Merge tag 'v4.14-rc2' into next-general
[linux-2.6-block.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
7ed20e1a 57#include <linux/signal.h>
9984de1a 58#include <linux/export.h>
fd5eea42 59#include <linux/magic.h>
b488893a
PE
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
bdbb776f 62#include <linux/ptrace.h>
8bd75c77 63#include <linux/sched/rt.h>
84f001e1 64#include <linux/sched/wake_q.h>
6e84f315 65#include <linux/sched/mm.h>
13d60f4b 66#include <linux/hugetlb.h>
88c8004f 67#include <linux/freezer.h>
a52b89eb 68#include <linux/bootmem.h>
ab51fbab 69#include <linux/fault-inject.h>
b488893a 70
4732efbe 71#include <asm/futex.h>
1da177e4 72
1696a8be 73#include "locking/rtmutex_common.h"
c87e2837 74
99b60ce6 75/*
d7e8af1a
DB
76 * READ this before attempting to hack on futexes!
77 *
78 * Basic futex operation and ordering guarantees
79 * =============================================
99b60ce6
TG
80 *
81 * The waiter reads the futex value in user space and calls
82 * futex_wait(). This function computes the hash bucket and acquires
83 * the hash bucket lock. After that it reads the futex user space value
b0c29f79
DB
84 * again and verifies that the data has not changed. If it has not changed
85 * it enqueues itself into the hash bucket, releases the hash bucket lock
86 * and schedules.
99b60ce6
TG
87 *
88 * The waker side modifies the user space value of the futex and calls
b0c29f79
DB
89 * futex_wake(). This function computes the hash bucket and acquires the
90 * hash bucket lock. Then it looks for waiters on that futex in the hash
91 * bucket and wakes them.
99b60ce6 92 *
b0c29f79
DB
93 * In futex wake up scenarios where no tasks are blocked on a futex, taking
94 * the hb spinlock can be avoided and simply return. In order for this
95 * optimization to work, ordering guarantees must exist so that the waiter
96 * being added to the list is acknowledged when the list is concurrently being
97 * checked by the waker, avoiding scenarios like the following:
99b60ce6
TG
98 *
99 * CPU 0 CPU 1
100 * val = *futex;
101 * sys_futex(WAIT, futex, val);
102 * futex_wait(futex, val);
103 * uval = *futex;
104 * *futex = newval;
105 * sys_futex(WAKE, futex);
106 * futex_wake(futex);
107 * if (queue_empty())
108 * return;
109 * if (uval == val)
110 * lock(hash_bucket(futex));
111 * queue();
112 * unlock(hash_bucket(futex));
113 * schedule();
114 *
115 * This would cause the waiter on CPU 0 to wait forever because it
116 * missed the transition of the user space value from val to newval
117 * and the waker did not find the waiter in the hash bucket queue.
99b60ce6 118 *
b0c29f79
DB
119 * The correct serialization ensures that a waiter either observes
120 * the changed user space value before blocking or is woken by a
121 * concurrent waker:
122 *
123 * CPU 0 CPU 1
99b60ce6
TG
124 * val = *futex;
125 * sys_futex(WAIT, futex, val);
126 * futex_wait(futex, val);
b0c29f79 127 *
d7e8af1a 128 * waiters++; (a)
8ad7b378
DB
129 * smp_mb(); (A) <-- paired with -.
130 * |
131 * lock(hash_bucket(futex)); |
132 * |
133 * uval = *futex; |
134 * | *futex = newval;
135 * | sys_futex(WAKE, futex);
136 * | futex_wake(futex);
137 * |
138 * `--------> smp_mb(); (B)
99b60ce6 139 * if (uval == val)
b0c29f79 140 * queue();
99b60ce6 141 * unlock(hash_bucket(futex));
b0c29f79
DB
142 * schedule(); if (waiters)
143 * lock(hash_bucket(futex));
d7e8af1a
DB
144 * else wake_waiters(futex);
145 * waiters--; (b) unlock(hash_bucket(futex));
b0c29f79 146 *
d7e8af1a
DB
147 * Where (A) orders the waiters increment and the futex value read through
148 * atomic operations (see hb_waiters_inc) and where (B) orders the write
993b2ff2
DB
149 * to futex and the waiters read -- this is done by the barriers for both
150 * shared and private futexes in get_futex_key_refs().
b0c29f79
DB
151 *
152 * This yields the following case (where X:=waiters, Y:=futex):
153 *
154 * X = Y = 0
155 *
156 * w[X]=1 w[Y]=1
157 * MB MB
158 * r[Y]=y r[X]=x
159 *
160 * Which guarantees that x==0 && y==0 is impossible; which translates back into
161 * the guarantee that we cannot both miss the futex variable change and the
162 * enqueue.
d7e8af1a
DB
163 *
164 * Note that a new waiter is accounted for in (a) even when it is possible that
165 * the wait call can return error, in which case we backtrack from it in (b).
166 * Refer to the comment in queue_lock().
167 *
168 * Similarly, in order to account for waiters being requeued on another
169 * address we always increment the waiters for the destination bucket before
170 * acquiring the lock. It then decrements them again after releasing it -
171 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
172 * will do the additional required waiter count housekeeping. This is done for
173 * double_lock_hb() and double_unlock_hb(), respectively.
99b60ce6
TG
174 */
175
03b8c7b6 176#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 177int __read_mostly futex_cmpxchg_enabled;
03b8c7b6 178#endif
a0c1e907 179
b41277dc
DH
180/*
181 * Futex flags used to encode options to functions and preserve them across
182 * restarts.
183 */
784bdf3b
TG
184#ifdef CONFIG_MMU
185# define FLAGS_SHARED 0x01
186#else
187/*
188 * NOMMU does not have per process address space. Let the compiler optimize
189 * code away.
190 */
191# define FLAGS_SHARED 0x00
192#endif
b41277dc
DH
193#define FLAGS_CLOCKRT 0x02
194#define FLAGS_HAS_TIMEOUT 0x04
195
c87e2837
IM
196/*
197 * Priority Inheritance state:
198 */
199struct futex_pi_state {
200 /*
201 * list of 'owned' pi_state instances - these have to be
202 * cleaned up in do_exit() if the task exits prematurely:
203 */
204 struct list_head list;
205
206 /*
207 * The PI object:
208 */
209 struct rt_mutex pi_mutex;
210
211 struct task_struct *owner;
212 atomic_t refcount;
213
214 union futex_key key;
3859a271 215} __randomize_layout;
c87e2837 216
d8d88fbb
DH
217/**
218 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 219 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
220 * @task: the task waiting on the futex
221 * @lock_ptr: the hash bucket lock
222 * @key: the key the futex is hashed on
223 * @pi_state: optional priority inheritance state
224 * @rt_waiter: rt_waiter storage for use with requeue_pi
225 * @requeue_pi_key: the requeue_pi target futex key
226 * @bitset: bitset for the optional bitmasked wakeup
227 *
ac6424b9 228 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
1da177e4
LT
229 * we can wake only the relevant ones (hashed queues may be shared).
230 *
231 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 232 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 233 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
234 * the second.
235 *
236 * PI futexes are typically woken before they are removed from the hash list via
237 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
238 */
239struct futex_q {
ec92d082 240 struct plist_node list;
1da177e4 241
d8d88fbb 242 struct task_struct *task;
1da177e4 243 spinlock_t *lock_ptr;
1da177e4 244 union futex_key key;
c87e2837 245 struct futex_pi_state *pi_state;
52400ba9 246 struct rt_mutex_waiter *rt_waiter;
84bc4af5 247 union futex_key *requeue_pi_key;
cd689985 248 u32 bitset;
3859a271 249} __randomize_layout;
1da177e4 250
5bdb05f9
DH
251static const struct futex_q futex_q_init = {
252 /* list gets initialized in queue_me()*/
253 .key = FUTEX_KEY_INIT,
254 .bitset = FUTEX_BITSET_MATCH_ANY
255};
256
1da177e4 257/*
b2d0994b
DH
258 * Hash buckets are shared by all the futex_keys that hash to the same
259 * location. Each key may have multiple futex_q structures, one for each task
260 * waiting on a futex.
1da177e4
LT
261 */
262struct futex_hash_bucket {
11d4616b 263 atomic_t waiters;
ec92d082
PP
264 spinlock_t lock;
265 struct plist_head chain;
a52b89eb 266} ____cacheline_aligned_in_smp;
1da177e4 267
ac742d37
RV
268/*
269 * The base of the bucket array and its size are always used together
270 * (after initialization only in hash_futex()), so ensure that they
271 * reside in the same cacheline.
272 */
273static struct {
274 struct futex_hash_bucket *queues;
275 unsigned long hashsize;
276} __futex_data __read_mostly __aligned(2*sizeof(long));
277#define futex_queues (__futex_data.queues)
278#define futex_hashsize (__futex_data.hashsize)
a52b89eb 279
1da177e4 280
ab51fbab
DB
281/*
282 * Fault injections for futexes.
283 */
284#ifdef CONFIG_FAIL_FUTEX
285
286static struct {
287 struct fault_attr attr;
288
621a5f7a 289 bool ignore_private;
ab51fbab
DB
290} fail_futex = {
291 .attr = FAULT_ATTR_INITIALIZER,
621a5f7a 292 .ignore_private = false,
ab51fbab
DB
293};
294
295static int __init setup_fail_futex(char *str)
296{
297 return setup_fault_attr(&fail_futex.attr, str);
298}
299__setup("fail_futex=", setup_fail_futex);
300
5d285a7f 301static bool should_fail_futex(bool fshared)
ab51fbab
DB
302{
303 if (fail_futex.ignore_private && !fshared)
304 return false;
305
306 return should_fail(&fail_futex.attr, 1);
307}
308
309#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
310
311static int __init fail_futex_debugfs(void)
312{
313 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
314 struct dentry *dir;
315
316 dir = fault_create_debugfs_attr("fail_futex", NULL,
317 &fail_futex.attr);
318 if (IS_ERR(dir))
319 return PTR_ERR(dir);
320
321 if (!debugfs_create_bool("ignore-private", mode, dir,
322 &fail_futex.ignore_private)) {
323 debugfs_remove_recursive(dir);
324 return -ENOMEM;
325 }
326
327 return 0;
328}
329
330late_initcall(fail_futex_debugfs);
331
332#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
333
334#else
335static inline bool should_fail_futex(bool fshared)
336{
337 return false;
338}
339#endif /* CONFIG_FAIL_FUTEX */
340
b0c29f79
DB
341static inline void futex_get_mm(union futex_key *key)
342{
f1f10076 343 mmgrab(key->private.mm);
b0c29f79
DB
344 /*
345 * Ensure futex_get_mm() implies a full barrier such that
346 * get_futex_key() implies a full barrier. This is relied upon
8ad7b378 347 * as smp_mb(); (B), see the ordering comment above.
b0c29f79 348 */
4e857c58 349 smp_mb__after_atomic();
b0c29f79
DB
350}
351
11d4616b
LT
352/*
353 * Reflects a new waiter being added to the waitqueue.
354 */
355static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
b0c29f79
DB
356{
357#ifdef CONFIG_SMP
11d4616b 358 atomic_inc(&hb->waiters);
b0c29f79 359 /*
11d4616b 360 * Full barrier (A), see the ordering comment above.
b0c29f79 361 */
4e857c58 362 smp_mb__after_atomic();
11d4616b
LT
363#endif
364}
365
366/*
367 * Reflects a waiter being removed from the waitqueue by wakeup
368 * paths.
369 */
370static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
371{
372#ifdef CONFIG_SMP
373 atomic_dec(&hb->waiters);
374#endif
375}
b0c29f79 376
11d4616b
LT
377static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
378{
379#ifdef CONFIG_SMP
380 return atomic_read(&hb->waiters);
b0c29f79 381#else
11d4616b 382 return 1;
b0c29f79
DB
383#endif
384}
385
e8b61b3f
TG
386/**
387 * hash_futex - Return the hash bucket in the global hash
388 * @key: Pointer to the futex key for which the hash is calculated
389 *
390 * We hash on the keys returned from get_futex_key (see below) and return the
391 * corresponding hash bucket in the global hash.
1da177e4
LT
392 */
393static struct futex_hash_bucket *hash_futex(union futex_key *key)
394{
395 u32 hash = jhash2((u32*)&key->both.word,
396 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
397 key->both.offset);
a52b89eb 398 return &futex_queues[hash & (futex_hashsize - 1)];
1da177e4
LT
399}
400
e8b61b3f
TG
401
402/**
403 * match_futex - Check whether two futex keys are equal
404 * @key1: Pointer to key1
405 * @key2: Pointer to key2
406 *
1da177e4
LT
407 * Return 1 if two futex_keys are equal, 0 otherwise.
408 */
409static inline int match_futex(union futex_key *key1, union futex_key *key2)
410{
2bc87203
DH
411 return (key1 && key2
412 && key1->both.word == key2->both.word
1da177e4
LT
413 && key1->both.ptr == key2->both.ptr
414 && key1->both.offset == key2->both.offset);
415}
416
38d47c1b
PZ
417/*
418 * Take a reference to the resource addressed by a key.
419 * Can be called while holding spinlocks.
420 *
421 */
422static void get_futex_key_refs(union futex_key *key)
423{
424 if (!key->both.ptr)
425 return;
426
784bdf3b
TG
427 /*
428 * On MMU less systems futexes are always "private" as there is no per
429 * process address space. We need the smp wmb nevertheless - yes,
430 * arch/blackfin has MMU less SMP ...
431 */
432 if (!IS_ENABLED(CONFIG_MMU)) {
433 smp_mb(); /* explicit smp_mb(); (B) */
434 return;
435 }
436
38d47c1b
PZ
437 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
438 case FUT_OFF_INODE:
8ad7b378 439 ihold(key->shared.inode); /* implies smp_mb(); (B) */
38d47c1b
PZ
440 break;
441 case FUT_OFF_MMSHARED:
8ad7b378 442 futex_get_mm(key); /* implies smp_mb(); (B) */
38d47c1b 443 break;
76835b0e 444 default:
993b2ff2
DB
445 /*
446 * Private futexes do not hold reference on an inode or
447 * mm, therefore the only purpose of calling get_futex_key_refs
448 * is because we need the barrier for the lockless waiter check.
449 */
8ad7b378 450 smp_mb(); /* explicit smp_mb(); (B) */
38d47c1b
PZ
451 }
452}
453
454/*
455 * Drop a reference to the resource addressed by a key.
993b2ff2
DB
456 * The hash bucket spinlock must not be held. This is
457 * a no-op for private futexes, see comment in the get
458 * counterpart.
38d47c1b
PZ
459 */
460static void drop_futex_key_refs(union futex_key *key)
461{
90621c40
DH
462 if (!key->both.ptr) {
463 /* If we're here then we tried to put a key we failed to get */
464 WARN_ON_ONCE(1);
38d47c1b 465 return;
90621c40 466 }
38d47c1b 467
784bdf3b
TG
468 if (!IS_ENABLED(CONFIG_MMU))
469 return;
470
38d47c1b
PZ
471 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
472 case FUT_OFF_INODE:
473 iput(key->shared.inode);
474 break;
475 case FUT_OFF_MMSHARED:
476 mmdrop(key->private.mm);
477 break;
478 }
479}
480
34f01cc1 481/**
d96ee56c
DH
482 * get_futex_key() - Get parameters which are the keys for a futex
483 * @uaddr: virtual address of the futex
484 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
485 * @key: address where result is stored.
9ea71503
SB
486 * @rw: mapping needs to be read/write (values: VERIFY_READ,
487 * VERIFY_WRITE)
34f01cc1 488 *
6c23cbbd
RD
489 * Return: a negative error code or 0
490 *
7b4ff1ad 491 * The key words are stored in @key on success.
1da177e4 492 *
6131ffaa 493 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
1da177e4
LT
494 * offset_within_page). For private mappings, it's (uaddr, current->mm).
495 * We can usually work out the index without swapping in the page.
496 *
b2d0994b 497 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 498 */
64d1304a 499static int
9ea71503 500get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
1da177e4 501{
e2970f2f 502 unsigned long address = (unsigned long)uaddr;
1da177e4 503 struct mm_struct *mm = current->mm;
077fa7ae 504 struct page *page, *tail;
14d27abd 505 struct address_space *mapping;
9ea71503 506 int err, ro = 0;
1da177e4
LT
507
508 /*
509 * The futex address must be "naturally" aligned.
510 */
e2970f2f 511 key->both.offset = address % PAGE_SIZE;
34f01cc1 512 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 513 return -EINVAL;
e2970f2f 514 address -= key->both.offset;
1da177e4 515
5cdec2d8
LT
516 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
517 return -EFAULT;
518
ab51fbab
DB
519 if (unlikely(should_fail_futex(fshared)))
520 return -EFAULT;
521
34f01cc1
ED
522 /*
523 * PROCESS_PRIVATE futexes are fast.
524 * As the mm cannot disappear under us and the 'key' only needs
525 * virtual address, we dont even have to find the underlying vma.
526 * Note : We do have to check 'uaddr' is a valid user address,
527 * but access_ok() should be faster than find_vma()
528 */
529 if (!fshared) {
34f01cc1
ED
530 key->private.mm = mm;
531 key->private.address = address;
8ad7b378 532 get_futex_key_refs(key); /* implies smp_mb(); (B) */
34f01cc1
ED
533 return 0;
534 }
1da177e4 535
38d47c1b 536again:
ab51fbab
DB
537 /* Ignore any VERIFY_READ mapping (futex common case) */
538 if (unlikely(should_fail_futex(fshared)))
539 return -EFAULT;
540
7485d0d3 541 err = get_user_pages_fast(address, 1, 1, &page);
9ea71503
SB
542 /*
543 * If write access is not required (eg. FUTEX_WAIT), try
544 * and get read-only access.
545 */
546 if (err == -EFAULT && rw == VERIFY_READ) {
547 err = get_user_pages_fast(address, 1, 0, &page);
548 ro = 1;
549 }
38d47c1b
PZ
550 if (err < 0)
551 return err;
9ea71503
SB
552 else
553 err = 0;
38d47c1b 554
65d8fc77
MG
555 /*
556 * The treatment of mapping from this point on is critical. The page
557 * lock protects many things but in this context the page lock
558 * stabilizes mapping, prevents inode freeing in the shared
559 * file-backed region case and guards against movement to swap cache.
560 *
561 * Strictly speaking the page lock is not needed in all cases being
562 * considered here and page lock forces unnecessarily serialization
563 * From this point on, mapping will be re-verified if necessary and
564 * page lock will be acquired only if it is unavoidable
077fa7ae
MG
565 *
566 * Mapping checks require the head page for any compound page so the
567 * head page and mapping is looked up now. For anonymous pages, it
568 * does not matter if the page splits in the future as the key is
569 * based on the address. For filesystem-backed pages, the tail is
570 * required as the index of the page determines the key. For
571 * base pages, there is no tail page and tail == page.
65d8fc77 572 */
077fa7ae 573 tail = page;
65d8fc77
MG
574 page = compound_head(page);
575 mapping = READ_ONCE(page->mapping);
576
e6780f72 577 /*
14d27abd 578 * If page->mapping is NULL, then it cannot be a PageAnon
e6780f72
HD
579 * page; but it might be the ZERO_PAGE or in the gate area or
580 * in a special mapping (all cases which we are happy to fail);
581 * or it may have been a good file page when get_user_pages_fast
582 * found it, but truncated or holepunched or subjected to
583 * invalidate_complete_page2 before we got the page lock (also
584 * cases which we are happy to fail). And we hold a reference,
585 * so refcount care in invalidate_complete_page's remove_mapping
586 * prevents drop_caches from setting mapping to NULL beneath us.
587 *
588 * The case we do have to guard against is when memory pressure made
589 * shmem_writepage move it from filecache to swapcache beneath us:
14d27abd 590 * an unlikely race, but we do need to retry for page->mapping.
e6780f72 591 */
65d8fc77
MG
592 if (unlikely(!mapping)) {
593 int shmem_swizzled;
594
595 /*
596 * Page lock is required to identify which special case above
597 * applies. If this is really a shmem page then the page lock
598 * will prevent unexpected transitions.
599 */
600 lock_page(page);
601 shmem_swizzled = PageSwapCache(page) || page->mapping;
14d27abd
KS
602 unlock_page(page);
603 put_page(page);
65d8fc77 604
e6780f72
HD
605 if (shmem_swizzled)
606 goto again;
65d8fc77 607
e6780f72 608 return -EFAULT;
38d47c1b 609 }
1da177e4
LT
610
611 /*
612 * Private mappings are handled in a simple way.
613 *
65d8fc77
MG
614 * If the futex key is stored on an anonymous page, then the associated
615 * object is the mm which is implicitly pinned by the calling process.
616 *
1da177e4
LT
617 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
618 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 619 * the object not the particular process.
1da177e4 620 */
14d27abd 621 if (PageAnon(page)) {
9ea71503
SB
622 /*
623 * A RO anonymous page will never change and thus doesn't make
624 * sense for futex operations.
625 */
ab51fbab 626 if (unlikely(should_fail_futex(fshared)) || ro) {
9ea71503
SB
627 err = -EFAULT;
628 goto out;
629 }
630
38d47c1b 631 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 632 key->private.mm = mm;
e2970f2f 633 key->private.address = address;
65d8fc77
MG
634
635 get_futex_key_refs(key); /* implies smp_mb(); (B) */
636
38d47c1b 637 } else {
65d8fc77
MG
638 struct inode *inode;
639
640 /*
641 * The associated futex object in this case is the inode and
642 * the page->mapping must be traversed. Ordinarily this should
643 * be stabilised under page lock but it's not strictly
644 * necessary in this case as we just want to pin the inode, not
645 * update the radix tree or anything like that.
646 *
647 * The RCU read lock is taken as the inode is finally freed
648 * under RCU. If the mapping still matches expectations then the
649 * mapping->host can be safely accessed as being a valid inode.
650 */
651 rcu_read_lock();
652
653 if (READ_ONCE(page->mapping) != mapping) {
654 rcu_read_unlock();
655 put_page(page);
656
657 goto again;
658 }
659
660 inode = READ_ONCE(mapping->host);
661 if (!inode) {
662 rcu_read_unlock();
663 put_page(page);
664
665 goto again;
666 }
667
668 /*
669 * Take a reference unless it is about to be freed. Previously
670 * this reference was taken by ihold under the page lock
671 * pinning the inode in place so i_lock was unnecessary. The
672 * only way for this check to fail is if the inode was
48fb6f4d
MG
673 * truncated in parallel which is almost certainly an
674 * application bug. In such a case, just retry.
65d8fc77
MG
675 *
676 * We are not calling into get_futex_key_refs() in file-backed
677 * cases, therefore a successful atomic_inc return below will
678 * guarantee that get_futex_key() will still imply smp_mb(); (B).
679 */
48fb6f4d 680 if (!atomic_inc_not_zero(&inode->i_count)) {
65d8fc77
MG
681 rcu_read_unlock();
682 put_page(page);
683
684 goto again;
685 }
686
687 /* Should be impossible but lets be paranoid for now */
688 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
689 err = -EFAULT;
690 rcu_read_unlock();
691 iput(inode);
692
693 goto out;
694 }
695
38d47c1b 696 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
65d8fc77 697 key->shared.inode = inode;
077fa7ae 698 key->shared.pgoff = basepage_index(tail);
65d8fc77 699 rcu_read_unlock();
1da177e4
LT
700 }
701
9ea71503 702out:
14d27abd 703 put_page(page);
9ea71503 704 return err;
1da177e4
LT
705}
706
ae791a2d 707static inline void put_futex_key(union futex_key *key)
1da177e4 708{
38d47c1b 709 drop_futex_key_refs(key);
1da177e4
LT
710}
711
d96ee56c
DH
712/**
713 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
714 * @uaddr: pointer to faulting user space address
715 *
716 * Slow path to fixup the fault we just took in the atomic write
717 * access to @uaddr.
718 *
fb62db2b 719 * We have no generic implementation of a non-destructive write to the
d0725992
TG
720 * user address. We know that we faulted in the atomic pagefault
721 * disabled section so we can as well avoid the #PF overhead by
722 * calling get_user_pages() right away.
723 */
724static int fault_in_user_writeable(u32 __user *uaddr)
725{
722d0172
AK
726 struct mm_struct *mm = current->mm;
727 int ret;
728
729 down_read(&mm->mmap_sem);
2efaca92 730 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
4a9e1cda 731 FAULT_FLAG_WRITE, NULL);
722d0172
AK
732 up_read(&mm->mmap_sem);
733
d0725992
TG
734 return ret < 0 ? ret : 0;
735}
736
4b1c486b
DH
737/**
738 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
739 * @hb: the hash bucket the futex_q's reside in
740 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
741 *
742 * Must be called with the hb lock held.
743 */
744static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
745 union futex_key *key)
746{
747 struct futex_q *this;
748
749 plist_for_each_entry(this, &hb->chain, list) {
750 if (match_futex(&this->key, key))
751 return this;
752 }
753 return NULL;
754}
755
37a9d912
ML
756static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
757 u32 uval, u32 newval)
36cf3b5c 758{
37a9d912 759 int ret;
36cf3b5c
TG
760
761 pagefault_disable();
37a9d912 762 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
763 pagefault_enable();
764
37a9d912 765 return ret;
36cf3b5c
TG
766}
767
768static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
769{
770 int ret;
771
a866374a 772 pagefault_disable();
bd28b145 773 ret = __get_user(*dest, from);
a866374a 774 pagefault_enable();
1da177e4
LT
775
776 return ret ? -EFAULT : 0;
777}
778
c87e2837
IM
779
780/*
781 * PI code:
782 */
783static int refill_pi_state_cache(void)
784{
785 struct futex_pi_state *pi_state;
786
787 if (likely(current->pi_state_cache))
788 return 0;
789
4668edc3 790 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
791
792 if (!pi_state)
793 return -ENOMEM;
794
c87e2837
IM
795 INIT_LIST_HEAD(&pi_state->list);
796 /* pi_mutex gets initialized later */
797 pi_state->owner = NULL;
798 atomic_set(&pi_state->refcount, 1);
38d47c1b 799 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
800
801 current->pi_state_cache = pi_state;
802
803 return 0;
804}
805
bf92cf3a 806static struct futex_pi_state *alloc_pi_state(void)
c87e2837
IM
807{
808 struct futex_pi_state *pi_state = current->pi_state_cache;
809
810 WARN_ON(!pi_state);
811 current->pi_state_cache = NULL;
812
813 return pi_state;
814}
815
bf92cf3a
PZ
816static void get_pi_state(struct futex_pi_state *pi_state)
817{
818 WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
819}
820
30a6b803 821/*
29e9ee5d
TG
822 * Drops a reference to the pi_state object and frees or caches it
823 * when the last reference is gone.
824 *
30a6b803
BS
825 * Must be called with the hb lock held.
826 */
29e9ee5d 827static void put_pi_state(struct futex_pi_state *pi_state)
c87e2837 828{
30a6b803
BS
829 if (!pi_state)
830 return;
831
c87e2837
IM
832 if (!atomic_dec_and_test(&pi_state->refcount))
833 return;
834
835 /*
836 * If pi_state->owner is NULL, the owner is most probably dying
837 * and has cleaned up the pi_state already
838 */
839 if (pi_state->owner) {
1d615482 840 raw_spin_lock_irq(&pi_state->owner->pi_lock);
c87e2837 841 list_del_init(&pi_state->list);
1d615482 842 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
c87e2837
IM
843
844 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
845 }
846
847 if (current->pi_state_cache)
848 kfree(pi_state);
849 else {
850 /*
851 * pi_state->list is already empty.
852 * clear pi_state->owner.
853 * refcount is at 0 - put it back to 1.
854 */
855 pi_state->owner = NULL;
856 atomic_set(&pi_state->refcount, 1);
857 current->pi_state_cache = pi_state;
858 }
859}
860
861/*
862 * Look up the task based on what TID userspace gave us.
863 * We dont trust it.
864 */
bf92cf3a 865static struct task_struct *futex_find_get_task(pid_t pid)
c87e2837
IM
866{
867 struct task_struct *p;
868
d359b549 869 rcu_read_lock();
228ebcbe 870 p = find_task_by_vpid(pid);
7a0ea09a
MH
871 if (p)
872 get_task_struct(p);
a06381fe 873
d359b549 874 rcu_read_unlock();
c87e2837
IM
875
876 return p;
877}
878
bc2eecd7
NP
879#ifdef CONFIG_FUTEX_PI
880
c87e2837
IM
881/*
882 * This task is holding PI mutexes at exit time => bad.
883 * Kernel cleans up PI-state, but userspace is likely hosed.
884 * (Robust-futex cleanup is separate and might save the day for userspace.)
885 */
886void exit_pi_state_list(struct task_struct *curr)
887{
c87e2837
IM
888 struct list_head *next, *head = &curr->pi_state_list;
889 struct futex_pi_state *pi_state;
627371d7 890 struct futex_hash_bucket *hb;
38d47c1b 891 union futex_key key = FUTEX_KEY_INIT;
c87e2837 892
a0c1e907
TG
893 if (!futex_cmpxchg_enabled)
894 return;
c87e2837
IM
895 /*
896 * We are a ZOMBIE and nobody can enqueue itself on
897 * pi_state_list anymore, but we have to be careful
627371d7 898 * versus waiters unqueueing themselves:
c87e2837 899 */
1d615482 900 raw_spin_lock_irq(&curr->pi_lock);
c87e2837
IM
901 while (!list_empty(head)) {
902
903 next = head->next;
904 pi_state = list_entry(next, struct futex_pi_state, list);
905 key = pi_state->key;
627371d7 906 hb = hash_futex(&key);
1d615482 907 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 908
c87e2837
IM
909 spin_lock(&hb->lock);
910
1d615482 911 raw_spin_lock_irq(&curr->pi_lock);
627371d7
IM
912 /*
913 * We dropped the pi-lock, so re-check whether this
914 * task still owns the PI-state:
915 */
c87e2837
IM
916 if (head->next != next) {
917 spin_unlock(&hb->lock);
918 continue;
919 }
920
c87e2837 921 WARN_ON(pi_state->owner != curr);
627371d7
IM
922 WARN_ON(list_empty(&pi_state->list));
923 list_del_init(&pi_state->list);
c87e2837 924 pi_state->owner = NULL;
1d615482 925 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 926
16ffa12d 927 get_pi_state(pi_state);
c87e2837
IM
928 spin_unlock(&hb->lock);
929
16ffa12d
PZ
930 rt_mutex_futex_unlock(&pi_state->pi_mutex);
931 put_pi_state(pi_state);
932
1d615482 933 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 934 }
1d615482 935 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
936}
937
bc2eecd7
NP
938#endif
939
54a21788
TG
940/*
941 * We need to check the following states:
942 *
943 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
944 *
945 * [1] NULL | --- | --- | 0 | 0/1 | Valid
946 * [2] NULL | --- | --- | >0 | 0/1 | Valid
947 *
948 * [3] Found | NULL | -- | Any | 0/1 | Invalid
949 *
950 * [4] Found | Found | NULL | 0 | 1 | Valid
951 * [5] Found | Found | NULL | >0 | 1 | Invalid
952 *
953 * [6] Found | Found | task | 0 | 1 | Valid
954 *
955 * [7] Found | Found | NULL | Any | 0 | Invalid
956 *
957 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
958 * [9] Found | Found | task | 0 | 0 | Invalid
959 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
960 *
961 * [1] Indicates that the kernel can acquire the futex atomically. We
962 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
963 *
964 * [2] Valid, if TID does not belong to a kernel thread. If no matching
965 * thread is found then it indicates that the owner TID has died.
966 *
967 * [3] Invalid. The waiter is queued on a non PI futex
968 *
969 * [4] Valid state after exit_robust_list(), which sets the user space
970 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
971 *
972 * [5] The user space value got manipulated between exit_robust_list()
973 * and exit_pi_state_list()
974 *
975 * [6] Valid state after exit_pi_state_list() which sets the new owner in
976 * the pi_state but cannot access the user space value.
977 *
978 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
979 *
980 * [8] Owner and user space value match
981 *
982 * [9] There is no transient state which sets the user space TID to 0
983 * except exit_robust_list(), but this is indicated by the
984 * FUTEX_OWNER_DIED bit. See [4]
985 *
986 * [10] There is no transient state which leaves owner and user space
987 * TID out of sync.
734009e9
PZ
988 *
989 *
990 * Serialization and lifetime rules:
991 *
992 * hb->lock:
993 *
994 * hb -> futex_q, relation
995 * futex_q -> pi_state, relation
996 *
997 * (cannot be raw because hb can contain arbitrary amount
998 * of futex_q's)
999 *
1000 * pi_mutex->wait_lock:
1001 *
1002 * {uval, pi_state}
1003 *
1004 * (and pi_mutex 'obviously')
1005 *
1006 * p->pi_lock:
1007 *
1008 * p->pi_state_list -> pi_state->list, relation
1009 *
1010 * pi_state->refcount:
1011 *
1012 * pi_state lifetime
1013 *
1014 *
1015 * Lock order:
1016 *
1017 * hb->lock
1018 * pi_mutex->wait_lock
1019 * p->pi_lock
1020 *
54a21788 1021 */
e60cbc5c
TG
1022
1023/*
1024 * Validate that the existing waiter has a pi_state and sanity check
1025 * the pi_state against the user space value. If correct, attach to
1026 * it.
1027 */
734009e9
PZ
1028static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1029 struct futex_pi_state *pi_state,
e60cbc5c 1030 struct futex_pi_state **ps)
c87e2837 1031{
778e9a9c 1032 pid_t pid = uval & FUTEX_TID_MASK;
94ffac5d
PZ
1033 u32 uval2;
1034 int ret;
c87e2837 1035
e60cbc5c
TG
1036 /*
1037 * Userspace might have messed up non-PI and PI futexes [3]
1038 */
1039 if (unlikely(!pi_state))
1040 return -EINVAL;
06a9ec29 1041
734009e9
PZ
1042 /*
1043 * We get here with hb->lock held, and having found a
1044 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1045 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1046 * which in turn means that futex_lock_pi() still has a reference on
1047 * our pi_state.
16ffa12d
PZ
1048 *
1049 * The waiter holding a reference on @pi_state also protects against
1050 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1051 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1052 * free pi_state before we can take a reference ourselves.
734009e9 1053 */
e60cbc5c 1054 WARN_ON(!atomic_read(&pi_state->refcount));
59647b6a 1055
734009e9
PZ
1056 /*
1057 * Now that we have a pi_state, we can acquire wait_lock
1058 * and do the state validation.
1059 */
1060 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1061
1062 /*
1063 * Since {uval, pi_state} is serialized by wait_lock, and our current
1064 * uval was read without holding it, it can have changed. Verify it
1065 * still is what we expect it to be, otherwise retry the entire
1066 * operation.
1067 */
1068 if (get_futex_value_locked(&uval2, uaddr))
1069 goto out_efault;
1070
1071 if (uval != uval2)
1072 goto out_eagain;
1073
e60cbc5c
TG
1074 /*
1075 * Handle the owner died case:
1076 */
1077 if (uval & FUTEX_OWNER_DIED) {
bd1dbcc6 1078 /*
e60cbc5c
TG
1079 * exit_pi_state_list sets owner to NULL and wakes the
1080 * topmost waiter. The task which acquires the
1081 * pi_state->rt_mutex will fixup owner.
bd1dbcc6 1082 */
e60cbc5c 1083 if (!pi_state->owner) {
59647b6a 1084 /*
e60cbc5c
TG
1085 * No pi state owner, but the user space TID
1086 * is not 0. Inconsistent state. [5]
59647b6a 1087 */
e60cbc5c 1088 if (pid)
734009e9 1089 goto out_einval;
bd1dbcc6 1090 /*
e60cbc5c 1091 * Take a ref on the state and return success. [4]
866293ee 1092 */
734009e9 1093 goto out_attach;
c87e2837 1094 }
bd1dbcc6
TG
1095
1096 /*
e60cbc5c
TG
1097 * If TID is 0, then either the dying owner has not
1098 * yet executed exit_pi_state_list() or some waiter
1099 * acquired the rtmutex in the pi state, but did not
1100 * yet fixup the TID in user space.
1101 *
1102 * Take a ref on the state and return success. [6]
1103 */
1104 if (!pid)
734009e9 1105 goto out_attach;
e60cbc5c
TG
1106 } else {
1107 /*
1108 * If the owner died bit is not set, then the pi_state
1109 * must have an owner. [7]
bd1dbcc6 1110 */
e60cbc5c 1111 if (!pi_state->owner)
734009e9 1112 goto out_einval;
c87e2837
IM
1113 }
1114
e60cbc5c
TG
1115 /*
1116 * Bail out if user space manipulated the futex value. If pi
1117 * state exists then the owner TID must be the same as the
1118 * user space TID. [9/10]
1119 */
1120 if (pid != task_pid_vnr(pi_state->owner))
734009e9
PZ
1121 goto out_einval;
1122
1123out_attach:
bf92cf3a 1124 get_pi_state(pi_state);
734009e9 1125 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
e60cbc5c
TG
1126 *ps = pi_state;
1127 return 0;
734009e9
PZ
1128
1129out_einval:
1130 ret = -EINVAL;
1131 goto out_error;
1132
1133out_eagain:
1134 ret = -EAGAIN;
1135 goto out_error;
1136
1137out_efault:
1138 ret = -EFAULT;
1139 goto out_error;
1140
1141out_error:
1142 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1143 return ret;
e60cbc5c
TG
1144}
1145
04e1b2e5
TG
1146/*
1147 * Lookup the task for the TID provided from user space and attach to
1148 * it after doing proper sanity checks.
1149 */
1150static int attach_to_pi_owner(u32 uval, union futex_key *key,
1151 struct futex_pi_state **ps)
e60cbc5c 1152{
e60cbc5c 1153 pid_t pid = uval & FUTEX_TID_MASK;
04e1b2e5
TG
1154 struct futex_pi_state *pi_state;
1155 struct task_struct *p;
e60cbc5c 1156
c87e2837 1157 /*
e3f2ddea 1158 * We are the first waiter - try to look up the real owner and attach
54a21788 1159 * the new pi_state to it, but bail out when TID = 0 [1]
c87e2837 1160 */
778e9a9c 1161 if (!pid)
e3f2ddea 1162 return -ESRCH;
c87e2837 1163 p = futex_find_get_task(pid);
7a0ea09a
MH
1164 if (!p)
1165 return -ESRCH;
778e9a9c 1166
a2129464 1167 if (unlikely(p->flags & PF_KTHREAD)) {
f0d71b3d
TG
1168 put_task_struct(p);
1169 return -EPERM;
1170 }
1171
778e9a9c
AK
1172 /*
1173 * We need to look at the task state flags to figure out,
1174 * whether the task is exiting. To protect against the do_exit
1175 * change of the task flags, we do this protected by
1176 * p->pi_lock:
1177 */
1d615482 1178 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
1179 if (unlikely(p->flags & PF_EXITING)) {
1180 /*
1181 * The task is on the way out. When PF_EXITPIDONE is
1182 * set, we know that the task has finished the
1183 * cleanup:
1184 */
1185 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1186
1d615482 1187 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
1188 put_task_struct(p);
1189 return ret;
1190 }
c87e2837 1191
54a21788
TG
1192 /*
1193 * No existing pi state. First waiter. [2]
734009e9
PZ
1194 *
1195 * This creates pi_state, we have hb->lock held, this means nothing can
1196 * observe this state, wait_lock is irrelevant.
54a21788 1197 */
c87e2837
IM
1198 pi_state = alloc_pi_state();
1199
1200 /*
04e1b2e5 1201 * Initialize the pi_mutex in locked state and make @p
c87e2837
IM
1202 * the owner of it:
1203 */
1204 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1205
1206 /* Store the key for possible exit cleanups: */
d0aa7a70 1207 pi_state->key = *key;
c87e2837 1208
627371d7 1209 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1210 list_add(&pi_state->list, &p->pi_state_list);
1211 pi_state->owner = p;
1d615482 1212 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
1213
1214 put_task_struct(p);
1215
d0aa7a70 1216 *ps = pi_state;
c87e2837
IM
1217
1218 return 0;
1219}
1220
734009e9
PZ
1221static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1222 struct futex_hash_bucket *hb,
04e1b2e5
TG
1223 union futex_key *key, struct futex_pi_state **ps)
1224{
499f5aca 1225 struct futex_q *top_waiter = futex_top_waiter(hb, key);
04e1b2e5
TG
1226
1227 /*
1228 * If there is a waiter on that futex, validate it and
1229 * attach to the pi_state when the validation succeeds.
1230 */
499f5aca 1231 if (top_waiter)
734009e9 1232 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
04e1b2e5
TG
1233
1234 /*
1235 * We are the first waiter - try to look up the owner based on
1236 * @uval and attach to it.
1237 */
1238 return attach_to_pi_owner(uval, key, ps);
1239}
1240
af54d6a1
TG
1241static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1242{
1243 u32 uninitialized_var(curval);
1244
ab51fbab
DB
1245 if (unlikely(should_fail_futex(true)))
1246 return -EFAULT;
1247
af54d6a1
TG
1248 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1249 return -EFAULT;
1250
734009e9 1251 /* If user space value changed, let the caller retry */
af54d6a1
TG
1252 return curval != uval ? -EAGAIN : 0;
1253}
1254
1a52084d 1255/**
d96ee56c 1256 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
1257 * @uaddr: the pi futex user address
1258 * @hb: the pi futex hash bucket
1259 * @key: the futex key associated with uaddr and hb
1260 * @ps: the pi_state pointer where we store the result of the
1261 * lookup
1262 * @task: the task to perform the atomic lock work for. This will
1263 * be "current" except in the case of requeue pi.
1264 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 1265 *
6c23cbbd 1266 * Return:
7b4ff1ad
MCC
1267 * - 0 - ready to wait;
1268 * - 1 - acquired the lock;
1269 * - <0 - error
1a52084d
DH
1270 *
1271 * The hb->lock and futex_key refs shall be held by the caller.
1272 */
1273static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1274 union futex_key *key,
1275 struct futex_pi_state **ps,
bab5bc9e 1276 struct task_struct *task, int set_waiters)
1a52084d 1277{
af54d6a1 1278 u32 uval, newval, vpid = task_pid_vnr(task);
499f5aca 1279 struct futex_q *top_waiter;
af54d6a1 1280 int ret;
1a52084d
DH
1281
1282 /*
af54d6a1
TG
1283 * Read the user space value first so we can validate a few
1284 * things before proceeding further.
1a52084d 1285 */
af54d6a1 1286 if (get_futex_value_locked(&uval, uaddr))
1a52084d
DH
1287 return -EFAULT;
1288
ab51fbab
DB
1289 if (unlikely(should_fail_futex(true)))
1290 return -EFAULT;
1291
1a52084d
DH
1292 /*
1293 * Detect deadlocks.
1294 */
af54d6a1 1295 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
1296 return -EDEADLK;
1297
ab51fbab
DB
1298 if ((unlikely(should_fail_futex(true))))
1299 return -EDEADLK;
1300
1a52084d 1301 /*
af54d6a1
TG
1302 * Lookup existing state first. If it exists, try to attach to
1303 * its pi_state.
1a52084d 1304 */
499f5aca
PZ
1305 top_waiter = futex_top_waiter(hb, key);
1306 if (top_waiter)
734009e9 1307 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1a52084d
DH
1308
1309 /*
af54d6a1
TG
1310 * No waiter and user TID is 0. We are here because the
1311 * waiters or the owner died bit is set or called from
1312 * requeue_cmp_pi or for whatever reason something took the
1313 * syscall.
1a52084d 1314 */
af54d6a1 1315 if (!(uval & FUTEX_TID_MASK)) {
59fa6245 1316 /*
af54d6a1
TG
1317 * We take over the futex. No other waiters and the user space
1318 * TID is 0. We preserve the owner died bit.
59fa6245 1319 */
af54d6a1
TG
1320 newval = uval & FUTEX_OWNER_DIED;
1321 newval |= vpid;
1a52084d 1322
af54d6a1
TG
1323 /* The futex requeue_pi code can enforce the waiters bit */
1324 if (set_waiters)
1325 newval |= FUTEX_WAITERS;
1326
1327 ret = lock_pi_update_atomic(uaddr, uval, newval);
1328 /* If the take over worked, return 1 */
1329 return ret < 0 ? ret : 1;
1330 }
1a52084d
DH
1331
1332 /*
af54d6a1
TG
1333 * First waiter. Set the waiters bit before attaching ourself to
1334 * the owner. If owner tries to unlock, it will be forced into
1335 * the kernel and blocked on hb->lock.
1a52084d 1336 */
af54d6a1
TG
1337 newval = uval | FUTEX_WAITERS;
1338 ret = lock_pi_update_atomic(uaddr, uval, newval);
1339 if (ret)
1340 return ret;
1a52084d 1341 /*
af54d6a1
TG
1342 * If the update of the user space value succeeded, we try to
1343 * attach to the owner. If that fails, no harm done, we only
1344 * set the FUTEX_WAITERS bit in the user space variable.
1a52084d 1345 */
af54d6a1 1346 return attach_to_pi_owner(uval, key, ps);
1a52084d
DH
1347}
1348
2e12978a
LJ
1349/**
1350 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1351 * @q: The futex_q to unqueue
1352 *
1353 * The q->lock_ptr must not be NULL and must be held by the caller.
1354 */
1355static void __unqueue_futex(struct futex_q *q)
1356{
1357 struct futex_hash_bucket *hb;
1358
29096202
SR
1359 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1360 || WARN_ON(plist_node_empty(&q->list)))
2e12978a
LJ
1361 return;
1362
1363 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1364 plist_del(&q->list, &hb->chain);
11d4616b 1365 hb_waiters_dec(hb);
2e12978a
LJ
1366}
1367
1da177e4
LT
1368/*
1369 * The hash bucket lock must be held when this is called.
1d0dcb3a
DB
1370 * Afterwards, the futex_q must not be accessed. Callers
1371 * must ensure to later call wake_up_q() for the actual
1372 * wakeups to occur.
1da177e4 1373 */
1d0dcb3a 1374static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1da177e4 1375{
f1a11e05
TG
1376 struct task_struct *p = q->task;
1377
aa10990e
DH
1378 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1379 return;
1380
1da177e4 1381 /*
1d0dcb3a
DB
1382 * Queue the task for later wakeup for after we've released
1383 * the hb->lock. wake_q_add() grabs reference to p.
1da177e4 1384 */
1d0dcb3a 1385 wake_q_add(wake_q, p);
2e12978a 1386 __unqueue_futex(q);
1da177e4 1387 /*
38fcd06e
DHV
1388 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1389 * is written, without taking any locks. This is possible in the event
1390 * of a spurious wakeup, for example. A memory barrier is required here
1391 * to prevent the following store to lock_ptr from getting ahead of the
1392 * plist_del in __unqueue_futex().
1da177e4 1393 */
1b367ece 1394 smp_store_release(&q->lock_ptr, NULL);
1da177e4
LT
1395}
1396
16ffa12d
PZ
1397/*
1398 * Caller must hold a reference on @pi_state.
1399 */
1400static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
c87e2837 1401{
7cfdaf38 1402 u32 uninitialized_var(curval), newval;
16ffa12d 1403 struct task_struct *new_owner;
aa2bfe55 1404 bool postunlock = false;
194a6b5b 1405 DEFINE_WAKE_Q(wake_q);
13fbca4c 1406 int ret = 0;
c87e2837 1407
c87e2837 1408 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
bebe5b51 1409 if (WARN_ON_ONCE(!new_owner)) {
16ffa12d 1410 /*
bebe5b51 1411 * As per the comment in futex_unlock_pi() this should not happen.
16ffa12d
PZ
1412 *
1413 * When this happens, give up our locks and try again, giving
1414 * the futex_lock_pi() instance time to complete, either by
1415 * waiting on the rtmutex or removing itself from the futex
1416 * queue.
1417 */
1418 ret = -EAGAIN;
1419 goto out_unlock;
73d786bd 1420 }
c87e2837
IM
1421
1422 /*
16ffa12d
PZ
1423 * We pass it to the next owner. The WAITERS bit is always kept
1424 * enabled while there is PI state around. We cleanup the owner
1425 * died bit, because we are the owner.
c87e2837 1426 */
13fbca4c 1427 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 1428
ab51fbab
DB
1429 if (unlikely(should_fail_futex(true)))
1430 ret = -EFAULT;
1431
89e9e66b 1432 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
13fbca4c 1433 ret = -EFAULT;
734009e9 1434
89e9e66b
SAS
1435 } else if (curval != uval) {
1436 /*
1437 * If a unconditional UNLOCK_PI operation (user space did not
1438 * try the TID->0 transition) raced with a waiter setting the
1439 * FUTEX_WAITERS flag between get_user() and locking the hash
1440 * bucket lock, retry the operation.
1441 */
1442 if ((FUTEX_TID_MASK & curval) == uval)
1443 ret = -EAGAIN;
1444 else
1445 ret = -EINVAL;
1446 }
734009e9 1447
16ffa12d
PZ
1448 if (ret)
1449 goto out_unlock;
c87e2837 1450
94ffac5d
PZ
1451 /*
1452 * This is a point of no return; once we modify the uval there is no
1453 * going back and subsequent operations must not fail.
1454 */
1455
b4abf910 1456 raw_spin_lock(&pi_state->owner->pi_lock);
627371d7
IM
1457 WARN_ON(list_empty(&pi_state->list));
1458 list_del_init(&pi_state->list);
b4abf910 1459 raw_spin_unlock(&pi_state->owner->pi_lock);
627371d7 1460
b4abf910 1461 raw_spin_lock(&new_owner->pi_lock);
627371d7 1462 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1463 list_add(&pi_state->list, &new_owner->pi_state_list);
1464 pi_state->owner = new_owner;
b4abf910 1465 raw_spin_unlock(&new_owner->pi_lock);
627371d7 1466
aa2bfe55 1467 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
5293c2ef 1468
16ffa12d 1469out_unlock:
5293c2ef 1470 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
5293c2ef 1471
aa2bfe55
PZ
1472 if (postunlock)
1473 rt_mutex_postunlock(&wake_q);
c87e2837 1474
16ffa12d 1475 return ret;
c87e2837
IM
1476}
1477
8b8f319f
IM
1478/*
1479 * Express the locking dependencies for lockdep:
1480 */
1481static inline void
1482double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1483{
1484 if (hb1 <= hb2) {
1485 spin_lock(&hb1->lock);
1486 if (hb1 < hb2)
1487 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1488 } else { /* hb1 > hb2 */
1489 spin_lock(&hb2->lock);
1490 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1491 }
1492}
1493
5eb3dc62
DH
1494static inline void
1495double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1496{
f061d351 1497 spin_unlock(&hb1->lock);
88f502fe
IM
1498 if (hb1 != hb2)
1499 spin_unlock(&hb2->lock);
5eb3dc62
DH
1500}
1501
1da177e4 1502/*
b2d0994b 1503 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1504 */
b41277dc
DH
1505static int
1506futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1507{
e2970f2f 1508 struct futex_hash_bucket *hb;
1da177e4 1509 struct futex_q *this, *next;
38d47c1b 1510 union futex_key key = FUTEX_KEY_INIT;
1da177e4 1511 int ret;
194a6b5b 1512 DEFINE_WAKE_Q(wake_q);
1da177e4 1513
cd689985
TG
1514 if (!bitset)
1515 return -EINVAL;
1516
9ea71503 1517 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1da177e4
LT
1518 if (unlikely(ret != 0))
1519 goto out;
1520
e2970f2f 1521 hb = hash_futex(&key);
b0c29f79
DB
1522
1523 /* Make sure we really have tasks to wakeup */
1524 if (!hb_waiters_pending(hb))
1525 goto out_put_key;
1526
e2970f2f 1527 spin_lock(&hb->lock);
1da177e4 1528
0d00c7b2 1529 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1da177e4 1530 if (match_futex (&this->key, &key)) {
52400ba9 1531 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1532 ret = -EINVAL;
1533 break;
1534 }
cd689985
TG
1535
1536 /* Check if one of the bits is set in both bitsets */
1537 if (!(this->bitset & bitset))
1538 continue;
1539
1d0dcb3a 1540 mark_wake_futex(&wake_q, this);
1da177e4
LT
1541 if (++ret >= nr_wake)
1542 break;
1543 }
1544 }
1545
e2970f2f 1546 spin_unlock(&hb->lock);
1d0dcb3a 1547 wake_up_q(&wake_q);
b0c29f79 1548out_put_key:
ae791a2d 1549 put_futex_key(&key);
42d35d48 1550out:
1da177e4
LT
1551 return ret;
1552}
1553
30d6e0a4
JS
1554static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1555{
1556 unsigned int op = (encoded_op & 0x70000000) >> 28;
1557 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
1558 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 12);
1559 int cmparg = sign_extend32(encoded_op & 0x00000fff, 12);
1560 int oldval, ret;
1561
1562 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1563 if (oparg < 0 || oparg > 31)
1564 return -EINVAL;
1565 oparg = 1 << oparg;
1566 }
1567
1568 if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
1569 return -EFAULT;
1570
1571 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1572 if (ret)
1573 return ret;
1574
1575 switch (cmp) {
1576 case FUTEX_OP_CMP_EQ:
1577 return oldval == cmparg;
1578 case FUTEX_OP_CMP_NE:
1579 return oldval != cmparg;
1580 case FUTEX_OP_CMP_LT:
1581 return oldval < cmparg;
1582 case FUTEX_OP_CMP_GE:
1583 return oldval >= cmparg;
1584 case FUTEX_OP_CMP_LE:
1585 return oldval <= cmparg;
1586 case FUTEX_OP_CMP_GT:
1587 return oldval > cmparg;
1588 default:
1589 return -ENOSYS;
1590 }
1591}
1592
4732efbe
JJ
1593/*
1594 * Wake up all waiters hashed on the physical page that is mapped
1595 * to this virtual address:
1596 */
e2970f2f 1597static int
b41277dc 1598futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1599 int nr_wake, int nr_wake2, int op)
4732efbe 1600{
38d47c1b 1601 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1602 struct futex_hash_bucket *hb1, *hb2;
4732efbe 1603 struct futex_q *this, *next;
e4dc5b7a 1604 int ret, op_ret;
194a6b5b 1605 DEFINE_WAKE_Q(wake_q);
4732efbe 1606
e4dc5b7a 1607retry:
9ea71503 1608 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
4732efbe
JJ
1609 if (unlikely(ret != 0))
1610 goto out;
9ea71503 1611 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
4732efbe 1612 if (unlikely(ret != 0))
42d35d48 1613 goto out_put_key1;
4732efbe 1614
e2970f2f
IM
1615 hb1 = hash_futex(&key1);
1616 hb2 = hash_futex(&key2);
4732efbe 1617
e4dc5b7a 1618retry_private:
eaaea803 1619 double_lock_hb(hb1, hb2);
e2970f2f 1620 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1621 if (unlikely(op_ret < 0)) {
4732efbe 1622
5eb3dc62 1623 double_unlock_hb(hb1, hb2);
4732efbe 1624
7ee1dd3f 1625#ifndef CONFIG_MMU
e2970f2f
IM
1626 /*
1627 * we don't get EFAULT from MMU faults if we don't have an MMU,
1628 * but we might get them from range checking
1629 */
7ee1dd3f 1630 ret = op_ret;
42d35d48 1631 goto out_put_keys;
7ee1dd3f
DH
1632#endif
1633
796f8d9b
DG
1634 if (unlikely(op_ret != -EFAULT)) {
1635 ret = op_ret;
42d35d48 1636 goto out_put_keys;
796f8d9b
DG
1637 }
1638
d0725992 1639 ret = fault_in_user_writeable(uaddr2);
4732efbe 1640 if (ret)
de87fcc1 1641 goto out_put_keys;
4732efbe 1642
b41277dc 1643 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1644 goto retry_private;
1645
ae791a2d
TG
1646 put_futex_key(&key2);
1647 put_futex_key(&key1);
e4dc5b7a 1648 goto retry;
4732efbe
JJ
1649 }
1650
0d00c7b2 1651 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
4732efbe 1652 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1653 if (this->pi_state || this->rt_waiter) {
1654 ret = -EINVAL;
1655 goto out_unlock;
1656 }
1d0dcb3a 1657 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1658 if (++ret >= nr_wake)
1659 break;
1660 }
1661 }
1662
1663 if (op_ret > 0) {
4732efbe 1664 op_ret = 0;
0d00c7b2 1665 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
4732efbe 1666 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1667 if (this->pi_state || this->rt_waiter) {
1668 ret = -EINVAL;
1669 goto out_unlock;
1670 }
1d0dcb3a 1671 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1672 if (++op_ret >= nr_wake2)
1673 break;
1674 }
1675 }
1676 ret += op_ret;
1677 }
1678
aa10990e 1679out_unlock:
5eb3dc62 1680 double_unlock_hb(hb1, hb2);
1d0dcb3a 1681 wake_up_q(&wake_q);
42d35d48 1682out_put_keys:
ae791a2d 1683 put_futex_key(&key2);
42d35d48 1684out_put_key1:
ae791a2d 1685 put_futex_key(&key1);
42d35d48 1686out:
4732efbe
JJ
1687 return ret;
1688}
1689
9121e478
DH
1690/**
1691 * requeue_futex() - Requeue a futex_q from one hb to another
1692 * @q: the futex_q to requeue
1693 * @hb1: the source hash_bucket
1694 * @hb2: the target hash_bucket
1695 * @key2: the new key for the requeued futex_q
1696 */
1697static inline
1698void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1699 struct futex_hash_bucket *hb2, union futex_key *key2)
1700{
1701
1702 /*
1703 * If key1 and key2 hash to the same bucket, no need to
1704 * requeue.
1705 */
1706 if (likely(&hb1->chain != &hb2->chain)) {
1707 plist_del(&q->list, &hb1->chain);
11d4616b 1708 hb_waiters_dec(hb1);
11d4616b 1709 hb_waiters_inc(hb2);
fe1bce9e 1710 plist_add(&q->list, &hb2->chain);
9121e478 1711 q->lock_ptr = &hb2->lock;
9121e478
DH
1712 }
1713 get_futex_key_refs(key2);
1714 q->key = *key2;
1715}
1716
52400ba9
DH
1717/**
1718 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1719 * @q: the futex_q
1720 * @key: the key of the requeue target futex
1721 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1722 *
1723 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1724 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1725 * to the requeue target futex so the waiter can detect the wakeup on the right
1726 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1727 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1728 * to protect access to the pi_state to fixup the owner later. Must be called
1729 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1730 */
1731static inline
beda2c7e
DH
1732void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1733 struct futex_hash_bucket *hb)
52400ba9 1734{
52400ba9
DH
1735 get_futex_key_refs(key);
1736 q->key = *key;
1737
2e12978a 1738 __unqueue_futex(q);
52400ba9
DH
1739
1740 WARN_ON(!q->rt_waiter);
1741 q->rt_waiter = NULL;
1742
beda2c7e 1743 q->lock_ptr = &hb->lock;
beda2c7e 1744
f1a11e05 1745 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1746}
1747
1748/**
1749 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1750 * @pifutex: the user address of the to futex
1751 * @hb1: the from futex hash bucket, must be locked by the caller
1752 * @hb2: the to futex hash bucket, must be locked by the caller
1753 * @key1: the from futex key
1754 * @key2: the to futex key
1755 * @ps: address to store the pi_state pointer
1756 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1757 *
1758 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1759 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1760 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1761 * hb1 and hb2 must be held by the caller.
52400ba9 1762 *
6c23cbbd 1763 * Return:
7b4ff1ad
MCC
1764 * - 0 - failed to acquire the lock atomically;
1765 * - >0 - acquired the lock, return value is vpid of the top_waiter
1766 * - <0 - error
52400ba9
DH
1767 */
1768static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1769 struct futex_hash_bucket *hb1,
1770 struct futex_hash_bucket *hb2,
1771 union futex_key *key1, union futex_key *key2,
bab5bc9e 1772 struct futex_pi_state **ps, int set_waiters)
52400ba9 1773{
bab5bc9e 1774 struct futex_q *top_waiter = NULL;
52400ba9 1775 u32 curval;
866293ee 1776 int ret, vpid;
52400ba9
DH
1777
1778 if (get_futex_value_locked(&curval, pifutex))
1779 return -EFAULT;
1780
ab51fbab
DB
1781 if (unlikely(should_fail_futex(true)))
1782 return -EFAULT;
1783
bab5bc9e
DH
1784 /*
1785 * Find the top_waiter and determine if there are additional waiters.
1786 * If the caller intends to requeue more than 1 waiter to pifutex,
1787 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1788 * as we have means to handle the possible fault. If not, don't set
1789 * the bit unecessarily as it will force the subsequent unlock to enter
1790 * the kernel.
1791 */
52400ba9
DH
1792 top_waiter = futex_top_waiter(hb1, key1);
1793
1794 /* There are no waiters, nothing for us to do. */
1795 if (!top_waiter)
1796 return 0;
1797
84bc4af5
DH
1798 /* Ensure we requeue to the expected futex. */
1799 if (!match_futex(top_waiter->requeue_pi_key, key2))
1800 return -EINVAL;
1801
52400ba9 1802 /*
bab5bc9e
DH
1803 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1804 * the contended case or if set_waiters is 1. The pi_state is returned
1805 * in ps in contended cases.
52400ba9 1806 */
866293ee 1807 vpid = task_pid_vnr(top_waiter->task);
bab5bc9e
DH
1808 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1809 set_waiters);
866293ee 1810 if (ret == 1) {
beda2c7e 1811 requeue_pi_wake_futex(top_waiter, key2, hb2);
866293ee
TG
1812 return vpid;
1813 }
52400ba9
DH
1814 return ret;
1815}
1816
1817/**
1818 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1819 * @uaddr1: source futex user address
b41277dc 1820 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1821 * @uaddr2: target futex user address
1822 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1823 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1824 * @cmpval: @uaddr1 expected value (or %NULL)
1825 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1826 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1827 *
1828 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1829 * uaddr2 atomically on behalf of the top waiter.
1830 *
6c23cbbd 1831 * Return:
7b4ff1ad
MCC
1832 * - >=0 - on success, the number of tasks requeued or woken;
1833 * - <0 - on error
1da177e4 1834 */
b41277dc
DH
1835static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1836 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1837 u32 *cmpval, int requeue_pi)
1da177e4 1838{
38d47c1b 1839 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1840 int drop_count = 0, task_count = 0, ret;
1841 struct futex_pi_state *pi_state = NULL;
e2970f2f 1842 struct futex_hash_bucket *hb1, *hb2;
1da177e4 1843 struct futex_q *this, *next;
194a6b5b 1844 DEFINE_WAKE_Q(wake_q);
52400ba9 1845
bc2eecd7
NP
1846 /*
1847 * When PI not supported: return -ENOSYS if requeue_pi is true,
1848 * consequently the compiler knows requeue_pi is always false past
1849 * this point which will optimize away all the conditional code
1850 * further down.
1851 */
1852 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1853 return -ENOSYS;
1854
52400ba9 1855 if (requeue_pi) {
e9c243a5
TG
1856 /*
1857 * Requeue PI only works on two distinct uaddrs. This
1858 * check is only valid for private futexes. See below.
1859 */
1860 if (uaddr1 == uaddr2)
1861 return -EINVAL;
1862
52400ba9
DH
1863 /*
1864 * requeue_pi requires a pi_state, try to allocate it now
1865 * without any locks in case it fails.
1866 */
1867 if (refill_pi_state_cache())
1868 return -ENOMEM;
1869 /*
1870 * requeue_pi must wake as many tasks as it can, up to nr_wake
1871 * + nr_requeue, since it acquires the rt_mutex prior to
1872 * returning to userspace, so as to not leave the rt_mutex with
1873 * waiters and no owner. However, second and third wake-ups
1874 * cannot be predicted as they involve race conditions with the
1875 * first wake and a fault while looking up the pi_state. Both
1876 * pthread_cond_signal() and pthread_cond_broadcast() should
1877 * use nr_wake=1.
1878 */
1879 if (nr_wake != 1)
1880 return -EINVAL;
1881 }
1da177e4 1882
42d35d48 1883retry:
9ea71503 1884 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1da177e4
LT
1885 if (unlikely(ret != 0))
1886 goto out;
9ea71503
SB
1887 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1888 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1da177e4 1889 if (unlikely(ret != 0))
42d35d48 1890 goto out_put_key1;
1da177e4 1891
e9c243a5
TG
1892 /*
1893 * The check above which compares uaddrs is not sufficient for
1894 * shared futexes. We need to compare the keys:
1895 */
1896 if (requeue_pi && match_futex(&key1, &key2)) {
1897 ret = -EINVAL;
1898 goto out_put_keys;
1899 }
1900
e2970f2f
IM
1901 hb1 = hash_futex(&key1);
1902 hb2 = hash_futex(&key2);
1da177e4 1903
e4dc5b7a 1904retry_private:
69cd9eba 1905 hb_waiters_inc(hb2);
8b8f319f 1906 double_lock_hb(hb1, hb2);
1da177e4 1907
e2970f2f
IM
1908 if (likely(cmpval != NULL)) {
1909 u32 curval;
1da177e4 1910
e2970f2f 1911 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1912
1913 if (unlikely(ret)) {
5eb3dc62 1914 double_unlock_hb(hb1, hb2);
69cd9eba 1915 hb_waiters_dec(hb2);
1da177e4 1916
e2970f2f 1917 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1918 if (ret)
1919 goto out_put_keys;
1da177e4 1920
b41277dc 1921 if (!(flags & FLAGS_SHARED))
e4dc5b7a 1922 goto retry_private;
1da177e4 1923
ae791a2d
TG
1924 put_futex_key(&key2);
1925 put_futex_key(&key1);
e4dc5b7a 1926 goto retry;
1da177e4 1927 }
e2970f2f 1928 if (curval != *cmpval) {
1da177e4
LT
1929 ret = -EAGAIN;
1930 goto out_unlock;
1931 }
1932 }
1933
52400ba9 1934 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
1935 /*
1936 * Attempt to acquire uaddr2 and wake the top waiter. If we
1937 * intend to requeue waiters, force setting the FUTEX_WAITERS
1938 * bit. We force this here where we are able to easily handle
1939 * faults rather in the requeue loop below.
1940 */
52400ba9 1941 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 1942 &key2, &pi_state, nr_requeue);
52400ba9
DH
1943
1944 /*
1945 * At this point the top_waiter has either taken uaddr2 or is
1946 * waiting on it. If the former, then the pi_state will not
1947 * exist yet, look it up one more time to ensure we have a
866293ee
TG
1948 * reference to it. If the lock was taken, ret contains the
1949 * vpid of the top waiter task.
ecb38b78
TG
1950 * If the lock was not taken, we have pi_state and an initial
1951 * refcount on it. In case of an error we have nothing.
52400ba9 1952 */
866293ee 1953 if (ret > 0) {
52400ba9 1954 WARN_ON(pi_state);
89061d3d 1955 drop_count++;
52400ba9 1956 task_count++;
866293ee 1957 /*
ecb38b78
TG
1958 * If we acquired the lock, then the user space value
1959 * of uaddr2 should be vpid. It cannot be changed by
1960 * the top waiter as it is blocked on hb2 lock if it
1961 * tries to do so. If something fiddled with it behind
1962 * our back the pi state lookup might unearth it. So
1963 * we rather use the known value than rereading and
1964 * handing potential crap to lookup_pi_state.
1965 *
1966 * If that call succeeds then we have pi_state and an
1967 * initial refcount on it.
866293ee 1968 */
734009e9 1969 ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
52400ba9
DH
1970 }
1971
1972 switch (ret) {
1973 case 0:
ecb38b78 1974 /* We hold a reference on the pi state. */
52400ba9 1975 break;
4959f2de
TG
1976
1977 /* If the above failed, then pi_state is NULL */
52400ba9
DH
1978 case -EFAULT:
1979 double_unlock_hb(hb1, hb2);
69cd9eba 1980 hb_waiters_dec(hb2);
ae791a2d
TG
1981 put_futex_key(&key2);
1982 put_futex_key(&key1);
d0725992 1983 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
1984 if (!ret)
1985 goto retry;
1986 goto out;
1987 case -EAGAIN:
af54d6a1
TG
1988 /*
1989 * Two reasons for this:
1990 * - Owner is exiting and we just wait for the
1991 * exit to complete.
1992 * - The user space value changed.
1993 */
52400ba9 1994 double_unlock_hb(hb1, hb2);
69cd9eba 1995 hb_waiters_dec(hb2);
ae791a2d
TG
1996 put_futex_key(&key2);
1997 put_futex_key(&key1);
52400ba9
DH
1998 cond_resched();
1999 goto retry;
2000 default:
2001 goto out_unlock;
2002 }
2003 }
2004
0d00c7b2 2005 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
52400ba9
DH
2006 if (task_count - nr_wake >= nr_requeue)
2007 break;
2008
2009 if (!match_futex(&this->key, &key1))
1da177e4 2010 continue;
52400ba9 2011
392741e0
DH
2012 /*
2013 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2014 * be paired with each other and no other futex ops.
aa10990e
DH
2015 *
2016 * We should never be requeueing a futex_q with a pi_state,
2017 * which is awaiting a futex_unlock_pi().
392741e0
DH
2018 */
2019 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
2020 (!requeue_pi && this->rt_waiter) ||
2021 this->pi_state) {
392741e0
DH
2022 ret = -EINVAL;
2023 break;
2024 }
52400ba9
DH
2025
2026 /*
2027 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2028 * lock, we already woke the top_waiter. If not, it will be
2029 * woken by futex_unlock_pi().
2030 */
2031 if (++task_count <= nr_wake && !requeue_pi) {
1d0dcb3a 2032 mark_wake_futex(&wake_q, this);
52400ba9
DH
2033 continue;
2034 }
1da177e4 2035
84bc4af5
DH
2036 /* Ensure we requeue to the expected futex for requeue_pi. */
2037 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2038 ret = -EINVAL;
2039 break;
2040 }
2041
52400ba9
DH
2042 /*
2043 * Requeue nr_requeue waiters and possibly one more in the case
2044 * of requeue_pi if we couldn't acquire the lock atomically.
2045 */
2046 if (requeue_pi) {
ecb38b78
TG
2047 /*
2048 * Prepare the waiter to take the rt_mutex. Take a
2049 * refcount on the pi_state and store the pointer in
2050 * the futex_q object of the waiter.
2051 */
bf92cf3a 2052 get_pi_state(pi_state);
52400ba9
DH
2053 this->pi_state = pi_state;
2054 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2055 this->rt_waiter,
c051b21f 2056 this->task);
52400ba9 2057 if (ret == 1) {
ecb38b78
TG
2058 /*
2059 * We got the lock. We do neither drop the
2060 * refcount on pi_state nor clear
2061 * this->pi_state because the waiter needs the
2062 * pi_state for cleaning up the user space
2063 * value. It will drop the refcount after
2064 * doing so.
2065 */
beda2c7e 2066 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 2067 drop_count++;
52400ba9
DH
2068 continue;
2069 } else if (ret) {
ecb38b78
TG
2070 /*
2071 * rt_mutex_start_proxy_lock() detected a
2072 * potential deadlock when we tried to queue
2073 * that waiter. Drop the pi_state reference
2074 * which we took above and remove the pointer
2075 * to the state from the waiters futex_q
2076 * object.
2077 */
52400ba9 2078 this->pi_state = NULL;
29e9ee5d 2079 put_pi_state(pi_state);
885c2cb7
TG
2080 /*
2081 * We stop queueing more waiters and let user
2082 * space deal with the mess.
2083 */
2084 break;
52400ba9 2085 }
1da177e4 2086 }
52400ba9
DH
2087 requeue_futex(this, hb1, hb2, &key2);
2088 drop_count++;
1da177e4
LT
2089 }
2090
ecb38b78
TG
2091 /*
2092 * We took an extra initial reference to the pi_state either
2093 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2094 * need to drop it here again.
2095 */
29e9ee5d 2096 put_pi_state(pi_state);
885c2cb7
TG
2097
2098out_unlock:
5eb3dc62 2099 double_unlock_hb(hb1, hb2);
1d0dcb3a 2100 wake_up_q(&wake_q);
69cd9eba 2101 hb_waiters_dec(hb2);
1da177e4 2102
cd84a42f
DH
2103 /*
2104 * drop_futex_key_refs() must be called outside the spinlocks. During
2105 * the requeue we moved futex_q's from the hash bucket at key1 to the
2106 * one at key2 and updated their key pointer. We no longer need to
2107 * hold the references to key1.
2108 */
1da177e4 2109 while (--drop_count >= 0)
9adef58b 2110 drop_futex_key_refs(&key1);
1da177e4 2111
42d35d48 2112out_put_keys:
ae791a2d 2113 put_futex_key(&key2);
42d35d48 2114out_put_key1:
ae791a2d 2115 put_futex_key(&key1);
42d35d48 2116out:
52400ba9 2117 return ret ? ret : task_count;
1da177e4
LT
2118}
2119
2120/* The key must be already stored in q->key. */
82af7aca 2121static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 2122 __acquires(&hb->lock)
1da177e4 2123{
e2970f2f 2124 struct futex_hash_bucket *hb;
1da177e4 2125
e2970f2f 2126 hb = hash_futex(&q->key);
11d4616b
LT
2127
2128 /*
2129 * Increment the counter before taking the lock so that
2130 * a potential waker won't miss a to-be-slept task that is
2131 * waiting for the spinlock. This is safe as all queue_lock()
2132 * users end up calling queue_me(). Similarly, for housekeeping,
2133 * decrement the counter at queue_unlock() when some error has
2134 * occurred and we don't end up adding the task to the list.
2135 */
2136 hb_waiters_inc(hb);
2137
e2970f2f 2138 q->lock_ptr = &hb->lock;
1da177e4 2139
8ad7b378 2140 spin_lock(&hb->lock); /* implies smp_mb(); (A) */
e2970f2f 2141 return hb;
1da177e4
LT
2142}
2143
d40d65c8 2144static inline void
0d00c7b2 2145queue_unlock(struct futex_hash_bucket *hb)
15e408cd 2146 __releases(&hb->lock)
d40d65c8
DH
2147{
2148 spin_unlock(&hb->lock);
11d4616b 2149 hb_waiters_dec(hb);
d40d65c8
DH
2150}
2151
cfafcd11 2152static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 2153{
ec92d082
PP
2154 int prio;
2155
2156 /*
2157 * The priority used to register this element is
2158 * - either the real thread-priority for the real-time threads
2159 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2160 * - or MAX_RT_PRIO for non-RT threads.
2161 * Thus, all RT-threads are woken first in priority order, and
2162 * the others are woken last, in FIFO order.
2163 */
2164 prio = min(current->normal_prio, MAX_RT_PRIO);
2165
2166 plist_node_init(&q->list, prio);
ec92d082 2167 plist_add(&q->list, &hb->chain);
c87e2837 2168 q->task = current;
cfafcd11
PZ
2169}
2170
2171/**
2172 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2173 * @q: The futex_q to enqueue
2174 * @hb: The destination hash bucket
2175 *
2176 * The hb->lock must be held by the caller, and is released here. A call to
2177 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2178 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2179 * or nothing if the unqueue is done as part of the wake process and the unqueue
2180 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2181 * an example).
2182 */
2183static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2184 __releases(&hb->lock)
2185{
2186 __queue_me(q, hb);
e2970f2f 2187 spin_unlock(&hb->lock);
1da177e4
LT
2188}
2189
d40d65c8
DH
2190/**
2191 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2192 * @q: The futex_q to unqueue
2193 *
2194 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2195 * be paired with exactly one earlier call to queue_me().
2196 *
6c23cbbd 2197 * Return:
7b4ff1ad
MCC
2198 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2199 * - 0 - if the futex_q was already removed by the waking thread
1da177e4 2200 */
1da177e4
LT
2201static int unqueue_me(struct futex_q *q)
2202{
1da177e4 2203 spinlock_t *lock_ptr;
e2970f2f 2204 int ret = 0;
1da177e4
LT
2205
2206 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 2207retry:
29b75eb2
JZ
2208 /*
2209 * q->lock_ptr can change between this read and the following spin_lock.
2210 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2211 * optimizing lock_ptr out of the logic below.
2212 */
2213 lock_ptr = READ_ONCE(q->lock_ptr);
c80544dc 2214 if (lock_ptr != NULL) {
1da177e4
LT
2215 spin_lock(lock_ptr);
2216 /*
2217 * q->lock_ptr can change between reading it and
2218 * spin_lock(), causing us to take the wrong lock. This
2219 * corrects the race condition.
2220 *
2221 * Reasoning goes like this: if we have the wrong lock,
2222 * q->lock_ptr must have changed (maybe several times)
2223 * between reading it and the spin_lock(). It can
2224 * change again after the spin_lock() but only if it was
2225 * already changed before the spin_lock(). It cannot,
2226 * however, change back to the original value. Therefore
2227 * we can detect whether we acquired the correct lock.
2228 */
2229 if (unlikely(lock_ptr != q->lock_ptr)) {
2230 spin_unlock(lock_ptr);
2231 goto retry;
2232 }
2e12978a 2233 __unqueue_futex(q);
c87e2837
IM
2234
2235 BUG_ON(q->pi_state);
2236
1da177e4
LT
2237 spin_unlock(lock_ptr);
2238 ret = 1;
2239 }
2240
9adef58b 2241 drop_futex_key_refs(&q->key);
1da177e4
LT
2242 return ret;
2243}
2244
c87e2837
IM
2245/*
2246 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
2247 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2248 * and dropped here.
c87e2837 2249 */
d0aa7a70 2250static void unqueue_me_pi(struct futex_q *q)
15e408cd 2251 __releases(q->lock_ptr)
c87e2837 2252{
2e12978a 2253 __unqueue_futex(q);
c87e2837
IM
2254
2255 BUG_ON(!q->pi_state);
29e9ee5d 2256 put_pi_state(q->pi_state);
c87e2837
IM
2257 q->pi_state = NULL;
2258
d0aa7a70 2259 spin_unlock(q->lock_ptr);
c87e2837
IM
2260}
2261
d0aa7a70 2262/*
cdf71a10 2263 * Fixup the pi_state owner with the new owner.
d0aa7a70 2264 *
778e9a9c
AK
2265 * Must be called with hash bucket lock held and mm->sem held for non
2266 * private futexes.
d0aa7a70 2267 */
778e9a9c 2268static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
ae791a2d 2269 struct task_struct *newowner)
d0aa7a70 2270{
cdf71a10 2271 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 2272 struct futex_pi_state *pi_state = q->pi_state;
7cfdaf38 2273 u32 uval, uninitialized_var(curval), newval;
734009e9 2274 struct task_struct *oldowner;
e4dc5b7a 2275 int ret;
d0aa7a70 2276
734009e9
PZ
2277 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2278
2279 oldowner = pi_state->owner;
d0aa7a70 2280 /* Owner died? */
1b7558e4
TG
2281 if (!pi_state->owner)
2282 newtid |= FUTEX_OWNER_DIED;
2283
2284 /*
2285 * We are here either because we stole the rtmutex from the
8161239a 2286 * previous highest priority waiter or we are the highest priority
16ffa12d
PZ
2287 * waiter but have failed to get the rtmutex the first time.
2288 *
8161239a
LJ
2289 * We have to replace the newowner TID in the user space variable.
2290 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 2291 *
b2d0994b
DH
2292 * Note: We write the user space value _before_ changing the pi_state
2293 * because we can fault here. Imagine swapped out pages or a fork
2294 * that marked all the anonymous memory readonly for cow.
1b7558e4 2295 *
734009e9
PZ
2296 * Modifying pi_state _before_ the user space value would leave the
2297 * pi_state in an inconsistent state when we fault here, because we
2298 * need to drop the locks to handle the fault. This might be observed
2299 * in the PID check in lookup_pi_state.
1b7558e4
TG
2300 */
2301retry:
2302 if (get_futex_value_locked(&uval, uaddr))
2303 goto handle_fault;
2304
16ffa12d 2305 for (;;) {
1b7558e4
TG
2306 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2307
37a9d912 2308 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1b7558e4
TG
2309 goto handle_fault;
2310 if (curval == uval)
2311 break;
2312 uval = curval;
2313 }
2314
2315 /*
2316 * We fixed up user space. Now we need to fix the pi_state
2317 * itself.
2318 */
d0aa7a70 2319 if (pi_state->owner != NULL) {
734009e9 2320 raw_spin_lock(&pi_state->owner->pi_lock);
d0aa7a70
PP
2321 WARN_ON(list_empty(&pi_state->list));
2322 list_del_init(&pi_state->list);
734009e9 2323 raw_spin_unlock(&pi_state->owner->pi_lock);
1b7558e4 2324 }
d0aa7a70 2325
cdf71a10 2326 pi_state->owner = newowner;
d0aa7a70 2327
734009e9 2328 raw_spin_lock(&newowner->pi_lock);
d0aa7a70 2329 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 2330 list_add(&pi_state->list, &newowner->pi_state_list);
734009e9
PZ
2331 raw_spin_unlock(&newowner->pi_lock);
2332 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2333
1b7558e4 2334 return 0;
d0aa7a70 2335
d0aa7a70 2336 /*
734009e9
PZ
2337 * To handle the page fault we need to drop the locks here. That gives
2338 * the other task (either the highest priority waiter itself or the
2339 * task which stole the rtmutex) the chance to try the fixup of the
2340 * pi_state. So once we are back from handling the fault we need to
2341 * check the pi_state after reacquiring the locks and before trying to
2342 * do another fixup. When the fixup has been done already we simply
2343 * return.
2344 *
2345 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2346 * drop hb->lock since the caller owns the hb -> futex_q relation.
2347 * Dropping the pi_mutex->wait_lock requires the state revalidate.
d0aa7a70 2348 */
1b7558e4 2349handle_fault:
734009e9 2350 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1b7558e4 2351 spin_unlock(q->lock_ptr);
778e9a9c 2352
d0725992 2353 ret = fault_in_user_writeable(uaddr);
778e9a9c 2354
1b7558e4 2355 spin_lock(q->lock_ptr);
734009e9 2356 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
778e9a9c 2357
1b7558e4
TG
2358 /*
2359 * Check if someone else fixed it for us:
2360 */
734009e9
PZ
2361 if (pi_state->owner != oldowner) {
2362 ret = 0;
2363 goto out_unlock;
2364 }
1b7558e4
TG
2365
2366 if (ret)
734009e9 2367 goto out_unlock;
1b7558e4
TG
2368
2369 goto retry;
734009e9
PZ
2370
2371out_unlock:
2372 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2373 return ret;
d0aa7a70
PP
2374}
2375
72c1bbf3 2376static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 2377
dd973998
DH
2378/**
2379 * fixup_owner() - Post lock pi_state and corner case management
2380 * @uaddr: user address of the futex
dd973998
DH
2381 * @q: futex_q (contains pi_state and access to the rt_mutex)
2382 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2383 *
2384 * After attempting to lock an rt_mutex, this function is called to cleanup
2385 * the pi_state owner as well as handle race conditions that may allow us to
2386 * acquire the lock. Must be called with the hb lock held.
2387 *
6c23cbbd 2388 * Return:
7b4ff1ad
MCC
2389 * - 1 - success, lock taken;
2390 * - 0 - success, lock not taken;
2391 * - <0 - on error (-EFAULT)
dd973998 2392 */
ae791a2d 2393static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998 2394{
dd973998
DH
2395 int ret = 0;
2396
2397 if (locked) {
2398 /*
2399 * Got the lock. We might not be the anticipated owner if we
2400 * did a lock-steal - fix up the PI-state in that case:
16ffa12d
PZ
2401 *
2402 * We can safely read pi_state->owner without holding wait_lock
2403 * because we now own the rt_mutex, only the owner will attempt
2404 * to change it.
dd973998
DH
2405 */
2406 if (q->pi_state->owner != current)
ae791a2d 2407 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
2408 goto out;
2409 }
2410
dd973998
DH
2411 /*
2412 * Paranoia check. If we did not take the lock, then we should not be
8161239a 2413 * the owner of the rt_mutex.
dd973998 2414 */
73d786bd 2415 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
dd973998
DH
2416 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2417 "pi-state %p\n", ret,
2418 q->pi_state->pi_mutex.owner,
2419 q->pi_state->owner);
73d786bd 2420 }
dd973998
DH
2421
2422out:
2423 return ret ? ret : locked;
2424}
2425
ca5f9524
DH
2426/**
2427 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2428 * @hb: the futex hash bucket, must be locked by the caller
2429 * @q: the futex_q to queue up on
2430 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
2431 */
2432static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 2433 struct hrtimer_sleeper *timeout)
ca5f9524 2434{
9beba3c5
DH
2435 /*
2436 * The task state is guaranteed to be set before another task can
b92b8b35 2437 * wake it. set_current_state() is implemented using smp_store_mb() and
9beba3c5
DH
2438 * queue_me() calls spin_unlock() upon completion, both serializing
2439 * access to the hash list and forcing another memory barrier.
2440 */
f1a11e05 2441 set_current_state(TASK_INTERRUPTIBLE);
0729e196 2442 queue_me(q, hb);
ca5f9524
DH
2443
2444 /* Arm the timer */
2e4b0d3f 2445 if (timeout)
ca5f9524 2446 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
ca5f9524
DH
2447
2448 /*
0729e196
DH
2449 * If we have been removed from the hash list, then another task
2450 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
2451 */
2452 if (likely(!plist_node_empty(&q->list))) {
2453 /*
2454 * If the timer has already expired, current will already be
2455 * flagged for rescheduling. Only call schedule if there
2456 * is no timeout, or if it has yet to expire.
2457 */
2458 if (!timeout || timeout->task)
88c8004f 2459 freezable_schedule();
ca5f9524
DH
2460 }
2461 __set_current_state(TASK_RUNNING);
2462}
2463
f801073f
DH
2464/**
2465 * futex_wait_setup() - Prepare to wait on a futex
2466 * @uaddr: the futex userspace address
2467 * @val: the expected value
b41277dc 2468 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
2469 * @q: the associated futex_q
2470 * @hb: storage for hash_bucket pointer to be returned to caller
2471 *
2472 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2473 * compare it with the expected value. Handle atomic faults internally.
2474 * Return with the hb lock held and a q.key reference on success, and unlocked
2475 * with no q.key reference on failure.
2476 *
6c23cbbd 2477 * Return:
7b4ff1ad
MCC
2478 * - 0 - uaddr contains val and hb has been locked;
2479 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 2480 */
b41277dc 2481static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 2482 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 2483{
e2970f2f
IM
2484 u32 uval;
2485 int ret;
1da177e4 2486
1da177e4 2487 /*
b2d0994b 2488 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
2489 * Order is important:
2490 *
2491 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2492 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2493 *
2494 * The basic logical guarantee of a futex is that it blocks ONLY
2495 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
2496 * any cond. If we locked the hash-bucket after testing *uaddr, that
2497 * would open a race condition where we could block indefinitely with
1da177e4
LT
2498 * cond(var) false, which would violate the guarantee.
2499 *
8fe8f545
ML
2500 * On the other hand, we insert q and release the hash-bucket only
2501 * after testing *uaddr. This guarantees that futex_wait() will NOT
2502 * absorb a wakeup if *uaddr does not match the desired values
2503 * while the syscall executes.
1da177e4 2504 */
f801073f 2505retry:
9ea71503 2506 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
f801073f 2507 if (unlikely(ret != 0))
a5a2a0c7 2508 return ret;
f801073f
DH
2509
2510retry_private:
2511 *hb = queue_lock(q);
2512
e2970f2f 2513 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 2514
f801073f 2515 if (ret) {
0d00c7b2 2516 queue_unlock(*hb);
1da177e4 2517
e2970f2f 2518 ret = get_user(uval, uaddr);
e4dc5b7a 2519 if (ret)
f801073f 2520 goto out;
1da177e4 2521
b41277dc 2522 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2523 goto retry_private;
2524
ae791a2d 2525 put_futex_key(&q->key);
e4dc5b7a 2526 goto retry;
1da177e4 2527 }
ca5f9524 2528
f801073f 2529 if (uval != val) {
0d00c7b2 2530 queue_unlock(*hb);
f801073f 2531 ret = -EWOULDBLOCK;
2fff78c7 2532 }
1da177e4 2533
f801073f
DH
2534out:
2535 if (ret)
ae791a2d 2536 put_futex_key(&q->key);
f801073f
DH
2537 return ret;
2538}
2539
b41277dc
DH
2540static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2541 ktime_t *abs_time, u32 bitset)
f801073f
DH
2542{
2543 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
2544 struct restart_block *restart;
2545 struct futex_hash_bucket *hb;
5bdb05f9 2546 struct futex_q q = futex_q_init;
f801073f
DH
2547 int ret;
2548
2549 if (!bitset)
2550 return -EINVAL;
f801073f
DH
2551 q.bitset = bitset;
2552
2553 if (abs_time) {
2554 to = &timeout;
2555
b41277dc
DH
2556 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2557 CLOCK_REALTIME : CLOCK_MONOTONIC,
2558 HRTIMER_MODE_ABS);
f801073f
DH
2559 hrtimer_init_sleeper(to, current);
2560 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2561 current->timer_slack_ns);
2562 }
2563
d58e6576 2564retry:
7ada876a
DH
2565 /*
2566 * Prepare to wait on uaddr. On success, holds hb lock and increments
2567 * q.key refs.
2568 */
b41277dc 2569 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
2570 if (ret)
2571 goto out;
2572
ca5f9524 2573 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 2574 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
2575
2576 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 2577 ret = 0;
7ada876a 2578 /* unqueue_me() drops q.key ref */
1da177e4 2579 if (!unqueue_me(&q))
7ada876a 2580 goto out;
2fff78c7 2581 ret = -ETIMEDOUT;
ca5f9524 2582 if (to && !to->task)
7ada876a 2583 goto out;
72c1bbf3 2584
e2970f2f 2585 /*
d58e6576
TG
2586 * We expect signal_pending(current), but we might be the
2587 * victim of a spurious wakeup as well.
e2970f2f 2588 */
7ada876a 2589 if (!signal_pending(current))
d58e6576 2590 goto retry;
d58e6576 2591
2fff78c7 2592 ret = -ERESTARTSYS;
c19384b5 2593 if (!abs_time)
7ada876a 2594 goto out;
1da177e4 2595
f56141e3 2596 restart = &current->restart_block;
2fff78c7 2597 restart->fn = futex_wait_restart;
a3c74c52 2598 restart->futex.uaddr = uaddr;
2fff78c7 2599 restart->futex.val = val;
2456e855 2600 restart->futex.time = *abs_time;
2fff78c7 2601 restart->futex.bitset = bitset;
0cd9c649 2602 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2603
2fff78c7
PZ
2604 ret = -ERESTART_RESTARTBLOCK;
2605
42d35d48 2606out:
ca5f9524
DH
2607 if (to) {
2608 hrtimer_cancel(&to->timer);
2609 destroy_hrtimer_on_stack(&to->timer);
2610 }
c87e2837
IM
2611 return ret;
2612}
2613
72c1bbf3
NP
2614
2615static long futex_wait_restart(struct restart_block *restart)
2616{
a3c74c52 2617 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2618 ktime_t t, *tp = NULL;
72c1bbf3 2619
a72188d8 2620 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2456e855 2621 t = restart->futex.time;
a72188d8
DH
2622 tp = &t;
2623 }
72c1bbf3 2624 restart->fn = do_no_restart_syscall;
b41277dc
DH
2625
2626 return (long)futex_wait(uaddr, restart->futex.flags,
2627 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2628}
2629
2630
c87e2837
IM
2631/*
2632 * Userspace tried a 0 -> TID atomic transition of the futex value
2633 * and failed. The kernel side here does the whole locking operation:
767f509c
DB
2634 * if there are waiters then it will block as a consequence of relying
2635 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2636 * a 0 value of the futex too.).
2637 *
2638 * Also serves as futex trylock_pi()'ing, and due semantics.
c87e2837 2639 */
996636dd 2640static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
b41277dc 2641 ktime_t *time, int trylock)
c87e2837 2642{
c5780e97 2643 struct hrtimer_sleeper timeout, *to = NULL;
16ffa12d 2644 struct futex_pi_state *pi_state = NULL;
cfafcd11 2645 struct rt_mutex_waiter rt_waiter;
c87e2837 2646 struct futex_hash_bucket *hb;
5bdb05f9 2647 struct futex_q q = futex_q_init;
dd973998 2648 int res, ret;
c87e2837 2649
bc2eecd7
NP
2650 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2651 return -ENOSYS;
2652
c87e2837
IM
2653 if (refill_pi_state_cache())
2654 return -ENOMEM;
2655
c19384b5 2656 if (time) {
c5780e97 2657 to = &timeout;
237fc6e7
TG
2658 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2659 HRTIMER_MODE_ABS);
c5780e97 2660 hrtimer_init_sleeper(to, current);
cc584b21 2661 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
2662 }
2663
42d35d48 2664retry:
9ea71503 2665 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
c87e2837 2666 if (unlikely(ret != 0))
42d35d48 2667 goto out;
c87e2837 2668
e4dc5b7a 2669retry_private:
82af7aca 2670 hb = queue_lock(&q);
c87e2837 2671
bab5bc9e 2672 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 2673 if (unlikely(ret)) {
767f509c
DB
2674 /*
2675 * Atomic work succeeded and we got the lock,
2676 * or failed. Either way, we do _not_ block.
2677 */
778e9a9c 2678 switch (ret) {
1a52084d
DH
2679 case 1:
2680 /* We got the lock. */
2681 ret = 0;
2682 goto out_unlock_put_key;
2683 case -EFAULT:
2684 goto uaddr_faulted;
778e9a9c
AK
2685 case -EAGAIN:
2686 /*
af54d6a1
TG
2687 * Two reasons for this:
2688 * - Task is exiting and we just wait for the
2689 * exit to complete.
2690 * - The user space value changed.
778e9a9c 2691 */
0d00c7b2 2692 queue_unlock(hb);
ae791a2d 2693 put_futex_key(&q.key);
778e9a9c
AK
2694 cond_resched();
2695 goto retry;
778e9a9c 2696 default:
42d35d48 2697 goto out_unlock_put_key;
c87e2837 2698 }
c87e2837
IM
2699 }
2700
cfafcd11
PZ
2701 WARN_ON(!q.pi_state);
2702
c87e2837
IM
2703 /*
2704 * Only actually queue now that the atomic ops are done:
2705 */
cfafcd11 2706 __queue_me(&q, hb);
c87e2837 2707
cfafcd11 2708 if (trylock) {
5293c2ef 2709 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
c87e2837
IM
2710 /* Fixup the trylock return value: */
2711 ret = ret ? 0 : -EWOULDBLOCK;
cfafcd11 2712 goto no_block;
c87e2837
IM
2713 }
2714
56222b21
PZ
2715 rt_mutex_init_waiter(&rt_waiter);
2716
cfafcd11 2717 /*
56222b21
PZ
2718 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2719 * hold it while doing rt_mutex_start_proxy(), because then it will
2720 * include hb->lock in the blocking chain, even through we'll not in
2721 * fact hold it while blocking. This will lead it to report -EDEADLK
2722 * and BUG when futex_unlock_pi() interleaves with this.
2723 *
2724 * Therefore acquire wait_lock while holding hb->lock, but drop the
2725 * latter before calling rt_mutex_start_proxy_lock(). This still fully
2726 * serializes against futex_unlock_pi() as that does the exact same
2727 * lock handoff sequence.
cfafcd11 2728 */
56222b21
PZ
2729 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2730 spin_unlock(q.lock_ptr);
2731 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2732 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2733
cfafcd11
PZ
2734 if (ret) {
2735 if (ret == 1)
2736 ret = 0;
2737
56222b21 2738 spin_lock(q.lock_ptr);
cfafcd11
PZ
2739 goto no_block;
2740 }
2741
cfafcd11
PZ
2742
2743 if (unlikely(to))
2744 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2745
2746 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2747
a99e4e41 2748 spin_lock(q.lock_ptr);
cfafcd11
PZ
2749 /*
2750 * If we failed to acquire the lock (signal/timeout), we must
2751 * first acquire the hb->lock before removing the lock from the
2752 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
2753 * wait lists consistent.
56222b21
PZ
2754 *
2755 * In particular; it is important that futex_unlock_pi() can not
2756 * observe this inconsistency.
cfafcd11
PZ
2757 */
2758 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2759 ret = 0;
2760
2761no_block:
dd973998
DH
2762 /*
2763 * Fixup the pi_state owner and possibly acquire the lock if we
2764 * haven't already.
2765 */
ae791a2d 2766 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2767 /*
2768 * If fixup_owner() returned an error, proprogate that. If it acquired
2769 * the lock, clear our -ETIMEDOUT or -EINTR.
2770 */
2771 if (res)
2772 ret = (res < 0) ? res : 0;
c87e2837 2773
e8f6386c 2774 /*
dd973998
DH
2775 * If fixup_owner() faulted and was unable to handle the fault, unlock
2776 * it and return the fault to userspace.
e8f6386c 2777 */
16ffa12d
PZ
2778 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2779 pi_state = q.pi_state;
2780 get_pi_state(pi_state);
2781 }
e8f6386c 2782
778e9a9c
AK
2783 /* Unqueue and drop the lock */
2784 unqueue_me_pi(&q);
c87e2837 2785
16ffa12d
PZ
2786 if (pi_state) {
2787 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2788 put_pi_state(pi_state);
2789 }
2790
5ecb01cf 2791 goto out_put_key;
c87e2837 2792
42d35d48 2793out_unlock_put_key:
0d00c7b2 2794 queue_unlock(hb);
c87e2837 2795
42d35d48 2796out_put_key:
ae791a2d 2797 put_futex_key(&q.key);
42d35d48 2798out:
97181f9b
TG
2799 if (to) {
2800 hrtimer_cancel(&to->timer);
237fc6e7 2801 destroy_hrtimer_on_stack(&to->timer);
97181f9b 2802 }
dd973998 2803 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2804
42d35d48 2805uaddr_faulted:
0d00c7b2 2806 queue_unlock(hb);
778e9a9c 2807
d0725992 2808 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2809 if (ret)
2810 goto out_put_key;
c87e2837 2811
b41277dc 2812 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2813 goto retry_private;
2814
ae791a2d 2815 put_futex_key(&q.key);
e4dc5b7a 2816 goto retry;
c87e2837
IM
2817}
2818
c87e2837
IM
2819/*
2820 * Userspace attempted a TID -> 0 atomic transition, and failed.
2821 * This is the in-kernel slowpath: we look up the PI state (if any),
2822 * and do the rt-mutex unlock.
2823 */
b41277dc 2824static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837 2825{
ccf9e6a8 2826 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
38d47c1b 2827 union futex_key key = FUTEX_KEY_INIT;
ccf9e6a8 2828 struct futex_hash_bucket *hb;
499f5aca 2829 struct futex_q *top_waiter;
e4dc5b7a 2830 int ret;
c87e2837 2831
bc2eecd7
NP
2832 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2833 return -ENOSYS;
2834
c87e2837
IM
2835retry:
2836 if (get_user(uval, uaddr))
2837 return -EFAULT;
2838 /*
2839 * We release only a lock we actually own:
2840 */
c0c9ed15 2841 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2842 return -EPERM;
c87e2837 2843
9ea71503 2844 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
ccf9e6a8
TG
2845 if (ret)
2846 return ret;
c87e2837
IM
2847
2848 hb = hash_futex(&key);
2849 spin_lock(&hb->lock);
2850
c87e2837 2851 /*
ccf9e6a8
TG
2852 * Check waiters first. We do not trust user space values at
2853 * all and we at least want to know if user space fiddled
2854 * with the futex value instead of blindly unlocking.
c87e2837 2855 */
499f5aca
PZ
2856 top_waiter = futex_top_waiter(hb, &key);
2857 if (top_waiter) {
16ffa12d
PZ
2858 struct futex_pi_state *pi_state = top_waiter->pi_state;
2859
2860 ret = -EINVAL;
2861 if (!pi_state)
2862 goto out_unlock;
2863
2864 /*
2865 * If current does not own the pi_state then the futex is
2866 * inconsistent and user space fiddled with the futex value.
2867 */
2868 if (pi_state->owner != current)
2869 goto out_unlock;
2870
bebe5b51 2871 get_pi_state(pi_state);
802ab58d 2872 /*
bebe5b51
PZ
2873 * By taking wait_lock while still holding hb->lock, we ensure
2874 * there is no point where we hold neither; and therefore
2875 * wake_futex_pi() must observe a state consistent with what we
2876 * observed.
16ffa12d 2877 */
bebe5b51 2878 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
16ffa12d
PZ
2879 spin_unlock(&hb->lock);
2880
2881 ret = wake_futex_pi(uaddr, uval, pi_state);
2882
2883 put_pi_state(pi_state);
2884
2885 /*
2886 * Success, we're done! No tricky corner cases.
802ab58d
SAS
2887 */
2888 if (!ret)
2889 goto out_putkey;
c87e2837 2890 /*
ccf9e6a8
TG
2891 * The atomic access to the futex value generated a
2892 * pagefault, so retry the user-access and the wakeup:
c87e2837
IM
2893 */
2894 if (ret == -EFAULT)
2895 goto pi_faulted;
89e9e66b
SAS
2896 /*
2897 * A unconditional UNLOCK_PI op raced against a waiter
2898 * setting the FUTEX_WAITERS bit. Try again.
2899 */
2900 if (ret == -EAGAIN) {
89e9e66b
SAS
2901 put_futex_key(&key);
2902 goto retry;
2903 }
802ab58d
SAS
2904 /*
2905 * wake_futex_pi has detected invalid state. Tell user
2906 * space.
2907 */
16ffa12d 2908 goto out_putkey;
c87e2837 2909 }
ccf9e6a8 2910
c87e2837 2911 /*
ccf9e6a8
TG
2912 * We have no kernel internal state, i.e. no waiters in the
2913 * kernel. Waiters which are about to queue themselves are stuck
2914 * on hb->lock. So we can safely ignore them. We do neither
2915 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2916 * owner.
c87e2837 2917 */
16ffa12d
PZ
2918 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
2919 spin_unlock(&hb->lock);
13fbca4c 2920 goto pi_faulted;
16ffa12d 2921 }
c87e2837 2922
ccf9e6a8
TG
2923 /*
2924 * If uval has changed, let user space handle it.
2925 */
2926 ret = (curval == uval) ? 0 : -EAGAIN;
2927
c87e2837
IM
2928out_unlock:
2929 spin_unlock(&hb->lock);
802ab58d 2930out_putkey:
ae791a2d 2931 put_futex_key(&key);
c87e2837
IM
2932 return ret;
2933
2934pi_faulted:
ae791a2d 2935 put_futex_key(&key);
c87e2837 2936
d0725992 2937 ret = fault_in_user_writeable(uaddr);
b5686363 2938 if (!ret)
c87e2837
IM
2939 goto retry;
2940
1da177e4
LT
2941 return ret;
2942}
2943
52400ba9
DH
2944/**
2945 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2946 * @hb: the hash_bucket futex_q was original enqueued on
2947 * @q: the futex_q woken while waiting to be requeued
2948 * @key2: the futex_key of the requeue target futex
2949 * @timeout: the timeout associated with the wait (NULL if none)
2950 *
2951 * Detect if the task was woken on the initial futex as opposed to the requeue
2952 * target futex. If so, determine if it was a timeout or a signal that caused
2953 * the wakeup and return the appropriate error code to the caller. Must be
2954 * called with the hb lock held.
2955 *
6c23cbbd 2956 * Return:
7b4ff1ad
MCC
2957 * - 0 = no early wakeup detected;
2958 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
2959 */
2960static inline
2961int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2962 struct futex_q *q, union futex_key *key2,
2963 struct hrtimer_sleeper *timeout)
2964{
2965 int ret = 0;
2966
2967 /*
2968 * With the hb lock held, we avoid races while we process the wakeup.
2969 * We only need to hold hb (and not hb2) to ensure atomicity as the
2970 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2971 * It can't be requeued from uaddr2 to something else since we don't
2972 * support a PI aware source futex for requeue.
2973 */
2974 if (!match_futex(&q->key, key2)) {
2975 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2976 /*
2977 * We were woken prior to requeue by a timeout or a signal.
2978 * Unqueue the futex_q and determine which it was.
2979 */
2e12978a 2980 plist_del(&q->list, &hb->chain);
11d4616b 2981 hb_waiters_dec(hb);
52400ba9 2982
d58e6576 2983 /* Handle spurious wakeups gracefully */
11df6ddd 2984 ret = -EWOULDBLOCK;
52400ba9
DH
2985 if (timeout && !timeout->task)
2986 ret = -ETIMEDOUT;
d58e6576 2987 else if (signal_pending(current))
1c840c14 2988 ret = -ERESTARTNOINTR;
52400ba9
DH
2989 }
2990 return ret;
2991}
2992
2993/**
2994 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 2995 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 2996 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
ab51fbab 2997 * the same type, no requeueing from private to shared, etc.
52400ba9
DH
2998 * @val: the expected value of uaddr
2999 * @abs_time: absolute timeout
56ec1607 3000 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
3001 * @uaddr2: the pi futex we will take prior to returning to user-space
3002 *
3003 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
3004 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3005 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3006 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3007 * without one, the pi logic would not know which task to boost/deboost, if
3008 * there was a need to.
52400ba9
DH
3009 *
3010 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 3011 * via the following--
52400ba9 3012 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
3013 * 2) wakeup on uaddr2 after a requeue
3014 * 3) signal
3015 * 4) timeout
52400ba9 3016 *
cc6db4e6 3017 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
3018 *
3019 * If 2, we may then block on trying to take the rt_mutex and return via:
3020 * 5) successful lock
3021 * 6) signal
3022 * 7) timeout
3023 * 8) other lock acquisition failure
3024 *
cc6db4e6 3025 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
3026 *
3027 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3028 *
6c23cbbd 3029 * Return:
7b4ff1ad
MCC
3030 * - 0 - On success;
3031 * - <0 - On error
52400ba9 3032 */
b41277dc 3033static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 3034 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 3035 u32 __user *uaddr2)
52400ba9
DH
3036{
3037 struct hrtimer_sleeper timeout, *to = NULL;
16ffa12d 3038 struct futex_pi_state *pi_state = NULL;
52400ba9 3039 struct rt_mutex_waiter rt_waiter;
52400ba9 3040 struct futex_hash_bucket *hb;
5bdb05f9
DH
3041 union futex_key key2 = FUTEX_KEY_INIT;
3042 struct futex_q q = futex_q_init;
52400ba9 3043 int res, ret;
52400ba9 3044
bc2eecd7
NP
3045 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3046 return -ENOSYS;
3047
6f7b0a2a
DH
3048 if (uaddr == uaddr2)
3049 return -EINVAL;
3050
52400ba9
DH
3051 if (!bitset)
3052 return -EINVAL;
3053
3054 if (abs_time) {
3055 to = &timeout;
b41277dc
DH
3056 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
3057 CLOCK_REALTIME : CLOCK_MONOTONIC,
3058 HRTIMER_MODE_ABS);
52400ba9
DH
3059 hrtimer_init_sleeper(to, current);
3060 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3061 current->timer_slack_ns);
3062 }
3063
3064 /*
3065 * The waiter is allocated on our stack, manipulated by the requeue
3066 * code while we sleep on uaddr.
3067 */
50809358 3068 rt_mutex_init_waiter(&rt_waiter);
52400ba9 3069
9ea71503 3070 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
52400ba9
DH
3071 if (unlikely(ret != 0))
3072 goto out;
3073
84bc4af5
DH
3074 q.bitset = bitset;
3075 q.rt_waiter = &rt_waiter;
3076 q.requeue_pi_key = &key2;
3077
7ada876a
DH
3078 /*
3079 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3080 * count.
3081 */
b41277dc 3082 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
3083 if (ret)
3084 goto out_key2;
52400ba9 3085
e9c243a5
TG
3086 /*
3087 * The check above which compares uaddrs is not sufficient for
3088 * shared futexes. We need to compare the keys:
3089 */
3090 if (match_futex(&q.key, &key2)) {
13c42c2f 3091 queue_unlock(hb);
e9c243a5
TG
3092 ret = -EINVAL;
3093 goto out_put_keys;
3094 }
3095
52400ba9 3096 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 3097 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
3098
3099 spin_lock(&hb->lock);
3100 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3101 spin_unlock(&hb->lock);
3102 if (ret)
3103 goto out_put_keys;
3104
3105 /*
3106 * In order for us to be here, we know our q.key == key2, and since
3107 * we took the hb->lock above, we also know that futex_requeue() has
3108 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
3109 * race with the atomic proxy lock acquisition by the requeue code. The
3110 * futex_requeue dropped our key1 reference and incremented our key2
3111 * reference count.
52400ba9
DH
3112 */
3113
3114 /* Check if the requeue code acquired the second futex for us. */
3115 if (!q.rt_waiter) {
3116 /*
3117 * Got the lock. We might not be the anticipated owner if we
3118 * did a lock-steal - fix up the PI-state in that case.
3119 */
3120 if (q.pi_state && (q.pi_state->owner != current)) {
3121 spin_lock(q.lock_ptr);
ae791a2d 3122 ret = fixup_pi_state_owner(uaddr2, &q, current);
16ffa12d
PZ
3123 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3124 pi_state = q.pi_state;
3125 get_pi_state(pi_state);
3126 }
fb75a428
TG
3127 /*
3128 * Drop the reference to the pi state which
3129 * the requeue_pi() code acquired for us.
3130 */
29e9ee5d 3131 put_pi_state(q.pi_state);
52400ba9
DH
3132 spin_unlock(q.lock_ptr);
3133 }
3134 } else {
c236c8e9
PZ
3135 struct rt_mutex *pi_mutex;
3136
52400ba9
DH
3137 /*
3138 * We have been woken up by futex_unlock_pi(), a timeout, or a
3139 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3140 * the pi_state.
3141 */
f27071cb 3142 WARN_ON(!q.pi_state);
52400ba9 3143 pi_mutex = &q.pi_state->pi_mutex;
38d589f2 3144 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
52400ba9
DH
3145
3146 spin_lock(q.lock_ptr);
38d589f2
PZ
3147 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3148 ret = 0;
3149
3150 debug_rt_mutex_free_waiter(&rt_waiter);
52400ba9
DH
3151 /*
3152 * Fixup the pi_state owner and possibly acquire the lock if we
3153 * haven't already.
3154 */
ae791a2d 3155 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
3156 /*
3157 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 3158 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
3159 */
3160 if (res)
3161 ret = (res < 0) ? res : 0;
3162
c236c8e9
PZ
3163 /*
3164 * If fixup_pi_state_owner() faulted and was unable to handle
3165 * the fault, unlock the rt_mutex and return the fault to
3166 * userspace.
3167 */
16ffa12d
PZ
3168 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3169 pi_state = q.pi_state;
3170 get_pi_state(pi_state);
3171 }
c236c8e9 3172
52400ba9
DH
3173 /* Unqueue and drop the lock. */
3174 unqueue_me_pi(&q);
3175 }
3176
16ffa12d
PZ
3177 if (pi_state) {
3178 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3179 put_pi_state(pi_state);
3180 }
3181
c236c8e9 3182 if (ret == -EINTR) {
52400ba9 3183 /*
cc6db4e6
DH
3184 * We've already been requeued, but cannot restart by calling
3185 * futex_lock_pi() directly. We could restart this syscall, but
3186 * it would detect that the user space "val" changed and return
3187 * -EWOULDBLOCK. Save the overhead of the restart and return
3188 * -EWOULDBLOCK directly.
52400ba9 3189 */
2070887f 3190 ret = -EWOULDBLOCK;
52400ba9
DH
3191 }
3192
3193out_put_keys:
ae791a2d 3194 put_futex_key(&q.key);
c8b15a70 3195out_key2:
ae791a2d 3196 put_futex_key(&key2);
52400ba9
DH
3197
3198out:
3199 if (to) {
3200 hrtimer_cancel(&to->timer);
3201 destroy_hrtimer_on_stack(&to->timer);
3202 }
3203 return ret;
3204}
3205
0771dfef
IM
3206/*
3207 * Support for robust futexes: the kernel cleans up held futexes at
3208 * thread exit time.
3209 *
3210 * Implementation: user-space maintains a per-thread list of locks it
3211 * is holding. Upon do_exit(), the kernel carefully walks this list,
3212 * and marks all locks that are owned by this thread with the
c87e2837 3213 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
3214 * always manipulated with the lock held, so the list is private and
3215 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3216 * field, to allow the kernel to clean up if the thread dies after
3217 * acquiring the lock, but just before it could have added itself to
3218 * the list. There can only be one such pending lock.
3219 */
3220
3221/**
d96ee56c
DH
3222 * sys_set_robust_list() - Set the robust-futex list head of a task
3223 * @head: pointer to the list-head
3224 * @len: length of the list-head, as userspace expects
0771dfef 3225 */
836f92ad
HC
3226SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3227 size_t, len)
0771dfef 3228{
a0c1e907
TG
3229 if (!futex_cmpxchg_enabled)
3230 return -ENOSYS;
0771dfef
IM
3231 /*
3232 * The kernel knows only one size for now:
3233 */
3234 if (unlikely(len != sizeof(*head)))
3235 return -EINVAL;
3236
3237 current->robust_list = head;
3238
3239 return 0;
3240}
3241
3242/**
d96ee56c
DH
3243 * sys_get_robust_list() - Get the robust-futex list head of a task
3244 * @pid: pid of the process [zero for current task]
3245 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3246 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 3247 */
836f92ad
HC
3248SYSCALL_DEFINE3(get_robust_list, int, pid,
3249 struct robust_list_head __user * __user *, head_ptr,
3250 size_t __user *, len_ptr)
0771dfef 3251{
ba46df98 3252 struct robust_list_head __user *head;
0771dfef 3253 unsigned long ret;
bdbb776f 3254 struct task_struct *p;
0771dfef 3255
a0c1e907
TG
3256 if (!futex_cmpxchg_enabled)
3257 return -ENOSYS;
3258
bdbb776f
KC
3259 rcu_read_lock();
3260
3261 ret = -ESRCH;
0771dfef 3262 if (!pid)
bdbb776f 3263 p = current;
0771dfef 3264 else {
228ebcbe 3265 p = find_task_by_vpid(pid);
0771dfef
IM
3266 if (!p)
3267 goto err_unlock;
0771dfef
IM
3268 }
3269
bdbb776f 3270 ret = -EPERM;
caaee623 3271 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
bdbb776f
KC
3272 goto err_unlock;
3273
3274 head = p->robust_list;
3275 rcu_read_unlock();
3276
0771dfef
IM
3277 if (put_user(sizeof(*head), len_ptr))
3278 return -EFAULT;
3279 return put_user(head, head_ptr);
3280
3281err_unlock:
aaa2a97e 3282 rcu_read_unlock();
0771dfef
IM
3283
3284 return ret;
3285}
3286
3287/*
3288 * Process a futex-list entry, check whether it's owned by the
3289 * dying task, and do notification if so:
3290 */
e3f2ddea 3291int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 3292{
7cfdaf38 3293 u32 uval, uninitialized_var(nval), mval;
0771dfef 3294
8f17d3a5
IM
3295retry:
3296 if (get_user(uval, uaddr))
0771dfef
IM
3297 return -1;
3298
b488893a 3299 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
3300 /*
3301 * Ok, this dying thread is truly holding a futex
3302 * of interest. Set the OWNER_DIED bit atomically
3303 * via cmpxchg, and if the value had FUTEX_WAITERS
3304 * set, wake up a waiter (if any). (We have to do a
3305 * futex_wake() even if OWNER_DIED is already set -
3306 * to handle the rare but possible case of recursive
3307 * thread-death.) The rest of the cleanup is done in
3308 * userspace.
3309 */
e3f2ddea 3310 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
6e0aa9f8
TG
3311 /*
3312 * We are not holding a lock here, but we want to have
3313 * the pagefault_disable/enable() protection because
3314 * we want to handle the fault gracefully. If the
3315 * access fails we try to fault in the futex with R/W
3316 * verification via get_user_pages. get_user() above
3317 * does not guarantee R/W access. If that fails we
3318 * give up and leave the futex locked.
3319 */
3320 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3321 if (fault_in_user_writeable(uaddr))
3322 return -1;
3323 goto retry;
3324 }
c87e2837 3325 if (nval != uval)
8f17d3a5 3326 goto retry;
0771dfef 3327
e3f2ddea
IM
3328 /*
3329 * Wake robust non-PI futexes here. The wakeup of
3330 * PI futexes happens in exit_pi_state():
3331 */
36cf3b5c 3332 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 3333 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
3334 }
3335 return 0;
3336}
3337
e3f2ddea
IM
3338/*
3339 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3340 */
3341static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 3342 struct robust_list __user * __user *head,
1dcc41bb 3343 unsigned int *pi)
e3f2ddea
IM
3344{
3345 unsigned long uentry;
3346
ba46df98 3347 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
3348 return -EFAULT;
3349
ba46df98 3350 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
3351 *pi = uentry & 1;
3352
3353 return 0;
3354}
3355
0771dfef
IM
3356/*
3357 * Walk curr->robust_list (very carefully, it's a userspace list!)
3358 * and mark any locks found there dead, and notify any waiters.
3359 *
3360 * We silently return on any sign of list-walking problem.
3361 */
3362void exit_robust_list(struct task_struct *curr)
3363{
3364 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 3365 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
3366 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3367 unsigned int uninitialized_var(next_pi);
0771dfef 3368 unsigned long futex_offset;
9f96cb1e 3369 int rc;
0771dfef 3370
a0c1e907
TG
3371 if (!futex_cmpxchg_enabled)
3372 return;
3373
0771dfef
IM
3374 /*
3375 * Fetch the list head (which was registered earlier, via
3376 * sys_set_robust_list()):
3377 */
e3f2ddea 3378 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
3379 return;
3380 /*
3381 * Fetch the relative futex offset:
3382 */
3383 if (get_user(futex_offset, &head->futex_offset))
3384 return;
3385 /*
3386 * Fetch any possibly pending lock-add first, and handle it
3387 * if it exists:
3388 */
e3f2ddea 3389 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 3390 return;
e3f2ddea 3391
9f96cb1e 3392 next_entry = NULL; /* avoid warning with gcc */
0771dfef 3393 while (entry != &head->list) {
9f96cb1e
MS
3394 /*
3395 * Fetch the next entry in the list before calling
3396 * handle_futex_death:
3397 */
3398 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
3399 /*
3400 * A pending lock might already be on the list, so
c87e2837 3401 * don't process it twice:
0771dfef
IM
3402 */
3403 if (entry != pending)
ba46df98 3404 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 3405 curr, pi))
0771dfef 3406 return;
9f96cb1e 3407 if (rc)
0771dfef 3408 return;
9f96cb1e
MS
3409 entry = next_entry;
3410 pi = next_pi;
0771dfef
IM
3411 /*
3412 * Avoid excessively long or circular lists:
3413 */
3414 if (!--limit)
3415 break;
3416
3417 cond_resched();
3418 }
9f96cb1e
MS
3419
3420 if (pending)
3421 handle_futex_death((void __user *)pending + futex_offset,
3422 curr, pip);
0771dfef
IM
3423}
3424
c19384b5 3425long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 3426 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 3427{
81b40539 3428 int cmd = op & FUTEX_CMD_MASK;
b41277dc 3429 unsigned int flags = 0;
34f01cc1
ED
3430
3431 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 3432 flags |= FLAGS_SHARED;
1da177e4 3433
b41277dc
DH
3434 if (op & FUTEX_CLOCK_REALTIME) {
3435 flags |= FLAGS_CLOCKRT;
337f1304
DH
3436 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3437 cmd != FUTEX_WAIT_REQUEUE_PI)
b41277dc
DH
3438 return -ENOSYS;
3439 }
1da177e4 3440
59263b51
TG
3441 switch (cmd) {
3442 case FUTEX_LOCK_PI:
3443 case FUTEX_UNLOCK_PI:
3444 case FUTEX_TRYLOCK_PI:
3445 case FUTEX_WAIT_REQUEUE_PI:
3446 case FUTEX_CMP_REQUEUE_PI:
3447 if (!futex_cmpxchg_enabled)
3448 return -ENOSYS;
3449 }
3450
34f01cc1 3451 switch (cmd) {
1da177e4 3452 case FUTEX_WAIT:
cd689985
TG
3453 val3 = FUTEX_BITSET_MATCH_ANY;
3454 case FUTEX_WAIT_BITSET:
81b40539 3455 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 3456 case FUTEX_WAKE:
cd689985
TG
3457 val3 = FUTEX_BITSET_MATCH_ANY;
3458 case FUTEX_WAKE_BITSET:
81b40539 3459 return futex_wake(uaddr, flags, val, val3);
1da177e4 3460 case FUTEX_REQUEUE:
81b40539 3461 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 3462 case FUTEX_CMP_REQUEUE:
81b40539 3463 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 3464 case FUTEX_WAKE_OP:
81b40539 3465 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 3466 case FUTEX_LOCK_PI:
996636dd 3467 return futex_lock_pi(uaddr, flags, timeout, 0);
c87e2837 3468 case FUTEX_UNLOCK_PI:
81b40539 3469 return futex_unlock_pi(uaddr, flags);
c87e2837 3470 case FUTEX_TRYLOCK_PI:
996636dd 3471 return futex_lock_pi(uaddr, flags, NULL, 1);
52400ba9
DH
3472 case FUTEX_WAIT_REQUEUE_PI:
3473 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
3474 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3475 uaddr2);
52400ba9 3476 case FUTEX_CMP_REQUEUE_PI:
81b40539 3477 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 3478 }
81b40539 3479 return -ENOSYS;
1da177e4
LT
3480}
3481
3482
17da2bd9
HC
3483SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3484 struct timespec __user *, utime, u32 __user *, uaddr2,
3485 u32, val3)
1da177e4 3486{
c19384b5
PP
3487 struct timespec ts;
3488 ktime_t t, *tp = NULL;
e2970f2f 3489 u32 val2 = 0;
34f01cc1 3490 int cmd = op & FUTEX_CMD_MASK;
1da177e4 3491
cd689985 3492 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
3493 cmd == FUTEX_WAIT_BITSET ||
3494 cmd == FUTEX_WAIT_REQUEUE_PI)) {
ab51fbab
DB
3495 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3496 return -EFAULT;
c19384b5 3497 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 3498 return -EFAULT;
c19384b5 3499 if (!timespec_valid(&ts))
9741ef96 3500 return -EINVAL;
c19384b5
PP
3501
3502 t = timespec_to_ktime(ts);
34f01cc1 3503 if (cmd == FUTEX_WAIT)
5a7780e7 3504 t = ktime_add_safe(ktime_get(), t);
c19384b5 3505 tp = &t;
1da177e4
LT
3506 }
3507 /*
52400ba9 3508 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 3509 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 3510 */
f54f0986 3511 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 3512 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 3513 val2 = (u32) (unsigned long) utime;
1da177e4 3514
c19384b5 3515 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
3516}
3517
03b8c7b6 3518static void __init futex_detect_cmpxchg(void)
1da177e4 3519{
03b8c7b6 3520#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 3521 u32 curval;
03b8c7b6
HC
3522
3523 /*
3524 * This will fail and we want it. Some arch implementations do
3525 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3526 * functionality. We want to know that before we call in any
3527 * of the complex code paths. Also we want to prevent
3528 * registration of robust lists in that case. NULL is
3529 * guaranteed to fault and we get -EFAULT on functional
3530 * implementation, the non-functional ones will return
3531 * -ENOSYS.
3532 */
3533 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3534 futex_cmpxchg_enabled = 1;
3535#endif
3536}
3537
3538static int __init futex_init(void)
3539{
63b1a816 3540 unsigned int futex_shift;
a52b89eb
DB
3541 unsigned long i;
3542
3543#if CONFIG_BASE_SMALL
3544 futex_hashsize = 16;
3545#else
3546 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3547#endif
3548
3549 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3550 futex_hashsize, 0,
3551 futex_hashsize < 256 ? HASH_SMALL : 0,
63b1a816
HC
3552 &futex_shift, NULL,
3553 futex_hashsize, futex_hashsize);
3554 futex_hashsize = 1UL << futex_shift;
03b8c7b6
HC
3555
3556 futex_detect_cmpxchg();
a0c1e907 3557
a52b89eb 3558 for (i = 0; i < futex_hashsize; i++) {
11d4616b 3559 atomic_set(&futex_queues[i].waiters, 0);
732375c6 3560 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
3561 spin_lock_init(&futex_queues[i].lock);
3562 }
3563
1da177e4
LT
3564 return 0;
3565}
25f71d1c 3566core_initcall(futex_init);