arch/arm/boot/compressed/decompress.c: fix build error due to lz4 changes
[linux-block.git] / kernel / fork.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8/*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
b3e58382 15#include <linux/anon_inodes.h>
1da177e4 16#include <linux/slab.h>
4eb5aaa3 17#include <linux/sched/autogroup.h>
6e84f315 18#include <linux/sched/mm.h>
f7ccbae4 19#include <linux/sched/coredump.h>
8703e8a4 20#include <linux/sched/user.h>
6a3827d7 21#include <linux/sched/numa_balancing.h>
03441a34 22#include <linux/sched/stat.h>
29930025 23#include <linux/sched/task.h>
68db0cf1 24#include <linux/sched/task_stack.h>
32ef5517 25#include <linux/sched/cputime.h>
b3e58382 26#include <linux/seq_file.h>
037741a6 27#include <linux/rtmutex.h>
1da177e4
LT
28#include <linux/init.h>
29#include <linux/unistd.h>
1da177e4
LT
30#include <linux/module.h>
31#include <linux/vmalloc.h>
32#include <linux/completion.h>
1da177e4
LT
33#include <linux/personality.h>
34#include <linux/mempolicy.h>
35#include <linux/sem.h>
36#include <linux/file.h>
9f3acc31 37#include <linux/fdtable.h>
da9cbc87 38#include <linux/iocontext.h>
1da177e4
LT
39#include <linux/key.h>
40#include <linux/binfmts.h>
41#include <linux/mman.h>
cddb8a5c 42#include <linux/mmu_notifier.h>
133ff0ea 43#include <linux/hmm.h>
1da177e4 44#include <linux/fs.h>
615d6e87
DB
45#include <linux/mm.h>
46#include <linux/vmacache.h>
ab516013 47#include <linux/nsproxy.h>
c59ede7b 48#include <linux/capability.h>
1da177e4 49#include <linux/cpu.h>
b4f48b63 50#include <linux/cgroup.h>
1da177e4 51#include <linux/security.h>
a1e78772 52#include <linux/hugetlb.h>
e2cfabdf 53#include <linux/seccomp.h>
1da177e4
LT
54#include <linux/swap.h>
55#include <linux/syscalls.h>
56#include <linux/jiffies.h>
57#include <linux/futex.h>
8141c7f3 58#include <linux/compat.h>
207205a2 59#include <linux/kthread.h>
7c3ab738 60#include <linux/task_io_accounting_ops.h>
ab2af1f5 61#include <linux/rcupdate.h>
1da177e4
LT
62#include <linux/ptrace.h>
63#include <linux/mount.h>
64#include <linux/audit.h>
78fb7466 65#include <linux/memcontrol.h>
f201ae23 66#include <linux/ftrace.h>
5e2bf014 67#include <linux/proc_fs.h>
1da177e4
LT
68#include <linux/profile.h>
69#include <linux/rmap.h>
f8af4da3 70#include <linux/ksm.h>
1da177e4 71#include <linux/acct.h>
893e26e6 72#include <linux/userfaultfd_k.h>
8f0ab514 73#include <linux/tsacct_kern.h>
9f46080c 74#include <linux/cn_proc.h>
ba96a0c8 75#include <linux/freezer.h>
ca74e92b 76#include <linux/delayacct.h>
ad4ecbcb 77#include <linux/taskstats_kern.h>
0a425405 78#include <linux/random.h>
522ed776 79#include <linux/tty.h>
fd0928df 80#include <linux/blkdev.h>
5ad4e53b 81#include <linux/fs_struct.h>
7c9f8861 82#include <linux/magic.h>
cdd6c482 83#include <linux/perf_event.h>
42c4ab41 84#include <linux/posix-timers.h>
8e7cac79 85#include <linux/user-return-notifier.h>
3d5992d2 86#include <linux/oom.h>
ba76149f 87#include <linux/khugepaged.h>
d80e731e 88#include <linux/signalfd.h>
0326f5a9 89#include <linux/uprobes.h>
a27bb332 90#include <linux/aio.h>
52f5684c 91#include <linux/compiler.h>
16db3d3f 92#include <linux/sysctl.h>
5c9a8750 93#include <linux/kcov.h>
d83a7cb3 94#include <linux/livepatch.h>
48ac3c18 95#include <linux/thread_info.h>
afaef01c 96#include <linux/stackleak.h>
1da177e4
LT
97
98#include <asm/pgtable.h>
99#include <asm/pgalloc.h>
7c0f6ba6 100#include <linux/uaccess.h>
1da177e4
LT
101#include <asm/mmu_context.h>
102#include <asm/cacheflush.h>
103#include <asm/tlbflush.h>
104
ad8d75ff
SR
105#include <trace/events/sched.h>
106
43d2b113
KH
107#define CREATE_TRACE_POINTS
108#include <trace/events/task.h>
109
ac1b398d
HS
110/*
111 * Minimum number of threads to boot the kernel
112 */
113#define MIN_THREADS 20
114
115/*
116 * Maximum number of threads
117 */
118#define MAX_THREADS FUTEX_TID_MASK
119
1da177e4
LT
120/*
121 * Protected counters by write_lock_irq(&tasklist_lock)
122 */
123unsigned long total_forks; /* Handle normal Linux uptimes. */
fb0a685c 124int nr_threads; /* The idle threads do not count.. */
1da177e4
LT
125
126int max_threads; /* tunable limit on nr_threads */
127
128DEFINE_PER_CPU(unsigned long, process_counts) = 0;
129
c59923a1 130__cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
db1466b3
PM
131
132#ifdef CONFIG_PROVE_RCU
133int lockdep_tasklist_lock_is_held(void)
134{
135 return lockdep_is_held(&tasklist_lock);
136}
137EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
138#endif /* #ifdef CONFIG_PROVE_RCU */
1da177e4
LT
139
140int nr_processes(void)
141{
142 int cpu;
143 int total = 0;
144
1d510750 145 for_each_possible_cpu(cpu)
1da177e4
LT
146 total += per_cpu(process_counts, cpu);
147
148 return total;
149}
150
f19b9f74
AM
151void __weak arch_release_task_struct(struct task_struct *tsk)
152{
153}
154
f5e10287 155#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
e18b890b 156static struct kmem_cache *task_struct_cachep;
41101809
TG
157
158static inline struct task_struct *alloc_task_struct_node(int node)
159{
160 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
161}
162
41101809
TG
163static inline void free_task_struct(struct task_struct *tsk)
164{
41101809
TG
165 kmem_cache_free(task_struct_cachep, tsk);
166}
1da177e4
LT
167#endif
168
b235beea 169#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
41101809 170
0d15d74a
TG
171/*
172 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
173 * kmemcache based allocator.
174 */
ba14a194 175# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
ac496bf4
AL
176
177#ifdef CONFIG_VMAP_STACK
178/*
179 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
180 * flush. Try to minimize the number of calls by caching stacks.
181 */
182#define NR_CACHED_STACKS 2
183static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
19659c59
HR
184
185static int free_vm_stack_cache(unsigned int cpu)
186{
187 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
188 int i;
189
190 for (i = 0; i < NR_CACHED_STACKS; i++) {
191 struct vm_struct *vm_stack = cached_vm_stacks[i];
192
193 if (!vm_stack)
194 continue;
195
196 vfree(vm_stack->addr);
197 cached_vm_stacks[i] = NULL;
198 }
199
200 return 0;
201}
ac496bf4
AL
202#endif
203
ba14a194 204static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
b69c49b7 205{
ba14a194 206#ifdef CONFIG_VMAP_STACK
ac496bf4
AL
207 void *stack;
208 int i;
209
ac496bf4 210 for (i = 0; i < NR_CACHED_STACKS; i++) {
112166f8
CL
211 struct vm_struct *s;
212
213 s = this_cpu_xchg(cached_stacks[i], NULL);
ac496bf4
AL
214
215 if (!s)
216 continue;
ac496bf4 217
ca182551
KK
218 /* Clear stale pointers from reused stack. */
219 memset(s->addr, 0, THREAD_SIZE);
e01e8063 220
ac496bf4 221 tsk->stack_vm_area = s;
ba4a4574 222 tsk->stack = s->addr;
ac496bf4
AL
223 return s->addr;
224 }
ac496bf4 225
9b6f7e16
RG
226 /*
227 * Allocated stacks are cached and later reused by new threads,
228 * so memcg accounting is performed manually on assigning/releasing
229 * stacks to tasks. Drop __GFP_ACCOUNT.
230 */
48ac3c18 231 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
ac496bf4 232 VMALLOC_START, VMALLOC_END,
9b6f7e16 233 THREADINFO_GFP & ~__GFP_ACCOUNT,
ac496bf4
AL
234 PAGE_KERNEL,
235 0, node, __builtin_return_address(0));
ba14a194
AL
236
237 /*
238 * We can't call find_vm_area() in interrupt context, and
239 * free_thread_stack() can be called in interrupt context,
240 * so cache the vm_struct.
241 */
5eed6f1d 242 if (stack) {
ba14a194 243 tsk->stack_vm_area = find_vm_area(stack);
5eed6f1d
RR
244 tsk->stack = stack;
245 }
ba14a194
AL
246 return stack;
247#else
4949148a
VD
248 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
249 THREAD_SIZE_ORDER);
b6a84016
ED
250
251 return page ? page_address(page) : NULL;
ba14a194 252#endif
b69c49b7
FT
253}
254
ba14a194 255static inline void free_thread_stack(struct task_struct *tsk)
b69c49b7 256{
ac496bf4 257#ifdef CONFIG_VMAP_STACK
9b6f7e16
RG
258 struct vm_struct *vm = task_stack_vm_area(tsk);
259
260 if (vm) {
ac496bf4
AL
261 int i;
262
9b6f7e16
RG
263 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
264 mod_memcg_page_state(vm->pages[i],
265 MEMCG_KERNEL_STACK_KB,
266 -(int)(PAGE_SIZE / 1024));
267
268 memcg_kmem_uncharge(vm->pages[i], 0);
269 }
270
ac496bf4 271 for (i = 0; i < NR_CACHED_STACKS; i++) {
112166f8
CL
272 if (this_cpu_cmpxchg(cached_stacks[i],
273 NULL, tsk->stack_vm_area) != NULL)
ac496bf4
AL
274 continue;
275
ac496bf4
AL
276 return;
277 }
ac496bf4 278
0f110a9b 279 vfree_atomic(tsk->stack);
ac496bf4
AL
280 return;
281 }
282#endif
283
284 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
b69c49b7 285}
0d15d74a 286# else
b235beea 287static struct kmem_cache *thread_stack_cache;
0d15d74a 288
9521d399 289static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
0d15d74a
TG
290 int node)
291{
5eed6f1d
RR
292 unsigned long *stack;
293 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
294 tsk->stack = stack;
295 return stack;
0d15d74a
TG
296}
297
ba14a194 298static void free_thread_stack(struct task_struct *tsk)
0d15d74a 299{
ba14a194 300 kmem_cache_free(thread_stack_cache, tsk->stack);
0d15d74a
TG
301}
302
b235beea 303void thread_stack_cache_init(void)
0d15d74a 304{
f9d29946
DW
305 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
306 THREAD_SIZE, THREAD_SIZE, 0, 0,
307 THREAD_SIZE, NULL);
b235beea 308 BUG_ON(thread_stack_cache == NULL);
0d15d74a
TG
309}
310# endif
b69c49b7
FT
311#endif
312
1da177e4 313/* SLAB cache for signal_struct structures (tsk->signal) */
e18b890b 314static struct kmem_cache *signal_cachep;
1da177e4
LT
315
316/* SLAB cache for sighand_struct structures (tsk->sighand) */
e18b890b 317struct kmem_cache *sighand_cachep;
1da177e4
LT
318
319/* SLAB cache for files_struct structures (tsk->files) */
e18b890b 320struct kmem_cache *files_cachep;
1da177e4
LT
321
322/* SLAB cache for fs_struct structures (tsk->fs) */
e18b890b 323struct kmem_cache *fs_cachep;
1da177e4
LT
324
325/* SLAB cache for vm_area_struct structures */
3928d4f5 326static struct kmem_cache *vm_area_cachep;
1da177e4
LT
327
328/* SLAB cache for mm_struct structures (tsk->mm) */
e18b890b 329static struct kmem_cache *mm_cachep;
1da177e4 330
490fc053 331struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
3928d4f5 332{
a670468f 333 struct vm_area_struct *vma;
490fc053 334
a670468f 335 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
027232da
KS
336 if (vma)
337 vma_init(vma, mm);
490fc053 338 return vma;
3928d4f5
LT
339}
340
341struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
342{
95faf699
LT
343 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
344
345 if (new) {
346 *new = *orig;
347 INIT_LIST_HEAD(&new->anon_vma_chain);
348 }
349 return new;
3928d4f5
LT
350}
351
352void vm_area_free(struct vm_area_struct *vma)
353{
354 kmem_cache_free(vm_area_cachep, vma);
355}
356
ba14a194 357static void account_kernel_stack(struct task_struct *tsk, int account)
c6a7f572 358{
ba14a194
AL
359 void *stack = task_stack_page(tsk);
360 struct vm_struct *vm = task_stack_vm_area(tsk);
361
362 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
363
364 if (vm) {
365 int i;
366
367 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
368
369 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
370 mod_zone_page_state(page_zone(vm->pages[i]),
371 NR_KERNEL_STACK_KB,
372 PAGE_SIZE / 1024 * account);
373 }
ba14a194
AL
374 } else {
375 /*
376 * All stack pages are in the same zone and belong to the
377 * same memcg.
378 */
379 struct page *first_page = virt_to_page(stack);
380
381 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
382 THREAD_SIZE / 1024 * account);
383
ed52be7b
JW
384 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
385 account * (THREAD_SIZE / 1024));
ba14a194 386 }
c6a7f572
KM
387}
388
9b6f7e16
RG
389static int memcg_charge_kernel_stack(struct task_struct *tsk)
390{
391#ifdef CONFIG_VMAP_STACK
392 struct vm_struct *vm = task_stack_vm_area(tsk);
393 int ret;
394
395 if (vm) {
396 int i;
397
398 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
399 /*
400 * If memcg_kmem_charge() fails, page->mem_cgroup
401 * pointer is NULL, and both memcg_kmem_uncharge()
402 * and mod_memcg_page_state() in free_thread_stack()
403 * will ignore this page. So it's safe.
404 */
405 ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
406 if (ret)
407 return ret;
408
409 mod_memcg_page_state(vm->pages[i],
410 MEMCG_KERNEL_STACK_KB,
411 PAGE_SIZE / 1024);
412 }
413 }
414#endif
415 return 0;
416}
417
68f24b08 418static void release_task_stack(struct task_struct *tsk)
1da177e4 419{
405c0759
AL
420 if (WARN_ON(tsk->state != TASK_DEAD))
421 return; /* Better to leak the stack than to free prematurely */
422
ba14a194 423 account_kernel_stack(tsk, -1);
ba14a194 424 free_thread_stack(tsk);
68f24b08
AL
425 tsk->stack = NULL;
426#ifdef CONFIG_VMAP_STACK
427 tsk->stack_vm_area = NULL;
428#endif
429}
430
431#ifdef CONFIG_THREAD_INFO_IN_TASK
432void put_task_stack(struct task_struct *tsk)
433{
f0b89d39 434 if (refcount_dec_and_test(&tsk->stack_refcount))
68f24b08
AL
435 release_task_stack(tsk);
436}
437#endif
438
439void free_task(struct task_struct *tsk)
440{
441#ifndef CONFIG_THREAD_INFO_IN_TASK
442 /*
443 * The task is finally done with both the stack and thread_info,
444 * so free both.
445 */
446 release_task_stack(tsk);
447#else
448 /*
449 * If the task had a separate stack allocation, it should be gone
450 * by now.
451 */
f0b89d39 452 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
68f24b08 453#endif
23f78d4a 454 rt_mutex_debug_task_free(tsk);
fb52607a 455 ftrace_graph_exit_task(tsk);
e2cfabdf 456 put_seccomp_filter(tsk);
f19b9f74 457 arch_release_task_struct(tsk);
1da5c46f
ON
458 if (tsk->flags & PF_KTHREAD)
459 free_kthread_struct(tsk);
1da177e4
LT
460 free_task_struct(tsk);
461}
462EXPORT_SYMBOL(free_task);
463
d70f2a14
AM
464#ifdef CONFIG_MMU
465static __latent_entropy int dup_mmap(struct mm_struct *mm,
466 struct mm_struct *oldmm)
467{
468 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
469 struct rb_node **rb_link, *rb_parent;
470 int retval;
471 unsigned long charge;
472 LIST_HEAD(uf);
473
474 uprobe_start_dup_mmap();
475 if (down_write_killable(&oldmm->mmap_sem)) {
476 retval = -EINTR;
477 goto fail_uprobe_end;
478 }
479 flush_cache_dup_mm(oldmm);
480 uprobe_dup_mmap(oldmm, mm);
481 /*
482 * Not linked in yet - no deadlock potential:
483 */
484 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
485
486 /* No ordering required: file already has been exposed. */
487 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
488
489 mm->total_vm = oldmm->total_vm;
490 mm->data_vm = oldmm->data_vm;
491 mm->exec_vm = oldmm->exec_vm;
492 mm->stack_vm = oldmm->stack_vm;
493
494 rb_link = &mm->mm_rb.rb_node;
495 rb_parent = NULL;
496 pprev = &mm->mmap;
497 retval = ksm_fork(mm, oldmm);
498 if (retval)
499 goto out;
500 retval = khugepaged_fork(mm, oldmm);
501 if (retval)
502 goto out;
503
504 prev = NULL;
505 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
506 struct file *file;
507
508 if (mpnt->vm_flags & VM_DONTCOPY) {
509 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
510 continue;
511 }
512 charge = 0;
655c79bb
TH
513 /*
514 * Don't duplicate many vmas if we've been oom-killed (for
515 * example)
516 */
517 if (fatal_signal_pending(current)) {
518 retval = -EINTR;
519 goto out;
520 }
d70f2a14
AM
521 if (mpnt->vm_flags & VM_ACCOUNT) {
522 unsigned long len = vma_pages(mpnt);
523
524 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
525 goto fail_nomem;
526 charge = len;
527 }
3928d4f5 528 tmp = vm_area_dup(mpnt);
d70f2a14
AM
529 if (!tmp)
530 goto fail_nomem;
d70f2a14
AM
531 retval = vma_dup_policy(mpnt, tmp);
532 if (retval)
533 goto fail_nomem_policy;
534 tmp->vm_mm = mm;
535 retval = dup_userfaultfd(tmp, &uf);
536 if (retval)
537 goto fail_nomem_anon_vma_fork;
538 if (tmp->vm_flags & VM_WIPEONFORK) {
539 /* VM_WIPEONFORK gets a clean slate in the child. */
540 tmp->anon_vma = NULL;
541 if (anon_vma_prepare(tmp))
542 goto fail_nomem_anon_vma_fork;
543 } else if (anon_vma_fork(tmp, mpnt))
544 goto fail_nomem_anon_vma_fork;
545 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
546 tmp->vm_next = tmp->vm_prev = NULL;
547 file = tmp->vm_file;
548 if (file) {
549 struct inode *inode = file_inode(file);
550 struct address_space *mapping = file->f_mapping;
551
552 get_file(file);
553 if (tmp->vm_flags & VM_DENYWRITE)
554 atomic_dec(&inode->i_writecount);
555 i_mmap_lock_write(mapping);
556 if (tmp->vm_flags & VM_SHARED)
557 atomic_inc(&mapping->i_mmap_writable);
558 flush_dcache_mmap_lock(mapping);
559 /* insert tmp into the share list, just after mpnt */
560 vma_interval_tree_insert_after(tmp, mpnt,
561 &mapping->i_mmap);
562 flush_dcache_mmap_unlock(mapping);
563 i_mmap_unlock_write(mapping);
564 }
565
566 /*
567 * Clear hugetlb-related page reserves for children. This only
568 * affects MAP_PRIVATE mappings. Faults generated by the child
569 * are not guaranteed to succeed, even if read-only
570 */
571 if (is_vm_hugetlb_page(tmp))
572 reset_vma_resv_huge_pages(tmp);
573
574 /*
575 * Link in the new vma and copy the page table entries.
576 */
577 *pprev = tmp;
578 pprev = &tmp->vm_next;
579 tmp->vm_prev = prev;
580 prev = tmp;
581
582 __vma_link_rb(mm, tmp, rb_link, rb_parent);
583 rb_link = &tmp->vm_rb.rb_right;
584 rb_parent = &tmp->vm_rb;
585
586 mm->map_count++;
587 if (!(tmp->vm_flags & VM_WIPEONFORK))
588 retval = copy_page_range(mm, oldmm, mpnt);
589
590 if (tmp->vm_ops && tmp->vm_ops->open)
591 tmp->vm_ops->open(tmp);
592
593 if (retval)
594 goto out;
595 }
596 /* a new mm has just been created */
1ed0cc5a 597 retval = arch_dup_mmap(oldmm, mm);
d70f2a14
AM
598out:
599 up_write(&mm->mmap_sem);
600 flush_tlb_mm(oldmm);
601 up_write(&oldmm->mmap_sem);
602 dup_userfaultfd_complete(&uf);
603fail_uprobe_end:
604 uprobe_end_dup_mmap();
605 return retval;
606fail_nomem_anon_vma_fork:
607 mpol_put(vma_policy(tmp));
608fail_nomem_policy:
3928d4f5 609 vm_area_free(tmp);
d70f2a14
AM
610fail_nomem:
611 retval = -ENOMEM;
612 vm_unacct_memory(charge);
613 goto out;
614}
615
616static inline int mm_alloc_pgd(struct mm_struct *mm)
617{
618 mm->pgd = pgd_alloc(mm);
619 if (unlikely(!mm->pgd))
620 return -ENOMEM;
621 return 0;
622}
623
624static inline void mm_free_pgd(struct mm_struct *mm)
625{
626 pgd_free(mm, mm->pgd);
627}
628#else
629static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
630{
631 down_write(&oldmm->mmap_sem);
632 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
633 up_write(&oldmm->mmap_sem);
634 return 0;
635}
636#define mm_alloc_pgd(mm) (0)
637#define mm_free_pgd(mm)
638#endif /* CONFIG_MMU */
639
640static void check_mm(struct mm_struct *mm)
641{
642 int i;
643
644 for (i = 0; i < NR_MM_COUNTERS; i++) {
645 long x = atomic_long_read(&mm->rss_stat.count[i]);
646
647 if (unlikely(x))
648 printk(KERN_ALERT "BUG: Bad rss-counter state "
649 "mm:%p idx:%d val:%ld\n", mm, i, x);
650 }
651
652 if (mm_pgtables_bytes(mm))
653 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
654 mm_pgtables_bytes(mm));
655
656#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
657 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
658#endif
659}
660
661#define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
662#define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
663
664/*
665 * Called when the last reference to the mm
666 * is dropped: either by a lazy thread or by
667 * mmput. Free the page directory and the mm.
668 */
d34bc48f 669void __mmdrop(struct mm_struct *mm)
d70f2a14
AM
670{
671 BUG_ON(mm == &init_mm);
3eda69c9
MR
672 WARN_ON_ONCE(mm == current->mm);
673 WARN_ON_ONCE(mm == current->active_mm);
d70f2a14
AM
674 mm_free_pgd(mm);
675 destroy_context(mm);
676 hmm_mm_destroy(mm);
677 mmu_notifier_mm_destroy(mm);
678 check_mm(mm);
679 put_user_ns(mm->user_ns);
680 free_mm(mm);
681}
d34bc48f 682EXPORT_SYMBOL_GPL(__mmdrop);
d70f2a14
AM
683
684static void mmdrop_async_fn(struct work_struct *work)
685{
686 struct mm_struct *mm;
687
688 mm = container_of(work, struct mm_struct, async_put_work);
689 __mmdrop(mm);
690}
691
692static void mmdrop_async(struct mm_struct *mm)
693{
694 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
695 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
696 schedule_work(&mm->async_put_work);
697 }
698}
699
ea6d290c
ON
700static inline void free_signal_struct(struct signal_struct *sig)
701{
97101eb4 702 taskstats_tgid_free(sig);
1c5354de 703 sched_autogroup_exit(sig);
7283094e
MH
704 /*
705 * __mmdrop is not safe to call from softirq context on x86 due to
706 * pgd_dtor so postpone it to the async context
707 */
26db62f1 708 if (sig->oom_mm)
7283094e 709 mmdrop_async(sig->oom_mm);
ea6d290c
ON
710 kmem_cache_free(signal_cachep, sig);
711}
712
713static inline void put_signal_struct(struct signal_struct *sig)
714{
60d4de3f 715 if (refcount_dec_and_test(&sig->sigcnt))
ea6d290c
ON
716 free_signal_struct(sig);
717}
718
158d9ebd 719void __put_task_struct(struct task_struct *tsk)
1da177e4 720{
270f722d 721 WARN_ON(!tsk->exit_state);
ec1d2819 722 WARN_ON(refcount_read(&tsk->usage));
1da177e4
LT
723 WARN_ON(tsk == current);
724
2e91fa7f 725 cgroup_free(tsk);
156654f4 726 task_numa_free(tsk);
1a2a4d06 727 security_task_free(tsk);
e0e81739 728 exit_creds(tsk);
35df17c5 729 delayacct_tsk_free(tsk);
ea6d290c 730 put_signal_struct(tsk->signal);
1da177e4
LT
731
732 if (!profile_handoff_task(tsk))
733 free_task(tsk);
734}
77c100c8 735EXPORT_SYMBOL_GPL(__put_task_struct);
1da177e4 736
6c0a9fa6 737void __init __weak arch_task_cache_init(void) { }
61c4628b 738
ff691f6e
HS
739/*
740 * set_max_threads
741 */
16db3d3f 742static void set_max_threads(unsigned int max_threads_suggested)
ff691f6e 743{
ac1b398d 744 u64 threads;
ca79b0c2 745 unsigned long nr_pages = totalram_pages();
ff691f6e
HS
746
747 /*
ac1b398d
HS
748 * The number of threads shall be limited such that the thread
749 * structures may only consume a small part of the available memory.
ff691f6e 750 */
3d6357de 751 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
ac1b398d
HS
752 threads = MAX_THREADS;
753 else
3d6357de 754 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
ac1b398d
HS
755 (u64) THREAD_SIZE * 8UL);
756
16db3d3f
HS
757 if (threads > max_threads_suggested)
758 threads = max_threads_suggested;
759
ac1b398d 760 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
ff691f6e
HS
761}
762
5aaeb5c0
IM
763#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
764/* Initialized by the architecture: */
765int arch_task_struct_size __read_mostly;
766#endif
0c8c0f03 767
5905429a
KC
768static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
769{
770 /* Fetch thread_struct whitelist for the architecture. */
771 arch_thread_struct_whitelist(offset, size);
772
773 /*
774 * Handle zero-sized whitelist or empty thread_struct, otherwise
775 * adjust offset to position of thread_struct in task_struct.
776 */
777 if (unlikely(*size == 0))
778 *offset = 0;
779 else
780 *offset += offsetof(struct task_struct, thread);
781}
782
ff691f6e 783void __init fork_init(void)
1da177e4 784{
25f9c081 785 int i;
f5e10287 786#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1da177e4 787#ifndef ARCH_MIN_TASKALIGN
e274795e 788#define ARCH_MIN_TASKALIGN 0
1da177e4 789#endif
95cb64c1 790 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
5905429a 791 unsigned long useroffset, usersize;
e274795e 792
1da177e4 793 /* create a slab on which task_structs can be allocated */
5905429a
KC
794 task_struct_whitelist(&useroffset, &usersize);
795 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
e274795e 796 arch_task_struct_size, align,
5905429a
KC
797 SLAB_PANIC|SLAB_ACCOUNT,
798 useroffset, usersize, NULL);
1da177e4
LT
799#endif
800
61c4628b
SS
801 /* do the arch specific task caches init */
802 arch_task_cache_init();
803
16db3d3f 804 set_max_threads(MAX_THREADS);
1da177e4
LT
805
806 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
807 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
808 init_task.signal->rlim[RLIMIT_SIGPENDING] =
809 init_task.signal->rlim[RLIMIT_NPROC];
b376c3e1 810
25f9c081
EB
811 for (i = 0; i < UCOUNT_COUNTS; i++) {
812 init_user_ns.ucount_max[i] = max_threads/2;
813 }
19659c59
HR
814
815#ifdef CONFIG_VMAP_STACK
816 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
817 NULL, free_vm_stack_cache);
818#endif
b09be676
BP
819
820 lockdep_init_task(&init_task);
aad42dd4 821 uprobes_init();
1da177e4
LT
822}
823
52f5684c 824int __weak arch_dup_task_struct(struct task_struct *dst,
61c4628b
SS
825 struct task_struct *src)
826{
827 *dst = *src;
828 return 0;
829}
830
d4311ff1
AT
831void set_task_stack_end_magic(struct task_struct *tsk)
832{
833 unsigned long *stackend;
834
835 stackend = end_of_stack(tsk);
836 *stackend = STACK_END_MAGIC; /* for overflow detection */
837}
838
725fc629 839static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1da177e4
LT
840{
841 struct task_struct *tsk;
b235beea 842 unsigned long *stack;
0f4991e8 843 struct vm_struct *stack_vm_area __maybe_unused;
3e26c149 844 int err;
1da177e4 845
725fc629
AK
846 if (node == NUMA_NO_NODE)
847 node = tsk_fork_get_node(orig);
504f52b5 848 tsk = alloc_task_struct_node(node);
1da177e4
LT
849 if (!tsk)
850 return NULL;
851
b235beea
LT
852 stack = alloc_thread_stack_node(tsk, node);
853 if (!stack)
f19b9f74 854 goto free_tsk;
1da177e4 855
9b6f7e16
RG
856 if (memcg_charge_kernel_stack(tsk))
857 goto free_stack;
858
ba14a194
AL
859 stack_vm_area = task_stack_vm_area(tsk);
860
fb0a685c 861 err = arch_dup_task_struct(tsk, orig);
ba14a194
AL
862
863 /*
864 * arch_dup_task_struct() clobbers the stack-related fields. Make
865 * sure they're properly initialized before using any stack-related
866 * functions again.
867 */
868 tsk->stack = stack;
869#ifdef CONFIG_VMAP_STACK
870 tsk->stack_vm_area = stack_vm_area;
871#endif
68f24b08 872#ifdef CONFIG_THREAD_INFO_IN_TASK
f0b89d39 873 refcount_set(&tsk->stack_refcount, 1);
68f24b08 874#endif
ba14a194 875
164c33c6 876 if (err)
b235beea 877 goto free_stack;
164c33c6 878
dbd95212
KC
879#ifdef CONFIG_SECCOMP
880 /*
881 * We must handle setting up seccomp filters once we're under
882 * the sighand lock in case orig has changed between now and
883 * then. Until then, filter must be NULL to avoid messing up
884 * the usage counts on the error path calling free_task.
885 */
886 tsk->seccomp.filter = NULL;
887#endif
87bec58a
AM
888
889 setup_thread_stack(tsk, orig);
8e7cac79 890 clear_user_return_notifier(tsk);
f26f9aff 891 clear_tsk_need_resched(tsk);
d4311ff1 892 set_task_stack_end_magic(tsk);
1da177e4 893
050e9baa 894#ifdef CONFIG_STACKPROTECTOR
7cd815bc 895 tsk->stack_canary = get_random_canary();
0a425405
AV
896#endif
897
fb0a685c
DRO
898 /*
899 * One for us, one for whoever does the "release_task()" (usually
900 * parent)
901 */
ec1d2819 902 refcount_set(&tsk->usage, 2);
6c5c9341 903#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 904 tsk->btrace_seq = 0;
6c5c9341 905#endif
a0aa7f68 906 tsk->splice_pipe = NULL;
5640f768 907 tsk->task_frag.page = NULL;
093e5840 908 tsk->wake_q.next = NULL;
c6a7f572 909
ba14a194 910 account_kernel_stack(tsk, 1);
c6a7f572 911
5c9a8750
DV
912 kcov_task_init(tsk);
913
e41d5818
DV
914#ifdef CONFIG_FAULT_INJECTION
915 tsk->fail_nth = 0;
916#endif
917
2c323017
JB
918#ifdef CONFIG_BLK_CGROUP
919 tsk->throttle_queue = NULL;
920 tsk->use_memdelay = 0;
921#endif
922
d46eb14b
SB
923#ifdef CONFIG_MEMCG
924 tsk->active_memcg = NULL;
925#endif
1da177e4 926 return tsk;
61c4628b 927
b235beea 928free_stack:
ba14a194 929 free_thread_stack(tsk);
f19b9f74 930free_tsk:
61c4628b
SS
931 free_task_struct(tsk);
932 return NULL;
1da177e4
LT
933}
934
23ff4440 935__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1da177e4 936
4cb0e11b
HK
937static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
938
939static int __init coredump_filter_setup(char *s)
940{
941 default_dump_filter =
942 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
943 MMF_DUMP_FILTER_MASK;
944 return 1;
945}
946
947__setup("coredump_filter=", coredump_filter_setup);
948
1da177e4
LT
949#include <linux/init_task.h>
950
858f0993
AD
951static void mm_init_aio(struct mm_struct *mm)
952{
953#ifdef CONFIG_AIO
954 spin_lock_init(&mm->ioctx_lock);
db446a08 955 mm->ioctx_table = NULL;
858f0993
AD
956#endif
957}
958
c3f3ce04
AA
959static __always_inline void mm_clear_owner(struct mm_struct *mm,
960 struct task_struct *p)
961{
962#ifdef CONFIG_MEMCG
963 if (mm->owner == p)
964 WRITE_ONCE(mm->owner, NULL);
965#endif
966}
967
33144e84
VD
968static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
969{
970#ifdef CONFIG_MEMCG
971 mm->owner = p;
972#endif
973}
974
355627f5
EB
975static void mm_init_uprobes_state(struct mm_struct *mm)
976{
977#ifdef CONFIG_UPROBES
978 mm->uprobes_state.xol_area = NULL;
979#endif
980}
981
bfedb589
EB
982static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
983 struct user_namespace *user_ns)
1da177e4 984{
41f727fd
VD
985 mm->mmap = NULL;
986 mm->mm_rb = RB_ROOT;
987 mm->vmacache_seqnum = 0;
1da177e4
LT
988 atomic_set(&mm->mm_users, 1);
989 atomic_set(&mm->mm_count, 1);
990 init_rwsem(&mm->mmap_sem);
991 INIT_LIST_HEAD(&mm->mmlist);
999d9fc1 992 mm->core_state = NULL;
af5b0f6a 993 mm_pgtables_bytes_init(mm);
41f727fd
VD
994 mm->map_count = 0;
995 mm->locked_vm = 0;
70f8a3ca 996 atomic64_set(&mm->pinned_vm, 0);
d559db08 997 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1da177e4 998 spin_lock_init(&mm->page_table_lock);
88aa7cc6 999 spin_lock_init(&mm->arg_lock);
41f727fd 1000 mm_init_cpumask(mm);
858f0993 1001 mm_init_aio(mm);
cf475ad2 1002 mm_init_owner(mm, p);
2b7e8665 1003 RCU_INIT_POINTER(mm->exe_file, NULL);
41f727fd 1004 mmu_notifier_mm_init(mm);
133ff0ea 1005 hmm_mm_init(mm);
16af97dc 1006 init_tlb_flush_pending(mm);
41f727fd
VD
1007#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1008 mm->pmd_huge_pte = NULL;
1009#endif
355627f5 1010 mm_init_uprobes_state(mm);
1da177e4 1011
a0715cc2
AT
1012 if (current->mm) {
1013 mm->flags = current->mm->flags & MMF_INIT_MASK;
1014 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1015 } else {
1016 mm->flags = default_dump_filter;
1da177e4 1017 mm->def_flags = 0;
a0715cc2
AT
1018 }
1019
41f727fd
VD
1020 if (mm_alloc_pgd(mm))
1021 goto fail_nopgd;
1022
1023 if (init_new_context(p, mm))
1024 goto fail_nocontext;
78fb7466 1025
bfedb589 1026 mm->user_ns = get_user_ns(user_ns);
41f727fd
VD
1027 return mm;
1028
1029fail_nocontext:
1030 mm_free_pgd(mm);
1031fail_nopgd:
1da177e4
LT
1032 free_mm(mm);
1033 return NULL;
1034}
1035
1036/*
1037 * Allocate and initialize an mm_struct.
1038 */
fb0a685c 1039struct mm_struct *mm_alloc(void)
1da177e4 1040{
fb0a685c 1041 struct mm_struct *mm;
1da177e4
LT
1042
1043 mm = allocate_mm();
de03c72c
KM
1044 if (!mm)
1045 return NULL;
1046
1047 memset(mm, 0, sizeof(*mm));
bfedb589 1048 return mm_init(mm, current, current_user_ns());
1da177e4
LT
1049}
1050
ec8d7c14
MH
1051static inline void __mmput(struct mm_struct *mm)
1052{
1053 VM_BUG_ON(atomic_read(&mm->mm_users));
1054
1055 uprobe_clear_state(mm);
1056 exit_aio(mm);
1057 ksm_exit(mm);
1058 khugepaged_exit(mm); /* must run before exit_mmap */
1059 exit_mmap(mm);
6fcb52a5 1060 mm_put_huge_zero_page(mm);
ec8d7c14
MH
1061 set_mm_exe_file(mm, NULL);
1062 if (!list_empty(&mm->mmlist)) {
1063 spin_lock(&mmlist_lock);
1064 list_del(&mm->mmlist);
1065 spin_unlock(&mmlist_lock);
1066 }
1067 if (mm->binfmt)
1068 module_put(mm->binfmt->module);
1069 mmdrop(mm);
1070}
1071
1da177e4
LT
1072/*
1073 * Decrement the use count and release all resources for an mm.
1074 */
1075void mmput(struct mm_struct *mm)
1076{
0ae26f1b
AM
1077 might_sleep();
1078
ec8d7c14
MH
1079 if (atomic_dec_and_test(&mm->mm_users))
1080 __mmput(mm);
1081}
1082EXPORT_SYMBOL_GPL(mmput);
1083
a1b2289c
SY
1084#ifdef CONFIG_MMU
1085static void mmput_async_fn(struct work_struct *work)
1086{
1087 struct mm_struct *mm = container_of(work, struct mm_struct,
1088 async_put_work);
1089
1090 __mmput(mm);
1091}
1092
1093void mmput_async(struct mm_struct *mm)
1094{
1095 if (atomic_dec_and_test(&mm->mm_users)) {
1096 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1097 schedule_work(&mm->async_put_work);
1098 }
1099}
1100#endif
1101
90f31d0e
KK
1102/**
1103 * set_mm_exe_file - change a reference to the mm's executable file
1104 *
1105 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1106 *
6e399cd1
DB
1107 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1108 * invocations: in mmput() nobody alive left, in execve task is single
1109 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1110 * mm->exe_file, but does so without using set_mm_exe_file() in order
1111 * to do avoid the need for any locks.
90f31d0e 1112 */
38646013
JS
1113void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1114{
6e399cd1
DB
1115 struct file *old_exe_file;
1116
1117 /*
1118 * It is safe to dereference the exe_file without RCU as
1119 * this function is only called if nobody else can access
1120 * this mm -- see comment above for justification.
1121 */
1122 old_exe_file = rcu_dereference_raw(mm->exe_file);
90f31d0e 1123
38646013
JS
1124 if (new_exe_file)
1125 get_file(new_exe_file);
90f31d0e
KK
1126 rcu_assign_pointer(mm->exe_file, new_exe_file);
1127 if (old_exe_file)
1128 fput(old_exe_file);
38646013
JS
1129}
1130
90f31d0e
KK
1131/**
1132 * get_mm_exe_file - acquire a reference to the mm's executable file
1133 *
1134 * Returns %NULL if mm has no associated executable file.
1135 * User must release file via fput().
1136 */
38646013
JS
1137struct file *get_mm_exe_file(struct mm_struct *mm)
1138{
1139 struct file *exe_file;
1140
90f31d0e
KK
1141 rcu_read_lock();
1142 exe_file = rcu_dereference(mm->exe_file);
1143 if (exe_file && !get_file_rcu(exe_file))
1144 exe_file = NULL;
1145 rcu_read_unlock();
38646013
JS
1146 return exe_file;
1147}
11163348 1148EXPORT_SYMBOL(get_mm_exe_file);
38646013 1149
cd81a917
MG
1150/**
1151 * get_task_exe_file - acquire a reference to the task's executable file
1152 *
1153 * Returns %NULL if task's mm (if any) has no associated executable file or
1154 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1155 * User must release file via fput().
1156 */
1157struct file *get_task_exe_file(struct task_struct *task)
1158{
1159 struct file *exe_file = NULL;
1160 struct mm_struct *mm;
1161
1162 task_lock(task);
1163 mm = task->mm;
1164 if (mm) {
1165 if (!(task->flags & PF_KTHREAD))
1166 exe_file = get_mm_exe_file(mm);
1167 }
1168 task_unlock(task);
1169 return exe_file;
1170}
1171EXPORT_SYMBOL(get_task_exe_file);
38646013 1172
1da177e4
LT
1173/**
1174 * get_task_mm - acquire a reference to the task's mm
1175 *
246bb0b1 1176 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1da177e4
LT
1177 * this kernel workthread has transiently adopted a user mm with use_mm,
1178 * to do its AIO) is not set and if so returns a reference to it, after
1179 * bumping up the use count. User must release the mm via mmput()
1180 * after use. Typically used by /proc and ptrace.
1181 */
1182struct mm_struct *get_task_mm(struct task_struct *task)
1183{
1184 struct mm_struct *mm;
1185
1186 task_lock(task);
1187 mm = task->mm;
1188 if (mm) {
246bb0b1 1189 if (task->flags & PF_KTHREAD)
1da177e4
LT
1190 mm = NULL;
1191 else
3fce371b 1192 mmget(mm);
1da177e4
LT
1193 }
1194 task_unlock(task);
1195 return mm;
1196}
1197EXPORT_SYMBOL_GPL(get_task_mm);
1198
8cdb878d
CY
1199struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1200{
1201 struct mm_struct *mm;
1202 int err;
1203
1204 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1205 if (err)
1206 return ERR_PTR(err);
1207
1208 mm = get_task_mm(task);
1209 if (mm && mm != current->mm &&
1210 !ptrace_may_access(task, mode)) {
1211 mmput(mm);
1212 mm = ERR_PTR(-EACCES);
1213 }
1214 mutex_unlock(&task->signal->cred_guard_mutex);
1215
1216 return mm;
1217}
1218
57b59c4a 1219static void complete_vfork_done(struct task_struct *tsk)
c415c3b4 1220{
d68b46fe 1221 struct completion *vfork;
c415c3b4 1222
d68b46fe
ON
1223 task_lock(tsk);
1224 vfork = tsk->vfork_done;
1225 if (likely(vfork)) {
1226 tsk->vfork_done = NULL;
1227 complete(vfork);
1228 }
1229 task_unlock(tsk);
1230}
1231
1232static int wait_for_vfork_done(struct task_struct *child,
1233 struct completion *vfork)
1234{
1235 int killed;
1236
1237 freezer_do_not_count();
76f969e8 1238 cgroup_enter_frozen();
d68b46fe 1239 killed = wait_for_completion_killable(vfork);
76f969e8 1240 cgroup_leave_frozen(false);
d68b46fe
ON
1241 freezer_count();
1242
1243 if (killed) {
1244 task_lock(child);
1245 child->vfork_done = NULL;
1246 task_unlock(child);
1247 }
1248
1249 put_task_struct(child);
1250 return killed;
c415c3b4
ON
1251}
1252
1da177e4
LT
1253/* Please note the differences between mmput and mm_release.
1254 * mmput is called whenever we stop holding onto a mm_struct,
1255 * error success whatever.
1256 *
1257 * mm_release is called after a mm_struct has been removed
1258 * from the current process.
1259 *
1260 * This difference is important for error handling, when we
1261 * only half set up a mm_struct for a new process and need to restore
1262 * the old one. Because we mmput the new mm_struct before
1263 * restoring the old one. . .
1264 * Eric Biederman 10 January 1998
1265 */
1266void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1267{
8141c7f3
LT
1268 /* Get rid of any futexes when releasing the mm */
1269#ifdef CONFIG_FUTEX
fc6b177d 1270 if (unlikely(tsk->robust_list)) {
8141c7f3 1271 exit_robust_list(tsk);
fc6b177d
PZ
1272 tsk->robust_list = NULL;
1273 }
8141c7f3 1274#ifdef CONFIG_COMPAT
fc6b177d 1275 if (unlikely(tsk->compat_robust_list)) {
8141c7f3 1276 compat_exit_robust_list(tsk);
fc6b177d
PZ
1277 tsk->compat_robust_list = NULL;
1278 }
8141c7f3 1279#endif
322a2c10
TG
1280 if (unlikely(!list_empty(&tsk->pi_state_list)))
1281 exit_pi_state_list(tsk);
8141c7f3
LT
1282#endif
1283
0326f5a9
SD
1284 uprobe_free_utask(tsk);
1285
1da177e4
LT
1286 /* Get rid of any cached register state */
1287 deactivate_mm(tsk, mm);
1288
fec1d011 1289 /*
735f2770
MH
1290 * Signal userspace if we're not exiting with a core dump
1291 * because we want to leave the value intact for debugging
1292 * purposes.
fec1d011 1293 */
9c8a8228 1294 if (tsk->clear_child_tid) {
735f2770 1295 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
9c8a8228
ED
1296 atomic_read(&mm->mm_users) > 1) {
1297 /*
1298 * We don't check the error code - if userspace has
1299 * not set up a proper pointer then tough luck.
1300 */
1301 put_user(0, tsk->clear_child_tid);
2de0db99
DB
1302 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1303 1, NULL, NULL, 0, 0);
9c8a8228 1304 }
1da177e4 1305 tsk->clear_child_tid = NULL;
1da177e4 1306 }
f7505d64
KK
1307
1308 /*
1309 * All done, finally we can wake up parent and return this mm to him.
1310 * Also kthread_stop() uses this completion for synchronization.
1311 */
1312 if (tsk->vfork_done)
1313 complete_vfork_done(tsk);
1da177e4
LT
1314}
1315
13585fa0
NA
1316/**
1317 * dup_mm() - duplicates an existing mm structure
1318 * @tsk: the task_struct with which the new mm will be associated.
1319 * @oldmm: the mm to duplicate.
1320 *
1321 * Allocates a new mm structure and duplicates the provided @oldmm structure
1322 * content into it.
1323 *
1324 * Return: the duplicated mm or NULL on failure.
a0a7ec30 1325 */
13585fa0
NA
1326static struct mm_struct *dup_mm(struct task_struct *tsk,
1327 struct mm_struct *oldmm)
a0a7ec30 1328{
13585fa0 1329 struct mm_struct *mm;
a0a7ec30
JD
1330 int err;
1331
a0a7ec30
JD
1332 mm = allocate_mm();
1333 if (!mm)
1334 goto fail_nomem;
1335
1336 memcpy(mm, oldmm, sizeof(*mm));
1337
bfedb589 1338 if (!mm_init(mm, tsk, mm->user_ns))
a0a7ec30
JD
1339 goto fail_nomem;
1340
a0a7ec30
JD
1341 err = dup_mmap(mm, oldmm);
1342 if (err)
1343 goto free_pt;
1344
1345 mm->hiwater_rss = get_mm_rss(mm);
1346 mm->hiwater_vm = mm->total_vm;
1347
801460d0
HS
1348 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1349 goto free_pt;
1350
a0a7ec30
JD
1351 return mm;
1352
1353free_pt:
801460d0
HS
1354 /* don't put binfmt in mmput, we haven't got module yet */
1355 mm->binfmt = NULL;
c3f3ce04 1356 mm_init_owner(mm, NULL);
a0a7ec30
JD
1357 mmput(mm);
1358
1359fail_nomem:
1360 return NULL;
a0a7ec30
JD
1361}
1362
fb0a685c 1363static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1da177e4 1364{
fb0a685c 1365 struct mm_struct *mm, *oldmm;
1da177e4
LT
1366 int retval;
1367
1368 tsk->min_flt = tsk->maj_flt = 0;
1369 tsk->nvcsw = tsk->nivcsw = 0;
17406b82
MSB
1370#ifdef CONFIG_DETECT_HUNG_TASK
1371 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
a2e51445 1372 tsk->last_switch_time = 0;
17406b82 1373#endif
1da177e4
LT
1374
1375 tsk->mm = NULL;
1376 tsk->active_mm = NULL;
1377
1378 /*
1379 * Are we cloning a kernel thread?
1380 *
1381 * We need to steal a active VM for that..
1382 */
1383 oldmm = current->mm;
1384 if (!oldmm)
1385 return 0;
1386
615d6e87
DB
1387 /* initialize the new vmacache entries */
1388 vmacache_flush(tsk);
1389
1da177e4 1390 if (clone_flags & CLONE_VM) {
3fce371b 1391 mmget(oldmm);
1da177e4 1392 mm = oldmm;
1da177e4
LT
1393 goto good_mm;
1394 }
1395
1396 retval = -ENOMEM;
13585fa0 1397 mm = dup_mm(tsk, current->mm);
1da177e4
LT
1398 if (!mm)
1399 goto fail_nomem;
1400
1da177e4
LT
1401good_mm:
1402 tsk->mm = mm;
1403 tsk->active_mm = mm;
1404 return 0;
1405
1da177e4
LT
1406fail_nomem:
1407 return retval;
1da177e4
LT
1408}
1409
a39bc516 1410static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1da177e4 1411{
498052bb 1412 struct fs_struct *fs = current->fs;
1da177e4 1413 if (clone_flags & CLONE_FS) {
498052bb 1414 /* tsk->fs is already what we want */
2a4419b5 1415 spin_lock(&fs->lock);
498052bb 1416 if (fs->in_exec) {
2a4419b5 1417 spin_unlock(&fs->lock);
498052bb
AV
1418 return -EAGAIN;
1419 }
1420 fs->users++;
2a4419b5 1421 spin_unlock(&fs->lock);
1da177e4
LT
1422 return 0;
1423 }
498052bb 1424 tsk->fs = copy_fs_struct(fs);
1da177e4
LT
1425 if (!tsk->fs)
1426 return -ENOMEM;
1427 return 0;
1428}
1429
fb0a685c 1430static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
a016f338
JD
1431{
1432 struct files_struct *oldf, *newf;
1433 int error = 0;
1434
1435 /*
1436 * A background process may not have any files ...
1437 */
1438 oldf = current->files;
1439 if (!oldf)
1440 goto out;
1441
1442 if (clone_flags & CLONE_FILES) {
1443 atomic_inc(&oldf->count);
1444 goto out;
1445 }
1446
a016f338
JD
1447 newf = dup_fd(oldf, &error);
1448 if (!newf)
1449 goto out;
1450
1451 tsk->files = newf;
1452 error = 0;
1453out:
1454 return error;
1455}
1456
fadad878 1457static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
fd0928df
JA
1458{
1459#ifdef CONFIG_BLOCK
1460 struct io_context *ioc = current->io_context;
6e736be7 1461 struct io_context *new_ioc;
fd0928df
JA
1462
1463 if (!ioc)
1464 return 0;
fadad878
JA
1465 /*
1466 * Share io context with parent, if CLONE_IO is set
1467 */
1468 if (clone_flags & CLONE_IO) {
3d48749d
TH
1469 ioc_task_link(ioc);
1470 tsk->io_context = ioc;
fadad878 1471 } else if (ioprio_valid(ioc->ioprio)) {
6e736be7
TH
1472 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1473 if (unlikely(!new_ioc))
fd0928df
JA
1474 return -ENOMEM;
1475
6e736be7 1476 new_ioc->ioprio = ioc->ioprio;
11a3122f 1477 put_io_context(new_ioc);
fd0928df
JA
1478 }
1479#endif
1480 return 0;
1481}
1482
a39bc516 1483static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1da177e4
LT
1484{
1485 struct sighand_struct *sig;
1486
60348802 1487 if (clone_flags & CLONE_SIGHAND) {
d036bda7 1488 refcount_inc(&current->sighand->count);
1da177e4
LT
1489 return 0;
1490 }
1491 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
e56d0903 1492 rcu_assign_pointer(tsk->sighand, sig);
1da177e4
LT
1493 if (!sig)
1494 return -ENOMEM;
9d7fb042 1495
d036bda7 1496 refcount_set(&sig->count, 1);
06e62a46 1497 spin_lock_irq(&current->sighand->siglock);
1da177e4 1498 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
06e62a46 1499 spin_unlock_irq(&current->sighand->siglock);
1da177e4
LT
1500 return 0;
1501}
1502
a7e5328a 1503void __cleanup_sighand(struct sighand_struct *sighand)
c81addc9 1504{
d036bda7 1505 if (refcount_dec_and_test(&sighand->count)) {
d80e731e 1506 signalfd_cleanup(sighand);
392809b2 1507 /*
5f0d5a3a 1508 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
392809b2
ON
1509 * without an RCU grace period, see __lock_task_sighand().
1510 */
c81addc9 1511 kmem_cache_free(sighand_cachep, sighand);
d80e731e 1512 }
c81addc9
ON
1513}
1514
b18b6a9c 1515#ifdef CONFIG_POSIX_TIMERS
f06febc9
FM
1516/*
1517 * Initialize POSIX timer handling for a thread group.
1518 */
1519static void posix_cpu_timers_init_group(struct signal_struct *sig)
1520{
78d7d407
JS
1521 unsigned long cpu_limit;
1522
316c1608 1523 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
78d7d407 1524 if (cpu_limit != RLIM_INFINITY) {
ebd7e7fc 1525 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
d5c373eb 1526 sig->cputimer.running = true;
6279a751
ON
1527 }
1528
f06febc9
FM
1529 /* The timer lists. */
1530 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1531 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1532 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1533}
b18b6a9c
NP
1534#else
1535static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1536#endif
f06febc9 1537
a39bc516 1538static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1da177e4
LT
1539{
1540 struct signal_struct *sig;
1da177e4 1541
4ab6c083 1542 if (clone_flags & CLONE_THREAD)
490dea45 1543 return 0;
490dea45 1544
a56704ef 1545 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1da177e4
LT
1546 tsk->signal = sig;
1547 if (!sig)
1548 return -ENOMEM;
1549
b3ac022c 1550 sig->nr_threads = 1;
1da177e4 1551 atomic_set(&sig->live, 1);
60d4de3f 1552 refcount_set(&sig->sigcnt, 1);
0c740d0a
ON
1553
1554 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1555 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1556 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1557
1da177e4 1558 init_waitqueue_head(&sig->wait_chldexit);
db51aecc 1559 sig->curr_target = tsk;
1da177e4 1560 init_sigpending(&sig->shared_pending);
c3ad2c3b 1561 INIT_HLIST_HEAD(&sig->multiprocess);
e78c3496 1562 seqlock_init(&sig->stats_lock);
9d7fb042 1563 prev_cputime_init(&sig->prev_cputime);
1da177e4 1564
baa73d9e 1565#ifdef CONFIG_POSIX_TIMERS
b18b6a9c 1566 INIT_LIST_HEAD(&sig->posix_timers);
c9cb2e3d 1567 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1da177e4 1568 sig->real_timer.function = it_real_fn;
baa73d9e 1569#endif
1da177e4 1570
1da177e4
LT
1571 task_lock(current->group_leader);
1572 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1573 task_unlock(current->group_leader);
1574
6279a751
ON
1575 posix_cpu_timers_init_group(sig);
1576
522ed776 1577 tty_audit_fork(sig);
5091faa4 1578 sched_autogroup_fork(sig);
522ed776 1579
a63d83f4 1580 sig->oom_score_adj = current->signal->oom_score_adj;
dabb16f6 1581 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
28b83c51 1582
9b1bf12d
KM
1583 mutex_init(&sig->cred_guard_mutex);
1584
1da177e4
LT
1585 return 0;
1586}
1587
dbd95212
KC
1588static void copy_seccomp(struct task_struct *p)
1589{
1590#ifdef CONFIG_SECCOMP
1591 /*
1592 * Must be called with sighand->lock held, which is common to
1593 * all threads in the group. Holding cred_guard_mutex is not
1594 * needed because this new task is not yet running and cannot
1595 * be racing exec.
1596 */
69f6a34b 1597 assert_spin_locked(&current->sighand->siglock);
dbd95212
KC
1598
1599 /* Ref-count the new filter user, and assign it. */
1600 get_seccomp_filter(current);
1601 p->seccomp = current->seccomp;
1602
1603 /*
1604 * Explicitly enable no_new_privs here in case it got set
1605 * between the task_struct being duplicated and holding the
1606 * sighand lock. The seccomp state and nnp must be in sync.
1607 */
1608 if (task_no_new_privs(current))
1609 task_set_no_new_privs(p);
1610
1611 /*
1612 * If the parent gained a seccomp mode after copying thread
1613 * flags and between before we held the sighand lock, we have
1614 * to manually enable the seccomp thread flag here.
1615 */
1616 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1617 set_tsk_thread_flag(p, TIF_SECCOMP);
1618#endif
1619}
1620
17da2bd9 1621SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1da177e4
LT
1622{
1623 current->clear_child_tid = tidptr;
1624
b488893a 1625 return task_pid_vnr(current);
1da177e4
LT
1626}
1627
a39bc516 1628static void rt_mutex_init_task(struct task_struct *p)
23f78d4a 1629{
1d615482 1630 raw_spin_lock_init(&p->pi_lock);
e29e175b 1631#ifdef CONFIG_RT_MUTEXES
a23ba907 1632 p->pi_waiters = RB_ROOT_CACHED;
e96a7705 1633 p->pi_top_task = NULL;
23f78d4a 1634 p->pi_blocked_on = NULL;
23f78d4a
IM
1635#endif
1636}
1637
b18b6a9c 1638#ifdef CONFIG_POSIX_TIMERS
f06febc9
FM
1639/*
1640 * Initialize POSIX timer handling for a single task.
1641 */
1642static void posix_cpu_timers_init(struct task_struct *tsk)
1643{
64861634
MS
1644 tsk->cputime_expires.prof_exp = 0;
1645 tsk->cputime_expires.virt_exp = 0;
f06febc9
FM
1646 tsk->cputime_expires.sched_exp = 0;
1647 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1648 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1649 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1650}
b18b6a9c
NP
1651#else
1652static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1653#endif
f06febc9 1654
2c470475
EB
1655static inline void init_task_pid_links(struct task_struct *task)
1656{
1657 enum pid_type type;
1658
1659 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1660 INIT_HLIST_NODE(&task->pid_links[type]);
1661 }
1662}
1663
81907739
ON
1664static inline void
1665init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1666{
2c470475
EB
1667 if (type == PIDTYPE_PID)
1668 task->thread_pid = pid;
1669 else
1670 task->signal->pids[type] = pid;
81907739
ON
1671}
1672
6bfbaa51
IM
1673static inline void rcu_copy_process(struct task_struct *p)
1674{
1675#ifdef CONFIG_PREEMPT_RCU
1676 p->rcu_read_lock_nesting = 0;
1677 p->rcu_read_unlock_special.s = 0;
1678 p->rcu_blocked_node = NULL;
1679 INIT_LIST_HEAD(&p->rcu_node_entry);
1680#endif /* #ifdef CONFIG_PREEMPT_RCU */
1681#ifdef CONFIG_TASKS_RCU
1682 p->rcu_tasks_holdout = false;
1683 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1684 p->rcu_tasks_idle_cpu = -1;
1685#endif /* #ifdef CONFIG_TASKS_RCU */
1686}
1687
b3e58382
CB
1688static int pidfd_release(struct inode *inode, struct file *file)
1689{
1690 struct pid *pid = file->private_data;
1691
1692 file->private_data = NULL;
1693 put_pid(pid);
1694 return 0;
1695}
1696
1697#ifdef CONFIG_PROC_FS
1698static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1699{
1700 struct pid_namespace *ns = proc_pid_ns(file_inode(m->file));
1701 struct pid *pid = f->private_data;
1702
1703 seq_put_decimal_ull(m, "Pid:\t", pid_nr_ns(pid, ns));
1704 seq_putc(m, '\n');
1705}
1706#endif
1707
1708const struct file_operations pidfd_fops = {
1709 .release = pidfd_release,
1710#ifdef CONFIG_PROC_FS
1711 .show_fdinfo = pidfd_show_fdinfo,
1712#endif
1713};
1714
1715/**
1716 * pidfd_create() - Create a new pid file descriptor.
1717 *
1718 * @pid: struct pid that the pidfd will reference
1719 *
1720 * This creates a new pid file descriptor with the O_CLOEXEC flag set.
1721 *
1722 * Note, that this function can only be called after the fd table has
1723 * been unshared to avoid leaking the pidfd to the new process.
1724 *
1725 * Return: On success, a cloexec pidfd is returned.
1726 * On error, a negative errno number will be returned.
1727 */
1728static int pidfd_create(struct pid *pid)
1729{
1730 int fd;
1731
1732 fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid),
1733 O_RDWR | O_CLOEXEC);
1734 if (fd < 0)
1735 put_pid(pid);
1736
1737 return fd;
1738}
1739
c3f3ce04
AA
1740static void __delayed_free_task(struct rcu_head *rhp)
1741{
1742 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1743
1744 free_task(tsk);
1745}
1746
1747static __always_inline void delayed_free_task(struct task_struct *tsk)
1748{
1749 if (IS_ENABLED(CONFIG_MEMCG))
1750 call_rcu(&tsk->rcu, __delayed_free_task);
1751 else
1752 free_task(tsk);
1753}
1754
1da177e4
LT
1755/*
1756 * This creates a new process as a copy of the old one,
1757 * but does not actually start it yet.
1758 *
1759 * It copies the registers, and all the appropriate
1760 * parts of the process environment (as per the clone
1761 * flags). The actual kick-off is left to the caller.
1762 */
0766f788
ER
1763static __latent_entropy struct task_struct *copy_process(
1764 unsigned long clone_flags,
36c8b586 1765 unsigned long stack_start,
36c8b586 1766 unsigned long stack_size,
b3e58382 1767 int __user *parent_tidptr,
36c8b586 1768 int __user *child_tidptr,
09a05394 1769 struct pid *pid,
3033f14a 1770 int trace,
725fc629
AK
1771 unsigned long tls,
1772 int node)
1da177e4 1773{
b3e58382 1774 int pidfd = -1, retval;
a24efe62 1775 struct task_struct *p;
c3ad2c3b 1776 struct multiprocess_signals delayed;
1da177e4 1777
667b6094
MPS
1778 /*
1779 * Don't allow sharing the root directory with processes in a different
1780 * namespace
1781 */
1da177e4
LT
1782 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1783 return ERR_PTR(-EINVAL);
1784
e66eded8
EB
1785 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1786 return ERR_PTR(-EINVAL);
1787
1da177e4
LT
1788 /*
1789 * Thread groups must share signals as well, and detached threads
1790 * can only be started up within the thread group.
1791 */
1792 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1793 return ERR_PTR(-EINVAL);
1794
1795 /*
1796 * Shared signal handlers imply shared VM. By way of the above,
1797 * thread groups also imply shared VM. Blocking this case allows
1798 * for various simplifications in other code.
1799 */
1800 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1801 return ERR_PTR(-EINVAL);
1802
123be07b
SB
1803 /*
1804 * Siblings of global init remain as zombies on exit since they are
1805 * not reaped by their parent (swapper). To solve this and to avoid
1806 * multi-rooted process trees, prevent global and container-inits
1807 * from creating siblings.
1808 */
1809 if ((clone_flags & CLONE_PARENT) &&
1810 current->signal->flags & SIGNAL_UNKILLABLE)
1811 return ERR_PTR(-EINVAL);
1812
8382fcac 1813 /*
40a0d32d 1814 * If the new process will be in a different pid or user namespace
faf00da5 1815 * do not allow it to share a thread group with the forking task.
8382fcac 1816 */
faf00da5 1817 if (clone_flags & CLONE_THREAD) {
40a0d32d
ON
1818 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1819 (task_active_pid_ns(current) !=
1820 current->nsproxy->pid_ns_for_children))
1821 return ERR_PTR(-EINVAL);
1822 }
8382fcac 1823
b3e58382
CB
1824 if (clone_flags & CLONE_PIDFD) {
1825 int reserved;
1826
1827 /*
1828 * - CLONE_PARENT_SETTID is useless for pidfds and also
1829 * parent_tidptr is used to return pidfds.
1830 * - CLONE_DETACHED is blocked so that we can potentially
1831 * reuse it later for CLONE_PIDFD.
1832 * - CLONE_THREAD is blocked until someone really needs it.
1833 */
1834 if (clone_flags &
1835 (CLONE_DETACHED | CLONE_PARENT_SETTID | CLONE_THREAD))
1836 return ERR_PTR(-EINVAL);
1837
1838 /*
1839 * Verify that parent_tidptr is sane so we can potentially
1840 * reuse it later.
1841 */
1842 if (get_user(reserved, parent_tidptr))
1843 return ERR_PTR(-EFAULT);
1844
1845 if (reserved != 0)
1846 return ERR_PTR(-EINVAL);
1847 }
1848
c3ad2c3b
EB
1849 /*
1850 * Force any signals received before this point to be delivered
1851 * before the fork happens. Collect up signals sent to multiple
1852 * processes that happen during the fork and delay them so that
1853 * they appear to happen after the fork.
1854 */
1855 sigemptyset(&delayed.signal);
1856 INIT_HLIST_NODE(&delayed.node);
1857
1858 spin_lock_irq(&current->sighand->siglock);
1859 if (!(clone_flags & CLONE_THREAD))
1860 hlist_add_head(&delayed.node, &current->signal->multiprocess);
1861 recalc_sigpending();
1862 spin_unlock_irq(&current->sighand->siglock);
1863 retval = -ERESTARTNOINTR;
1864 if (signal_pending(current))
1865 goto fork_out;
1866
1da177e4 1867 retval = -ENOMEM;
725fc629 1868 p = dup_task_struct(current, node);
1da177e4
LT
1869 if (!p)
1870 goto fork_out;
1871
4d6501dc
VN
1872 /*
1873 * This _must_ happen before we call free_task(), i.e. before we jump
1874 * to any of the bad_fork_* labels. This is to avoid freeing
1875 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1876 * kernel threads (PF_KTHREAD).
1877 */
1878 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1879 /*
1880 * Clear TID on mm_release()?
1881 */
1882 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1883
f7e8b616
SR
1884 ftrace_graph_init_task(p);
1885
bea493a0
PZ
1886 rt_mutex_init_task(p);
1887
d12c1a37 1888#ifdef CONFIG_PROVE_LOCKING
de30a2b3
IM
1889 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1890 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1891#endif
1da177e4 1892 retval = -EAGAIN;
3b11a1de 1893 if (atomic_read(&p->real_cred->user->processes) >=
78d7d407 1894 task_rlimit(p, RLIMIT_NPROC)) {
b57922b6
EP
1895 if (p->real_cred->user != INIT_USER &&
1896 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1da177e4
LT
1897 goto bad_fork_free;
1898 }
72fa5997 1899 current->flags &= ~PF_NPROC_EXCEEDED;
1da177e4 1900
f1752eec
DH
1901 retval = copy_creds(p, clone_flags);
1902 if (retval < 0)
1903 goto bad_fork_free;
1da177e4
LT
1904
1905 /*
1906 * If multiple threads are within copy_process(), then this check
1907 * triggers too late. This doesn't hurt, the check is only there
1908 * to stop root fork bombs.
1909 */
04ec93fe 1910 retval = -EAGAIN;
1da177e4
LT
1911 if (nr_threads >= max_threads)
1912 goto bad_fork_cleanup_count;
1913
ca74e92b 1914 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
c1de45ca 1915 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
514ddb44 1916 p->flags |= PF_FORKNOEXEC;
1da177e4
LT
1917 INIT_LIST_HEAD(&p->children);
1918 INIT_LIST_HEAD(&p->sibling);
f41d911f 1919 rcu_copy_process(p);
1da177e4
LT
1920 p->vfork_done = NULL;
1921 spin_lock_init(&p->alloc_lock);
1da177e4 1922
1da177e4
LT
1923 init_sigpending(&p->pending);
1924
64861634 1925 p->utime = p->stime = p->gtime = 0;
40565b5a 1926#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
64861634 1927 p->utimescaled = p->stimescaled = 0;
40565b5a 1928#endif
9d7fb042
PZ
1929 prev_cputime_init(&p->prev_cputime);
1930
6a61671b 1931#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6
FW
1932 seqcount_init(&p->vtime.seqcount);
1933 p->vtime.starttime = 0;
1934 p->vtime.state = VTIME_INACTIVE;
6a61671b
FW
1935#endif
1936
a3a2e76c
KH
1937#if defined(SPLIT_RSS_COUNTING)
1938 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1939#endif
172ba844 1940
6976675d
AV
1941 p->default_timer_slack_ns = current->timer_slack_ns;
1942
eb414681
JW
1943#ifdef CONFIG_PSI
1944 p->psi_flags = 0;
1945#endif
1946
5995477a 1947 task_io_accounting_init(&p->ioac);
1da177e4
LT
1948 acct_clear_integrals(p);
1949
f06febc9 1950 posix_cpu_timers_init(p);
1da177e4 1951
1da177e4 1952 p->io_context = NULL;
c0b0ae8a 1953 audit_set_context(p, NULL);
b4f48b63 1954 cgroup_fork(p);
1da177e4 1955#ifdef CONFIG_NUMA
846a16bf 1956 p->mempolicy = mpol_dup(p->mempolicy);
fb0a685c
DRO
1957 if (IS_ERR(p->mempolicy)) {
1958 retval = PTR_ERR(p->mempolicy);
1959 p->mempolicy = NULL;
e8604cb4 1960 goto bad_fork_cleanup_threadgroup_lock;
fb0a685c 1961 }
1da177e4 1962#endif
778d3b0f
MH
1963#ifdef CONFIG_CPUSETS
1964 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1965 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
cc9a6c87 1966 seqcount_init(&p->mems_allowed_seq);
778d3b0f 1967#endif
de30a2b3
IM
1968#ifdef CONFIG_TRACE_IRQFLAGS
1969 p->irq_events = 0;
1970 p->hardirqs_enabled = 0;
1971 p->hardirq_enable_ip = 0;
1972 p->hardirq_enable_event = 0;
1973 p->hardirq_disable_ip = _THIS_IP_;
1974 p->hardirq_disable_event = 0;
1975 p->softirqs_enabled = 1;
1976 p->softirq_enable_ip = _THIS_IP_;
1977 p->softirq_enable_event = 0;
1978 p->softirq_disable_ip = 0;
1979 p->softirq_disable_event = 0;
1980 p->hardirq_context = 0;
1981 p->softirq_context = 0;
1982#endif
8bcbde54
DH
1983
1984 p->pagefault_disabled = 0;
1985
fbb9ce95
IM
1986#ifdef CONFIG_LOCKDEP
1987 p->lockdep_depth = 0; /* no locks held yet */
1988 p->curr_chain_key = 0;
1989 p->lockdep_recursion = 0;
b09be676 1990 lockdep_init_task(p);
fbb9ce95 1991#endif
1da177e4 1992
408894ee
IM
1993#ifdef CONFIG_DEBUG_MUTEXES
1994 p->blocked_on = NULL; /* not blocked yet */
1995#endif
cafe5635
KO
1996#ifdef CONFIG_BCACHE
1997 p->sequential_io = 0;
1998 p->sequential_io_avg = 0;
1999#endif
0f481406 2000
3c90e6e9 2001 /* Perform scheduler related setup. Assign this task to a CPU. */
aab03e05
DF
2002 retval = sched_fork(clone_flags, p);
2003 if (retval)
2004 goto bad_fork_cleanup_policy;
6ab423e0 2005
cdd6c482 2006 retval = perf_event_init_task(p);
6ab423e0
PZ
2007 if (retval)
2008 goto bad_fork_cleanup_policy;
fb0a685c
DRO
2009 retval = audit_alloc(p);
2010 if (retval)
6c72e350 2011 goto bad_fork_cleanup_perf;
1da177e4 2012 /* copy all the process information */
ab602f79 2013 shm_init_task(p);
e4e55b47 2014 retval = security_task_alloc(p, clone_flags);
fb0a685c 2015 if (retval)
1da177e4 2016 goto bad_fork_cleanup_audit;
e4e55b47
TH
2017 retval = copy_semundo(clone_flags, p);
2018 if (retval)
2019 goto bad_fork_cleanup_security;
fb0a685c
DRO
2020 retval = copy_files(clone_flags, p);
2021 if (retval)
1da177e4 2022 goto bad_fork_cleanup_semundo;
fb0a685c
DRO
2023 retval = copy_fs(clone_flags, p);
2024 if (retval)
1da177e4 2025 goto bad_fork_cleanup_files;
fb0a685c
DRO
2026 retval = copy_sighand(clone_flags, p);
2027 if (retval)
1da177e4 2028 goto bad_fork_cleanup_fs;
fb0a685c
DRO
2029 retval = copy_signal(clone_flags, p);
2030 if (retval)
1da177e4 2031 goto bad_fork_cleanup_sighand;
fb0a685c
DRO
2032 retval = copy_mm(clone_flags, p);
2033 if (retval)
1da177e4 2034 goto bad_fork_cleanup_signal;
fb0a685c
DRO
2035 retval = copy_namespaces(clone_flags, p);
2036 if (retval)
d84f4f99 2037 goto bad_fork_cleanup_mm;
fb0a685c
DRO
2038 retval = copy_io(clone_flags, p);
2039 if (retval)
fd0928df 2040 goto bad_fork_cleanup_namespaces;
3033f14a 2041 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1da177e4 2042 if (retval)
fd0928df 2043 goto bad_fork_cleanup_io;
1da177e4 2044
afaef01c
AP
2045 stackleak_task_init(p);
2046
425fb2b4 2047 if (pid != &init_struct_pid) {
c2b1df2e 2048 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
35f71bc0
MH
2049 if (IS_ERR(pid)) {
2050 retval = PTR_ERR(pid);
0740aa5f 2051 goto bad_fork_cleanup_thread;
35f71bc0 2052 }
425fb2b4
PE
2053 }
2054
b3e58382
CB
2055 /*
2056 * This has to happen after we've potentially unshared the file
2057 * descriptor table (so that the pidfd doesn't leak into the child
2058 * if the fd table isn't shared).
2059 */
2060 if (clone_flags & CLONE_PIDFD) {
2061 retval = pidfd_create(pid);
2062 if (retval < 0)
2063 goto bad_fork_free_pid;
2064
2065 pidfd = retval;
2066 retval = put_user(pidfd, parent_tidptr);
2067 if (retval)
2068 goto bad_fork_put_pidfd;
2069 }
2070
73c10101
JA
2071#ifdef CONFIG_BLOCK
2072 p->plug = NULL;
2073#endif
42b2dd0a 2074#ifdef CONFIG_FUTEX
8f17d3a5
IM
2075 p->robust_list = NULL;
2076#ifdef CONFIG_COMPAT
2077 p->compat_robust_list = NULL;
2078#endif
c87e2837
IM
2079 INIT_LIST_HEAD(&p->pi_state_list);
2080 p->pi_state_cache = NULL;
42b2dd0a 2081#endif
f9a3879a
GM
2082 /*
2083 * sigaltstack should be cleared when sharing the same VM
2084 */
2085 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2a742138 2086 sas_ss_reset(p);
f9a3879a 2087
1da177e4 2088 /*
6580807d
ON
2089 * Syscall tracing and stepping should be turned off in the
2090 * child regardless of CLONE_PTRACE.
1da177e4 2091 */
6580807d 2092 user_disable_single_step(p);
1da177e4 2093 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
ed75e8d5
LV
2094#ifdef TIF_SYSCALL_EMU
2095 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2096#endif
e02c9b0d 2097 clear_tsk_latency_tracing(p);
1da177e4 2098
1da177e4 2099 /* ok, now we should be set up.. */
18c830df
ON
2100 p->pid = pid_nr(pid);
2101 if (clone_flags & CLONE_THREAD) {
5f8aadd8 2102 p->exit_signal = -1;
18c830df
ON
2103 p->group_leader = current->group_leader;
2104 p->tgid = current->tgid;
2105 } else {
2106 if (clone_flags & CLONE_PARENT)
2107 p->exit_signal = current->group_leader->exit_signal;
2108 else
2109 p->exit_signal = (clone_flags & CSIGNAL);
2110 p->group_leader = p;
2111 p->tgid = p->pid;
2112 }
5f8aadd8 2113
9d823e8f
WF
2114 p->nr_dirtied = 0;
2115 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
83712358 2116 p->dirty_paused_when = 0;
9d823e8f 2117
bb8cbbfe 2118 p->pdeath_signal = 0;
47e65328 2119 INIT_LIST_HEAD(&p->thread_group);
158e1645 2120 p->task_works = NULL;
1da177e4 2121
780de9dd 2122 cgroup_threadgroup_change_begin(current);
7e47682e
AS
2123 /*
2124 * Ensure that the cgroup subsystem policies allow the new process to be
2125 * forked. It should be noted the the new process's css_set can be changed
2126 * between here and cgroup_post_fork() if an organisation operation is in
2127 * progress.
2128 */
b53202e6 2129 retval = cgroup_can_fork(p);
7e47682e 2130 if (retval)
c3b7112d 2131 goto bad_fork_cgroup_threadgroup_change_end;
7e47682e 2132
7b558513
DH
2133 /*
2134 * From this point on we must avoid any synchronous user-space
2135 * communication until we take the tasklist-lock. In particular, we do
2136 * not want user-space to be able to predict the process start-time by
2137 * stalling fork(2) after we recorded the start_time but before it is
2138 * visible to the system.
2139 */
2140
2141 p->start_time = ktime_get_ns();
2142 p->real_start_time = ktime_get_boot_ns();
2143
18c830df
ON
2144 /*
2145 * Make it visible to the rest of the system, but dont wake it up yet.
2146 * Need tasklist lock for parent etc handling!
2147 */
1da177e4
LT
2148 write_lock_irq(&tasklist_lock);
2149
1da177e4 2150 /* CLONE_PARENT re-uses the old parent */
2d5516cb 2151 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1da177e4 2152 p->real_parent = current->real_parent;
2d5516cb
ON
2153 p->parent_exec_id = current->parent_exec_id;
2154 } else {
1da177e4 2155 p->real_parent = current;
2d5516cb
ON
2156 p->parent_exec_id = current->self_exec_id;
2157 }
1da177e4 2158
d83a7cb3
JP
2159 klp_copy_process(p);
2160
3f17da69 2161 spin_lock(&current->sighand->siglock);
4a2c7a78 2162
dbd95212
KC
2163 /*
2164 * Copy seccomp details explicitly here, in case they were changed
2165 * before holding sighand lock.
2166 */
2167 copy_seccomp(p);
2168
d7822b1e
MD
2169 rseq_fork(p, clone_flags);
2170
4ca1d3ee 2171 /* Don't start children in a dying pid namespace */
e8cfbc24 2172 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
3fd37226
KT
2173 retval = -ENOMEM;
2174 goto bad_fork_cancel_cgroup;
2175 }
4a2c7a78 2176
7673bf55
EB
2177 /* Let kill terminate clone/fork in the middle */
2178 if (fatal_signal_pending(current)) {
2179 retval = -EINTR;
2180 goto bad_fork_cancel_cgroup;
2181 }
2182
4a2c7a78 2183
2c470475 2184 init_task_pid_links(p);
73b9ebfe 2185 if (likely(p->pid)) {
4b9d33e6 2186 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
73b9ebfe 2187
81907739 2188 init_task_pid(p, PIDTYPE_PID, pid);
73b9ebfe 2189 if (thread_group_leader(p)) {
6883f81a 2190 init_task_pid(p, PIDTYPE_TGID, pid);
81907739
ON
2191 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2192 init_task_pid(p, PIDTYPE_SID, task_session(current));
2193
1c4042c2 2194 if (is_child_reaper(pid)) {
17cf22c3 2195 ns_of_pid(pid)->child_reaper = p;
1c4042c2
EB
2196 p->signal->flags |= SIGNAL_UNKILLABLE;
2197 }
c3ad2c3b 2198 p->signal->shared_pending.signal = delayed.signal;
9c9f4ded 2199 p->signal->tty = tty_kref_get(current->signal->tty);
749860ce
PT
2200 /*
2201 * Inherit has_child_subreaper flag under the same
2202 * tasklist_lock with adding child to the process tree
2203 * for propagate_has_child_subreaper optimization.
2204 */
2205 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2206 p->real_parent->signal->is_child_subreaper;
9cd80bbb 2207 list_add_tail(&p->sibling, &p->real_parent->children);
5e85d4ab 2208 list_add_tail_rcu(&p->tasks, &init_task.tasks);
6883f81a 2209 attach_pid(p, PIDTYPE_TGID);
81907739
ON
2210 attach_pid(p, PIDTYPE_PGID);
2211 attach_pid(p, PIDTYPE_SID);
909ea964 2212 __this_cpu_inc(process_counts);
80628ca0
ON
2213 } else {
2214 current->signal->nr_threads++;
2215 atomic_inc(&current->signal->live);
60d4de3f 2216 refcount_inc(&current->signal->sigcnt);
924de3b8 2217 task_join_group_stop(p);
80628ca0
ON
2218 list_add_tail_rcu(&p->thread_group,
2219 &p->group_leader->thread_group);
0c740d0a
ON
2220 list_add_tail_rcu(&p->thread_node,
2221 &p->signal->thread_head);
73b9ebfe 2222 }
81907739 2223 attach_pid(p, PIDTYPE_PID);
73b9ebfe 2224 nr_threads++;
1da177e4 2225 }
1da177e4 2226 total_forks++;
c3ad2c3b 2227 hlist_del_init(&delayed.node);
3f17da69 2228 spin_unlock(&current->sighand->siglock);
4af4206b 2229 syscall_tracepoint_update(p);
1da177e4 2230 write_unlock_irq(&tasklist_lock);
4af4206b 2231
c13cf856 2232 proc_fork_connector(p);
b53202e6 2233 cgroup_post_fork(p);
780de9dd 2234 cgroup_threadgroup_change_end(current);
cdd6c482 2235 perf_event_fork(p);
43d2b113
KH
2236
2237 trace_task_newtask(p, clone_flags);
3ab67966 2238 uprobe_copy_process(p, clone_flags);
43d2b113 2239
1da177e4
LT
2240 return p;
2241
7e47682e 2242bad_fork_cancel_cgroup:
3fd37226
KT
2243 spin_unlock(&current->sighand->siglock);
2244 write_unlock_irq(&tasklist_lock);
b53202e6 2245 cgroup_cancel_fork(p);
c3b7112d
CB
2246bad_fork_cgroup_threadgroup_change_end:
2247 cgroup_threadgroup_change_end(current);
b3e58382
CB
2248bad_fork_put_pidfd:
2249 if (clone_flags & CLONE_PIDFD)
2250 ksys_close(pidfd);
425fb2b4
PE
2251bad_fork_free_pid:
2252 if (pid != &init_struct_pid)
2253 free_pid(pid);
0740aa5f
JS
2254bad_fork_cleanup_thread:
2255 exit_thread(p);
fd0928df 2256bad_fork_cleanup_io:
b69f2292
LR
2257 if (p->io_context)
2258 exit_io_context(p);
ab516013 2259bad_fork_cleanup_namespaces:
444f378b 2260 exit_task_namespaces(p);
1da177e4 2261bad_fork_cleanup_mm:
c3f3ce04
AA
2262 if (p->mm) {
2263 mm_clear_owner(p->mm, p);
1da177e4 2264 mmput(p->mm);
c3f3ce04 2265 }
1da177e4 2266bad_fork_cleanup_signal:
4ab6c083 2267 if (!(clone_flags & CLONE_THREAD))
1c5354de 2268 free_signal_struct(p->signal);
1da177e4 2269bad_fork_cleanup_sighand:
a7e5328a 2270 __cleanup_sighand(p->sighand);
1da177e4
LT
2271bad_fork_cleanup_fs:
2272 exit_fs(p); /* blocking */
2273bad_fork_cleanup_files:
2274 exit_files(p); /* blocking */
2275bad_fork_cleanup_semundo:
2276 exit_sem(p);
e4e55b47
TH
2277bad_fork_cleanup_security:
2278 security_task_free(p);
1da177e4
LT
2279bad_fork_cleanup_audit:
2280 audit_free(p);
6c72e350 2281bad_fork_cleanup_perf:
cdd6c482 2282 perf_event_free_task(p);
6c72e350 2283bad_fork_cleanup_policy:
b09be676 2284 lockdep_free_task(p);
1da177e4 2285#ifdef CONFIG_NUMA
f0be3d32 2286 mpol_put(p->mempolicy);
e8604cb4 2287bad_fork_cleanup_threadgroup_lock:
1da177e4 2288#endif
35df17c5 2289 delayacct_tsk_free(p);
1da177e4 2290bad_fork_cleanup_count:
d84f4f99 2291 atomic_dec(&p->cred->user->processes);
e0e81739 2292 exit_creds(p);
1da177e4 2293bad_fork_free:
405c0759 2294 p->state = TASK_DEAD;
68f24b08 2295 put_task_stack(p);
c3f3ce04 2296 delayed_free_task(p);
fe7d37d1 2297fork_out:
c3ad2c3b
EB
2298 spin_lock_irq(&current->sighand->siglock);
2299 hlist_del_init(&delayed.node);
2300 spin_unlock_irq(&current->sighand->siglock);
fe7d37d1 2301 return ERR_PTR(retval);
1da177e4
LT
2302}
2303
2c470475 2304static inline void init_idle_pids(struct task_struct *idle)
f106eee1
ON
2305{
2306 enum pid_type type;
2307
2308 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2c470475
EB
2309 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2310 init_task_pid(idle, type, &init_struct_pid);
f106eee1
ON
2311 }
2312}
2313
0db0628d 2314struct task_struct *fork_idle(int cpu)
1da177e4 2315{
36c8b586 2316 struct task_struct *task;
b3e58382 2317 task = copy_process(CLONE_VM, 0, 0, NULL, NULL, &init_struct_pid, 0, 0,
725fc629 2318 cpu_to_node(cpu));
f106eee1 2319 if (!IS_ERR(task)) {
2c470475 2320 init_idle_pids(task);
753ca4f3 2321 init_idle(task, cpu);
f106eee1 2322 }
73b9ebfe 2323
1da177e4
LT
2324 return task;
2325}
2326
13585fa0
NA
2327struct mm_struct *copy_init_mm(void)
2328{
2329 return dup_mm(NULL, &init_mm);
2330}
2331
1da177e4
LT
2332/*
2333 * Ok, this is the main fork-routine.
2334 *
2335 * It copies the process, and if successful kick-starts
2336 * it and waits for it to finish using the VM if required.
2337 */
3033f14a 2338long _do_fork(unsigned long clone_flags,
1da177e4 2339 unsigned long stack_start,
1da177e4
LT
2340 unsigned long stack_size,
2341 int __user *parent_tidptr,
3033f14a
JT
2342 int __user *child_tidptr,
2343 unsigned long tls)
1da177e4 2344{
9f5325aa
MPS
2345 struct completion vfork;
2346 struct pid *pid;
1da177e4
LT
2347 struct task_struct *p;
2348 int trace = 0;
92476d7f 2349 long nr;
1da177e4 2350
09a05394 2351 /*
4b9d33e6
TH
2352 * Determine whether and which event to report to ptracer. When
2353 * called from kernel_thread or CLONE_UNTRACED is explicitly
2354 * requested, no event is reported; otherwise, report if the event
2355 * for the type of forking is enabled.
09a05394 2356 */
e80d6661 2357 if (!(clone_flags & CLONE_UNTRACED)) {
4b9d33e6
TH
2358 if (clone_flags & CLONE_VFORK)
2359 trace = PTRACE_EVENT_VFORK;
2360 else if ((clone_flags & CSIGNAL) != SIGCHLD)
2361 trace = PTRACE_EVENT_CLONE;
2362 else
2363 trace = PTRACE_EVENT_FORK;
2364
2365 if (likely(!ptrace_event_enabled(current, trace)))
2366 trace = 0;
2367 }
1da177e4 2368
b3e58382 2369 p = copy_process(clone_flags, stack_start, stack_size, parent_tidptr,
725fc629 2370 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
38addce8 2371 add_latent_entropy();
9f5325aa
MPS
2372
2373 if (IS_ERR(p))
2374 return PTR_ERR(p);
2375
1da177e4
LT
2376 /*
2377 * Do this prior waking up the new thread - the thread pointer
2378 * might get invalid after that point, if the thread exits quickly.
2379 */
9f5325aa 2380 trace_sched_process_fork(current, p);
0a16b607 2381
9f5325aa
MPS
2382 pid = get_task_pid(p, PIDTYPE_PID);
2383 nr = pid_vnr(pid);
30e49c26 2384
9f5325aa
MPS
2385 if (clone_flags & CLONE_PARENT_SETTID)
2386 put_user(nr, parent_tidptr);
a6f5e063 2387
9f5325aa
MPS
2388 if (clone_flags & CLONE_VFORK) {
2389 p->vfork_done = &vfork;
2390 init_completion(&vfork);
2391 get_task_struct(p);
2392 }
1da177e4 2393
9f5325aa 2394 wake_up_new_task(p);
09a05394 2395
9f5325aa
MPS
2396 /* forking complete and child started to run, tell ptracer */
2397 if (unlikely(trace))
2398 ptrace_event_pid(trace, pid);
4e52365f 2399
9f5325aa
MPS
2400 if (clone_flags & CLONE_VFORK) {
2401 if (!wait_for_vfork_done(p, &vfork))
2402 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1da177e4 2403 }
9f5325aa
MPS
2404
2405 put_pid(pid);
92476d7f 2406 return nr;
1da177e4
LT
2407}
2408
3033f14a
JT
2409#ifndef CONFIG_HAVE_COPY_THREAD_TLS
2410/* For compatibility with architectures that call do_fork directly rather than
2411 * using the syscall entry points below. */
2412long do_fork(unsigned long clone_flags,
2413 unsigned long stack_start,
2414 unsigned long stack_size,
2415 int __user *parent_tidptr,
2416 int __user *child_tidptr)
2417{
2418 return _do_fork(clone_flags, stack_start, stack_size,
2419 parent_tidptr, child_tidptr, 0);
2420}
2421#endif
2422
2aa3a7f8
AV
2423/*
2424 * Create a kernel thread.
2425 */
2426pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2427{
3033f14a
JT
2428 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2429 (unsigned long)arg, NULL, NULL, 0);
2aa3a7f8 2430}
2aa3a7f8 2431
d2125043
AV
2432#ifdef __ARCH_WANT_SYS_FORK
2433SYSCALL_DEFINE0(fork)
2434{
2435#ifdef CONFIG_MMU
3033f14a 2436 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
d2125043
AV
2437#else
2438 /* can not support in nommu mode */
5d59e182 2439 return -EINVAL;
d2125043
AV
2440#endif
2441}
2442#endif
2443
2444#ifdef __ARCH_WANT_SYS_VFORK
2445SYSCALL_DEFINE0(vfork)
2446{
3033f14a
JT
2447 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2448 0, NULL, NULL, 0);
d2125043
AV
2449}
2450#endif
2451
2452#ifdef __ARCH_WANT_SYS_CLONE
2453#ifdef CONFIG_CLONE_BACKWARDS
2454SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2455 int __user *, parent_tidptr,
3033f14a 2456 unsigned long, tls,
d2125043
AV
2457 int __user *, child_tidptr)
2458#elif defined(CONFIG_CLONE_BACKWARDS2)
2459SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2460 int __user *, parent_tidptr,
2461 int __user *, child_tidptr,
3033f14a 2462 unsigned long, tls)
dfa9771a
MS
2463#elif defined(CONFIG_CLONE_BACKWARDS3)
2464SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2465 int, stack_size,
2466 int __user *, parent_tidptr,
2467 int __user *, child_tidptr,
3033f14a 2468 unsigned long, tls)
d2125043
AV
2469#else
2470SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2471 int __user *, parent_tidptr,
2472 int __user *, child_tidptr,
3033f14a 2473 unsigned long, tls)
d2125043
AV
2474#endif
2475{
3033f14a 2476 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
d2125043
AV
2477}
2478#endif
2479
0f1b92cb
ON
2480void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2481{
2482 struct task_struct *leader, *parent, *child;
2483 int res;
2484
2485 read_lock(&tasklist_lock);
2486 leader = top = top->group_leader;
2487down:
2488 for_each_thread(leader, parent) {
2489 list_for_each_entry(child, &parent->children, sibling) {
2490 res = visitor(child, data);
2491 if (res) {
2492 if (res < 0)
2493 goto out;
2494 leader = child;
2495 goto down;
2496 }
2497up:
2498 ;
2499 }
2500 }
2501
2502 if (leader != top) {
2503 child = leader;
2504 parent = child->real_parent;
2505 leader = parent->group_leader;
2506 goto up;
2507 }
2508out:
2509 read_unlock(&tasklist_lock);
2510}
2511
5fd63b30
RT
2512#ifndef ARCH_MIN_MMSTRUCT_ALIGN
2513#define ARCH_MIN_MMSTRUCT_ALIGN 0
2514#endif
2515
51cc5068 2516static void sighand_ctor(void *data)
aa1757f9
ON
2517{
2518 struct sighand_struct *sighand = data;
2519
a35afb83 2520 spin_lock_init(&sighand->siglock);
b8fceee1 2521 init_waitqueue_head(&sighand->signalfd_wqh);
aa1757f9
ON
2522}
2523
1da177e4
LT
2524void __init proc_caches_init(void)
2525{
c1a2f7f0
RR
2526 unsigned int mm_size;
2527
1da177e4
LT
2528 sighand_cachep = kmem_cache_create("sighand_cache",
2529 sizeof(struct sighand_struct), 0,
5f0d5a3a 2530 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
75f296d9 2531 SLAB_ACCOUNT, sighand_ctor);
1da177e4
LT
2532 signal_cachep = kmem_cache_create("signal_cache",
2533 sizeof(struct signal_struct), 0,
75f296d9 2534 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 2535 NULL);
20c2df83 2536 files_cachep = kmem_cache_create("files_cache",
1da177e4 2537 sizeof(struct files_struct), 0,
75f296d9 2538 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 2539 NULL);
20c2df83 2540 fs_cachep = kmem_cache_create("fs_cache",
1da177e4 2541 sizeof(struct fs_struct), 0,
75f296d9 2542 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 2543 NULL);
c1a2f7f0 2544
6345d24d 2545 /*
c1a2f7f0
RR
2546 * The mm_cpumask is located at the end of mm_struct, and is
2547 * dynamically sized based on the maximum CPU number this system
2548 * can have, taking hotplug into account (nr_cpu_ids).
6345d24d 2549 */
c1a2f7f0
RR
2550 mm_size = sizeof(struct mm_struct) + cpumask_size();
2551
07dcd7fe 2552 mm_cachep = kmem_cache_create_usercopy("mm_struct",
c1a2f7f0 2553 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
75f296d9 2554 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
07dcd7fe
DW
2555 offsetof(struct mm_struct, saved_auxv),
2556 sizeof_field(struct mm_struct, saved_auxv),
5d097056
VD
2557 NULL);
2558 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
8feae131 2559 mmap_init();
66577193 2560 nsproxy_cache_init();
1da177e4 2561}
cf2e340f 2562
cf2e340f 2563/*
9bfb23fc 2564 * Check constraints on flags passed to the unshare system call.
cf2e340f 2565 */
9bfb23fc 2566static int check_unshare_flags(unsigned long unshare_flags)
cf2e340f 2567{
9bfb23fc
ON
2568 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2569 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
50804fe3 2570 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
a79a908f 2571 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
9bfb23fc 2572 return -EINVAL;
cf2e340f 2573 /*
12c641ab
EB
2574 * Not implemented, but pretend it works if there is nothing
2575 * to unshare. Note that unsharing the address space or the
2576 * signal handlers also need to unshare the signal queues (aka
2577 * CLONE_THREAD).
cf2e340f 2578 */
9bfb23fc 2579 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
12c641ab
EB
2580 if (!thread_group_empty(current))
2581 return -EINVAL;
2582 }
2583 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
d036bda7 2584 if (refcount_read(&current->sighand->count) > 1)
12c641ab
EB
2585 return -EINVAL;
2586 }
2587 if (unshare_flags & CLONE_VM) {
2588 if (!current_is_single_threaded())
9bfb23fc
ON
2589 return -EINVAL;
2590 }
cf2e340f
JD
2591
2592 return 0;
2593}
2594
2595/*
99d1419d 2596 * Unshare the filesystem structure if it is being shared
cf2e340f
JD
2597 */
2598static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2599{
2600 struct fs_struct *fs = current->fs;
2601
498052bb
AV
2602 if (!(unshare_flags & CLONE_FS) || !fs)
2603 return 0;
2604
2605 /* don't need lock here; in the worst case we'll do useless copy */
2606 if (fs->users == 1)
2607 return 0;
2608
2609 *new_fsp = copy_fs_struct(fs);
2610 if (!*new_fsp)
2611 return -ENOMEM;
cf2e340f
JD
2612
2613 return 0;
2614}
2615
cf2e340f 2616/*
a016f338 2617 * Unshare file descriptor table if it is being shared
cf2e340f
JD
2618 */
2619static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2620{
2621 struct files_struct *fd = current->files;
a016f338 2622 int error = 0;
cf2e340f
JD
2623
2624 if ((unshare_flags & CLONE_FILES) &&
a016f338
JD
2625 (fd && atomic_read(&fd->count) > 1)) {
2626 *new_fdp = dup_fd(fd, &error);
2627 if (!*new_fdp)
2628 return error;
2629 }
cf2e340f
JD
2630
2631 return 0;
2632}
2633
cf2e340f
JD
2634/*
2635 * unshare allows a process to 'unshare' part of the process
2636 * context which was originally shared using clone. copy_*
2637 * functions used by do_fork() cannot be used here directly
2638 * because they modify an inactive task_struct that is being
2639 * constructed. Here we are modifying the current, active,
2640 * task_struct.
2641 */
9b32105e 2642int ksys_unshare(unsigned long unshare_flags)
cf2e340f 2643{
cf2e340f 2644 struct fs_struct *fs, *new_fs = NULL;
cf2e340f 2645 struct files_struct *fd, *new_fd = NULL;
b2e0d987 2646 struct cred *new_cred = NULL;
cf7b708c 2647 struct nsproxy *new_nsproxy = NULL;
9edff4ab 2648 int do_sysvsem = 0;
9bfb23fc 2649 int err;
cf2e340f 2650
b2e0d987 2651 /*
faf00da5
EB
2652 * If unsharing a user namespace must also unshare the thread group
2653 * and unshare the filesystem root and working directories.
b2e0d987
EB
2654 */
2655 if (unshare_flags & CLONE_NEWUSER)
e66eded8 2656 unshare_flags |= CLONE_THREAD | CLONE_FS;
50804fe3
EB
2657 /*
2658 * If unsharing vm, must also unshare signal handlers.
2659 */
2660 if (unshare_flags & CLONE_VM)
2661 unshare_flags |= CLONE_SIGHAND;
12c641ab
EB
2662 /*
2663 * If unsharing a signal handlers, must also unshare the signal queues.
2664 */
2665 if (unshare_flags & CLONE_SIGHAND)
2666 unshare_flags |= CLONE_THREAD;
9bfb23fc
ON
2667 /*
2668 * If unsharing namespace, must also unshare filesystem information.
2669 */
2670 if (unshare_flags & CLONE_NEWNS)
2671 unshare_flags |= CLONE_FS;
50804fe3
EB
2672
2673 err = check_unshare_flags(unshare_flags);
2674 if (err)
2675 goto bad_unshare_out;
6013f67f
MS
2676 /*
2677 * CLONE_NEWIPC must also detach from the undolist: after switching
2678 * to a new ipc namespace, the semaphore arrays from the old
2679 * namespace are unreachable.
2680 */
2681 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
9edff4ab 2682 do_sysvsem = 1;
fb0a685c
DRO
2683 err = unshare_fs(unshare_flags, &new_fs);
2684 if (err)
9bfb23fc 2685 goto bad_unshare_out;
fb0a685c
DRO
2686 err = unshare_fd(unshare_flags, &new_fd);
2687 if (err)
9bfb23fc 2688 goto bad_unshare_cleanup_fs;
b2e0d987 2689 err = unshare_userns(unshare_flags, &new_cred);
fb0a685c 2690 if (err)
9edff4ab 2691 goto bad_unshare_cleanup_fd;
b2e0d987
EB
2692 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2693 new_cred, new_fs);
2694 if (err)
2695 goto bad_unshare_cleanup_cred;
c0b2fc31 2696
b2e0d987 2697 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
9edff4ab
MS
2698 if (do_sysvsem) {
2699 /*
2700 * CLONE_SYSVSEM is equivalent to sys_exit().
2701 */
2702 exit_sem(current);
2703 }
ab602f79
JM
2704 if (unshare_flags & CLONE_NEWIPC) {
2705 /* Orphan segments in old ns (see sem above). */
2706 exit_shm(current);
2707 shm_init_task(current);
2708 }
ab516013 2709
6f977e6b 2710 if (new_nsproxy)
cf7b708c 2711 switch_task_namespaces(current, new_nsproxy);
cf2e340f 2712
cf7b708c
PE
2713 task_lock(current);
2714
cf2e340f
JD
2715 if (new_fs) {
2716 fs = current->fs;
2a4419b5 2717 spin_lock(&fs->lock);
cf2e340f 2718 current->fs = new_fs;
498052bb
AV
2719 if (--fs->users)
2720 new_fs = NULL;
2721 else
2722 new_fs = fs;
2a4419b5 2723 spin_unlock(&fs->lock);
cf2e340f
JD
2724 }
2725
cf2e340f
JD
2726 if (new_fd) {
2727 fd = current->files;
2728 current->files = new_fd;
2729 new_fd = fd;
2730 }
2731
2732 task_unlock(current);
b2e0d987
EB
2733
2734 if (new_cred) {
2735 /* Install the new user namespace */
2736 commit_creds(new_cred);
2737 new_cred = NULL;
2738 }
cf2e340f
JD
2739 }
2740
e4222673
HB
2741 perf_event_namespaces(current);
2742
b2e0d987
EB
2743bad_unshare_cleanup_cred:
2744 if (new_cred)
2745 put_cred(new_cred);
cf2e340f
JD
2746bad_unshare_cleanup_fd:
2747 if (new_fd)
2748 put_files_struct(new_fd);
2749
cf2e340f
JD
2750bad_unshare_cleanup_fs:
2751 if (new_fs)
498052bb 2752 free_fs_struct(new_fs);
cf2e340f 2753
cf2e340f
JD
2754bad_unshare_out:
2755 return err;
2756}
3b125388 2757
9b32105e
DB
2758SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2759{
2760 return ksys_unshare(unshare_flags);
2761}
2762
3b125388
AV
2763/*
2764 * Helper to unshare the files of the current task.
2765 * We don't want to expose copy_files internals to
2766 * the exec layer of the kernel.
2767 */
2768
2769int unshare_files(struct files_struct **displaced)
2770{
2771 struct task_struct *task = current;
50704516 2772 struct files_struct *copy = NULL;
3b125388
AV
2773 int error;
2774
2775 error = unshare_fd(CLONE_FILES, &copy);
2776 if (error || !copy) {
2777 *displaced = NULL;
2778 return error;
2779 }
2780 *displaced = task->files;
2781 task_lock(task);
2782 task->files = copy;
2783 task_unlock(task);
2784 return 0;
2785}
16db3d3f
HS
2786
2787int sysctl_max_threads(struct ctl_table *table, int write,
2788 void __user *buffer, size_t *lenp, loff_t *ppos)
2789{
2790 struct ctl_table t;
2791 int ret;
2792 int threads = max_threads;
2793 int min = MIN_THREADS;
2794 int max = MAX_THREADS;
2795
2796 t = *table;
2797 t.data = &threads;
2798 t.extra1 = &min;
2799 t.extra2 = &max;
2800
2801 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2802 if (ret || !write)
2803 return ret;
2804
2805 set_max_threads(threads);
2806
2807 return 0;
2808}