Merge git://git.kernel.org/pub/scm/linux/kernel/git/steve/gfs2-3.0-nmw
[linux-2.6-block.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
7ed20e1a 57#include <linux/signal.h>
9984de1a 58#include <linux/export.h>
fd5eea42 59#include <linux/magic.h>
b488893a
PE
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
62
4732efbe 63#include <asm/futex.h>
1da177e4 64
c87e2837
IM
65#include "rtmutex_common.h"
66
a0c1e907
TG
67int __read_mostly futex_cmpxchg_enabled;
68
1da177e4
LT
69#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
70
b41277dc
DH
71/*
72 * Futex flags used to encode options to functions and preserve them across
73 * restarts.
74 */
75#define FLAGS_SHARED 0x01
76#define FLAGS_CLOCKRT 0x02
77#define FLAGS_HAS_TIMEOUT 0x04
78
c87e2837
IM
79/*
80 * Priority Inheritance state:
81 */
82struct futex_pi_state {
83 /*
84 * list of 'owned' pi_state instances - these have to be
85 * cleaned up in do_exit() if the task exits prematurely:
86 */
87 struct list_head list;
88
89 /*
90 * The PI object:
91 */
92 struct rt_mutex pi_mutex;
93
94 struct task_struct *owner;
95 atomic_t refcount;
96
97 union futex_key key;
98};
99
d8d88fbb
DH
100/**
101 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 102 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
103 * @task: the task waiting on the futex
104 * @lock_ptr: the hash bucket lock
105 * @key: the key the futex is hashed on
106 * @pi_state: optional priority inheritance state
107 * @rt_waiter: rt_waiter storage for use with requeue_pi
108 * @requeue_pi_key: the requeue_pi target futex key
109 * @bitset: bitset for the optional bitmasked wakeup
110 *
111 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
1da177e4
LT
112 * we can wake only the relevant ones (hashed queues may be shared).
113 *
114 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 115 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 116 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
117 * the second.
118 *
119 * PI futexes are typically woken before they are removed from the hash list via
120 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
121 */
122struct futex_q {
ec92d082 123 struct plist_node list;
1da177e4 124
d8d88fbb 125 struct task_struct *task;
1da177e4 126 spinlock_t *lock_ptr;
1da177e4 127 union futex_key key;
c87e2837 128 struct futex_pi_state *pi_state;
52400ba9 129 struct rt_mutex_waiter *rt_waiter;
84bc4af5 130 union futex_key *requeue_pi_key;
cd689985 131 u32 bitset;
1da177e4
LT
132};
133
5bdb05f9
DH
134static const struct futex_q futex_q_init = {
135 /* list gets initialized in queue_me()*/
136 .key = FUTEX_KEY_INIT,
137 .bitset = FUTEX_BITSET_MATCH_ANY
138};
139
1da177e4 140/*
b2d0994b
DH
141 * Hash buckets are shared by all the futex_keys that hash to the same
142 * location. Each key may have multiple futex_q structures, one for each task
143 * waiting on a futex.
1da177e4
LT
144 */
145struct futex_hash_bucket {
ec92d082
PP
146 spinlock_t lock;
147 struct plist_head chain;
1da177e4
LT
148};
149
150static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
151
1da177e4
LT
152/*
153 * We hash on the keys returned from get_futex_key (see below).
154 */
155static struct futex_hash_bucket *hash_futex(union futex_key *key)
156{
157 u32 hash = jhash2((u32*)&key->both.word,
158 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
159 key->both.offset);
160 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
161}
162
163/*
164 * Return 1 if two futex_keys are equal, 0 otherwise.
165 */
166static inline int match_futex(union futex_key *key1, union futex_key *key2)
167{
2bc87203
DH
168 return (key1 && key2
169 && key1->both.word == key2->both.word
1da177e4
LT
170 && key1->both.ptr == key2->both.ptr
171 && key1->both.offset == key2->both.offset);
172}
173
38d47c1b
PZ
174/*
175 * Take a reference to the resource addressed by a key.
176 * Can be called while holding spinlocks.
177 *
178 */
179static void get_futex_key_refs(union futex_key *key)
180{
181 if (!key->both.ptr)
182 return;
183
184 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
185 case FUT_OFF_INODE:
7de9c6ee 186 ihold(key->shared.inode);
38d47c1b
PZ
187 break;
188 case FUT_OFF_MMSHARED:
189 atomic_inc(&key->private.mm->mm_count);
190 break;
191 }
192}
193
194/*
195 * Drop a reference to the resource addressed by a key.
196 * The hash bucket spinlock must not be held.
197 */
198static void drop_futex_key_refs(union futex_key *key)
199{
90621c40
DH
200 if (!key->both.ptr) {
201 /* If we're here then we tried to put a key we failed to get */
202 WARN_ON_ONCE(1);
38d47c1b 203 return;
90621c40 204 }
38d47c1b
PZ
205
206 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
207 case FUT_OFF_INODE:
208 iput(key->shared.inode);
209 break;
210 case FUT_OFF_MMSHARED:
211 mmdrop(key->private.mm);
212 break;
213 }
214}
215
34f01cc1 216/**
d96ee56c
DH
217 * get_futex_key() - Get parameters which are the keys for a futex
218 * @uaddr: virtual address of the futex
219 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
220 * @key: address where result is stored.
9ea71503
SB
221 * @rw: mapping needs to be read/write (values: VERIFY_READ,
222 * VERIFY_WRITE)
34f01cc1
ED
223 *
224 * Returns a negative error code or 0
225 * The key words are stored in *key on success.
1da177e4 226 *
f3a43f3f 227 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
1da177e4
LT
228 * offset_within_page). For private mappings, it's (uaddr, current->mm).
229 * We can usually work out the index without swapping in the page.
230 *
b2d0994b 231 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 232 */
64d1304a 233static int
9ea71503 234get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
1da177e4 235{
e2970f2f 236 unsigned long address = (unsigned long)uaddr;
1da177e4 237 struct mm_struct *mm = current->mm;
a5b338f2 238 struct page *page, *page_head;
9ea71503 239 int err, ro = 0;
1da177e4
LT
240
241 /*
242 * The futex address must be "naturally" aligned.
243 */
e2970f2f 244 key->both.offset = address % PAGE_SIZE;
34f01cc1 245 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 246 return -EINVAL;
e2970f2f 247 address -= key->both.offset;
1da177e4 248
34f01cc1
ED
249 /*
250 * PROCESS_PRIVATE futexes are fast.
251 * As the mm cannot disappear under us and the 'key' only needs
252 * virtual address, we dont even have to find the underlying vma.
253 * Note : We do have to check 'uaddr' is a valid user address,
254 * but access_ok() should be faster than find_vma()
255 */
256 if (!fshared) {
7485d0d3 257 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
34f01cc1
ED
258 return -EFAULT;
259 key->private.mm = mm;
260 key->private.address = address;
42569c39 261 get_futex_key_refs(key);
34f01cc1
ED
262 return 0;
263 }
1da177e4 264
38d47c1b 265again:
7485d0d3 266 err = get_user_pages_fast(address, 1, 1, &page);
9ea71503
SB
267 /*
268 * If write access is not required (eg. FUTEX_WAIT), try
269 * and get read-only access.
270 */
271 if (err == -EFAULT && rw == VERIFY_READ) {
272 err = get_user_pages_fast(address, 1, 0, &page);
273 ro = 1;
274 }
38d47c1b
PZ
275 if (err < 0)
276 return err;
9ea71503
SB
277 else
278 err = 0;
38d47c1b 279
a5b338f2
AA
280#ifdef CONFIG_TRANSPARENT_HUGEPAGE
281 page_head = page;
282 if (unlikely(PageTail(page))) {
38d47c1b 283 put_page(page);
a5b338f2
AA
284 /* serialize against __split_huge_page_splitting() */
285 local_irq_disable();
286 if (likely(__get_user_pages_fast(address, 1, 1, &page) == 1)) {
287 page_head = compound_head(page);
288 /*
289 * page_head is valid pointer but we must pin
290 * it before taking the PG_lock and/or
291 * PG_compound_lock. The moment we re-enable
292 * irqs __split_huge_page_splitting() can
293 * return and the head page can be freed from
294 * under us. We can't take the PG_lock and/or
295 * PG_compound_lock on a page that could be
296 * freed from under us.
297 */
298 if (page != page_head) {
299 get_page(page_head);
300 put_page(page);
301 }
302 local_irq_enable();
303 } else {
304 local_irq_enable();
305 goto again;
306 }
307 }
308#else
309 page_head = compound_head(page);
310 if (page != page_head) {
311 get_page(page_head);
312 put_page(page);
313 }
314#endif
315
316 lock_page(page_head);
e6780f72
HD
317
318 /*
319 * If page_head->mapping is NULL, then it cannot be a PageAnon
320 * page; but it might be the ZERO_PAGE or in the gate area or
321 * in a special mapping (all cases which we are happy to fail);
322 * or it may have been a good file page when get_user_pages_fast
323 * found it, but truncated or holepunched or subjected to
324 * invalidate_complete_page2 before we got the page lock (also
325 * cases which we are happy to fail). And we hold a reference,
326 * so refcount care in invalidate_complete_page's remove_mapping
327 * prevents drop_caches from setting mapping to NULL beneath us.
328 *
329 * The case we do have to guard against is when memory pressure made
330 * shmem_writepage move it from filecache to swapcache beneath us:
331 * an unlikely race, but we do need to retry for page_head->mapping.
332 */
a5b338f2 333 if (!page_head->mapping) {
e6780f72 334 int shmem_swizzled = PageSwapCache(page_head);
a5b338f2
AA
335 unlock_page(page_head);
336 put_page(page_head);
e6780f72
HD
337 if (shmem_swizzled)
338 goto again;
339 return -EFAULT;
38d47c1b 340 }
1da177e4
LT
341
342 /*
343 * Private mappings are handled in a simple way.
344 *
345 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
346 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 347 * the object not the particular process.
1da177e4 348 */
a5b338f2 349 if (PageAnon(page_head)) {
9ea71503
SB
350 /*
351 * A RO anonymous page will never change and thus doesn't make
352 * sense for futex operations.
353 */
354 if (ro) {
355 err = -EFAULT;
356 goto out;
357 }
358
38d47c1b 359 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 360 key->private.mm = mm;
e2970f2f 361 key->private.address = address;
38d47c1b
PZ
362 } else {
363 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
a5b338f2
AA
364 key->shared.inode = page_head->mapping->host;
365 key->shared.pgoff = page_head->index;
1da177e4
LT
366 }
367
38d47c1b 368 get_futex_key_refs(key);
1da177e4 369
9ea71503 370out:
a5b338f2
AA
371 unlock_page(page_head);
372 put_page(page_head);
9ea71503 373 return err;
1da177e4
LT
374}
375
ae791a2d 376static inline void put_futex_key(union futex_key *key)
1da177e4 377{
38d47c1b 378 drop_futex_key_refs(key);
1da177e4
LT
379}
380
d96ee56c
DH
381/**
382 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
383 * @uaddr: pointer to faulting user space address
384 *
385 * Slow path to fixup the fault we just took in the atomic write
386 * access to @uaddr.
387 *
fb62db2b 388 * We have no generic implementation of a non-destructive write to the
d0725992
TG
389 * user address. We know that we faulted in the atomic pagefault
390 * disabled section so we can as well avoid the #PF overhead by
391 * calling get_user_pages() right away.
392 */
393static int fault_in_user_writeable(u32 __user *uaddr)
394{
722d0172
AK
395 struct mm_struct *mm = current->mm;
396 int ret;
397
398 down_read(&mm->mmap_sem);
2efaca92
BH
399 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
400 FAULT_FLAG_WRITE);
722d0172
AK
401 up_read(&mm->mmap_sem);
402
d0725992
TG
403 return ret < 0 ? ret : 0;
404}
405
4b1c486b
DH
406/**
407 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
408 * @hb: the hash bucket the futex_q's reside in
409 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
410 *
411 * Must be called with the hb lock held.
412 */
413static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
414 union futex_key *key)
415{
416 struct futex_q *this;
417
418 plist_for_each_entry(this, &hb->chain, list) {
419 if (match_futex(&this->key, key))
420 return this;
421 }
422 return NULL;
423}
424
37a9d912
ML
425static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
426 u32 uval, u32 newval)
36cf3b5c 427{
37a9d912 428 int ret;
36cf3b5c
TG
429
430 pagefault_disable();
37a9d912 431 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
432 pagefault_enable();
433
37a9d912 434 return ret;
36cf3b5c
TG
435}
436
437static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
438{
439 int ret;
440
a866374a 441 pagefault_disable();
e2970f2f 442 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 443 pagefault_enable();
1da177e4
LT
444
445 return ret ? -EFAULT : 0;
446}
447
c87e2837
IM
448
449/*
450 * PI code:
451 */
452static int refill_pi_state_cache(void)
453{
454 struct futex_pi_state *pi_state;
455
456 if (likely(current->pi_state_cache))
457 return 0;
458
4668edc3 459 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
460
461 if (!pi_state)
462 return -ENOMEM;
463
c87e2837
IM
464 INIT_LIST_HEAD(&pi_state->list);
465 /* pi_mutex gets initialized later */
466 pi_state->owner = NULL;
467 atomic_set(&pi_state->refcount, 1);
38d47c1b 468 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
469
470 current->pi_state_cache = pi_state;
471
472 return 0;
473}
474
475static struct futex_pi_state * alloc_pi_state(void)
476{
477 struct futex_pi_state *pi_state = current->pi_state_cache;
478
479 WARN_ON(!pi_state);
480 current->pi_state_cache = NULL;
481
482 return pi_state;
483}
484
485static void free_pi_state(struct futex_pi_state *pi_state)
486{
487 if (!atomic_dec_and_test(&pi_state->refcount))
488 return;
489
490 /*
491 * If pi_state->owner is NULL, the owner is most probably dying
492 * and has cleaned up the pi_state already
493 */
494 if (pi_state->owner) {
1d615482 495 raw_spin_lock_irq(&pi_state->owner->pi_lock);
c87e2837 496 list_del_init(&pi_state->list);
1d615482 497 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
c87e2837
IM
498
499 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
500 }
501
502 if (current->pi_state_cache)
503 kfree(pi_state);
504 else {
505 /*
506 * pi_state->list is already empty.
507 * clear pi_state->owner.
508 * refcount is at 0 - put it back to 1.
509 */
510 pi_state->owner = NULL;
511 atomic_set(&pi_state->refcount, 1);
512 current->pi_state_cache = pi_state;
513 }
514}
515
516/*
517 * Look up the task based on what TID userspace gave us.
518 * We dont trust it.
519 */
520static struct task_struct * futex_find_get_task(pid_t pid)
521{
522 struct task_struct *p;
523
d359b549 524 rcu_read_lock();
228ebcbe 525 p = find_task_by_vpid(pid);
7a0ea09a
MH
526 if (p)
527 get_task_struct(p);
a06381fe 528
d359b549 529 rcu_read_unlock();
c87e2837
IM
530
531 return p;
532}
533
534/*
535 * This task is holding PI mutexes at exit time => bad.
536 * Kernel cleans up PI-state, but userspace is likely hosed.
537 * (Robust-futex cleanup is separate and might save the day for userspace.)
538 */
539void exit_pi_state_list(struct task_struct *curr)
540{
c87e2837
IM
541 struct list_head *next, *head = &curr->pi_state_list;
542 struct futex_pi_state *pi_state;
627371d7 543 struct futex_hash_bucket *hb;
38d47c1b 544 union futex_key key = FUTEX_KEY_INIT;
c87e2837 545
a0c1e907
TG
546 if (!futex_cmpxchg_enabled)
547 return;
c87e2837
IM
548 /*
549 * We are a ZOMBIE and nobody can enqueue itself on
550 * pi_state_list anymore, but we have to be careful
627371d7 551 * versus waiters unqueueing themselves:
c87e2837 552 */
1d615482 553 raw_spin_lock_irq(&curr->pi_lock);
c87e2837
IM
554 while (!list_empty(head)) {
555
556 next = head->next;
557 pi_state = list_entry(next, struct futex_pi_state, list);
558 key = pi_state->key;
627371d7 559 hb = hash_futex(&key);
1d615482 560 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 561
c87e2837
IM
562 spin_lock(&hb->lock);
563
1d615482 564 raw_spin_lock_irq(&curr->pi_lock);
627371d7
IM
565 /*
566 * We dropped the pi-lock, so re-check whether this
567 * task still owns the PI-state:
568 */
c87e2837
IM
569 if (head->next != next) {
570 spin_unlock(&hb->lock);
571 continue;
572 }
573
c87e2837 574 WARN_ON(pi_state->owner != curr);
627371d7
IM
575 WARN_ON(list_empty(&pi_state->list));
576 list_del_init(&pi_state->list);
c87e2837 577 pi_state->owner = NULL;
1d615482 578 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
579
580 rt_mutex_unlock(&pi_state->pi_mutex);
581
582 spin_unlock(&hb->lock);
583
1d615482 584 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 585 }
1d615482 586 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
587}
588
589static int
d0aa7a70
PP
590lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
591 union futex_key *key, struct futex_pi_state **ps)
c87e2837
IM
592{
593 struct futex_pi_state *pi_state = NULL;
594 struct futex_q *this, *next;
ec92d082 595 struct plist_head *head;
c87e2837 596 struct task_struct *p;
778e9a9c 597 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837
IM
598
599 head = &hb->chain;
600
ec92d082 601 plist_for_each_entry_safe(this, next, head, list) {
d0aa7a70 602 if (match_futex(&this->key, key)) {
c87e2837
IM
603 /*
604 * Another waiter already exists - bump up
605 * the refcount and return its pi_state:
606 */
607 pi_state = this->pi_state;
06a9ec29 608 /*
fb62db2b 609 * Userspace might have messed up non-PI and PI futexes
06a9ec29
TG
610 */
611 if (unlikely(!pi_state))
612 return -EINVAL;
613
627371d7 614 WARN_ON(!atomic_read(&pi_state->refcount));
59647b6a
TG
615
616 /*
617 * When pi_state->owner is NULL then the owner died
618 * and another waiter is on the fly. pi_state->owner
619 * is fixed up by the task which acquires
620 * pi_state->rt_mutex.
621 *
622 * We do not check for pid == 0 which can happen when
623 * the owner died and robust_list_exit() cleared the
624 * TID.
625 */
626 if (pid && pi_state->owner) {
627 /*
628 * Bail out if user space manipulated the
629 * futex value.
630 */
631 if (pid != task_pid_vnr(pi_state->owner))
632 return -EINVAL;
633 }
627371d7 634
c87e2837 635 atomic_inc(&pi_state->refcount);
d0aa7a70 636 *ps = pi_state;
c87e2837
IM
637
638 return 0;
639 }
640 }
641
642 /*
e3f2ddea 643 * We are the first waiter - try to look up the real owner and attach
778e9a9c 644 * the new pi_state to it, but bail out when TID = 0
c87e2837 645 */
778e9a9c 646 if (!pid)
e3f2ddea 647 return -ESRCH;
c87e2837 648 p = futex_find_get_task(pid);
7a0ea09a
MH
649 if (!p)
650 return -ESRCH;
778e9a9c
AK
651
652 /*
653 * We need to look at the task state flags to figure out,
654 * whether the task is exiting. To protect against the do_exit
655 * change of the task flags, we do this protected by
656 * p->pi_lock:
657 */
1d615482 658 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
659 if (unlikely(p->flags & PF_EXITING)) {
660 /*
661 * The task is on the way out. When PF_EXITPIDONE is
662 * set, we know that the task has finished the
663 * cleanup:
664 */
665 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
666
1d615482 667 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
668 put_task_struct(p);
669 return ret;
670 }
c87e2837
IM
671
672 pi_state = alloc_pi_state();
673
674 /*
675 * Initialize the pi_mutex in locked state and make 'p'
676 * the owner of it:
677 */
678 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
679
680 /* Store the key for possible exit cleanups: */
d0aa7a70 681 pi_state->key = *key;
c87e2837 682
627371d7 683 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
684 list_add(&pi_state->list, &p->pi_state_list);
685 pi_state->owner = p;
1d615482 686 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
687
688 put_task_struct(p);
689
d0aa7a70 690 *ps = pi_state;
c87e2837
IM
691
692 return 0;
693}
694
1a52084d 695/**
d96ee56c 696 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
697 * @uaddr: the pi futex user address
698 * @hb: the pi futex hash bucket
699 * @key: the futex key associated with uaddr and hb
700 * @ps: the pi_state pointer where we store the result of the
701 * lookup
702 * @task: the task to perform the atomic lock work for. This will
703 * be "current" except in the case of requeue pi.
704 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d
DH
705 *
706 * Returns:
707 * 0 - ready to wait
708 * 1 - acquired the lock
709 * <0 - error
710 *
711 * The hb->lock and futex_key refs shall be held by the caller.
712 */
713static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
714 union futex_key *key,
715 struct futex_pi_state **ps,
bab5bc9e 716 struct task_struct *task, int set_waiters)
1a52084d
DH
717{
718 int lock_taken, ret, ownerdied = 0;
c0c9ed15 719 u32 uval, newval, curval, vpid = task_pid_vnr(task);
1a52084d
DH
720
721retry:
722 ret = lock_taken = 0;
723
724 /*
725 * To avoid races, we attempt to take the lock here again
726 * (by doing a 0 -> TID atomic cmpxchg), while holding all
727 * the locks. It will most likely not succeed.
728 */
c0c9ed15 729 newval = vpid;
bab5bc9e
DH
730 if (set_waiters)
731 newval |= FUTEX_WAITERS;
1a52084d 732
37a9d912 733 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
1a52084d
DH
734 return -EFAULT;
735
736 /*
737 * Detect deadlocks.
738 */
c0c9ed15 739 if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
740 return -EDEADLK;
741
742 /*
743 * Surprise - we got the lock. Just return to userspace:
744 */
745 if (unlikely(!curval))
746 return 1;
747
748 uval = curval;
749
750 /*
751 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
752 * to wake at the next unlock.
753 */
754 newval = curval | FUTEX_WAITERS;
755
756 /*
757 * There are two cases, where a futex might have no owner (the
758 * owner TID is 0): OWNER_DIED. We take over the futex in this
759 * case. We also do an unconditional take over, when the owner
760 * of the futex died.
761 *
762 * This is safe as we are protected by the hash bucket lock !
763 */
764 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
765 /* Keep the OWNER_DIED bit */
c0c9ed15 766 newval = (curval & ~FUTEX_TID_MASK) | vpid;
1a52084d
DH
767 ownerdied = 0;
768 lock_taken = 1;
769 }
770
37a9d912 771 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1a52084d
DH
772 return -EFAULT;
773 if (unlikely(curval != uval))
774 goto retry;
775
776 /*
777 * We took the lock due to owner died take over.
778 */
779 if (unlikely(lock_taken))
780 return 1;
781
782 /*
783 * We dont have the lock. Look up the PI state (or create it if
784 * we are the first waiter):
785 */
786 ret = lookup_pi_state(uval, hb, key, ps);
787
788 if (unlikely(ret)) {
789 switch (ret) {
790 case -ESRCH:
791 /*
792 * No owner found for this futex. Check if the
793 * OWNER_DIED bit is set to figure out whether
794 * this is a robust futex or not.
795 */
796 if (get_futex_value_locked(&curval, uaddr))
797 return -EFAULT;
798
799 /*
800 * We simply start over in case of a robust
801 * futex. The code above will take the futex
802 * and return happy.
803 */
804 if (curval & FUTEX_OWNER_DIED) {
805 ownerdied = 1;
806 goto retry;
807 }
808 default:
809 break;
810 }
811 }
812
813 return ret;
814}
815
2e12978a
LJ
816/**
817 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
818 * @q: The futex_q to unqueue
819 *
820 * The q->lock_ptr must not be NULL and must be held by the caller.
821 */
822static void __unqueue_futex(struct futex_q *q)
823{
824 struct futex_hash_bucket *hb;
825
29096202
SR
826 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
827 || WARN_ON(plist_node_empty(&q->list)))
2e12978a
LJ
828 return;
829
830 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
831 plist_del(&q->list, &hb->chain);
832}
833
1da177e4
LT
834/*
835 * The hash bucket lock must be held when this is called.
836 * Afterwards, the futex_q must not be accessed.
837 */
838static void wake_futex(struct futex_q *q)
839{
f1a11e05
TG
840 struct task_struct *p = q->task;
841
1da177e4 842 /*
f1a11e05 843 * We set q->lock_ptr = NULL _before_ we wake up the task. If
fb62db2b
RD
844 * a non-futex wake up happens on another CPU then the task
845 * might exit and p would dereference a non-existing task
f1a11e05
TG
846 * struct. Prevent this by holding a reference on p across the
847 * wake up.
1da177e4 848 */
f1a11e05
TG
849 get_task_struct(p);
850
2e12978a 851 __unqueue_futex(q);
1da177e4 852 /*
f1a11e05
TG
853 * The waiting task can free the futex_q as soon as
854 * q->lock_ptr = NULL is written, without taking any locks. A
855 * memory barrier is required here to prevent the following
856 * store to lock_ptr from getting ahead of the plist_del.
1da177e4 857 */
ccdea2f8 858 smp_wmb();
1da177e4 859 q->lock_ptr = NULL;
f1a11e05
TG
860
861 wake_up_state(p, TASK_NORMAL);
862 put_task_struct(p);
1da177e4
LT
863}
864
c87e2837
IM
865static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
866{
867 struct task_struct *new_owner;
868 struct futex_pi_state *pi_state = this->pi_state;
7cfdaf38 869 u32 uninitialized_var(curval), newval;
c87e2837
IM
870
871 if (!pi_state)
872 return -EINVAL;
873
51246bfd
TG
874 /*
875 * If current does not own the pi_state then the futex is
876 * inconsistent and user space fiddled with the futex value.
877 */
878 if (pi_state->owner != current)
879 return -EINVAL;
880
d209d74d 881 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
882 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
883
884 /*
f123c98e
SR
885 * It is possible that the next waiter (the one that brought
886 * this owner to the kernel) timed out and is no longer
887 * waiting on the lock.
c87e2837
IM
888 */
889 if (!new_owner)
890 new_owner = this->task;
891
892 /*
893 * We pass it to the next owner. (The WAITERS bit is always
894 * kept enabled while there is PI state around. We must also
895 * preserve the owner died bit.)
896 */
e3f2ddea 897 if (!(uval & FUTEX_OWNER_DIED)) {
778e9a9c
AK
898 int ret = 0;
899
b488893a 900 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 901
37a9d912 902 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
778e9a9c 903 ret = -EFAULT;
cde898fa 904 else if (curval != uval)
778e9a9c
AK
905 ret = -EINVAL;
906 if (ret) {
d209d74d 907 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
778e9a9c
AK
908 return ret;
909 }
e3f2ddea 910 }
c87e2837 911
1d615482 912 raw_spin_lock_irq(&pi_state->owner->pi_lock);
627371d7
IM
913 WARN_ON(list_empty(&pi_state->list));
914 list_del_init(&pi_state->list);
1d615482 915 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
627371d7 916
1d615482 917 raw_spin_lock_irq(&new_owner->pi_lock);
627371d7 918 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
919 list_add(&pi_state->list, &new_owner->pi_state_list);
920 pi_state->owner = new_owner;
1d615482 921 raw_spin_unlock_irq(&new_owner->pi_lock);
627371d7 922
d209d74d 923 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
924 rt_mutex_unlock(&pi_state->pi_mutex);
925
926 return 0;
927}
928
929static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
930{
7cfdaf38 931 u32 uninitialized_var(oldval);
c87e2837
IM
932
933 /*
934 * There is no waiter, so we unlock the futex. The owner died
935 * bit has not to be preserved here. We are the owner:
936 */
37a9d912
ML
937 if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
938 return -EFAULT;
c87e2837
IM
939 if (oldval != uval)
940 return -EAGAIN;
941
942 return 0;
943}
944
8b8f319f
IM
945/*
946 * Express the locking dependencies for lockdep:
947 */
948static inline void
949double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
950{
951 if (hb1 <= hb2) {
952 spin_lock(&hb1->lock);
953 if (hb1 < hb2)
954 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
955 } else { /* hb1 > hb2 */
956 spin_lock(&hb2->lock);
957 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
958 }
959}
960
5eb3dc62
DH
961static inline void
962double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
963{
f061d351 964 spin_unlock(&hb1->lock);
88f502fe
IM
965 if (hb1 != hb2)
966 spin_unlock(&hb2->lock);
5eb3dc62
DH
967}
968
1da177e4 969/*
b2d0994b 970 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 971 */
b41277dc
DH
972static int
973futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 974{
e2970f2f 975 struct futex_hash_bucket *hb;
1da177e4 976 struct futex_q *this, *next;
ec92d082 977 struct plist_head *head;
38d47c1b 978 union futex_key key = FUTEX_KEY_INIT;
1da177e4
LT
979 int ret;
980
cd689985
TG
981 if (!bitset)
982 return -EINVAL;
983
9ea71503 984 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1da177e4
LT
985 if (unlikely(ret != 0))
986 goto out;
987
e2970f2f
IM
988 hb = hash_futex(&key);
989 spin_lock(&hb->lock);
990 head = &hb->chain;
1da177e4 991
ec92d082 992 plist_for_each_entry_safe(this, next, head, list) {
1da177e4 993 if (match_futex (&this->key, &key)) {
52400ba9 994 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
995 ret = -EINVAL;
996 break;
997 }
cd689985
TG
998
999 /* Check if one of the bits is set in both bitsets */
1000 if (!(this->bitset & bitset))
1001 continue;
1002
1da177e4
LT
1003 wake_futex(this);
1004 if (++ret >= nr_wake)
1005 break;
1006 }
1007 }
1008
e2970f2f 1009 spin_unlock(&hb->lock);
ae791a2d 1010 put_futex_key(&key);
42d35d48 1011out:
1da177e4
LT
1012 return ret;
1013}
1014
4732efbe
JJ
1015/*
1016 * Wake up all waiters hashed on the physical page that is mapped
1017 * to this virtual address:
1018 */
e2970f2f 1019static int
b41277dc 1020futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1021 int nr_wake, int nr_wake2, int op)
4732efbe 1022{
38d47c1b 1023 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1024 struct futex_hash_bucket *hb1, *hb2;
ec92d082 1025 struct plist_head *head;
4732efbe 1026 struct futex_q *this, *next;
e4dc5b7a 1027 int ret, op_ret;
4732efbe 1028
e4dc5b7a 1029retry:
9ea71503 1030 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
4732efbe
JJ
1031 if (unlikely(ret != 0))
1032 goto out;
9ea71503 1033 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
4732efbe 1034 if (unlikely(ret != 0))
42d35d48 1035 goto out_put_key1;
4732efbe 1036
e2970f2f
IM
1037 hb1 = hash_futex(&key1);
1038 hb2 = hash_futex(&key2);
4732efbe 1039
e4dc5b7a 1040retry_private:
eaaea803 1041 double_lock_hb(hb1, hb2);
e2970f2f 1042 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1043 if (unlikely(op_ret < 0)) {
4732efbe 1044
5eb3dc62 1045 double_unlock_hb(hb1, hb2);
4732efbe 1046
7ee1dd3f 1047#ifndef CONFIG_MMU
e2970f2f
IM
1048 /*
1049 * we don't get EFAULT from MMU faults if we don't have an MMU,
1050 * but we might get them from range checking
1051 */
7ee1dd3f 1052 ret = op_ret;
42d35d48 1053 goto out_put_keys;
7ee1dd3f
DH
1054#endif
1055
796f8d9b
DG
1056 if (unlikely(op_ret != -EFAULT)) {
1057 ret = op_ret;
42d35d48 1058 goto out_put_keys;
796f8d9b
DG
1059 }
1060
d0725992 1061 ret = fault_in_user_writeable(uaddr2);
4732efbe 1062 if (ret)
de87fcc1 1063 goto out_put_keys;
4732efbe 1064
b41277dc 1065 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1066 goto retry_private;
1067
ae791a2d
TG
1068 put_futex_key(&key2);
1069 put_futex_key(&key1);
e4dc5b7a 1070 goto retry;
4732efbe
JJ
1071 }
1072
e2970f2f 1073 head = &hb1->chain;
4732efbe 1074
ec92d082 1075 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
1076 if (match_futex (&this->key, &key1)) {
1077 wake_futex(this);
1078 if (++ret >= nr_wake)
1079 break;
1080 }
1081 }
1082
1083 if (op_ret > 0) {
e2970f2f 1084 head = &hb2->chain;
4732efbe
JJ
1085
1086 op_ret = 0;
ec92d082 1087 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
1088 if (match_futex (&this->key, &key2)) {
1089 wake_futex(this);
1090 if (++op_ret >= nr_wake2)
1091 break;
1092 }
1093 }
1094 ret += op_ret;
1095 }
1096
5eb3dc62 1097 double_unlock_hb(hb1, hb2);
42d35d48 1098out_put_keys:
ae791a2d 1099 put_futex_key(&key2);
42d35d48 1100out_put_key1:
ae791a2d 1101 put_futex_key(&key1);
42d35d48 1102out:
4732efbe
JJ
1103 return ret;
1104}
1105
9121e478
DH
1106/**
1107 * requeue_futex() - Requeue a futex_q from one hb to another
1108 * @q: the futex_q to requeue
1109 * @hb1: the source hash_bucket
1110 * @hb2: the target hash_bucket
1111 * @key2: the new key for the requeued futex_q
1112 */
1113static inline
1114void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1115 struct futex_hash_bucket *hb2, union futex_key *key2)
1116{
1117
1118 /*
1119 * If key1 and key2 hash to the same bucket, no need to
1120 * requeue.
1121 */
1122 if (likely(&hb1->chain != &hb2->chain)) {
1123 plist_del(&q->list, &hb1->chain);
1124 plist_add(&q->list, &hb2->chain);
1125 q->lock_ptr = &hb2->lock;
9121e478
DH
1126 }
1127 get_futex_key_refs(key2);
1128 q->key = *key2;
1129}
1130
52400ba9
DH
1131/**
1132 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1133 * @q: the futex_q
1134 * @key: the key of the requeue target futex
1135 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1136 *
1137 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1138 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1139 * to the requeue target futex so the waiter can detect the wakeup on the right
1140 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1141 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1142 * to protect access to the pi_state to fixup the owner later. Must be called
1143 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1144 */
1145static inline
beda2c7e
DH
1146void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1147 struct futex_hash_bucket *hb)
52400ba9 1148{
52400ba9
DH
1149 get_futex_key_refs(key);
1150 q->key = *key;
1151
2e12978a 1152 __unqueue_futex(q);
52400ba9
DH
1153
1154 WARN_ON(!q->rt_waiter);
1155 q->rt_waiter = NULL;
1156
beda2c7e 1157 q->lock_ptr = &hb->lock;
beda2c7e 1158
f1a11e05 1159 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1160}
1161
1162/**
1163 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1164 * @pifutex: the user address of the to futex
1165 * @hb1: the from futex hash bucket, must be locked by the caller
1166 * @hb2: the to futex hash bucket, must be locked by the caller
1167 * @key1: the from futex key
1168 * @key2: the to futex key
1169 * @ps: address to store the pi_state pointer
1170 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1171 *
1172 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1173 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1174 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1175 * hb1 and hb2 must be held by the caller.
52400ba9
DH
1176 *
1177 * Returns:
1178 * 0 - failed to acquire the lock atomicly
1179 * 1 - acquired the lock
1180 * <0 - error
1181 */
1182static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1183 struct futex_hash_bucket *hb1,
1184 struct futex_hash_bucket *hb2,
1185 union futex_key *key1, union futex_key *key2,
bab5bc9e 1186 struct futex_pi_state **ps, int set_waiters)
52400ba9 1187{
bab5bc9e 1188 struct futex_q *top_waiter = NULL;
52400ba9
DH
1189 u32 curval;
1190 int ret;
1191
1192 if (get_futex_value_locked(&curval, pifutex))
1193 return -EFAULT;
1194
bab5bc9e
DH
1195 /*
1196 * Find the top_waiter and determine if there are additional waiters.
1197 * If the caller intends to requeue more than 1 waiter to pifutex,
1198 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1199 * as we have means to handle the possible fault. If not, don't set
1200 * the bit unecessarily as it will force the subsequent unlock to enter
1201 * the kernel.
1202 */
52400ba9
DH
1203 top_waiter = futex_top_waiter(hb1, key1);
1204
1205 /* There are no waiters, nothing for us to do. */
1206 if (!top_waiter)
1207 return 0;
1208
84bc4af5
DH
1209 /* Ensure we requeue to the expected futex. */
1210 if (!match_futex(top_waiter->requeue_pi_key, key2))
1211 return -EINVAL;
1212
52400ba9 1213 /*
bab5bc9e
DH
1214 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1215 * the contended case or if set_waiters is 1. The pi_state is returned
1216 * in ps in contended cases.
52400ba9 1217 */
bab5bc9e
DH
1218 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1219 set_waiters);
52400ba9 1220 if (ret == 1)
beda2c7e 1221 requeue_pi_wake_futex(top_waiter, key2, hb2);
52400ba9
DH
1222
1223 return ret;
1224}
1225
1226/**
1227 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1228 * @uaddr1: source futex user address
b41277dc 1229 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1230 * @uaddr2: target futex user address
1231 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1232 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1233 * @cmpval: @uaddr1 expected value (or %NULL)
1234 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1235 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1236 *
1237 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1238 * uaddr2 atomically on behalf of the top waiter.
1239 *
1240 * Returns:
1241 * >=0 - on success, the number of tasks requeued or woken
1242 * <0 - on error
1da177e4 1243 */
b41277dc
DH
1244static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1245 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1246 u32 *cmpval, int requeue_pi)
1da177e4 1247{
38d47c1b 1248 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1249 int drop_count = 0, task_count = 0, ret;
1250 struct futex_pi_state *pi_state = NULL;
e2970f2f 1251 struct futex_hash_bucket *hb1, *hb2;
ec92d082 1252 struct plist_head *head1;
1da177e4 1253 struct futex_q *this, *next;
52400ba9
DH
1254 u32 curval2;
1255
1256 if (requeue_pi) {
1257 /*
1258 * requeue_pi requires a pi_state, try to allocate it now
1259 * without any locks in case it fails.
1260 */
1261 if (refill_pi_state_cache())
1262 return -ENOMEM;
1263 /*
1264 * requeue_pi must wake as many tasks as it can, up to nr_wake
1265 * + nr_requeue, since it acquires the rt_mutex prior to
1266 * returning to userspace, so as to not leave the rt_mutex with
1267 * waiters and no owner. However, second and third wake-ups
1268 * cannot be predicted as they involve race conditions with the
1269 * first wake and a fault while looking up the pi_state. Both
1270 * pthread_cond_signal() and pthread_cond_broadcast() should
1271 * use nr_wake=1.
1272 */
1273 if (nr_wake != 1)
1274 return -EINVAL;
1275 }
1da177e4 1276
42d35d48 1277retry:
52400ba9
DH
1278 if (pi_state != NULL) {
1279 /*
1280 * We will have to lookup the pi_state again, so free this one
1281 * to keep the accounting correct.
1282 */
1283 free_pi_state(pi_state);
1284 pi_state = NULL;
1285 }
1286
9ea71503 1287 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1da177e4
LT
1288 if (unlikely(ret != 0))
1289 goto out;
9ea71503
SB
1290 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1291 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1da177e4 1292 if (unlikely(ret != 0))
42d35d48 1293 goto out_put_key1;
1da177e4 1294
e2970f2f
IM
1295 hb1 = hash_futex(&key1);
1296 hb2 = hash_futex(&key2);
1da177e4 1297
e4dc5b7a 1298retry_private:
8b8f319f 1299 double_lock_hb(hb1, hb2);
1da177e4 1300
e2970f2f
IM
1301 if (likely(cmpval != NULL)) {
1302 u32 curval;
1da177e4 1303
e2970f2f 1304 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1305
1306 if (unlikely(ret)) {
5eb3dc62 1307 double_unlock_hb(hb1, hb2);
1da177e4 1308
e2970f2f 1309 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1310 if (ret)
1311 goto out_put_keys;
1da177e4 1312
b41277dc 1313 if (!(flags & FLAGS_SHARED))
e4dc5b7a 1314 goto retry_private;
1da177e4 1315
ae791a2d
TG
1316 put_futex_key(&key2);
1317 put_futex_key(&key1);
e4dc5b7a 1318 goto retry;
1da177e4 1319 }
e2970f2f 1320 if (curval != *cmpval) {
1da177e4
LT
1321 ret = -EAGAIN;
1322 goto out_unlock;
1323 }
1324 }
1325
52400ba9 1326 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
1327 /*
1328 * Attempt to acquire uaddr2 and wake the top waiter. If we
1329 * intend to requeue waiters, force setting the FUTEX_WAITERS
1330 * bit. We force this here where we are able to easily handle
1331 * faults rather in the requeue loop below.
1332 */
52400ba9 1333 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 1334 &key2, &pi_state, nr_requeue);
52400ba9
DH
1335
1336 /*
1337 * At this point the top_waiter has either taken uaddr2 or is
1338 * waiting on it. If the former, then the pi_state will not
1339 * exist yet, look it up one more time to ensure we have a
1340 * reference to it.
1341 */
1342 if (ret == 1) {
1343 WARN_ON(pi_state);
89061d3d 1344 drop_count++;
52400ba9
DH
1345 task_count++;
1346 ret = get_futex_value_locked(&curval2, uaddr2);
1347 if (!ret)
1348 ret = lookup_pi_state(curval2, hb2, &key2,
1349 &pi_state);
1350 }
1351
1352 switch (ret) {
1353 case 0:
1354 break;
1355 case -EFAULT:
1356 double_unlock_hb(hb1, hb2);
ae791a2d
TG
1357 put_futex_key(&key2);
1358 put_futex_key(&key1);
d0725992 1359 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
1360 if (!ret)
1361 goto retry;
1362 goto out;
1363 case -EAGAIN:
1364 /* The owner was exiting, try again. */
1365 double_unlock_hb(hb1, hb2);
ae791a2d
TG
1366 put_futex_key(&key2);
1367 put_futex_key(&key1);
52400ba9
DH
1368 cond_resched();
1369 goto retry;
1370 default:
1371 goto out_unlock;
1372 }
1373 }
1374
e2970f2f 1375 head1 = &hb1->chain;
ec92d082 1376 plist_for_each_entry_safe(this, next, head1, list) {
52400ba9
DH
1377 if (task_count - nr_wake >= nr_requeue)
1378 break;
1379
1380 if (!match_futex(&this->key, &key1))
1da177e4 1381 continue;
52400ba9 1382
392741e0
DH
1383 /*
1384 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1385 * be paired with each other and no other futex ops.
1386 */
1387 if ((requeue_pi && !this->rt_waiter) ||
1388 (!requeue_pi && this->rt_waiter)) {
1389 ret = -EINVAL;
1390 break;
1391 }
52400ba9
DH
1392
1393 /*
1394 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1395 * lock, we already woke the top_waiter. If not, it will be
1396 * woken by futex_unlock_pi().
1397 */
1398 if (++task_count <= nr_wake && !requeue_pi) {
1da177e4 1399 wake_futex(this);
52400ba9
DH
1400 continue;
1401 }
1da177e4 1402
84bc4af5
DH
1403 /* Ensure we requeue to the expected futex for requeue_pi. */
1404 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1405 ret = -EINVAL;
1406 break;
1407 }
1408
52400ba9
DH
1409 /*
1410 * Requeue nr_requeue waiters and possibly one more in the case
1411 * of requeue_pi if we couldn't acquire the lock atomically.
1412 */
1413 if (requeue_pi) {
1414 /* Prepare the waiter to take the rt_mutex. */
1415 atomic_inc(&pi_state->refcount);
1416 this->pi_state = pi_state;
1417 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1418 this->rt_waiter,
1419 this->task, 1);
1420 if (ret == 1) {
1421 /* We got the lock. */
beda2c7e 1422 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 1423 drop_count++;
52400ba9
DH
1424 continue;
1425 } else if (ret) {
1426 /* -EDEADLK */
1427 this->pi_state = NULL;
1428 free_pi_state(pi_state);
1429 goto out_unlock;
1430 }
1da177e4 1431 }
52400ba9
DH
1432 requeue_futex(this, hb1, hb2, &key2);
1433 drop_count++;
1da177e4
LT
1434 }
1435
1436out_unlock:
5eb3dc62 1437 double_unlock_hb(hb1, hb2);
1da177e4 1438
cd84a42f
DH
1439 /*
1440 * drop_futex_key_refs() must be called outside the spinlocks. During
1441 * the requeue we moved futex_q's from the hash bucket at key1 to the
1442 * one at key2 and updated their key pointer. We no longer need to
1443 * hold the references to key1.
1444 */
1da177e4 1445 while (--drop_count >= 0)
9adef58b 1446 drop_futex_key_refs(&key1);
1da177e4 1447
42d35d48 1448out_put_keys:
ae791a2d 1449 put_futex_key(&key2);
42d35d48 1450out_put_key1:
ae791a2d 1451 put_futex_key(&key1);
42d35d48 1452out:
52400ba9
DH
1453 if (pi_state != NULL)
1454 free_pi_state(pi_state);
1455 return ret ? ret : task_count;
1da177e4
LT
1456}
1457
1458/* The key must be already stored in q->key. */
82af7aca 1459static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 1460 __acquires(&hb->lock)
1da177e4 1461{
e2970f2f 1462 struct futex_hash_bucket *hb;
1da177e4 1463
e2970f2f
IM
1464 hb = hash_futex(&q->key);
1465 q->lock_ptr = &hb->lock;
1da177e4 1466
e2970f2f
IM
1467 spin_lock(&hb->lock);
1468 return hb;
1da177e4
LT
1469}
1470
d40d65c8
DH
1471static inline void
1472queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
15e408cd 1473 __releases(&hb->lock)
d40d65c8
DH
1474{
1475 spin_unlock(&hb->lock);
d40d65c8
DH
1476}
1477
1478/**
1479 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1480 * @q: The futex_q to enqueue
1481 * @hb: The destination hash bucket
1482 *
1483 * The hb->lock must be held by the caller, and is released here. A call to
1484 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1485 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1486 * or nothing if the unqueue is done as part of the wake process and the unqueue
1487 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1488 * an example).
1489 */
82af7aca 1490static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
15e408cd 1491 __releases(&hb->lock)
1da177e4 1492{
ec92d082
PP
1493 int prio;
1494
1495 /*
1496 * The priority used to register this element is
1497 * - either the real thread-priority for the real-time threads
1498 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1499 * - or MAX_RT_PRIO for non-RT threads.
1500 * Thus, all RT-threads are woken first in priority order, and
1501 * the others are woken last, in FIFO order.
1502 */
1503 prio = min(current->normal_prio, MAX_RT_PRIO);
1504
1505 plist_node_init(&q->list, prio);
ec92d082 1506 plist_add(&q->list, &hb->chain);
c87e2837 1507 q->task = current;
e2970f2f 1508 spin_unlock(&hb->lock);
1da177e4
LT
1509}
1510
d40d65c8
DH
1511/**
1512 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1513 * @q: The futex_q to unqueue
1514 *
1515 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1516 * be paired with exactly one earlier call to queue_me().
1517 *
1518 * Returns:
1519 * 1 - if the futex_q was still queued (and we removed unqueued it)
1520 * 0 - if the futex_q was already removed by the waking thread
1da177e4 1521 */
1da177e4
LT
1522static int unqueue_me(struct futex_q *q)
1523{
1da177e4 1524 spinlock_t *lock_ptr;
e2970f2f 1525 int ret = 0;
1da177e4
LT
1526
1527 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 1528retry:
1da177e4 1529 lock_ptr = q->lock_ptr;
e91467ec 1530 barrier();
c80544dc 1531 if (lock_ptr != NULL) {
1da177e4
LT
1532 spin_lock(lock_ptr);
1533 /*
1534 * q->lock_ptr can change between reading it and
1535 * spin_lock(), causing us to take the wrong lock. This
1536 * corrects the race condition.
1537 *
1538 * Reasoning goes like this: if we have the wrong lock,
1539 * q->lock_ptr must have changed (maybe several times)
1540 * between reading it and the spin_lock(). It can
1541 * change again after the spin_lock() but only if it was
1542 * already changed before the spin_lock(). It cannot,
1543 * however, change back to the original value. Therefore
1544 * we can detect whether we acquired the correct lock.
1545 */
1546 if (unlikely(lock_ptr != q->lock_ptr)) {
1547 spin_unlock(lock_ptr);
1548 goto retry;
1549 }
2e12978a 1550 __unqueue_futex(q);
c87e2837
IM
1551
1552 BUG_ON(q->pi_state);
1553
1da177e4
LT
1554 spin_unlock(lock_ptr);
1555 ret = 1;
1556 }
1557
9adef58b 1558 drop_futex_key_refs(&q->key);
1da177e4
LT
1559 return ret;
1560}
1561
c87e2837
IM
1562/*
1563 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1564 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1565 * and dropped here.
c87e2837 1566 */
d0aa7a70 1567static void unqueue_me_pi(struct futex_q *q)
15e408cd 1568 __releases(q->lock_ptr)
c87e2837 1569{
2e12978a 1570 __unqueue_futex(q);
c87e2837
IM
1571
1572 BUG_ON(!q->pi_state);
1573 free_pi_state(q->pi_state);
1574 q->pi_state = NULL;
1575
d0aa7a70 1576 spin_unlock(q->lock_ptr);
c87e2837
IM
1577}
1578
d0aa7a70 1579/*
cdf71a10 1580 * Fixup the pi_state owner with the new owner.
d0aa7a70 1581 *
778e9a9c
AK
1582 * Must be called with hash bucket lock held and mm->sem held for non
1583 * private futexes.
d0aa7a70 1584 */
778e9a9c 1585static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
ae791a2d 1586 struct task_struct *newowner)
d0aa7a70 1587{
cdf71a10 1588 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 1589 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 1590 struct task_struct *oldowner = pi_state->owner;
7cfdaf38 1591 u32 uval, uninitialized_var(curval), newval;
e4dc5b7a 1592 int ret;
d0aa7a70
PP
1593
1594 /* Owner died? */
1b7558e4
TG
1595 if (!pi_state->owner)
1596 newtid |= FUTEX_OWNER_DIED;
1597
1598 /*
1599 * We are here either because we stole the rtmutex from the
8161239a
LJ
1600 * previous highest priority waiter or we are the highest priority
1601 * waiter but failed to get the rtmutex the first time.
1602 * We have to replace the newowner TID in the user space variable.
1603 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 1604 *
b2d0994b
DH
1605 * Note: We write the user space value _before_ changing the pi_state
1606 * because we can fault here. Imagine swapped out pages or a fork
1607 * that marked all the anonymous memory readonly for cow.
1b7558e4
TG
1608 *
1609 * Modifying pi_state _before_ the user space value would
1610 * leave the pi_state in an inconsistent state when we fault
1611 * here, because we need to drop the hash bucket lock to
1612 * handle the fault. This might be observed in the PID check
1613 * in lookup_pi_state.
1614 */
1615retry:
1616 if (get_futex_value_locked(&uval, uaddr))
1617 goto handle_fault;
1618
1619 while (1) {
1620 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1621
37a9d912 1622 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1b7558e4
TG
1623 goto handle_fault;
1624 if (curval == uval)
1625 break;
1626 uval = curval;
1627 }
1628
1629 /*
1630 * We fixed up user space. Now we need to fix the pi_state
1631 * itself.
1632 */
d0aa7a70 1633 if (pi_state->owner != NULL) {
1d615482 1634 raw_spin_lock_irq(&pi_state->owner->pi_lock);
d0aa7a70
PP
1635 WARN_ON(list_empty(&pi_state->list));
1636 list_del_init(&pi_state->list);
1d615482 1637 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 1638 }
d0aa7a70 1639
cdf71a10 1640 pi_state->owner = newowner;
d0aa7a70 1641
1d615482 1642 raw_spin_lock_irq(&newowner->pi_lock);
d0aa7a70 1643 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 1644 list_add(&pi_state->list, &newowner->pi_state_list);
1d615482 1645 raw_spin_unlock_irq(&newowner->pi_lock);
1b7558e4 1646 return 0;
d0aa7a70 1647
d0aa7a70 1648 /*
1b7558e4 1649 * To handle the page fault we need to drop the hash bucket
8161239a
LJ
1650 * lock here. That gives the other task (either the highest priority
1651 * waiter itself or the task which stole the rtmutex) the
1b7558e4
TG
1652 * chance to try the fixup of the pi_state. So once we are
1653 * back from handling the fault we need to check the pi_state
1654 * after reacquiring the hash bucket lock and before trying to
1655 * do another fixup. When the fixup has been done already we
1656 * simply return.
d0aa7a70 1657 */
1b7558e4
TG
1658handle_fault:
1659 spin_unlock(q->lock_ptr);
778e9a9c 1660
d0725992 1661 ret = fault_in_user_writeable(uaddr);
778e9a9c 1662
1b7558e4 1663 spin_lock(q->lock_ptr);
778e9a9c 1664
1b7558e4
TG
1665 /*
1666 * Check if someone else fixed it for us:
1667 */
1668 if (pi_state->owner != oldowner)
1669 return 0;
1670
1671 if (ret)
1672 return ret;
1673
1674 goto retry;
d0aa7a70
PP
1675}
1676
72c1bbf3 1677static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 1678
dd973998
DH
1679/**
1680 * fixup_owner() - Post lock pi_state and corner case management
1681 * @uaddr: user address of the futex
dd973998
DH
1682 * @q: futex_q (contains pi_state and access to the rt_mutex)
1683 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1684 *
1685 * After attempting to lock an rt_mutex, this function is called to cleanup
1686 * the pi_state owner as well as handle race conditions that may allow us to
1687 * acquire the lock. Must be called with the hb lock held.
1688 *
1689 * Returns:
1690 * 1 - success, lock taken
1691 * 0 - success, lock not taken
1692 * <0 - on error (-EFAULT)
1693 */
ae791a2d 1694static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998
DH
1695{
1696 struct task_struct *owner;
1697 int ret = 0;
1698
1699 if (locked) {
1700 /*
1701 * Got the lock. We might not be the anticipated owner if we
1702 * did a lock-steal - fix up the PI-state in that case:
1703 */
1704 if (q->pi_state->owner != current)
ae791a2d 1705 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
1706 goto out;
1707 }
1708
1709 /*
1710 * Catch the rare case, where the lock was released when we were on the
1711 * way back before we locked the hash bucket.
1712 */
1713 if (q->pi_state->owner == current) {
1714 /*
1715 * Try to get the rt_mutex now. This might fail as some other
1716 * task acquired the rt_mutex after we removed ourself from the
1717 * rt_mutex waiters list.
1718 */
1719 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1720 locked = 1;
1721 goto out;
1722 }
1723
1724 /*
1725 * pi_state is incorrect, some other task did a lock steal and
1726 * we returned due to timeout or signal without taking the
8161239a 1727 * rt_mutex. Too late.
dd973998 1728 */
8161239a 1729 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
dd973998 1730 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
8161239a
LJ
1731 if (!owner)
1732 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1733 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
ae791a2d 1734 ret = fixup_pi_state_owner(uaddr, q, owner);
dd973998
DH
1735 goto out;
1736 }
1737
1738 /*
1739 * Paranoia check. If we did not take the lock, then we should not be
8161239a 1740 * the owner of the rt_mutex.
dd973998
DH
1741 */
1742 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1743 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1744 "pi-state %p\n", ret,
1745 q->pi_state->pi_mutex.owner,
1746 q->pi_state->owner);
1747
1748out:
1749 return ret ? ret : locked;
1750}
1751
ca5f9524
DH
1752/**
1753 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1754 * @hb: the futex hash bucket, must be locked by the caller
1755 * @q: the futex_q to queue up on
1756 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
1757 */
1758static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 1759 struct hrtimer_sleeper *timeout)
ca5f9524 1760{
9beba3c5
DH
1761 /*
1762 * The task state is guaranteed to be set before another task can
1763 * wake it. set_current_state() is implemented using set_mb() and
1764 * queue_me() calls spin_unlock() upon completion, both serializing
1765 * access to the hash list and forcing another memory barrier.
1766 */
f1a11e05 1767 set_current_state(TASK_INTERRUPTIBLE);
0729e196 1768 queue_me(q, hb);
ca5f9524
DH
1769
1770 /* Arm the timer */
1771 if (timeout) {
1772 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1773 if (!hrtimer_active(&timeout->timer))
1774 timeout->task = NULL;
1775 }
1776
1777 /*
0729e196
DH
1778 * If we have been removed from the hash list, then another task
1779 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
1780 */
1781 if (likely(!plist_node_empty(&q->list))) {
1782 /*
1783 * If the timer has already expired, current will already be
1784 * flagged for rescheduling. Only call schedule if there
1785 * is no timeout, or if it has yet to expire.
1786 */
1787 if (!timeout || timeout->task)
1788 schedule();
1789 }
1790 __set_current_state(TASK_RUNNING);
1791}
1792
f801073f
DH
1793/**
1794 * futex_wait_setup() - Prepare to wait on a futex
1795 * @uaddr: the futex userspace address
1796 * @val: the expected value
b41277dc 1797 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
1798 * @q: the associated futex_q
1799 * @hb: storage for hash_bucket pointer to be returned to caller
1800 *
1801 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1802 * compare it with the expected value. Handle atomic faults internally.
1803 * Return with the hb lock held and a q.key reference on success, and unlocked
1804 * with no q.key reference on failure.
1805 *
1806 * Returns:
1807 * 0 - uaddr contains val and hb has been locked
ca4a04cf 1808 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 1809 */
b41277dc 1810static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 1811 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 1812{
e2970f2f
IM
1813 u32 uval;
1814 int ret;
1da177e4 1815
1da177e4 1816 /*
b2d0994b 1817 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
1818 * Order is important:
1819 *
1820 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1821 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1822 *
1823 * The basic logical guarantee of a futex is that it blocks ONLY
1824 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
1825 * any cond. If we locked the hash-bucket after testing *uaddr, that
1826 * would open a race condition where we could block indefinitely with
1da177e4
LT
1827 * cond(var) false, which would violate the guarantee.
1828 *
8fe8f545
ML
1829 * On the other hand, we insert q and release the hash-bucket only
1830 * after testing *uaddr. This guarantees that futex_wait() will NOT
1831 * absorb a wakeup if *uaddr does not match the desired values
1832 * while the syscall executes.
1da177e4 1833 */
f801073f 1834retry:
9ea71503 1835 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
f801073f 1836 if (unlikely(ret != 0))
a5a2a0c7 1837 return ret;
f801073f
DH
1838
1839retry_private:
1840 *hb = queue_lock(q);
1841
e2970f2f 1842 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 1843
f801073f
DH
1844 if (ret) {
1845 queue_unlock(q, *hb);
1da177e4 1846
e2970f2f 1847 ret = get_user(uval, uaddr);
e4dc5b7a 1848 if (ret)
f801073f 1849 goto out;
1da177e4 1850
b41277dc 1851 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1852 goto retry_private;
1853
ae791a2d 1854 put_futex_key(&q->key);
e4dc5b7a 1855 goto retry;
1da177e4 1856 }
ca5f9524 1857
f801073f
DH
1858 if (uval != val) {
1859 queue_unlock(q, *hb);
1860 ret = -EWOULDBLOCK;
2fff78c7 1861 }
1da177e4 1862
f801073f
DH
1863out:
1864 if (ret)
ae791a2d 1865 put_futex_key(&q->key);
f801073f
DH
1866 return ret;
1867}
1868
b41277dc
DH
1869static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
1870 ktime_t *abs_time, u32 bitset)
f801073f
DH
1871{
1872 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
1873 struct restart_block *restart;
1874 struct futex_hash_bucket *hb;
5bdb05f9 1875 struct futex_q q = futex_q_init;
f801073f
DH
1876 int ret;
1877
1878 if (!bitset)
1879 return -EINVAL;
f801073f
DH
1880 q.bitset = bitset;
1881
1882 if (abs_time) {
1883 to = &timeout;
1884
b41277dc
DH
1885 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
1886 CLOCK_REALTIME : CLOCK_MONOTONIC,
1887 HRTIMER_MODE_ABS);
f801073f
DH
1888 hrtimer_init_sleeper(to, current);
1889 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1890 current->timer_slack_ns);
1891 }
1892
d58e6576 1893retry:
7ada876a
DH
1894 /*
1895 * Prepare to wait on uaddr. On success, holds hb lock and increments
1896 * q.key refs.
1897 */
b41277dc 1898 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
1899 if (ret)
1900 goto out;
1901
ca5f9524 1902 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 1903 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
1904
1905 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 1906 ret = 0;
7ada876a 1907 /* unqueue_me() drops q.key ref */
1da177e4 1908 if (!unqueue_me(&q))
7ada876a 1909 goto out;
2fff78c7 1910 ret = -ETIMEDOUT;
ca5f9524 1911 if (to && !to->task)
7ada876a 1912 goto out;
72c1bbf3 1913
e2970f2f 1914 /*
d58e6576
TG
1915 * We expect signal_pending(current), but we might be the
1916 * victim of a spurious wakeup as well.
e2970f2f 1917 */
7ada876a 1918 if (!signal_pending(current))
d58e6576 1919 goto retry;
d58e6576 1920
2fff78c7 1921 ret = -ERESTARTSYS;
c19384b5 1922 if (!abs_time)
7ada876a 1923 goto out;
1da177e4 1924
2fff78c7
PZ
1925 restart = &current_thread_info()->restart_block;
1926 restart->fn = futex_wait_restart;
a3c74c52 1927 restart->futex.uaddr = uaddr;
2fff78c7
PZ
1928 restart->futex.val = val;
1929 restart->futex.time = abs_time->tv64;
1930 restart->futex.bitset = bitset;
0cd9c649 1931 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 1932
2fff78c7
PZ
1933 ret = -ERESTART_RESTARTBLOCK;
1934
42d35d48 1935out:
ca5f9524
DH
1936 if (to) {
1937 hrtimer_cancel(&to->timer);
1938 destroy_hrtimer_on_stack(&to->timer);
1939 }
c87e2837
IM
1940 return ret;
1941}
1942
72c1bbf3
NP
1943
1944static long futex_wait_restart(struct restart_block *restart)
1945{
a3c74c52 1946 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 1947 ktime_t t, *tp = NULL;
72c1bbf3 1948
a72188d8
DH
1949 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1950 t.tv64 = restart->futex.time;
1951 tp = &t;
1952 }
72c1bbf3 1953 restart->fn = do_no_restart_syscall;
b41277dc
DH
1954
1955 return (long)futex_wait(uaddr, restart->futex.flags,
1956 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
1957}
1958
1959
c87e2837
IM
1960/*
1961 * Userspace tried a 0 -> TID atomic transition of the futex value
1962 * and failed. The kernel side here does the whole locking operation:
1963 * if there are waiters then it will block, it does PI, etc. (Due to
1964 * races the kernel might see a 0 value of the futex too.)
1965 */
b41277dc
DH
1966static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
1967 ktime_t *time, int trylock)
c87e2837 1968{
c5780e97 1969 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837 1970 struct futex_hash_bucket *hb;
5bdb05f9 1971 struct futex_q q = futex_q_init;
dd973998 1972 int res, ret;
c87e2837
IM
1973
1974 if (refill_pi_state_cache())
1975 return -ENOMEM;
1976
c19384b5 1977 if (time) {
c5780e97 1978 to = &timeout;
237fc6e7
TG
1979 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1980 HRTIMER_MODE_ABS);
c5780e97 1981 hrtimer_init_sleeper(to, current);
cc584b21 1982 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
1983 }
1984
42d35d48 1985retry:
9ea71503 1986 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
c87e2837 1987 if (unlikely(ret != 0))
42d35d48 1988 goto out;
c87e2837 1989
e4dc5b7a 1990retry_private:
82af7aca 1991 hb = queue_lock(&q);
c87e2837 1992
bab5bc9e 1993 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 1994 if (unlikely(ret)) {
778e9a9c 1995 switch (ret) {
1a52084d
DH
1996 case 1:
1997 /* We got the lock. */
1998 ret = 0;
1999 goto out_unlock_put_key;
2000 case -EFAULT:
2001 goto uaddr_faulted;
778e9a9c
AK
2002 case -EAGAIN:
2003 /*
2004 * Task is exiting and we just wait for the
2005 * exit to complete.
2006 */
2007 queue_unlock(&q, hb);
ae791a2d 2008 put_futex_key(&q.key);
778e9a9c
AK
2009 cond_resched();
2010 goto retry;
778e9a9c 2011 default:
42d35d48 2012 goto out_unlock_put_key;
c87e2837 2013 }
c87e2837
IM
2014 }
2015
2016 /*
2017 * Only actually queue now that the atomic ops are done:
2018 */
82af7aca 2019 queue_me(&q, hb);
c87e2837 2020
c87e2837
IM
2021 WARN_ON(!q.pi_state);
2022 /*
2023 * Block on the PI mutex:
2024 */
2025 if (!trylock)
2026 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2027 else {
2028 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2029 /* Fixup the trylock return value: */
2030 ret = ret ? 0 : -EWOULDBLOCK;
2031 }
2032
a99e4e41 2033 spin_lock(q.lock_ptr);
dd973998
DH
2034 /*
2035 * Fixup the pi_state owner and possibly acquire the lock if we
2036 * haven't already.
2037 */
ae791a2d 2038 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2039 /*
2040 * If fixup_owner() returned an error, proprogate that. If it acquired
2041 * the lock, clear our -ETIMEDOUT or -EINTR.
2042 */
2043 if (res)
2044 ret = (res < 0) ? res : 0;
c87e2837 2045
e8f6386c 2046 /*
dd973998
DH
2047 * If fixup_owner() faulted and was unable to handle the fault, unlock
2048 * it and return the fault to userspace.
e8f6386c
DH
2049 */
2050 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2051 rt_mutex_unlock(&q.pi_state->pi_mutex);
2052
778e9a9c
AK
2053 /* Unqueue and drop the lock */
2054 unqueue_me_pi(&q);
c87e2837 2055
5ecb01cf 2056 goto out_put_key;
c87e2837 2057
42d35d48 2058out_unlock_put_key:
c87e2837
IM
2059 queue_unlock(&q, hb);
2060
42d35d48 2061out_put_key:
ae791a2d 2062 put_futex_key(&q.key);
42d35d48 2063out:
237fc6e7
TG
2064 if (to)
2065 destroy_hrtimer_on_stack(&to->timer);
dd973998 2066 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2067
42d35d48 2068uaddr_faulted:
778e9a9c
AK
2069 queue_unlock(&q, hb);
2070
d0725992 2071 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2072 if (ret)
2073 goto out_put_key;
c87e2837 2074
b41277dc 2075 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2076 goto retry_private;
2077
ae791a2d 2078 put_futex_key(&q.key);
e4dc5b7a 2079 goto retry;
c87e2837
IM
2080}
2081
c87e2837
IM
2082/*
2083 * Userspace attempted a TID -> 0 atomic transition, and failed.
2084 * This is the in-kernel slowpath: we look up the PI state (if any),
2085 * and do the rt-mutex unlock.
2086 */
b41277dc 2087static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837
IM
2088{
2089 struct futex_hash_bucket *hb;
2090 struct futex_q *this, *next;
ec92d082 2091 struct plist_head *head;
38d47c1b 2092 union futex_key key = FUTEX_KEY_INIT;
c0c9ed15 2093 u32 uval, vpid = task_pid_vnr(current);
e4dc5b7a 2094 int ret;
c87e2837
IM
2095
2096retry:
2097 if (get_user(uval, uaddr))
2098 return -EFAULT;
2099 /*
2100 * We release only a lock we actually own:
2101 */
c0c9ed15 2102 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2103 return -EPERM;
c87e2837 2104
9ea71503 2105 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
c87e2837
IM
2106 if (unlikely(ret != 0))
2107 goto out;
2108
2109 hb = hash_futex(&key);
2110 spin_lock(&hb->lock);
2111
c87e2837
IM
2112 /*
2113 * To avoid races, try to do the TID -> 0 atomic transition
2114 * again. If it succeeds then we can return without waking
2115 * anyone else up:
2116 */
37a9d912
ML
2117 if (!(uval & FUTEX_OWNER_DIED) &&
2118 cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
c87e2837
IM
2119 goto pi_faulted;
2120 /*
2121 * Rare case: we managed to release the lock atomically,
2122 * no need to wake anyone else up:
2123 */
c0c9ed15 2124 if (unlikely(uval == vpid))
c87e2837
IM
2125 goto out_unlock;
2126
2127 /*
2128 * Ok, other tasks may need to be woken up - check waiters
2129 * and do the wakeup if necessary:
2130 */
2131 head = &hb->chain;
2132
ec92d082 2133 plist_for_each_entry_safe(this, next, head, list) {
c87e2837
IM
2134 if (!match_futex (&this->key, &key))
2135 continue;
2136 ret = wake_futex_pi(uaddr, uval, this);
2137 /*
2138 * The atomic access to the futex value
2139 * generated a pagefault, so retry the
2140 * user-access and the wakeup:
2141 */
2142 if (ret == -EFAULT)
2143 goto pi_faulted;
2144 goto out_unlock;
2145 }
2146 /*
2147 * No waiters - kernel unlocks the futex:
2148 */
e3f2ddea
IM
2149 if (!(uval & FUTEX_OWNER_DIED)) {
2150 ret = unlock_futex_pi(uaddr, uval);
2151 if (ret == -EFAULT)
2152 goto pi_faulted;
2153 }
c87e2837
IM
2154
2155out_unlock:
2156 spin_unlock(&hb->lock);
ae791a2d 2157 put_futex_key(&key);
c87e2837 2158
42d35d48 2159out:
c87e2837
IM
2160 return ret;
2161
2162pi_faulted:
778e9a9c 2163 spin_unlock(&hb->lock);
ae791a2d 2164 put_futex_key(&key);
c87e2837 2165
d0725992 2166 ret = fault_in_user_writeable(uaddr);
b5686363 2167 if (!ret)
c87e2837
IM
2168 goto retry;
2169
1da177e4
LT
2170 return ret;
2171}
2172
52400ba9
DH
2173/**
2174 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2175 * @hb: the hash_bucket futex_q was original enqueued on
2176 * @q: the futex_q woken while waiting to be requeued
2177 * @key2: the futex_key of the requeue target futex
2178 * @timeout: the timeout associated with the wait (NULL if none)
2179 *
2180 * Detect if the task was woken on the initial futex as opposed to the requeue
2181 * target futex. If so, determine if it was a timeout or a signal that caused
2182 * the wakeup and return the appropriate error code to the caller. Must be
2183 * called with the hb lock held.
2184 *
2185 * Returns
2186 * 0 - no early wakeup detected
1c840c14 2187 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
2188 */
2189static inline
2190int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2191 struct futex_q *q, union futex_key *key2,
2192 struct hrtimer_sleeper *timeout)
2193{
2194 int ret = 0;
2195
2196 /*
2197 * With the hb lock held, we avoid races while we process the wakeup.
2198 * We only need to hold hb (and not hb2) to ensure atomicity as the
2199 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2200 * It can't be requeued from uaddr2 to something else since we don't
2201 * support a PI aware source futex for requeue.
2202 */
2203 if (!match_futex(&q->key, key2)) {
2204 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2205 /*
2206 * We were woken prior to requeue by a timeout or a signal.
2207 * Unqueue the futex_q and determine which it was.
2208 */
2e12978a 2209 plist_del(&q->list, &hb->chain);
52400ba9 2210
d58e6576 2211 /* Handle spurious wakeups gracefully */
11df6ddd 2212 ret = -EWOULDBLOCK;
52400ba9
DH
2213 if (timeout && !timeout->task)
2214 ret = -ETIMEDOUT;
d58e6576 2215 else if (signal_pending(current))
1c840c14 2216 ret = -ERESTARTNOINTR;
52400ba9
DH
2217 }
2218 return ret;
2219}
2220
2221/**
2222 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 2223 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 2224 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
52400ba9
DH
2225 * the same type, no requeueing from private to shared, etc.
2226 * @val: the expected value of uaddr
2227 * @abs_time: absolute timeout
56ec1607 2228 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
2229 * @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2230 * @uaddr2: the pi futex we will take prior to returning to user-space
2231 *
2232 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2233 * uaddr2 which must be PI aware. Normal wakeup will wake on uaddr2 and
2234 * complete the acquisition of the rt_mutex prior to returning to userspace.
2235 * This ensures the rt_mutex maintains an owner when it has waiters; without
2236 * one, the pi logic wouldn't know which task to boost/deboost, if there was a
2237 * need to.
2238 *
2239 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2240 * via the following:
2241 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
2242 * 2) wakeup on uaddr2 after a requeue
2243 * 3) signal
2244 * 4) timeout
52400ba9 2245 *
cc6db4e6 2246 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
2247 *
2248 * If 2, we may then block on trying to take the rt_mutex and return via:
2249 * 5) successful lock
2250 * 6) signal
2251 * 7) timeout
2252 * 8) other lock acquisition failure
2253 *
cc6db4e6 2254 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
2255 *
2256 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2257 *
2258 * Returns:
2259 * 0 - On success
2260 * <0 - On error
2261 */
b41277dc 2262static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 2263 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 2264 u32 __user *uaddr2)
52400ba9
DH
2265{
2266 struct hrtimer_sleeper timeout, *to = NULL;
2267 struct rt_mutex_waiter rt_waiter;
2268 struct rt_mutex *pi_mutex = NULL;
52400ba9 2269 struct futex_hash_bucket *hb;
5bdb05f9
DH
2270 union futex_key key2 = FUTEX_KEY_INIT;
2271 struct futex_q q = futex_q_init;
52400ba9 2272 int res, ret;
52400ba9
DH
2273
2274 if (!bitset)
2275 return -EINVAL;
2276
2277 if (abs_time) {
2278 to = &timeout;
b41277dc
DH
2279 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2280 CLOCK_REALTIME : CLOCK_MONOTONIC,
2281 HRTIMER_MODE_ABS);
52400ba9
DH
2282 hrtimer_init_sleeper(to, current);
2283 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2284 current->timer_slack_ns);
2285 }
2286
2287 /*
2288 * The waiter is allocated on our stack, manipulated by the requeue
2289 * code while we sleep on uaddr.
2290 */
2291 debug_rt_mutex_init_waiter(&rt_waiter);
2292 rt_waiter.task = NULL;
2293
9ea71503 2294 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
52400ba9
DH
2295 if (unlikely(ret != 0))
2296 goto out;
2297
84bc4af5
DH
2298 q.bitset = bitset;
2299 q.rt_waiter = &rt_waiter;
2300 q.requeue_pi_key = &key2;
2301
7ada876a
DH
2302 /*
2303 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2304 * count.
2305 */
b41277dc 2306 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
2307 if (ret)
2308 goto out_key2;
52400ba9
DH
2309
2310 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 2311 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
2312
2313 spin_lock(&hb->lock);
2314 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2315 spin_unlock(&hb->lock);
2316 if (ret)
2317 goto out_put_keys;
2318
2319 /*
2320 * In order for us to be here, we know our q.key == key2, and since
2321 * we took the hb->lock above, we also know that futex_requeue() has
2322 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
2323 * race with the atomic proxy lock acquisition by the requeue code. The
2324 * futex_requeue dropped our key1 reference and incremented our key2
2325 * reference count.
52400ba9
DH
2326 */
2327
2328 /* Check if the requeue code acquired the second futex for us. */
2329 if (!q.rt_waiter) {
2330 /*
2331 * Got the lock. We might not be the anticipated owner if we
2332 * did a lock-steal - fix up the PI-state in that case.
2333 */
2334 if (q.pi_state && (q.pi_state->owner != current)) {
2335 spin_lock(q.lock_ptr);
ae791a2d 2336 ret = fixup_pi_state_owner(uaddr2, &q, current);
52400ba9
DH
2337 spin_unlock(q.lock_ptr);
2338 }
2339 } else {
2340 /*
2341 * We have been woken up by futex_unlock_pi(), a timeout, or a
2342 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2343 * the pi_state.
2344 */
2345 WARN_ON(!&q.pi_state);
2346 pi_mutex = &q.pi_state->pi_mutex;
2347 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2348 debug_rt_mutex_free_waiter(&rt_waiter);
2349
2350 spin_lock(q.lock_ptr);
2351 /*
2352 * Fixup the pi_state owner and possibly acquire the lock if we
2353 * haven't already.
2354 */
ae791a2d 2355 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
2356 /*
2357 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 2358 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
2359 */
2360 if (res)
2361 ret = (res < 0) ? res : 0;
2362
2363 /* Unqueue and drop the lock. */
2364 unqueue_me_pi(&q);
2365 }
2366
2367 /*
2368 * If fixup_pi_state_owner() faulted and was unable to handle the
2369 * fault, unlock the rt_mutex and return the fault to userspace.
2370 */
2371 if (ret == -EFAULT) {
2372 if (rt_mutex_owner(pi_mutex) == current)
2373 rt_mutex_unlock(pi_mutex);
2374 } else if (ret == -EINTR) {
52400ba9 2375 /*
cc6db4e6
DH
2376 * We've already been requeued, but cannot restart by calling
2377 * futex_lock_pi() directly. We could restart this syscall, but
2378 * it would detect that the user space "val" changed and return
2379 * -EWOULDBLOCK. Save the overhead of the restart and return
2380 * -EWOULDBLOCK directly.
52400ba9 2381 */
2070887f 2382 ret = -EWOULDBLOCK;
52400ba9
DH
2383 }
2384
2385out_put_keys:
ae791a2d 2386 put_futex_key(&q.key);
c8b15a70 2387out_key2:
ae791a2d 2388 put_futex_key(&key2);
52400ba9
DH
2389
2390out:
2391 if (to) {
2392 hrtimer_cancel(&to->timer);
2393 destroy_hrtimer_on_stack(&to->timer);
2394 }
2395 return ret;
2396}
2397
0771dfef
IM
2398/*
2399 * Support for robust futexes: the kernel cleans up held futexes at
2400 * thread exit time.
2401 *
2402 * Implementation: user-space maintains a per-thread list of locks it
2403 * is holding. Upon do_exit(), the kernel carefully walks this list,
2404 * and marks all locks that are owned by this thread with the
c87e2837 2405 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
2406 * always manipulated with the lock held, so the list is private and
2407 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2408 * field, to allow the kernel to clean up if the thread dies after
2409 * acquiring the lock, but just before it could have added itself to
2410 * the list. There can only be one such pending lock.
2411 */
2412
2413/**
d96ee56c
DH
2414 * sys_set_robust_list() - Set the robust-futex list head of a task
2415 * @head: pointer to the list-head
2416 * @len: length of the list-head, as userspace expects
0771dfef 2417 */
836f92ad
HC
2418SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2419 size_t, len)
0771dfef 2420{
a0c1e907
TG
2421 if (!futex_cmpxchg_enabled)
2422 return -ENOSYS;
0771dfef
IM
2423 /*
2424 * The kernel knows only one size for now:
2425 */
2426 if (unlikely(len != sizeof(*head)))
2427 return -EINVAL;
2428
2429 current->robust_list = head;
2430
2431 return 0;
2432}
2433
2434/**
d96ee56c
DH
2435 * sys_get_robust_list() - Get the robust-futex list head of a task
2436 * @pid: pid of the process [zero for current task]
2437 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2438 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 2439 */
836f92ad
HC
2440SYSCALL_DEFINE3(get_robust_list, int, pid,
2441 struct robust_list_head __user * __user *, head_ptr,
2442 size_t __user *, len_ptr)
0771dfef 2443{
ba46df98 2444 struct robust_list_head __user *head;
0771dfef 2445 unsigned long ret;
c69e8d9c 2446 const struct cred *cred = current_cred(), *pcred;
0771dfef 2447
a0c1e907
TG
2448 if (!futex_cmpxchg_enabled)
2449 return -ENOSYS;
2450
0771dfef
IM
2451 if (!pid)
2452 head = current->robust_list;
2453 else {
2454 struct task_struct *p;
2455
2456 ret = -ESRCH;
aaa2a97e 2457 rcu_read_lock();
228ebcbe 2458 p = find_task_by_vpid(pid);
0771dfef
IM
2459 if (!p)
2460 goto err_unlock;
2461 ret = -EPERM;
c69e8d9c 2462 pcred = __task_cred(p);
b0e77598
SH
2463 /* If victim is in different user_ns, then uids are not
2464 comparable, so we must have CAP_SYS_PTRACE */
2465 if (cred->user->user_ns != pcred->user->user_ns) {
2466 if (!ns_capable(pcred->user->user_ns, CAP_SYS_PTRACE))
2467 goto err_unlock;
2468 goto ok;
2469 }
2470 /* If victim is in same user_ns, then uids are comparable */
c69e8d9c
DH
2471 if (cred->euid != pcred->euid &&
2472 cred->euid != pcred->uid &&
b0e77598 2473 !ns_capable(pcred->user->user_ns, CAP_SYS_PTRACE))
0771dfef 2474 goto err_unlock;
b0e77598 2475ok:
0771dfef 2476 head = p->robust_list;
aaa2a97e 2477 rcu_read_unlock();
0771dfef
IM
2478 }
2479
2480 if (put_user(sizeof(*head), len_ptr))
2481 return -EFAULT;
2482 return put_user(head, head_ptr);
2483
2484err_unlock:
aaa2a97e 2485 rcu_read_unlock();
0771dfef
IM
2486
2487 return ret;
2488}
2489
2490/*
2491 * Process a futex-list entry, check whether it's owned by the
2492 * dying task, and do notification if so:
2493 */
e3f2ddea 2494int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 2495{
7cfdaf38 2496 u32 uval, uninitialized_var(nval), mval;
0771dfef 2497
8f17d3a5
IM
2498retry:
2499 if (get_user(uval, uaddr))
0771dfef
IM
2500 return -1;
2501
b488893a 2502 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
2503 /*
2504 * Ok, this dying thread is truly holding a futex
2505 * of interest. Set the OWNER_DIED bit atomically
2506 * via cmpxchg, and if the value had FUTEX_WAITERS
2507 * set, wake up a waiter (if any). (We have to do a
2508 * futex_wake() even if OWNER_DIED is already set -
2509 * to handle the rare but possible case of recursive
2510 * thread-death.) The rest of the cleanup is done in
2511 * userspace.
2512 */
e3f2ddea 2513 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
6e0aa9f8
TG
2514 /*
2515 * We are not holding a lock here, but we want to have
2516 * the pagefault_disable/enable() protection because
2517 * we want to handle the fault gracefully. If the
2518 * access fails we try to fault in the futex with R/W
2519 * verification via get_user_pages. get_user() above
2520 * does not guarantee R/W access. If that fails we
2521 * give up and leave the futex locked.
2522 */
2523 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2524 if (fault_in_user_writeable(uaddr))
2525 return -1;
2526 goto retry;
2527 }
c87e2837 2528 if (nval != uval)
8f17d3a5 2529 goto retry;
0771dfef 2530
e3f2ddea
IM
2531 /*
2532 * Wake robust non-PI futexes here. The wakeup of
2533 * PI futexes happens in exit_pi_state():
2534 */
36cf3b5c 2535 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 2536 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
2537 }
2538 return 0;
2539}
2540
e3f2ddea
IM
2541/*
2542 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2543 */
2544static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 2545 struct robust_list __user * __user *head,
1dcc41bb 2546 unsigned int *pi)
e3f2ddea
IM
2547{
2548 unsigned long uentry;
2549
ba46df98 2550 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
2551 return -EFAULT;
2552
ba46df98 2553 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
2554 *pi = uentry & 1;
2555
2556 return 0;
2557}
2558
0771dfef
IM
2559/*
2560 * Walk curr->robust_list (very carefully, it's a userspace list!)
2561 * and mark any locks found there dead, and notify any waiters.
2562 *
2563 * We silently return on any sign of list-walking problem.
2564 */
2565void exit_robust_list(struct task_struct *curr)
2566{
2567 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 2568 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
2569 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2570 unsigned int uninitialized_var(next_pi);
0771dfef 2571 unsigned long futex_offset;
9f96cb1e 2572 int rc;
0771dfef 2573
a0c1e907
TG
2574 if (!futex_cmpxchg_enabled)
2575 return;
2576
0771dfef
IM
2577 /*
2578 * Fetch the list head (which was registered earlier, via
2579 * sys_set_robust_list()):
2580 */
e3f2ddea 2581 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
2582 return;
2583 /*
2584 * Fetch the relative futex offset:
2585 */
2586 if (get_user(futex_offset, &head->futex_offset))
2587 return;
2588 /*
2589 * Fetch any possibly pending lock-add first, and handle it
2590 * if it exists:
2591 */
e3f2ddea 2592 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 2593 return;
e3f2ddea 2594
9f96cb1e 2595 next_entry = NULL; /* avoid warning with gcc */
0771dfef 2596 while (entry != &head->list) {
9f96cb1e
MS
2597 /*
2598 * Fetch the next entry in the list before calling
2599 * handle_futex_death:
2600 */
2601 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
2602 /*
2603 * A pending lock might already be on the list, so
c87e2837 2604 * don't process it twice:
0771dfef
IM
2605 */
2606 if (entry != pending)
ba46df98 2607 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 2608 curr, pi))
0771dfef 2609 return;
9f96cb1e 2610 if (rc)
0771dfef 2611 return;
9f96cb1e
MS
2612 entry = next_entry;
2613 pi = next_pi;
0771dfef
IM
2614 /*
2615 * Avoid excessively long or circular lists:
2616 */
2617 if (!--limit)
2618 break;
2619
2620 cond_resched();
2621 }
9f96cb1e
MS
2622
2623 if (pending)
2624 handle_futex_death((void __user *)pending + futex_offset,
2625 curr, pip);
0771dfef
IM
2626}
2627
c19384b5 2628long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 2629 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 2630{
b41277dc
DH
2631 int ret = -ENOSYS, cmd = op & FUTEX_CMD_MASK;
2632 unsigned int flags = 0;
34f01cc1
ED
2633
2634 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 2635 flags |= FLAGS_SHARED;
1da177e4 2636
b41277dc
DH
2637 if (op & FUTEX_CLOCK_REALTIME) {
2638 flags |= FLAGS_CLOCKRT;
2639 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2640 return -ENOSYS;
2641 }
1da177e4 2642
34f01cc1 2643 switch (cmd) {
1da177e4 2644 case FUTEX_WAIT:
cd689985
TG
2645 val3 = FUTEX_BITSET_MATCH_ANY;
2646 case FUTEX_WAIT_BITSET:
b41277dc 2647 ret = futex_wait(uaddr, flags, val, timeout, val3);
1da177e4
LT
2648 break;
2649 case FUTEX_WAKE:
cd689985
TG
2650 val3 = FUTEX_BITSET_MATCH_ANY;
2651 case FUTEX_WAKE_BITSET:
b41277dc 2652 ret = futex_wake(uaddr, flags, val, val3);
1da177e4 2653 break;
1da177e4 2654 case FUTEX_REQUEUE:
b41277dc 2655 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4
LT
2656 break;
2657 case FUTEX_CMP_REQUEUE:
b41277dc 2658 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
1da177e4 2659 break;
4732efbe 2660 case FUTEX_WAKE_OP:
b41277dc 2661 ret = futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
4732efbe 2662 break;
c87e2837 2663 case FUTEX_LOCK_PI:
a0c1e907 2664 if (futex_cmpxchg_enabled)
b41277dc 2665 ret = futex_lock_pi(uaddr, flags, val, timeout, 0);
c87e2837
IM
2666 break;
2667 case FUTEX_UNLOCK_PI:
a0c1e907 2668 if (futex_cmpxchg_enabled)
b41277dc 2669 ret = futex_unlock_pi(uaddr, flags);
c87e2837
IM
2670 break;
2671 case FUTEX_TRYLOCK_PI:
a0c1e907 2672 if (futex_cmpxchg_enabled)
b41277dc 2673 ret = futex_lock_pi(uaddr, flags, 0, timeout, 1);
c87e2837 2674 break;
52400ba9
DH
2675 case FUTEX_WAIT_REQUEUE_PI:
2676 val3 = FUTEX_BITSET_MATCH_ANY;
b41277dc
DH
2677 ret = futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2678 uaddr2);
52400ba9 2679 break;
52400ba9 2680 case FUTEX_CMP_REQUEUE_PI:
b41277dc 2681 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
52400ba9 2682 break;
1da177e4
LT
2683 default:
2684 ret = -ENOSYS;
2685 }
2686 return ret;
2687}
2688
2689
17da2bd9
HC
2690SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2691 struct timespec __user *, utime, u32 __user *, uaddr2,
2692 u32, val3)
1da177e4 2693{
c19384b5
PP
2694 struct timespec ts;
2695 ktime_t t, *tp = NULL;
e2970f2f 2696 u32 val2 = 0;
34f01cc1 2697 int cmd = op & FUTEX_CMD_MASK;
1da177e4 2698
cd689985 2699 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
2700 cmd == FUTEX_WAIT_BITSET ||
2701 cmd == FUTEX_WAIT_REQUEUE_PI)) {
c19384b5 2702 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 2703 return -EFAULT;
c19384b5 2704 if (!timespec_valid(&ts))
9741ef96 2705 return -EINVAL;
c19384b5
PP
2706
2707 t = timespec_to_ktime(ts);
34f01cc1 2708 if (cmd == FUTEX_WAIT)
5a7780e7 2709 t = ktime_add_safe(ktime_get(), t);
c19384b5 2710 tp = &t;
1da177e4
LT
2711 }
2712 /*
52400ba9 2713 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 2714 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 2715 */
f54f0986 2716 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 2717 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 2718 val2 = (u32) (unsigned long) utime;
1da177e4 2719
c19384b5 2720 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
2721}
2722
f6d107fb 2723static int __init futex_init(void)
1da177e4 2724{
a0c1e907 2725 u32 curval;
3e4ab747 2726 int i;
95362fa9 2727
a0c1e907
TG
2728 /*
2729 * This will fail and we want it. Some arch implementations do
2730 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2731 * functionality. We want to know that before we call in any
2732 * of the complex code paths. Also we want to prevent
2733 * registration of robust lists in that case. NULL is
2734 * guaranteed to fault and we get -EFAULT on functional
fb62db2b 2735 * implementation, the non-functional ones will return
a0c1e907
TG
2736 * -ENOSYS.
2737 */
37a9d912 2738 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
a0c1e907
TG
2739 futex_cmpxchg_enabled = 1;
2740
3e4ab747 2741 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
732375c6 2742 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
2743 spin_lock_init(&futex_queues[i].lock);
2744 }
2745
1da177e4
LT
2746 return 0;
2747}
f6d107fb 2748__initcall(futex_init);