait_lock while holding hb->lock, but drop the
2799 * latter before calling rt_mutex_start_proxy_lock(). This still fully
2800 * serializes against futex_unlock_pi() as that does the exact same
2801 * lock handoff sequence.
cfafcd11 2802 */
56222b21
PZ
2803 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2804 spin_unlock(q.lock_ptr);
2805 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2806 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2807
cfafcd11
PZ
2808 if (ret) {
2809 if (ret == 1)
2810 ret = 0;
2811
56222b21 2812 spin_lock(q.lock_ptr);
cfafcd11
PZ
2813 goto no_block;
2814 }
2815
cfafcd11
PZ
2816
2817 if (unlikely(to))
2818 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2819
2820 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2821
a99e4e41 2822 spin_lock(q.lock_ptr);
cfafcd11
PZ
2823 /*
2824 * If we failed to acquire the lock (signal/timeout), we must
2825 * first acquire the hb->lock before removing the lock from the
2826 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
2827 * wait lists consistent.
56222b21
PZ
2828 *
2829 * In particular; it is important that futex_unlock_pi() can not
2830 * observe this inconsistency.
cfafcd11
PZ
2831 */
2832 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2833 ret = 0;
2834
2835no_block:
dd973998
DH
2836 /*
2837 * Fixup the pi_state owner and possibly acquire the lock if we
2838 * haven't already.
2839 */
ae791a2d 2840 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2841 /*
2842 * If fixup_owner() returned an error, proprogate that. If it acquired
2843 * the lock, clear our -ETIMEDOUT or -EINTR.
2844 */
2845 if (res)
2846 ret = (res < 0) ? res : 0;
c87e2837 2847
e8f6386c 2848 /*
dd973998
DH
2849 * If fixup_owner() faulted and was unable to handle the fault, unlock
2850 * it and return the fault to userspace.
e8f6386c 2851 */
16ffa12d
PZ
2852 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2853 pi_state = q.pi_state;
2854 get_pi_state(pi_state);
2855 }
e8f6386c 2856
778e9a9c
AK
2857 /* Unqueue and drop the lock */
2858 unqueue_me_pi(&q);
c87e2837 2859
16ffa12d
PZ
2860 if (pi_state) {
2861 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2862 put_pi_state(pi_state);
2863 }
2864
5ecb01cf 2865 goto out_put_key;
c87e2837 2866
42d35d48 2867out_unlock_put_key:
0d00c7b2 2868 queue_unlock(hb);
c87e2837 2869
42d35d48 2870out_put_key:
ae791a2d 2871 put_futex_key(&q.key);
42d35d48 2872out:
97181f9b
TG
2873 if (to) {
2874 hrtimer_cancel(&to->timer);
237fc6e7 2875 destroy_hrtimer_on_stack(&to->timer);
97181f9b 2876 }
dd973998 2877 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2878
42d35d48 2879uaddr_faulted:
0d00c7b2 2880 queue_unlock(hb);
778e9a9c 2881
d0725992 2882 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2883 if (ret)
2884 goto out_put_key;
c87e2837 2885
b41277dc 2886 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2887 goto retry_private;
2888
ae791a2d 2889 put_futex_key(&q.key);
e4dc5b7a 2890 goto retry;
c87e2837
IM
2891}
2892
c87e2837
IM
2893/*
2894 * Userspace attempted a TID -> 0 atomic transition, and failed.
2895 * This is the in-kernel slowpath: we look up the PI state (if any),
2896 * and do the rt-mutex unlock.
2897 */
b41277dc 2898static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837 2899{
ccf9e6a8 2900 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
38d47c1b 2901 union futex_key key = FUTEX_KEY_INIT;
ccf9e6a8 2902 struct futex_hash_bucket *hb;
499f5aca 2903 struct futex_q *top_waiter;
e4dc5b7a 2904 int ret;
c87e2837 2905
bc2eecd7
NP
2906 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2907 return -ENOSYS;
2908
c87e2837
IM
2909retry:
2910 if (get_user(uval, uaddr))
2911 return -EFAULT;
2912 /*
2913 * We release only a lock we actually own:
2914 */
c0c9ed15 2915 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2916 return -EPERM;
c87e2837 2917
9ea71503 2918 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
ccf9e6a8
TG
2919 if (ret)
2920 return ret;
c87e2837
IM
2921
2922 hb = hash_futex(&key);
2923 spin_lock(&hb->lock);
2924
c87e2837 2925 /*
ccf9e6a8
TG
2926 * Check waiters first. We do not trust user space values at
2927 * all and we at least want to know if user space fiddled
2928 * with the futex value instead of blindly unlocking.
c87e2837 2929 */
499f5aca
PZ
2930 top_waiter = futex_top_waiter(hb, &key);
2931 if (top_waiter) {
16ffa12d
PZ
2932 struct futex_pi_state *pi_state = top_waiter->pi_state;
2933
2934 ret = -EINVAL;
2935 if (!pi_state)
2936 goto out_unlock;
2937
2938 /*
2939 * If current does not own the pi_state then the futex is
2940 * inconsistent and user space fiddled with the futex value.
2941 */
2942 if (pi_state->owner != current)
2943 goto out_unlock;
2944
bebe5b51 2945 get_pi_state(pi_state);
802ab58d 2946 /*
bebe5b51
PZ
2947 * By taking wait_lock while still holding hb->lock, we ensure
2948 * there is no point where we hold neither; and therefore
2949 * wake_futex_pi() must observe a state consistent with what we
2950 * observed.
16ffa12d 2951 */
bebe5b51 2952 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
16ffa12d
PZ
2953 spin_unlock(&hb->lock);
2954
c74aef2d 2955 /* drops pi_state->pi_mutex.wait_lock */
16ffa12d
PZ
2956 ret = wake_futex_pi(uaddr, uval, pi_state);
2957
2958 put_pi_state(pi_state);
2959
2960 /*
2961 * Success, we're done! No tricky corner cases.
802ab58d
SAS
2962 */
2963 if (!ret)
2964 goto out_putkey;
c87e2837 2965 /*
ccf9e6a8
TG
2966 * The atomic access to the futex value generated a
2967 * pagefault, so retry the user-access and the wakeup:
c87e2837
IM
2968 */
2969 if (ret == -EFAULT)
2970 goto pi_faulted;
89e9e66b
SAS
2971 /*
2972 * A unconditional UNLOCK_PI op raced against a waiter
2973 * setting the FUTEX_WAITERS bit. Try again.
2974 */
2975 if (ret == -EAGAIN) {
89e9e66b
SAS
2976 put_futex_key(&key);
2977 goto retry;
2978 }
802ab58d
SAS
2979 /*
2980 * wake_futex_pi has detected invalid state. Tell user
2981 * space.
2982 */
16ffa12d 2983 goto out_putkey;
c87e2837 2984 }
ccf9e6a8 2985
c87e2837 2986 /*
ccf9e6a8
TG
2987 * We have no kernel internal state, i.e. no waiters in the
2988 * kernel. Waiters which are about to queue themselves are stuck
2989 * on hb->lock. So we can safely ignore them. We do neither
2990 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2991 * owner.
c87e2837 2992 */
16ffa12d
PZ
2993 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
2994 spin_unlock(&hb->lock);
13fbca4c 2995 goto pi_faulted;
16ffa12d 2996 }
c87e2837 2997
ccf9e6a8
TG
2998 /*
2999 * If uval has changed, let user space handle it.
3000 */
3001 ret = (curval == uval) ? 0 : -EAGAIN;
3002
c87e2837
IM
3003out_unlock:
3004 spin_unlock(&hb->lock);
802ab58d 3005out_putkey:
ae791a2d 3006 put_futex_key(&key);
c87e2837
IM
3007 return ret;
3008
3009pi_faulted:
ae791a2d 3010 put_futex_key(&key);
c87e2837 3011
d0725992 3012 ret = fault_in_user_writeable(uaddr);
b5686363 3013 if (!ret)
c87e2837
IM
3014 goto retry;
3015
1da177e4
LT
3016 return ret;
3017}
3018
52400ba9
DH
3019/**
3020 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3021 * @hb: the hash_bucket futex_q was original enqueued on
3022 * @q: the futex_q woken while waiting to be requeued
3023 * @key2: the futex_key of the requeue target futex
3024 * @timeout: the timeout associated with the wait (NULL if none)
3025 *
3026 * Detect if the task was woken on the initial futex as opposed to the requeue
3027 * target futex. If so, determine if it was a timeout or a signal that caused
3028 * the wakeup and return the appropriate error code to the caller. Must be
3029 * called with the hb lock held.
3030 *
6c23cbbd 3031 * Return:
7b4ff1ad
MCC
3032 * - 0 = no early wakeup detected;
3033 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
3034 */
3035static inline
3036int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3037 struct futex_q *q, union futex_key *key2,
3038 struct hrtimer_sleeper *timeout)
3039{
3040 int ret = 0;
3041
3042 /*
3043 * With the hb lock held, we avoid races while we process the wakeup.
3044 * We only need to hold hb (and not hb2) to ensure atomicity as the
3045 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3046 * It can't be requeued from uaddr2 to something else since we don't
3047 * support a PI aware source futex for requeue.
3048 */
3049 if (!match_futex(&q->key, key2)) {
3050 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3051 /*
3052 * We were woken prior to requeue by a timeout or a signal.
3053 * Unqueue the futex_q and determine which it was.
3054 */
2e12978a 3055 plist_del(&q->list, &hb->chain);
11d4616b 3056 hb_waiters_dec(hb);
52400ba9 3057
d58e6576 3058 /* Handle spurious wakeups gracefully */
11df6ddd 3059 ret = -EWOULDBLOCK;
52400ba9
DH
3060 if (timeout && !timeout->task)
3061 ret = -ETIMEDOUT;
d58e6576 3062 else if (signal_pending(current))
1c840c14 3063 ret = -ERESTARTNOINTR;
52400ba9
DH
3064 }
3065 return ret;
3066}
3067
3068/**
3069 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 3070 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 3071 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
ab51fbab 3072 * the same type, no requeueing from private to shared, etc.
52400ba9
DH
3073 * @val: the expected value of uaddr
3074 * @abs_time: absolute timeout
56ec1607 3075 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
3076 * @uaddr2: the pi futex we will take prior to returning to user-space
3077 *
3078 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
3079 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3080 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3081 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3082 * without one, the pi logic would not know which task to boost/deboost, if
3083 * there was a need to.
52400ba9
DH
3084 *
3085 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 3086 * via the following--
52400ba9 3087 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
3088 * 2) wakeup on uaddr2 after a requeue
3089 * 3) signal
3090 * 4) timeout
52400ba9 3091 *
cc6db4e6 3092 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
3093 *
3094 * If 2, we may then block on trying to take the rt_mutex and return via:
3095 * 5) successful lock
3096 * 6) signal
3097 * 7) timeout
3098 * 8) other lock acquisition failure
3099 *
cc6db4e6 3100 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
3101 *
3102 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3103 *
6c23cbbd 3104 * Return:
7b4ff1ad
MCC
3105 * - 0 - On success;
3106 * - <0 - On error
52400ba9 3107 */
b41277dc 3108static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 3109 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 3110 u32 __user *uaddr2)
52400ba9
DH
3111{
3112 struct hrtimer_sleeper timeout, *to = NULL;
16ffa12d 3113 struct futex_pi_state *pi_state = NULL;
52400ba9 3114 struct rt_mutex_waiter rt_waiter;
52400ba9 3115 struct futex_hash_bucket *hb;
5bdb05f9
DH
3116 union futex_key key2 = FUTEX_KEY_INIT;
3117 struct futex_q q = futex_q_init;
52400ba9 3118 int res, ret;
52400ba9 3119
bc2eecd7
NP
3120 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3121 return -ENOSYS;
3122
6f7b0a2a
DH
3123 if (uaddr == uaddr2)
3124 return -EINVAL;
3125
52400ba9
DH
3126 if (!bitset)
3127 return -EINVAL;
3128
3129 if (abs_time) {
3130 to = &timeout;
b41277dc
DH
3131 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
3132 CLOCK_REALTIME : CLOCK_MONOTONIC,
3133 HRTIMER_MODE_ABS);
52400ba9
DH
3134 hrtimer_init_sleeper(to, current);
3135 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3136 current->timer_slack_ns);
3137 }
3138
3139 /*
3140 * The waiter is allocated on our stack, manipulated by the requeue
3141 * code while we sleep on uaddr.
3142 */
50809358 3143 rt_mutex_init_waiter(&rt_waiter);
52400ba9 3144
9ea71503 3145 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
52400ba9
DH
3146 if (unlikely(ret != 0))
3147 goto out;
3148
84bc4af5
DH
3149 q.bitset = bitset;
3150 q.rt_waiter = &rt_waiter;
3151 q.requeue_pi_key = &key2;
3152
7ada876a
DH
3153 /*
3154 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3155 * count.
3156 */
b41277dc 3157 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
3158 if (ret)
3159 goto out_key2;
52400ba9 3160
e9c243a5
TG
3161 /*
3162 * The check above which compares uaddrs is not sufficient for
3163 * shared futexes. We need to compare the keys:
3164 */
3165 if (match_futex(&q.key, &key2)) {
13c42c2f 3166 queue_unlock(hb);
e9c243a5
TG
3167 ret = -EINVAL;
3168 goto out_put_keys;
3169 }
3170
52400ba9 3171 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 3172 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
3173
3174 spin_lock(&hb->lock);
3175 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3176 spin_unlock(&hb->lock);
3177 if (ret)
3178 goto out_put_keys;
3179
3180 /*
3181 * In order for us to be here, we know our q.key == key2, and since
3182 * we took the hb->lock above, we also know that futex_requeue() has
3183 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
3184 * race with the atomic proxy lock acquisition by the requeue code. The
3185 * futex_requeue dropped our key1 reference and incremented our key2
3186 * reference count.
52400ba9
DH
3187 */
3188
3189 /* Check if the requeue code acquired the second futex for us. */
3190 if (!q.rt_waiter) {
3191 /*
3192 * Got the lock. We might not be the anticipated owner if we
3193 * did a lock-steal - fix up the PI-state in that case.
3194 */
3195 if (q.pi_state && (q.pi_state->owner != current)) {
3196 spin_lock(q.lock_ptr);
ae791a2d 3197 ret = fixup_pi_state_owner(uaddr2, &q, current);
16ffa12d
PZ
3198 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3199 pi_state = q.pi_state;
3200 get_pi_state(pi_state);
3201 }
fb75a428
TG
3202 /*
3203 * Drop the reference to the pi state which
3204 * the requeue_pi() code acquired for us.
3205 */
29e9ee5d 3206 put_pi_state(q.pi_state);
52400ba9
DH
3207 spin_unlock(q.lock_ptr);
3208 }
3209 } else {
c236c8e9
PZ
3210 struct rt_mutex *pi_mutex;
3211
52400ba9
DH
3212 /*
3213 * We have been woken up by futex_unlock_pi(), a timeout, or a
3214 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3215 * the pi_state.
3216 */
f27071cb 3217 WARN_ON(!q.pi_state);
52400ba9 3218 pi_mutex = &q.pi_state->pi_mutex;
38d589f2 3219 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
52400ba9
DH
3220
3221 spin_lock(q.lock_ptr);
38d589f2
PZ
3222 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3223 ret = 0;
3224
3225 debug_rt_mutex_free_waiter(&rt_waiter);
52400ba9
DH
3226 /*
3227 * Fixup the pi_state owner and possibly acquire the lock if we
3228 * haven't already.
3229 */
ae791a2d 3230 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
3231 /*
3232 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 3233 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
3234 */
3235 if (res)
3236 ret = (res < 0) ? res : 0;
3237
c236c8e9
PZ
3238 /*
3239 * If fixup_pi_state_owner() faulted and was unable to handle
3240 * the fault, unlock the rt_mutex and return the fault to
3241 * userspace.
3242 */
16ffa12d
PZ
3243 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3244 pi_state = q.pi_state;
3245 get_pi_state(pi_state);
3246 }
c236c8e9 3247
52400ba9
DH
3248 /* Unqueue and drop the lock. */
3249 unqueue_me_pi(&q);
3250 }
3251
16ffa12d
PZ
3252 if (pi_state) {
3253 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3254 put_pi_state(pi_state);
3255 }
3256
c236c8e9 3257 if (ret == -EINTR) {
52400ba9 3258 /*
cc6db4e6
DH
3259 * We've already been requeued, but cannot restart by calling
3260 * futex_lock_pi() directly. We could restart this syscall, but
3261 * it would detect that the user space "val" changed and return
3262 * -EWOULDBLOCK. Save the overhead of the restart and return
3263 * -EWOULDBLOCK directly.
52400ba9 3264 */
2070887f 3265 ret = -EWOULDBLOCK;
52400ba9
DH
3266 }
3267
3268out_put_keys:
ae791a2d 3269 put_futex_key(&q.key);
c8b15a70 3270out_key2:
ae791a2d 3271 put_futex_key(&key2);
52400ba9
DH
3272
3273out:
3274 if (to) {
3275 hrtimer_cancel(&to->timer);
3276 destroy_hrtimer_on_stack(&to->timer);
3277 }
3278 return ret;
3279}
3280
0771dfef
IM
3281/*
3282 * Support for robust futexes: the kernel cleans up held futexes at
3283 * thread exit time.
3284 *
3285 * Implementation: user-space maintains a per-thread list of locks it
3286 * is holding. Upon do_exit(), the kernel carefully walks this list,
3287 * and marks all locks that are owned by this thread with the
c87e2837 3288 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
3289 * always manipulated with the lock held, so the list is private and
3290 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3291 * field, to allow the kernel to clean up if the thread dies after
3292 * acquiring the lock, but just before it could have added itself to
3293 * the list. There can only be one such pending lock.
3294 */
3295
3296/**
d96ee56c
DH
3297 * sys_set_robust_list() - Set the robust-futex list head of a task
3298 * @head: pointer to the list-head
3299 * @len: length of the list-head, as userspace expects
0771dfef 3300 */
836f92ad
HC
3301SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3302 size_t, len)
0771dfef 3303{
a0c1e907
TG
3304 if (!futex_cmpxchg_enabled)
3305 return -ENOSYS;
0771dfef
IM
3306 /*
3307 * The kernel knows only one size for now:
3308 */
3309 if (unlikely(len != sizeof(*head)))
3310 return -EINVAL;
3311
3312 current->robust_list = head;
3313
3314 return 0;
3315}
3316
3317/**
d96ee56c
DH
3318 * sys_get_robust_list() - Get the robust-futex list head of a task
3319 * @pid: pid of the process [zero for current task]
3320 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3321 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 3322 */
836f92ad
HC
3323SYSCALL_DEFINE3(get_robust_list, int, pid,
3324 struct robust_list_head __user * __user *, head_ptr,
3325 size_t __user *, len_ptr)
0771dfef 3326{
ba46df98 3327 struct robust_list_head __user *head;
0771dfef 3328 unsigned long ret;
bdbb776f 3329 struct task_struct *p;
0771dfef 3330
a0c1e907
TG
3331 if (!futex_cmpxchg_enabled)
3332 return -ENOSYS;
3333
bdbb776f
KC
3334 rcu_read_lock();
3335
3336 ret = -ESRCH;
0771dfef 3337 if (!pid)
bdbb776f 3338 p = current;
0771dfef 3339 else {
228ebcbe 3340 p = find_task_by_vpid(pid);
0771dfef
IM
3341 if (!p)
3342 goto err_unlock;
0771dfef
IM
3343 }
3344
bdbb776f 3345 ret = -EPERM;
caaee623 3346 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
bdbb776f
KC
3347 goto err_unlock;
3348
3349 head = p->robust_list;
3350 rcu_read_unlock();
3351
0771dfef
IM
3352 if (put_user(sizeof(*head), len_ptr))
3353 return -EFAULT;
3354 return put_user(head, head_ptr);
3355
3356err_unlock:
aaa2a97e 3357 rcu_read_unlock();
0771dfef
IM
3358
3359 return ret;
3360}
3361
3362/*
3363 * Process a futex-list entry, check whether it's owned by the
3364 * dying task, and do notification if so:
3365 */
04e7712f 3366static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 3367{
7cfdaf38 3368 u32 uval, uninitialized_var(nval), mval;
0771dfef 3369
8f17d3a5
IM
3370retry:
3371 if (get_user(uval, uaddr))
0771dfef
IM
3372 return -1;
3373
b488893a 3374 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
3375 /*
3376 * Ok, this dying thread is truly holding a futex
3377 * of interest. Set the OWNER_DIED bit atomically
3378 * via cmpxchg, and if the value had FUTEX_WAITERS
3379 * set, wake up a waiter (if any). (We have to do a
3380 * futex_wake() even if OWNER_DIED is already set -
3381 * to handle the rare but possible case of recursive
3382 * thread-death.) The rest of the cleanup is done in
3383 * userspace.
3384 */
e3f2ddea 3385 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
6e0aa9f8
TG
3386 /*
3387 * We are not holding a lock here, but we want to have
3388 * the pagefault_disable/enable() protection because
3389 * we want to handle the fault gracefully. If the
3390 * access fails we try to fault in the futex with R/W
3391 * verification via get_user_pages. get_user() above
3392 * does not guarantee R/W access. If that fails we
3393 * give up and leave the futex locked.
3394 */
3395 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3396 if (fault_in_user_writeable(uaddr))
3397 return -1;
3398 goto retry;
3399 }
c87e2837 3400 if (nval != uval)
8f17d3a5 3401 goto retry;
0771dfef 3402
e3f2ddea
IM
3403 /*
3404 * Wake robust non-PI futexes here. The wakeup of
3405 * PI futexes happens in exit_pi_state():
3406 */
36cf3b5c 3407 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 3408 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
3409 }
3410 return 0;
3411}
3412
e3f2ddea
IM
3413/*
3414 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3415 */
3416static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 3417 struct robust_list __user * __user *head,
1dcc41bb 3418 unsigned int *pi)
e3f2ddea
IM
3419{
3420 unsigned long uentry;
3421
ba46df98 3422 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
3423 return -EFAULT;
3424
ba46df98 3425 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
3426 *pi = uentry & 1;
3427
3428 return 0;
3429}
3430
0771dfef
IM
3431/*
3432 * Walk curr->robust_list (very carefully, it's a userspace list!)
3433 * and mark any locks found there dead, and notify any waiters.
3434 *
3435 * We silently return on any sign of list-walking problem.
3436 */
3437void exit_robust_list(struct task_struct *curr)
3438{
3439 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 3440 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
3441 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3442 unsigned int uninitialized_var(next_pi);
0771dfef 3443 unsigned long futex_offset;
9f96cb1e 3444 int rc;
0771dfef 3445
a0c1e907
TG
3446 if (!futex_cmpxchg_enabled)
3447 return;
3448
0771dfef
IM
3449 /*
3450 * Fetch the list head (which was registered earlier, via
3451 * sys_set_robust_list()):
3452 */
e3f2ddea 3453 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
3454 return;
3455 /*
3456 * Fetch the relative futex offset:
3457 */
3458 if (get_user(futex_offset, &head->futex_offset))
3459 return;
3460 /*
3461 * Fetch any possibly pending lock-add first, and handle it
3462 * if it exists:
3463 */
e3f2ddea 3464 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 3465 return;
e3f2ddea 3466
9f96cb1e 3467 next_entry = NULL; /* avoid warning with gcc */
0771dfef 3468 while (entry != &head->list) {
9f96cb1e
MS
3469 /*
3470 * Fetch the next entry in the list before calling
3471 * handle_futex_death:
3472 */
3473 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
3474 /*
3475 * A pending lock might already be on the list, so
c87e2837 3476 * don't process it twice:
0771dfef
IM
3477 */
3478 if (entry != pending)
ba46df98 3479 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 3480 curr, pi))
0771dfef 3481 return;
9f96cb1e 3482 if (rc)
0771dfef 3483 return;
9f96cb1e
MS
3484 entry = next_entry;
3485 pi = next_pi;
0771dfef
IM
3486 /*
3487 * Avoid excessively long or circular lists:
3488 */
3489 if (!--limit)
3490 break;
3491
3492 cond_resched();
3493 }
9f96cb1e
MS
3494
3495 if (pending)
3496 handle_futex_death((void __user *)pending + futex_offset,
3497 curr, pip);
0771dfef
IM
3498}
3499
c19384b5 3500long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 3501 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 3502{
81b40539 3503 int cmd = op & FUTEX_CMD_MASK;
b41277dc 3504 unsigned int flags = 0;
34f01cc1
ED
3505
3506 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 3507 flags |= FLAGS_SHARED;
1da177e4 3508
b41277dc
DH
3509 if (op & FUTEX_CLOCK_REALTIME) {
3510 flags |= FLAGS_CLOCKRT;
337f1304
DH
3511 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3512 cmd != FUTEX_WAIT_REQUEUE_PI)
b41277dc
DH
3513 return -ENOSYS;
3514 }
1da177e4 3515
59263b51
TG
3516 switch (cmd) {
3517 case FUTEX_LOCK_PI:
3518 case FUTEX_UNLOCK_PI:
3519 case FUTEX_TRYLOCK_PI:
3520 case FUTEX_WAIT_REQUEUE_PI:
3521 case FUTEX_CMP_REQUEUE_PI:
3522 if (!futex_cmpxchg_enabled)
3523 return -ENOSYS;
3524 }
3525
34f01cc1 3526 switch (cmd) {
1da177e4 3527 case FUTEX_WAIT:
cd689985 3528 val3 = FUTEX_BITSET_MATCH_ANY;
b639186f 3529 /* fall through */
cd689985 3530 case FUTEX_WAIT_BITSET:
81b40539 3531 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 3532 case FUTEX_WAKE:
cd689985 3533 val3 = FUTEX_BITSET_MATCH_ANY;
b639186f 3534 /* fall through */
cd689985 3535 case FUTEX_WAKE_BITSET:
81b40539 3536 return futex_wake(uaddr, flags, val, val3);
1da177e4 3537 case FUTEX_REQUEUE:
81b40539 3538 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 3539 case FUTEX_CMP_REQUEUE:
81b40539 3540 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 3541 case FUTEX_WAKE_OP:
81b40539 3542 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 3543 case FUTEX_LOCK_PI:
996636dd 3544 return futex_lock_pi(uaddr, flags, timeout, 0);
c87e2837 3545 case FUTEX_UNLOCK_PI:
81b40539 3546 return futex_unlock_pi(uaddr, flags);
c87e2837 3547 case FUTEX_TRYLOCK_PI:
996636dd 3548 return futex_lock_pi(uaddr, flags, NULL, 1);
52400ba9
DH
3549 case FUTEX_WAIT_REQUEUE_PI:
3550 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
3551 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3552 uaddr2);
52400ba9 3553 case FUTEX_CMP_REQUEUE_PI:
81b40539 3554 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 3555 }
81b40539 3556 return -ENOSYS;
1da177e4
LT
3557}
3558
3559
17da2bd9
HC
3560SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3561 struct timespec __user *, utime, u32 __user *, uaddr2,
3562 u32, val3)
1da177e4 3563{
c19384b5
PP
3564 struct timespec ts;
3565 ktime_t t, *tp = NULL;
e2970f2f 3566 u32 val2 = 0;
34f01cc1 3567 int cmd = op & FUTEX_CMD_MASK;
1da177e4 3568
cd689985 3569 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
3570 cmd == FUTEX_WAIT_BITSET ||
3571 cmd == FUTEX_WAIT_REQUEUE_PI)) {
ab51fbab
DB
3572 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3573 return -EFAULT;
c19384b5 3574 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 3575 return -EFAULT;
c19384b5 3576 if (!timespec_valid(&ts))
9741ef96 3577 return -EINVAL;
c19384b5
PP
3578
3579 t = timespec_to_ktime(ts);
34f01cc1 3580 if (cmd == FUTEX_WAIT)
5a7780e7 3581 t = ktime_add_safe(ktime_get(), t);
c19384b5 3582 tp = &t;
1da177e4
LT
3583 }
3584 /*
52400ba9 3585 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 3586 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 3587 */
f54f0986 3588 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 3589 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 3590 val2 = (u32) (unsigned long) utime;
1da177e4 3591
c19384b5 3592 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
3593}
3594
04e7712f
AB
3595#ifdef CONFIG_COMPAT
3596/*
3597 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3598 */
3599static inline int
3600compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3601 compat_uptr_t __user *head, unsigned int *pi)
3602{
3603 if (get_user(*uentry, head))
3604 return -EFAULT;
3605
3606 *entry = compat_ptr((*uentry) & ~1);
3607 *pi = (unsigned int)(*uentry) & 1;
3608
3609 return 0;
3610}
3611
3612static void __user *futex_uaddr(struct robust_list __user *entry,
3613 compat_long_t futex_offset)
3614{
3615 compat_uptr_t base = ptr_to_compat(entry);
3616 void __user *uaddr = compat_ptr(base + futex_offset);
3617
3618 return uaddr;
3619}
3620
3621/*
3622 * Walk curr->robust_list (very carefully, it's a userspace list!)
3623 * and mark any locks found there dead, and notify any waiters.
3624 *
3625 * We silently return on any sign of list-walking problem.
3626 */
3627void compat_exit_robust_list(struct task_struct *curr)
3628{
3629 struct compat_robust_list_head __user *head = curr->compat_robust_list;
3630 struct robust_list __user *entry, *next_entry, *pending;
3631 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3632 unsigned int uninitialized_var(next_pi);
3633 compat_uptr_t uentry, next_uentry, upending;
3634 compat_long_t futex_offset;
3635 int rc;
3636
3637 if (!futex_cmpxchg_enabled)
3638 return;
3639
3640 /*
3641 * Fetch the list head (which was registered earlier, via
3642 * sys_set_robust_list()):
3643 */
3644 if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3645 return;
3646 /*
3647 * Fetch the relative futex offset:
3648 */
3649 if (get_user(futex_offset, &head->futex_offset))
3650 return;
3651 /*
3652 * Fetch any possibly pending lock-add first, and handle it
3653 * if it exists:
3654 */
3655 if (compat_fetch_robust_entry(&upending, &pending,
3656 &head->list_op_pending, &pip))
3657 return;
3658
3659 next_entry = NULL; /* avoid warning with gcc */
3660 while (entry != (struct robust_list __user *) &head->list) {
3661 /*
3662 * Fetch the next entry in the list before calling
3663 * handle_futex_death:
3664 */
3665 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3666 (compat_uptr_t __user *)&entry->next, &next_pi);
3667 /*
3668 * A pending lock might already be on the list, so
3669 * dont process it twice:
3670 */
3671 if (entry != pending) {
3672 void __user *uaddr = futex_uaddr(entry, futex_offset);
3673
3674 if (handle_futex_death(uaddr, curr, pi))
3675 return;
3676 }
3677 if (rc)
3678 return;
3679 uentry = next_uentry;
3680 entry = next_entry;
3681 pi = next_pi;
3682 /*
3683 * Avoid excessively long or circular lists:
3684 */
3685 if (!--limit)
3686 break;
3687
3688 cond_resched();
3689 }
3690 if (pending) {
3691 void __user *uaddr = futex_uaddr(pending, futex_offset);
3692
3693 handle_futex_death(uaddr, curr, pip);
3694 }
3695}
3696
3697COMPAT_SYSCALL_DEFINE2(set_robust_list,
3698 struct compat_robust_list_head __user *, head,
3699 compat_size_t, len)
3700{
3701 if (!futex_cmpxchg_enabled)
3702 return -ENOSYS;
3703
3704 if (unlikely(len != sizeof(*head)))
3705 return -EINVAL;
3706
3707 current->compat_robust_list = head;
3708
3709 return 0;
3710}
3711
3712COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3713 compat_uptr_t __user *, head_ptr,
3714 compat_size_t __user *, len_ptr)
3715{
3716 struct compat_robust_list_head __user *head;
3717 unsigned long ret;
3718 struct task_struct *p;
3719
3720 if (!futex_cmpxchg_enabled)
3721 return -ENOSYS;
3722
3723 rcu_read_lock();
3724
3725 ret = -ESRCH;
3726 if (!pid)
3727 p = current;
3728 else {
3729 p = find_task_by_vpid(pid);
3730 if (!p)
3731 goto err_unlock;
3732 }
3733
3734 ret = -EPERM;
3735 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3736 goto err_unlock;
3737
3738 head = p->compat_robust_list;
3739 rcu_read_unlock();
3740
3741 if (put_user(sizeof(*head), len_ptr))
3742 return -EFAULT;
3743 return put_user(ptr_to_compat(head), head_ptr);
3744
3745err_unlock:
3746 rcu_read_unlock();
3747
3748 return ret;
3749}
3750
3751COMPAT_SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3752 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
3753 u32, val3)
3754{
3755 struct timespec ts;
3756 ktime_t t, *tp = NULL;
3757 int val2 = 0;
3758 int cmd = op & FUTEX_CMD_MASK;
3759
3760 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3761 cmd == FUTEX_WAIT_BITSET ||
3762 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3763 if (compat_get_timespec(&ts, utime))
3764 return -EFAULT;
3765 if (!timespec_valid(&ts))
3766 return -EINVAL;
3767
3768 t = timespec_to_ktime(ts);
3769 if (cmd == FUTEX_WAIT)
3770 t = ktime_add_safe(ktime_get(), t);
3771 tp = &t;
3772 }
3773 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3774 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3775 val2 = (int) (unsigned long) utime;
3776
3777 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3778}
3779#endif /* CONFIG_COMPAT */
3780
03b8c7b6 3781static void __init futex_detect_cmpxchg(void)
1da177e4 3782{
03b8c7b6 3783#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 3784 u32 curval;
03b8c7b6
HC
3785
3786 /*
3787 * This will fail and we want it. Some arch implementations do
3788 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3789 * functionality. We want to know that before we call in any
3790 * of the complex code paths. Also we want to prevent
3791 * registration of robust lists in that case. NULL is
3792 * guaranteed to fault and we get -EFAULT on functional
3793 * implementation, the non-functional ones will return
3794 * -ENOSYS.
3795 */
3796 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3797 futex_cmpxchg_enabled = 1;
3798#endif
3799}
3800
3801static int __init futex_init(void)
3802{
63b1a816 3803 unsigned int futex_shift;
a52b89eb
DB
3804 unsigned long i;
3805
3806#if CONFIG_BASE_SMALL
3807 futex_hashsize = 16;
3808#else
3809 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3810#endif
3811
3812 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3813 futex_hashsize, 0,
3814 futex_hashsize < 256 ? HASH_SMALL : 0,
63b1a816
HC
3815 &futex_shift, NULL,
3816 futex_hashsize, futex_hashsize);
3817 futex_hashsize = 1UL << futex_shift;
03b8c7b6
HC
3818
3819 futex_detect_cmpxchg();
a0c1e907 3820
a52b89eb 3821 for (i = 0; i < futex_hashsize; i++) {
11d4616b 3822 atomic_set(&futex_queues[i].waiters, 0);
732375c6 3823 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
3824 spin_lock_init(&futex_queues[i].lock);
3825 }
3826
1da177e4
LT
3827 return 0;
3828}
25f71d1c 3829core_initcall(futex_init);