bpf, sockmap: Check skb_verdict and skb_parser programs explicitly
[linux-2.6-block.git] / kernel / futex.c
CommitLineData
1a59d1b8 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4
LT
2/*
3 * Fast Userspace Mutexes (which I call "Futexes!").
4 * (C) Rusty Russell, IBM 2002
5 *
6 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 *
9 * Removed page pinning, fix privately mapped COW pages and other cleanups
10 * (C) Copyright 2003, 2004 Jamie Lokier
11 *
0771dfef
IM
12 * Robust futex support started by Ingo Molnar
13 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 *
c87e2837
IM
16 * PI-futex support started by Ingo Molnar and Thomas Gleixner
17 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 *
34f01cc1
ED
20 * PRIVATE futexes by Eric Dumazet
21 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 *
52400ba9
DH
23 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24 * Copyright (C) IBM Corporation, 2009
25 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 *
1da177e4
LT
27 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28 * enough at me, Linus for the original (flawed) idea, Matthew
29 * Kirkwood for proof-of-concept implementation.
30 *
31 * "The futexes are also cursed."
32 * "But they come in a choice of three flavours!"
1da177e4 33 */
04e7712f 34#include <linux/compat.h>
1da177e4 35#include <linux/jhash.h>
1da177e4
LT
36#include <linux/pagemap.h>
37#include <linux/syscalls.h>
13d60f4b 38#include <linux/hugetlb.h>
88c8004f 39#include <linux/freezer.h>
57c8a661 40#include <linux/memblock.h>
ab51fbab 41#include <linux/fault-inject.h>
b488893a 42
4732efbe 43#include <asm/futex.h>
1da177e4 44
1696a8be 45#include "locking/rtmutex_common.h"
c87e2837 46
99b60ce6 47/*
d7e8af1a
DB
48 * READ this before attempting to hack on futexes!
49 *
50 * Basic futex operation and ordering guarantees
51 * =============================================
99b60ce6
TG
52 *
53 * The waiter reads the futex value in user space and calls
54 * futex_wait(). This function computes the hash bucket and acquires
55 * the hash bucket lock. After that it reads the futex user space value
b0c29f79
DB
56 * again and verifies that the data has not changed. If it has not changed
57 * it enqueues itself into the hash bucket, releases the hash bucket lock
58 * and schedules.
99b60ce6
TG
59 *
60 * The waker side modifies the user space value of the futex and calls
b0c29f79
DB
61 * futex_wake(). This function computes the hash bucket and acquires the
62 * hash bucket lock. Then it looks for waiters on that futex in the hash
63 * bucket and wakes them.
99b60ce6 64 *
b0c29f79
DB
65 * In futex wake up scenarios where no tasks are blocked on a futex, taking
66 * the hb spinlock can be avoided and simply return. In order for this
67 * optimization to work, ordering guarantees must exist so that the waiter
68 * being added to the list is acknowledged when the list is concurrently being
69 * checked by the waker, avoiding scenarios like the following:
99b60ce6
TG
70 *
71 * CPU 0 CPU 1
72 * val = *futex;
73 * sys_futex(WAIT, futex, val);
74 * futex_wait(futex, val);
75 * uval = *futex;
76 * *futex = newval;
77 * sys_futex(WAKE, futex);
78 * futex_wake(futex);
79 * if (queue_empty())
80 * return;
81 * if (uval == val)
82 * lock(hash_bucket(futex));
83 * queue();
84 * unlock(hash_bucket(futex));
85 * schedule();
86 *
87 * This would cause the waiter on CPU 0 to wait forever because it
88 * missed the transition of the user space value from val to newval
89 * and the waker did not find the waiter in the hash bucket queue.
99b60ce6 90 *
b0c29f79
DB
91 * The correct serialization ensures that a waiter either observes
92 * the changed user space value before blocking or is woken by a
93 * concurrent waker:
94 *
95 * CPU 0 CPU 1
99b60ce6
TG
96 * val = *futex;
97 * sys_futex(WAIT, futex, val);
98 * futex_wait(futex, val);
b0c29f79 99 *
d7e8af1a 100 * waiters++; (a)
8ad7b378
DB
101 * smp_mb(); (A) <-- paired with -.
102 * |
103 * lock(hash_bucket(futex)); |
104 * |
105 * uval = *futex; |
106 * | *futex = newval;
107 * | sys_futex(WAKE, futex);
108 * | futex_wake(futex);
109 * |
110 * `--------> smp_mb(); (B)
99b60ce6 111 * if (uval == val)
b0c29f79 112 * queue();
99b60ce6 113 * unlock(hash_bucket(futex));
b0c29f79
DB
114 * schedule(); if (waiters)
115 * lock(hash_bucket(futex));
d7e8af1a
DB
116 * else wake_waiters(futex);
117 * waiters--; (b) unlock(hash_bucket(futex));
b0c29f79 118 *
d7e8af1a
DB
119 * Where (A) orders the waiters increment and the futex value read through
120 * atomic operations (see hb_waiters_inc) and where (B) orders the write
4b39f99c 121 * to futex and the waiters read (see hb_waiters_pending()).
b0c29f79
DB
122 *
123 * This yields the following case (where X:=waiters, Y:=futex):
124 *
125 * X = Y = 0
126 *
127 * w[X]=1 w[Y]=1
128 * MB MB
129 * r[Y]=y r[X]=x
130 *
131 * Which guarantees that x==0 && y==0 is impossible; which translates back into
132 * the guarantee that we cannot both miss the futex variable change and the
133 * enqueue.
d7e8af1a
DB
134 *
135 * Note that a new waiter is accounted for in (a) even when it is possible that
136 * the wait call can return error, in which case we backtrack from it in (b).
137 * Refer to the comment in queue_lock().
138 *
139 * Similarly, in order to account for waiters being requeued on another
140 * address we always increment the waiters for the destination bucket before
141 * acquiring the lock. It then decrements them again after releasing it -
142 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
143 * will do the additional required waiter count housekeeping. This is done for
144 * double_lock_hb() and double_unlock_hb(), respectively.
99b60ce6
TG
145 */
146
04e7712f
AB
147#ifdef CONFIG_HAVE_FUTEX_CMPXCHG
148#define futex_cmpxchg_enabled 1
149#else
150static int __read_mostly futex_cmpxchg_enabled;
03b8c7b6 151#endif
a0c1e907 152
b41277dc
DH
153/*
154 * Futex flags used to encode options to functions and preserve them across
155 * restarts.
156 */
784bdf3b
TG
157#ifdef CONFIG_MMU
158# define FLAGS_SHARED 0x01
159#else
160/*
161 * NOMMU does not have per process address space. Let the compiler optimize
162 * code away.
163 */
164# define FLAGS_SHARED 0x00
165#endif
b41277dc
DH
166#define FLAGS_CLOCKRT 0x02
167#define FLAGS_HAS_TIMEOUT 0x04
168
c87e2837
IM
169/*
170 * Priority Inheritance state:
171 */
172struct futex_pi_state {
173 /*
174 * list of 'owned' pi_state instances - these have to be
175 * cleaned up in do_exit() if the task exits prematurely:
176 */
177 struct list_head list;
178
179 /*
180 * The PI object:
181 */
182 struct rt_mutex pi_mutex;
183
184 struct task_struct *owner;
49262de2 185 refcount_t refcount;
c87e2837
IM
186
187 union futex_key key;
3859a271 188} __randomize_layout;
c87e2837 189
d8d88fbb
DH
190/**
191 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 192 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
193 * @task: the task waiting on the futex
194 * @lock_ptr: the hash bucket lock
195 * @key: the key the futex is hashed on
196 * @pi_state: optional priority inheritance state
197 * @rt_waiter: rt_waiter storage for use with requeue_pi
198 * @requeue_pi_key: the requeue_pi target futex key
199 * @bitset: bitset for the optional bitmasked wakeup
200 *
ac6424b9 201 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
1da177e4
LT
202 * we can wake only the relevant ones (hashed queues may be shared).
203 *
204 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 205 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 206 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
207 * the second.
208 *
209 * PI futexes are typically woken before they are removed from the hash list via
210 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
211 */
212struct futex_q {
ec92d082 213 struct plist_node list;
1da177e4 214
d8d88fbb 215 struct task_struct *task;
1da177e4 216 spinlock_t *lock_ptr;
1da177e4 217 union futex_key key;
c87e2837 218 struct futex_pi_state *pi_state;
52400ba9 219 struct rt_mutex_waiter *rt_waiter;
84bc4af5 220 union futex_key *requeue_pi_key;
cd689985 221 u32 bitset;
3859a271 222} __randomize_layout;
1da177e4 223
5bdb05f9
DH
224static const struct futex_q futex_q_init = {
225 /* list gets initialized in queue_me()*/
226 .key = FUTEX_KEY_INIT,
227 .bitset = FUTEX_BITSET_MATCH_ANY
228};
229
1da177e4 230/*
b2d0994b
DH
231 * Hash buckets are shared by all the futex_keys that hash to the same
232 * location. Each key may have multiple futex_q structures, one for each task
233 * waiting on a futex.
1da177e4
LT
234 */
235struct futex_hash_bucket {
11d4616b 236 atomic_t waiters;
ec92d082
PP
237 spinlock_t lock;
238 struct plist_head chain;
a52b89eb 239} ____cacheline_aligned_in_smp;
1da177e4 240
ac742d37
RV
241/*
242 * The base of the bucket array and its size are always used together
243 * (after initialization only in hash_futex()), so ensure that they
244 * reside in the same cacheline.
245 */
246static struct {
247 struct futex_hash_bucket *queues;
248 unsigned long hashsize;
249} __futex_data __read_mostly __aligned(2*sizeof(long));
250#define futex_queues (__futex_data.queues)
251#define futex_hashsize (__futex_data.hashsize)
a52b89eb 252
1da177e4 253
ab51fbab
DB
254/*
255 * Fault injections for futexes.
256 */
257#ifdef CONFIG_FAIL_FUTEX
258
259static struct {
260 struct fault_attr attr;
261
621a5f7a 262 bool ignore_private;
ab51fbab
DB
263} fail_futex = {
264 .attr = FAULT_ATTR_INITIALIZER,
621a5f7a 265 .ignore_private = false,
ab51fbab
DB
266};
267
268static int __init setup_fail_futex(char *str)
269{
270 return setup_fault_attr(&fail_futex.attr, str);
271}
272__setup("fail_futex=", setup_fail_futex);
273
5d285a7f 274static bool should_fail_futex(bool fshared)
ab51fbab
DB
275{
276 if (fail_futex.ignore_private && !fshared)
277 return false;
278
279 return should_fail(&fail_futex.attr, 1);
280}
281
282#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
283
284static int __init fail_futex_debugfs(void)
285{
286 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
287 struct dentry *dir;
288
289 dir = fault_create_debugfs_attr("fail_futex", NULL,
290 &fail_futex.attr);
291 if (IS_ERR(dir))
292 return PTR_ERR(dir);
293
0365aeba
GKH
294 debugfs_create_bool("ignore-private", mode, dir,
295 &fail_futex.ignore_private);
ab51fbab
DB
296 return 0;
297}
298
299late_initcall(fail_futex_debugfs);
300
301#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
302
303#else
304static inline bool should_fail_futex(bool fshared)
305{
306 return false;
307}
308#endif /* CONFIG_FAIL_FUTEX */
309
ba31c1a4
TG
310#ifdef CONFIG_COMPAT
311static void compat_exit_robust_list(struct task_struct *curr);
312#else
313static inline void compat_exit_robust_list(struct task_struct *curr) { }
314#endif
315
11d4616b
LT
316/*
317 * Reflects a new waiter being added to the waitqueue.
318 */
319static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
b0c29f79
DB
320{
321#ifdef CONFIG_SMP
11d4616b 322 atomic_inc(&hb->waiters);
b0c29f79 323 /*
11d4616b 324 * Full barrier (A), see the ordering comment above.
b0c29f79 325 */
4e857c58 326 smp_mb__after_atomic();
11d4616b
LT
327#endif
328}
329
330/*
331 * Reflects a waiter being removed from the waitqueue by wakeup
332 * paths.
333 */
334static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
335{
336#ifdef CONFIG_SMP
337 atomic_dec(&hb->waiters);
338#endif
339}
b0c29f79 340
11d4616b
LT
341static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
342{
343#ifdef CONFIG_SMP
4b39f99c
PZ
344 /*
345 * Full barrier (B), see the ordering comment above.
346 */
347 smp_mb();
11d4616b 348 return atomic_read(&hb->waiters);
b0c29f79 349#else
11d4616b 350 return 1;
b0c29f79
DB
351#endif
352}
353
e8b61b3f
TG
354/**
355 * hash_futex - Return the hash bucket in the global hash
356 * @key: Pointer to the futex key for which the hash is calculated
357 *
358 * We hash on the keys returned from get_futex_key (see below) and return the
359 * corresponding hash bucket in the global hash.
1da177e4
LT
360 */
361static struct futex_hash_bucket *hash_futex(union futex_key *key)
362{
8d677436 363 u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
1da177e4 364 key->both.offset);
8d677436 365
a52b89eb 366 return &futex_queues[hash & (futex_hashsize - 1)];
1da177e4
LT
367}
368
e8b61b3f
TG
369
370/**
371 * match_futex - Check whether two futex keys are equal
372 * @key1: Pointer to key1
373 * @key2: Pointer to key2
374 *
1da177e4
LT
375 * Return 1 if two futex_keys are equal, 0 otherwise.
376 */
377static inline int match_futex(union futex_key *key1, union futex_key *key2)
378{
2bc87203
DH
379 return (key1 && key2
380 && key1->both.word == key2->both.word
1da177e4
LT
381 && key1->both.ptr == key2->both.ptr
382 && key1->both.offset == key2->both.offset);
383}
384
96d4f267
LT
385enum futex_access {
386 FUTEX_READ,
387 FUTEX_WRITE
388};
389
5ca584d9
WL
390/**
391 * futex_setup_timer - set up the sleeping hrtimer.
392 * @time: ptr to the given timeout value
393 * @timeout: the hrtimer_sleeper structure to be set up
394 * @flags: futex flags
395 * @range_ns: optional range in ns
396 *
397 * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
398 * value given
399 */
400static inline struct hrtimer_sleeper *
401futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
402 int flags, u64 range_ns)
403{
404 if (!time)
405 return NULL;
406
dbc1625f
SAS
407 hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
408 CLOCK_REALTIME : CLOCK_MONOTONIC,
409 HRTIMER_MODE_ABS);
5ca584d9
WL
410 /*
411 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
412 * effectively the same as calling hrtimer_set_expires().
413 */
414 hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
415
416 return timeout;
417}
418
8019ad13
PZ
419/*
420 * Generate a machine wide unique identifier for this inode.
421 *
422 * This relies on u64 not wrapping in the life-time of the machine; which with
423 * 1ns resolution means almost 585 years.
424 *
425 * This further relies on the fact that a well formed program will not unmap
426 * the file while it has a (shared) futex waiting on it. This mapping will have
427 * a file reference which pins the mount and inode.
428 *
429 * If for some reason an inode gets evicted and read back in again, it will get
430 * a new sequence number and will _NOT_ match, even though it is the exact same
431 * file.
432 *
433 * It is important that match_futex() will never have a false-positive, esp.
434 * for PI futexes that can mess up the state. The above argues that false-negatives
435 * are only possible for malformed programs.
436 */
437static u64 get_inode_sequence_number(struct inode *inode)
438{
439 static atomic64_t i_seq;
440 u64 old;
441
442 /* Does the inode already have a sequence number? */
443 old = atomic64_read(&inode->i_sequence);
444 if (likely(old))
445 return old;
446
447 for (;;) {
448 u64 new = atomic64_add_return(1, &i_seq);
449 if (WARN_ON_ONCE(!new))
450 continue;
451
452 old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
453 if (old)
454 return old;
455 return new;
456 }
457}
458
34f01cc1 459/**
d96ee56c
DH
460 * get_futex_key() - Get parameters which are the keys for a futex
461 * @uaddr: virtual address of the futex
92613085 462 * @fshared: false for a PROCESS_PRIVATE futex, true for PROCESS_SHARED
d96ee56c 463 * @key: address where result is stored.
96d4f267
LT
464 * @rw: mapping needs to be read/write (values: FUTEX_READ,
465 * FUTEX_WRITE)
34f01cc1 466 *
6c23cbbd
RD
467 * Return: a negative error code or 0
468 *
7b4ff1ad 469 * The key words are stored in @key on success.
1da177e4 470 *
8019ad13 471 * For shared mappings (when @fshared), the key is:
03c109d6 472 *
8019ad13 473 * ( inode->i_sequence, page->index, offset_within_page )
03c109d6 474 *
8019ad13
PZ
475 * [ also see get_inode_sequence_number() ]
476 *
477 * For private mappings (or when !@fshared), the key is:
03c109d6 478 *
8019ad13
PZ
479 * ( current->mm, address, 0 )
480 *
481 * This allows (cross process, where applicable) identification of the futex
482 * without keeping the page pinned for the duration of the FUTEX_WAIT.
1da177e4 483 *
b2d0994b 484 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 485 */
92613085
AA
486static int get_futex_key(u32 __user *uaddr, bool fshared, union futex_key *key,
487 enum futex_access rw)
1da177e4 488{
e2970f2f 489 unsigned long address = (unsigned long)uaddr;
1da177e4 490 struct mm_struct *mm = current->mm;
077fa7ae 491 struct page *page, *tail;
14d27abd 492 struct address_space *mapping;
9ea71503 493 int err, ro = 0;
1da177e4
LT
494
495 /*
496 * The futex address must be "naturally" aligned.
497 */
e2970f2f 498 key->both.offset = address % PAGE_SIZE;
34f01cc1 499 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 500 return -EINVAL;
e2970f2f 501 address -= key->both.offset;
1da177e4 502
96d4f267 503 if (unlikely(!access_ok(uaddr, sizeof(u32))))
5cdec2d8
LT
504 return -EFAULT;
505
ab51fbab
DB
506 if (unlikely(should_fail_futex(fshared)))
507 return -EFAULT;
508
34f01cc1
ED
509 /*
510 * PROCESS_PRIVATE futexes are fast.
511 * As the mm cannot disappear under us and the 'key' only needs
512 * virtual address, we dont even have to find the underlying vma.
513 * Note : We do have to check 'uaddr' is a valid user address,
514 * but access_ok() should be faster than find_vma()
515 */
516 if (!fshared) {
34f01cc1
ED
517 key->private.mm = mm;
518 key->private.address = address;
519 return 0;
520 }
1da177e4 521
38d47c1b 522again:
ab51fbab 523 /* Ignore any VERIFY_READ mapping (futex common case) */
92613085 524 if (unlikely(should_fail_futex(true)))
ab51fbab
DB
525 return -EFAULT;
526
73b0140b 527 err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
9ea71503
SB
528 /*
529 * If write access is not required (eg. FUTEX_WAIT), try
530 * and get read-only access.
531 */
96d4f267 532 if (err == -EFAULT && rw == FUTEX_READ) {
9ea71503
SB
533 err = get_user_pages_fast(address, 1, 0, &page);
534 ro = 1;
535 }
38d47c1b
PZ
536 if (err < 0)
537 return err;
9ea71503
SB
538 else
539 err = 0;
38d47c1b 540
65d8fc77
MG
541 /*
542 * The treatment of mapping from this point on is critical. The page
543 * lock protects many things but in this context the page lock
544 * stabilizes mapping, prevents inode freeing in the shared
545 * file-backed region case and guards against movement to swap cache.
546 *
547 * Strictly speaking the page lock is not needed in all cases being
548 * considered here and page lock forces unnecessarily serialization
549 * From this point on, mapping will be re-verified if necessary and
550 * page lock will be acquired only if it is unavoidable
077fa7ae
MG
551 *
552 * Mapping checks require the head page for any compound page so the
553 * head page and mapping is looked up now. For anonymous pages, it
554 * does not matter if the page splits in the future as the key is
555 * based on the address. For filesystem-backed pages, the tail is
556 * required as the index of the page determines the key. For
557 * base pages, there is no tail page and tail == page.
65d8fc77 558 */
077fa7ae 559 tail = page;
65d8fc77
MG
560 page = compound_head(page);
561 mapping = READ_ONCE(page->mapping);
562
e6780f72 563 /*
14d27abd 564 * If page->mapping is NULL, then it cannot be a PageAnon
e6780f72
HD
565 * page; but it might be the ZERO_PAGE or in the gate area or
566 * in a special mapping (all cases which we are happy to fail);
567 * or it may have been a good file page when get_user_pages_fast
568 * found it, but truncated or holepunched or subjected to
569 * invalidate_complete_page2 before we got the page lock (also
570 * cases which we are happy to fail). And we hold a reference,
571 * so refcount care in invalidate_complete_page's remove_mapping
572 * prevents drop_caches from setting mapping to NULL beneath us.
573 *
574 * The case we do have to guard against is when memory pressure made
575 * shmem_writepage move it from filecache to swapcache beneath us:
14d27abd 576 * an unlikely race, but we do need to retry for page->mapping.
e6780f72 577 */
65d8fc77
MG
578 if (unlikely(!mapping)) {
579 int shmem_swizzled;
580
581 /*
582 * Page lock is required to identify which special case above
583 * applies. If this is really a shmem page then the page lock
584 * will prevent unexpected transitions.
585 */
586 lock_page(page);
587 shmem_swizzled = PageSwapCache(page) || page->mapping;
14d27abd
KS
588 unlock_page(page);
589 put_page(page);
65d8fc77 590
e6780f72
HD
591 if (shmem_swizzled)
592 goto again;
65d8fc77 593
e6780f72 594 return -EFAULT;
38d47c1b 595 }
1da177e4
LT
596
597 /*
598 * Private mappings are handled in a simple way.
599 *
65d8fc77
MG
600 * If the futex key is stored on an anonymous page, then the associated
601 * object is the mm which is implicitly pinned by the calling process.
602 *
1da177e4
LT
603 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
604 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 605 * the object not the particular process.
1da177e4 606 */
14d27abd 607 if (PageAnon(page)) {
9ea71503
SB
608 /*
609 * A RO anonymous page will never change and thus doesn't make
610 * sense for futex operations.
611 */
92613085 612 if (unlikely(should_fail_futex(true)) || ro) {
9ea71503
SB
613 err = -EFAULT;
614 goto out;
615 }
616
38d47c1b 617 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 618 key->private.mm = mm;
e2970f2f 619 key->private.address = address;
65d8fc77 620
38d47c1b 621 } else {
65d8fc77
MG
622 struct inode *inode;
623
624 /*
625 * The associated futex object in this case is the inode and
626 * the page->mapping must be traversed. Ordinarily this should
627 * be stabilised under page lock but it's not strictly
628 * necessary in this case as we just want to pin the inode, not
629 * update the radix tree or anything like that.
630 *
631 * The RCU read lock is taken as the inode is finally freed
632 * under RCU. If the mapping still matches expectations then the
633 * mapping->host can be safely accessed as being a valid inode.
634 */
635 rcu_read_lock();
636
637 if (READ_ONCE(page->mapping) != mapping) {
638 rcu_read_unlock();
639 put_page(page);
640
641 goto again;
642 }
643
644 inode = READ_ONCE(mapping->host);
645 if (!inode) {
646 rcu_read_unlock();
647 put_page(page);
648
649 goto again;
650 }
651
38d47c1b 652 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
8019ad13 653 key->shared.i_seq = get_inode_sequence_number(inode);
077fa7ae 654 key->shared.pgoff = basepage_index(tail);
65d8fc77 655 rcu_read_unlock();
1da177e4
LT
656 }
657
9ea71503 658out:
14d27abd 659 put_page(page);
9ea71503 660 return err;
1da177e4
LT
661}
662
d96ee56c
DH
663/**
664 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
665 * @uaddr: pointer to faulting user space address
666 *
667 * Slow path to fixup the fault we just took in the atomic write
668 * access to @uaddr.
669 *
fb62db2b 670 * We have no generic implementation of a non-destructive write to the
d0725992
TG
671 * user address. We know that we faulted in the atomic pagefault
672 * disabled section so we can as well avoid the #PF overhead by
673 * calling get_user_pages() right away.
674 */
675static int fault_in_user_writeable(u32 __user *uaddr)
676{
722d0172
AK
677 struct mm_struct *mm = current->mm;
678 int ret;
679
d8ed45c5 680 mmap_read_lock(mm);
64019a2e 681 ret = fixup_user_fault(mm, (unsigned long)uaddr,
4a9e1cda 682 FAULT_FLAG_WRITE, NULL);
d8ed45c5 683 mmap_read_unlock(mm);
722d0172 684
d0725992
TG
685 return ret < 0 ? ret : 0;
686}
687
4b1c486b
DH
688/**
689 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
690 * @hb: the hash bucket the futex_q's reside in
691 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
692 *
693 * Must be called with the hb lock held.
694 */
695static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
696 union futex_key *key)
697{
698 struct futex_q *this;
699
700 plist_for_each_entry(this, &hb->chain, list) {
701 if (match_futex(&this->key, key))
702 return this;
703 }
704 return NULL;
705}
706
37a9d912
ML
707static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
708 u32 uval, u32 newval)
36cf3b5c 709{
37a9d912 710 int ret;
36cf3b5c
TG
711
712 pagefault_disable();
37a9d912 713 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
714 pagefault_enable();
715
37a9d912 716 return ret;
36cf3b5c
TG
717}
718
719static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
720{
721 int ret;
722
a866374a 723 pagefault_disable();
bd28b145 724 ret = __get_user(*dest, from);
a866374a 725 pagefault_enable();
1da177e4
LT
726
727 return ret ? -EFAULT : 0;
728}
729
c87e2837
IM
730
731/*
732 * PI code:
733 */
734static int refill_pi_state_cache(void)
735{
736 struct futex_pi_state *pi_state;
737
738 if (likely(current->pi_state_cache))
739 return 0;
740
4668edc3 741 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
742
743 if (!pi_state)
744 return -ENOMEM;
745
c87e2837
IM
746 INIT_LIST_HEAD(&pi_state->list);
747 /* pi_mutex gets initialized later */
748 pi_state->owner = NULL;
49262de2 749 refcount_set(&pi_state->refcount, 1);
38d47c1b 750 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
751
752 current->pi_state_cache = pi_state;
753
754 return 0;
755}
756
bf92cf3a 757static struct futex_pi_state *alloc_pi_state(void)
c87e2837
IM
758{
759 struct futex_pi_state *pi_state = current->pi_state_cache;
760
761 WARN_ON(!pi_state);
762 current->pi_state_cache = NULL;
763
764 return pi_state;
765}
766
bf92cf3a
PZ
767static void get_pi_state(struct futex_pi_state *pi_state)
768{
49262de2 769 WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
bf92cf3a
PZ
770}
771
30a6b803 772/*
29e9ee5d
TG
773 * Drops a reference to the pi_state object and frees or caches it
774 * when the last reference is gone.
30a6b803 775 */
29e9ee5d 776static void put_pi_state(struct futex_pi_state *pi_state)
c87e2837 777{
30a6b803
BS
778 if (!pi_state)
779 return;
780
49262de2 781 if (!refcount_dec_and_test(&pi_state->refcount))
c87e2837
IM
782 return;
783
784 /*
785 * If pi_state->owner is NULL, the owner is most probably dying
786 * and has cleaned up the pi_state already
787 */
788 if (pi_state->owner) {
c74aef2d 789 struct task_struct *owner;
c87e2837 790
c74aef2d
PZ
791 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
792 owner = pi_state->owner;
793 if (owner) {
794 raw_spin_lock(&owner->pi_lock);
795 list_del_init(&pi_state->list);
796 raw_spin_unlock(&owner->pi_lock);
797 }
798 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
799 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
800 }
801
c74aef2d 802 if (current->pi_state_cache) {
c87e2837 803 kfree(pi_state);
c74aef2d 804 } else {
c87e2837
IM
805 /*
806 * pi_state->list is already empty.
807 * clear pi_state->owner.
808 * refcount is at 0 - put it back to 1.
809 */
810 pi_state->owner = NULL;
49262de2 811 refcount_set(&pi_state->refcount, 1);
c87e2837
IM
812 current->pi_state_cache = pi_state;
813 }
814}
815
bc2eecd7
NP
816#ifdef CONFIG_FUTEX_PI
817
c87e2837
IM
818/*
819 * This task is holding PI mutexes at exit time => bad.
820 * Kernel cleans up PI-state, but userspace is likely hosed.
821 * (Robust-futex cleanup is separate and might save the day for userspace.)
822 */
ba31c1a4 823static void exit_pi_state_list(struct task_struct *curr)
c87e2837 824{
c87e2837
IM
825 struct list_head *next, *head = &curr->pi_state_list;
826 struct futex_pi_state *pi_state;
627371d7 827 struct futex_hash_bucket *hb;
38d47c1b 828 union futex_key key = FUTEX_KEY_INIT;
c87e2837 829
a0c1e907
TG
830 if (!futex_cmpxchg_enabled)
831 return;
c87e2837
IM
832 /*
833 * We are a ZOMBIE and nobody can enqueue itself on
834 * pi_state_list anymore, but we have to be careful
627371d7 835 * versus waiters unqueueing themselves:
c87e2837 836 */
1d615482 837 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 838 while (!list_empty(head)) {
c87e2837
IM
839 next = head->next;
840 pi_state = list_entry(next, struct futex_pi_state, list);
841 key = pi_state->key;
627371d7 842 hb = hash_futex(&key);
153fbd12
PZ
843
844 /*
845 * We can race against put_pi_state() removing itself from the
846 * list (a waiter going away). put_pi_state() will first
847 * decrement the reference count and then modify the list, so
848 * its possible to see the list entry but fail this reference
849 * acquire.
850 *
851 * In that case; drop the locks to let put_pi_state() make
852 * progress and retry the loop.
853 */
49262de2 854 if (!refcount_inc_not_zero(&pi_state->refcount)) {
153fbd12
PZ
855 raw_spin_unlock_irq(&curr->pi_lock);
856 cpu_relax();
857 raw_spin_lock_irq(&curr->pi_lock);
858 continue;
859 }
1d615482 860 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 861
c87e2837 862 spin_lock(&hb->lock);
c74aef2d
PZ
863 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
864 raw_spin_lock(&curr->pi_lock);
627371d7
IM
865 /*
866 * We dropped the pi-lock, so re-check whether this
867 * task still owns the PI-state:
868 */
c87e2837 869 if (head->next != next) {
153fbd12 870 /* retain curr->pi_lock for the loop invariant */
c74aef2d 871 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837 872 spin_unlock(&hb->lock);
153fbd12 873 put_pi_state(pi_state);
c87e2837
IM
874 continue;
875 }
876
c87e2837 877 WARN_ON(pi_state->owner != curr);
627371d7
IM
878 WARN_ON(list_empty(&pi_state->list));
879 list_del_init(&pi_state->list);
c87e2837 880 pi_state->owner = NULL;
c87e2837 881
153fbd12 882 raw_spin_unlock(&curr->pi_lock);
c74aef2d 883 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
884 spin_unlock(&hb->lock);
885
16ffa12d
PZ
886 rt_mutex_futex_unlock(&pi_state->pi_mutex);
887 put_pi_state(pi_state);
888
1d615482 889 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 890 }
1d615482 891 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 892}
ba31c1a4
TG
893#else
894static inline void exit_pi_state_list(struct task_struct *curr) { }
bc2eecd7
NP
895#endif
896
54a21788
TG
897/*
898 * We need to check the following states:
899 *
900 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
901 *
902 * [1] NULL | --- | --- | 0 | 0/1 | Valid
903 * [2] NULL | --- | --- | >0 | 0/1 | Valid
904 *
905 * [3] Found | NULL | -- | Any | 0/1 | Invalid
906 *
907 * [4] Found | Found | NULL | 0 | 1 | Valid
908 * [5] Found | Found | NULL | >0 | 1 | Invalid
909 *
910 * [6] Found | Found | task | 0 | 1 | Valid
911 *
912 * [7] Found | Found | NULL | Any | 0 | Invalid
913 *
914 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
915 * [9] Found | Found | task | 0 | 0 | Invalid
916 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
917 *
918 * [1] Indicates that the kernel can acquire the futex atomically. We
919 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
920 *
921 * [2] Valid, if TID does not belong to a kernel thread. If no matching
922 * thread is found then it indicates that the owner TID has died.
923 *
924 * [3] Invalid. The waiter is queued on a non PI futex
925 *
926 * [4] Valid state after exit_robust_list(), which sets the user space
927 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
928 *
929 * [5] The user space value got manipulated between exit_robust_list()
930 * and exit_pi_state_list()
931 *
932 * [6] Valid state after exit_pi_state_list() which sets the new owner in
933 * the pi_state but cannot access the user space value.
934 *
935 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
936 *
937 * [8] Owner and user space value match
938 *
939 * [9] There is no transient state which sets the user space TID to 0
940 * except exit_robust_list(), but this is indicated by the
941 * FUTEX_OWNER_DIED bit. See [4]
942 *
943 * [10] There is no transient state which leaves owner and user space
944 * TID out of sync.
734009e9
PZ
945 *
946 *
947 * Serialization and lifetime rules:
948 *
949 * hb->lock:
950 *
951 * hb -> futex_q, relation
952 * futex_q -> pi_state, relation
953 *
954 * (cannot be raw because hb can contain arbitrary amount
955 * of futex_q's)
956 *
957 * pi_mutex->wait_lock:
958 *
959 * {uval, pi_state}
960 *
961 * (and pi_mutex 'obviously')
962 *
963 * p->pi_lock:
964 *
965 * p->pi_state_list -> pi_state->list, relation
966 *
967 * pi_state->refcount:
968 *
969 * pi_state lifetime
970 *
971 *
972 * Lock order:
973 *
974 * hb->lock
975 * pi_mutex->wait_lock
976 * p->pi_lock
977 *
54a21788 978 */
e60cbc5c
TG
979
980/*
981 * Validate that the existing waiter has a pi_state and sanity check
982 * the pi_state against the user space value. If correct, attach to
983 * it.
984 */
734009e9
PZ
985static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
986 struct futex_pi_state *pi_state,
e60cbc5c 987 struct futex_pi_state **ps)
c87e2837 988{
778e9a9c 989 pid_t pid = uval & FUTEX_TID_MASK;
94ffac5d
PZ
990 u32 uval2;
991 int ret;
c87e2837 992
e60cbc5c
TG
993 /*
994 * Userspace might have messed up non-PI and PI futexes [3]
995 */
996 if (unlikely(!pi_state))
997 return -EINVAL;
06a9ec29 998
734009e9
PZ
999 /*
1000 * We get here with hb->lock held, and having found a
1001 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1002 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1003 * which in turn means that futex_lock_pi() still has a reference on
1004 * our pi_state.
16ffa12d
PZ
1005 *
1006 * The waiter holding a reference on @pi_state also protects against
1007 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1008 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1009 * free pi_state before we can take a reference ourselves.
734009e9 1010 */
49262de2 1011 WARN_ON(!refcount_read(&pi_state->refcount));
59647b6a 1012
734009e9
PZ
1013 /*
1014 * Now that we have a pi_state, we can acquire wait_lock
1015 * and do the state validation.
1016 */
1017 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1018
1019 /*
1020 * Since {uval, pi_state} is serialized by wait_lock, and our current
1021 * uval was read without holding it, it can have changed. Verify it
1022 * still is what we expect it to be, otherwise retry the entire
1023 * operation.
1024 */
1025 if (get_futex_value_locked(&uval2, uaddr))
1026 goto out_efault;
1027
1028 if (uval != uval2)
1029 goto out_eagain;
1030
e60cbc5c
TG
1031 /*
1032 * Handle the owner died case:
1033 */
1034 if (uval & FUTEX_OWNER_DIED) {
bd1dbcc6 1035 /*
e60cbc5c
TG
1036 * exit_pi_state_list sets owner to NULL and wakes the
1037 * topmost waiter. The task which acquires the
1038 * pi_state->rt_mutex will fixup owner.
bd1dbcc6 1039 */
e60cbc5c 1040 if (!pi_state->owner) {
59647b6a 1041 /*
e60cbc5c
TG
1042 * No pi state owner, but the user space TID
1043 * is not 0. Inconsistent state. [5]
59647b6a 1044 */
e60cbc5c 1045 if (pid)
734009e9 1046 goto out_einval;
bd1dbcc6 1047 /*
e60cbc5c 1048 * Take a ref on the state and return success. [4]
866293ee 1049 */
734009e9 1050 goto out_attach;
c87e2837 1051 }
bd1dbcc6
TG
1052
1053 /*
e60cbc5c
TG
1054 * If TID is 0, then either the dying owner has not
1055 * yet executed exit_pi_state_list() or some waiter
1056 * acquired the rtmutex in the pi state, but did not
1057 * yet fixup the TID in user space.
1058 *
1059 * Take a ref on the state and return success. [6]
1060 */
1061 if (!pid)
734009e9 1062 goto out_attach;
e60cbc5c
TG
1063 } else {
1064 /*
1065 * If the owner died bit is not set, then the pi_state
1066 * must have an owner. [7]
bd1dbcc6 1067 */
e60cbc5c 1068 if (!pi_state->owner)
734009e9 1069 goto out_einval;
c87e2837
IM
1070 }
1071
e60cbc5c
TG
1072 /*
1073 * Bail out if user space manipulated the futex value. If pi
1074 * state exists then the owner TID must be the same as the
1075 * user space TID. [9/10]
1076 */
1077 if (pid != task_pid_vnr(pi_state->owner))
734009e9
PZ
1078 goto out_einval;
1079
1080out_attach:
bf92cf3a 1081 get_pi_state(pi_state);
734009e9 1082 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
e60cbc5c
TG
1083 *ps = pi_state;
1084 return 0;
734009e9
PZ
1085
1086out_einval:
1087 ret = -EINVAL;
1088 goto out_error;
1089
1090out_eagain:
1091 ret = -EAGAIN;
1092 goto out_error;
1093
1094out_efault:
1095 ret = -EFAULT;
1096 goto out_error;
1097
1098out_error:
1099 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1100 return ret;
e60cbc5c
TG
1101}
1102
3ef240ea
TG
1103/**
1104 * wait_for_owner_exiting - Block until the owner has exited
51bfb1d1 1105 * @ret: owner's current futex lock status
3ef240ea
TG
1106 * @exiting: Pointer to the exiting task
1107 *
1108 * Caller must hold a refcount on @exiting.
1109 */
1110static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1111{
1112 if (ret != -EBUSY) {
1113 WARN_ON_ONCE(exiting);
1114 return;
1115 }
1116
1117 if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1118 return;
1119
1120 mutex_lock(&exiting->futex_exit_mutex);
1121 /*
1122 * No point in doing state checking here. If the waiter got here
1123 * while the task was in exec()->exec_futex_release() then it can
1124 * have any FUTEX_STATE_* value when the waiter has acquired the
1125 * mutex. OK, if running, EXITING or DEAD if it reached exit()
1126 * already. Highly unlikely and not a problem. Just one more round
1127 * through the futex maze.
1128 */
1129 mutex_unlock(&exiting->futex_exit_mutex);
1130
1131 put_task_struct(exiting);
1132}
1133
da791a66
TG
1134static int handle_exit_race(u32 __user *uaddr, u32 uval,
1135 struct task_struct *tsk)
1136{
1137 u32 uval2;
1138
1139 /*
ac31c7ff
TG
1140 * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1141 * caller that the alleged owner is busy.
da791a66 1142 */
3d4775df 1143 if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
ac31c7ff 1144 return -EBUSY;
da791a66
TG
1145
1146 /*
1147 * Reread the user space value to handle the following situation:
1148 *
1149 * CPU0 CPU1
1150 *
1151 * sys_exit() sys_futex()
1152 * do_exit() futex_lock_pi()
1153 * futex_lock_pi_atomic()
1154 * exit_signals(tsk) No waiters:
1155 * tsk->flags |= PF_EXITING; *uaddr == 0x00000PID
1156 * mm_release(tsk) Set waiter bit
1157 * exit_robust_list(tsk) { *uaddr = 0x80000PID;
1158 * Set owner died attach_to_pi_owner() {
1159 * *uaddr = 0xC0000000; tsk = get_task(PID);
1160 * } if (!tsk->flags & PF_EXITING) {
1161 * ... attach();
3d4775df
TG
1162 * tsk->futex_state = } else {
1163 * FUTEX_STATE_DEAD; if (tsk->futex_state !=
1164 * FUTEX_STATE_DEAD)
da791a66
TG
1165 * return -EAGAIN;
1166 * return -ESRCH; <--- FAIL
1167 * }
1168 *
1169 * Returning ESRCH unconditionally is wrong here because the
1170 * user space value has been changed by the exiting task.
1171 *
1172 * The same logic applies to the case where the exiting task is
1173 * already gone.
1174 */
1175 if (get_futex_value_locked(&uval2, uaddr))
1176 return -EFAULT;
1177
1178 /* If the user space value has changed, try again. */
1179 if (uval2 != uval)
1180 return -EAGAIN;
1181
1182 /*
1183 * The exiting task did not have a robust list, the robust list was
1184 * corrupted or the user space value in *uaddr is simply bogus.
1185 * Give up and tell user space.
1186 */
1187 return -ESRCH;
1188}
1189
04e1b2e5
TG
1190/*
1191 * Lookup the task for the TID provided from user space and attach to
1192 * it after doing proper sanity checks.
1193 */
da791a66 1194static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
3ef240ea
TG
1195 struct futex_pi_state **ps,
1196 struct task_struct **exiting)
e60cbc5c 1197{
e60cbc5c 1198 pid_t pid = uval & FUTEX_TID_MASK;
04e1b2e5
TG
1199 struct futex_pi_state *pi_state;
1200 struct task_struct *p;
e60cbc5c 1201
c87e2837 1202 /*
e3f2ddea 1203 * We are the first waiter - try to look up the real owner and attach
54a21788 1204 * the new pi_state to it, but bail out when TID = 0 [1]
da791a66
TG
1205 *
1206 * The !pid check is paranoid. None of the call sites should end up
1207 * with pid == 0, but better safe than sorry. Let the caller retry
c87e2837 1208 */
778e9a9c 1209 if (!pid)
da791a66 1210 return -EAGAIN;
2ee08260 1211 p = find_get_task_by_vpid(pid);
7a0ea09a 1212 if (!p)
da791a66 1213 return handle_exit_race(uaddr, uval, NULL);
778e9a9c 1214
a2129464 1215 if (unlikely(p->flags & PF_KTHREAD)) {
f0d71b3d
TG
1216 put_task_struct(p);
1217 return -EPERM;
1218 }
1219
778e9a9c 1220 /*
3d4775df
TG
1221 * We need to look at the task state to figure out, whether the
1222 * task is exiting. To protect against the change of the task state
1223 * in futex_exit_release(), we do this protected by p->pi_lock:
778e9a9c 1224 */
1d615482 1225 raw_spin_lock_irq(&p->pi_lock);
3d4775df 1226 if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
778e9a9c 1227 /*
3d4775df
TG
1228 * The task is on the way out. When the futex state is
1229 * FUTEX_STATE_DEAD, we know that the task has finished
1230 * the cleanup:
778e9a9c 1231 */
da791a66 1232 int ret = handle_exit_race(uaddr, uval, p);
778e9a9c 1233
1d615482 1234 raw_spin_unlock_irq(&p->pi_lock);
3ef240ea
TG
1235 /*
1236 * If the owner task is between FUTEX_STATE_EXITING and
1237 * FUTEX_STATE_DEAD then store the task pointer and keep
1238 * the reference on the task struct. The calling code will
1239 * drop all locks, wait for the task to reach
1240 * FUTEX_STATE_DEAD and then drop the refcount. This is
1241 * required to prevent a live lock when the current task
1242 * preempted the exiting task between the two states.
1243 */
1244 if (ret == -EBUSY)
1245 *exiting = p;
1246 else
1247 put_task_struct(p);
778e9a9c
AK
1248 return ret;
1249 }
c87e2837 1250
54a21788
TG
1251 /*
1252 * No existing pi state. First waiter. [2]
734009e9
PZ
1253 *
1254 * This creates pi_state, we have hb->lock held, this means nothing can
1255 * observe this state, wait_lock is irrelevant.
54a21788 1256 */
c87e2837
IM
1257 pi_state = alloc_pi_state();
1258
1259 /*
04e1b2e5 1260 * Initialize the pi_mutex in locked state and make @p
c87e2837
IM
1261 * the owner of it:
1262 */
1263 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1264
1265 /* Store the key for possible exit cleanups: */
d0aa7a70 1266 pi_state->key = *key;
c87e2837 1267
627371d7 1268 WARN_ON(!list_empty(&pi_state->list));
c87e2837 1269 list_add(&pi_state->list, &p->pi_state_list);
c74aef2d
PZ
1270 /*
1271 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1272 * because there is no concurrency as the object is not published yet.
1273 */
c87e2837 1274 pi_state->owner = p;
1d615482 1275 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
1276
1277 put_task_struct(p);
1278
d0aa7a70 1279 *ps = pi_state;
c87e2837
IM
1280
1281 return 0;
1282}
1283
734009e9
PZ
1284static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1285 struct futex_hash_bucket *hb,
3ef240ea
TG
1286 union futex_key *key, struct futex_pi_state **ps,
1287 struct task_struct **exiting)
04e1b2e5 1288{
499f5aca 1289 struct futex_q *top_waiter = futex_top_waiter(hb, key);
04e1b2e5
TG
1290
1291 /*
1292 * If there is a waiter on that futex, validate it and
1293 * attach to the pi_state when the validation succeeds.
1294 */
499f5aca 1295 if (top_waiter)
734009e9 1296 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
04e1b2e5
TG
1297
1298 /*
1299 * We are the first waiter - try to look up the owner based on
1300 * @uval and attach to it.
1301 */
3ef240ea 1302 return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
04e1b2e5
TG
1303}
1304
af54d6a1
TG
1305static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1306{
6b4f4bc9 1307 int err;
3f649ab7 1308 u32 curval;
af54d6a1 1309
ab51fbab
DB
1310 if (unlikely(should_fail_futex(true)))
1311 return -EFAULT;
1312
6b4f4bc9
WD
1313 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1314 if (unlikely(err))
1315 return err;
af54d6a1 1316
734009e9 1317 /* If user space value changed, let the caller retry */
af54d6a1
TG
1318 return curval != uval ? -EAGAIN : 0;
1319}
1320
1a52084d 1321/**
d96ee56c 1322 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
1323 * @uaddr: the pi futex user address
1324 * @hb: the pi futex hash bucket
1325 * @key: the futex key associated with uaddr and hb
1326 * @ps: the pi_state pointer where we store the result of the
1327 * lookup
1328 * @task: the task to perform the atomic lock work for. This will
1329 * be "current" except in the case of requeue pi.
3ef240ea
TG
1330 * @exiting: Pointer to store the task pointer of the owner task
1331 * which is in the middle of exiting
bab5bc9e 1332 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 1333 *
6c23cbbd 1334 * Return:
7b4ff1ad
MCC
1335 * - 0 - ready to wait;
1336 * - 1 - acquired the lock;
1337 * - <0 - error
1a52084d
DH
1338 *
1339 * The hb->lock and futex_key refs shall be held by the caller.
3ef240ea
TG
1340 *
1341 * @exiting is only set when the return value is -EBUSY. If so, this holds
1342 * a refcount on the exiting task on return and the caller needs to drop it
1343 * after waiting for the exit to complete.
1a52084d
DH
1344 */
1345static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1346 union futex_key *key,
1347 struct futex_pi_state **ps,
3ef240ea
TG
1348 struct task_struct *task,
1349 struct task_struct **exiting,
1350 int set_waiters)
1a52084d 1351{
af54d6a1 1352 u32 uval, newval, vpid = task_pid_vnr(task);
499f5aca 1353 struct futex_q *top_waiter;
af54d6a1 1354 int ret;
1a52084d
DH
1355
1356 /*
af54d6a1
TG
1357 * Read the user space value first so we can validate a few
1358 * things before proceeding further.
1a52084d 1359 */
af54d6a1 1360 if (get_futex_value_locked(&uval, uaddr))
1a52084d
DH
1361 return -EFAULT;
1362
ab51fbab
DB
1363 if (unlikely(should_fail_futex(true)))
1364 return -EFAULT;
1365
1a52084d
DH
1366 /*
1367 * Detect deadlocks.
1368 */
af54d6a1 1369 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
1370 return -EDEADLK;
1371
ab51fbab
DB
1372 if ((unlikely(should_fail_futex(true))))
1373 return -EDEADLK;
1374
1a52084d 1375 /*
af54d6a1
TG
1376 * Lookup existing state first. If it exists, try to attach to
1377 * its pi_state.
1a52084d 1378 */
499f5aca
PZ
1379 top_waiter = futex_top_waiter(hb, key);
1380 if (top_waiter)
734009e9 1381 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1a52084d
DH
1382
1383 /*
af54d6a1
TG
1384 * No waiter and user TID is 0. We are here because the
1385 * waiters or the owner died bit is set or called from
1386 * requeue_cmp_pi or for whatever reason something took the
1387 * syscall.
1a52084d 1388 */
af54d6a1 1389 if (!(uval & FUTEX_TID_MASK)) {
59fa6245 1390 /*
af54d6a1
TG
1391 * We take over the futex. No other waiters and the user space
1392 * TID is 0. We preserve the owner died bit.
59fa6245 1393 */
af54d6a1
TG
1394 newval = uval & FUTEX_OWNER_DIED;
1395 newval |= vpid;
1a52084d 1396
af54d6a1
TG
1397 /* The futex requeue_pi code can enforce the waiters bit */
1398 if (set_waiters)
1399 newval |= FUTEX_WAITERS;
1400
1401 ret = lock_pi_update_atomic(uaddr, uval, newval);
1402 /* If the take over worked, return 1 */
1403 return ret < 0 ? ret : 1;
1404 }
1a52084d
DH
1405
1406 /*
af54d6a1
TG
1407 * First waiter. Set the waiters bit before attaching ourself to
1408 * the owner. If owner tries to unlock, it will be forced into
1409 * the kernel and blocked on hb->lock.
1a52084d 1410 */
af54d6a1
TG
1411 newval = uval | FUTEX_WAITERS;
1412 ret = lock_pi_update_atomic(uaddr, uval, newval);
1413 if (ret)
1414 return ret;
1a52084d 1415 /*
af54d6a1
TG
1416 * If the update of the user space value succeeded, we try to
1417 * attach to the owner. If that fails, no harm done, we only
1418 * set the FUTEX_WAITERS bit in the user space variable.
1a52084d 1419 */
3ef240ea 1420 return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1a52084d
DH
1421}
1422
2e12978a
LJ
1423/**
1424 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1425 * @q: The futex_q to unqueue
1426 *
1427 * The q->lock_ptr must not be NULL and must be held by the caller.
1428 */
1429static void __unqueue_futex(struct futex_q *q)
1430{
1431 struct futex_hash_bucket *hb;
1432
4de1a293 1433 if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
2e12978a 1434 return;
4de1a293 1435 lockdep_assert_held(q->lock_ptr);
2e12978a
LJ
1436
1437 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1438 plist_del(&q->list, &hb->chain);
11d4616b 1439 hb_waiters_dec(hb);
2e12978a
LJ
1440}
1441
1da177e4
LT
1442/*
1443 * The hash bucket lock must be held when this is called.
1d0dcb3a
DB
1444 * Afterwards, the futex_q must not be accessed. Callers
1445 * must ensure to later call wake_up_q() for the actual
1446 * wakeups to occur.
1da177e4 1447 */
1d0dcb3a 1448static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1da177e4 1449{
f1a11e05
TG
1450 struct task_struct *p = q->task;
1451
aa10990e
DH
1452 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1453 return;
1454
b061c38b 1455 get_task_struct(p);
2e12978a 1456 __unqueue_futex(q);
1da177e4 1457 /*
38fcd06e
DHV
1458 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1459 * is written, without taking any locks. This is possible in the event
1460 * of a spurious wakeup, for example. A memory barrier is required here
1461 * to prevent the following store to lock_ptr from getting ahead of the
1462 * plist_del in __unqueue_futex().
1da177e4 1463 */
1b367ece 1464 smp_store_release(&q->lock_ptr, NULL);
b061c38b
PZ
1465
1466 /*
1467 * Queue the task for later wakeup for after we've released
75145904 1468 * the hb->lock.
b061c38b 1469 */
07879c6a 1470 wake_q_add_safe(wake_q, p);
1da177e4
LT
1471}
1472
16ffa12d
PZ
1473/*
1474 * Caller must hold a reference on @pi_state.
1475 */
1476static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
c87e2837 1477{
3f649ab7 1478 u32 curval, newval;
16ffa12d 1479 struct task_struct *new_owner;
aa2bfe55 1480 bool postunlock = false;
194a6b5b 1481 DEFINE_WAKE_Q(wake_q);
13fbca4c 1482 int ret = 0;
c87e2837 1483
c87e2837 1484 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
bebe5b51 1485 if (WARN_ON_ONCE(!new_owner)) {
16ffa12d 1486 /*
bebe5b51 1487 * As per the comment in futex_unlock_pi() this should not happen.
16ffa12d
PZ
1488 *
1489 * When this happens, give up our locks and try again, giving
1490 * the futex_lock_pi() instance time to complete, either by
1491 * waiting on the rtmutex or removing itself from the futex
1492 * queue.
1493 */
1494 ret = -EAGAIN;
1495 goto out_unlock;
73d786bd 1496 }
c87e2837
IM
1497
1498 /*
16ffa12d
PZ
1499 * We pass it to the next owner. The WAITERS bit is always kept
1500 * enabled while there is PI state around. We cleanup the owner
1501 * died bit, because we are the owner.
c87e2837 1502 */
13fbca4c 1503 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 1504
ab51fbab
DB
1505 if (unlikely(should_fail_futex(true)))
1506 ret = -EFAULT;
1507
6b4f4bc9
WD
1508 ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1509 if (!ret && (curval != uval)) {
89e9e66b
SAS
1510 /*
1511 * If a unconditional UNLOCK_PI operation (user space did not
1512 * try the TID->0 transition) raced with a waiter setting the
1513 * FUTEX_WAITERS flag between get_user() and locking the hash
1514 * bucket lock, retry the operation.
1515 */
1516 if ((FUTEX_TID_MASK & curval) == uval)
1517 ret = -EAGAIN;
1518 else
1519 ret = -EINVAL;
1520 }
734009e9 1521
16ffa12d
PZ
1522 if (ret)
1523 goto out_unlock;
c87e2837 1524
94ffac5d
PZ
1525 /*
1526 * This is a point of no return; once we modify the uval there is no
1527 * going back and subsequent operations must not fail.
1528 */
1529
b4abf910 1530 raw_spin_lock(&pi_state->owner->pi_lock);
627371d7
IM
1531 WARN_ON(list_empty(&pi_state->list));
1532 list_del_init(&pi_state->list);
b4abf910 1533 raw_spin_unlock(&pi_state->owner->pi_lock);
627371d7 1534
b4abf910 1535 raw_spin_lock(&new_owner->pi_lock);
627371d7 1536 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1537 list_add(&pi_state->list, &new_owner->pi_state_list);
1538 pi_state->owner = new_owner;
b4abf910 1539 raw_spin_unlock(&new_owner->pi_lock);
627371d7 1540
aa2bfe55 1541 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
5293c2ef 1542
16ffa12d 1543out_unlock:
5293c2ef 1544 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
5293c2ef 1545
aa2bfe55
PZ
1546 if (postunlock)
1547 rt_mutex_postunlock(&wake_q);
c87e2837 1548
16ffa12d 1549 return ret;
c87e2837
IM
1550}
1551
8b8f319f
IM
1552/*
1553 * Express the locking dependencies for lockdep:
1554 */
1555static inline void
1556double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1557{
1558 if (hb1 <= hb2) {
1559 spin_lock(&hb1->lock);
1560 if (hb1 < hb2)
1561 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1562 } else { /* hb1 > hb2 */
1563 spin_lock(&hb2->lock);
1564 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1565 }
1566}
1567
5eb3dc62
DH
1568static inline void
1569double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1570{
f061d351 1571 spin_unlock(&hb1->lock);
88f502fe
IM
1572 if (hb1 != hb2)
1573 spin_unlock(&hb2->lock);
5eb3dc62
DH
1574}
1575
1da177e4 1576/*
b2d0994b 1577 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1578 */
b41277dc
DH
1579static int
1580futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1581{
e2970f2f 1582 struct futex_hash_bucket *hb;
1da177e4 1583 struct futex_q *this, *next;
38d47c1b 1584 union futex_key key = FUTEX_KEY_INIT;
1da177e4 1585 int ret;
194a6b5b 1586 DEFINE_WAKE_Q(wake_q);
1da177e4 1587
cd689985
TG
1588 if (!bitset)
1589 return -EINVAL;
1590
96d4f267 1591 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1da177e4 1592 if (unlikely(ret != 0))
d7c5ed73 1593 return ret;
1da177e4 1594
e2970f2f 1595 hb = hash_futex(&key);
b0c29f79
DB
1596
1597 /* Make sure we really have tasks to wakeup */
1598 if (!hb_waiters_pending(hb))
d7c5ed73 1599 return ret;
b0c29f79 1600
e2970f2f 1601 spin_lock(&hb->lock);
1da177e4 1602
0d00c7b2 1603 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1da177e4 1604 if (match_futex (&this->key, &key)) {
52400ba9 1605 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1606 ret = -EINVAL;
1607 break;
1608 }
cd689985
TG
1609
1610 /* Check if one of the bits is set in both bitsets */
1611 if (!(this->bitset & bitset))
1612 continue;
1613
1d0dcb3a 1614 mark_wake_futex(&wake_q, this);
1da177e4
LT
1615 if (++ret >= nr_wake)
1616 break;
1617 }
1618 }
1619
e2970f2f 1620 spin_unlock(&hb->lock);
1d0dcb3a 1621 wake_up_q(&wake_q);
1da177e4
LT
1622 return ret;
1623}
1624
30d6e0a4
JS
1625static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1626{
1627 unsigned int op = (encoded_op & 0x70000000) >> 28;
1628 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
d70ef228
JS
1629 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1630 int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
30d6e0a4
JS
1631 int oldval, ret;
1632
1633 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
e78c38f6
JS
1634 if (oparg < 0 || oparg > 31) {
1635 char comm[sizeof(current->comm)];
1636 /*
1637 * kill this print and return -EINVAL when userspace
1638 * is sane again
1639 */
1640 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1641 get_task_comm(comm, current), oparg);
1642 oparg &= 31;
1643 }
30d6e0a4
JS
1644 oparg = 1 << oparg;
1645 }
1646
a08971e9 1647 pagefault_disable();
30d6e0a4 1648 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
a08971e9 1649 pagefault_enable();
30d6e0a4
JS
1650 if (ret)
1651 return ret;
1652
1653 switch (cmp) {
1654 case FUTEX_OP_CMP_EQ:
1655 return oldval == cmparg;
1656 case FUTEX_OP_CMP_NE:
1657 return oldval != cmparg;
1658 case FUTEX_OP_CMP_LT:
1659 return oldval < cmparg;
1660 case FUTEX_OP_CMP_GE:
1661 return oldval >= cmparg;
1662 case FUTEX_OP_CMP_LE:
1663 return oldval <= cmparg;
1664 case FUTEX_OP_CMP_GT:
1665 return oldval > cmparg;
1666 default:
1667 return -ENOSYS;
1668 }
1669}
1670
4732efbe
JJ
1671/*
1672 * Wake up all waiters hashed on the physical page that is mapped
1673 * to this virtual address:
1674 */
e2970f2f 1675static int
b41277dc 1676futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1677 int nr_wake, int nr_wake2, int op)
4732efbe 1678{
38d47c1b 1679 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1680 struct futex_hash_bucket *hb1, *hb2;
4732efbe 1681 struct futex_q *this, *next;
e4dc5b7a 1682 int ret, op_ret;
194a6b5b 1683 DEFINE_WAKE_Q(wake_q);
4732efbe 1684
e4dc5b7a 1685retry:
96d4f267 1686 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
4732efbe 1687 if (unlikely(ret != 0))
d7c5ed73 1688 return ret;
96d4f267 1689 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
4732efbe 1690 if (unlikely(ret != 0))
d7c5ed73 1691 return ret;
4732efbe 1692
e2970f2f
IM
1693 hb1 = hash_futex(&key1);
1694 hb2 = hash_futex(&key2);
4732efbe 1695
e4dc5b7a 1696retry_private:
eaaea803 1697 double_lock_hb(hb1, hb2);
e2970f2f 1698 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1699 if (unlikely(op_ret < 0)) {
5eb3dc62 1700 double_unlock_hb(hb1, hb2);
4732efbe 1701
6b4f4bc9
WD
1702 if (!IS_ENABLED(CONFIG_MMU) ||
1703 unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1704 /*
1705 * we don't get EFAULT from MMU faults if we don't have
1706 * an MMU, but we might get them from range checking
1707 */
796f8d9b 1708 ret = op_ret;
d7c5ed73 1709 return ret;
796f8d9b
DG
1710 }
1711
6b4f4bc9
WD
1712 if (op_ret == -EFAULT) {
1713 ret = fault_in_user_writeable(uaddr2);
1714 if (ret)
d7c5ed73 1715 return ret;
6b4f4bc9 1716 }
4732efbe 1717
6b4f4bc9
WD
1718 if (!(flags & FLAGS_SHARED)) {
1719 cond_resched();
e4dc5b7a 1720 goto retry_private;
6b4f4bc9 1721 }
e4dc5b7a 1722
6b4f4bc9 1723 cond_resched();
e4dc5b7a 1724 goto retry;
4732efbe
JJ
1725 }
1726
0d00c7b2 1727 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
4732efbe 1728 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1729 if (this->pi_state || this->rt_waiter) {
1730 ret = -EINVAL;
1731 goto out_unlock;
1732 }
1d0dcb3a 1733 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1734 if (++ret >= nr_wake)
1735 break;
1736 }
1737 }
1738
1739 if (op_ret > 0) {
4732efbe 1740 op_ret = 0;
0d00c7b2 1741 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
4732efbe 1742 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1743 if (this->pi_state || this->rt_waiter) {
1744 ret = -EINVAL;
1745 goto out_unlock;
1746 }
1d0dcb3a 1747 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1748 if (++op_ret >= nr_wake2)
1749 break;
1750 }
1751 }
1752 ret += op_ret;
1753 }
1754
aa10990e 1755out_unlock:
5eb3dc62 1756 double_unlock_hb(hb1, hb2);
1d0dcb3a 1757 wake_up_q(&wake_q);
4732efbe
JJ
1758 return ret;
1759}
1760
9121e478
DH
1761/**
1762 * requeue_futex() - Requeue a futex_q from one hb to another
1763 * @q: the futex_q to requeue
1764 * @hb1: the source hash_bucket
1765 * @hb2: the target hash_bucket
1766 * @key2: the new key for the requeued futex_q
1767 */
1768static inline
1769void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1770 struct futex_hash_bucket *hb2, union futex_key *key2)
1771{
1772
1773 /*
1774 * If key1 and key2 hash to the same bucket, no need to
1775 * requeue.
1776 */
1777 if (likely(&hb1->chain != &hb2->chain)) {
1778 plist_del(&q->list, &hb1->chain);
11d4616b 1779 hb_waiters_dec(hb1);
11d4616b 1780 hb_waiters_inc(hb2);
fe1bce9e 1781 plist_add(&q->list, &hb2->chain);
9121e478 1782 q->lock_ptr = &hb2->lock;
9121e478 1783 }
9121e478
DH
1784 q->key = *key2;
1785}
1786
52400ba9
DH
1787/**
1788 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1789 * @q: the futex_q
1790 * @key: the key of the requeue target futex
1791 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1792 *
1793 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1794 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1795 * to the requeue target futex so the waiter can detect the wakeup on the right
1796 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1797 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1798 * to protect access to the pi_state to fixup the owner later. Must be called
1799 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1800 */
1801static inline
beda2c7e
DH
1802void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1803 struct futex_hash_bucket *hb)
52400ba9 1804{
52400ba9
DH
1805 q->key = *key;
1806
2e12978a 1807 __unqueue_futex(q);
52400ba9
DH
1808
1809 WARN_ON(!q->rt_waiter);
1810 q->rt_waiter = NULL;
1811
beda2c7e 1812 q->lock_ptr = &hb->lock;
beda2c7e 1813
f1a11e05 1814 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1815}
1816
1817/**
1818 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1819 * @pifutex: the user address of the to futex
1820 * @hb1: the from futex hash bucket, must be locked by the caller
1821 * @hb2: the to futex hash bucket, must be locked by the caller
1822 * @key1: the from futex key
1823 * @key2: the to futex key
1824 * @ps: address to store the pi_state pointer
3ef240ea
TG
1825 * @exiting: Pointer to store the task pointer of the owner task
1826 * which is in the middle of exiting
bab5bc9e 1827 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1828 *
1829 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1830 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1831 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1832 * hb1 and hb2 must be held by the caller.
52400ba9 1833 *
3ef240ea
TG
1834 * @exiting is only set when the return value is -EBUSY. If so, this holds
1835 * a refcount on the exiting task on return and the caller needs to drop it
1836 * after waiting for the exit to complete.
1837 *
6c23cbbd 1838 * Return:
7b4ff1ad
MCC
1839 * - 0 - failed to acquire the lock atomically;
1840 * - >0 - acquired the lock, return value is vpid of the top_waiter
1841 * - <0 - error
52400ba9 1842 */
3ef240ea
TG
1843static int
1844futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1845 struct futex_hash_bucket *hb2, union futex_key *key1,
1846 union futex_key *key2, struct futex_pi_state **ps,
1847 struct task_struct **exiting, int set_waiters)
52400ba9 1848{
bab5bc9e 1849 struct futex_q *top_waiter = NULL;
52400ba9 1850 u32 curval;
866293ee 1851 int ret, vpid;
52400ba9
DH
1852
1853 if (get_futex_value_locked(&curval, pifutex))
1854 return -EFAULT;
1855
ab51fbab
DB
1856 if (unlikely(should_fail_futex(true)))
1857 return -EFAULT;
1858
bab5bc9e
DH
1859 /*
1860 * Find the top_waiter and determine if there are additional waiters.
1861 * If the caller intends to requeue more than 1 waiter to pifutex,
1862 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1863 * as we have means to handle the possible fault. If not, don't set
1864 * the bit unecessarily as it will force the subsequent unlock to enter
1865 * the kernel.
1866 */
52400ba9
DH
1867 top_waiter = futex_top_waiter(hb1, key1);
1868
1869 /* There are no waiters, nothing for us to do. */
1870 if (!top_waiter)
1871 return 0;
1872
84bc4af5
DH
1873 /* Ensure we requeue to the expected futex. */
1874 if (!match_futex(top_waiter->requeue_pi_key, key2))
1875 return -EINVAL;
1876
52400ba9 1877 /*
bab5bc9e
DH
1878 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1879 * the contended case or if set_waiters is 1. The pi_state is returned
1880 * in ps in contended cases.
52400ba9 1881 */
866293ee 1882 vpid = task_pid_vnr(top_waiter->task);
bab5bc9e 1883 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
3ef240ea 1884 exiting, set_waiters);
866293ee 1885 if (ret == 1) {
beda2c7e 1886 requeue_pi_wake_futex(top_waiter, key2, hb2);
866293ee
TG
1887 return vpid;
1888 }
52400ba9
DH
1889 return ret;
1890}
1891
1892/**
1893 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1894 * @uaddr1: source futex user address
b41277dc 1895 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1896 * @uaddr2: target futex user address
1897 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1898 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1899 * @cmpval: @uaddr1 expected value (or %NULL)
1900 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1901 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1902 *
1903 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1904 * uaddr2 atomically on behalf of the top waiter.
1905 *
6c23cbbd 1906 * Return:
7b4ff1ad
MCC
1907 * - >=0 - on success, the number of tasks requeued or woken;
1908 * - <0 - on error
1da177e4 1909 */
b41277dc
DH
1910static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1911 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1912 u32 *cmpval, int requeue_pi)
1da177e4 1913{
38d47c1b 1914 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
4b39f99c 1915 int task_count = 0, ret;
52400ba9 1916 struct futex_pi_state *pi_state = NULL;
e2970f2f 1917 struct futex_hash_bucket *hb1, *hb2;
1da177e4 1918 struct futex_q *this, *next;
194a6b5b 1919 DEFINE_WAKE_Q(wake_q);
52400ba9 1920
fbe0e839
LJ
1921 if (nr_wake < 0 || nr_requeue < 0)
1922 return -EINVAL;
1923
bc2eecd7
NP
1924 /*
1925 * When PI not supported: return -ENOSYS if requeue_pi is true,
1926 * consequently the compiler knows requeue_pi is always false past
1927 * this point which will optimize away all the conditional code
1928 * further down.
1929 */
1930 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1931 return -ENOSYS;
1932
52400ba9 1933 if (requeue_pi) {
e9c243a5
TG
1934 /*
1935 * Requeue PI only works on two distinct uaddrs. This
1936 * check is only valid for private futexes. See below.
1937 */
1938 if (uaddr1 == uaddr2)
1939 return -EINVAL;
1940
52400ba9
DH
1941 /*
1942 * requeue_pi requires a pi_state, try to allocate it now
1943 * without any locks in case it fails.
1944 */
1945 if (refill_pi_state_cache())
1946 return -ENOMEM;
1947 /*
1948 * requeue_pi must wake as many tasks as it can, up to nr_wake
1949 * + nr_requeue, since it acquires the rt_mutex prior to
1950 * returning to userspace, so as to not leave the rt_mutex with
1951 * waiters and no owner. However, second and third wake-ups
1952 * cannot be predicted as they involve race conditions with the
1953 * first wake and a fault while looking up the pi_state. Both
1954 * pthread_cond_signal() and pthread_cond_broadcast() should
1955 * use nr_wake=1.
1956 */
1957 if (nr_wake != 1)
1958 return -EINVAL;
1959 }
1da177e4 1960
42d35d48 1961retry:
96d4f267 1962 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1da177e4 1963 if (unlikely(ret != 0))
d7c5ed73 1964 return ret;
9ea71503 1965 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
96d4f267 1966 requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1da177e4 1967 if (unlikely(ret != 0))
d7c5ed73 1968 return ret;
1da177e4 1969
e9c243a5
TG
1970 /*
1971 * The check above which compares uaddrs is not sufficient for
1972 * shared futexes. We need to compare the keys:
1973 */
d7c5ed73
AA
1974 if (requeue_pi && match_futex(&key1, &key2))
1975 return -EINVAL;
e9c243a5 1976
e2970f2f
IM
1977 hb1 = hash_futex(&key1);
1978 hb2 = hash_futex(&key2);
1da177e4 1979
e4dc5b7a 1980retry_private:
69cd9eba 1981 hb_waiters_inc(hb2);
8b8f319f 1982 double_lock_hb(hb1, hb2);
1da177e4 1983
e2970f2f
IM
1984 if (likely(cmpval != NULL)) {
1985 u32 curval;
1da177e4 1986
e2970f2f 1987 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1988
1989 if (unlikely(ret)) {
5eb3dc62 1990 double_unlock_hb(hb1, hb2);
69cd9eba 1991 hb_waiters_dec(hb2);
1da177e4 1992
e2970f2f 1993 ret = get_user(curval, uaddr1);
e4dc5b7a 1994 if (ret)
d7c5ed73 1995 return ret;
1da177e4 1996
b41277dc 1997 if (!(flags & FLAGS_SHARED))
e4dc5b7a 1998 goto retry_private;
1da177e4 1999
e4dc5b7a 2000 goto retry;
1da177e4 2001 }
e2970f2f 2002 if (curval != *cmpval) {
1da177e4
LT
2003 ret = -EAGAIN;
2004 goto out_unlock;
2005 }
2006 }
2007
52400ba9 2008 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
3ef240ea
TG
2009 struct task_struct *exiting = NULL;
2010
bab5bc9e
DH
2011 /*
2012 * Attempt to acquire uaddr2 and wake the top waiter. If we
2013 * intend to requeue waiters, force setting the FUTEX_WAITERS
2014 * bit. We force this here where we are able to easily handle
2015 * faults rather in the requeue loop below.
2016 */
52400ba9 2017 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
3ef240ea
TG
2018 &key2, &pi_state,
2019 &exiting, nr_requeue);
52400ba9
DH
2020
2021 /*
2022 * At this point the top_waiter has either taken uaddr2 or is
2023 * waiting on it. If the former, then the pi_state will not
2024 * exist yet, look it up one more time to ensure we have a
866293ee
TG
2025 * reference to it. If the lock was taken, ret contains the
2026 * vpid of the top waiter task.
ecb38b78
TG
2027 * If the lock was not taken, we have pi_state and an initial
2028 * refcount on it. In case of an error we have nothing.
52400ba9 2029 */
866293ee 2030 if (ret > 0) {
52400ba9
DH
2031 WARN_ON(pi_state);
2032 task_count++;
866293ee 2033 /*
ecb38b78
TG
2034 * If we acquired the lock, then the user space value
2035 * of uaddr2 should be vpid. It cannot be changed by
2036 * the top waiter as it is blocked on hb2 lock if it
2037 * tries to do so. If something fiddled with it behind
2038 * our back the pi state lookup might unearth it. So
2039 * we rather use the known value than rereading and
2040 * handing potential crap to lookup_pi_state.
2041 *
2042 * If that call succeeds then we have pi_state and an
2043 * initial refcount on it.
866293ee 2044 */
3ef240ea
TG
2045 ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
2046 &pi_state, &exiting);
52400ba9
DH
2047 }
2048
2049 switch (ret) {
2050 case 0:
ecb38b78 2051 /* We hold a reference on the pi state. */
52400ba9 2052 break;
4959f2de
TG
2053
2054 /* If the above failed, then pi_state is NULL */
52400ba9
DH
2055 case -EFAULT:
2056 double_unlock_hb(hb1, hb2);
69cd9eba 2057 hb_waiters_dec(hb2);
d0725992 2058 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
2059 if (!ret)
2060 goto retry;
d7c5ed73 2061 return ret;
ac31c7ff 2062 case -EBUSY:
52400ba9 2063 case -EAGAIN:
af54d6a1
TG
2064 /*
2065 * Two reasons for this:
ac31c7ff 2066 * - EBUSY: Owner is exiting and we just wait for the
af54d6a1 2067 * exit to complete.
ac31c7ff 2068 * - EAGAIN: The user space value changed.
af54d6a1 2069 */
52400ba9 2070 double_unlock_hb(hb1, hb2);
69cd9eba 2071 hb_waiters_dec(hb2);
3ef240ea
TG
2072 /*
2073 * Handle the case where the owner is in the middle of
2074 * exiting. Wait for the exit to complete otherwise
2075 * this task might loop forever, aka. live lock.
2076 */
2077 wait_for_owner_exiting(ret, exiting);
52400ba9
DH
2078 cond_resched();
2079 goto retry;
2080 default:
2081 goto out_unlock;
2082 }
2083 }
2084
0d00c7b2 2085 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
52400ba9
DH
2086 if (task_count - nr_wake >= nr_requeue)
2087 break;
2088
2089 if (!match_futex(&this->key, &key1))
1da177e4 2090 continue;
52400ba9 2091
392741e0
DH
2092 /*
2093 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2094 * be paired with each other and no other futex ops.
aa10990e
DH
2095 *
2096 * We should never be requeueing a futex_q with a pi_state,
2097 * which is awaiting a futex_unlock_pi().
392741e0
DH
2098 */
2099 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
2100 (!requeue_pi && this->rt_waiter) ||
2101 this->pi_state) {
392741e0
DH
2102 ret = -EINVAL;
2103 break;
2104 }
52400ba9
DH
2105
2106 /*
2107 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2108 * lock, we already woke the top_waiter. If not, it will be
2109 * woken by futex_unlock_pi().
2110 */
2111 if (++task_count <= nr_wake && !requeue_pi) {
1d0dcb3a 2112 mark_wake_futex(&wake_q, this);
52400ba9
DH
2113 continue;
2114 }
1da177e4 2115
84bc4af5
DH
2116 /* Ensure we requeue to the expected futex for requeue_pi. */
2117 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2118 ret = -EINVAL;
2119 break;
2120 }
2121
52400ba9
DH
2122 /*
2123 * Requeue nr_requeue waiters and possibly one more in the case
2124 * of requeue_pi if we couldn't acquire the lock atomically.
2125 */
2126 if (requeue_pi) {
ecb38b78
TG
2127 /*
2128 * Prepare the waiter to take the rt_mutex. Take a
2129 * refcount on the pi_state and store the pointer in
2130 * the futex_q object of the waiter.
2131 */
bf92cf3a 2132 get_pi_state(pi_state);
52400ba9
DH
2133 this->pi_state = pi_state;
2134 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2135 this->rt_waiter,
c051b21f 2136 this->task);
52400ba9 2137 if (ret == 1) {
ecb38b78
TG
2138 /*
2139 * We got the lock. We do neither drop the
2140 * refcount on pi_state nor clear
2141 * this->pi_state because the waiter needs the
2142 * pi_state for cleaning up the user space
2143 * value. It will drop the refcount after
2144 * doing so.
2145 */
beda2c7e 2146 requeue_pi_wake_futex(this, &key2, hb2);
52400ba9
DH
2147 continue;
2148 } else if (ret) {
ecb38b78
TG
2149 /*
2150 * rt_mutex_start_proxy_lock() detected a
2151 * potential deadlock when we tried to queue
2152 * that waiter. Drop the pi_state reference
2153 * which we took above and remove the pointer
2154 * to the state from the waiters futex_q
2155 * object.
2156 */
52400ba9 2157 this->pi_state = NULL;
29e9ee5d 2158 put_pi_state(pi_state);
885c2cb7
TG
2159 /*
2160 * We stop queueing more waiters and let user
2161 * space deal with the mess.
2162 */
2163 break;
52400ba9 2164 }
1da177e4 2165 }
52400ba9 2166 requeue_futex(this, hb1, hb2, &key2);
1da177e4
LT
2167 }
2168
ecb38b78
TG
2169 /*
2170 * We took an extra initial reference to the pi_state either
2171 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2172 * need to drop it here again.
2173 */
29e9ee5d 2174 put_pi_state(pi_state);
885c2cb7
TG
2175
2176out_unlock:
5eb3dc62 2177 double_unlock_hb(hb1, hb2);
1d0dcb3a 2178 wake_up_q(&wake_q);
69cd9eba 2179 hb_waiters_dec(hb2);
52400ba9 2180 return ret ? ret : task_count;
1da177e4
LT
2181}
2182
2183/* The key must be already stored in q->key. */
82af7aca 2184static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 2185 __acquires(&hb->lock)
1da177e4 2186{
e2970f2f 2187 struct futex_hash_bucket *hb;
1da177e4 2188
e2970f2f 2189 hb = hash_futex(&q->key);
11d4616b
LT
2190
2191 /*
2192 * Increment the counter before taking the lock so that
2193 * a potential waker won't miss a to-be-slept task that is
2194 * waiting for the spinlock. This is safe as all queue_lock()
2195 * users end up calling queue_me(). Similarly, for housekeeping,
2196 * decrement the counter at queue_unlock() when some error has
2197 * occurred and we don't end up adding the task to the list.
2198 */
6f568ebe 2199 hb_waiters_inc(hb); /* implies smp_mb(); (A) */
11d4616b 2200
e2970f2f 2201 q->lock_ptr = &hb->lock;
1da177e4 2202
6f568ebe 2203 spin_lock(&hb->lock);
e2970f2f 2204 return hb;
1da177e4
LT
2205}
2206
d40d65c8 2207static inline void
0d00c7b2 2208queue_unlock(struct futex_hash_bucket *hb)
15e408cd 2209 __releases(&hb->lock)
d40d65c8
DH
2210{
2211 spin_unlock(&hb->lock);
11d4616b 2212 hb_waiters_dec(hb);
d40d65c8
DH
2213}
2214
cfafcd11 2215static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 2216{
ec92d082
PP
2217 int prio;
2218
2219 /*
2220 * The priority used to register this element is
2221 * - either the real thread-priority for the real-time threads
2222 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2223 * - or MAX_RT_PRIO for non-RT threads.
2224 * Thus, all RT-threads are woken first in priority order, and
2225 * the others are woken last, in FIFO order.
2226 */
2227 prio = min(current->normal_prio, MAX_RT_PRIO);
2228
2229 plist_node_init(&q->list, prio);
ec92d082 2230 plist_add(&q->list, &hb->chain);
c87e2837 2231 q->task = current;
cfafcd11
PZ
2232}
2233
2234/**
2235 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2236 * @q: The futex_q to enqueue
2237 * @hb: The destination hash bucket
2238 *
2239 * The hb->lock must be held by the caller, and is released here. A call to
2240 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2241 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2242 * or nothing if the unqueue is done as part of the wake process and the unqueue
2243 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2244 * an example).
2245 */
2246static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2247 __releases(&hb->lock)
2248{
2249 __queue_me(q, hb);
e2970f2f 2250 spin_unlock(&hb->lock);
1da177e4
LT
2251}
2252
d40d65c8
DH
2253/**
2254 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2255 * @q: The futex_q to unqueue
2256 *
2257 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2258 * be paired with exactly one earlier call to queue_me().
2259 *
6c23cbbd 2260 * Return:
7b4ff1ad
MCC
2261 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2262 * - 0 - if the futex_q was already removed by the waking thread
1da177e4 2263 */
1da177e4
LT
2264static int unqueue_me(struct futex_q *q)
2265{
1da177e4 2266 spinlock_t *lock_ptr;
e2970f2f 2267 int ret = 0;
1da177e4
LT
2268
2269 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 2270retry:
29b75eb2
JZ
2271 /*
2272 * q->lock_ptr can change between this read and the following spin_lock.
2273 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2274 * optimizing lock_ptr out of the logic below.
2275 */
2276 lock_ptr = READ_ONCE(q->lock_ptr);
c80544dc 2277 if (lock_ptr != NULL) {
1da177e4
LT
2278 spin_lock(lock_ptr);
2279 /*
2280 * q->lock_ptr can change between reading it and
2281 * spin_lock(), causing us to take the wrong lock. This
2282 * corrects the race condition.
2283 *
2284 * Reasoning goes like this: if we have the wrong lock,
2285 * q->lock_ptr must have changed (maybe several times)
2286 * between reading it and the spin_lock(). It can
2287 * change again after the spin_lock() but only if it was
2288 * already changed before the spin_lock(). It cannot,
2289 * however, change back to the original value. Therefore
2290 * we can detect whether we acquired the correct lock.
2291 */
2292 if (unlikely(lock_ptr != q->lock_ptr)) {
2293 spin_unlock(lock_ptr);
2294 goto retry;
2295 }
2e12978a 2296 __unqueue_futex(q);
c87e2837
IM
2297
2298 BUG_ON(q->pi_state);
2299
1da177e4
LT
2300 spin_unlock(lock_ptr);
2301 ret = 1;
2302 }
2303
1da177e4
LT
2304 return ret;
2305}
2306
c87e2837
IM
2307/*
2308 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
2309 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2310 * and dropped here.
c87e2837 2311 */
d0aa7a70 2312static void unqueue_me_pi(struct futex_q *q)
15e408cd 2313 __releases(q->lock_ptr)
c87e2837 2314{
2e12978a 2315 __unqueue_futex(q);
c87e2837
IM
2316
2317 BUG_ON(!q->pi_state);
29e9ee5d 2318 put_pi_state(q->pi_state);
c87e2837
IM
2319 q->pi_state = NULL;
2320
d0aa7a70 2321 spin_unlock(q->lock_ptr);
c87e2837
IM
2322}
2323
778e9a9c 2324static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
c1e2f0ea 2325 struct task_struct *argowner)
d0aa7a70 2326{
d0aa7a70 2327 struct futex_pi_state *pi_state = q->pi_state;
3f649ab7 2328 u32 uval, curval, newval;
c1e2f0ea
PZ
2329 struct task_struct *oldowner, *newowner;
2330 u32 newtid;
6b4f4bc9 2331 int ret, err = 0;
d0aa7a70 2332
c1e2f0ea
PZ
2333 lockdep_assert_held(q->lock_ptr);
2334
734009e9
PZ
2335 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2336
2337 oldowner = pi_state->owner;
1b7558e4
TG
2338
2339 /*
c1e2f0ea 2340 * We are here because either:
16ffa12d 2341 *
c1e2f0ea
PZ
2342 * - we stole the lock and pi_state->owner needs updating to reflect
2343 * that (@argowner == current),
2344 *
2345 * or:
2346 *
2347 * - someone stole our lock and we need to fix things to point to the
2348 * new owner (@argowner == NULL).
2349 *
2350 * Either way, we have to replace the TID in the user space variable.
8161239a 2351 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 2352 *
b2d0994b
DH
2353 * Note: We write the user space value _before_ changing the pi_state
2354 * because we can fault here. Imagine swapped out pages or a fork
2355 * that marked all the anonymous memory readonly for cow.
1b7558e4 2356 *
734009e9
PZ
2357 * Modifying pi_state _before_ the user space value would leave the
2358 * pi_state in an inconsistent state when we fault here, because we
2359 * need to drop the locks to handle the fault. This might be observed
2360 * in the PID check in lookup_pi_state.
1b7558e4
TG
2361 */
2362retry:
c1e2f0ea
PZ
2363 if (!argowner) {
2364 if (oldowner != current) {
2365 /*
2366 * We raced against a concurrent self; things are
2367 * already fixed up. Nothing to do.
2368 */
2369 ret = 0;
2370 goto out_unlock;
2371 }
2372
2373 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2374 /* We got the lock after all, nothing to fix. */
2375 ret = 0;
2376 goto out_unlock;
2377 }
2378
2379 /*
2380 * Since we just failed the trylock; there must be an owner.
2381 */
2382 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2383 BUG_ON(!newowner);
2384 } else {
2385 WARN_ON_ONCE(argowner != current);
2386 if (oldowner == current) {
2387 /*
2388 * We raced against a concurrent self; things are
2389 * already fixed up. Nothing to do.
2390 */
2391 ret = 0;
2392 goto out_unlock;
2393 }
2394 newowner = argowner;
2395 }
2396
2397 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
a97cb0e7
PZ
2398 /* Owner died? */
2399 if (!pi_state->owner)
2400 newtid |= FUTEX_OWNER_DIED;
c1e2f0ea 2401
6b4f4bc9
WD
2402 err = get_futex_value_locked(&uval, uaddr);
2403 if (err)
2404 goto handle_err;
1b7558e4 2405
16ffa12d 2406 for (;;) {
1b7558e4
TG
2407 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2408
6b4f4bc9
WD
2409 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2410 if (err)
2411 goto handle_err;
2412
1b7558e4
TG
2413 if (curval == uval)
2414 break;
2415 uval = curval;
2416 }
2417
2418 /*
2419 * We fixed up user space. Now we need to fix the pi_state
2420 * itself.
2421 */
d0aa7a70 2422 if (pi_state->owner != NULL) {
734009e9 2423 raw_spin_lock(&pi_state->owner->pi_lock);
d0aa7a70
PP
2424 WARN_ON(list_empty(&pi_state->list));
2425 list_del_init(&pi_state->list);
734009e9 2426 raw_spin_unlock(&pi_state->owner->pi_lock);
1b7558e4 2427 }
d0aa7a70 2428
cdf71a10 2429 pi_state->owner = newowner;
d0aa7a70 2430
734009e9 2431 raw_spin_lock(&newowner->pi_lock);
d0aa7a70 2432 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 2433 list_add(&pi_state->list, &newowner->pi_state_list);
734009e9
PZ
2434 raw_spin_unlock(&newowner->pi_lock);
2435 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2436
1b7558e4 2437 return 0;
d0aa7a70 2438
d0aa7a70 2439 /*
6b4f4bc9
WD
2440 * In order to reschedule or handle a page fault, we need to drop the
2441 * locks here. In the case of a fault, this gives the other task
2442 * (either the highest priority waiter itself or the task which stole
2443 * the rtmutex) the chance to try the fixup of the pi_state. So once we
2444 * are back from handling the fault we need to check the pi_state after
2445 * reacquiring the locks and before trying to do another fixup. When
2446 * the fixup has been done already we simply return.
734009e9
PZ
2447 *
2448 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2449 * drop hb->lock since the caller owns the hb -> futex_q relation.
2450 * Dropping the pi_mutex->wait_lock requires the state revalidate.
d0aa7a70 2451 */
6b4f4bc9 2452handle_err:
734009e9 2453 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1b7558e4 2454 spin_unlock(q->lock_ptr);
778e9a9c 2455
6b4f4bc9
WD
2456 switch (err) {
2457 case -EFAULT:
2458 ret = fault_in_user_writeable(uaddr);
2459 break;
2460
2461 case -EAGAIN:
2462 cond_resched();
2463 ret = 0;
2464 break;
2465
2466 default:
2467 WARN_ON_ONCE(1);
2468 ret = err;
2469 break;
2470 }
778e9a9c 2471
1b7558e4 2472 spin_lock(q->lock_ptr);
734009e9 2473 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
778e9a9c 2474
1b7558e4
TG
2475 /*
2476 * Check if someone else fixed it for us:
2477 */
734009e9
PZ
2478 if (pi_state->owner != oldowner) {
2479 ret = 0;
2480 goto out_unlock;
2481 }
1b7558e4
TG
2482
2483 if (ret)
734009e9 2484 goto out_unlock;
1b7558e4
TG
2485
2486 goto retry;
734009e9
PZ
2487
2488out_unlock:
2489 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2490 return ret;
d0aa7a70
PP
2491}
2492
72c1bbf3 2493static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 2494
dd973998
DH
2495/**
2496 * fixup_owner() - Post lock pi_state and corner case management
2497 * @uaddr: user address of the futex
dd973998
DH
2498 * @q: futex_q (contains pi_state and access to the rt_mutex)
2499 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2500 *
2501 * After attempting to lock an rt_mutex, this function is called to cleanup
2502 * the pi_state owner as well as handle race conditions that may allow us to
2503 * acquire the lock. Must be called with the hb lock held.
2504 *
6c23cbbd 2505 * Return:
7b4ff1ad
MCC
2506 * - 1 - success, lock taken;
2507 * - 0 - success, lock not taken;
2508 * - <0 - on error (-EFAULT)
dd973998 2509 */
ae791a2d 2510static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998 2511{
dd973998
DH
2512 int ret = 0;
2513
2514 if (locked) {
2515 /*
2516 * Got the lock. We might not be the anticipated owner if we
2517 * did a lock-steal - fix up the PI-state in that case:
16ffa12d 2518 *
c1e2f0ea
PZ
2519 * Speculative pi_state->owner read (we don't hold wait_lock);
2520 * since we own the lock pi_state->owner == current is the
2521 * stable state, anything else needs more attention.
dd973998
DH
2522 */
2523 if (q->pi_state->owner != current)
ae791a2d 2524 ret = fixup_pi_state_owner(uaddr, q, current);
d7c5ed73 2525 return ret ? ret : locked;
dd973998
DH
2526 }
2527
c1e2f0ea
PZ
2528 /*
2529 * If we didn't get the lock; check if anybody stole it from us. In
2530 * that case, we need to fix up the uval to point to them instead of
2531 * us, otherwise bad things happen. [10]
2532 *
2533 * Another speculative read; pi_state->owner == current is unstable
2534 * but needs our attention.
2535 */
2536 if (q->pi_state->owner == current) {
2537 ret = fixup_pi_state_owner(uaddr, q, NULL);
d7c5ed73 2538 return ret;
c1e2f0ea
PZ
2539 }
2540
dd973998
DH
2541 /*
2542 * Paranoia check. If we did not take the lock, then we should not be
8161239a 2543 * the owner of the rt_mutex.
dd973998 2544 */
73d786bd 2545 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
dd973998
DH
2546 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2547 "pi-state %p\n", ret,
2548 q->pi_state->pi_mutex.owner,
2549 q->pi_state->owner);
73d786bd 2550 }
dd973998 2551
d7c5ed73 2552 return ret;
dd973998
DH
2553}
2554
ca5f9524
DH
2555/**
2556 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2557 * @hb: the futex hash bucket, must be locked by the caller
2558 * @q: the futex_q to queue up on
2559 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
2560 */
2561static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 2562 struct hrtimer_sleeper *timeout)
ca5f9524 2563{
9beba3c5
DH
2564 /*
2565 * The task state is guaranteed to be set before another task can
b92b8b35 2566 * wake it. set_current_state() is implemented using smp_store_mb() and
9beba3c5
DH
2567 * queue_me() calls spin_unlock() upon completion, both serializing
2568 * access to the hash list and forcing another memory barrier.
2569 */
f1a11e05 2570 set_current_state(TASK_INTERRUPTIBLE);
0729e196 2571 queue_me(q, hb);
ca5f9524
DH
2572
2573 /* Arm the timer */
2e4b0d3f 2574 if (timeout)
9dd8813e 2575 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
ca5f9524
DH
2576
2577 /*
0729e196
DH
2578 * If we have been removed from the hash list, then another task
2579 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
2580 */
2581 if (likely(!plist_node_empty(&q->list))) {
2582 /*
2583 * If the timer has already expired, current will already be
2584 * flagged for rescheduling. Only call schedule if there
2585 * is no timeout, or if it has yet to expire.
2586 */
2587 if (!timeout || timeout->task)
88c8004f 2588 freezable_schedule();
ca5f9524
DH
2589 }
2590 __set_current_state(TASK_RUNNING);
2591}
2592
f801073f
DH
2593/**
2594 * futex_wait_setup() - Prepare to wait on a futex
2595 * @uaddr: the futex userspace address
2596 * @val: the expected value
b41277dc 2597 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
2598 * @q: the associated futex_q
2599 * @hb: storage for hash_bucket pointer to be returned to caller
2600 *
2601 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2602 * compare it with the expected value. Handle atomic faults internally.
2603 * Return with the hb lock held and a q.key reference on success, and unlocked
2604 * with no q.key reference on failure.
2605 *
6c23cbbd 2606 * Return:
7b4ff1ad
MCC
2607 * - 0 - uaddr contains val and hb has been locked;
2608 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 2609 */
b41277dc 2610static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 2611 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 2612{
e2970f2f
IM
2613 u32 uval;
2614 int ret;
1da177e4 2615
1da177e4 2616 /*
b2d0994b 2617 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
2618 * Order is important:
2619 *
2620 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2621 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2622 *
2623 * The basic logical guarantee of a futex is that it blocks ONLY
2624 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
2625 * any cond. If we locked the hash-bucket after testing *uaddr, that
2626 * would open a race condition where we could block indefinitely with
1da177e4
LT
2627 * cond(var) false, which would violate the guarantee.
2628 *
8fe8f545
ML
2629 * On the other hand, we insert q and release the hash-bucket only
2630 * after testing *uaddr. This guarantees that futex_wait() will NOT
2631 * absorb a wakeup if *uaddr does not match the desired values
2632 * while the syscall executes.
1da177e4 2633 */
f801073f 2634retry:
96d4f267 2635 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
f801073f 2636 if (unlikely(ret != 0))
a5a2a0c7 2637 return ret;
f801073f
DH
2638
2639retry_private:
2640 *hb = queue_lock(q);
2641
e2970f2f 2642 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 2643
f801073f 2644 if (ret) {
0d00c7b2 2645 queue_unlock(*hb);
1da177e4 2646
e2970f2f 2647 ret = get_user(uval, uaddr);
e4dc5b7a 2648 if (ret)
d7c5ed73 2649 return ret;
1da177e4 2650
b41277dc 2651 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2652 goto retry_private;
2653
e4dc5b7a 2654 goto retry;
1da177e4 2655 }
ca5f9524 2656
f801073f 2657 if (uval != val) {
0d00c7b2 2658 queue_unlock(*hb);
f801073f 2659 ret = -EWOULDBLOCK;
2fff78c7 2660 }
1da177e4 2661
f801073f
DH
2662 return ret;
2663}
2664
b41277dc
DH
2665static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2666 ktime_t *abs_time, u32 bitset)
f801073f 2667{
5ca584d9 2668 struct hrtimer_sleeper timeout, *to;
f801073f
DH
2669 struct restart_block *restart;
2670 struct futex_hash_bucket *hb;
5bdb05f9 2671 struct futex_q q = futex_q_init;
f801073f
DH
2672 int ret;
2673
2674 if (!bitset)
2675 return -EINVAL;
f801073f
DH
2676 q.bitset = bitset;
2677
5ca584d9
WL
2678 to = futex_setup_timer(abs_time, &timeout, flags,
2679 current->timer_slack_ns);
d58e6576 2680retry:
7ada876a
DH
2681 /*
2682 * Prepare to wait on uaddr. On success, holds hb lock and increments
2683 * q.key refs.
2684 */
b41277dc 2685 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
2686 if (ret)
2687 goto out;
2688
ca5f9524 2689 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 2690 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
2691
2692 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 2693 ret = 0;
7ada876a 2694 /* unqueue_me() drops q.key ref */
1da177e4 2695 if (!unqueue_me(&q))
7ada876a 2696 goto out;
2fff78c7 2697 ret = -ETIMEDOUT;
ca5f9524 2698 if (to && !to->task)
7ada876a 2699 goto out;
72c1bbf3 2700
e2970f2f 2701 /*
d58e6576
TG
2702 * We expect signal_pending(current), but we might be the
2703 * victim of a spurious wakeup as well.
e2970f2f 2704 */
7ada876a 2705 if (!signal_pending(current))
d58e6576 2706 goto retry;
d58e6576 2707
2fff78c7 2708 ret = -ERESTARTSYS;
c19384b5 2709 if (!abs_time)
7ada876a 2710 goto out;
1da177e4 2711
f56141e3 2712 restart = &current->restart_block;
2fff78c7 2713 restart->fn = futex_wait_restart;
a3c74c52 2714 restart->futex.uaddr = uaddr;
2fff78c7 2715 restart->futex.val = val;
2456e855 2716 restart->futex.time = *abs_time;
2fff78c7 2717 restart->futex.bitset = bitset;
0cd9c649 2718 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2719
2fff78c7
PZ
2720 ret = -ERESTART_RESTARTBLOCK;
2721
42d35d48 2722out:
ca5f9524
DH
2723 if (to) {
2724 hrtimer_cancel(&to->timer);
2725 destroy_hrtimer_on_stack(&to->timer);
2726 }
c87e2837
IM
2727 return ret;
2728}
2729
72c1bbf3
NP
2730
2731static long futex_wait_restart(struct restart_block *restart)
2732{
a3c74c52 2733 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2734 ktime_t t, *tp = NULL;
72c1bbf3 2735
a72188d8 2736 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2456e855 2737 t = restart->futex.time;
a72188d8
DH
2738 tp = &t;
2739 }
72c1bbf3 2740 restart->fn = do_no_restart_syscall;
b41277dc
DH
2741
2742 return (long)futex_wait(uaddr, restart->futex.flags,
2743 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2744}
2745
2746
c87e2837
IM
2747/*
2748 * Userspace tried a 0 -> TID atomic transition of the futex value
2749 * and failed. The kernel side here does the whole locking operation:
767f509c
DB
2750 * if there are waiters then it will block as a consequence of relying
2751 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2752 * a 0 value of the futex too.).
2753 *
2754 * Also serves as futex trylock_pi()'ing, and due semantics.
c87e2837 2755 */
996636dd 2756static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
b41277dc 2757 ktime_t *time, int trylock)
c87e2837 2758{
5ca584d9 2759 struct hrtimer_sleeper timeout, *to;
16ffa12d 2760 struct futex_pi_state *pi_state = NULL;
3ef240ea 2761 struct task_struct *exiting = NULL;
cfafcd11 2762 struct rt_mutex_waiter rt_waiter;
c87e2837 2763 struct futex_hash_bucket *hb;
5bdb05f9 2764 struct futex_q q = futex_q_init;
dd973998 2765 int res, ret;
c87e2837 2766
bc2eecd7
NP
2767 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2768 return -ENOSYS;
2769
c87e2837
IM
2770 if (refill_pi_state_cache())
2771 return -ENOMEM;
2772
5ca584d9 2773 to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
c5780e97 2774
42d35d48 2775retry:
96d4f267 2776 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
c87e2837 2777 if (unlikely(ret != 0))
42d35d48 2778 goto out;
c87e2837 2779
e4dc5b7a 2780retry_private:
82af7aca 2781 hb = queue_lock(&q);
c87e2837 2782
3ef240ea
TG
2783 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2784 &exiting, 0);
c87e2837 2785 if (unlikely(ret)) {
767f509c
DB
2786 /*
2787 * Atomic work succeeded and we got the lock,
2788 * or failed. Either way, we do _not_ block.
2789 */
778e9a9c 2790 switch (ret) {
1a52084d
DH
2791 case 1:
2792 /* We got the lock. */
2793 ret = 0;
2794 goto out_unlock_put_key;
2795 case -EFAULT:
2796 goto uaddr_faulted;
ac31c7ff 2797 case -EBUSY:
778e9a9c
AK
2798 case -EAGAIN:
2799 /*
af54d6a1 2800 * Two reasons for this:
ac31c7ff 2801 * - EBUSY: Task is exiting and we just wait for the
af54d6a1 2802 * exit to complete.
ac31c7ff 2803 * - EAGAIN: The user space value changed.
778e9a9c 2804 */
0d00c7b2 2805 queue_unlock(hb);
3ef240ea
TG
2806 /*
2807 * Handle the case where the owner is in the middle of
2808 * exiting. Wait for the exit to complete otherwise
2809 * this task might loop forever, aka. live lock.
2810 */
2811 wait_for_owner_exiting(ret, exiting);
778e9a9c
AK
2812 cond_resched();
2813 goto retry;
778e9a9c 2814 default:
42d35d48 2815 goto out_unlock_put_key;
c87e2837 2816 }
c87e2837
IM
2817 }
2818
cfafcd11
PZ
2819 WARN_ON(!q.pi_state);
2820
c87e2837
IM
2821 /*
2822 * Only actually queue now that the atomic ops are done:
2823 */
cfafcd11 2824 __queue_me(&q, hb);
c87e2837 2825
cfafcd11 2826 if (trylock) {
5293c2ef 2827 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
c87e2837
IM
2828 /* Fixup the trylock return value: */
2829 ret = ret ? 0 : -EWOULDBLOCK;
cfafcd11 2830 goto no_block;
c87e2837
IM
2831 }
2832
56222b21
PZ
2833 rt_mutex_init_waiter(&rt_waiter);
2834
cfafcd11 2835 /*
56222b21
PZ
2836 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2837 * hold it while doing rt_mutex_start_proxy(), because then it will
2838 * include hb->lock in the blocking chain, even through we'll not in
2839 * fact hold it while blocking. This will lead it to report -EDEADLK
2840 * and BUG when futex_unlock_pi() interleaves with this.
2841 *
2842 * Therefore acquire wait_lock while holding hb->lock, but drop the
1a1fb985
TG
2843 * latter before calling __rt_mutex_start_proxy_lock(). This
2844 * interleaves with futex_unlock_pi() -- which does a similar lock
2845 * handoff -- such that the latter can observe the futex_q::pi_state
2846 * before __rt_mutex_start_proxy_lock() is done.
cfafcd11 2847 */
56222b21
PZ
2848 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2849 spin_unlock(q.lock_ptr);
1a1fb985
TG
2850 /*
2851 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2852 * such that futex_unlock_pi() is guaranteed to observe the waiter when
2853 * it sees the futex_q::pi_state.
2854 */
56222b21
PZ
2855 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2856 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2857
cfafcd11
PZ
2858 if (ret) {
2859 if (ret == 1)
2860 ret = 0;
1a1fb985 2861 goto cleanup;
cfafcd11
PZ
2862 }
2863
cfafcd11 2864 if (unlikely(to))
9dd8813e 2865 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
cfafcd11
PZ
2866
2867 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2868
1a1fb985 2869cleanup:
a99e4e41 2870 spin_lock(q.lock_ptr);
cfafcd11 2871 /*
1a1fb985 2872 * If we failed to acquire the lock (deadlock/signal/timeout), we must
cfafcd11 2873 * first acquire the hb->lock before removing the lock from the
1a1fb985
TG
2874 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2875 * lists consistent.
56222b21
PZ
2876 *
2877 * In particular; it is important that futex_unlock_pi() can not
2878 * observe this inconsistency.
cfafcd11
PZ
2879 */
2880 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2881 ret = 0;
2882
2883no_block:
dd973998
DH
2884 /*
2885 * Fixup the pi_state owner and possibly acquire the lock if we
2886 * haven't already.
2887 */
ae791a2d 2888 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2889 /*
2890 * If fixup_owner() returned an error, proprogate that. If it acquired
2891 * the lock, clear our -ETIMEDOUT or -EINTR.
2892 */
2893 if (res)
2894 ret = (res < 0) ? res : 0;
c87e2837 2895
e8f6386c 2896 /*
dd973998
DH
2897 * If fixup_owner() faulted and was unable to handle the fault, unlock
2898 * it and return the fault to userspace.
e8f6386c 2899 */
16ffa12d
PZ
2900 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2901 pi_state = q.pi_state;
2902 get_pi_state(pi_state);
2903 }
e8f6386c 2904
778e9a9c
AK
2905 /* Unqueue and drop the lock */
2906 unqueue_me_pi(&q);
c87e2837 2907
16ffa12d
PZ
2908 if (pi_state) {
2909 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2910 put_pi_state(pi_state);
2911 }
2912
9180bd46 2913 goto out;
c87e2837 2914
42d35d48 2915out_unlock_put_key:
0d00c7b2 2916 queue_unlock(hb);
c87e2837 2917
42d35d48 2918out:
97181f9b
TG
2919 if (to) {
2920 hrtimer_cancel(&to->timer);
237fc6e7 2921 destroy_hrtimer_on_stack(&to->timer);
97181f9b 2922 }
dd973998 2923 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2924
42d35d48 2925uaddr_faulted:
0d00c7b2 2926 queue_unlock(hb);
778e9a9c 2927
d0725992 2928 ret = fault_in_user_writeable(uaddr);
e4dc5b7a 2929 if (ret)
9180bd46 2930 goto out;
c87e2837 2931
b41277dc 2932 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2933 goto retry_private;
2934
e4dc5b7a 2935 goto retry;
c87e2837
IM
2936}
2937
c87e2837
IM
2938/*
2939 * Userspace attempted a TID -> 0 atomic transition, and failed.
2940 * This is the in-kernel slowpath: we look up the PI state (if any),
2941 * and do the rt-mutex unlock.
2942 */
b41277dc 2943static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837 2944{
3f649ab7 2945 u32 curval, uval, vpid = task_pid_vnr(current);
38d47c1b 2946 union futex_key key = FUTEX_KEY_INIT;
ccf9e6a8 2947 struct futex_hash_bucket *hb;
499f5aca 2948 struct futex_q *top_waiter;
e4dc5b7a 2949 int ret;
c87e2837 2950
bc2eecd7
NP
2951 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2952 return -ENOSYS;
2953
c87e2837
IM
2954retry:
2955 if (get_user(uval, uaddr))
2956 return -EFAULT;
2957 /*
2958 * We release only a lock we actually own:
2959 */
c0c9ed15 2960 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2961 return -EPERM;
c87e2837 2962
96d4f267 2963 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
ccf9e6a8
TG
2964 if (ret)
2965 return ret;
c87e2837
IM
2966
2967 hb = hash_futex(&key);
2968 spin_lock(&hb->lock);
2969
c87e2837 2970 /*
ccf9e6a8
TG
2971 * Check waiters first. We do not trust user space values at
2972 * all and we at least want to know if user space fiddled
2973 * with the futex value instead of blindly unlocking.
c87e2837 2974 */
499f5aca
PZ
2975 top_waiter = futex_top_waiter(hb, &key);
2976 if (top_waiter) {
16ffa12d
PZ
2977 struct futex_pi_state *pi_state = top_waiter->pi_state;
2978
2979 ret = -EINVAL;
2980 if (!pi_state)
2981 goto out_unlock;
2982
2983 /*
2984 * If current does not own the pi_state then the futex is
2985 * inconsistent and user space fiddled with the futex value.
2986 */
2987 if (pi_state->owner != current)
2988 goto out_unlock;
2989
bebe5b51 2990 get_pi_state(pi_state);
802ab58d 2991 /*
bebe5b51
PZ
2992 * By taking wait_lock while still holding hb->lock, we ensure
2993 * there is no point where we hold neither; and therefore
2994 * wake_futex_pi() must observe a state consistent with what we
2995 * observed.
1a1fb985
TG
2996 *
2997 * In particular; this forces __rt_mutex_start_proxy() to
2998 * complete such that we're guaranteed to observe the
2999 * rt_waiter. Also see the WARN in wake_futex_pi().
16ffa12d 3000 */
bebe5b51 3001 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
16ffa12d
PZ
3002 spin_unlock(&hb->lock);
3003
c74aef2d 3004 /* drops pi_state->pi_mutex.wait_lock */
16ffa12d
PZ
3005 ret = wake_futex_pi(uaddr, uval, pi_state);
3006
3007 put_pi_state(pi_state);
3008
3009 /*
3010 * Success, we're done! No tricky corner cases.
802ab58d
SAS
3011 */
3012 if (!ret)
3013 goto out_putkey;
c87e2837 3014 /*
ccf9e6a8
TG
3015 * The atomic access to the futex value generated a
3016 * pagefault, so retry the user-access and the wakeup:
c87e2837
IM
3017 */
3018 if (ret == -EFAULT)
3019 goto pi_faulted;
89e9e66b
SAS
3020 /*
3021 * A unconditional UNLOCK_PI op raced against a waiter
3022 * setting the FUTEX_WAITERS bit. Try again.
3023 */
6b4f4bc9
WD
3024 if (ret == -EAGAIN)
3025 goto pi_retry;
802ab58d
SAS
3026 /*
3027 * wake_futex_pi has detected invalid state. Tell user
3028 * space.
3029 */
16ffa12d 3030 goto out_putkey;
c87e2837 3031 }
ccf9e6a8 3032
c87e2837 3033 /*
ccf9e6a8
TG
3034 * We have no kernel internal state, i.e. no waiters in the
3035 * kernel. Waiters which are about to queue themselves are stuck
3036 * on hb->lock. So we can safely ignore them. We do neither
3037 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3038 * owner.
c87e2837 3039 */
6b4f4bc9 3040 if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
16ffa12d 3041 spin_unlock(&hb->lock);
6b4f4bc9
WD
3042 switch (ret) {
3043 case -EFAULT:
3044 goto pi_faulted;
3045
3046 case -EAGAIN:
3047 goto pi_retry;
3048
3049 default:
3050 WARN_ON_ONCE(1);
3051 goto out_putkey;
3052 }
16ffa12d 3053 }
c87e2837 3054
ccf9e6a8
TG
3055 /*
3056 * If uval has changed, let user space handle it.
3057 */
3058 ret = (curval == uval) ? 0 : -EAGAIN;
3059
c87e2837
IM
3060out_unlock:
3061 spin_unlock(&hb->lock);
802ab58d 3062out_putkey:
c87e2837
IM
3063 return ret;
3064
6b4f4bc9 3065pi_retry:
6b4f4bc9
WD
3066 cond_resched();
3067 goto retry;
3068
c87e2837 3069pi_faulted:
c87e2837 3070
d0725992 3071 ret = fault_in_user_writeable(uaddr);
b5686363 3072 if (!ret)
c87e2837
IM
3073 goto retry;
3074
1da177e4
LT
3075 return ret;
3076}
3077
52400ba9
DH
3078/**
3079 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3080 * @hb: the hash_bucket futex_q was original enqueued on
3081 * @q: the futex_q woken while waiting to be requeued
3082 * @key2: the futex_key of the requeue target futex
3083 * @timeout: the timeout associated with the wait (NULL if none)
3084 *
3085 * Detect if the task was woken on the initial futex as opposed to the requeue
3086 * target futex. If so, determine if it was a timeout or a signal that caused
3087 * the wakeup and return the appropriate error code to the caller. Must be
3088 * called with the hb lock held.
3089 *
6c23cbbd 3090 * Return:
7b4ff1ad
MCC
3091 * - 0 = no early wakeup detected;
3092 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
3093 */
3094static inline
3095int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3096 struct futex_q *q, union futex_key *key2,
3097 struct hrtimer_sleeper *timeout)
3098{
3099 int ret = 0;
3100
3101 /*
3102 * With the hb lock held, we avoid races while we process the wakeup.
3103 * We only need to hold hb (and not hb2) to ensure atomicity as the
3104 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3105 * It can't be requeued from uaddr2 to something else since we don't
3106 * support a PI aware source futex for requeue.
3107 */
3108 if (!match_futex(&q->key, key2)) {
3109 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3110 /*
3111 * We were woken prior to requeue by a timeout or a signal.
3112 * Unqueue the futex_q and determine which it was.
3113 */
2e12978a 3114 plist_del(&q->list, &hb->chain);
11d4616b 3115 hb_waiters_dec(hb);
52400ba9 3116
d58e6576 3117 /* Handle spurious wakeups gracefully */
11df6ddd 3118 ret = -EWOULDBLOCK;
52400ba9
DH
3119 if (timeout && !timeout->task)
3120 ret = -ETIMEDOUT;
d58e6576 3121 else if (signal_pending(current))
1c840c14 3122 ret = -ERESTARTNOINTR;
52400ba9
DH
3123 }
3124 return ret;
3125}
3126
3127/**
3128 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 3129 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 3130 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
ab51fbab 3131 * the same type, no requeueing from private to shared, etc.
52400ba9
DH
3132 * @val: the expected value of uaddr
3133 * @abs_time: absolute timeout
56ec1607 3134 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
3135 * @uaddr2: the pi futex we will take prior to returning to user-space
3136 *
3137 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
3138 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3139 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3140 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3141 * without one, the pi logic would not know which task to boost/deboost, if
3142 * there was a need to.
52400ba9
DH
3143 *
3144 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 3145 * via the following--
52400ba9 3146 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
3147 * 2) wakeup on uaddr2 after a requeue
3148 * 3) signal
3149 * 4) timeout
52400ba9 3150 *
cc6db4e6 3151 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
3152 *
3153 * If 2, we may then block on trying to take the rt_mutex and return via:
3154 * 5) successful lock
3155 * 6) signal
3156 * 7) timeout
3157 * 8) other lock acquisition failure
3158 *
cc6db4e6 3159 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
3160 *
3161 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3162 *
6c23cbbd 3163 * Return:
7b4ff1ad
MCC
3164 * - 0 - On success;
3165 * - <0 - On error
52400ba9 3166 */
b41277dc 3167static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 3168 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 3169 u32 __user *uaddr2)
52400ba9 3170{
5ca584d9 3171 struct hrtimer_sleeper timeout, *to;
16ffa12d 3172 struct futex_pi_state *pi_state = NULL;
52400ba9 3173 struct rt_mutex_waiter rt_waiter;
52400ba9 3174 struct futex_hash_bucket *hb;
5bdb05f9
DH
3175 union futex_key key2 = FUTEX_KEY_INIT;
3176 struct futex_q q = futex_q_init;
52400ba9 3177 int res, ret;
52400ba9 3178
bc2eecd7
NP
3179 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3180 return -ENOSYS;
3181
6f7b0a2a
DH
3182 if (uaddr == uaddr2)
3183 return -EINVAL;
3184
52400ba9
DH
3185 if (!bitset)
3186 return -EINVAL;
3187
5ca584d9
WL
3188 to = futex_setup_timer(abs_time, &timeout, flags,
3189 current->timer_slack_ns);
52400ba9
DH
3190
3191 /*
3192 * The waiter is allocated on our stack, manipulated by the requeue
3193 * code while we sleep on uaddr.
3194 */
50809358 3195 rt_mutex_init_waiter(&rt_waiter);
52400ba9 3196
96d4f267 3197 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
52400ba9
DH
3198 if (unlikely(ret != 0))
3199 goto out;
3200
84bc4af5
DH
3201 q.bitset = bitset;
3202 q.rt_waiter = &rt_waiter;
3203 q.requeue_pi_key = &key2;
3204
7ada876a
DH
3205 /*
3206 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3207 * count.
3208 */
b41277dc 3209 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70 3210 if (ret)
9180bd46 3211 goto out;
52400ba9 3212
e9c243a5
TG
3213 /*
3214 * The check above which compares uaddrs is not sufficient for
3215 * shared futexes. We need to compare the keys:
3216 */
3217 if (match_futex(&q.key, &key2)) {
13c42c2f 3218 queue_unlock(hb);
e9c243a5 3219 ret = -EINVAL;
9180bd46 3220 goto out;
e9c243a5
TG
3221 }
3222
52400ba9 3223 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 3224 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
3225
3226 spin_lock(&hb->lock);
3227 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3228 spin_unlock(&hb->lock);
3229 if (ret)
9180bd46 3230 goto out;
52400ba9
DH
3231
3232 /*
3233 * In order for us to be here, we know our q.key == key2, and since
3234 * we took the hb->lock above, we also know that futex_requeue() has
3235 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
3236 * race with the atomic proxy lock acquisition by the requeue code. The
3237 * futex_requeue dropped our key1 reference and incremented our key2
3238 * reference count.
52400ba9
DH
3239 */
3240
3241 /* Check if the requeue code acquired the second futex for us. */
3242 if (!q.rt_waiter) {
3243 /*
3244 * Got the lock. We might not be the anticipated owner if we
3245 * did a lock-steal - fix up the PI-state in that case.
3246 */
3247 if (q.pi_state && (q.pi_state->owner != current)) {
3248 spin_lock(q.lock_ptr);
ae791a2d 3249 ret = fixup_pi_state_owner(uaddr2, &q, current);
16ffa12d
PZ
3250 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3251 pi_state = q.pi_state;
3252 get_pi_state(pi_state);
3253 }
fb75a428
TG
3254 /*
3255 * Drop the reference to the pi state which
3256 * the requeue_pi() code acquired for us.
3257 */
29e9ee5d 3258 put_pi_state(q.pi_state);
52400ba9
DH
3259 spin_unlock(q.lock_ptr);
3260 }
3261 } else {
c236c8e9
PZ
3262 struct rt_mutex *pi_mutex;
3263
52400ba9
DH
3264 /*
3265 * We have been woken up by futex_unlock_pi(), a timeout, or a
3266 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3267 * the pi_state.
3268 */
f27071cb 3269 WARN_ON(!q.pi_state);
52400ba9 3270 pi_mutex = &q.pi_state->pi_mutex;
38d589f2 3271 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
52400ba9
DH
3272
3273 spin_lock(q.lock_ptr);
38d589f2
PZ
3274 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3275 ret = 0;
3276
3277 debug_rt_mutex_free_waiter(&rt_waiter);
52400ba9
DH
3278 /*
3279 * Fixup the pi_state owner and possibly acquire the lock if we
3280 * haven't already.
3281 */
ae791a2d 3282 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
3283 /*
3284 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 3285 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
3286 */
3287 if (res)
3288 ret = (res < 0) ? res : 0;
3289
c236c8e9
PZ
3290 /*
3291 * If fixup_pi_state_owner() faulted and was unable to handle
3292 * the fault, unlock the rt_mutex and return the fault to
3293 * userspace.
3294 */
16ffa12d
PZ
3295 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3296 pi_state = q.pi_state;
3297 get_pi_state(pi_state);
3298 }
c236c8e9 3299
52400ba9
DH
3300 /* Unqueue and drop the lock. */
3301 unqueue_me_pi(&q);
3302 }
3303
16ffa12d
PZ
3304 if (pi_state) {
3305 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3306 put_pi_state(pi_state);
3307 }
3308
c236c8e9 3309 if (ret == -EINTR) {
52400ba9 3310 /*
cc6db4e6
DH
3311 * We've already been requeued, but cannot restart by calling
3312 * futex_lock_pi() directly. We could restart this syscall, but
3313 * it would detect that the user space "val" changed and return
3314 * -EWOULDBLOCK. Save the overhead of the restart and return
3315 * -EWOULDBLOCK directly.
52400ba9 3316 */
2070887f 3317 ret = -EWOULDBLOCK;
52400ba9
DH
3318 }
3319
52400ba9
DH
3320out:
3321 if (to) {
3322 hrtimer_cancel(&to->timer);
3323 destroy_hrtimer_on_stack(&to->timer);
3324 }
3325 return ret;
3326}
3327
0771dfef
IM
3328/*
3329 * Support for robust futexes: the kernel cleans up held futexes at
3330 * thread exit time.
3331 *
3332 * Implementation: user-space maintains a per-thread list of locks it
3333 * is holding. Upon do_exit(), the kernel carefully walks this list,
3334 * and marks all locks that are owned by this thread with the
c87e2837 3335 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
3336 * always manipulated with the lock held, so the list is private and
3337 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3338 * field, to allow the kernel to clean up if the thread dies after
3339 * acquiring the lock, but just before it could have added itself to
3340 * the list. There can only be one such pending lock.
3341 */
3342
3343/**
d96ee56c
DH
3344 * sys_set_robust_list() - Set the robust-futex list head of a task
3345 * @head: pointer to the list-head
3346 * @len: length of the list-head, as userspace expects
0771dfef 3347 */
836f92ad
HC
3348SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3349 size_t, len)
0771dfef 3350{
a0c1e907
TG
3351 if (!futex_cmpxchg_enabled)
3352 return -ENOSYS;
0771dfef
IM
3353 /*
3354 * The kernel knows only one size for now:
3355 */
3356 if (unlikely(len != sizeof(*head)))
3357 return -EINVAL;
3358
3359 current->robust_list = head;
3360
3361 return 0;
3362}
3363
3364/**
d96ee56c
DH
3365 * sys_get_robust_list() - Get the robust-futex list head of a task
3366 * @pid: pid of the process [zero for current task]
3367 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3368 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 3369 */
836f92ad
HC
3370SYSCALL_DEFINE3(get_robust_list, int, pid,
3371 struct robust_list_head __user * __user *, head_ptr,
3372 size_t __user *, len_ptr)
0771dfef 3373{
ba46df98 3374 struct robust_list_head __user *head;
0771dfef 3375 unsigned long ret;
bdbb776f 3376 struct task_struct *p;
0771dfef 3377
a0c1e907
TG
3378 if (!futex_cmpxchg_enabled)
3379 return -ENOSYS;
3380
bdbb776f
KC
3381 rcu_read_lock();
3382
3383 ret = -ESRCH;
0771dfef 3384 if (!pid)
bdbb776f 3385 p = current;
0771dfef 3386 else {
228ebcbe 3387 p = find_task_by_vpid(pid);
0771dfef
IM
3388 if (!p)
3389 goto err_unlock;
0771dfef
IM
3390 }
3391
bdbb776f 3392 ret = -EPERM;
caaee623 3393 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
bdbb776f
KC
3394 goto err_unlock;
3395
3396 head = p->robust_list;
3397 rcu_read_unlock();
3398
0771dfef
IM
3399 if (put_user(sizeof(*head), len_ptr))
3400 return -EFAULT;
3401 return put_user(head, head_ptr);
3402
3403err_unlock:
aaa2a97e 3404 rcu_read_unlock();
0771dfef
IM
3405
3406 return ret;
3407}
3408
ca16d5be
YT
3409/* Constants for the pending_op argument of handle_futex_death */
3410#define HANDLE_DEATH_PENDING true
3411#define HANDLE_DEATH_LIST false
3412
0771dfef
IM
3413/*
3414 * Process a futex-list entry, check whether it's owned by the
3415 * dying task, and do notification if so:
3416 */
ca16d5be
YT
3417static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3418 bool pi, bool pending_op)
0771dfef 3419{
3f649ab7 3420 u32 uval, nval, mval;
6b4f4bc9 3421 int err;
0771dfef 3422
5a07168d
CJ
3423 /* Futex address must be 32bit aligned */
3424 if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3425 return -1;
3426
8f17d3a5
IM
3427retry:
3428 if (get_user(uval, uaddr))
0771dfef
IM
3429 return -1;
3430
ca16d5be
YT
3431 /*
3432 * Special case for regular (non PI) futexes. The unlock path in
3433 * user space has two race scenarios:
3434 *
3435 * 1. The unlock path releases the user space futex value and
3436 * before it can execute the futex() syscall to wake up
3437 * waiters it is killed.
3438 *
3439 * 2. A woken up waiter is killed before it can acquire the
3440 * futex in user space.
3441 *
3442 * In both cases the TID validation below prevents a wakeup of
3443 * potential waiters which can cause these waiters to block
3444 * forever.
3445 *
3446 * In both cases the following conditions are met:
3447 *
3448 * 1) task->robust_list->list_op_pending != NULL
3449 * @pending_op == true
3450 * 2) User space futex value == 0
3451 * 3) Regular futex: @pi == false
3452 *
3453 * If these conditions are met, it is safe to attempt waking up a
3454 * potential waiter without touching the user space futex value and
3455 * trying to set the OWNER_DIED bit. The user space futex value is
3456 * uncontended and the rest of the user space mutex state is
3457 * consistent, so a woken waiter will just take over the
3458 * uncontended futex. Setting the OWNER_DIED bit would create
3459 * inconsistent state and malfunction of the user space owner died
3460 * handling.
3461 */
3462 if (pending_op && !pi && !uval) {
3463 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3464 return 0;
3465 }
3466
6b4f4bc9
WD
3467 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3468 return 0;
3469
3470 /*
3471 * Ok, this dying thread is truly holding a futex
3472 * of interest. Set the OWNER_DIED bit atomically
3473 * via cmpxchg, and if the value had FUTEX_WAITERS
3474 * set, wake up a waiter (if any). (We have to do a
3475 * futex_wake() even if OWNER_DIED is already set -
3476 * to handle the rare but possible case of recursive
3477 * thread-death.) The rest of the cleanup is done in
3478 * userspace.
3479 */
3480 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3481
3482 /*
3483 * We are not holding a lock here, but we want to have
3484 * the pagefault_disable/enable() protection because
3485 * we want to handle the fault gracefully. If the
3486 * access fails we try to fault in the futex with R/W
3487 * verification via get_user_pages. get_user() above
3488 * does not guarantee R/W access. If that fails we
3489 * give up and leave the futex locked.
3490 */
3491 if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3492 switch (err) {
3493 case -EFAULT:
6e0aa9f8
TG
3494 if (fault_in_user_writeable(uaddr))
3495 return -1;
3496 goto retry;
6b4f4bc9
WD
3497
3498 case -EAGAIN:
3499 cond_resched();
8f17d3a5 3500 goto retry;
0771dfef 3501
6b4f4bc9
WD
3502 default:
3503 WARN_ON_ONCE(1);
3504 return err;
3505 }
0771dfef 3506 }
6b4f4bc9
WD
3507
3508 if (nval != uval)
3509 goto retry;
3510
3511 /*
3512 * Wake robust non-PI futexes here. The wakeup of
3513 * PI futexes happens in exit_pi_state():
3514 */
3515 if (!pi && (uval & FUTEX_WAITERS))
3516 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3517
0771dfef
IM
3518 return 0;
3519}
3520
e3f2ddea
IM
3521/*
3522 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3523 */
3524static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 3525 struct robust_list __user * __user *head,
1dcc41bb 3526 unsigned int *pi)
e3f2ddea
IM
3527{
3528 unsigned long uentry;
3529
ba46df98 3530 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
3531 return -EFAULT;
3532
ba46df98 3533 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
3534 *pi = uentry & 1;
3535
3536 return 0;
3537}
3538
0771dfef
IM
3539/*
3540 * Walk curr->robust_list (very carefully, it's a userspace list!)
3541 * and mark any locks found there dead, and notify any waiters.
3542 *
3543 * We silently return on any sign of list-walking problem.
3544 */
ba31c1a4 3545static void exit_robust_list(struct task_struct *curr)
0771dfef
IM
3546{
3547 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 3548 struct robust_list __user *entry, *next_entry, *pending;
4c115e95 3549 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3f649ab7 3550 unsigned int next_pi;
0771dfef 3551 unsigned long futex_offset;
9f96cb1e 3552 int rc;
0771dfef 3553
a0c1e907
TG
3554 if (!futex_cmpxchg_enabled)
3555 return;
3556
0771dfef
IM
3557 /*
3558 * Fetch the list head (which was registered earlier, via
3559 * sys_set_robust_list()):
3560 */
e3f2ddea 3561 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
3562 return;
3563 /*
3564 * Fetch the relative futex offset:
3565 */
3566 if (get_user(futex_offset, &head->futex_offset))
3567 return;
3568 /*
3569 * Fetch any possibly pending lock-add first, and handle it
3570 * if it exists:
3571 */
e3f2ddea 3572 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 3573 return;
e3f2ddea 3574
9f96cb1e 3575 next_entry = NULL; /* avoid warning with gcc */
0771dfef 3576 while (entry != &head->list) {
9f96cb1e
MS
3577 /*
3578 * Fetch the next entry in the list before calling
3579 * handle_futex_death:
3580 */
3581 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
3582 /*
3583 * A pending lock might already be on the list, so
c87e2837 3584 * don't process it twice:
0771dfef 3585 */
ca16d5be 3586 if (entry != pending) {
ba46df98 3587 if (handle_futex_death((void __user *)entry + futex_offset,
ca16d5be 3588 curr, pi, HANDLE_DEATH_LIST))
0771dfef 3589 return;
ca16d5be 3590 }
9f96cb1e 3591 if (rc)
0771dfef 3592 return;
9f96cb1e
MS
3593 entry = next_entry;
3594 pi = next_pi;
0771dfef
IM
3595 /*
3596 * Avoid excessively long or circular lists:
3597 */
3598 if (!--limit)
3599 break;
3600
3601 cond_resched();
3602 }
9f96cb1e 3603
ca16d5be 3604 if (pending) {
9f96cb1e 3605 handle_futex_death((void __user *)pending + futex_offset,
ca16d5be
YT
3606 curr, pip, HANDLE_DEATH_PENDING);
3607 }
0771dfef
IM
3608}
3609
af8cbda2 3610static void futex_cleanup(struct task_struct *tsk)
ba31c1a4
TG
3611{
3612 if (unlikely(tsk->robust_list)) {
3613 exit_robust_list(tsk);
3614 tsk->robust_list = NULL;
3615 }
3616
3617#ifdef CONFIG_COMPAT
3618 if (unlikely(tsk->compat_robust_list)) {
3619 compat_exit_robust_list(tsk);
3620 tsk->compat_robust_list = NULL;
3621 }
3622#endif
3623
3624 if (unlikely(!list_empty(&tsk->pi_state_list)))
3625 exit_pi_state_list(tsk);
3626}
3627
18f69438
TG
3628/**
3629 * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3630 * @tsk: task to set the state on
3631 *
3632 * Set the futex exit state of the task lockless. The futex waiter code
3633 * observes that state when a task is exiting and loops until the task has
3634 * actually finished the futex cleanup. The worst case for this is that the
3635 * waiter runs through the wait loop until the state becomes visible.
3636 *
3637 * This is called from the recursive fault handling path in do_exit().
3638 *
3639 * This is best effort. Either the futex exit code has run already or
3640 * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3641 * take it over. If not, the problem is pushed back to user space. If the
3642 * futex exit code did not run yet, then an already queued waiter might
3643 * block forever, but there is nothing which can be done about that.
3644 */
3645void futex_exit_recursive(struct task_struct *tsk)
3646{
3f186d97
TG
3647 /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3648 if (tsk->futex_state == FUTEX_STATE_EXITING)
3649 mutex_unlock(&tsk->futex_exit_mutex);
18f69438
TG
3650 tsk->futex_state = FUTEX_STATE_DEAD;
3651}
3652
af8cbda2 3653static void futex_cleanup_begin(struct task_struct *tsk)
150d7158 3654{
3f186d97
TG
3655 /*
3656 * Prevent various race issues against a concurrent incoming waiter
3657 * including live locks by forcing the waiter to block on
3658 * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3659 * attach_to_pi_owner().
3660 */
3661 mutex_lock(&tsk->futex_exit_mutex);
3662
18f69438 3663 /*
4a8e991b
TG
3664 * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3665 *
3666 * This ensures that all subsequent checks of tsk->futex_state in
3667 * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3668 * tsk->pi_lock held.
3669 *
3670 * It guarantees also that a pi_state which was queued right before
3671 * the state change under tsk->pi_lock by a concurrent waiter must
3672 * be observed in exit_pi_state_list().
18f69438
TG
3673 */
3674 raw_spin_lock_irq(&tsk->pi_lock);
4a8e991b 3675 tsk->futex_state = FUTEX_STATE_EXITING;
18f69438 3676 raw_spin_unlock_irq(&tsk->pi_lock);
af8cbda2 3677}
18f69438 3678
af8cbda2
TG
3679static void futex_cleanup_end(struct task_struct *tsk, int state)
3680{
3681 /*
3682 * Lockless store. The only side effect is that an observer might
3683 * take another loop until it becomes visible.
3684 */
3685 tsk->futex_state = state;
3f186d97
TG
3686 /*
3687 * Drop the exit protection. This unblocks waiters which observed
3688 * FUTEX_STATE_EXITING to reevaluate the state.
3689 */
3690 mutex_unlock(&tsk->futex_exit_mutex);
af8cbda2 3691}
18f69438 3692
af8cbda2
TG
3693void futex_exec_release(struct task_struct *tsk)
3694{
3695 /*
3696 * The state handling is done for consistency, but in the case of
3697 * exec() there is no way to prevent futher damage as the PID stays
3698 * the same. But for the unlikely and arguably buggy case that a
3699 * futex is held on exec(), this provides at least as much state
3700 * consistency protection which is possible.
3701 */
3702 futex_cleanup_begin(tsk);
3703 futex_cleanup(tsk);
3704 /*
3705 * Reset the state to FUTEX_STATE_OK. The task is alive and about
3706 * exec a new binary.
3707 */
3708 futex_cleanup_end(tsk, FUTEX_STATE_OK);
3709}
3710
3711void futex_exit_release(struct task_struct *tsk)
3712{
3713 futex_cleanup_begin(tsk);
3714 futex_cleanup(tsk);
3715 futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
150d7158
TG
3716}
3717
c19384b5 3718long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 3719 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 3720{
81b40539 3721 int cmd = op & FUTEX_CMD_MASK;
b41277dc 3722 unsigned int flags = 0;
34f01cc1
ED
3723
3724 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 3725 flags |= FLAGS_SHARED;
1da177e4 3726
b41277dc
DH
3727 if (op & FUTEX_CLOCK_REALTIME) {
3728 flags |= FLAGS_CLOCKRT;
337f1304
DH
3729 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3730 cmd != FUTEX_WAIT_REQUEUE_PI)
b41277dc
DH
3731 return -ENOSYS;
3732 }
1da177e4 3733
59263b51
TG
3734 switch (cmd) {
3735 case FUTEX_LOCK_PI:
3736 case FUTEX_UNLOCK_PI:
3737 case FUTEX_TRYLOCK_PI:
3738 case FUTEX_WAIT_REQUEUE_PI:
3739 case FUTEX_CMP_REQUEUE_PI:
3740 if (!futex_cmpxchg_enabled)
3741 return -ENOSYS;
3742 }
3743
34f01cc1 3744 switch (cmd) {
1da177e4 3745 case FUTEX_WAIT:
cd689985 3746 val3 = FUTEX_BITSET_MATCH_ANY;
405fa8ac 3747 fallthrough;
cd689985 3748 case FUTEX_WAIT_BITSET:
81b40539 3749 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 3750 case FUTEX_WAKE:
cd689985 3751 val3 = FUTEX_BITSET_MATCH_ANY;
405fa8ac 3752 fallthrough;
cd689985 3753 case FUTEX_WAKE_BITSET:
81b40539 3754 return futex_wake(uaddr, flags, val, val3);
1da177e4 3755 case FUTEX_REQUEUE:
81b40539 3756 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 3757 case FUTEX_CMP_REQUEUE:
81b40539 3758 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 3759 case FUTEX_WAKE_OP:
81b40539 3760 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 3761 case FUTEX_LOCK_PI:
996636dd 3762 return futex_lock_pi(uaddr, flags, timeout, 0);
c87e2837 3763 case FUTEX_UNLOCK_PI:
81b40539 3764 return futex_unlock_pi(uaddr, flags);
c87e2837 3765 case FUTEX_TRYLOCK_PI:
996636dd 3766 return futex_lock_pi(uaddr, flags, NULL, 1);
52400ba9
DH
3767 case FUTEX_WAIT_REQUEUE_PI:
3768 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
3769 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3770 uaddr2);
52400ba9 3771 case FUTEX_CMP_REQUEUE_PI:
81b40539 3772 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 3773 }
81b40539 3774 return -ENOSYS;
1da177e4
LT
3775}
3776
3777
17da2bd9 3778SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
bec2f7cb 3779 struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
17da2bd9 3780 u32, val3)
1da177e4 3781{
bec2f7cb 3782 struct timespec64 ts;
c19384b5 3783 ktime_t t, *tp = NULL;
e2970f2f 3784 u32 val2 = 0;
34f01cc1 3785 int cmd = op & FUTEX_CMD_MASK;
1da177e4 3786
cd689985 3787 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
3788 cmd == FUTEX_WAIT_BITSET ||
3789 cmd == FUTEX_WAIT_REQUEUE_PI)) {
ab51fbab
DB
3790 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3791 return -EFAULT;
bec2f7cb 3792 if (get_timespec64(&ts, utime))
1da177e4 3793 return -EFAULT;
bec2f7cb 3794 if (!timespec64_valid(&ts))
9741ef96 3795 return -EINVAL;
c19384b5 3796
bec2f7cb 3797 t = timespec64_to_ktime(ts);
34f01cc1 3798 if (cmd == FUTEX_WAIT)
5a7780e7 3799 t = ktime_add_safe(ktime_get(), t);
c19384b5 3800 tp = &t;
1da177e4
LT
3801 }
3802 /*
52400ba9 3803 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 3804 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 3805 */
f54f0986 3806 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 3807 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 3808 val2 = (u32) (unsigned long) utime;
1da177e4 3809
c19384b5 3810 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
3811}
3812
04e7712f
AB
3813#ifdef CONFIG_COMPAT
3814/*
3815 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3816 */
3817static inline int
3818compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3819 compat_uptr_t __user *head, unsigned int *pi)
3820{
3821 if (get_user(*uentry, head))
3822 return -EFAULT;
3823
3824 *entry = compat_ptr((*uentry) & ~1);
3825 *pi = (unsigned int)(*uentry) & 1;
3826
3827 return 0;
3828}
3829
3830static void __user *futex_uaddr(struct robust_list __user *entry,
3831 compat_long_t futex_offset)
3832{
3833 compat_uptr_t base = ptr_to_compat(entry);
3834 void __user *uaddr = compat_ptr(base + futex_offset);
3835
3836 return uaddr;
3837}
3838
3839/*
3840 * Walk curr->robust_list (very carefully, it's a userspace list!)
3841 * and mark any locks found there dead, and notify any waiters.
3842 *
3843 * We silently return on any sign of list-walking problem.
3844 */
ba31c1a4 3845static void compat_exit_robust_list(struct task_struct *curr)
04e7712f
AB
3846{
3847 struct compat_robust_list_head __user *head = curr->compat_robust_list;
3848 struct robust_list __user *entry, *next_entry, *pending;
3849 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3f649ab7 3850 unsigned int next_pi;
04e7712f
AB
3851 compat_uptr_t uentry, next_uentry, upending;
3852 compat_long_t futex_offset;
3853 int rc;
3854
3855 if (!futex_cmpxchg_enabled)
3856 return;
3857
3858 /*
3859 * Fetch the list head (which was registered earlier, via
3860 * sys_set_robust_list()):
3861 */
3862 if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3863 return;
3864 /*
3865 * Fetch the relative futex offset:
3866 */
3867 if (get_user(futex_offset, &head->futex_offset))
3868 return;
3869 /*
3870 * Fetch any possibly pending lock-add first, and handle it
3871 * if it exists:
3872 */
3873 if (compat_fetch_robust_entry(&upending, &pending,
3874 &head->list_op_pending, &pip))
3875 return;
3876
3877 next_entry = NULL; /* avoid warning with gcc */
3878 while (entry != (struct robust_list __user *) &head->list) {
3879 /*
3880 * Fetch the next entry in the list before calling
3881 * handle_futex_death:
3882 */
3883 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3884 (compat_uptr_t __user *)&entry->next, &next_pi);
3885 /*
3886 * A pending lock might already be on the list, so
3887 * dont process it twice:
3888 */
3889 if (entry != pending) {
3890 void __user *uaddr = futex_uaddr(entry, futex_offset);
3891
ca16d5be
YT
3892 if (handle_futex_death(uaddr, curr, pi,
3893 HANDLE_DEATH_LIST))
04e7712f
AB
3894 return;
3895 }
3896 if (rc)
3897 return;
3898 uentry = next_uentry;
3899 entry = next_entry;
3900 pi = next_pi;
3901 /*
3902 * Avoid excessively long or circular lists:
3903 */
3904 if (!--limit)
3905 break;
3906
3907 cond_resched();
3908 }
3909 if (pending) {
3910 void __user *uaddr = futex_uaddr(pending, futex_offset);
3911
ca16d5be 3912 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
04e7712f
AB
3913 }
3914}
3915
3916COMPAT_SYSCALL_DEFINE2(set_robust_list,
3917 struct compat_robust_list_head __user *, head,
3918 compat_size_t, len)
3919{
3920 if (!futex_cmpxchg_enabled)
3921 return -ENOSYS;
3922
3923 if (unlikely(len != sizeof(*head)))
3924 return -EINVAL;
3925
3926 current->compat_robust_list = head;
3927
3928 return 0;
3929}
3930
3931COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3932 compat_uptr_t __user *, head_ptr,
3933 compat_size_t __user *, len_ptr)
3934{
3935 struct compat_robust_list_head __user *head;
3936 unsigned long ret;
3937 struct task_struct *p;
3938
3939 if (!futex_cmpxchg_enabled)
3940 return -ENOSYS;
3941
3942 rcu_read_lock();
3943
3944 ret = -ESRCH;
3945 if (!pid)
3946 p = current;
3947 else {
3948 p = find_task_by_vpid(pid);
3949 if (!p)
3950 goto err_unlock;
3951 }
3952
3953 ret = -EPERM;
3954 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3955 goto err_unlock;
3956
3957 head = p->compat_robust_list;
3958 rcu_read_unlock();
3959
3960 if (put_user(sizeof(*head), len_ptr))
3961 return -EFAULT;
3962 return put_user(ptr_to_compat(head), head_ptr);
3963
3964err_unlock:
3965 rcu_read_unlock();
3966
3967 return ret;
3968}
bec2f7cb 3969#endif /* CONFIG_COMPAT */
04e7712f 3970
bec2f7cb 3971#ifdef CONFIG_COMPAT_32BIT_TIME
8dabe724 3972SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
04e7712f
AB
3973 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
3974 u32, val3)
3975{
bec2f7cb 3976 struct timespec64 ts;
04e7712f
AB
3977 ktime_t t, *tp = NULL;
3978 int val2 = 0;
3979 int cmd = op & FUTEX_CMD_MASK;
3980
3981 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3982 cmd == FUTEX_WAIT_BITSET ||
3983 cmd == FUTEX_WAIT_REQUEUE_PI)) {
bec2f7cb 3984 if (get_old_timespec32(&ts, utime))
04e7712f 3985 return -EFAULT;
bec2f7cb 3986 if (!timespec64_valid(&ts))
04e7712f
AB
3987 return -EINVAL;
3988
bec2f7cb 3989 t = timespec64_to_ktime(ts);
04e7712f
AB
3990 if (cmd == FUTEX_WAIT)
3991 t = ktime_add_safe(ktime_get(), t);
3992 tp = &t;
3993 }
3994 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3995 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3996 val2 = (int) (unsigned long) utime;
3997
3998 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3999}
bec2f7cb 4000#endif /* CONFIG_COMPAT_32BIT_TIME */
04e7712f 4001
03b8c7b6 4002static void __init futex_detect_cmpxchg(void)
1da177e4 4003{
03b8c7b6 4004#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 4005 u32 curval;
03b8c7b6
HC
4006
4007 /*
4008 * This will fail and we want it. Some arch implementations do
4009 * runtime detection of the futex_atomic_cmpxchg_inatomic()
4010 * functionality. We want to know that before we call in any
4011 * of the complex code paths. Also we want to prevent
4012 * registration of robust lists in that case. NULL is
4013 * guaranteed to fault and we get -EFAULT on functional
4014 * implementation, the non-functional ones will return
4015 * -ENOSYS.
4016 */
4017 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4018 futex_cmpxchg_enabled = 1;
4019#endif
4020}
4021
4022static int __init futex_init(void)
4023{
63b1a816 4024 unsigned int futex_shift;
a52b89eb
DB
4025 unsigned long i;
4026
4027#if CONFIG_BASE_SMALL
4028 futex_hashsize = 16;
4029#else
4030 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4031#endif
4032
4033 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4034 futex_hashsize, 0,
4035 futex_hashsize < 256 ? HASH_SMALL : 0,
63b1a816
HC
4036 &futex_shift, NULL,
4037 futex_hashsize, futex_hashsize);
4038 futex_hashsize = 1UL << futex_shift;
03b8c7b6
HC
4039
4040 futex_detect_cmpxchg();
a0c1e907 4041
a52b89eb 4042 for (i = 0; i < futex_hashsize; i++) {
11d4616b 4043 atomic_set(&futex_queues[i].waiters, 0);
732375c6 4044 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
4045 spin_lock_init(&futex_queues[i].lock);
4046 }
4047
1da177e4
LT
4048 return 0;
4049}
25f71d1c 4050core_initcall(futex_init);