kernel: watchdog: modify the explanation related to watchdog thread
[linux-block.git] / kernel / futex.c
CommitLineData
1a59d1b8 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4
LT
2/*
3 * Fast Userspace Mutexes (which I call "Futexes!").
4 * (C) Rusty Russell, IBM 2002
5 *
6 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 *
9 * Removed page pinning, fix privately mapped COW pages and other cleanups
10 * (C) Copyright 2003, 2004 Jamie Lokier
11 *
0771dfef
IM
12 * Robust futex support started by Ingo Molnar
13 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 *
c87e2837
IM
16 * PI-futex support started by Ingo Molnar and Thomas Gleixner
17 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 *
34f01cc1
ED
20 * PRIVATE futexes by Eric Dumazet
21 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 *
52400ba9
DH
23 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24 * Copyright (C) IBM Corporation, 2009
25 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 *
1da177e4
LT
27 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28 * enough at me, Linus for the original (flawed) idea, Matthew
29 * Kirkwood for proof-of-concept implementation.
30 *
31 * "The futexes are also cursed."
32 * "But they come in a choice of three flavours!"
1da177e4 33 */
04e7712f 34#include <linux/compat.h>
1da177e4 35#include <linux/jhash.h>
1da177e4
LT
36#include <linux/pagemap.h>
37#include <linux/syscalls.h>
88c8004f 38#include <linux/freezer.h>
57c8a661 39#include <linux/memblock.h>
ab51fbab 40#include <linux/fault-inject.h>
c2f7d08c 41#include <linux/time_namespace.h>
b488893a 42
4732efbe 43#include <asm/futex.h>
1da177e4 44
1696a8be 45#include "locking/rtmutex_common.h"
c87e2837 46
99b60ce6 47/*
d7e8af1a
DB
48 * READ this before attempting to hack on futexes!
49 *
50 * Basic futex operation and ordering guarantees
51 * =============================================
99b60ce6
TG
52 *
53 * The waiter reads the futex value in user space and calls
54 * futex_wait(). This function computes the hash bucket and acquires
55 * the hash bucket lock. After that it reads the futex user space value
b0c29f79
DB
56 * again and verifies that the data has not changed. If it has not changed
57 * it enqueues itself into the hash bucket, releases the hash bucket lock
58 * and schedules.
99b60ce6
TG
59 *
60 * The waker side modifies the user space value of the futex and calls
b0c29f79
DB
61 * futex_wake(). This function computes the hash bucket and acquires the
62 * hash bucket lock. Then it looks for waiters on that futex in the hash
63 * bucket and wakes them.
99b60ce6 64 *
b0c29f79
DB
65 * In futex wake up scenarios where no tasks are blocked on a futex, taking
66 * the hb spinlock can be avoided and simply return. In order for this
67 * optimization to work, ordering guarantees must exist so that the waiter
68 * being added to the list is acknowledged when the list is concurrently being
69 * checked by the waker, avoiding scenarios like the following:
99b60ce6
TG
70 *
71 * CPU 0 CPU 1
72 * val = *futex;
73 * sys_futex(WAIT, futex, val);
74 * futex_wait(futex, val);
75 * uval = *futex;
76 * *futex = newval;
77 * sys_futex(WAKE, futex);
78 * futex_wake(futex);
79 * if (queue_empty())
80 * return;
81 * if (uval == val)
82 * lock(hash_bucket(futex));
83 * queue();
84 * unlock(hash_bucket(futex));
85 * schedule();
86 *
87 * This would cause the waiter on CPU 0 to wait forever because it
88 * missed the transition of the user space value from val to newval
89 * and the waker did not find the waiter in the hash bucket queue.
99b60ce6 90 *
b0c29f79
DB
91 * The correct serialization ensures that a waiter either observes
92 * the changed user space value before blocking or is woken by a
93 * concurrent waker:
94 *
95 * CPU 0 CPU 1
99b60ce6
TG
96 * val = *futex;
97 * sys_futex(WAIT, futex, val);
98 * futex_wait(futex, val);
b0c29f79 99 *
d7e8af1a 100 * waiters++; (a)
8ad7b378
DB
101 * smp_mb(); (A) <-- paired with -.
102 * |
103 * lock(hash_bucket(futex)); |
104 * |
105 * uval = *futex; |
106 * | *futex = newval;
107 * | sys_futex(WAKE, futex);
108 * | futex_wake(futex);
109 * |
110 * `--------> smp_mb(); (B)
99b60ce6 111 * if (uval == val)
b0c29f79 112 * queue();
99b60ce6 113 * unlock(hash_bucket(futex));
b0c29f79
DB
114 * schedule(); if (waiters)
115 * lock(hash_bucket(futex));
d7e8af1a
DB
116 * else wake_waiters(futex);
117 * waiters--; (b) unlock(hash_bucket(futex));
b0c29f79 118 *
d7e8af1a
DB
119 * Where (A) orders the waiters increment and the futex value read through
120 * atomic operations (see hb_waiters_inc) and where (B) orders the write
4b39f99c 121 * to futex and the waiters read (see hb_waiters_pending()).
b0c29f79
DB
122 *
123 * This yields the following case (where X:=waiters, Y:=futex):
124 *
125 * X = Y = 0
126 *
127 * w[X]=1 w[Y]=1
128 * MB MB
129 * r[Y]=y r[X]=x
130 *
131 * Which guarantees that x==0 && y==0 is impossible; which translates back into
132 * the guarantee that we cannot both miss the futex variable change and the
133 * enqueue.
d7e8af1a
DB
134 *
135 * Note that a new waiter is accounted for in (a) even when it is possible that
136 * the wait call can return error, in which case we backtrack from it in (b).
137 * Refer to the comment in queue_lock().
138 *
139 * Similarly, in order to account for waiters being requeued on another
140 * address we always increment the waiters for the destination bucket before
141 * acquiring the lock. It then decrements them again after releasing it -
142 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
143 * will do the additional required waiter count housekeeping. This is done for
144 * double_lock_hb() and double_unlock_hb(), respectively.
99b60ce6
TG
145 */
146
04e7712f
AB
147#ifdef CONFIG_HAVE_FUTEX_CMPXCHG
148#define futex_cmpxchg_enabled 1
149#else
150static int __read_mostly futex_cmpxchg_enabled;
03b8c7b6 151#endif
a0c1e907 152
b41277dc
DH
153/*
154 * Futex flags used to encode options to functions and preserve them across
155 * restarts.
156 */
784bdf3b
TG
157#ifdef CONFIG_MMU
158# define FLAGS_SHARED 0x01
159#else
160/*
161 * NOMMU does not have per process address space. Let the compiler optimize
162 * code away.
163 */
164# define FLAGS_SHARED 0x00
165#endif
b41277dc
DH
166#define FLAGS_CLOCKRT 0x02
167#define FLAGS_HAS_TIMEOUT 0x04
168
c87e2837
IM
169/*
170 * Priority Inheritance state:
171 */
172struct futex_pi_state {
173 /*
174 * list of 'owned' pi_state instances - these have to be
175 * cleaned up in do_exit() if the task exits prematurely:
176 */
177 struct list_head list;
178
179 /*
180 * The PI object:
181 */
182 struct rt_mutex pi_mutex;
183
184 struct task_struct *owner;
49262de2 185 refcount_t refcount;
c87e2837
IM
186
187 union futex_key key;
3859a271 188} __randomize_layout;
c87e2837 189
d8d88fbb
DH
190/**
191 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 192 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
193 * @task: the task waiting on the futex
194 * @lock_ptr: the hash bucket lock
195 * @key: the key the futex is hashed on
196 * @pi_state: optional priority inheritance state
197 * @rt_waiter: rt_waiter storage for use with requeue_pi
198 * @requeue_pi_key: the requeue_pi target futex key
199 * @bitset: bitset for the optional bitmasked wakeup
200 *
ac6424b9 201 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
1da177e4
LT
202 * we can wake only the relevant ones (hashed queues may be shared).
203 *
204 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 205 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 206 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
207 * the second.
208 *
209 * PI futexes are typically woken before they are removed from the hash list via
210 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
211 */
212struct futex_q {
ec92d082 213 struct plist_node list;
1da177e4 214
d8d88fbb 215 struct task_struct *task;
1da177e4 216 spinlock_t *lock_ptr;
1da177e4 217 union futex_key key;
c87e2837 218 struct futex_pi_state *pi_state;
52400ba9 219 struct rt_mutex_waiter *rt_waiter;
84bc4af5 220 union futex_key *requeue_pi_key;
cd689985 221 u32 bitset;
3859a271 222} __randomize_layout;
1da177e4 223
5bdb05f9
DH
224static const struct futex_q futex_q_init = {
225 /* list gets initialized in queue_me()*/
226 .key = FUTEX_KEY_INIT,
227 .bitset = FUTEX_BITSET_MATCH_ANY
228};
229
1da177e4 230/*
b2d0994b
DH
231 * Hash buckets are shared by all the futex_keys that hash to the same
232 * location. Each key may have multiple futex_q structures, one for each task
233 * waiting on a futex.
1da177e4
LT
234 */
235struct futex_hash_bucket {
11d4616b 236 atomic_t waiters;
ec92d082
PP
237 spinlock_t lock;
238 struct plist_head chain;
a52b89eb 239} ____cacheline_aligned_in_smp;
1da177e4 240
ac742d37
RV
241/*
242 * The base of the bucket array and its size are always used together
243 * (after initialization only in hash_futex()), so ensure that they
244 * reside in the same cacheline.
245 */
246static struct {
247 struct futex_hash_bucket *queues;
248 unsigned long hashsize;
249} __futex_data __read_mostly __aligned(2*sizeof(long));
250#define futex_queues (__futex_data.queues)
251#define futex_hashsize (__futex_data.hashsize)
a52b89eb 252
1da177e4 253
ab51fbab
DB
254/*
255 * Fault injections for futexes.
256 */
257#ifdef CONFIG_FAIL_FUTEX
258
259static struct {
260 struct fault_attr attr;
261
621a5f7a 262 bool ignore_private;
ab51fbab
DB
263} fail_futex = {
264 .attr = FAULT_ATTR_INITIALIZER,
621a5f7a 265 .ignore_private = false,
ab51fbab
DB
266};
267
268static int __init setup_fail_futex(char *str)
269{
270 return setup_fault_attr(&fail_futex.attr, str);
271}
272__setup("fail_futex=", setup_fail_futex);
273
5d285a7f 274static bool should_fail_futex(bool fshared)
ab51fbab
DB
275{
276 if (fail_futex.ignore_private && !fshared)
277 return false;
278
279 return should_fail(&fail_futex.attr, 1);
280}
281
282#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
283
284static int __init fail_futex_debugfs(void)
285{
286 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
287 struct dentry *dir;
288
289 dir = fault_create_debugfs_attr("fail_futex", NULL,
290 &fail_futex.attr);
291 if (IS_ERR(dir))
292 return PTR_ERR(dir);
293
0365aeba
GKH
294 debugfs_create_bool("ignore-private", mode, dir,
295 &fail_futex.ignore_private);
ab51fbab
DB
296 return 0;
297}
298
299late_initcall(fail_futex_debugfs);
300
301#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
302
303#else
304static inline bool should_fail_futex(bool fshared)
305{
306 return false;
307}
308#endif /* CONFIG_FAIL_FUTEX */
309
ba31c1a4
TG
310#ifdef CONFIG_COMPAT
311static void compat_exit_robust_list(struct task_struct *curr);
ba31c1a4
TG
312#endif
313
11d4616b
LT
314/*
315 * Reflects a new waiter being added to the waitqueue.
316 */
317static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
b0c29f79
DB
318{
319#ifdef CONFIG_SMP
11d4616b 320 atomic_inc(&hb->waiters);
b0c29f79 321 /*
11d4616b 322 * Full barrier (A), see the ordering comment above.
b0c29f79 323 */
4e857c58 324 smp_mb__after_atomic();
11d4616b
LT
325#endif
326}
327
328/*
329 * Reflects a waiter being removed from the waitqueue by wakeup
330 * paths.
331 */
332static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
333{
334#ifdef CONFIG_SMP
335 atomic_dec(&hb->waiters);
336#endif
337}
b0c29f79 338
11d4616b
LT
339static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
340{
341#ifdef CONFIG_SMP
4b39f99c
PZ
342 /*
343 * Full barrier (B), see the ordering comment above.
344 */
345 smp_mb();
11d4616b 346 return atomic_read(&hb->waiters);
b0c29f79 347#else
11d4616b 348 return 1;
b0c29f79
DB
349#endif
350}
351
e8b61b3f
TG
352/**
353 * hash_futex - Return the hash bucket in the global hash
354 * @key: Pointer to the futex key for which the hash is calculated
355 *
356 * We hash on the keys returned from get_futex_key (see below) and return the
357 * corresponding hash bucket in the global hash.
1da177e4
LT
358 */
359static struct futex_hash_bucket *hash_futex(union futex_key *key)
360{
8d677436 361 u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
1da177e4 362 key->both.offset);
8d677436 363
a52b89eb 364 return &futex_queues[hash & (futex_hashsize - 1)];
1da177e4
LT
365}
366
e8b61b3f
TG
367
368/**
369 * match_futex - Check whether two futex keys are equal
370 * @key1: Pointer to key1
371 * @key2: Pointer to key2
372 *
1da177e4
LT
373 * Return 1 if two futex_keys are equal, 0 otherwise.
374 */
375static inline int match_futex(union futex_key *key1, union futex_key *key2)
376{
2bc87203
DH
377 return (key1 && key2
378 && key1->both.word == key2->both.word
1da177e4
LT
379 && key1->both.ptr == key2->both.ptr
380 && key1->both.offset == key2->both.offset);
381}
382
96d4f267
LT
383enum futex_access {
384 FUTEX_READ,
385 FUTEX_WRITE
386};
387
5ca584d9
WL
388/**
389 * futex_setup_timer - set up the sleeping hrtimer.
390 * @time: ptr to the given timeout value
391 * @timeout: the hrtimer_sleeper structure to be set up
392 * @flags: futex flags
393 * @range_ns: optional range in ns
394 *
395 * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
396 * value given
397 */
398static inline struct hrtimer_sleeper *
399futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
400 int flags, u64 range_ns)
401{
402 if (!time)
403 return NULL;
404
dbc1625f
SAS
405 hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
406 CLOCK_REALTIME : CLOCK_MONOTONIC,
407 HRTIMER_MODE_ABS);
5ca584d9
WL
408 /*
409 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
410 * effectively the same as calling hrtimer_set_expires().
411 */
412 hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
413
414 return timeout;
415}
416
8019ad13
PZ
417/*
418 * Generate a machine wide unique identifier for this inode.
419 *
420 * This relies on u64 not wrapping in the life-time of the machine; which with
421 * 1ns resolution means almost 585 years.
422 *
423 * This further relies on the fact that a well formed program will not unmap
424 * the file while it has a (shared) futex waiting on it. This mapping will have
425 * a file reference which pins the mount and inode.
426 *
427 * If for some reason an inode gets evicted and read back in again, it will get
428 * a new sequence number and will _NOT_ match, even though it is the exact same
429 * file.
430 *
431 * It is important that match_futex() will never have a false-positive, esp.
432 * for PI futexes that can mess up the state. The above argues that false-negatives
433 * are only possible for malformed programs.
434 */
435static u64 get_inode_sequence_number(struct inode *inode)
436{
437 static atomic64_t i_seq;
438 u64 old;
439
440 /* Does the inode already have a sequence number? */
441 old = atomic64_read(&inode->i_sequence);
442 if (likely(old))
443 return old;
444
445 for (;;) {
446 u64 new = atomic64_add_return(1, &i_seq);
447 if (WARN_ON_ONCE(!new))
448 continue;
449
450 old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
451 if (old)
452 return old;
453 return new;
454 }
455}
456
34f01cc1 457/**
d96ee56c
DH
458 * get_futex_key() - Get parameters which are the keys for a futex
459 * @uaddr: virtual address of the futex
92613085 460 * @fshared: false for a PROCESS_PRIVATE futex, true for PROCESS_SHARED
d96ee56c 461 * @key: address where result is stored.
96d4f267
LT
462 * @rw: mapping needs to be read/write (values: FUTEX_READ,
463 * FUTEX_WRITE)
34f01cc1 464 *
6c23cbbd
RD
465 * Return: a negative error code or 0
466 *
7b4ff1ad 467 * The key words are stored in @key on success.
1da177e4 468 *
8019ad13 469 * For shared mappings (when @fshared), the key is:
03c109d6 470 *
8019ad13 471 * ( inode->i_sequence, page->index, offset_within_page )
03c109d6 472 *
8019ad13
PZ
473 * [ also see get_inode_sequence_number() ]
474 *
475 * For private mappings (or when !@fshared), the key is:
03c109d6 476 *
8019ad13
PZ
477 * ( current->mm, address, 0 )
478 *
479 * This allows (cross process, where applicable) identification of the futex
480 * without keeping the page pinned for the duration of the FUTEX_WAIT.
1da177e4 481 *
b2d0994b 482 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 483 */
92613085
AA
484static int get_futex_key(u32 __user *uaddr, bool fshared, union futex_key *key,
485 enum futex_access rw)
1da177e4 486{
e2970f2f 487 unsigned long address = (unsigned long)uaddr;
1da177e4 488 struct mm_struct *mm = current->mm;
077fa7ae 489 struct page *page, *tail;
14d27abd 490 struct address_space *mapping;
9ea71503 491 int err, ro = 0;
1da177e4
LT
492
493 /*
494 * The futex address must be "naturally" aligned.
495 */
e2970f2f 496 key->both.offset = address % PAGE_SIZE;
34f01cc1 497 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 498 return -EINVAL;
e2970f2f 499 address -= key->both.offset;
1da177e4 500
96d4f267 501 if (unlikely(!access_ok(uaddr, sizeof(u32))))
5cdec2d8
LT
502 return -EFAULT;
503
ab51fbab
DB
504 if (unlikely(should_fail_futex(fshared)))
505 return -EFAULT;
506
34f01cc1
ED
507 /*
508 * PROCESS_PRIVATE futexes are fast.
509 * As the mm cannot disappear under us and the 'key' only needs
510 * virtual address, we dont even have to find the underlying vma.
511 * Note : We do have to check 'uaddr' is a valid user address,
512 * but access_ok() should be faster than find_vma()
513 */
514 if (!fshared) {
34f01cc1
ED
515 key->private.mm = mm;
516 key->private.address = address;
517 return 0;
518 }
1da177e4 519
38d47c1b 520again:
ab51fbab 521 /* Ignore any VERIFY_READ mapping (futex common case) */
92613085 522 if (unlikely(should_fail_futex(true)))
ab51fbab
DB
523 return -EFAULT;
524
73b0140b 525 err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
9ea71503
SB
526 /*
527 * If write access is not required (eg. FUTEX_WAIT), try
528 * and get read-only access.
529 */
96d4f267 530 if (err == -EFAULT && rw == FUTEX_READ) {
9ea71503
SB
531 err = get_user_pages_fast(address, 1, 0, &page);
532 ro = 1;
533 }
38d47c1b
PZ
534 if (err < 0)
535 return err;
9ea71503
SB
536 else
537 err = 0;
38d47c1b 538
65d8fc77
MG
539 /*
540 * The treatment of mapping from this point on is critical. The page
541 * lock protects many things but in this context the page lock
542 * stabilizes mapping, prevents inode freeing in the shared
543 * file-backed region case and guards against movement to swap cache.
544 *
545 * Strictly speaking the page lock is not needed in all cases being
546 * considered here and page lock forces unnecessarily serialization
547 * From this point on, mapping will be re-verified if necessary and
548 * page lock will be acquired only if it is unavoidable
077fa7ae
MG
549 *
550 * Mapping checks require the head page for any compound page so the
551 * head page and mapping is looked up now. For anonymous pages, it
552 * does not matter if the page splits in the future as the key is
553 * based on the address. For filesystem-backed pages, the tail is
554 * required as the index of the page determines the key. For
555 * base pages, there is no tail page and tail == page.
65d8fc77 556 */
077fa7ae 557 tail = page;
65d8fc77
MG
558 page = compound_head(page);
559 mapping = READ_ONCE(page->mapping);
560
e6780f72 561 /*
14d27abd 562 * If page->mapping is NULL, then it cannot be a PageAnon
e6780f72
HD
563 * page; but it might be the ZERO_PAGE or in the gate area or
564 * in a special mapping (all cases which we are happy to fail);
565 * or it may have been a good file page when get_user_pages_fast
566 * found it, but truncated or holepunched or subjected to
567 * invalidate_complete_page2 before we got the page lock (also
568 * cases which we are happy to fail). And we hold a reference,
569 * so refcount care in invalidate_complete_page's remove_mapping
570 * prevents drop_caches from setting mapping to NULL beneath us.
571 *
572 * The case we do have to guard against is when memory pressure made
573 * shmem_writepage move it from filecache to swapcache beneath us:
14d27abd 574 * an unlikely race, but we do need to retry for page->mapping.
e6780f72 575 */
65d8fc77
MG
576 if (unlikely(!mapping)) {
577 int shmem_swizzled;
578
579 /*
580 * Page lock is required to identify which special case above
581 * applies. If this is really a shmem page then the page lock
582 * will prevent unexpected transitions.
583 */
584 lock_page(page);
585 shmem_swizzled = PageSwapCache(page) || page->mapping;
14d27abd
KS
586 unlock_page(page);
587 put_page(page);
65d8fc77 588
e6780f72
HD
589 if (shmem_swizzled)
590 goto again;
65d8fc77 591
e6780f72 592 return -EFAULT;
38d47c1b 593 }
1da177e4
LT
594
595 /*
596 * Private mappings are handled in a simple way.
597 *
65d8fc77
MG
598 * If the futex key is stored on an anonymous page, then the associated
599 * object is the mm which is implicitly pinned by the calling process.
600 *
1da177e4
LT
601 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
602 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 603 * the object not the particular process.
1da177e4 604 */
14d27abd 605 if (PageAnon(page)) {
9ea71503
SB
606 /*
607 * A RO anonymous page will never change and thus doesn't make
608 * sense for futex operations.
609 */
92613085 610 if (unlikely(should_fail_futex(true)) || ro) {
9ea71503
SB
611 err = -EFAULT;
612 goto out;
613 }
614
38d47c1b 615 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 616 key->private.mm = mm;
e2970f2f 617 key->private.address = address;
65d8fc77 618
38d47c1b 619 } else {
65d8fc77
MG
620 struct inode *inode;
621
622 /*
623 * The associated futex object in this case is the inode and
624 * the page->mapping must be traversed. Ordinarily this should
625 * be stabilised under page lock but it's not strictly
626 * necessary in this case as we just want to pin the inode, not
627 * update the radix tree or anything like that.
628 *
629 * The RCU read lock is taken as the inode is finally freed
630 * under RCU. If the mapping still matches expectations then the
631 * mapping->host can be safely accessed as being a valid inode.
632 */
633 rcu_read_lock();
634
635 if (READ_ONCE(page->mapping) != mapping) {
636 rcu_read_unlock();
637 put_page(page);
638
639 goto again;
640 }
641
642 inode = READ_ONCE(mapping->host);
643 if (!inode) {
644 rcu_read_unlock();
645 put_page(page);
646
647 goto again;
648 }
649
38d47c1b 650 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
8019ad13 651 key->shared.i_seq = get_inode_sequence_number(inode);
fe19bd3d 652 key->shared.pgoff = page_to_pgoff(tail);
65d8fc77 653 rcu_read_unlock();
1da177e4
LT
654 }
655
9ea71503 656out:
14d27abd 657 put_page(page);
9ea71503 658 return err;
1da177e4
LT
659}
660
d96ee56c
DH
661/**
662 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
663 * @uaddr: pointer to faulting user space address
664 *
665 * Slow path to fixup the fault we just took in the atomic write
666 * access to @uaddr.
667 *
fb62db2b 668 * We have no generic implementation of a non-destructive write to the
d0725992
TG
669 * user address. We know that we faulted in the atomic pagefault
670 * disabled section so we can as well avoid the #PF overhead by
671 * calling get_user_pages() right away.
672 */
673static int fault_in_user_writeable(u32 __user *uaddr)
674{
722d0172
AK
675 struct mm_struct *mm = current->mm;
676 int ret;
677
d8ed45c5 678 mmap_read_lock(mm);
64019a2e 679 ret = fixup_user_fault(mm, (unsigned long)uaddr,
4a9e1cda 680 FAULT_FLAG_WRITE, NULL);
d8ed45c5 681 mmap_read_unlock(mm);
722d0172 682
d0725992
TG
683 return ret < 0 ? ret : 0;
684}
685
4b1c486b
DH
686/**
687 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
688 * @hb: the hash bucket the futex_q's reside in
689 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
690 *
691 * Must be called with the hb lock held.
692 */
693static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
694 union futex_key *key)
695{
696 struct futex_q *this;
697
698 plist_for_each_entry(this, &hb->chain, list) {
699 if (match_futex(&this->key, key))
700 return this;
701 }
702 return NULL;
703}
704
37a9d912
ML
705static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
706 u32 uval, u32 newval)
36cf3b5c 707{
37a9d912 708 int ret;
36cf3b5c
TG
709
710 pagefault_disable();
37a9d912 711 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
712 pagefault_enable();
713
37a9d912 714 return ret;
36cf3b5c
TG
715}
716
717static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
718{
719 int ret;
720
a866374a 721 pagefault_disable();
bd28b145 722 ret = __get_user(*dest, from);
a866374a 723 pagefault_enable();
1da177e4
LT
724
725 return ret ? -EFAULT : 0;
726}
727
c87e2837
IM
728
729/*
730 * PI code:
731 */
732static int refill_pi_state_cache(void)
733{
734 struct futex_pi_state *pi_state;
735
736 if (likely(current->pi_state_cache))
737 return 0;
738
4668edc3 739 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
740
741 if (!pi_state)
742 return -ENOMEM;
743
c87e2837
IM
744 INIT_LIST_HEAD(&pi_state->list);
745 /* pi_mutex gets initialized later */
746 pi_state->owner = NULL;
49262de2 747 refcount_set(&pi_state->refcount, 1);
38d47c1b 748 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
749
750 current->pi_state_cache = pi_state;
751
752 return 0;
753}
754
bf92cf3a 755static struct futex_pi_state *alloc_pi_state(void)
c87e2837
IM
756{
757 struct futex_pi_state *pi_state = current->pi_state_cache;
758
759 WARN_ON(!pi_state);
760 current->pi_state_cache = NULL;
761
762 return pi_state;
763}
764
c5cade20
TG
765static void pi_state_update_owner(struct futex_pi_state *pi_state,
766 struct task_struct *new_owner)
767{
768 struct task_struct *old_owner = pi_state->owner;
769
770 lockdep_assert_held(&pi_state->pi_mutex.wait_lock);
771
772 if (old_owner) {
773 raw_spin_lock(&old_owner->pi_lock);
774 WARN_ON(list_empty(&pi_state->list));
775 list_del_init(&pi_state->list);
776 raw_spin_unlock(&old_owner->pi_lock);
777 }
778
779 if (new_owner) {
780 raw_spin_lock(&new_owner->pi_lock);
781 WARN_ON(!list_empty(&pi_state->list));
782 list_add(&pi_state->list, &new_owner->pi_state_list);
783 pi_state->owner = new_owner;
784 raw_spin_unlock(&new_owner->pi_lock);
785 }
786}
787
bf92cf3a
PZ
788static void get_pi_state(struct futex_pi_state *pi_state)
789{
49262de2 790 WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
bf92cf3a
PZ
791}
792
30a6b803 793/*
29e9ee5d
TG
794 * Drops a reference to the pi_state object and frees or caches it
795 * when the last reference is gone.
30a6b803 796 */
29e9ee5d 797static void put_pi_state(struct futex_pi_state *pi_state)
c87e2837 798{
30a6b803
BS
799 if (!pi_state)
800 return;
801
49262de2 802 if (!refcount_dec_and_test(&pi_state->refcount))
c87e2837
IM
803 return;
804
805 /*
806 * If pi_state->owner is NULL, the owner is most probably dying
807 * and has cleaned up the pi_state already
808 */
809 if (pi_state->owner) {
1e106aa3 810 unsigned long flags;
c87e2837 811
1e106aa3 812 raw_spin_lock_irqsave(&pi_state->pi_mutex.wait_lock, flags);
6ccc84f9 813 pi_state_update_owner(pi_state, NULL);
2156ac19 814 rt_mutex_proxy_unlock(&pi_state->pi_mutex);
1e106aa3 815 raw_spin_unlock_irqrestore(&pi_state->pi_mutex.wait_lock, flags);
c87e2837
IM
816 }
817
c74aef2d 818 if (current->pi_state_cache) {
c87e2837 819 kfree(pi_state);
c74aef2d 820 } else {
c87e2837
IM
821 /*
822 * pi_state->list is already empty.
823 * clear pi_state->owner.
824 * refcount is at 0 - put it back to 1.
825 */
826 pi_state->owner = NULL;
49262de2 827 refcount_set(&pi_state->refcount, 1);
c87e2837
IM
828 current->pi_state_cache = pi_state;
829 }
830}
831
bc2eecd7
NP
832#ifdef CONFIG_FUTEX_PI
833
c87e2837
IM
834/*
835 * This task is holding PI mutexes at exit time => bad.
836 * Kernel cleans up PI-state, but userspace is likely hosed.
837 * (Robust-futex cleanup is separate and might save the day for userspace.)
838 */
ba31c1a4 839static void exit_pi_state_list(struct task_struct *curr)
c87e2837 840{
c87e2837
IM
841 struct list_head *next, *head = &curr->pi_state_list;
842 struct futex_pi_state *pi_state;
627371d7 843 struct futex_hash_bucket *hb;
38d47c1b 844 union futex_key key = FUTEX_KEY_INIT;
c87e2837 845
a0c1e907
TG
846 if (!futex_cmpxchg_enabled)
847 return;
c87e2837
IM
848 /*
849 * We are a ZOMBIE and nobody can enqueue itself on
850 * pi_state_list anymore, but we have to be careful
627371d7 851 * versus waiters unqueueing themselves:
c87e2837 852 */
1d615482 853 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 854 while (!list_empty(head)) {
c87e2837
IM
855 next = head->next;
856 pi_state = list_entry(next, struct futex_pi_state, list);
857 key = pi_state->key;
627371d7 858 hb = hash_futex(&key);
153fbd12
PZ
859
860 /*
861 * We can race against put_pi_state() removing itself from the
862 * list (a waiter going away). put_pi_state() will first
863 * decrement the reference count and then modify the list, so
864 * its possible to see the list entry but fail this reference
865 * acquire.
866 *
867 * In that case; drop the locks to let put_pi_state() make
868 * progress and retry the loop.
869 */
49262de2 870 if (!refcount_inc_not_zero(&pi_state->refcount)) {
153fbd12
PZ
871 raw_spin_unlock_irq(&curr->pi_lock);
872 cpu_relax();
873 raw_spin_lock_irq(&curr->pi_lock);
874 continue;
875 }
1d615482 876 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 877
c87e2837 878 spin_lock(&hb->lock);
c74aef2d
PZ
879 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
880 raw_spin_lock(&curr->pi_lock);
627371d7
IM
881 /*
882 * We dropped the pi-lock, so re-check whether this
883 * task still owns the PI-state:
884 */
c87e2837 885 if (head->next != next) {
153fbd12 886 /* retain curr->pi_lock for the loop invariant */
c74aef2d 887 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837 888 spin_unlock(&hb->lock);
153fbd12 889 put_pi_state(pi_state);
c87e2837
IM
890 continue;
891 }
892
c87e2837 893 WARN_ON(pi_state->owner != curr);
627371d7
IM
894 WARN_ON(list_empty(&pi_state->list));
895 list_del_init(&pi_state->list);
c87e2837 896 pi_state->owner = NULL;
c87e2837 897
153fbd12 898 raw_spin_unlock(&curr->pi_lock);
c74aef2d 899 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
900 spin_unlock(&hb->lock);
901
16ffa12d
PZ
902 rt_mutex_futex_unlock(&pi_state->pi_mutex);
903 put_pi_state(pi_state);
904
1d615482 905 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 906 }
1d615482 907 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 908}
ba31c1a4
TG
909#else
910static inline void exit_pi_state_list(struct task_struct *curr) { }
bc2eecd7
NP
911#endif
912
54a21788
TG
913/*
914 * We need to check the following states:
915 *
916 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
917 *
918 * [1] NULL | --- | --- | 0 | 0/1 | Valid
919 * [2] NULL | --- | --- | >0 | 0/1 | Valid
920 *
921 * [3] Found | NULL | -- | Any | 0/1 | Invalid
922 *
923 * [4] Found | Found | NULL | 0 | 1 | Valid
924 * [5] Found | Found | NULL | >0 | 1 | Invalid
925 *
926 * [6] Found | Found | task | 0 | 1 | Valid
927 *
928 * [7] Found | Found | NULL | Any | 0 | Invalid
929 *
930 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
931 * [9] Found | Found | task | 0 | 0 | Invalid
932 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
933 *
934 * [1] Indicates that the kernel can acquire the futex atomically. We
7b7b8a2c 935 * came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
54a21788
TG
936 *
937 * [2] Valid, if TID does not belong to a kernel thread. If no matching
938 * thread is found then it indicates that the owner TID has died.
939 *
940 * [3] Invalid. The waiter is queued on a non PI futex
941 *
942 * [4] Valid state after exit_robust_list(), which sets the user space
943 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
944 *
945 * [5] The user space value got manipulated between exit_robust_list()
946 * and exit_pi_state_list()
947 *
948 * [6] Valid state after exit_pi_state_list() which sets the new owner in
949 * the pi_state but cannot access the user space value.
950 *
951 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
952 *
953 * [8] Owner and user space value match
954 *
955 * [9] There is no transient state which sets the user space TID to 0
956 * except exit_robust_list(), but this is indicated by the
957 * FUTEX_OWNER_DIED bit. See [4]
958 *
959 * [10] There is no transient state which leaves owner and user space
34b1a1ce
TG
960 * TID out of sync. Except one error case where the kernel is denied
961 * write access to the user address, see fixup_pi_state_owner().
734009e9
PZ
962 *
963 *
964 * Serialization and lifetime rules:
965 *
966 * hb->lock:
967 *
968 * hb -> futex_q, relation
969 * futex_q -> pi_state, relation
970 *
971 * (cannot be raw because hb can contain arbitrary amount
972 * of futex_q's)
973 *
974 * pi_mutex->wait_lock:
975 *
976 * {uval, pi_state}
977 *
978 * (and pi_mutex 'obviously')
979 *
980 * p->pi_lock:
981 *
982 * p->pi_state_list -> pi_state->list, relation
c2e4bfe0 983 * pi_mutex->owner -> pi_state->owner, relation
734009e9
PZ
984 *
985 * pi_state->refcount:
986 *
987 * pi_state lifetime
988 *
989 *
990 * Lock order:
991 *
992 * hb->lock
993 * pi_mutex->wait_lock
994 * p->pi_lock
995 *
54a21788 996 */
e60cbc5c
TG
997
998/*
999 * Validate that the existing waiter has a pi_state and sanity check
1000 * the pi_state against the user space value. If correct, attach to
1001 * it.
1002 */
734009e9
PZ
1003static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1004 struct futex_pi_state *pi_state,
e60cbc5c 1005 struct futex_pi_state **ps)
c87e2837 1006{
778e9a9c 1007 pid_t pid = uval & FUTEX_TID_MASK;
94ffac5d
PZ
1008 u32 uval2;
1009 int ret;
c87e2837 1010
e60cbc5c
TG
1011 /*
1012 * Userspace might have messed up non-PI and PI futexes [3]
1013 */
1014 if (unlikely(!pi_state))
1015 return -EINVAL;
06a9ec29 1016
734009e9
PZ
1017 /*
1018 * We get here with hb->lock held, and having found a
1019 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1020 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1021 * which in turn means that futex_lock_pi() still has a reference on
1022 * our pi_state.
16ffa12d
PZ
1023 *
1024 * The waiter holding a reference on @pi_state also protects against
1025 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1026 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1027 * free pi_state before we can take a reference ourselves.
734009e9 1028 */
49262de2 1029 WARN_ON(!refcount_read(&pi_state->refcount));
59647b6a 1030
734009e9
PZ
1031 /*
1032 * Now that we have a pi_state, we can acquire wait_lock
1033 * and do the state validation.
1034 */
1035 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1036
1037 /*
1038 * Since {uval, pi_state} is serialized by wait_lock, and our current
1039 * uval was read without holding it, it can have changed. Verify it
1040 * still is what we expect it to be, otherwise retry the entire
1041 * operation.
1042 */
1043 if (get_futex_value_locked(&uval2, uaddr))
1044 goto out_efault;
1045
1046 if (uval != uval2)
1047 goto out_eagain;
1048
e60cbc5c
TG
1049 /*
1050 * Handle the owner died case:
1051 */
1052 if (uval & FUTEX_OWNER_DIED) {
bd1dbcc6 1053 /*
e60cbc5c
TG
1054 * exit_pi_state_list sets owner to NULL and wakes the
1055 * topmost waiter. The task which acquires the
1056 * pi_state->rt_mutex will fixup owner.
bd1dbcc6 1057 */
e60cbc5c 1058 if (!pi_state->owner) {
59647b6a 1059 /*
e60cbc5c
TG
1060 * No pi state owner, but the user space TID
1061 * is not 0. Inconsistent state. [5]
59647b6a 1062 */
e60cbc5c 1063 if (pid)
734009e9 1064 goto out_einval;
bd1dbcc6 1065 /*
e60cbc5c 1066 * Take a ref on the state and return success. [4]
866293ee 1067 */
734009e9 1068 goto out_attach;
c87e2837 1069 }
bd1dbcc6
TG
1070
1071 /*
e60cbc5c
TG
1072 * If TID is 0, then either the dying owner has not
1073 * yet executed exit_pi_state_list() or some waiter
1074 * acquired the rtmutex in the pi state, but did not
1075 * yet fixup the TID in user space.
1076 *
1077 * Take a ref on the state and return success. [6]
1078 */
1079 if (!pid)
734009e9 1080 goto out_attach;
e60cbc5c
TG
1081 } else {
1082 /*
1083 * If the owner died bit is not set, then the pi_state
1084 * must have an owner. [7]
bd1dbcc6 1085 */
e60cbc5c 1086 if (!pi_state->owner)
734009e9 1087 goto out_einval;
c87e2837
IM
1088 }
1089
e60cbc5c
TG
1090 /*
1091 * Bail out if user space manipulated the futex value. If pi
1092 * state exists then the owner TID must be the same as the
1093 * user space TID. [9/10]
1094 */
1095 if (pid != task_pid_vnr(pi_state->owner))
734009e9
PZ
1096 goto out_einval;
1097
1098out_attach:
bf92cf3a 1099 get_pi_state(pi_state);
734009e9 1100 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
e60cbc5c
TG
1101 *ps = pi_state;
1102 return 0;
734009e9
PZ
1103
1104out_einval:
1105 ret = -EINVAL;
1106 goto out_error;
1107
1108out_eagain:
1109 ret = -EAGAIN;
1110 goto out_error;
1111
1112out_efault:
1113 ret = -EFAULT;
1114 goto out_error;
1115
1116out_error:
1117 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1118 return ret;
e60cbc5c
TG
1119}
1120
3ef240ea
TG
1121/**
1122 * wait_for_owner_exiting - Block until the owner has exited
51bfb1d1 1123 * @ret: owner's current futex lock status
3ef240ea
TG
1124 * @exiting: Pointer to the exiting task
1125 *
1126 * Caller must hold a refcount on @exiting.
1127 */
1128static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1129{
1130 if (ret != -EBUSY) {
1131 WARN_ON_ONCE(exiting);
1132 return;
1133 }
1134
1135 if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1136 return;
1137
1138 mutex_lock(&exiting->futex_exit_mutex);
1139 /*
1140 * No point in doing state checking here. If the waiter got here
1141 * while the task was in exec()->exec_futex_release() then it can
1142 * have any FUTEX_STATE_* value when the waiter has acquired the
1143 * mutex. OK, if running, EXITING or DEAD if it reached exit()
1144 * already. Highly unlikely and not a problem. Just one more round
1145 * through the futex maze.
1146 */
1147 mutex_unlock(&exiting->futex_exit_mutex);
1148
1149 put_task_struct(exiting);
1150}
1151
da791a66
TG
1152static int handle_exit_race(u32 __user *uaddr, u32 uval,
1153 struct task_struct *tsk)
1154{
1155 u32 uval2;
1156
1157 /*
ac31c7ff
TG
1158 * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1159 * caller that the alleged owner is busy.
da791a66 1160 */
3d4775df 1161 if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
ac31c7ff 1162 return -EBUSY;
da791a66
TG
1163
1164 /*
1165 * Reread the user space value to handle the following situation:
1166 *
1167 * CPU0 CPU1
1168 *
1169 * sys_exit() sys_futex()
1170 * do_exit() futex_lock_pi()
1171 * futex_lock_pi_atomic()
1172 * exit_signals(tsk) No waiters:
1173 * tsk->flags |= PF_EXITING; *uaddr == 0x00000PID
1174 * mm_release(tsk) Set waiter bit
1175 * exit_robust_list(tsk) { *uaddr = 0x80000PID;
1176 * Set owner died attach_to_pi_owner() {
1177 * *uaddr = 0xC0000000; tsk = get_task(PID);
1178 * } if (!tsk->flags & PF_EXITING) {
1179 * ... attach();
3d4775df
TG
1180 * tsk->futex_state = } else {
1181 * FUTEX_STATE_DEAD; if (tsk->futex_state !=
1182 * FUTEX_STATE_DEAD)
da791a66
TG
1183 * return -EAGAIN;
1184 * return -ESRCH; <--- FAIL
1185 * }
1186 *
1187 * Returning ESRCH unconditionally is wrong here because the
1188 * user space value has been changed by the exiting task.
1189 *
1190 * The same logic applies to the case where the exiting task is
1191 * already gone.
1192 */
1193 if (get_futex_value_locked(&uval2, uaddr))
1194 return -EFAULT;
1195
1196 /* If the user space value has changed, try again. */
1197 if (uval2 != uval)
1198 return -EAGAIN;
1199
1200 /*
1201 * The exiting task did not have a robust list, the robust list was
1202 * corrupted or the user space value in *uaddr is simply bogus.
1203 * Give up and tell user space.
1204 */
1205 return -ESRCH;
1206}
1207
04e1b2e5
TG
1208/*
1209 * Lookup the task for the TID provided from user space and attach to
1210 * it after doing proper sanity checks.
1211 */
da791a66 1212static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
3ef240ea
TG
1213 struct futex_pi_state **ps,
1214 struct task_struct **exiting)
e60cbc5c 1215{
e60cbc5c 1216 pid_t pid = uval & FUTEX_TID_MASK;
04e1b2e5
TG
1217 struct futex_pi_state *pi_state;
1218 struct task_struct *p;
e60cbc5c 1219
c87e2837 1220 /*
e3f2ddea 1221 * We are the first waiter - try to look up the real owner and attach
54a21788 1222 * the new pi_state to it, but bail out when TID = 0 [1]
da791a66
TG
1223 *
1224 * The !pid check is paranoid. None of the call sites should end up
1225 * with pid == 0, but better safe than sorry. Let the caller retry
c87e2837 1226 */
778e9a9c 1227 if (!pid)
da791a66 1228 return -EAGAIN;
2ee08260 1229 p = find_get_task_by_vpid(pid);
7a0ea09a 1230 if (!p)
da791a66 1231 return handle_exit_race(uaddr, uval, NULL);
778e9a9c 1232
a2129464 1233 if (unlikely(p->flags & PF_KTHREAD)) {
f0d71b3d
TG
1234 put_task_struct(p);
1235 return -EPERM;
1236 }
1237
778e9a9c 1238 /*
3d4775df
TG
1239 * We need to look at the task state to figure out, whether the
1240 * task is exiting. To protect against the change of the task state
1241 * in futex_exit_release(), we do this protected by p->pi_lock:
778e9a9c 1242 */
1d615482 1243 raw_spin_lock_irq(&p->pi_lock);
3d4775df 1244 if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
778e9a9c 1245 /*
3d4775df
TG
1246 * The task is on the way out. When the futex state is
1247 * FUTEX_STATE_DEAD, we know that the task has finished
1248 * the cleanup:
778e9a9c 1249 */
da791a66 1250 int ret = handle_exit_race(uaddr, uval, p);
778e9a9c 1251
1d615482 1252 raw_spin_unlock_irq(&p->pi_lock);
3ef240ea
TG
1253 /*
1254 * If the owner task is between FUTEX_STATE_EXITING and
1255 * FUTEX_STATE_DEAD then store the task pointer and keep
1256 * the reference on the task struct. The calling code will
1257 * drop all locks, wait for the task to reach
1258 * FUTEX_STATE_DEAD and then drop the refcount. This is
1259 * required to prevent a live lock when the current task
1260 * preempted the exiting task between the two states.
1261 */
1262 if (ret == -EBUSY)
1263 *exiting = p;
1264 else
1265 put_task_struct(p);
778e9a9c
AK
1266 return ret;
1267 }
c87e2837 1268
54a21788
TG
1269 /*
1270 * No existing pi state. First waiter. [2]
734009e9
PZ
1271 *
1272 * This creates pi_state, we have hb->lock held, this means nothing can
1273 * observe this state, wait_lock is irrelevant.
54a21788 1274 */
c87e2837
IM
1275 pi_state = alloc_pi_state();
1276
1277 /*
04e1b2e5 1278 * Initialize the pi_mutex in locked state and make @p
c87e2837
IM
1279 * the owner of it:
1280 */
1281 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1282
1283 /* Store the key for possible exit cleanups: */
d0aa7a70 1284 pi_state->key = *key;
c87e2837 1285
627371d7 1286 WARN_ON(!list_empty(&pi_state->list));
c87e2837 1287 list_add(&pi_state->list, &p->pi_state_list);
c74aef2d
PZ
1288 /*
1289 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1290 * because there is no concurrency as the object is not published yet.
1291 */
c87e2837 1292 pi_state->owner = p;
1d615482 1293 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
1294
1295 put_task_struct(p);
1296
d0aa7a70 1297 *ps = pi_state;
c87e2837
IM
1298
1299 return 0;
1300}
1301
734009e9
PZ
1302static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1303 struct futex_hash_bucket *hb,
3ef240ea
TG
1304 union futex_key *key, struct futex_pi_state **ps,
1305 struct task_struct **exiting)
04e1b2e5 1306{
499f5aca 1307 struct futex_q *top_waiter = futex_top_waiter(hb, key);
04e1b2e5
TG
1308
1309 /*
1310 * If there is a waiter on that futex, validate it and
1311 * attach to the pi_state when the validation succeeds.
1312 */
499f5aca 1313 if (top_waiter)
734009e9 1314 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
04e1b2e5
TG
1315
1316 /*
1317 * We are the first waiter - try to look up the owner based on
1318 * @uval and attach to it.
1319 */
3ef240ea 1320 return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
04e1b2e5
TG
1321}
1322
af54d6a1
TG
1323static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1324{
6b4f4bc9 1325 int err;
3f649ab7 1326 u32 curval;
af54d6a1 1327
ab51fbab
DB
1328 if (unlikely(should_fail_futex(true)))
1329 return -EFAULT;
1330
6b4f4bc9
WD
1331 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1332 if (unlikely(err))
1333 return err;
af54d6a1 1334
734009e9 1335 /* If user space value changed, let the caller retry */
af54d6a1
TG
1336 return curval != uval ? -EAGAIN : 0;
1337}
1338
1a52084d 1339/**
d96ee56c 1340 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
1341 * @uaddr: the pi futex user address
1342 * @hb: the pi futex hash bucket
1343 * @key: the futex key associated with uaddr and hb
1344 * @ps: the pi_state pointer where we store the result of the
1345 * lookup
1346 * @task: the task to perform the atomic lock work for. This will
1347 * be "current" except in the case of requeue pi.
3ef240ea
TG
1348 * @exiting: Pointer to store the task pointer of the owner task
1349 * which is in the middle of exiting
bab5bc9e 1350 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 1351 *
6c23cbbd 1352 * Return:
7b4ff1ad
MCC
1353 * - 0 - ready to wait;
1354 * - 1 - acquired the lock;
1355 * - <0 - error
1a52084d
DH
1356 *
1357 * The hb->lock and futex_key refs shall be held by the caller.
3ef240ea
TG
1358 *
1359 * @exiting is only set when the return value is -EBUSY. If so, this holds
1360 * a refcount on the exiting task on return and the caller needs to drop it
1361 * after waiting for the exit to complete.
1a52084d
DH
1362 */
1363static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1364 union futex_key *key,
1365 struct futex_pi_state **ps,
3ef240ea
TG
1366 struct task_struct *task,
1367 struct task_struct **exiting,
1368 int set_waiters)
1a52084d 1369{
af54d6a1 1370 u32 uval, newval, vpid = task_pid_vnr(task);
499f5aca 1371 struct futex_q *top_waiter;
af54d6a1 1372 int ret;
1a52084d
DH
1373
1374 /*
af54d6a1
TG
1375 * Read the user space value first so we can validate a few
1376 * things before proceeding further.
1a52084d 1377 */
af54d6a1 1378 if (get_futex_value_locked(&uval, uaddr))
1a52084d
DH
1379 return -EFAULT;
1380
ab51fbab
DB
1381 if (unlikely(should_fail_futex(true)))
1382 return -EFAULT;
1383
1a52084d
DH
1384 /*
1385 * Detect deadlocks.
1386 */
af54d6a1 1387 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
1388 return -EDEADLK;
1389
ab51fbab
DB
1390 if ((unlikely(should_fail_futex(true))))
1391 return -EDEADLK;
1392
1a52084d 1393 /*
af54d6a1
TG
1394 * Lookup existing state first. If it exists, try to attach to
1395 * its pi_state.
1a52084d 1396 */
499f5aca
PZ
1397 top_waiter = futex_top_waiter(hb, key);
1398 if (top_waiter)
734009e9 1399 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1a52084d
DH
1400
1401 /*
af54d6a1
TG
1402 * No waiter and user TID is 0. We are here because the
1403 * waiters or the owner died bit is set or called from
1404 * requeue_cmp_pi or for whatever reason something took the
1405 * syscall.
1a52084d 1406 */
af54d6a1 1407 if (!(uval & FUTEX_TID_MASK)) {
59fa6245 1408 /*
af54d6a1
TG
1409 * We take over the futex. No other waiters and the user space
1410 * TID is 0. We preserve the owner died bit.
59fa6245 1411 */
af54d6a1
TG
1412 newval = uval & FUTEX_OWNER_DIED;
1413 newval |= vpid;
1a52084d 1414
af54d6a1
TG
1415 /* The futex requeue_pi code can enforce the waiters bit */
1416 if (set_waiters)
1417 newval |= FUTEX_WAITERS;
1418
1419 ret = lock_pi_update_atomic(uaddr, uval, newval);
1420 /* If the take over worked, return 1 */
1421 return ret < 0 ? ret : 1;
1422 }
1a52084d
DH
1423
1424 /*
af54d6a1
TG
1425 * First waiter. Set the waiters bit before attaching ourself to
1426 * the owner. If owner tries to unlock, it will be forced into
1427 * the kernel and blocked on hb->lock.
1a52084d 1428 */
af54d6a1
TG
1429 newval = uval | FUTEX_WAITERS;
1430 ret = lock_pi_update_atomic(uaddr, uval, newval);
1431 if (ret)
1432 return ret;
1a52084d 1433 /*
af54d6a1
TG
1434 * If the update of the user space value succeeded, we try to
1435 * attach to the owner. If that fails, no harm done, we only
1436 * set the FUTEX_WAITERS bit in the user space variable.
1a52084d 1437 */
3ef240ea 1438 return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1a52084d
DH
1439}
1440
2e12978a
LJ
1441/**
1442 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1443 * @q: The futex_q to unqueue
1444 *
1445 * The q->lock_ptr must not be NULL and must be held by the caller.
1446 */
1447static void __unqueue_futex(struct futex_q *q)
1448{
1449 struct futex_hash_bucket *hb;
1450
4de1a293 1451 if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
2e12978a 1452 return;
4de1a293 1453 lockdep_assert_held(q->lock_ptr);
2e12978a
LJ
1454
1455 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1456 plist_del(&q->list, &hb->chain);
11d4616b 1457 hb_waiters_dec(hb);
2e12978a
LJ
1458}
1459
1da177e4
LT
1460/*
1461 * The hash bucket lock must be held when this is called.
1d0dcb3a
DB
1462 * Afterwards, the futex_q must not be accessed. Callers
1463 * must ensure to later call wake_up_q() for the actual
1464 * wakeups to occur.
1da177e4 1465 */
1d0dcb3a 1466static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1da177e4 1467{
f1a11e05
TG
1468 struct task_struct *p = q->task;
1469
aa10990e
DH
1470 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1471 return;
1472
b061c38b 1473 get_task_struct(p);
2e12978a 1474 __unqueue_futex(q);
1da177e4 1475 /*
38fcd06e
DHV
1476 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1477 * is written, without taking any locks. This is possible in the event
1478 * of a spurious wakeup, for example. A memory barrier is required here
1479 * to prevent the following store to lock_ptr from getting ahead of the
1480 * plist_del in __unqueue_futex().
1da177e4 1481 */
1b367ece 1482 smp_store_release(&q->lock_ptr, NULL);
b061c38b
PZ
1483
1484 /*
1485 * Queue the task for later wakeup for after we've released
75145904 1486 * the hb->lock.
b061c38b 1487 */
07879c6a 1488 wake_q_add_safe(wake_q, p);
1da177e4
LT
1489}
1490
16ffa12d
PZ
1491/*
1492 * Caller must hold a reference on @pi_state.
1493 */
1494static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
c87e2837 1495{
3f649ab7 1496 u32 curval, newval;
9a4b99fc 1497 struct rt_mutex_waiter *top_waiter;
16ffa12d 1498 struct task_struct *new_owner;
aa2bfe55 1499 bool postunlock = false;
194a6b5b 1500 DEFINE_WAKE_Q(wake_q);
13fbca4c 1501 int ret = 0;
c87e2837 1502
9a4b99fc
DB
1503 top_waiter = rt_mutex_top_waiter(&pi_state->pi_mutex);
1504 if (WARN_ON_ONCE(!top_waiter)) {
16ffa12d 1505 /*
bebe5b51 1506 * As per the comment in futex_unlock_pi() this should not happen.
16ffa12d
PZ
1507 *
1508 * When this happens, give up our locks and try again, giving
1509 * the futex_lock_pi() instance time to complete, either by
1510 * waiting on the rtmutex or removing itself from the futex
1511 * queue.
1512 */
1513 ret = -EAGAIN;
1514 goto out_unlock;
73d786bd 1515 }
c87e2837 1516
9a4b99fc
DB
1517 new_owner = top_waiter->task;
1518
c87e2837 1519 /*
16ffa12d
PZ
1520 * We pass it to the next owner. The WAITERS bit is always kept
1521 * enabled while there is PI state around. We cleanup the owner
1522 * died bit, because we are the owner.
c87e2837 1523 */
13fbca4c 1524 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 1525
921c7ebd 1526 if (unlikely(should_fail_futex(true))) {
ab51fbab 1527 ret = -EFAULT;
921c7ebd
MN
1528 goto out_unlock;
1529 }
ab51fbab 1530
6b4f4bc9
WD
1531 ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1532 if (!ret && (curval != uval)) {
89e9e66b
SAS
1533 /*
1534 * If a unconditional UNLOCK_PI operation (user space did not
1535 * try the TID->0 transition) raced with a waiter setting the
1536 * FUTEX_WAITERS flag between get_user() and locking the hash
1537 * bucket lock, retry the operation.
1538 */
1539 if ((FUTEX_TID_MASK & curval) == uval)
1540 ret = -EAGAIN;
1541 else
1542 ret = -EINVAL;
1543 }
734009e9 1544
c5cade20
TG
1545 if (!ret) {
1546 /*
1547 * This is a point of no return; once we modified the uval
1548 * there is no going back and subsequent operations must
1549 * not fail.
1550 */
1551 pi_state_update_owner(pi_state, new_owner);
1552 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1553 }
5293c2ef 1554
16ffa12d 1555out_unlock:
5293c2ef 1556 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
5293c2ef 1557
aa2bfe55
PZ
1558 if (postunlock)
1559 rt_mutex_postunlock(&wake_q);
c87e2837 1560
16ffa12d 1561 return ret;
c87e2837
IM
1562}
1563
8b8f319f
IM
1564/*
1565 * Express the locking dependencies for lockdep:
1566 */
1567static inline void
1568double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1569{
1570 if (hb1 <= hb2) {
1571 spin_lock(&hb1->lock);
1572 if (hb1 < hb2)
1573 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1574 } else { /* hb1 > hb2 */
1575 spin_lock(&hb2->lock);
1576 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1577 }
1578}
1579
5eb3dc62
DH
1580static inline void
1581double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1582{
f061d351 1583 spin_unlock(&hb1->lock);
88f502fe
IM
1584 if (hb1 != hb2)
1585 spin_unlock(&hb2->lock);
5eb3dc62
DH
1586}
1587
1da177e4 1588/*
b2d0994b 1589 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1590 */
b41277dc
DH
1591static int
1592futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1593{
e2970f2f 1594 struct futex_hash_bucket *hb;
1da177e4 1595 struct futex_q *this, *next;
38d47c1b 1596 union futex_key key = FUTEX_KEY_INIT;
1da177e4 1597 int ret;
194a6b5b 1598 DEFINE_WAKE_Q(wake_q);
1da177e4 1599
cd689985
TG
1600 if (!bitset)
1601 return -EINVAL;
1602
96d4f267 1603 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1da177e4 1604 if (unlikely(ret != 0))
d7c5ed73 1605 return ret;
1da177e4 1606
e2970f2f 1607 hb = hash_futex(&key);
b0c29f79
DB
1608
1609 /* Make sure we really have tasks to wakeup */
1610 if (!hb_waiters_pending(hb))
d7c5ed73 1611 return ret;
b0c29f79 1612
e2970f2f 1613 spin_lock(&hb->lock);
1da177e4 1614
0d00c7b2 1615 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1da177e4 1616 if (match_futex (&this->key, &key)) {
52400ba9 1617 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1618 ret = -EINVAL;
1619 break;
1620 }
cd689985
TG
1621
1622 /* Check if one of the bits is set in both bitsets */
1623 if (!(this->bitset & bitset))
1624 continue;
1625
1d0dcb3a 1626 mark_wake_futex(&wake_q, this);
1da177e4
LT
1627 if (++ret >= nr_wake)
1628 break;
1629 }
1630 }
1631
e2970f2f 1632 spin_unlock(&hb->lock);
1d0dcb3a 1633 wake_up_q(&wake_q);
1da177e4
LT
1634 return ret;
1635}
1636
30d6e0a4
JS
1637static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1638{
1639 unsigned int op = (encoded_op & 0x70000000) >> 28;
1640 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
d70ef228
JS
1641 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1642 int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
30d6e0a4
JS
1643 int oldval, ret;
1644
1645 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
e78c38f6
JS
1646 if (oparg < 0 || oparg > 31) {
1647 char comm[sizeof(current->comm)];
1648 /*
1649 * kill this print and return -EINVAL when userspace
1650 * is sane again
1651 */
1652 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1653 get_task_comm(comm, current), oparg);
1654 oparg &= 31;
1655 }
30d6e0a4
JS
1656 oparg = 1 << oparg;
1657 }
1658
a08971e9 1659 pagefault_disable();
30d6e0a4 1660 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
a08971e9 1661 pagefault_enable();
30d6e0a4
JS
1662 if (ret)
1663 return ret;
1664
1665 switch (cmp) {
1666 case FUTEX_OP_CMP_EQ:
1667 return oldval == cmparg;
1668 case FUTEX_OP_CMP_NE:
1669 return oldval != cmparg;
1670 case FUTEX_OP_CMP_LT:
1671 return oldval < cmparg;
1672 case FUTEX_OP_CMP_GE:
1673 return oldval >= cmparg;
1674 case FUTEX_OP_CMP_LE:
1675 return oldval <= cmparg;
1676 case FUTEX_OP_CMP_GT:
1677 return oldval > cmparg;
1678 default:
1679 return -ENOSYS;
1680 }
1681}
1682
4732efbe
JJ
1683/*
1684 * Wake up all waiters hashed on the physical page that is mapped
1685 * to this virtual address:
1686 */
e2970f2f 1687static int
b41277dc 1688futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1689 int nr_wake, int nr_wake2, int op)
4732efbe 1690{
38d47c1b 1691 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1692 struct futex_hash_bucket *hb1, *hb2;
4732efbe 1693 struct futex_q *this, *next;
e4dc5b7a 1694 int ret, op_ret;
194a6b5b 1695 DEFINE_WAKE_Q(wake_q);
4732efbe 1696
e4dc5b7a 1697retry:
96d4f267 1698 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
4732efbe 1699 if (unlikely(ret != 0))
d7c5ed73 1700 return ret;
96d4f267 1701 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
4732efbe 1702 if (unlikely(ret != 0))
d7c5ed73 1703 return ret;
4732efbe 1704
e2970f2f
IM
1705 hb1 = hash_futex(&key1);
1706 hb2 = hash_futex(&key2);
4732efbe 1707
e4dc5b7a 1708retry_private:
eaaea803 1709 double_lock_hb(hb1, hb2);
e2970f2f 1710 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1711 if (unlikely(op_ret < 0)) {
5eb3dc62 1712 double_unlock_hb(hb1, hb2);
4732efbe 1713
6b4f4bc9
WD
1714 if (!IS_ENABLED(CONFIG_MMU) ||
1715 unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1716 /*
1717 * we don't get EFAULT from MMU faults if we don't have
1718 * an MMU, but we might get them from range checking
1719 */
796f8d9b 1720 ret = op_ret;
d7c5ed73 1721 return ret;
796f8d9b
DG
1722 }
1723
6b4f4bc9
WD
1724 if (op_ret == -EFAULT) {
1725 ret = fault_in_user_writeable(uaddr2);
1726 if (ret)
d7c5ed73 1727 return ret;
6b4f4bc9 1728 }
4732efbe 1729
6b4f4bc9
WD
1730 if (!(flags & FLAGS_SHARED)) {
1731 cond_resched();
e4dc5b7a 1732 goto retry_private;
6b4f4bc9 1733 }
e4dc5b7a 1734
6b4f4bc9 1735 cond_resched();
e4dc5b7a 1736 goto retry;
4732efbe
JJ
1737 }
1738
0d00c7b2 1739 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
4732efbe 1740 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1741 if (this->pi_state || this->rt_waiter) {
1742 ret = -EINVAL;
1743 goto out_unlock;
1744 }
1d0dcb3a 1745 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1746 if (++ret >= nr_wake)
1747 break;
1748 }
1749 }
1750
1751 if (op_ret > 0) {
4732efbe 1752 op_ret = 0;
0d00c7b2 1753 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
4732efbe 1754 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1755 if (this->pi_state || this->rt_waiter) {
1756 ret = -EINVAL;
1757 goto out_unlock;
1758 }
1d0dcb3a 1759 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1760 if (++op_ret >= nr_wake2)
1761 break;
1762 }
1763 }
1764 ret += op_ret;
1765 }
1766
aa10990e 1767out_unlock:
5eb3dc62 1768 double_unlock_hb(hb1, hb2);
1d0dcb3a 1769 wake_up_q(&wake_q);
4732efbe
JJ
1770 return ret;
1771}
1772
9121e478
DH
1773/**
1774 * requeue_futex() - Requeue a futex_q from one hb to another
1775 * @q: the futex_q to requeue
1776 * @hb1: the source hash_bucket
1777 * @hb2: the target hash_bucket
1778 * @key2: the new key for the requeued futex_q
1779 */
1780static inline
1781void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1782 struct futex_hash_bucket *hb2, union futex_key *key2)
1783{
1784
1785 /*
1786 * If key1 and key2 hash to the same bucket, no need to
1787 * requeue.
1788 */
1789 if (likely(&hb1->chain != &hb2->chain)) {
1790 plist_del(&q->list, &hb1->chain);
11d4616b 1791 hb_waiters_dec(hb1);
11d4616b 1792 hb_waiters_inc(hb2);
fe1bce9e 1793 plist_add(&q->list, &hb2->chain);
9121e478 1794 q->lock_ptr = &hb2->lock;
9121e478 1795 }
9121e478
DH
1796 q->key = *key2;
1797}
1798
52400ba9
DH
1799/**
1800 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1801 * @q: the futex_q
1802 * @key: the key of the requeue target futex
1803 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1804 *
1805 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1806 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1807 * to the requeue target futex so the waiter can detect the wakeup on the right
1808 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1809 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1810 * to protect access to the pi_state to fixup the owner later. Must be called
1811 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1812 */
1813static inline
beda2c7e
DH
1814void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1815 struct futex_hash_bucket *hb)
52400ba9 1816{
52400ba9
DH
1817 q->key = *key;
1818
2e12978a 1819 __unqueue_futex(q);
52400ba9
DH
1820
1821 WARN_ON(!q->rt_waiter);
1822 q->rt_waiter = NULL;
1823
beda2c7e 1824 q->lock_ptr = &hb->lock;
beda2c7e 1825
f1a11e05 1826 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1827}
1828
1829/**
1830 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1831 * @pifutex: the user address of the to futex
1832 * @hb1: the from futex hash bucket, must be locked by the caller
1833 * @hb2: the to futex hash bucket, must be locked by the caller
1834 * @key1: the from futex key
1835 * @key2: the to futex key
1836 * @ps: address to store the pi_state pointer
3ef240ea
TG
1837 * @exiting: Pointer to store the task pointer of the owner task
1838 * which is in the middle of exiting
bab5bc9e 1839 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1840 *
1841 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1842 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1843 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1844 * hb1 and hb2 must be held by the caller.
52400ba9 1845 *
3ef240ea
TG
1846 * @exiting is only set when the return value is -EBUSY. If so, this holds
1847 * a refcount on the exiting task on return and the caller needs to drop it
1848 * after waiting for the exit to complete.
1849 *
6c23cbbd 1850 * Return:
7b4ff1ad
MCC
1851 * - 0 - failed to acquire the lock atomically;
1852 * - >0 - acquired the lock, return value is vpid of the top_waiter
1853 * - <0 - error
52400ba9 1854 */
3ef240ea
TG
1855static int
1856futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1857 struct futex_hash_bucket *hb2, union futex_key *key1,
1858 union futex_key *key2, struct futex_pi_state **ps,
1859 struct task_struct **exiting, int set_waiters)
52400ba9 1860{
bab5bc9e 1861 struct futex_q *top_waiter = NULL;
52400ba9 1862 u32 curval;
866293ee 1863 int ret, vpid;
52400ba9
DH
1864
1865 if (get_futex_value_locked(&curval, pifutex))
1866 return -EFAULT;
1867
ab51fbab
DB
1868 if (unlikely(should_fail_futex(true)))
1869 return -EFAULT;
1870
bab5bc9e
DH
1871 /*
1872 * Find the top_waiter and determine if there are additional waiters.
1873 * If the caller intends to requeue more than 1 waiter to pifutex,
1874 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1875 * as we have means to handle the possible fault. If not, don't set
1876 * the bit unecessarily as it will force the subsequent unlock to enter
1877 * the kernel.
1878 */
52400ba9
DH
1879 top_waiter = futex_top_waiter(hb1, key1);
1880
1881 /* There are no waiters, nothing for us to do. */
1882 if (!top_waiter)
1883 return 0;
1884
84bc4af5
DH
1885 /* Ensure we requeue to the expected futex. */
1886 if (!match_futex(top_waiter->requeue_pi_key, key2))
1887 return -EINVAL;
1888
52400ba9 1889 /*
bab5bc9e
DH
1890 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1891 * the contended case or if set_waiters is 1. The pi_state is returned
1892 * in ps in contended cases.
52400ba9 1893 */
866293ee 1894 vpid = task_pid_vnr(top_waiter->task);
bab5bc9e 1895 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
3ef240ea 1896 exiting, set_waiters);
866293ee 1897 if (ret == 1) {
beda2c7e 1898 requeue_pi_wake_futex(top_waiter, key2, hb2);
866293ee
TG
1899 return vpid;
1900 }
52400ba9
DH
1901 return ret;
1902}
1903
1904/**
1905 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1906 * @uaddr1: source futex user address
b41277dc 1907 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1908 * @uaddr2: target futex user address
1909 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1910 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1911 * @cmpval: @uaddr1 expected value (or %NULL)
1912 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1913 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1914 *
1915 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1916 * uaddr2 atomically on behalf of the top waiter.
1917 *
6c23cbbd 1918 * Return:
7b4ff1ad
MCC
1919 * - >=0 - on success, the number of tasks requeued or woken;
1920 * - <0 - on error
1da177e4 1921 */
b41277dc
DH
1922static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1923 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1924 u32 *cmpval, int requeue_pi)
1da177e4 1925{
38d47c1b 1926 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
4b39f99c 1927 int task_count = 0, ret;
52400ba9 1928 struct futex_pi_state *pi_state = NULL;
e2970f2f 1929 struct futex_hash_bucket *hb1, *hb2;
1da177e4 1930 struct futex_q *this, *next;
194a6b5b 1931 DEFINE_WAKE_Q(wake_q);
52400ba9 1932
fbe0e839
LJ
1933 if (nr_wake < 0 || nr_requeue < 0)
1934 return -EINVAL;
1935
bc2eecd7
NP
1936 /*
1937 * When PI not supported: return -ENOSYS if requeue_pi is true,
1938 * consequently the compiler knows requeue_pi is always false past
1939 * this point which will optimize away all the conditional code
1940 * further down.
1941 */
1942 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1943 return -ENOSYS;
1944
52400ba9 1945 if (requeue_pi) {
e9c243a5
TG
1946 /*
1947 * Requeue PI only works on two distinct uaddrs. This
1948 * check is only valid for private futexes. See below.
1949 */
1950 if (uaddr1 == uaddr2)
1951 return -EINVAL;
1952
52400ba9
DH
1953 /*
1954 * requeue_pi requires a pi_state, try to allocate it now
1955 * without any locks in case it fails.
1956 */
1957 if (refill_pi_state_cache())
1958 return -ENOMEM;
1959 /*
1960 * requeue_pi must wake as many tasks as it can, up to nr_wake
1961 * + nr_requeue, since it acquires the rt_mutex prior to
1962 * returning to userspace, so as to not leave the rt_mutex with
1963 * waiters and no owner. However, second and third wake-ups
1964 * cannot be predicted as they involve race conditions with the
1965 * first wake and a fault while looking up the pi_state. Both
1966 * pthread_cond_signal() and pthread_cond_broadcast() should
1967 * use nr_wake=1.
1968 */
1969 if (nr_wake != 1)
1970 return -EINVAL;
1971 }
1da177e4 1972
42d35d48 1973retry:
96d4f267 1974 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1da177e4 1975 if (unlikely(ret != 0))
d7c5ed73 1976 return ret;
9ea71503 1977 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
96d4f267 1978 requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1da177e4 1979 if (unlikely(ret != 0))
d7c5ed73 1980 return ret;
1da177e4 1981
e9c243a5
TG
1982 /*
1983 * The check above which compares uaddrs is not sufficient for
1984 * shared futexes. We need to compare the keys:
1985 */
d7c5ed73
AA
1986 if (requeue_pi && match_futex(&key1, &key2))
1987 return -EINVAL;
e9c243a5 1988
e2970f2f
IM
1989 hb1 = hash_futex(&key1);
1990 hb2 = hash_futex(&key2);
1da177e4 1991
e4dc5b7a 1992retry_private:
69cd9eba 1993 hb_waiters_inc(hb2);
8b8f319f 1994 double_lock_hb(hb1, hb2);
1da177e4 1995
e2970f2f
IM
1996 if (likely(cmpval != NULL)) {
1997 u32 curval;
1da177e4 1998
e2970f2f 1999 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
2000
2001 if (unlikely(ret)) {
5eb3dc62 2002 double_unlock_hb(hb1, hb2);
69cd9eba 2003 hb_waiters_dec(hb2);
1da177e4 2004
e2970f2f 2005 ret = get_user(curval, uaddr1);
e4dc5b7a 2006 if (ret)
d7c5ed73 2007 return ret;
1da177e4 2008
b41277dc 2009 if (!(flags & FLAGS_SHARED))
e4dc5b7a 2010 goto retry_private;
1da177e4 2011
e4dc5b7a 2012 goto retry;
1da177e4 2013 }
e2970f2f 2014 if (curval != *cmpval) {
1da177e4
LT
2015 ret = -EAGAIN;
2016 goto out_unlock;
2017 }
2018 }
2019
52400ba9 2020 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
3ef240ea
TG
2021 struct task_struct *exiting = NULL;
2022
bab5bc9e
DH
2023 /*
2024 * Attempt to acquire uaddr2 and wake the top waiter. If we
2025 * intend to requeue waiters, force setting the FUTEX_WAITERS
2026 * bit. We force this here where we are able to easily handle
2027 * faults rather in the requeue loop below.
2028 */
52400ba9 2029 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
3ef240ea
TG
2030 &key2, &pi_state,
2031 &exiting, nr_requeue);
52400ba9
DH
2032
2033 /*
2034 * At this point the top_waiter has either taken uaddr2 or is
2035 * waiting on it. If the former, then the pi_state will not
2036 * exist yet, look it up one more time to ensure we have a
866293ee
TG
2037 * reference to it. If the lock was taken, ret contains the
2038 * vpid of the top waiter task.
ecb38b78
TG
2039 * If the lock was not taken, we have pi_state and an initial
2040 * refcount on it. In case of an error we have nothing.
52400ba9 2041 */
866293ee 2042 if (ret > 0) {
52400ba9
DH
2043 WARN_ON(pi_state);
2044 task_count++;
866293ee 2045 /*
ecb38b78
TG
2046 * If we acquired the lock, then the user space value
2047 * of uaddr2 should be vpid. It cannot be changed by
2048 * the top waiter as it is blocked on hb2 lock if it
2049 * tries to do so. If something fiddled with it behind
2050 * our back the pi state lookup might unearth it. So
2051 * we rather use the known value than rereading and
2052 * handing potential crap to lookup_pi_state.
2053 *
2054 * If that call succeeds then we have pi_state and an
2055 * initial refcount on it.
866293ee 2056 */
3ef240ea
TG
2057 ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
2058 &pi_state, &exiting);
52400ba9
DH
2059 }
2060
2061 switch (ret) {
2062 case 0:
ecb38b78 2063 /* We hold a reference on the pi state. */
52400ba9 2064 break;
4959f2de
TG
2065
2066 /* If the above failed, then pi_state is NULL */
52400ba9
DH
2067 case -EFAULT:
2068 double_unlock_hb(hb1, hb2);
69cd9eba 2069 hb_waiters_dec(hb2);
d0725992 2070 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
2071 if (!ret)
2072 goto retry;
d7c5ed73 2073 return ret;
ac31c7ff 2074 case -EBUSY:
52400ba9 2075 case -EAGAIN:
af54d6a1
TG
2076 /*
2077 * Two reasons for this:
ac31c7ff 2078 * - EBUSY: Owner is exiting and we just wait for the
af54d6a1 2079 * exit to complete.
ac31c7ff 2080 * - EAGAIN: The user space value changed.
af54d6a1 2081 */
52400ba9 2082 double_unlock_hb(hb1, hb2);
69cd9eba 2083 hb_waiters_dec(hb2);
3ef240ea
TG
2084 /*
2085 * Handle the case where the owner is in the middle of
2086 * exiting. Wait for the exit to complete otherwise
2087 * this task might loop forever, aka. live lock.
2088 */
2089 wait_for_owner_exiting(ret, exiting);
52400ba9
DH
2090 cond_resched();
2091 goto retry;
2092 default:
2093 goto out_unlock;
2094 }
2095 }
2096
0d00c7b2 2097 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
52400ba9
DH
2098 if (task_count - nr_wake >= nr_requeue)
2099 break;
2100
2101 if (!match_futex(&this->key, &key1))
1da177e4 2102 continue;
52400ba9 2103
392741e0
DH
2104 /*
2105 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2106 * be paired with each other and no other futex ops.
aa10990e
DH
2107 *
2108 * We should never be requeueing a futex_q with a pi_state,
2109 * which is awaiting a futex_unlock_pi().
392741e0
DH
2110 */
2111 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
2112 (!requeue_pi && this->rt_waiter) ||
2113 this->pi_state) {
392741e0
DH
2114 ret = -EINVAL;
2115 break;
2116 }
52400ba9
DH
2117
2118 /*
2119 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2120 * lock, we already woke the top_waiter. If not, it will be
2121 * woken by futex_unlock_pi().
2122 */
2123 if (++task_count <= nr_wake && !requeue_pi) {
1d0dcb3a 2124 mark_wake_futex(&wake_q, this);
52400ba9
DH
2125 continue;
2126 }
1da177e4 2127
84bc4af5
DH
2128 /* Ensure we requeue to the expected futex for requeue_pi. */
2129 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2130 ret = -EINVAL;
2131 break;
2132 }
2133
52400ba9
DH
2134 /*
2135 * Requeue nr_requeue waiters and possibly one more in the case
2136 * of requeue_pi if we couldn't acquire the lock atomically.
2137 */
2138 if (requeue_pi) {
ecb38b78
TG
2139 /*
2140 * Prepare the waiter to take the rt_mutex. Take a
2141 * refcount on the pi_state and store the pointer in
2142 * the futex_q object of the waiter.
2143 */
bf92cf3a 2144 get_pi_state(pi_state);
52400ba9
DH
2145 this->pi_state = pi_state;
2146 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2147 this->rt_waiter,
c051b21f 2148 this->task);
52400ba9 2149 if (ret == 1) {
ecb38b78
TG
2150 /*
2151 * We got the lock. We do neither drop the
2152 * refcount on pi_state nor clear
2153 * this->pi_state because the waiter needs the
2154 * pi_state for cleaning up the user space
2155 * value. It will drop the refcount after
2156 * doing so.
2157 */
beda2c7e 2158 requeue_pi_wake_futex(this, &key2, hb2);
52400ba9
DH
2159 continue;
2160 } else if (ret) {
ecb38b78
TG
2161 /*
2162 * rt_mutex_start_proxy_lock() detected a
2163 * potential deadlock when we tried to queue
2164 * that waiter. Drop the pi_state reference
2165 * which we took above and remove the pointer
2166 * to the state from the waiters futex_q
2167 * object.
2168 */
52400ba9 2169 this->pi_state = NULL;
29e9ee5d 2170 put_pi_state(pi_state);
885c2cb7
TG
2171 /*
2172 * We stop queueing more waiters and let user
2173 * space deal with the mess.
2174 */
2175 break;
52400ba9 2176 }
1da177e4 2177 }
52400ba9 2178 requeue_futex(this, hb1, hb2, &key2);
1da177e4
LT
2179 }
2180
ecb38b78
TG
2181 /*
2182 * We took an extra initial reference to the pi_state either
2183 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2184 * need to drop it here again.
2185 */
29e9ee5d 2186 put_pi_state(pi_state);
885c2cb7
TG
2187
2188out_unlock:
5eb3dc62 2189 double_unlock_hb(hb1, hb2);
1d0dcb3a 2190 wake_up_q(&wake_q);
69cd9eba 2191 hb_waiters_dec(hb2);
52400ba9 2192 return ret ? ret : task_count;
1da177e4
LT
2193}
2194
2195/* The key must be already stored in q->key. */
82af7aca 2196static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 2197 __acquires(&hb->lock)
1da177e4 2198{
e2970f2f 2199 struct futex_hash_bucket *hb;
1da177e4 2200
e2970f2f 2201 hb = hash_futex(&q->key);
11d4616b
LT
2202
2203 /*
2204 * Increment the counter before taking the lock so that
2205 * a potential waker won't miss a to-be-slept task that is
2206 * waiting for the spinlock. This is safe as all queue_lock()
2207 * users end up calling queue_me(). Similarly, for housekeeping,
2208 * decrement the counter at queue_unlock() when some error has
2209 * occurred and we don't end up adding the task to the list.
2210 */
6f568ebe 2211 hb_waiters_inc(hb); /* implies smp_mb(); (A) */
11d4616b 2212
e2970f2f 2213 q->lock_ptr = &hb->lock;
1da177e4 2214
6f568ebe 2215 spin_lock(&hb->lock);
e2970f2f 2216 return hb;
1da177e4
LT
2217}
2218
d40d65c8 2219static inline void
0d00c7b2 2220queue_unlock(struct futex_hash_bucket *hb)
15e408cd 2221 __releases(&hb->lock)
d40d65c8
DH
2222{
2223 spin_unlock(&hb->lock);
11d4616b 2224 hb_waiters_dec(hb);
d40d65c8
DH
2225}
2226
cfafcd11 2227static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 2228{
ec92d082
PP
2229 int prio;
2230
2231 /*
2232 * The priority used to register this element is
2233 * - either the real thread-priority for the real-time threads
2234 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2235 * - or MAX_RT_PRIO for non-RT threads.
2236 * Thus, all RT-threads are woken first in priority order, and
2237 * the others are woken last, in FIFO order.
2238 */
2239 prio = min(current->normal_prio, MAX_RT_PRIO);
2240
2241 plist_node_init(&q->list, prio);
ec92d082 2242 plist_add(&q->list, &hb->chain);
c87e2837 2243 q->task = current;
cfafcd11
PZ
2244}
2245
2246/**
2247 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2248 * @q: The futex_q to enqueue
2249 * @hb: The destination hash bucket
2250 *
2251 * The hb->lock must be held by the caller, and is released here. A call to
2252 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2253 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2254 * or nothing if the unqueue is done as part of the wake process and the unqueue
2255 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2256 * an example).
2257 */
2258static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2259 __releases(&hb->lock)
2260{
2261 __queue_me(q, hb);
e2970f2f 2262 spin_unlock(&hb->lock);
1da177e4
LT
2263}
2264
d40d65c8
DH
2265/**
2266 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2267 * @q: The futex_q to unqueue
2268 *
2269 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2270 * be paired with exactly one earlier call to queue_me().
2271 *
6c23cbbd 2272 * Return:
7b4ff1ad
MCC
2273 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2274 * - 0 - if the futex_q was already removed by the waking thread
1da177e4 2275 */
1da177e4
LT
2276static int unqueue_me(struct futex_q *q)
2277{
1da177e4 2278 spinlock_t *lock_ptr;
e2970f2f 2279 int ret = 0;
1da177e4
LT
2280
2281 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 2282retry:
29b75eb2
JZ
2283 /*
2284 * q->lock_ptr can change between this read and the following spin_lock.
2285 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2286 * optimizing lock_ptr out of the logic below.
2287 */
2288 lock_ptr = READ_ONCE(q->lock_ptr);
c80544dc 2289 if (lock_ptr != NULL) {
1da177e4
LT
2290 spin_lock(lock_ptr);
2291 /*
2292 * q->lock_ptr can change between reading it and
2293 * spin_lock(), causing us to take the wrong lock. This
2294 * corrects the race condition.
2295 *
2296 * Reasoning goes like this: if we have the wrong lock,
2297 * q->lock_ptr must have changed (maybe several times)
2298 * between reading it and the spin_lock(). It can
2299 * change again after the spin_lock() but only if it was
2300 * already changed before the spin_lock(). It cannot,
2301 * however, change back to the original value. Therefore
2302 * we can detect whether we acquired the correct lock.
2303 */
2304 if (unlikely(lock_ptr != q->lock_ptr)) {
2305 spin_unlock(lock_ptr);
2306 goto retry;
2307 }
2e12978a 2308 __unqueue_futex(q);
c87e2837
IM
2309
2310 BUG_ON(q->pi_state);
2311
1da177e4
LT
2312 spin_unlock(lock_ptr);
2313 ret = 1;
2314 }
2315
1da177e4
LT
2316 return ret;
2317}
2318
c87e2837
IM
2319/*
2320 * PI futexes can not be requeued and must remove themself from the
a3f2428d 2321 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held.
c87e2837 2322 */
d0aa7a70 2323static void unqueue_me_pi(struct futex_q *q)
c87e2837 2324{
2e12978a 2325 __unqueue_futex(q);
c87e2837
IM
2326
2327 BUG_ON(!q->pi_state);
29e9ee5d 2328 put_pi_state(q->pi_state);
c87e2837 2329 q->pi_state = NULL;
c87e2837
IM
2330}
2331
f2dac39d
TG
2332static int __fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2333 struct task_struct *argowner)
d0aa7a70 2334{
d0aa7a70 2335 struct futex_pi_state *pi_state = q->pi_state;
c1e2f0ea 2336 struct task_struct *oldowner, *newowner;
f2dac39d
TG
2337 u32 uval, curval, newval, newtid;
2338 int err = 0;
734009e9
PZ
2339
2340 oldowner = pi_state->owner;
1b7558e4
TG
2341
2342 /*
c1e2f0ea 2343 * We are here because either:
16ffa12d 2344 *
c1e2f0ea
PZ
2345 * - we stole the lock and pi_state->owner needs updating to reflect
2346 * that (@argowner == current),
2347 *
2348 * or:
2349 *
2350 * - someone stole our lock and we need to fix things to point to the
2351 * new owner (@argowner == NULL).
2352 *
2353 * Either way, we have to replace the TID in the user space variable.
8161239a 2354 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 2355 *
b2d0994b
DH
2356 * Note: We write the user space value _before_ changing the pi_state
2357 * because we can fault here. Imagine swapped out pages or a fork
2358 * that marked all the anonymous memory readonly for cow.
1b7558e4 2359 *
734009e9
PZ
2360 * Modifying pi_state _before_ the user space value would leave the
2361 * pi_state in an inconsistent state when we fault here, because we
2362 * need to drop the locks to handle the fault. This might be observed
2363 * in the PID check in lookup_pi_state.
1b7558e4
TG
2364 */
2365retry:
c1e2f0ea
PZ
2366 if (!argowner) {
2367 if (oldowner != current) {
2368 /*
2369 * We raced against a concurrent self; things are
2370 * already fixed up. Nothing to do.
2371 */
f2dac39d 2372 return 0;
c1e2f0ea
PZ
2373 }
2374
2375 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
12bb3f7f 2376 /* We got the lock. pi_state is correct. Tell caller. */
f2dac39d 2377 return 1;
c1e2f0ea
PZ
2378 }
2379
2380 /*
9f5d1c33
MG
2381 * The trylock just failed, so either there is an owner or
2382 * there is a higher priority waiter than this one.
c1e2f0ea
PZ
2383 */
2384 newowner = rt_mutex_owner(&pi_state->pi_mutex);
9f5d1c33
MG
2385 /*
2386 * If the higher priority waiter has not yet taken over the
2387 * rtmutex then newowner is NULL. We can't return here with
2388 * that state because it's inconsistent vs. the user space
2389 * state. So drop the locks and try again. It's a valid
2390 * situation and not any different from the other retry
2391 * conditions.
2392 */
2393 if (unlikely(!newowner)) {
2394 err = -EAGAIN;
2395 goto handle_err;
2396 }
c1e2f0ea
PZ
2397 } else {
2398 WARN_ON_ONCE(argowner != current);
2399 if (oldowner == current) {
2400 /*
2401 * We raced against a concurrent self; things are
2402 * already fixed up. Nothing to do.
2403 */
f2dac39d 2404 return 1;
c1e2f0ea
PZ
2405 }
2406 newowner = argowner;
2407 }
2408
2409 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
a97cb0e7
PZ
2410 /* Owner died? */
2411 if (!pi_state->owner)
2412 newtid |= FUTEX_OWNER_DIED;
c1e2f0ea 2413
6b4f4bc9
WD
2414 err = get_futex_value_locked(&uval, uaddr);
2415 if (err)
2416 goto handle_err;
1b7558e4 2417
16ffa12d 2418 for (;;) {
1b7558e4
TG
2419 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2420
6b4f4bc9
WD
2421 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2422 if (err)
2423 goto handle_err;
2424
1b7558e4
TG
2425 if (curval == uval)
2426 break;
2427 uval = curval;
2428 }
2429
2430 /*
2431 * We fixed up user space. Now we need to fix the pi_state
2432 * itself.
2433 */
c5cade20 2434 pi_state_update_owner(pi_state, newowner);
d0aa7a70 2435
12bb3f7f 2436 return argowner == current;
d0aa7a70 2437
d0aa7a70 2438 /*
6b4f4bc9
WD
2439 * In order to reschedule or handle a page fault, we need to drop the
2440 * locks here. In the case of a fault, this gives the other task
2441 * (either the highest priority waiter itself or the task which stole
2442 * the rtmutex) the chance to try the fixup of the pi_state. So once we
2443 * are back from handling the fault we need to check the pi_state after
2444 * reacquiring the locks and before trying to do another fixup. When
2445 * the fixup has been done already we simply return.
734009e9
PZ
2446 *
2447 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2448 * drop hb->lock since the caller owns the hb -> futex_q relation.
2449 * Dropping the pi_mutex->wait_lock requires the state revalidate.
d0aa7a70 2450 */
6b4f4bc9 2451handle_err:
734009e9 2452 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1b7558e4 2453 spin_unlock(q->lock_ptr);
778e9a9c 2454
6b4f4bc9
WD
2455 switch (err) {
2456 case -EFAULT:
f2dac39d 2457 err = fault_in_user_writeable(uaddr);
6b4f4bc9
WD
2458 break;
2459
2460 case -EAGAIN:
2461 cond_resched();
f2dac39d 2462 err = 0;
6b4f4bc9
WD
2463 break;
2464
2465 default:
2466 WARN_ON_ONCE(1);
6b4f4bc9
WD
2467 break;
2468 }
778e9a9c 2469
1b7558e4 2470 spin_lock(q->lock_ptr);
734009e9 2471 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
778e9a9c 2472
1b7558e4
TG
2473 /*
2474 * Check if someone else fixed it for us:
2475 */
f2dac39d
TG
2476 if (pi_state->owner != oldowner)
2477 return argowner == current;
1b7558e4 2478
f2dac39d
TG
2479 /* Retry if err was -EAGAIN or the fault in succeeded */
2480 if (!err)
2481 goto retry;
1b7558e4 2482
34b1a1ce
TG
2483 /*
2484 * fault_in_user_writeable() failed so user state is immutable. At
2485 * best we can make the kernel state consistent but user state will
2486 * be most likely hosed and any subsequent unlock operation will be
2487 * rejected due to PI futex rule [10].
2488 *
2489 * Ensure that the rtmutex owner is also the pi_state owner despite
2490 * the user space value claiming something different. There is no
2491 * point in unlocking the rtmutex if current is the owner as it
2492 * would need to wait until the next waiter has taken the rtmutex
2493 * to guarantee consistent state. Keep it simple. Userspace asked
2494 * for this wreckaged state.
2495 *
2496 * The rtmutex has an owner - either current or some other
2497 * task. See the EAGAIN loop above.
2498 */
2499 pi_state_update_owner(pi_state, rt_mutex_owner(&pi_state->pi_mutex));
734009e9 2500
f2dac39d
TG
2501 return err;
2502}
734009e9 2503
f2dac39d
TG
2504static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2505 struct task_struct *argowner)
2506{
2507 struct futex_pi_state *pi_state = q->pi_state;
2508 int ret;
2509
2510 lockdep_assert_held(q->lock_ptr);
2511
2512 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2513 ret = __fixup_pi_state_owner(uaddr, q, argowner);
734009e9
PZ
2514 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2515 return ret;
d0aa7a70
PP
2516}
2517
72c1bbf3 2518static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 2519
dd973998
DH
2520/**
2521 * fixup_owner() - Post lock pi_state and corner case management
2522 * @uaddr: user address of the futex
dd973998
DH
2523 * @q: futex_q (contains pi_state and access to the rt_mutex)
2524 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2525 *
2526 * After attempting to lock an rt_mutex, this function is called to cleanup
2527 * the pi_state owner as well as handle race conditions that may allow us to
2528 * acquire the lock. Must be called with the hb lock held.
2529 *
6c23cbbd 2530 * Return:
7b4ff1ad
MCC
2531 * - 1 - success, lock taken;
2532 * - 0 - success, lock not taken;
2533 * - <0 - on error (-EFAULT)
dd973998 2534 */
ae791a2d 2535static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998 2536{
dd973998
DH
2537 if (locked) {
2538 /*
2539 * Got the lock. We might not be the anticipated owner if we
2540 * did a lock-steal - fix up the PI-state in that case:
16ffa12d 2541 *
c1e2f0ea
PZ
2542 * Speculative pi_state->owner read (we don't hold wait_lock);
2543 * since we own the lock pi_state->owner == current is the
2544 * stable state, anything else needs more attention.
dd973998
DH
2545 */
2546 if (q->pi_state->owner != current)
12bb3f7f
TG
2547 return fixup_pi_state_owner(uaddr, q, current);
2548 return 1;
dd973998
DH
2549 }
2550
c1e2f0ea
PZ
2551 /*
2552 * If we didn't get the lock; check if anybody stole it from us. In
2553 * that case, we need to fix up the uval to point to them instead of
2554 * us, otherwise bad things happen. [10]
2555 *
2556 * Another speculative read; pi_state->owner == current is unstable
2557 * but needs our attention.
2558 */
12bb3f7f
TG
2559 if (q->pi_state->owner == current)
2560 return fixup_pi_state_owner(uaddr, q, NULL);
c1e2f0ea 2561
dd973998
DH
2562 /*
2563 * Paranoia check. If we did not take the lock, then we should not be
04b79c55 2564 * the owner of the rt_mutex. Warn and establish consistent state.
dd973998 2565 */
04b79c55
TG
2566 if (WARN_ON_ONCE(rt_mutex_owner(&q->pi_state->pi_mutex) == current))
2567 return fixup_pi_state_owner(uaddr, q, current);
dd973998 2568
12bb3f7f 2569 return 0;
dd973998
DH
2570}
2571
ca5f9524
DH
2572/**
2573 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2574 * @hb: the futex hash bucket, must be locked by the caller
2575 * @q: the futex_q to queue up on
2576 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
2577 */
2578static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 2579 struct hrtimer_sleeper *timeout)
ca5f9524 2580{
9beba3c5
DH
2581 /*
2582 * The task state is guaranteed to be set before another task can
b92b8b35 2583 * wake it. set_current_state() is implemented using smp_store_mb() and
9beba3c5
DH
2584 * queue_me() calls spin_unlock() upon completion, both serializing
2585 * access to the hash list and forcing another memory barrier.
2586 */
f1a11e05 2587 set_current_state(TASK_INTERRUPTIBLE);
0729e196 2588 queue_me(q, hb);
ca5f9524
DH
2589
2590 /* Arm the timer */
2e4b0d3f 2591 if (timeout)
9dd8813e 2592 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
ca5f9524
DH
2593
2594 /*
0729e196
DH
2595 * If we have been removed from the hash list, then another task
2596 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
2597 */
2598 if (likely(!plist_node_empty(&q->list))) {
2599 /*
2600 * If the timer has already expired, current will already be
2601 * flagged for rescheduling. Only call schedule if there
2602 * is no timeout, or if it has yet to expire.
2603 */
2604 if (!timeout || timeout->task)
88c8004f 2605 freezable_schedule();
ca5f9524
DH
2606 }
2607 __set_current_state(TASK_RUNNING);
2608}
2609
f801073f
DH
2610/**
2611 * futex_wait_setup() - Prepare to wait on a futex
2612 * @uaddr: the futex userspace address
2613 * @val: the expected value
b41277dc 2614 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
2615 * @q: the associated futex_q
2616 * @hb: storage for hash_bucket pointer to be returned to caller
2617 *
2618 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2619 * compare it with the expected value. Handle atomic faults internally.
2620 * Return with the hb lock held and a q.key reference on success, and unlocked
2621 * with no q.key reference on failure.
2622 *
6c23cbbd 2623 * Return:
7b4ff1ad
MCC
2624 * - 0 - uaddr contains val and hb has been locked;
2625 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 2626 */
b41277dc 2627static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 2628 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 2629{
e2970f2f
IM
2630 u32 uval;
2631 int ret;
1da177e4 2632
1da177e4 2633 /*
b2d0994b 2634 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
2635 * Order is important:
2636 *
2637 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2638 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2639 *
2640 * The basic logical guarantee of a futex is that it blocks ONLY
2641 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
2642 * any cond. If we locked the hash-bucket after testing *uaddr, that
2643 * would open a race condition where we could block indefinitely with
1da177e4
LT
2644 * cond(var) false, which would violate the guarantee.
2645 *
8fe8f545
ML
2646 * On the other hand, we insert q and release the hash-bucket only
2647 * after testing *uaddr. This guarantees that futex_wait() will NOT
2648 * absorb a wakeup if *uaddr does not match the desired values
2649 * while the syscall executes.
1da177e4 2650 */
f801073f 2651retry:
96d4f267 2652 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
f801073f 2653 if (unlikely(ret != 0))
a5a2a0c7 2654 return ret;
f801073f
DH
2655
2656retry_private:
2657 *hb = queue_lock(q);
2658
e2970f2f 2659 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 2660
f801073f 2661 if (ret) {
0d00c7b2 2662 queue_unlock(*hb);
1da177e4 2663
e2970f2f 2664 ret = get_user(uval, uaddr);
e4dc5b7a 2665 if (ret)
d7c5ed73 2666 return ret;
1da177e4 2667
b41277dc 2668 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2669 goto retry_private;
2670
e4dc5b7a 2671 goto retry;
1da177e4 2672 }
ca5f9524 2673
f801073f 2674 if (uval != val) {
0d00c7b2 2675 queue_unlock(*hb);
f801073f 2676 ret = -EWOULDBLOCK;
2fff78c7 2677 }
1da177e4 2678
f801073f
DH
2679 return ret;
2680}
2681
b41277dc
DH
2682static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2683 ktime_t *abs_time, u32 bitset)
f801073f 2684{
5ca584d9 2685 struct hrtimer_sleeper timeout, *to;
f801073f
DH
2686 struct restart_block *restart;
2687 struct futex_hash_bucket *hb;
5bdb05f9 2688 struct futex_q q = futex_q_init;
f801073f
DH
2689 int ret;
2690
2691 if (!bitset)
2692 return -EINVAL;
f801073f
DH
2693 q.bitset = bitset;
2694
5ca584d9
WL
2695 to = futex_setup_timer(abs_time, &timeout, flags,
2696 current->timer_slack_ns);
d58e6576 2697retry:
7ada876a
DH
2698 /*
2699 * Prepare to wait on uaddr. On success, holds hb lock and increments
2700 * q.key refs.
2701 */
b41277dc 2702 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
2703 if (ret)
2704 goto out;
2705
ca5f9524 2706 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 2707 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
2708
2709 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 2710 ret = 0;
7ada876a 2711 /* unqueue_me() drops q.key ref */
1da177e4 2712 if (!unqueue_me(&q))
7ada876a 2713 goto out;
2fff78c7 2714 ret = -ETIMEDOUT;
ca5f9524 2715 if (to && !to->task)
7ada876a 2716 goto out;
72c1bbf3 2717
e2970f2f 2718 /*
d58e6576
TG
2719 * We expect signal_pending(current), but we might be the
2720 * victim of a spurious wakeup as well.
e2970f2f 2721 */
7ada876a 2722 if (!signal_pending(current))
d58e6576 2723 goto retry;
d58e6576 2724
2fff78c7 2725 ret = -ERESTARTSYS;
c19384b5 2726 if (!abs_time)
7ada876a 2727 goto out;
1da177e4 2728
f56141e3 2729 restart = &current->restart_block;
a3c74c52 2730 restart->futex.uaddr = uaddr;
2fff78c7 2731 restart->futex.val = val;
2456e855 2732 restart->futex.time = *abs_time;
2fff78c7 2733 restart->futex.bitset = bitset;
0cd9c649 2734 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2735
5abbe51a 2736 ret = set_restart_fn(restart, futex_wait_restart);
2fff78c7 2737
42d35d48 2738out:
ca5f9524
DH
2739 if (to) {
2740 hrtimer_cancel(&to->timer);
2741 destroy_hrtimer_on_stack(&to->timer);
2742 }
c87e2837
IM
2743 return ret;
2744}
2745
72c1bbf3
NP
2746
2747static long futex_wait_restart(struct restart_block *restart)
2748{
a3c74c52 2749 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2750 ktime_t t, *tp = NULL;
72c1bbf3 2751
a72188d8 2752 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2456e855 2753 t = restart->futex.time;
a72188d8
DH
2754 tp = &t;
2755 }
72c1bbf3 2756 restart->fn = do_no_restart_syscall;
b41277dc
DH
2757
2758 return (long)futex_wait(uaddr, restart->futex.flags,
2759 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2760}
2761
2762
c87e2837
IM
2763/*
2764 * Userspace tried a 0 -> TID atomic transition of the futex value
2765 * and failed. The kernel side here does the whole locking operation:
767f509c
DB
2766 * if there are waiters then it will block as a consequence of relying
2767 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2768 * a 0 value of the futex too.).
2769 *
2770 * Also serves as futex trylock_pi()'ing, and due semantics.
c87e2837 2771 */
996636dd 2772static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
b41277dc 2773 ktime_t *time, int trylock)
c87e2837 2774{
5ca584d9 2775 struct hrtimer_sleeper timeout, *to;
3ef240ea 2776 struct task_struct *exiting = NULL;
cfafcd11 2777 struct rt_mutex_waiter rt_waiter;
c87e2837 2778 struct futex_hash_bucket *hb;
5bdb05f9 2779 struct futex_q q = futex_q_init;
dd973998 2780 int res, ret;
c87e2837 2781
bc2eecd7
NP
2782 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2783 return -ENOSYS;
2784
c87e2837
IM
2785 if (refill_pi_state_cache())
2786 return -ENOMEM;
2787
5ca584d9 2788 to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
c5780e97 2789
42d35d48 2790retry:
96d4f267 2791 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
c87e2837 2792 if (unlikely(ret != 0))
42d35d48 2793 goto out;
c87e2837 2794
e4dc5b7a 2795retry_private:
82af7aca 2796 hb = queue_lock(&q);
c87e2837 2797
3ef240ea
TG
2798 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2799 &exiting, 0);
c87e2837 2800 if (unlikely(ret)) {
767f509c
DB
2801 /*
2802 * Atomic work succeeded and we got the lock,
2803 * or failed. Either way, we do _not_ block.
2804 */
778e9a9c 2805 switch (ret) {
1a52084d
DH
2806 case 1:
2807 /* We got the lock. */
2808 ret = 0;
2809 goto out_unlock_put_key;
2810 case -EFAULT:
2811 goto uaddr_faulted;
ac31c7ff 2812 case -EBUSY:
778e9a9c
AK
2813 case -EAGAIN:
2814 /*
af54d6a1 2815 * Two reasons for this:
ac31c7ff 2816 * - EBUSY: Task is exiting and we just wait for the
af54d6a1 2817 * exit to complete.
ac31c7ff 2818 * - EAGAIN: The user space value changed.
778e9a9c 2819 */
0d00c7b2 2820 queue_unlock(hb);
3ef240ea
TG
2821 /*
2822 * Handle the case where the owner is in the middle of
2823 * exiting. Wait for the exit to complete otherwise
2824 * this task might loop forever, aka. live lock.
2825 */
2826 wait_for_owner_exiting(ret, exiting);
778e9a9c
AK
2827 cond_resched();
2828 goto retry;
778e9a9c 2829 default:
42d35d48 2830 goto out_unlock_put_key;
c87e2837 2831 }
c87e2837
IM
2832 }
2833
cfafcd11
PZ
2834 WARN_ON(!q.pi_state);
2835
c87e2837
IM
2836 /*
2837 * Only actually queue now that the atomic ops are done:
2838 */
cfafcd11 2839 __queue_me(&q, hb);
c87e2837 2840
cfafcd11 2841 if (trylock) {
5293c2ef 2842 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
c87e2837
IM
2843 /* Fixup the trylock return value: */
2844 ret = ret ? 0 : -EWOULDBLOCK;
cfafcd11 2845 goto no_block;
c87e2837
IM
2846 }
2847
56222b21
PZ
2848 rt_mutex_init_waiter(&rt_waiter);
2849
cfafcd11 2850 /*
56222b21
PZ
2851 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2852 * hold it while doing rt_mutex_start_proxy(), because then it will
2853 * include hb->lock in the blocking chain, even through we'll not in
2854 * fact hold it while blocking. This will lead it to report -EDEADLK
2855 * and BUG when futex_unlock_pi() interleaves with this.
2856 *
2857 * Therefore acquire wait_lock while holding hb->lock, but drop the
1a1fb985
TG
2858 * latter before calling __rt_mutex_start_proxy_lock(). This
2859 * interleaves with futex_unlock_pi() -- which does a similar lock
2860 * handoff -- such that the latter can observe the futex_q::pi_state
2861 * before __rt_mutex_start_proxy_lock() is done.
cfafcd11 2862 */
56222b21
PZ
2863 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2864 spin_unlock(q.lock_ptr);
1a1fb985
TG
2865 /*
2866 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2867 * such that futex_unlock_pi() is guaranteed to observe the waiter when
2868 * it sees the futex_q::pi_state.
2869 */
56222b21
PZ
2870 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2871 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2872
cfafcd11
PZ
2873 if (ret) {
2874 if (ret == 1)
2875 ret = 0;
1a1fb985 2876 goto cleanup;
cfafcd11
PZ
2877 }
2878
cfafcd11 2879 if (unlikely(to))
9dd8813e 2880 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
cfafcd11
PZ
2881
2882 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2883
1a1fb985 2884cleanup:
a99e4e41 2885 spin_lock(q.lock_ptr);
cfafcd11 2886 /*
1a1fb985 2887 * If we failed to acquire the lock (deadlock/signal/timeout), we must
cfafcd11 2888 * first acquire the hb->lock before removing the lock from the
1a1fb985
TG
2889 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2890 * lists consistent.
56222b21
PZ
2891 *
2892 * In particular; it is important that futex_unlock_pi() can not
2893 * observe this inconsistency.
cfafcd11
PZ
2894 */
2895 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2896 ret = 0;
2897
2898no_block:
dd973998
DH
2899 /*
2900 * Fixup the pi_state owner and possibly acquire the lock if we
2901 * haven't already.
2902 */
ae791a2d 2903 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2904 /*
2905 * If fixup_owner() returned an error, proprogate that. If it acquired
2906 * the lock, clear our -ETIMEDOUT or -EINTR.
2907 */
2908 if (res)
2909 ret = (res < 0) ? res : 0;
c87e2837 2910
778e9a9c 2911 unqueue_me_pi(&q);
a3f2428d 2912 spin_unlock(q.lock_ptr);
9180bd46 2913 goto out;
c87e2837 2914
42d35d48 2915out_unlock_put_key:
0d00c7b2 2916 queue_unlock(hb);
c87e2837 2917
42d35d48 2918out:
97181f9b
TG
2919 if (to) {
2920 hrtimer_cancel(&to->timer);
237fc6e7 2921 destroy_hrtimer_on_stack(&to->timer);
97181f9b 2922 }
dd973998 2923 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2924
42d35d48 2925uaddr_faulted:
0d00c7b2 2926 queue_unlock(hb);
778e9a9c 2927
d0725992 2928 ret = fault_in_user_writeable(uaddr);
e4dc5b7a 2929 if (ret)
9180bd46 2930 goto out;
c87e2837 2931
b41277dc 2932 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2933 goto retry_private;
2934
e4dc5b7a 2935 goto retry;
c87e2837
IM
2936}
2937
c87e2837
IM
2938/*
2939 * Userspace attempted a TID -> 0 atomic transition, and failed.
2940 * This is the in-kernel slowpath: we look up the PI state (if any),
2941 * and do the rt-mutex unlock.
2942 */
b41277dc 2943static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837 2944{
3f649ab7 2945 u32 curval, uval, vpid = task_pid_vnr(current);
38d47c1b 2946 union futex_key key = FUTEX_KEY_INIT;
ccf9e6a8 2947 struct futex_hash_bucket *hb;
499f5aca 2948 struct futex_q *top_waiter;
e4dc5b7a 2949 int ret;
c87e2837 2950
bc2eecd7
NP
2951 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2952 return -ENOSYS;
2953
c87e2837
IM
2954retry:
2955 if (get_user(uval, uaddr))
2956 return -EFAULT;
2957 /*
2958 * We release only a lock we actually own:
2959 */
c0c9ed15 2960 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2961 return -EPERM;
c87e2837 2962
96d4f267 2963 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
ccf9e6a8
TG
2964 if (ret)
2965 return ret;
c87e2837
IM
2966
2967 hb = hash_futex(&key);
2968 spin_lock(&hb->lock);
2969
c87e2837 2970 /*
ccf9e6a8
TG
2971 * Check waiters first. We do not trust user space values at
2972 * all and we at least want to know if user space fiddled
2973 * with the futex value instead of blindly unlocking.
c87e2837 2974 */
499f5aca
PZ
2975 top_waiter = futex_top_waiter(hb, &key);
2976 if (top_waiter) {
16ffa12d
PZ
2977 struct futex_pi_state *pi_state = top_waiter->pi_state;
2978
2979 ret = -EINVAL;
2980 if (!pi_state)
2981 goto out_unlock;
2982
2983 /*
2984 * If current does not own the pi_state then the futex is
2985 * inconsistent and user space fiddled with the futex value.
2986 */
2987 if (pi_state->owner != current)
2988 goto out_unlock;
2989
bebe5b51 2990 get_pi_state(pi_state);
802ab58d 2991 /*
bebe5b51
PZ
2992 * By taking wait_lock while still holding hb->lock, we ensure
2993 * there is no point where we hold neither; and therefore
2994 * wake_futex_pi() must observe a state consistent with what we
2995 * observed.
1a1fb985
TG
2996 *
2997 * In particular; this forces __rt_mutex_start_proxy() to
2998 * complete such that we're guaranteed to observe the
2999 * rt_waiter. Also see the WARN in wake_futex_pi().
16ffa12d 3000 */
bebe5b51 3001 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
16ffa12d
PZ
3002 spin_unlock(&hb->lock);
3003
c74aef2d 3004 /* drops pi_state->pi_mutex.wait_lock */
16ffa12d
PZ
3005 ret = wake_futex_pi(uaddr, uval, pi_state);
3006
3007 put_pi_state(pi_state);
3008
3009 /*
3010 * Success, we're done! No tricky corner cases.
802ab58d
SAS
3011 */
3012 if (!ret)
0f943850 3013 return ret;
c87e2837 3014 /*
ccf9e6a8
TG
3015 * The atomic access to the futex value generated a
3016 * pagefault, so retry the user-access and the wakeup:
c87e2837
IM
3017 */
3018 if (ret == -EFAULT)
3019 goto pi_faulted;
89e9e66b
SAS
3020 /*
3021 * A unconditional UNLOCK_PI op raced against a waiter
3022 * setting the FUTEX_WAITERS bit. Try again.
3023 */
6b4f4bc9
WD
3024 if (ret == -EAGAIN)
3025 goto pi_retry;
802ab58d
SAS
3026 /*
3027 * wake_futex_pi has detected invalid state. Tell user
3028 * space.
3029 */
0f943850 3030 return ret;
c87e2837 3031 }
ccf9e6a8 3032
c87e2837 3033 /*
ccf9e6a8
TG
3034 * We have no kernel internal state, i.e. no waiters in the
3035 * kernel. Waiters which are about to queue themselves are stuck
3036 * on hb->lock. So we can safely ignore them. We do neither
3037 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3038 * owner.
c87e2837 3039 */
6b4f4bc9 3040 if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
16ffa12d 3041 spin_unlock(&hb->lock);
6b4f4bc9
WD
3042 switch (ret) {
3043 case -EFAULT:
3044 goto pi_faulted;
3045
3046 case -EAGAIN:
3047 goto pi_retry;
3048
3049 default:
3050 WARN_ON_ONCE(1);
0f943850 3051 return ret;
6b4f4bc9 3052 }
16ffa12d 3053 }
c87e2837 3054
ccf9e6a8
TG
3055 /*
3056 * If uval has changed, let user space handle it.
3057 */
3058 ret = (curval == uval) ? 0 : -EAGAIN;
3059
c87e2837
IM
3060out_unlock:
3061 spin_unlock(&hb->lock);
c87e2837
IM
3062 return ret;
3063
6b4f4bc9 3064pi_retry:
6b4f4bc9
WD
3065 cond_resched();
3066 goto retry;
3067
c87e2837 3068pi_faulted:
c87e2837 3069
d0725992 3070 ret = fault_in_user_writeable(uaddr);
b5686363 3071 if (!ret)
c87e2837
IM
3072 goto retry;
3073
1da177e4
LT
3074 return ret;
3075}
3076
52400ba9
DH
3077/**
3078 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3079 * @hb: the hash_bucket futex_q was original enqueued on
3080 * @q: the futex_q woken while waiting to be requeued
3081 * @key2: the futex_key of the requeue target futex
3082 * @timeout: the timeout associated with the wait (NULL if none)
3083 *
3084 * Detect if the task was woken on the initial futex as opposed to the requeue
3085 * target futex. If so, determine if it was a timeout or a signal that caused
3086 * the wakeup and return the appropriate error code to the caller. Must be
3087 * called with the hb lock held.
3088 *
6c23cbbd 3089 * Return:
7b4ff1ad
MCC
3090 * - 0 = no early wakeup detected;
3091 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
3092 */
3093static inline
3094int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3095 struct futex_q *q, union futex_key *key2,
3096 struct hrtimer_sleeper *timeout)
3097{
3098 int ret = 0;
3099
3100 /*
3101 * With the hb lock held, we avoid races while we process the wakeup.
3102 * We only need to hold hb (and not hb2) to ensure atomicity as the
3103 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3104 * It can't be requeued from uaddr2 to something else since we don't
3105 * support a PI aware source futex for requeue.
3106 */
3107 if (!match_futex(&q->key, key2)) {
3108 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3109 /*
3110 * We were woken prior to requeue by a timeout or a signal.
3111 * Unqueue the futex_q and determine which it was.
3112 */
2e12978a 3113 plist_del(&q->list, &hb->chain);
11d4616b 3114 hb_waiters_dec(hb);
52400ba9 3115
d58e6576 3116 /* Handle spurious wakeups gracefully */
11df6ddd 3117 ret = -EWOULDBLOCK;
52400ba9
DH
3118 if (timeout && !timeout->task)
3119 ret = -ETIMEDOUT;
d58e6576 3120 else if (signal_pending(current))
1c840c14 3121 ret = -ERESTARTNOINTR;
52400ba9
DH
3122 }
3123 return ret;
3124}
3125
3126/**
3127 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 3128 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 3129 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
ab51fbab 3130 * the same type, no requeueing from private to shared, etc.
52400ba9
DH
3131 * @val: the expected value of uaddr
3132 * @abs_time: absolute timeout
56ec1607 3133 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
3134 * @uaddr2: the pi futex we will take prior to returning to user-space
3135 *
3136 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
3137 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3138 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3139 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3140 * without one, the pi logic would not know which task to boost/deboost, if
3141 * there was a need to.
52400ba9
DH
3142 *
3143 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 3144 * via the following--
52400ba9 3145 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
3146 * 2) wakeup on uaddr2 after a requeue
3147 * 3) signal
3148 * 4) timeout
52400ba9 3149 *
cc6db4e6 3150 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
3151 *
3152 * If 2, we may then block on trying to take the rt_mutex and return via:
3153 * 5) successful lock
3154 * 6) signal
3155 * 7) timeout
3156 * 8) other lock acquisition failure
3157 *
cc6db4e6 3158 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
3159 *
3160 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3161 *
6c23cbbd 3162 * Return:
7b4ff1ad
MCC
3163 * - 0 - On success;
3164 * - <0 - On error
52400ba9 3165 */
b41277dc 3166static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 3167 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 3168 u32 __user *uaddr2)
52400ba9 3169{
5ca584d9 3170 struct hrtimer_sleeper timeout, *to;
52400ba9 3171 struct rt_mutex_waiter rt_waiter;
52400ba9 3172 struct futex_hash_bucket *hb;
5bdb05f9
DH
3173 union futex_key key2 = FUTEX_KEY_INIT;
3174 struct futex_q q = futex_q_init;
52400ba9 3175 int res, ret;
52400ba9 3176
bc2eecd7
NP
3177 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3178 return -ENOSYS;
3179
6f7b0a2a
DH
3180 if (uaddr == uaddr2)
3181 return -EINVAL;
3182
52400ba9
DH
3183 if (!bitset)
3184 return -EINVAL;
3185
5ca584d9
WL
3186 to = futex_setup_timer(abs_time, &timeout, flags,
3187 current->timer_slack_ns);
52400ba9
DH
3188
3189 /*
3190 * The waiter is allocated on our stack, manipulated by the requeue
3191 * code while we sleep on uaddr.
3192 */
50809358 3193 rt_mutex_init_waiter(&rt_waiter);
52400ba9 3194
96d4f267 3195 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
52400ba9
DH
3196 if (unlikely(ret != 0))
3197 goto out;
3198
84bc4af5
DH
3199 q.bitset = bitset;
3200 q.rt_waiter = &rt_waiter;
3201 q.requeue_pi_key = &key2;
3202
7ada876a
DH
3203 /*
3204 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3205 * count.
3206 */
b41277dc 3207 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70 3208 if (ret)
9180bd46 3209 goto out;
52400ba9 3210
e9c243a5
TG
3211 /*
3212 * The check above which compares uaddrs is not sufficient for
3213 * shared futexes. We need to compare the keys:
3214 */
3215 if (match_futex(&q.key, &key2)) {
13c42c2f 3216 queue_unlock(hb);
e9c243a5 3217 ret = -EINVAL;
9180bd46 3218 goto out;
e9c243a5
TG
3219 }
3220
52400ba9 3221 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 3222 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
3223
3224 spin_lock(&hb->lock);
3225 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3226 spin_unlock(&hb->lock);
3227 if (ret)
9180bd46 3228 goto out;
52400ba9
DH
3229
3230 /*
3231 * In order for us to be here, we know our q.key == key2, and since
3232 * we took the hb->lock above, we also know that futex_requeue() has
3233 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
3234 * race with the atomic proxy lock acquisition by the requeue code. The
3235 * futex_requeue dropped our key1 reference and incremented our key2
3236 * reference count.
52400ba9
DH
3237 */
3238
a1565aa4
DB
3239 /*
3240 * Check if the requeue code acquired the second futex for us and do
3241 * any pertinent fixup.
3242 */
52400ba9 3243 if (!q.rt_waiter) {
52400ba9
DH
3244 if (q.pi_state && (q.pi_state->owner != current)) {
3245 spin_lock(q.lock_ptr);
a1565aa4 3246 ret = fixup_owner(uaddr2, &q, true);
fb75a428
TG
3247 /*
3248 * Drop the reference to the pi state which
3249 * the requeue_pi() code acquired for us.
3250 */
29e9ee5d 3251 put_pi_state(q.pi_state);
52400ba9 3252 spin_unlock(q.lock_ptr);
12bb3f7f
TG
3253 /*
3254 * Adjust the return value. It's either -EFAULT or
3255 * success (1) but the caller expects 0 for success.
3256 */
3257 ret = ret < 0 ? ret : 0;
52400ba9
DH
3258 }
3259 } else {
c236c8e9
PZ
3260 struct rt_mutex *pi_mutex;
3261
52400ba9
DH
3262 /*
3263 * We have been woken up by futex_unlock_pi(), a timeout, or a
3264 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3265 * the pi_state.
3266 */
f27071cb 3267 WARN_ON(!q.pi_state);
52400ba9 3268 pi_mutex = &q.pi_state->pi_mutex;
38d589f2 3269 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
52400ba9
DH
3270
3271 spin_lock(q.lock_ptr);
38d589f2
PZ
3272 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3273 ret = 0;
3274
3275 debug_rt_mutex_free_waiter(&rt_waiter);
52400ba9
DH
3276 /*
3277 * Fixup the pi_state owner and possibly acquire the lock if we
3278 * haven't already.
3279 */
ae791a2d 3280 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
3281 /*
3282 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 3283 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
3284 */
3285 if (res)
3286 ret = (res < 0) ? res : 0;
3287
52400ba9 3288 unqueue_me_pi(&q);
a3f2428d 3289 spin_unlock(q.lock_ptr);
52400ba9
DH
3290 }
3291
c236c8e9 3292 if (ret == -EINTR) {
52400ba9 3293 /*
cc6db4e6
DH
3294 * We've already been requeued, but cannot restart by calling
3295 * futex_lock_pi() directly. We could restart this syscall, but
3296 * it would detect that the user space "val" changed and return
3297 * -EWOULDBLOCK. Save the overhead of the restart and return
3298 * -EWOULDBLOCK directly.
52400ba9 3299 */
2070887f 3300 ret = -EWOULDBLOCK;
52400ba9
DH
3301 }
3302
52400ba9
DH
3303out:
3304 if (to) {
3305 hrtimer_cancel(&to->timer);
3306 destroy_hrtimer_on_stack(&to->timer);
3307 }
3308 return ret;
3309}
3310
0771dfef
IM
3311/*
3312 * Support for robust futexes: the kernel cleans up held futexes at
3313 * thread exit time.
3314 *
3315 * Implementation: user-space maintains a per-thread list of locks it
3316 * is holding. Upon do_exit(), the kernel carefully walks this list,
3317 * and marks all locks that are owned by this thread with the
c87e2837 3318 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
3319 * always manipulated with the lock held, so the list is private and
3320 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3321 * field, to allow the kernel to clean up if the thread dies after
3322 * acquiring the lock, but just before it could have added itself to
3323 * the list. There can only be one such pending lock.
3324 */
3325
3326/**
d96ee56c
DH
3327 * sys_set_robust_list() - Set the robust-futex list head of a task
3328 * @head: pointer to the list-head
3329 * @len: length of the list-head, as userspace expects
0771dfef 3330 */
836f92ad
HC
3331SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3332 size_t, len)
0771dfef 3333{
a0c1e907
TG
3334 if (!futex_cmpxchg_enabled)
3335 return -ENOSYS;
0771dfef
IM
3336 /*
3337 * The kernel knows only one size for now:
3338 */
3339 if (unlikely(len != sizeof(*head)))
3340 return -EINVAL;
3341
3342 current->robust_list = head;
3343
3344 return 0;
3345}
3346
3347/**
d96ee56c
DH
3348 * sys_get_robust_list() - Get the robust-futex list head of a task
3349 * @pid: pid of the process [zero for current task]
3350 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3351 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 3352 */
836f92ad
HC
3353SYSCALL_DEFINE3(get_robust_list, int, pid,
3354 struct robust_list_head __user * __user *, head_ptr,
3355 size_t __user *, len_ptr)
0771dfef 3356{
ba46df98 3357 struct robust_list_head __user *head;
0771dfef 3358 unsigned long ret;
bdbb776f 3359 struct task_struct *p;
0771dfef 3360
a0c1e907
TG
3361 if (!futex_cmpxchg_enabled)
3362 return -ENOSYS;
3363
bdbb776f
KC
3364 rcu_read_lock();
3365
3366 ret = -ESRCH;
0771dfef 3367 if (!pid)
bdbb776f 3368 p = current;
0771dfef 3369 else {
228ebcbe 3370 p = find_task_by_vpid(pid);
0771dfef
IM
3371 if (!p)
3372 goto err_unlock;
0771dfef
IM
3373 }
3374
bdbb776f 3375 ret = -EPERM;
caaee623 3376 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
bdbb776f
KC
3377 goto err_unlock;
3378
3379 head = p->robust_list;
3380 rcu_read_unlock();
3381
0771dfef
IM
3382 if (put_user(sizeof(*head), len_ptr))
3383 return -EFAULT;
3384 return put_user(head, head_ptr);
3385
3386err_unlock:
aaa2a97e 3387 rcu_read_unlock();
0771dfef
IM
3388
3389 return ret;
3390}
3391
ca16d5be
YT
3392/* Constants for the pending_op argument of handle_futex_death */
3393#define HANDLE_DEATH_PENDING true
3394#define HANDLE_DEATH_LIST false
3395
0771dfef
IM
3396/*
3397 * Process a futex-list entry, check whether it's owned by the
3398 * dying task, and do notification if so:
3399 */
ca16d5be
YT
3400static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3401 bool pi, bool pending_op)
0771dfef 3402{
3f649ab7 3403 u32 uval, nval, mval;
6b4f4bc9 3404 int err;
0771dfef 3405
5a07168d
CJ
3406 /* Futex address must be 32bit aligned */
3407 if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3408 return -1;
3409
8f17d3a5
IM
3410retry:
3411 if (get_user(uval, uaddr))
0771dfef
IM
3412 return -1;
3413
ca16d5be
YT
3414 /*
3415 * Special case for regular (non PI) futexes. The unlock path in
3416 * user space has two race scenarios:
3417 *
3418 * 1. The unlock path releases the user space futex value and
3419 * before it can execute the futex() syscall to wake up
3420 * waiters it is killed.
3421 *
3422 * 2. A woken up waiter is killed before it can acquire the
3423 * futex in user space.
3424 *
3425 * In both cases the TID validation below prevents a wakeup of
3426 * potential waiters which can cause these waiters to block
3427 * forever.
3428 *
3429 * In both cases the following conditions are met:
3430 *
3431 * 1) task->robust_list->list_op_pending != NULL
3432 * @pending_op == true
3433 * 2) User space futex value == 0
3434 * 3) Regular futex: @pi == false
3435 *
3436 * If these conditions are met, it is safe to attempt waking up a
3437 * potential waiter without touching the user space futex value and
3438 * trying to set the OWNER_DIED bit. The user space futex value is
3439 * uncontended and the rest of the user space mutex state is
3440 * consistent, so a woken waiter will just take over the
3441 * uncontended futex. Setting the OWNER_DIED bit would create
3442 * inconsistent state and malfunction of the user space owner died
3443 * handling.
3444 */
3445 if (pending_op && !pi && !uval) {
3446 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3447 return 0;
3448 }
3449
6b4f4bc9
WD
3450 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3451 return 0;
3452
3453 /*
3454 * Ok, this dying thread is truly holding a futex
3455 * of interest. Set the OWNER_DIED bit atomically
3456 * via cmpxchg, and if the value had FUTEX_WAITERS
3457 * set, wake up a waiter (if any). (We have to do a
3458 * futex_wake() even if OWNER_DIED is already set -
3459 * to handle the rare but possible case of recursive
3460 * thread-death.) The rest of the cleanup is done in
3461 * userspace.
3462 */
3463 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3464
3465 /*
3466 * We are not holding a lock here, but we want to have
3467 * the pagefault_disable/enable() protection because
3468 * we want to handle the fault gracefully. If the
3469 * access fails we try to fault in the futex with R/W
3470 * verification via get_user_pages. get_user() above
3471 * does not guarantee R/W access. If that fails we
3472 * give up and leave the futex locked.
3473 */
3474 if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3475 switch (err) {
3476 case -EFAULT:
6e0aa9f8
TG
3477 if (fault_in_user_writeable(uaddr))
3478 return -1;
3479 goto retry;
6b4f4bc9
WD
3480
3481 case -EAGAIN:
3482 cond_resched();
8f17d3a5 3483 goto retry;
0771dfef 3484
6b4f4bc9
WD
3485 default:
3486 WARN_ON_ONCE(1);
3487 return err;
3488 }
0771dfef 3489 }
6b4f4bc9
WD
3490
3491 if (nval != uval)
3492 goto retry;
3493
3494 /*
3495 * Wake robust non-PI futexes here. The wakeup of
3496 * PI futexes happens in exit_pi_state():
3497 */
3498 if (!pi && (uval & FUTEX_WAITERS))
3499 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3500
0771dfef
IM
3501 return 0;
3502}
3503
e3f2ddea
IM
3504/*
3505 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3506 */
3507static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 3508 struct robust_list __user * __user *head,
1dcc41bb 3509 unsigned int *pi)
e3f2ddea
IM
3510{
3511 unsigned long uentry;
3512
ba46df98 3513 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
3514 return -EFAULT;
3515
ba46df98 3516 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
3517 *pi = uentry & 1;
3518
3519 return 0;
3520}
3521
0771dfef
IM
3522/*
3523 * Walk curr->robust_list (very carefully, it's a userspace list!)
3524 * and mark any locks found there dead, and notify any waiters.
3525 *
3526 * We silently return on any sign of list-walking problem.
3527 */
ba31c1a4 3528static void exit_robust_list(struct task_struct *curr)
0771dfef
IM
3529{
3530 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 3531 struct robust_list __user *entry, *next_entry, *pending;
4c115e95 3532 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3f649ab7 3533 unsigned int next_pi;
0771dfef 3534 unsigned long futex_offset;
9f96cb1e 3535 int rc;
0771dfef 3536
a0c1e907
TG
3537 if (!futex_cmpxchg_enabled)
3538 return;
3539
0771dfef
IM
3540 /*
3541 * Fetch the list head (which was registered earlier, via
3542 * sys_set_robust_list()):
3543 */
e3f2ddea 3544 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
3545 return;
3546 /*
3547 * Fetch the relative futex offset:
3548 */
3549 if (get_user(futex_offset, &head->futex_offset))
3550 return;
3551 /*
3552 * Fetch any possibly pending lock-add first, and handle it
3553 * if it exists:
3554 */
e3f2ddea 3555 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 3556 return;
e3f2ddea 3557
9f96cb1e 3558 next_entry = NULL; /* avoid warning with gcc */
0771dfef 3559 while (entry != &head->list) {
9f96cb1e
MS
3560 /*
3561 * Fetch the next entry in the list before calling
3562 * handle_futex_death:
3563 */
3564 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
3565 /*
3566 * A pending lock might already be on the list, so
c87e2837 3567 * don't process it twice:
0771dfef 3568 */
ca16d5be 3569 if (entry != pending) {
ba46df98 3570 if (handle_futex_death((void __user *)entry + futex_offset,
ca16d5be 3571 curr, pi, HANDLE_DEATH_LIST))
0771dfef 3572 return;
ca16d5be 3573 }
9f96cb1e 3574 if (rc)
0771dfef 3575 return;
9f96cb1e
MS
3576 entry = next_entry;
3577 pi = next_pi;
0771dfef
IM
3578 /*
3579 * Avoid excessively long or circular lists:
3580 */
3581 if (!--limit)
3582 break;
3583
3584 cond_resched();
3585 }
9f96cb1e 3586
ca16d5be 3587 if (pending) {
9f96cb1e 3588 handle_futex_death((void __user *)pending + futex_offset,
ca16d5be
YT
3589 curr, pip, HANDLE_DEATH_PENDING);
3590 }
0771dfef
IM
3591}
3592
af8cbda2 3593static void futex_cleanup(struct task_struct *tsk)
ba31c1a4
TG
3594{
3595 if (unlikely(tsk->robust_list)) {
3596 exit_robust_list(tsk);
3597 tsk->robust_list = NULL;
3598 }
3599
3600#ifdef CONFIG_COMPAT
3601 if (unlikely(tsk->compat_robust_list)) {
3602 compat_exit_robust_list(tsk);
3603 tsk->compat_robust_list = NULL;
3604 }
3605#endif
3606
3607 if (unlikely(!list_empty(&tsk->pi_state_list)))
3608 exit_pi_state_list(tsk);
3609}
3610
18f69438
TG
3611/**
3612 * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3613 * @tsk: task to set the state on
3614 *
3615 * Set the futex exit state of the task lockless. The futex waiter code
3616 * observes that state when a task is exiting and loops until the task has
3617 * actually finished the futex cleanup. The worst case for this is that the
3618 * waiter runs through the wait loop until the state becomes visible.
3619 *
3620 * This is called from the recursive fault handling path in do_exit().
3621 *
3622 * This is best effort. Either the futex exit code has run already or
3623 * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3624 * take it over. If not, the problem is pushed back to user space. If the
3625 * futex exit code did not run yet, then an already queued waiter might
3626 * block forever, but there is nothing which can be done about that.
3627 */
3628void futex_exit_recursive(struct task_struct *tsk)
3629{
3f186d97
TG
3630 /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3631 if (tsk->futex_state == FUTEX_STATE_EXITING)
3632 mutex_unlock(&tsk->futex_exit_mutex);
18f69438
TG
3633 tsk->futex_state = FUTEX_STATE_DEAD;
3634}
3635
af8cbda2 3636static void futex_cleanup_begin(struct task_struct *tsk)
150d7158 3637{
3f186d97
TG
3638 /*
3639 * Prevent various race issues against a concurrent incoming waiter
3640 * including live locks by forcing the waiter to block on
3641 * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3642 * attach_to_pi_owner().
3643 */
3644 mutex_lock(&tsk->futex_exit_mutex);
3645
18f69438 3646 /*
4a8e991b
TG
3647 * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3648 *
3649 * This ensures that all subsequent checks of tsk->futex_state in
3650 * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3651 * tsk->pi_lock held.
3652 *
3653 * It guarantees also that a pi_state which was queued right before
3654 * the state change under tsk->pi_lock by a concurrent waiter must
3655 * be observed in exit_pi_state_list().
18f69438
TG
3656 */
3657 raw_spin_lock_irq(&tsk->pi_lock);
4a8e991b 3658 tsk->futex_state = FUTEX_STATE_EXITING;
18f69438 3659 raw_spin_unlock_irq(&tsk->pi_lock);
af8cbda2 3660}
18f69438 3661
af8cbda2
TG
3662static void futex_cleanup_end(struct task_struct *tsk, int state)
3663{
3664 /*
3665 * Lockless store. The only side effect is that an observer might
3666 * take another loop until it becomes visible.
3667 */
3668 tsk->futex_state = state;
3f186d97
TG
3669 /*
3670 * Drop the exit protection. This unblocks waiters which observed
3671 * FUTEX_STATE_EXITING to reevaluate the state.
3672 */
3673 mutex_unlock(&tsk->futex_exit_mutex);
af8cbda2 3674}
18f69438 3675
af8cbda2
TG
3676void futex_exec_release(struct task_struct *tsk)
3677{
3678 /*
3679 * The state handling is done for consistency, but in the case of
3680 * exec() there is no way to prevent futher damage as the PID stays
3681 * the same. But for the unlikely and arguably buggy case that a
3682 * futex is held on exec(), this provides at least as much state
3683 * consistency protection which is possible.
3684 */
3685 futex_cleanup_begin(tsk);
3686 futex_cleanup(tsk);
3687 /*
3688 * Reset the state to FUTEX_STATE_OK. The task is alive and about
3689 * exec a new binary.
3690 */
3691 futex_cleanup_end(tsk, FUTEX_STATE_OK);
3692}
3693
3694void futex_exit_release(struct task_struct *tsk)
3695{
3696 futex_cleanup_begin(tsk);
3697 futex_cleanup(tsk);
3698 futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
150d7158
TG
3699}
3700
c19384b5 3701long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 3702 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 3703{
81b40539 3704 int cmd = op & FUTEX_CMD_MASK;
b41277dc 3705 unsigned int flags = 0;
34f01cc1
ED
3706
3707 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 3708 flags |= FLAGS_SHARED;
1da177e4 3709
b41277dc
DH
3710 if (op & FUTEX_CLOCK_REALTIME) {
3711 flags |= FLAGS_CLOCKRT;
4fbf5d68 3712 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
b41277dc
DH
3713 return -ENOSYS;
3714 }
1da177e4 3715
59263b51
TG
3716 switch (cmd) {
3717 case FUTEX_LOCK_PI:
3718 case FUTEX_UNLOCK_PI:
3719 case FUTEX_TRYLOCK_PI:
3720 case FUTEX_WAIT_REQUEUE_PI:
3721 case FUTEX_CMP_REQUEUE_PI:
3722 if (!futex_cmpxchg_enabled)
3723 return -ENOSYS;
3724 }
3725
34f01cc1 3726 switch (cmd) {
1da177e4 3727 case FUTEX_WAIT:
cd689985 3728 val3 = FUTEX_BITSET_MATCH_ANY;
405fa8ac 3729 fallthrough;
cd689985 3730 case FUTEX_WAIT_BITSET:
81b40539 3731 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 3732 case FUTEX_WAKE:
cd689985 3733 val3 = FUTEX_BITSET_MATCH_ANY;
405fa8ac 3734 fallthrough;
cd689985 3735 case FUTEX_WAKE_BITSET:
81b40539 3736 return futex_wake(uaddr, flags, val, val3);
1da177e4 3737 case FUTEX_REQUEUE:
81b40539 3738 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 3739 case FUTEX_CMP_REQUEUE:
81b40539 3740 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 3741 case FUTEX_WAKE_OP:
81b40539 3742 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 3743 case FUTEX_LOCK_PI:
996636dd 3744 return futex_lock_pi(uaddr, flags, timeout, 0);
c87e2837 3745 case FUTEX_UNLOCK_PI:
81b40539 3746 return futex_unlock_pi(uaddr, flags);
c87e2837 3747 case FUTEX_TRYLOCK_PI:
996636dd 3748 return futex_lock_pi(uaddr, flags, NULL, 1);
52400ba9
DH
3749 case FUTEX_WAIT_REQUEUE_PI:
3750 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
3751 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3752 uaddr2);
52400ba9 3753 case FUTEX_CMP_REQUEUE_PI:
81b40539 3754 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 3755 }
81b40539 3756 return -ENOSYS;
1da177e4
LT
3757}
3758
51cf94d1
TG
3759static __always_inline bool futex_cmd_has_timeout(u32 cmd)
3760{
3761 switch (cmd) {
3762 case FUTEX_WAIT:
3763 case FUTEX_LOCK_PI:
3764 case FUTEX_WAIT_BITSET:
3765 case FUTEX_WAIT_REQUEUE_PI:
3766 return true;
3767 }
3768 return false;
3769}
3770
3771static __always_inline int
3772futex_init_timeout(u32 cmd, u32 op, struct timespec64 *ts, ktime_t *t)
3773{
3774 if (!timespec64_valid(ts))
3775 return -EINVAL;
3776
3777 *t = timespec64_to_ktime(*ts);
3778 if (cmd == FUTEX_WAIT)
3779 *t = ktime_add_safe(ktime_get(), *t);
3780 else if (cmd != FUTEX_LOCK_PI && !(op & FUTEX_CLOCK_REALTIME))
3781 *t = timens_ktime_to_host(CLOCK_MONOTONIC, *t);
3782 return 0;
3783}
1da177e4 3784
17da2bd9 3785SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
1ce53e2c
AC
3786 const struct __kernel_timespec __user *, utime,
3787 u32 __user *, uaddr2, u32, val3)
1da177e4 3788{
51cf94d1 3789 int ret, cmd = op & FUTEX_CMD_MASK;
c19384b5 3790 ktime_t t, *tp = NULL;
51cf94d1 3791 struct timespec64 ts;
1da177e4 3792
51cf94d1 3793 if (utime && futex_cmd_has_timeout(cmd)) {
ab51fbab
DB
3794 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3795 return -EFAULT;
bec2f7cb 3796 if (get_timespec64(&ts, utime))
1da177e4 3797 return -EFAULT;
51cf94d1
TG
3798 ret = futex_init_timeout(cmd, op, &ts, &t);
3799 if (ret)
3800 return ret;
c19384b5 3801 tp = &t;
1da177e4 3802 }
1da177e4 3803
b097d5ed 3804 return do_futex(uaddr, op, val, tp, uaddr2, (unsigned long)utime, val3);
1da177e4
LT
3805}
3806
04e7712f
AB
3807#ifdef CONFIG_COMPAT
3808/*
3809 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3810 */
3811static inline int
3812compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3813 compat_uptr_t __user *head, unsigned int *pi)
3814{
3815 if (get_user(*uentry, head))
3816 return -EFAULT;
3817
3818 *entry = compat_ptr((*uentry) & ~1);
3819 *pi = (unsigned int)(*uentry) & 1;
3820
3821 return 0;
3822}
3823
3824static void __user *futex_uaddr(struct robust_list __user *entry,
3825 compat_long_t futex_offset)
3826{
3827 compat_uptr_t base = ptr_to_compat(entry);
3828 void __user *uaddr = compat_ptr(base + futex_offset);
3829
3830 return uaddr;
3831}
3832
3833/*
3834 * Walk curr->robust_list (very carefully, it's a userspace list!)
3835 * and mark any locks found there dead, and notify any waiters.
3836 *
3837 * We silently return on any sign of list-walking problem.
3838 */
ba31c1a4 3839static void compat_exit_robust_list(struct task_struct *curr)
04e7712f
AB
3840{
3841 struct compat_robust_list_head __user *head = curr->compat_robust_list;
3842 struct robust_list __user *entry, *next_entry, *pending;
3843 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3f649ab7 3844 unsigned int next_pi;
04e7712f
AB
3845 compat_uptr_t uentry, next_uentry, upending;
3846 compat_long_t futex_offset;
3847 int rc;
3848
3849 if (!futex_cmpxchg_enabled)
3850 return;
3851
3852 /*
3853 * Fetch the list head (which was registered earlier, via
3854 * sys_set_robust_list()):
3855 */
3856 if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3857 return;
3858 /*
3859 * Fetch the relative futex offset:
3860 */
3861 if (get_user(futex_offset, &head->futex_offset))
3862 return;
3863 /*
3864 * Fetch any possibly pending lock-add first, and handle it
3865 * if it exists:
3866 */
3867 if (compat_fetch_robust_entry(&upending, &pending,
3868 &head->list_op_pending, &pip))
3869 return;
3870
3871 next_entry = NULL; /* avoid warning with gcc */
3872 while (entry != (struct robust_list __user *) &head->list) {
3873 /*
3874 * Fetch the next entry in the list before calling
3875 * handle_futex_death:
3876 */
3877 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3878 (compat_uptr_t __user *)&entry->next, &next_pi);
3879 /*
3880 * A pending lock might already be on the list, so
3881 * dont process it twice:
3882 */
3883 if (entry != pending) {
3884 void __user *uaddr = futex_uaddr(entry, futex_offset);
3885
ca16d5be
YT
3886 if (handle_futex_death(uaddr, curr, pi,
3887 HANDLE_DEATH_LIST))
04e7712f
AB
3888 return;
3889 }
3890 if (rc)
3891 return;
3892 uentry = next_uentry;
3893 entry = next_entry;
3894 pi = next_pi;
3895 /*
3896 * Avoid excessively long or circular lists:
3897 */
3898 if (!--limit)
3899 break;
3900
3901 cond_resched();
3902 }
3903 if (pending) {
3904 void __user *uaddr = futex_uaddr(pending, futex_offset);
3905
ca16d5be 3906 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
04e7712f
AB
3907 }
3908}
3909
3910COMPAT_SYSCALL_DEFINE2(set_robust_list,
3911 struct compat_robust_list_head __user *, head,
3912 compat_size_t, len)
3913{
3914 if (!futex_cmpxchg_enabled)
3915 return -ENOSYS;
3916
3917 if (unlikely(len != sizeof(*head)))
3918 return -EINVAL;
3919
3920 current->compat_robust_list = head;
3921
3922 return 0;
3923}
3924
3925COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3926 compat_uptr_t __user *, head_ptr,
3927 compat_size_t __user *, len_ptr)
3928{
3929 struct compat_robust_list_head __user *head;
3930 unsigned long ret;
3931 struct task_struct *p;
3932
3933 if (!futex_cmpxchg_enabled)
3934 return -ENOSYS;
3935
3936 rcu_read_lock();
3937
3938 ret = -ESRCH;
3939 if (!pid)
3940 p = current;
3941 else {
3942 p = find_task_by_vpid(pid);
3943 if (!p)
3944 goto err_unlock;
3945 }
3946
3947 ret = -EPERM;
3948 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3949 goto err_unlock;
3950
3951 head = p->compat_robust_list;
3952 rcu_read_unlock();
3953
3954 if (put_user(sizeof(*head), len_ptr))
3955 return -EFAULT;
3956 return put_user(ptr_to_compat(head), head_ptr);
3957
3958err_unlock:
3959 rcu_read_unlock();
3960
3961 return ret;
3962}
bec2f7cb 3963#endif /* CONFIG_COMPAT */
04e7712f 3964
bec2f7cb 3965#ifdef CONFIG_COMPAT_32BIT_TIME
8dabe724 3966SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
1ce53e2c 3967 const struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
04e7712f
AB
3968 u32, val3)
3969{
51cf94d1 3970 int ret, cmd = op & FUTEX_CMD_MASK;
04e7712f 3971 ktime_t t, *tp = NULL;
51cf94d1 3972 struct timespec64 ts;
04e7712f 3973
51cf94d1 3974 if (utime && futex_cmd_has_timeout(cmd)) {
bec2f7cb 3975 if (get_old_timespec32(&ts, utime))
04e7712f 3976 return -EFAULT;
51cf94d1
TG
3977 ret = futex_init_timeout(cmd, op, &ts, &t);
3978 if (ret)
3979 return ret;
04e7712f
AB
3980 tp = &t;
3981 }
04e7712f 3982
b097d5ed 3983 return do_futex(uaddr, op, val, tp, uaddr2, (unsigned long)utime, val3);
04e7712f 3984}
bec2f7cb 3985#endif /* CONFIG_COMPAT_32BIT_TIME */
04e7712f 3986
03b8c7b6 3987static void __init futex_detect_cmpxchg(void)
1da177e4 3988{
03b8c7b6 3989#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 3990 u32 curval;
03b8c7b6
HC
3991
3992 /*
3993 * This will fail and we want it. Some arch implementations do
3994 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3995 * functionality. We want to know that before we call in any
3996 * of the complex code paths. Also we want to prevent
3997 * registration of robust lists in that case. NULL is
3998 * guaranteed to fault and we get -EFAULT on functional
3999 * implementation, the non-functional ones will return
4000 * -ENOSYS.
4001 */
4002 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4003 futex_cmpxchg_enabled = 1;
4004#endif
4005}
4006
4007static int __init futex_init(void)
4008{
63b1a816 4009 unsigned int futex_shift;
a52b89eb
DB
4010 unsigned long i;
4011
4012#if CONFIG_BASE_SMALL
4013 futex_hashsize = 16;
4014#else
4015 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4016#endif
4017
4018 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4019 futex_hashsize, 0,
4020 futex_hashsize < 256 ? HASH_SMALL : 0,
63b1a816
HC
4021 &futex_shift, NULL,
4022 futex_hashsize, futex_hashsize);
4023 futex_hashsize = 1UL << futex_shift;
03b8c7b6
HC
4024
4025 futex_detect_cmpxchg();
a0c1e907 4026
a52b89eb 4027 for (i = 0; i < futex_hashsize; i++) {
11d4616b 4028 atomic_set(&futex_queues[i].waiters, 0);
732375c6 4029 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
4030 spin_lock_init(&futex_queues[i].lock);
4031 }
4032
1da177e4
LT
4033 return 0;
4034}
25f71d1c 4035core_initcall(futex_init);