rcu-tasks: Make RCU Tasks Trace stall warning handle idle offline tasks
[linux-block.git] / kernel / fork.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8/*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
b3e58382 15#include <linux/anon_inodes.h>
1da177e4 16#include <linux/slab.h>
4eb5aaa3 17#include <linux/sched/autogroup.h>
6e84f315 18#include <linux/sched/mm.h>
f7ccbae4 19#include <linux/sched/coredump.h>
8703e8a4 20#include <linux/sched/user.h>
6a3827d7 21#include <linux/sched/numa_balancing.h>
03441a34 22#include <linux/sched/stat.h>
29930025 23#include <linux/sched/task.h>
68db0cf1 24#include <linux/sched/task_stack.h>
32ef5517 25#include <linux/sched/cputime.h>
b3e58382 26#include <linux/seq_file.h>
037741a6 27#include <linux/rtmutex.h>
1da177e4
LT
28#include <linux/init.h>
29#include <linux/unistd.h>
1da177e4
LT
30#include <linux/module.h>
31#include <linux/vmalloc.h>
32#include <linux/completion.h>
1da177e4
LT
33#include <linux/personality.h>
34#include <linux/mempolicy.h>
35#include <linux/sem.h>
36#include <linux/file.h>
9f3acc31 37#include <linux/fdtable.h>
da9cbc87 38#include <linux/iocontext.h>
1da177e4
LT
39#include <linux/key.h>
40#include <linux/binfmts.h>
41#include <linux/mman.h>
cddb8a5c 42#include <linux/mmu_notifier.h>
1da177e4 43#include <linux/fs.h>
615d6e87 44#include <linux/mm.h>
17fca131 45#include <linux/mm_inline.h>
615d6e87 46#include <linux/vmacache.h>
ab516013 47#include <linux/nsproxy.h>
c59ede7b 48#include <linux/capability.h>
1da177e4 49#include <linux/cpu.h>
b4f48b63 50#include <linux/cgroup.h>
1da177e4 51#include <linux/security.h>
a1e78772 52#include <linux/hugetlb.h>
e2cfabdf 53#include <linux/seccomp.h>
1da177e4
LT
54#include <linux/swap.h>
55#include <linux/syscalls.h>
56#include <linux/jiffies.h>
57#include <linux/futex.h>
8141c7f3 58#include <linux/compat.h>
207205a2 59#include <linux/kthread.h>
7c3ab738 60#include <linux/task_io_accounting_ops.h>
ab2af1f5 61#include <linux/rcupdate.h>
1da177e4
LT
62#include <linux/ptrace.h>
63#include <linux/mount.h>
64#include <linux/audit.h>
78fb7466 65#include <linux/memcontrol.h>
f201ae23 66#include <linux/ftrace.h>
5e2bf014 67#include <linux/proc_fs.h>
1da177e4
LT
68#include <linux/profile.h>
69#include <linux/rmap.h>
f8af4da3 70#include <linux/ksm.h>
1da177e4 71#include <linux/acct.h>
893e26e6 72#include <linux/userfaultfd_k.h>
8f0ab514 73#include <linux/tsacct_kern.h>
9f46080c 74#include <linux/cn_proc.h>
ba96a0c8 75#include <linux/freezer.h>
ca74e92b 76#include <linux/delayacct.h>
ad4ecbcb 77#include <linux/taskstats_kern.h>
0a425405 78#include <linux/random.h>
522ed776 79#include <linux/tty.h>
5ad4e53b 80#include <linux/fs_struct.h>
7c9f8861 81#include <linux/magic.h>
cdd6c482 82#include <linux/perf_event.h>
42c4ab41 83#include <linux/posix-timers.h>
8e7cac79 84#include <linux/user-return-notifier.h>
3d5992d2 85#include <linux/oom.h>
ba76149f 86#include <linux/khugepaged.h>
d80e731e 87#include <linux/signalfd.h>
0326f5a9 88#include <linux/uprobes.h>
a27bb332 89#include <linux/aio.h>
52f5684c 90#include <linux/compiler.h>
16db3d3f 91#include <linux/sysctl.h>
5c9a8750 92#include <linux/kcov.h>
d83a7cb3 93#include <linux/livepatch.h>
48ac3c18 94#include <linux/thread_info.h>
afaef01c 95#include <linux/stackleak.h>
eafb149e 96#include <linux/kasan.h>
d08b9f0c 97#include <linux/scs.h>
0f212204 98#include <linux/io_uring.h>
a10787e6 99#include <linux/bpf.h>
a6cbd440 100#include <linux/sched/mm.h>
1da177e4 101
1da177e4 102#include <asm/pgalloc.h>
7c0f6ba6 103#include <linux/uaccess.h>
1da177e4
LT
104#include <asm/mmu_context.h>
105#include <asm/cacheflush.h>
106#include <asm/tlbflush.h>
107
ad8d75ff
SR
108#include <trace/events/sched.h>
109
43d2b113
KH
110#define CREATE_TRACE_POINTS
111#include <trace/events/task.h>
112
ac1b398d
HS
113/*
114 * Minimum number of threads to boot the kernel
115 */
116#define MIN_THREADS 20
117
118/*
119 * Maximum number of threads
120 */
121#define MAX_THREADS FUTEX_TID_MASK
122
1da177e4
LT
123/*
124 * Protected counters by write_lock_irq(&tasklist_lock)
125 */
126unsigned long total_forks; /* Handle normal Linux uptimes. */
fb0a685c 127int nr_threads; /* The idle threads do not count.. */
1da177e4 128
8856ae4d 129static int max_threads; /* tunable limit on nr_threads */
1da177e4 130
8495f7e6
SPP
131#define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
132
133static const char * const resident_page_types[] = {
134 NAMED_ARRAY_INDEX(MM_FILEPAGES),
135 NAMED_ARRAY_INDEX(MM_ANONPAGES),
136 NAMED_ARRAY_INDEX(MM_SWAPENTS),
137 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
138};
139
1da177e4
LT
140DEFINE_PER_CPU(unsigned long, process_counts) = 0;
141
c59923a1 142__cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
db1466b3
PM
143
144#ifdef CONFIG_PROVE_RCU
145int lockdep_tasklist_lock_is_held(void)
146{
147 return lockdep_is_held(&tasklist_lock);
148}
149EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
150#endif /* #ifdef CONFIG_PROVE_RCU */
1da177e4
LT
151
152int nr_processes(void)
153{
154 int cpu;
155 int total = 0;
156
1d510750 157 for_each_possible_cpu(cpu)
1da177e4
LT
158 total += per_cpu(process_counts, cpu);
159
160 return total;
161}
162
f19b9f74
AM
163void __weak arch_release_task_struct(struct task_struct *tsk)
164{
165}
166
f5e10287 167#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
e18b890b 168static struct kmem_cache *task_struct_cachep;
41101809
TG
169
170static inline struct task_struct *alloc_task_struct_node(int node)
171{
172 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
173}
174
41101809
TG
175static inline void free_task_struct(struct task_struct *tsk)
176{
41101809
TG
177 kmem_cache_free(task_struct_cachep, tsk);
178}
1da177e4
LT
179#endif
180
b235beea 181#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
41101809 182
0d15d74a
TG
183/*
184 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
185 * kmemcache based allocator.
186 */
ba14a194 187# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
ac496bf4 188
be9a2277 189# ifdef CONFIG_VMAP_STACK
ac496bf4
AL
190/*
191 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
192 * flush. Try to minimize the number of calls by caching stacks.
193 */
194#define NR_CACHED_STACKS 2
195static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
19659c59 196
e540bf31
SAS
197struct vm_stack {
198 struct rcu_head rcu;
199 struct vm_struct *stack_vm_area;
200};
201
202static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
203{
204 unsigned int i;
205
206 for (i = 0; i < NR_CACHED_STACKS; i++) {
207 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
208 continue;
209 return true;
210 }
211 return false;
212}
213
214static void thread_stack_free_rcu(struct rcu_head *rh)
215{
216 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
217
218 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
219 return;
220
221 vfree(vm_stack);
222}
223
224static void thread_stack_delayed_free(struct task_struct *tsk)
225{
226 struct vm_stack *vm_stack = tsk->stack;
227
228 vm_stack->stack_vm_area = tsk->stack_vm_area;
229 call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
230}
231
19659c59
HR
232static int free_vm_stack_cache(unsigned int cpu)
233{
234 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
235 int i;
236
237 for (i = 0; i < NR_CACHED_STACKS; i++) {
238 struct vm_struct *vm_stack = cached_vm_stacks[i];
239
240 if (!vm_stack)
241 continue;
242
243 vfree(vm_stack->addr);
244 cached_vm_stacks[i] = NULL;
245 }
246
247 return 0;
248}
ac496bf4 249
1a03d3f1 250static int memcg_charge_kernel_stack(struct vm_struct *vm)
b69c49b7 251{
f1c1a9ee
SAS
252 int i;
253 int ret;
254
255 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
256 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
257
258 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
259 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
260 if (ret)
261 goto err;
262 }
263 return 0;
264err:
265 /*
266 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is
267 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will
268 * ignore this page.
269 */
270 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
271 memcg_kmem_uncharge_page(vm->pages[i], 0);
272 return ret;
273}
274
7865aba3 275static int alloc_thread_stack_node(struct task_struct *tsk, int node)
b69c49b7 276{
1a03d3f1 277 struct vm_struct *vm;
ac496bf4
AL
278 void *stack;
279 int i;
280
ac496bf4 281 for (i = 0; i < NR_CACHED_STACKS; i++) {
112166f8
CL
282 struct vm_struct *s;
283
284 s = this_cpu_xchg(cached_stacks[i], NULL);
ac496bf4
AL
285
286 if (!s)
287 continue;
ac496bf4 288
51fb34de 289 /* Reset stack metadata. */
cebd0eb2 290 kasan_unpoison_range(s->addr, THREAD_SIZE);
eafb149e 291
51fb34de
AK
292 stack = kasan_reset_tag(s->addr);
293
ca182551 294 /* Clear stale pointers from reused stack. */
51fb34de 295 memset(stack, 0, THREAD_SIZE);
e01e8063 296
1a03d3f1 297 if (memcg_charge_kernel_stack(s)) {
f1c1a9ee
SAS
298 vfree(s->addr);
299 return -ENOMEM;
300 }
301
ac496bf4 302 tsk->stack_vm_area = s;
51fb34de 303 tsk->stack = stack;
7865aba3 304 return 0;
ac496bf4 305 }
ac496bf4 306
9b6f7e16
RG
307 /*
308 * Allocated stacks are cached and later reused by new threads,
309 * so memcg accounting is performed manually on assigning/releasing
310 * stacks to tasks. Drop __GFP_ACCOUNT.
311 */
48ac3c18 312 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
ac496bf4 313 VMALLOC_START, VMALLOC_END,
9b6f7e16 314 THREADINFO_GFP & ~__GFP_ACCOUNT,
ac496bf4
AL
315 PAGE_KERNEL,
316 0, node, __builtin_return_address(0));
7865aba3
SAS
317 if (!stack)
318 return -ENOMEM;
ba14a194 319
1a03d3f1
SAS
320 vm = find_vm_area(stack);
321 if (memcg_charge_kernel_stack(vm)) {
f1c1a9ee
SAS
322 vfree(stack);
323 return -ENOMEM;
324 }
ba14a194
AL
325 /*
326 * We can't call find_vm_area() in interrupt context, and
327 * free_thread_stack() can be called in interrupt context,
328 * so cache the vm_struct.
329 */
1a03d3f1 330 tsk->stack_vm_area = vm;
51fb34de 331 stack = kasan_reset_tag(stack);
7865aba3
SAS
332 tsk->stack = stack;
333 return 0;
b69c49b7
FT
334}
335
be9a2277 336static void free_thread_stack(struct task_struct *tsk)
b69c49b7 337{
e540bf31
SAS
338 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
339 thread_stack_delayed_free(tsk);
9b6f7e16 340
be9a2277
SAS
341 tsk->stack = NULL;
342 tsk->stack_vm_area = NULL;
343}
ac496bf4 344
be9a2277 345# else /* !CONFIG_VMAP_STACK */
ac496bf4 346
e540bf31
SAS
347static void thread_stack_free_rcu(struct rcu_head *rh)
348{
349 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
350}
351
352static void thread_stack_delayed_free(struct task_struct *tsk)
353{
354 struct rcu_head *rh = tsk->stack;
355
356 call_rcu(rh, thread_stack_free_rcu);
357}
358
7865aba3 359static int alloc_thread_stack_node(struct task_struct *tsk, int node)
be9a2277 360{
4949148a
VD
361 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
362 THREAD_SIZE_ORDER);
b6a84016 363
1bf4580e 364 if (likely(page)) {
8dcc1d34 365 tsk->stack = kasan_reset_tag(page_address(page));
7865aba3 366 return 0;
1bf4580e 367 }
7865aba3 368 return -ENOMEM;
b69c49b7
FT
369}
370
be9a2277 371static void free_thread_stack(struct task_struct *tsk)
b69c49b7 372{
e540bf31 373 thread_stack_delayed_free(tsk);
be9a2277 374 tsk->stack = NULL;
b69c49b7 375}
ac496bf4 376
be9a2277
SAS
377# endif /* CONFIG_VMAP_STACK */
378# else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
9b6f7e16 379
b235beea 380static struct kmem_cache *thread_stack_cache;
ac496bf4 381
e540bf31
SAS
382static void thread_stack_free_rcu(struct rcu_head *rh)
383{
384 kmem_cache_free(thread_stack_cache, rh);
385}
ac496bf4 386
e540bf31
SAS
387static void thread_stack_delayed_free(struct task_struct *tsk)
388{
389 struct rcu_head *rh = tsk->stack;
ac496bf4 390
e540bf31 391 call_rcu(rh, thread_stack_free_rcu);
b69c49b7 392}
0d15d74a 393
7865aba3 394static int alloc_thread_stack_node(struct task_struct *tsk, int node)
0d15d74a 395{
5eed6f1d
RR
396 unsigned long *stack;
397 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
8dcc1d34 398 stack = kasan_reset_tag(stack);
5eed6f1d 399 tsk->stack = stack;
7865aba3 400 return stack ? 0 : -ENOMEM;
0d15d74a
TG
401}
402
ba14a194 403static void free_thread_stack(struct task_struct *tsk)
0d15d74a 404{
e540bf31 405 thread_stack_delayed_free(tsk);
be9a2277 406 tsk->stack = NULL;
0d15d74a
TG
407}
408
b235beea 409void thread_stack_cache_init(void)
0d15d74a 410{
f9d29946
DW
411 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
412 THREAD_SIZE, THREAD_SIZE, 0, 0,
413 THREAD_SIZE, NULL);
b235beea 414 BUG_ON(thread_stack_cache == NULL);
0d15d74a 415}
be9a2277
SAS
416
417# endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
2bb0529c
SAS
418#else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
419
7865aba3 420static int alloc_thread_stack_node(struct task_struct *tsk, int node)
2bb0529c
SAS
421{
422 unsigned long *stack;
423
424 stack = arch_alloc_thread_stack_node(tsk, node);
425 tsk->stack = stack;
7865aba3 426 return stack ? 0 : -ENOMEM;
2bb0529c
SAS
427}
428
429static void free_thread_stack(struct task_struct *tsk)
430{
431 arch_free_thread_stack(tsk);
432 tsk->stack = NULL;
433}
434
be9a2277 435#endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
b69c49b7 436
1da177e4 437/* SLAB cache for signal_struct structures (tsk->signal) */
e18b890b 438static struct kmem_cache *signal_cachep;
1da177e4
LT
439
440/* SLAB cache for sighand_struct structures (tsk->sighand) */
e18b890b 441struct kmem_cache *sighand_cachep;
1da177e4
LT
442
443/* SLAB cache for files_struct structures (tsk->files) */
e18b890b 444struct kmem_cache *files_cachep;
1da177e4
LT
445
446/* SLAB cache for fs_struct structures (tsk->fs) */
e18b890b 447struct kmem_cache *fs_cachep;
1da177e4
LT
448
449/* SLAB cache for vm_area_struct structures */
3928d4f5 450static struct kmem_cache *vm_area_cachep;
1da177e4
LT
451
452/* SLAB cache for mm_struct structures (tsk->mm) */
e18b890b 453static struct kmem_cache *mm_cachep;
1da177e4 454
490fc053 455struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
3928d4f5 456{
a670468f 457 struct vm_area_struct *vma;
490fc053 458
a670468f 459 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
027232da
KS
460 if (vma)
461 vma_init(vma, mm);
490fc053 462 return vma;
3928d4f5
LT
463}
464
465struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
466{
95faf699
LT
467 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
468
469 if (new) {
cda099b3
QC
470 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
471 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
472 /*
473 * orig->shared.rb may be modified concurrently, but the clone
474 * will be reinitialized.
475 */
476 *new = data_race(*orig);
95faf699 477 INIT_LIST_HEAD(&new->anon_vma_chain);
e39a4b33 478 new->vm_next = new->vm_prev = NULL;
5c26f6ac 479 dup_anon_vma_name(orig, new);
95faf699
LT
480 }
481 return new;
3928d4f5
LT
482}
483
484void vm_area_free(struct vm_area_struct *vma)
485{
5c26f6ac 486 free_anon_vma_name(vma);
3928d4f5
LT
487 kmem_cache_free(vm_area_cachep, vma);
488}
489
ba14a194 490static void account_kernel_stack(struct task_struct *tsk, int account)
c6a7f572 491{
0ce055f8
SAS
492 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
493 struct vm_struct *vm = task_stack_vm_area(tsk);
27faca83 494 int i;
ba14a194 495
27faca83
MS
496 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
497 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
498 account * (PAGE_SIZE / 1024));
499 } else {
0ce055f8
SAS
500 void *stack = task_stack_page(tsk);
501
27faca83 502 /* All stack pages are in the same node. */
da3ceeff 503 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
991e7673 504 account * (THREAD_SIZE / 1024));
27faca83 505 }
c6a7f572
KM
506}
507
1a03d3f1 508void exit_task_stack_account(struct task_struct *tsk)
9b6f7e16 509{
1a03d3f1 510 account_kernel_stack(tsk, -1);
991e7673 511
1a03d3f1
SAS
512 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
513 struct vm_struct *vm;
9b6f7e16
RG
514 int i;
515
1a03d3f1
SAS
516 vm = task_stack_vm_area(tsk);
517 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
518 memcg_kmem_uncharge_page(vm->pages[i], 0);
9b6f7e16 519 }
9b6f7e16
RG
520}
521
68f24b08 522static void release_task_stack(struct task_struct *tsk)
1da177e4 523{
2f064a59 524 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
405c0759
AL
525 return; /* Better to leak the stack than to free prematurely */
526
ba14a194 527 free_thread_stack(tsk);
68f24b08
AL
528}
529
530#ifdef CONFIG_THREAD_INFO_IN_TASK
531void put_task_stack(struct task_struct *tsk)
532{
f0b89d39 533 if (refcount_dec_and_test(&tsk->stack_refcount))
68f24b08
AL
534 release_task_stack(tsk);
535}
536#endif
537
538void free_task(struct task_struct *tsk)
539{
b90ca8ba 540 release_user_cpus_ptr(tsk);
d08b9f0c
ST
541 scs_release(tsk);
542
68f24b08
AL
543#ifndef CONFIG_THREAD_INFO_IN_TASK
544 /*
545 * The task is finally done with both the stack and thread_info,
546 * so free both.
547 */
548 release_task_stack(tsk);
549#else
550 /*
551 * If the task had a separate stack allocation, it should be gone
552 * by now.
553 */
f0b89d39 554 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
68f24b08 555#endif
23f78d4a 556 rt_mutex_debug_task_free(tsk);
fb52607a 557 ftrace_graph_exit_task(tsk);
f19b9f74 558 arch_release_task_struct(tsk);
1da5c46f
ON
559 if (tsk->flags & PF_KTHREAD)
560 free_kthread_struct(tsk);
1da177e4
LT
561 free_task_struct(tsk);
562}
563EXPORT_SYMBOL(free_task);
564
fe69d560
DH
565static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
566{
567 struct file *exe_file;
568
569 exe_file = get_mm_exe_file(oldmm);
570 RCU_INIT_POINTER(mm->exe_file, exe_file);
571 /*
572 * We depend on the oldmm having properly denied write access to the
573 * exe_file already.
574 */
575 if (exe_file && deny_write_access(exe_file))
576 pr_warn_once("deny_write_access() failed in %s\n", __func__);
577}
578
d70f2a14
AM
579#ifdef CONFIG_MMU
580static __latent_entropy int dup_mmap(struct mm_struct *mm,
581 struct mm_struct *oldmm)
582{
583 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
584 struct rb_node **rb_link, *rb_parent;
585 int retval;
586 unsigned long charge;
587 LIST_HEAD(uf);
588
589 uprobe_start_dup_mmap();
d8ed45c5 590 if (mmap_write_lock_killable(oldmm)) {
d70f2a14
AM
591 retval = -EINTR;
592 goto fail_uprobe_end;
593 }
594 flush_cache_dup_mm(oldmm);
595 uprobe_dup_mmap(oldmm, mm);
596 /*
597 * Not linked in yet - no deadlock potential:
598 */
aaa2cc56 599 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
d70f2a14
AM
600
601 /* No ordering required: file already has been exposed. */
fe69d560 602 dup_mm_exe_file(mm, oldmm);
d70f2a14
AM
603
604 mm->total_vm = oldmm->total_vm;
605 mm->data_vm = oldmm->data_vm;
606 mm->exec_vm = oldmm->exec_vm;
607 mm->stack_vm = oldmm->stack_vm;
608
609 rb_link = &mm->mm_rb.rb_node;
610 rb_parent = NULL;
611 pprev = &mm->mmap;
612 retval = ksm_fork(mm, oldmm);
613 if (retval)
614 goto out;
d2081b2b 615 khugepaged_fork(mm, oldmm);
d70f2a14
AM
616
617 prev = NULL;
618 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
619 struct file *file;
620
621 if (mpnt->vm_flags & VM_DONTCOPY) {
622 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
623 continue;
624 }
625 charge = 0;
655c79bb
TH
626 /*
627 * Don't duplicate many vmas if we've been oom-killed (for
628 * example)
629 */
630 if (fatal_signal_pending(current)) {
631 retval = -EINTR;
632 goto out;
633 }
d70f2a14
AM
634 if (mpnt->vm_flags & VM_ACCOUNT) {
635 unsigned long len = vma_pages(mpnt);
636
637 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
638 goto fail_nomem;
639 charge = len;
640 }
3928d4f5 641 tmp = vm_area_dup(mpnt);
d70f2a14
AM
642 if (!tmp)
643 goto fail_nomem;
d70f2a14
AM
644 retval = vma_dup_policy(mpnt, tmp);
645 if (retval)
646 goto fail_nomem_policy;
647 tmp->vm_mm = mm;
648 retval = dup_userfaultfd(tmp, &uf);
649 if (retval)
650 goto fail_nomem_anon_vma_fork;
651 if (tmp->vm_flags & VM_WIPEONFORK) {
93949bb2
LX
652 /*
653 * VM_WIPEONFORK gets a clean slate in the child.
654 * Don't prepare anon_vma until fault since we don't
655 * copy page for current vma.
656 */
d70f2a14 657 tmp->anon_vma = NULL;
d70f2a14
AM
658 } else if (anon_vma_fork(tmp, mpnt))
659 goto fail_nomem_anon_vma_fork;
660 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
d70f2a14
AM
661 file = tmp->vm_file;
662 if (file) {
d70f2a14
AM
663 struct address_space *mapping = file->f_mapping;
664
665 get_file(file);
d70f2a14
AM
666 i_mmap_lock_write(mapping);
667 if (tmp->vm_flags & VM_SHARED)
cf508b58 668 mapping_allow_writable(mapping);
d70f2a14
AM
669 flush_dcache_mmap_lock(mapping);
670 /* insert tmp into the share list, just after mpnt */
671 vma_interval_tree_insert_after(tmp, mpnt,
672 &mapping->i_mmap);
673 flush_dcache_mmap_unlock(mapping);
674 i_mmap_unlock_write(mapping);
675 }
676
677 /*
678 * Clear hugetlb-related page reserves for children. This only
679 * affects MAP_PRIVATE mappings. Faults generated by the child
680 * are not guaranteed to succeed, even if read-only
681 */
682 if (is_vm_hugetlb_page(tmp))
683 reset_vma_resv_huge_pages(tmp);
684
685 /*
686 * Link in the new vma and copy the page table entries.
687 */
688 *pprev = tmp;
689 pprev = &tmp->vm_next;
690 tmp->vm_prev = prev;
691 prev = tmp;
692
693 __vma_link_rb(mm, tmp, rb_link, rb_parent);
694 rb_link = &tmp->vm_rb.rb_right;
695 rb_parent = &tmp->vm_rb;
696
697 mm->map_count++;
698 if (!(tmp->vm_flags & VM_WIPEONFORK))
c78f4636 699 retval = copy_page_range(tmp, mpnt);
d70f2a14
AM
700
701 if (tmp->vm_ops && tmp->vm_ops->open)
702 tmp->vm_ops->open(tmp);
703
704 if (retval)
705 goto out;
706 }
707 /* a new mm has just been created */
1ed0cc5a 708 retval = arch_dup_mmap(oldmm, mm);
d70f2a14 709out:
d8ed45c5 710 mmap_write_unlock(mm);
d70f2a14 711 flush_tlb_mm(oldmm);
d8ed45c5 712 mmap_write_unlock(oldmm);
d70f2a14
AM
713 dup_userfaultfd_complete(&uf);
714fail_uprobe_end:
715 uprobe_end_dup_mmap();
716 return retval;
717fail_nomem_anon_vma_fork:
718 mpol_put(vma_policy(tmp));
719fail_nomem_policy:
3928d4f5 720 vm_area_free(tmp);
d70f2a14
AM
721fail_nomem:
722 retval = -ENOMEM;
723 vm_unacct_memory(charge);
724 goto out;
725}
726
727static inline int mm_alloc_pgd(struct mm_struct *mm)
728{
729 mm->pgd = pgd_alloc(mm);
730 if (unlikely(!mm->pgd))
731 return -ENOMEM;
732 return 0;
733}
734
735static inline void mm_free_pgd(struct mm_struct *mm)
736{
737 pgd_free(mm, mm->pgd);
738}
739#else
740static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
741{
d8ed45c5 742 mmap_write_lock(oldmm);
fe69d560 743 dup_mm_exe_file(mm, oldmm);
d8ed45c5 744 mmap_write_unlock(oldmm);
d70f2a14
AM
745 return 0;
746}
747#define mm_alloc_pgd(mm) (0)
748#define mm_free_pgd(mm)
749#endif /* CONFIG_MMU */
750
751static void check_mm(struct mm_struct *mm)
752{
753 int i;
754
8495f7e6
SPP
755 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
756 "Please make sure 'struct resident_page_types[]' is updated as well");
757
d70f2a14
AM
758 for (i = 0; i < NR_MM_COUNTERS; i++) {
759 long x = atomic_long_read(&mm->rss_stat.count[i]);
760
761 if (unlikely(x))
8495f7e6
SPP
762 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
763 mm, resident_page_types[i], x);
d70f2a14
AM
764 }
765
766 if (mm_pgtables_bytes(mm))
767 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
768 mm_pgtables_bytes(mm));
769
770#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
771 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
772#endif
773}
774
775#define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
776#define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
777
778/*
779 * Called when the last reference to the mm
780 * is dropped: either by a lazy thread or by
781 * mmput. Free the page directory and the mm.
782 */
d34bc48f 783void __mmdrop(struct mm_struct *mm)
d70f2a14
AM
784{
785 BUG_ON(mm == &init_mm);
3eda69c9
MR
786 WARN_ON_ONCE(mm == current->mm);
787 WARN_ON_ONCE(mm == current->active_mm);
d70f2a14
AM
788 mm_free_pgd(mm);
789 destroy_context(mm);
984cfe4e 790 mmu_notifier_subscriptions_destroy(mm);
d70f2a14
AM
791 check_mm(mm);
792 put_user_ns(mm->user_ns);
2667ed10 793 mm_pasid_drop(mm);
d70f2a14
AM
794 free_mm(mm);
795}
d34bc48f 796EXPORT_SYMBOL_GPL(__mmdrop);
d70f2a14
AM
797
798static void mmdrop_async_fn(struct work_struct *work)
799{
800 struct mm_struct *mm;
801
802 mm = container_of(work, struct mm_struct, async_put_work);
803 __mmdrop(mm);
804}
805
806static void mmdrop_async(struct mm_struct *mm)
807{
808 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
809 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
810 schedule_work(&mm->async_put_work);
811 }
812}
813
ea6d290c
ON
814static inline void free_signal_struct(struct signal_struct *sig)
815{
97101eb4 816 taskstats_tgid_free(sig);
1c5354de 817 sched_autogroup_exit(sig);
7283094e
MH
818 /*
819 * __mmdrop is not safe to call from softirq context on x86 due to
820 * pgd_dtor so postpone it to the async context
821 */
26db62f1 822 if (sig->oom_mm)
7283094e 823 mmdrop_async(sig->oom_mm);
ea6d290c
ON
824 kmem_cache_free(signal_cachep, sig);
825}
826
827static inline void put_signal_struct(struct signal_struct *sig)
828{
60d4de3f 829 if (refcount_dec_and_test(&sig->sigcnt))
ea6d290c
ON
830 free_signal_struct(sig);
831}
832
158d9ebd 833void __put_task_struct(struct task_struct *tsk)
1da177e4 834{
270f722d 835 WARN_ON(!tsk->exit_state);
ec1d2819 836 WARN_ON(refcount_read(&tsk->usage));
1da177e4
LT
837 WARN_ON(tsk == current);
838
0f212204 839 io_uring_free(tsk);
2e91fa7f 840 cgroup_free(tsk);
16d51a59 841 task_numa_free(tsk, true);
1a2a4d06 842 security_task_free(tsk);
a10787e6 843 bpf_task_storage_free(tsk);
e0e81739 844 exit_creds(tsk);
35df17c5 845 delayacct_tsk_free(tsk);
ea6d290c 846 put_signal_struct(tsk->signal);
6e33cad0 847 sched_core_free(tsk);
2873cd31 848 free_task(tsk);
1da177e4 849}
77c100c8 850EXPORT_SYMBOL_GPL(__put_task_struct);
1da177e4 851
6c0a9fa6 852void __init __weak arch_task_cache_init(void) { }
61c4628b 853
ff691f6e
HS
854/*
855 * set_max_threads
856 */
16db3d3f 857static void set_max_threads(unsigned int max_threads_suggested)
ff691f6e 858{
ac1b398d 859 u64 threads;
ca79b0c2 860 unsigned long nr_pages = totalram_pages();
ff691f6e
HS
861
862 /*
ac1b398d
HS
863 * The number of threads shall be limited such that the thread
864 * structures may only consume a small part of the available memory.
ff691f6e 865 */
3d6357de 866 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
ac1b398d
HS
867 threads = MAX_THREADS;
868 else
3d6357de 869 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
ac1b398d
HS
870 (u64) THREAD_SIZE * 8UL);
871
16db3d3f
HS
872 if (threads > max_threads_suggested)
873 threads = max_threads_suggested;
874
ac1b398d 875 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
ff691f6e
HS
876}
877
5aaeb5c0
IM
878#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
879/* Initialized by the architecture: */
880int arch_task_struct_size __read_mostly;
881#endif
0c8c0f03 882
4189ff23 883#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
5905429a
KC
884static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
885{
886 /* Fetch thread_struct whitelist for the architecture. */
887 arch_thread_struct_whitelist(offset, size);
888
889 /*
890 * Handle zero-sized whitelist or empty thread_struct, otherwise
891 * adjust offset to position of thread_struct in task_struct.
892 */
893 if (unlikely(*size == 0))
894 *offset = 0;
895 else
896 *offset += offsetof(struct task_struct, thread);
897}
4189ff23 898#endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
5905429a 899
ff691f6e 900void __init fork_init(void)
1da177e4 901{
25f9c081 902 int i;
f5e10287 903#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1da177e4 904#ifndef ARCH_MIN_TASKALIGN
e274795e 905#define ARCH_MIN_TASKALIGN 0
1da177e4 906#endif
95cb64c1 907 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
5905429a 908 unsigned long useroffset, usersize;
e274795e 909
1da177e4 910 /* create a slab on which task_structs can be allocated */
5905429a
KC
911 task_struct_whitelist(&useroffset, &usersize);
912 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
e274795e 913 arch_task_struct_size, align,
5905429a
KC
914 SLAB_PANIC|SLAB_ACCOUNT,
915 useroffset, usersize, NULL);
1da177e4
LT
916#endif
917
61c4628b
SS
918 /* do the arch specific task caches init */
919 arch_task_cache_init();
920
16db3d3f 921 set_max_threads(MAX_THREADS);
1da177e4
LT
922
923 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
924 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
925 init_task.signal->rlim[RLIMIT_SIGPENDING] =
926 init_task.signal->rlim[RLIMIT_NPROC];
b376c3e1 927
21d1c5e3 928 for (i = 0; i < MAX_PER_NAMESPACE_UCOUNTS; i++)
25f9c081 929 init_user_ns.ucount_max[i] = max_threads/2;
19659c59 930
5ddf994f
EB
931 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY);
932 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY);
933 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
934 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY);
21d1c5e3 935
19659c59
HR
936#ifdef CONFIG_VMAP_STACK
937 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
938 NULL, free_vm_stack_cache);
939#endif
b09be676 940
d08b9f0c
ST
941 scs_init();
942
b09be676 943 lockdep_init_task(&init_task);
aad42dd4 944 uprobes_init();
1da177e4
LT
945}
946
52f5684c 947int __weak arch_dup_task_struct(struct task_struct *dst,
61c4628b
SS
948 struct task_struct *src)
949{
950 *dst = *src;
951 return 0;
952}
953
d4311ff1
AT
954void set_task_stack_end_magic(struct task_struct *tsk)
955{
956 unsigned long *stackend;
957
958 stackend = end_of_stack(tsk);
959 *stackend = STACK_END_MAGIC; /* for overflow detection */
960}
961
725fc629 962static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1da177e4
LT
963{
964 struct task_struct *tsk;
3e26c149 965 int err;
1da177e4 966
725fc629
AK
967 if (node == NUMA_NO_NODE)
968 node = tsk_fork_get_node(orig);
504f52b5 969 tsk = alloc_task_struct_node(node);
1da177e4
LT
970 if (!tsk)
971 return NULL;
972
546c42b2
SAS
973 err = arch_dup_task_struct(tsk, orig);
974 if (err)
f19b9f74 975 goto free_tsk;
1da177e4 976
7865aba3
SAS
977 err = alloc_thread_stack_node(tsk, node);
978 if (err)
f19b9f74 979 goto free_tsk;
ba14a194 980
68f24b08 981#ifdef CONFIG_THREAD_INFO_IN_TASK
f0b89d39 982 refcount_set(&tsk->stack_refcount, 1);
68f24b08 983#endif
1a03d3f1 984 account_kernel_stack(tsk, 1);
164c33c6 985
d08b9f0c
ST
986 err = scs_prepare(tsk, node);
987 if (err)
988 goto free_stack;
989
dbd95212
KC
990#ifdef CONFIG_SECCOMP
991 /*
992 * We must handle setting up seccomp filters once we're under
993 * the sighand lock in case orig has changed between now and
994 * then. Until then, filter must be NULL to avoid messing up
995 * the usage counts on the error path calling free_task.
996 */
997 tsk->seccomp.filter = NULL;
998#endif
87bec58a
AM
999
1000 setup_thread_stack(tsk, orig);
8e7cac79 1001 clear_user_return_notifier(tsk);
f26f9aff 1002 clear_tsk_need_resched(tsk);
d4311ff1 1003 set_task_stack_end_magic(tsk);
1446e1df 1004 clear_syscall_work_syscall_user_dispatch(tsk);
1da177e4 1005
050e9baa 1006#ifdef CONFIG_STACKPROTECTOR
7cd815bc 1007 tsk->stack_canary = get_random_canary();
0a425405 1008#endif
3bd37062
SAS
1009 if (orig->cpus_ptr == &orig->cpus_mask)
1010 tsk->cpus_ptr = &tsk->cpus_mask;
b90ca8ba 1011 dup_user_cpus_ptr(tsk, orig, node);
0a425405 1012
fb0a685c 1013 /*
0ff7b2cf
EB
1014 * One for the user space visible state that goes away when reaped.
1015 * One for the scheduler.
fb0a685c 1016 */
0ff7b2cf
EB
1017 refcount_set(&tsk->rcu_users, 2);
1018 /* One for the rcu users */
1019 refcount_set(&tsk->usage, 1);
6c5c9341 1020#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 1021 tsk->btrace_seq = 0;
6c5c9341 1022#endif
a0aa7f68 1023 tsk->splice_pipe = NULL;
5640f768 1024 tsk->task_frag.page = NULL;
093e5840 1025 tsk->wake_q.next = NULL;
e32cf5df 1026 tsk->worker_private = NULL;
c6a7f572 1027
5c9a8750 1028 kcov_task_init(tsk);
5fbda3ec 1029 kmap_local_fork(tsk);
5c9a8750 1030
e41d5818
DV
1031#ifdef CONFIG_FAULT_INJECTION
1032 tsk->fail_nth = 0;
1033#endif
1034
2c323017
JB
1035#ifdef CONFIG_BLK_CGROUP
1036 tsk->throttle_queue = NULL;
1037 tsk->use_memdelay = 0;
1038#endif
1039
a3d29e82
PZ
1040#ifdef CONFIG_IOMMU_SVA
1041 tsk->pasid_activated = 0;
1042#endif
1043
d46eb14b
SB
1044#ifdef CONFIG_MEMCG
1045 tsk->active_memcg = NULL;
1046#endif
b041b525
TL
1047
1048#ifdef CONFIG_CPU_SUP_INTEL
1049 tsk->reported_split_lock = 0;
1050#endif
1051
1da177e4 1052 return tsk;
61c4628b 1053
b235beea 1054free_stack:
1a03d3f1 1055 exit_task_stack_account(tsk);
ba14a194 1056 free_thread_stack(tsk);
f19b9f74 1057free_tsk:
61c4628b
SS
1058 free_task_struct(tsk);
1059 return NULL;
1da177e4
LT
1060}
1061
23ff4440 1062__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1da177e4 1063
4cb0e11b
HK
1064static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1065
1066static int __init coredump_filter_setup(char *s)
1067{
1068 default_dump_filter =
1069 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1070 MMF_DUMP_FILTER_MASK;
1071 return 1;
1072}
1073
1074__setup("coredump_filter=", coredump_filter_setup);
1075
1da177e4
LT
1076#include <linux/init_task.h>
1077
858f0993
AD
1078static void mm_init_aio(struct mm_struct *mm)
1079{
1080#ifdef CONFIG_AIO
1081 spin_lock_init(&mm->ioctx_lock);
db446a08 1082 mm->ioctx_table = NULL;
858f0993
AD
1083#endif
1084}
1085
c3f3ce04
AA
1086static __always_inline void mm_clear_owner(struct mm_struct *mm,
1087 struct task_struct *p)
1088{
1089#ifdef CONFIG_MEMCG
1090 if (mm->owner == p)
1091 WRITE_ONCE(mm->owner, NULL);
1092#endif
1093}
1094
33144e84
VD
1095static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1096{
1097#ifdef CONFIG_MEMCG
1098 mm->owner = p;
1099#endif
1100}
1101
355627f5
EB
1102static void mm_init_uprobes_state(struct mm_struct *mm)
1103{
1104#ifdef CONFIG_UPROBES
1105 mm->uprobes_state.xol_area = NULL;
1106#endif
1107}
1108
bfedb589
EB
1109static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1110 struct user_namespace *user_ns)
1da177e4 1111{
41f727fd
VD
1112 mm->mmap = NULL;
1113 mm->mm_rb = RB_ROOT;
1114 mm->vmacache_seqnum = 0;
1da177e4
LT
1115 atomic_set(&mm->mm_users, 1);
1116 atomic_set(&mm->mm_count, 1);
57efa1fe 1117 seqcount_init(&mm->write_protect_seq);
d8ed45c5 1118 mmap_init_lock(mm);
1da177e4 1119 INIT_LIST_HEAD(&mm->mmlist);
af5b0f6a 1120 mm_pgtables_bytes_init(mm);
41f727fd
VD
1121 mm->map_count = 0;
1122 mm->locked_vm = 0;
70f8a3ca 1123 atomic64_set(&mm->pinned_vm, 0);
d559db08 1124 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1da177e4 1125 spin_lock_init(&mm->page_table_lock);
88aa7cc6 1126 spin_lock_init(&mm->arg_lock);
41f727fd 1127 mm_init_cpumask(mm);
858f0993 1128 mm_init_aio(mm);
cf475ad2 1129 mm_init_owner(mm, p);
a6cbd440 1130 mm_pasid_init(mm);
2b7e8665 1131 RCU_INIT_POINTER(mm->exe_file, NULL);
984cfe4e 1132 mmu_notifier_subscriptions_init(mm);
16af97dc 1133 init_tlb_flush_pending(mm);
41f727fd
VD
1134#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1135 mm->pmd_huge_pte = NULL;
1136#endif
355627f5 1137 mm_init_uprobes_state(mm);
13db8c50 1138 hugetlb_count_init(mm);
1da177e4 1139
a0715cc2
AT
1140 if (current->mm) {
1141 mm->flags = current->mm->flags & MMF_INIT_MASK;
1142 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1143 } else {
1144 mm->flags = default_dump_filter;
1da177e4 1145 mm->def_flags = 0;
a0715cc2
AT
1146 }
1147
41f727fd
VD
1148 if (mm_alloc_pgd(mm))
1149 goto fail_nopgd;
1150
1151 if (init_new_context(p, mm))
1152 goto fail_nocontext;
78fb7466 1153
bfedb589 1154 mm->user_ns = get_user_ns(user_ns);
41f727fd
VD
1155 return mm;
1156
1157fail_nocontext:
1158 mm_free_pgd(mm);
1159fail_nopgd:
1da177e4
LT
1160 free_mm(mm);
1161 return NULL;
1162}
1163
1164/*
1165 * Allocate and initialize an mm_struct.
1166 */
fb0a685c 1167struct mm_struct *mm_alloc(void)
1da177e4 1168{
fb0a685c 1169 struct mm_struct *mm;
1da177e4
LT
1170
1171 mm = allocate_mm();
de03c72c
KM
1172 if (!mm)
1173 return NULL;
1174
1175 memset(mm, 0, sizeof(*mm));
bfedb589 1176 return mm_init(mm, current, current_user_ns());
1da177e4
LT
1177}
1178
ec8d7c14
MH
1179static inline void __mmput(struct mm_struct *mm)
1180{
1181 VM_BUG_ON(atomic_read(&mm->mm_users));
1182
1183 uprobe_clear_state(mm);
1184 exit_aio(mm);
1185 ksm_exit(mm);
1186 khugepaged_exit(mm); /* must run before exit_mmap */
1187 exit_mmap(mm);
6fcb52a5 1188 mm_put_huge_zero_page(mm);
ec8d7c14
MH
1189 set_mm_exe_file(mm, NULL);
1190 if (!list_empty(&mm->mmlist)) {
1191 spin_lock(&mmlist_lock);
1192 list_del(&mm->mmlist);
1193 spin_unlock(&mmlist_lock);
1194 }
1195 if (mm->binfmt)
1196 module_put(mm->binfmt->module);
1197 mmdrop(mm);
1198}
1199
1da177e4
LT
1200/*
1201 * Decrement the use count and release all resources for an mm.
1202 */
1203void mmput(struct mm_struct *mm)
1204{
0ae26f1b
AM
1205 might_sleep();
1206
ec8d7c14
MH
1207 if (atomic_dec_and_test(&mm->mm_users))
1208 __mmput(mm);
1209}
1210EXPORT_SYMBOL_GPL(mmput);
1211
a1b2289c
SY
1212#ifdef CONFIG_MMU
1213static void mmput_async_fn(struct work_struct *work)
1214{
1215 struct mm_struct *mm = container_of(work, struct mm_struct,
1216 async_put_work);
1217
1218 __mmput(mm);
1219}
1220
1221void mmput_async(struct mm_struct *mm)
1222{
1223 if (atomic_dec_and_test(&mm->mm_users)) {
1224 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1225 schedule_work(&mm->async_put_work);
1226 }
1227}
1228#endif
1229
90f31d0e
KK
1230/**
1231 * set_mm_exe_file - change a reference to the mm's executable file
1232 *
1233 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1234 *
6e399cd1
DB
1235 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1236 * invocations: in mmput() nobody alive left, in execve task is single
35d7bdc8 1237 * threaded.
fe69d560
DH
1238 *
1239 * Can only fail if new_exe_file != NULL.
90f31d0e 1240 */
fe69d560 1241int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
38646013 1242{
6e399cd1
DB
1243 struct file *old_exe_file;
1244
1245 /*
1246 * It is safe to dereference the exe_file without RCU as
1247 * this function is only called if nobody else can access
1248 * this mm -- see comment above for justification.
1249 */
1250 old_exe_file = rcu_dereference_raw(mm->exe_file);
90f31d0e 1251
fe69d560
DH
1252 if (new_exe_file) {
1253 /*
1254 * We expect the caller (i.e., sys_execve) to already denied
1255 * write access, so this is unlikely to fail.
1256 */
1257 if (unlikely(deny_write_access(new_exe_file)))
1258 return -EACCES;
38646013 1259 get_file(new_exe_file);
fe69d560 1260 }
90f31d0e 1261 rcu_assign_pointer(mm->exe_file, new_exe_file);
fe69d560
DH
1262 if (old_exe_file) {
1263 allow_write_access(old_exe_file);
90f31d0e 1264 fput(old_exe_file);
fe69d560
DH
1265 }
1266 return 0;
38646013
JS
1267}
1268
35d7bdc8
DH
1269/**
1270 * replace_mm_exe_file - replace a reference to the mm's executable file
1271 *
1272 * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
1273 * dealing with concurrent invocation and without grabbing the mmap lock in
1274 * write mode.
1275 *
1276 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1277 */
1278int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1279{
1280 struct vm_area_struct *vma;
1281 struct file *old_exe_file;
1282 int ret = 0;
1283
1284 /* Forbid mm->exe_file change if old file still mapped. */
1285 old_exe_file = get_mm_exe_file(mm);
1286 if (old_exe_file) {
1287 mmap_read_lock(mm);
1288 for (vma = mm->mmap; vma && !ret; vma = vma->vm_next) {
1289 if (!vma->vm_file)
1290 continue;
1291 if (path_equal(&vma->vm_file->f_path,
1292 &old_exe_file->f_path))
1293 ret = -EBUSY;
1294 }
1295 mmap_read_unlock(mm);
1296 fput(old_exe_file);
1297 if (ret)
1298 return ret;
1299 }
1300
1301 /* set the new file, lockless */
fe69d560
DH
1302 ret = deny_write_access(new_exe_file);
1303 if (ret)
1304 return -EACCES;
35d7bdc8 1305 get_file(new_exe_file);
fe69d560 1306
35d7bdc8 1307 old_exe_file = xchg(&mm->exe_file, new_exe_file);
fe69d560
DH
1308 if (old_exe_file) {
1309 /*
1310 * Don't race with dup_mmap() getting the file and disallowing
1311 * write access while someone might open the file writable.
1312 */
1313 mmap_read_lock(mm);
1314 allow_write_access(old_exe_file);
35d7bdc8 1315 fput(old_exe_file);
fe69d560
DH
1316 mmap_read_unlock(mm);
1317 }
35d7bdc8 1318 return 0;
38646013
JS
1319}
1320
90f31d0e
KK
1321/**
1322 * get_mm_exe_file - acquire a reference to the mm's executable file
1323 *
1324 * Returns %NULL if mm has no associated executable file.
1325 * User must release file via fput().
1326 */
38646013
JS
1327struct file *get_mm_exe_file(struct mm_struct *mm)
1328{
1329 struct file *exe_file;
1330
90f31d0e
KK
1331 rcu_read_lock();
1332 exe_file = rcu_dereference(mm->exe_file);
1333 if (exe_file && !get_file_rcu(exe_file))
1334 exe_file = NULL;
1335 rcu_read_unlock();
38646013
JS
1336 return exe_file;
1337}
1338
cd81a917
MG
1339/**
1340 * get_task_exe_file - acquire a reference to the task's executable file
1341 *
1342 * Returns %NULL if task's mm (if any) has no associated executable file or
1343 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1344 * User must release file via fput().
1345 */
1346struct file *get_task_exe_file(struct task_struct *task)
1347{
1348 struct file *exe_file = NULL;
1349 struct mm_struct *mm;
1350
1351 task_lock(task);
1352 mm = task->mm;
1353 if (mm) {
1354 if (!(task->flags & PF_KTHREAD))
1355 exe_file = get_mm_exe_file(mm);
1356 }
1357 task_unlock(task);
1358 return exe_file;
1359}
38646013 1360
1da177e4
LT
1361/**
1362 * get_task_mm - acquire a reference to the task's mm
1363 *
246bb0b1 1364 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1da177e4
LT
1365 * this kernel workthread has transiently adopted a user mm with use_mm,
1366 * to do its AIO) is not set and if so returns a reference to it, after
1367 * bumping up the use count. User must release the mm via mmput()
1368 * after use. Typically used by /proc and ptrace.
1369 */
1370struct mm_struct *get_task_mm(struct task_struct *task)
1371{
1372 struct mm_struct *mm;
1373
1374 task_lock(task);
1375 mm = task->mm;
1376 if (mm) {
246bb0b1 1377 if (task->flags & PF_KTHREAD)
1da177e4
LT
1378 mm = NULL;
1379 else
3fce371b 1380 mmget(mm);
1da177e4
LT
1381 }
1382 task_unlock(task);
1383 return mm;
1384}
1385EXPORT_SYMBOL_GPL(get_task_mm);
1386
8cdb878d
CY
1387struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1388{
1389 struct mm_struct *mm;
1390 int err;
1391
f7cfd871 1392 err = down_read_killable(&task->signal->exec_update_lock);
8cdb878d
CY
1393 if (err)
1394 return ERR_PTR(err);
1395
1396 mm = get_task_mm(task);
1397 if (mm && mm != current->mm &&
1398 !ptrace_may_access(task, mode)) {
1399 mmput(mm);
1400 mm = ERR_PTR(-EACCES);
1401 }
f7cfd871 1402 up_read(&task->signal->exec_update_lock);
8cdb878d
CY
1403
1404 return mm;
1405}
1406
57b59c4a 1407static void complete_vfork_done(struct task_struct *tsk)
c415c3b4 1408{
d68b46fe 1409 struct completion *vfork;
c415c3b4 1410
d68b46fe
ON
1411 task_lock(tsk);
1412 vfork = tsk->vfork_done;
1413 if (likely(vfork)) {
1414 tsk->vfork_done = NULL;
1415 complete(vfork);
1416 }
1417 task_unlock(tsk);
1418}
1419
1420static int wait_for_vfork_done(struct task_struct *child,
1421 struct completion *vfork)
1422{
1423 int killed;
1424
1425 freezer_do_not_count();
76f969e8 1426 cgroup_enter_frozen();
d68b46fe 1427 killed = wait_for_completion_killable(vfork);
76f969e8 1428 cgroup_leave_frozen(false);
d68b46fe
ON
1429 freezer_count();
1430
1431 if (killed) {
1432 task_lock(child);
1433 child->vfork_done = NULL;
1434 task_unlock(child);
1435 }
1436
1437 put_task_struct(child);
1438 return killed;
c415c3b4
ON
1439}
1440
1da177e4
LT
1441/* Please note the differences between mmput and mm_release.
1442 * mmput is called whenever we stop holding onto a mm_struct,
1443 * error success whatever.
1444 *
1445 * mm_release is called after a mm_struct has been removed
1446 * from the current process.
1447 *
1448 * This difference is important for error handling, when we
1449 * only half set up a mm_struct for a new process and need to restore
1450 * the old one. Because we mmput the new mm_struct before
1451 * restoring the old one. . .
1452 * Eric Biederman 10 January 1998
1453 */
4610ba7a 1454static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1da177e4 1455{
0326f5a9
SD
1456 uprobe_free_utask(tsk);
1457
1da177e4
LT
1458 /* Get rid of any cached register state */
1459 deactivate_mm(tsk, mm);
1460
fec1d011 1461 /*
735f2770
MH
1462 * Signal userspace if we're not exiting with a core dump
1463 * because we want to leave the value intact for debugging
1464 * purposes.
fec1d011 1465 */
9c8a8228 1466 if (tsk->clear_child_tid) {
92307383 1467 if (atomic_read(&mm->mm_users) > 1) {
9c8a8228
ED
1468 /*
1469 * We don't check the error code - if userspace has
1470 * not set up a proper pointer then tough luck.
1471 */
1472 put_user(0, tsk->clear_child_tid);
2de0db99
DB
1473 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1474 1, NULL, NULL, 0, 0);
9c8a8228 1475 }
1da177e4 1476 tsk->clear_child_tid = NULL;
1da177e4 1477 }
f7505d64
KK
1478
1479 /*
1480 * All done, finally we can wake up parent and return this mm to him.
1481 * Also kthread_stop() uses this completion for synchronization.
1482 */
1483 if (tsk->vfork_done)
1484 complete_vfork_done(tsk);
1da177e4
LT
1485}
1486
4610ba7a
TG
1487void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1488{
150d7158 1489 futex_exit_release(tsk);
4610ba7a
TG
1490 mm_release(tsk, mm);
1491}
1492
1493void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1494{
150d7158 1495 futex_exec_release(tsk);
4610ba7a
TG
1496 mm_release(tsk, mm);
1497}
1498
13585fa0
NA
1499/**
1500 * dup_mm() - duplicates an existing mm structure
1501 * @tsk: the task_struct with which the new mm will be associated.
1502 * @oldmm: the mm to duplicate.
1503 *
1504 * Allocates a new mm structure and duplicates the provided @oldmm structure
1505 * content into it.
1506 *
1507 * Return: the duplicated mm or NULL on failure.
a0a7ec30 1508 */
13585fa0
NA
1509static struct mm_struct *dup_mm(struct task_struct *tsk,
1510 struct mm_struct *oldmm)
a0a7ec30 1511{
13585fa0 1512 struct mm_struct *mm;
a0a7ec30
JD
1513 int err;
1514
a0a7ec30
JD
1515 mm = allocate_mm();
1516 if (!mm)
1517 goto fail_nomem;
1518
1519 memcpy(mm, oldmm, sizeof(*mm));
1520
bfedb589 1521 if (!mm_init(mm, tsk, mm->user_ns))
a0a7ec30
JD
1522 goto fail_nomem;
1523
a0a7ec30
JD
1524 err = dup_mmap(mm, oldmm);
1525 if (err)
1526 goto free_pt;
1527
1528 mm->hiwater_rss = get_mm_rss(mm);
1529 mm->hiwater_vm = mm->total_vm;
1530
801460d0
HS
1531 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1532 goto free_pt;
1533
a0a7ec30
JD
1534 return mm;
1535
1536free_pt:
801460d0
HS
1537 /* don't put binfmt in mmput, we haven't got module yet */
1538 mm->binfmt = NULL;
c3f3ce04 1539 mm_init_owner(mm, NULL);
a0a7ec30
JD
1540 mmput(mm);
1541
1542fail_nomem:
1543 return NULL;
a0a7ec30
JD
1544}
1545
fb0a685c 1546static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1da177e4 1547{
fb0a685c 1548 struct mm_struct *mm, *oldmm;
1da177e4
LT
1549
1550 tsk->min_flt = tsk->maj_flt = 0;
1551 tsk->nvcsw = tsk->nivcsw = 0;
17406b82
MSB
1552#ifdef CONFIG_DETECT_HUNG_TASK
1553 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
a2e51445 1554 tsk->last_switch_time = 0;
17406b82 1555#endif
1da177e4
LT
1556
1557 tsk->mm = NULL;
1558 tsk->active_mm = NULL;
1559
1560 /*
1561 * Are we cloning a kernel thread?
1562 *
1563 * We need to steal a active VM for that..
1564 */
1565 oldmm = current->mm;
1566 if (!oldmm)
1567 return 0;
1568
615d6e87
DB
1569 /* initialize the new vmacache entries */
1570 vmacache_flush(tsk);
1571
1da177e4 1572 if (clone_flags & CLONE_VM) {
3fce371b 1573 mmget(oldmm);
1da177e4 1574 mm = oldmm;
a6895399
REB
1575 } else {
1576 mm = dup_mm(tsk, current->mm);
1577 if (!mm)
1578 return -ENOMEM;
1da177e4
LT
1579 }
1580
1da177e4
LT
1581 tsk->mm = mm;
1582 tsk->active_mm = mm;
1583 return 0;
1da177e4
LT
1584}
1585
a39bc516 1586static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1da177e4 1587{
498052bb 1588 struct fs_struct *fs = current->fs;
1da177e4 1589 if (clone_flags & CLONE_FS) {
498052bb 1590 /* tsk->fs is already what we want */
2a4419b5 1591 spin_lock(&fs->lock);
498052bb 1592 if (fs->in_exec) {
2a4419b5 1593 spin_unlock(&fs->lock);
498052bb
AV
1594 return -EAGAIN;
1595 }
1596 fs->users++;
2a4419b5 1597 spin_unlock(&fs->lock);
1da177e4
LT
1598 return 0;
1599 }
498052bb 1600 tsk->fs = copy_fs_struct(fs);
1da177e4
LT
1601 if (!tsk->fs)
1602 return -ENOMEM;
1603 return 0;
1604}
1605
fb0a685c 1606static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
a016f338
JD
1607{
1608 struct files_struct *oldf, *newf;
1609 int error = 0;
1610
1611 /*
1612 * A background process may not have any files ...
1613 */
1614 oldf = current->files;
1615 if (!oldf)
1616 goto out;
1617
1618 if (clone_flags & CLONE_FILES) {
1619 atomic_inc(&oldf->count);
1620 goto out;
1621 }
1622
60997c3d 1623 newf = dup_fd(oldf, NR_OPEN_MAX, &error);
a016f338
JD
1624 if (!newf)
1625 goto out;
1626
1627 tsk->files = newf;
1628 error = 0;
1629out:
1630 return error;
1631}
1632
a39bc516 1633static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1da177e4
LT
1634{
1635 struct sighand_struct *sig;
1636
60348802 1637 if (clone_flags & CLONE_SIGHAND) {
d036bda7 1638 refcount_inc(&current->sighand->count);
1da177e4
LT
1639 return 0;
1640 }
1641 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
0c282b06 1642 RCU_INIT_POINTER(tsk->sighand, sig);
1da177e4
LT
1643 if (!sig)
1644 return -ENOMEM;
9d7fb042 1645
d036bda7 1646 refcount_set(&sig->count, 1);
06e62a46 1647 spin_lock_irq(&current->sighand->siglock);
1da177e4 1648 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
06e62a46 1649 spin_unlock_irq(&current->sighand->siglock);
b612e5df
CB
1650
1651 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1652 if (clone_flags & CLONE_CLEAR_SIGHAND)
1653 flush_signal_handlers(tsk, 0);
1654
1da177e4
LT
1655 return 0;
1656}
1657
a7e5328a 1658void __cleanup_sighand(struct sighand_struct *sighand)
c81addc9 1659{
d036bda7 1660 if (refcount_dec_and_test(&sighand->count)) {
d80e731e 1661 signalfd_cleanup(sighand);
392809b2 1662 /*
5f0d5a3a 1663 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
392809b2
ON
1664 * without an RCU grace period, see __lock_task_sighand().
1665 */
c81addc9 1666 kmem_cache_free(sighand_cachep, sighand);
d80e731e 1667 }
c81addc9
ON
1668}
1669
f06febc9
FM
1670/*
1671 * Initialize POSIX timer handling for a thread group.
1672 */
1673static void posix_cpu_timers_init_group(struct signal_struct *sig)
1674{
2b69942f 1675 struct posix_cputimers *pct = &sig->posix_cputimers;
78d7d407
JS
1676 unsigned long cpu_limit;
1677
316c1608 1678 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
3a245c0f 1679 posix_cputimers_group_init(pct, cpu_limit);
f06febc9
FM
1680}
1681
a39bc516 1682static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1da177e4
LT
1683{
1684 struct signal_struct *sig;
1da177e4 1685
4ab6c083 1686 if (clone_flags & CLONE_THREAD)
490dea45 1687 return 0;
490dea45 1688
a56704ef 1689 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1da177e4
LT
1690 tsk->signal = sig;
1691 if (!sig)
1692 return -ENOMEM;
1693
b3ac022c 1694 sig->nr_threads = 1;
1da177e4 1695 atomic_set(&sig->live, 1);
60d4de3f 1696 refcount_set(&sig->sigcnt, 1);
0c740d0a
ON
1697
1698 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1699 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1700 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1701
1da177e4 1702 init_waitqueue_head(&sig->wait_chldexit);
db51aecc 1703 sig->curr_target = tsk;
1da177e4 1704 init_sigpending(&sig->shared_pending);
c3ad2c3b 1705 INIT_HLIST_HEAD(&sig->multiprocess);
e78c3496 1706 seqlock_init(&sig->stats_lock);
9d7fb042 1707 prev_cputime_init(&sig->prev_cputime);
1da177e4 1708
baa73d9e 1709#ifdef CONFIG_POSIX_TIMERS
b18b6a9c 1710 INIT_LIST_HEAD(&sig->posix_timers);
c9cb2e3d 1711 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1da177e4 1712 sig->real_timer.function = it_real_fn;
baa73d9e 1713#endif
1da177e4 1714
1da177e4
LT
1715 task_lock(current->group_leader);
1716 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1717 task_unlock(current->group_leader);
1718
6279a751
ON
1719 posix_cpu_timers_init_group(sig);
1720
522ed776 1721 tty_audit_fork(sig);
5091faa4 1722 sched_autogroup_fork(sig);
522ed776 1723
a63d83f4 1724 sig->oom_score_adj = current->signal->oom_score_adj;
dabb16f6 1725 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
28b83c51 1726
9b1bf12d 1727 mutex_init(&sig->cred_guard_mutex);
f7cfd871 1728 init_rwsem(&sig->exec_update_lock);
9b1bf12d 1729
1da177e4
LT
1730 return 0;
1731}
1732
dbd95212
KC
1733static void copy_seccomp(struct task_struct *p)
1734{
1735#ifdef CONFIG_SECCOMP
1736 /*
1737 * Must be called with sighand->lock held, which is common to
1738 * all threads in the group. Holding cred_guard_mutex is not
1739 * needed because this new task is not yet running and cannot
1740 * be racing exec.
1741 */
69f6a34b 1742 assert_spin_locked(&current->sighand->siglock);
dbd95212
KC
1743
1744 /* Ref-count the new filter user, and assign it. */
1745 get_seccomp_filter(current);
1746 p->seccomp = current->seccomp;
1747
1748 /*
1749 * Explicitly enable no_new_privs here in case it got set
1750 * between the task_struct being duplicated and holding the
1751 * sighand lock. The seccomp state and nnp must be in sync.
1752 */
1753 if (task_no_new_privs(current))
1754 task_set_no_new_privs(p);
1755
1756 /*
1757 * If the parent gained a seccomp mode after copying thread
1758 * flags and between before we held the sighand lock, we have
1759 * to manually enable the seccomp thread flag here.
1760 */
1761 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
23d67a54 1762 set_task_syscall_work(p, SECCOMP);
dbd95212
KC
1763#endif
1764}
1765
17da2bd9 1766SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1da177e4
LT
1767{
1768 current->clear_child_tid = tidptr;
1769
b488893a 1770 return task_pid_vnr(current);
1da177e4
LT
1771}
1772
a39bc516 1773static void rt_mutex_init_task(struct task_struct *p)
23f78d4a 1774{
1d615482 1775 raw_spin_lock_init(&p->pi_lock);
e29e175b 1776#ifdef CONFIG_RT_MUTEXES
a23ba907 1777 p->pi_waiters = RB_ROOT_CACHED;
e96a7705 1778 p->pi_top_task = NULL;
23f78d4a 1779 p->pi_blocked_on = NULL;
23f78d4a
IM
1780#endif
1781}
1782
2c470475
EB
1783static inline void init_task_pid_links(struct task_struct *task)
1784{
1785 enum pid_type type;
1786
96e1e984 1787 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
2c470475 1788 INIT_HLIST_NODE(&task->pid_links[type]);
2c470475
EB
1789}
1790
81907739
ON
1791static inline void
1792init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1793{
2c470475
EB
1794 if (type == PIDTYPE_PID)
1795 task->thread_pid = pid;
1796 else
1797 task->signal->pids[type] = pid;
81907739
ON
1798}
1799
6bfbaa51
IM
1800static inline void rcu_copy_process(struct task_struct *p)
1801{
1802#ifdef CONFIG_PREEMPT_RCU
1803 p->rcu_read_lock_nesting = 0;
1804 p->rcu_read_unlock_special.s = 0;
1805 p->rcu_blocked_node = NULL;
1806 INIT_LIST_HEAD(&p->rcu_node_entry);
1807#endif /* #ifdef CONFIG_PREEMPT_RCU */
1808#ifdef CONFIG_TASKS_RCU
1809 p->rcu_tasks_holdout = false;
1810 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1811 p->rcu_tasks_idle_cpu = -1;
1812#endif /* #ifdef CONFIG_TASKS_RCU */
d5f177d3
PM
1813#ifdef CONFIG_TASKS_TRACE_RCU
1814 p->trc_reader_nesting = 0;
276c4104 1815 p->trc_reader_special.s = 0;
d5f177d3
PM
1816 INIT_LIST_HEAD(&p->trc_holdout_list);
1817#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
6bfbaa51
IM
1818}
1819
3695eae5
CB
1820struct pid *pidfd_pid(const struct file *file)
1821{
1822 if (file->f_op == &pidfd_fops)
1823 return file->private_data;
1824
1825 return ERR_PTR(-EBADF);
1826}
1827
b3e58382
CB
1828static int pidfd_release(struct inode *inode, struct file *file)
1829{
1830 struct pid *pid = file->private_data;
1831
1832 file->private_data = NULL;
1833 put_pid(pid);
1834 return 0;
1835}
1836
1837#ifdef CONFIG_PROC_FS
15d42eb2
CK
1838/**
1839 * pidfd_show_fdinfo - print information about a pidfd
1840 * @m: proc fdinfo file
1841 * @f: file referencing a pidfd
1842 *
1843 * Pid:
1844 * This function will print the pid that a given pidfd refers to in the
1845 * pid namespace of the procfs instance.
1846 * If the pid namespace of the process is not a descendant of the pid
1847 * namespace of the procfs instance 0 will be shown as its pid. This is
1848 * similar to calling getppid() on a process whose parent is outside of
1849 * its pid namespace.
1850 *
1851 * NSpid:
1852 * If pid namespaces are supported then this function will also print
1853 * the pid of a given pidfd refers to for all descendant pid namespaces
1854 * starting from the current pid namespace of the instance, i.e. the
1855 * Pid field and the first entry in the NSpid field will be identical.
1856 * If the pid namespace of the process is not a descendant of the pid
1857 * namespace of the procfs instance 0 will be shown as its first NSpid
1858 * entry and no others will be shown.
1859 * Note that this differs from the Pid and NSpid fields in
1860 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1861 * the pid namespace of the procfs instance. The difference becomes
1862 * obvious when sending around a pidfd between pid namespaces from a
a8ca6b13 1863 * different branch of the tree, i.e. where no ancestral relation is
15d42eb2
CK
1864 * present between the pid namespaces:
1865 * - create two new pid namespaces ns1 and ns2 in the initial pid
1866 * namespace (also take care to create new mount namespaces in the
1867 * new pid namespace and mount procfs)
1868 * - create a process with a pidfd in ns1
1869 * - send pidfd from ns1 to ns2
1870 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1871 * have exactly one entry, which is 0
1872 */
b3e58382
CB
1873static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1874{
b3e58382 1875 struct pid *pid = f->private_data;
3d6d8da4
CB
1876 struct pid_namespace *ns;
1877 pid_t nr = -1;
15d42eb2 1878
3d6d8da4 1879 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
9d78edea 1880 ns = proc_pid_ns(file_inode(m->file)->i_sb);
3d6d8da4
CB
1881 nr = pid_nr_ns(pid, ns);
1882 }
1883
1884 seq_put_decimal_ll(m, "Pid:\t", nr);
b3e58382 1885
15d42eb2 1886#ifdef CONFIG_PID_NS
3d6d8da4
CB
1887 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1888 if (nr > 0) {
15d42eb2 1889 int i;
b3e58382 1890
15d42eb2
CK
1891 /* If nr is non-zero it means that 'pid' is valid and that
1892 * ns, i.e. the pid namespace associated with the procfs
1893 * instance, is in the pid namespace hierarchy of pid.
1894 * Start at one below the already printed level.
1895 */
1896 for (i = ns->level + 1; i <= pid->level; i++)
3d6d8da4 1897 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
15d42eb2
CK
1898 }
1899#endif
b3e58382
CB
1900 seq_putc(m, '\n');
1901}
1902#endif
1903
b53b0b9d
JFG
1904/*
1905 * Poll support for process exit notification.
1906 */
9e77716a 1907static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
b53b0b9d 1908{
b53b0b9d 1909 struct pid *pid = file->private_data;
9e77716a 1910 __poll_t poll_flags = 0;
b53b0b9d
JFG
1911
1912 poll_wait(file, &pid->wait_pidfd, pts);
1913
b53b0b9d
JFG
1914 /*
1915 * Inform pollers only when the whole thread group exits.
1916 * If the thread group leader exits before all other threads in the
1917 * group, then poll(2) should block, similar to the wait(2) family.
1918 */
38fd525a 1919 if (thread_group_exited(pid))
9e77716a 1920 poll_flags = EPOLLIN | EPOLLRDNORM;
b53b0b9d
JFG
1921
1922 return poll_flags;
1923}
1924
b3e58382
CB
1925const struct file_operations pidfd_fops = {
1926 .release = pidfd_release,
b53b0b9d 1927 .poll = pidfd_poll,
b3e58382
CB
1928#ifdef CONFIG_PROC_FS
1929 .show_fdinfo = pidfd_show_fdinfo,
1930#endif
1931};
1932
c3f3ce04
AA
1933static void __delayed_free_task(struct rcu_head *rhp)
1934{
1935 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1936
1937 free_task(tsk);
1938}
1939
1940static __always_inline void delayed_free_task(struct task_struct *tsk)
1941{
1942 if (IS_ENABLED(CONFIG_MEMCG))
1943 call_rcu(&tsk->rcu, __delayed_free_task);
1944 else
1945 free_task(tsk);
1946}
1947
67197a4f
SB
1948static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1949{
1950 /* Skip if kernel thread */
1951 if (!tsk->mm)
1952 return;
1953
1954 /* Skip if spawning a thread or using vfork */
1955 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1956 return;
1957
1958 /* We need to synchronize with __set_oom_adj */
1959 mutex_lock(&oom_adj_mutex);
1960 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1961 /* Update the values in case they were changed after copy_signal */
1962 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1963 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1964 mutex_unlock(&oom_adj_mutex);
1965}
1966
1da177e4
LT
1967/*
1968 * This creates a new process as a copy of the old one,
1969 * but does not actually start it yet.
1970 *
1971 * It copies the registers, and all the appropriate
1972 * parts of the process environment (as per the clone
1973 * flags). The actual kick-off is left to the caller.
1974 */
0766f788 1975static __latent_entropy struct task_struct *copy_process(
09a05394 1976 struct pid *pid,
3033f14a 1977 int trace,
7f192e3c
CB
1978 int node,
1979 struct kernel_clone_args *args)
1da177e4 1980{
b3e58382 1981 int pidfd = -1, retval;
a24efe62 1982 struct task_struct *p;
c3ad2c3b 1983 struct multiprocess_signals delayed;
6fd2fe49 1984 struct file *pidfile = NULL;
c5febea0 1985 const u64 clone_flags = args->flags;
769071ac 1986 struct nsproxy *nsp = current->nsproxy;
1da177e4 1987
667b6094
MPS
1988 /*
1989 * Don't allow sharing the root directory with processes in a different
1990 * namespace
1991 */
1da177e4
LT
1992 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1993 return ERR_PTR(-EINVAL);
1994
e66eded8
EB
1995 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1996 return ERR_PTR(-EINVAL);
1997
1da177e4
LT
1998 /*
1999 * Thread groups must share signals as well, and detached threads
2000 * can only be started up within the thread group.
2001 */
2002 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2003 return ERR_PTR(-EINVAL);
2004
2005 /*
2006 * Shared signal handlers imply shared VM. By way of the above,
2007 * thread groups also imply shared VM. Blocking this case allows
2008 * for various simplifications in other code.
2009 */
2010 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2011 return ERR_PTR(-EINVAL);
2012
123be07b
SB
2013 /*
2014 * Siblings of global init remain as zombies on exit since they are
2015 * not reaped by their parent (swapper). To solve this and to avoid
2016 * multi-rooted process trees, prevent global and container-inits
2017 * from creating siblings.
2018 */
2019 if ((clone_flags & CLONE_PARENT) &&
2020 current->signal->flags & SIGNAL_UNKILLABLE)
2021 return ERR_PTR(-EINVAL);
2022
8382fcac 2023 /*
40a0d32d 2024 * If the new process will be in a different pid or user namespace
faf00da5 2025 * do not allow it to share a thread group with the forking task.
8382fcac 2026 */
faf00da5 2027 if (clone_flags & CLONE_THREAD) {
40a0d32d 2028 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
769071ac
AV
2029 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2030 return ERR_PTR(-EINVAL);
2031 }
2032
2033 /*
2034 * If the new process will be in a different time namespace
2035 * do not allow it to share VM or a thread group with the forking task.
2036 */
2037 if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
2038 if (nsp->time_ns != nsp->time_ns_for_children)
40a0d32d
ON
2039 return ERR_PTR(-EINVAL);
2040 }
8382fcac 2041
b3e58382 2042 if (clone_flags & CLONE_PIDFD) {
b3e58382 2043 /*
b3e58382
CB
2044 * - CLONE_DETACHED is blocked so that we can potentially
2045 * reuse it later for CLONE_PIDFD.
2046 * - CLONE_THREAD is blocked until someone really needs it.
2047 */
7f192e3c 2048 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
b3e58382 2049 return ERR_PTR(-EINVAL);
b3e58382
CB
2050 }
2051
c3ad2c3b
EB
2052 /*
2053 * Force any signals received before this point to be delivered
2054 * before the fork happens. Collect up signals sent to multiple
2055 * processes that happen during the fork and delay them so that
2056 * they appear to happen after the fork.
2057 */
2058 sigemptyset(&delayed.signal);
2059 INIT_HLIST_NODE(&delayed.node);
2060
2061 spin_lock_irq(&current->sighand->siglock);
2062 if (!(clone_flags & CLONE_THREAD))
2063 hlist_add_head(&delayed.node, &current->signal->multiprocess);
2064 recalc_sigpending();
2065 spin_unlock_irq(&current->sighand->siglock);
2066 retval = -ERESTARTNOINTR;
66ae0d1e 2067 if (task_sigpending(current))
c3ad2c3b
EB
2068 goto fork_out;
2069
1da177e4 2070 retval = -ENOMEM;
725fc629 2071 p = dup_task_struct(current, node);
1da177e4
LT
2072 if (!p)
2073 goto fork_out;
753550eb
EB
2074 p->flags &= ~PF_KTHREAD;
2075 if (args->kthread)
2076 p->flags |= PF_KTHREAD;
b16b3855
JA
2077 if (args->io_thread) {
2078 /*
2079 * Mark us an IO worker, and block any signal that isn't
2080 * fatal or STOP
2081 */
cc440e87 2082 p->flags |= PF_IO_WORKER;
b16b3855
JA
2083 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2084 }
1da177e4 2085
7f192e3c 2086 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
4d6501dc
VN
2087 /*
2088 * Clear TID on mm_release()?
2089 */
7f192e3c 2090 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
4d6501dc 2091
f7e8b616
SR
2092 ftrace_graph_init_task(p);
2093
bea493a0
PZ
2094 rt_mutex_init_task(p);
2095
a21ee605 2096 lockdep_assert_irqs_enabled();
d12c1a37 2097#ifdef CONFIG_PROVE_LOCKING
de30a2b3
IM
2098 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2099#endif
8f2f9c4d
EB
2100 retval = copy_creds(p, clone_flags);
2101 if (retval < 0)
2102 goto bad_fork_free;
2103
1da177e4 2104 retval = -EAGAIN;
21d1c5e3 2105 if (is_ucounts_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
b57922b6
EP
2106 if (p->real_cred->user != INIT_USER &&
2107 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
8f2f9c4d 2108 goto bad_fork_cleanup_count;
1da177e4 2109 }
72fa5997 2110 current->flags &= ~PF_NPROC_EXCEEDED;
1da177e4 2111
1da177e4
LT
2112 /*
2113 * If multiple threads are within copy_process(), then this check
2114 * triggers too late. This doesn't hurt, the check is only there
2115 * to stop root fork bombs.
2116 */
04ec93fe 2117 retval = -EAGAIN;
c17d1a3a 2118 if (data_race(nr_threads >= max_threads))
1da177e4
LT
2119 goto bad_fork_cleanup_count;
2120
ca74e92b 2121 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
a8ea6fc9 2122 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
514ddb44 2123 p->flags |= PF_FORKNOEXEC;
1da177e4
LT
2124 INIT_LIST_HEAD(&p->children);
2125 INIT_LIST_HEAD(&p->sibling);
f41d911f 2126 rcu_copy_process(p);
1da177e4
LT
2127 p->vfork_done = NULL;
2128 spin_lock_init(&p->alloc_lock);
1da177e4 2129
1da177e4
LT
2130 init_sigpending(&p->pending);
2131
64861634 2132 p->utime = p->stime = p->gtime = 0;
40565b5a 2133#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
64861634 2134 p->utimescaled = p->stimescaled = 0;
40565b5a 2135#endif
9d7fb042
PZ
2136 prev_cputime_init(&p->prev_cputime);
2137
6a61671b 2138#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6
FW
2139 seqcount_init(&p->vtime.seqcount);
2140 p->vtime.starttime = 0;
2141 p->vtime.state = VTIME_INACTIVE;
6a61671b
FW
2142#endif
2143
0f212204
JA
2144#ifdef CONFIG_IO_URING
2145 p->io_uring = NULL;
2146#endif
2147
a3a2e76c
KH
2148#if defined(SPLIT_RSS_COUNTING)
2149 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2150#endif
172ba844 2151
6976675d
AV
2152 p->default_timer_slack_ns = current->timer_slack_ns;
2153
eb414681
JW
2154#ifdef CONFIG_PSI
2155 p->psi_flags = 0;
2156#endif
2157
5995477a 2158 task_io_accounting_init(&p->ioac);
1da177e4
LT
2159 acct_clear_integrals(p);
2160
3a245c0f 2161 posix_cputimers_init(&p->posix_cputimers);
1da177e4 2162
1da177e4 2163 p->io_context = NULL;
c0b0ae8a 2164 audit_set_context(p, NULL);
b4f48b63 2165 cgroup_fork(p);
343f4c49 2166 if (args->kthread) {
40966e31 2167 if (!set_kthread_struct(p))
ff8288ff 2168 goto bad_fork_cleanup_delayacct;
40966e31 2169 }
1da177e4 2170#ifdef CONFIG_NUMA
846a16bf 2171 p->mempolicy = mpol_dup(p->mempolicy);
fb0a685c
DRO
2172 if (IS_ERR(p->mempolicy)) {
2173 retval = PTR_ERR(p->mempolicy);
2174 p->mempolicy = NULL;
ff8288ff 2175 goto bad_fork_cleanup_delayacct;
fb0a685c 2176 }
1da177e4 2177#endif
778d3b0f
MH
2178#ifdef CONFIG_CPUSETS
2179 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2180 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
b7505861 2181 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
778d3b0f 2182#endif
de30a2b3 2183#ifdef CONFIG_TRACE_IRQFLAGS
0584df9c
ME
2184 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2185 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2186 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2187 p->softirqs_enabled = 1;
2188 p->softirq_context = 0;
de30a2b3 2189#endif
8bcbde54
DH
2190
2191 p->pagefault_disabled = 0;
2192
fbb9ce95 2193#ifdef CONFIG_LOCKDEP
b09be676 2194 lockdep_init_task(p);
fbb9ce95 2195#endif
1da177e4 2196
408894ee
IM
2197#ifdef CONFIG_DEBUG_MUTEXES
2198 p->blocked_on = NULL; /* not blocked yet */
2199#endif
cafe5635
KO
2200#ifdef CONFIG_BCACHE
2201 p->sequential_io = 0;
2202 p->sequential_io_avg = 0;
2203#endif
a10787e6
SL
2204#ifdef CONFIG_BPF_SYSCALL
2205 RCU_INIT_POINTER(p->bpf_storage, NULL);
c7603cfa 2206 p->bpf_ctx = NULL;
a10787e6 2207#endif
0f481406 2208
3c90e6e9 2209 /* Perform scheduler related setup. Assign this task to a CPU. */
aab03e05
DF
2210 retval = sched_fork(clone_flags, p);
2211 if (retval)
2212 goto bad_fork_cleanup_policy;
6ab423e0 2213
2b26f0aa 2214 retval = perf_event_init_task(p, clone_flags);
6ab423e0
PZ
2215 if (retval)
2216 goto bad_fork_cleanup_policy;
fb0a685c
DRO
2217 retval = audit_alloc(p);
2218 if (retval)
6c72e350 2219 goto bad_fork_cleanup_perf;
1da177e4 2220 /* copy all the process information */
ab602f79 2221 shm_init_task(p);
e4e55b47 2222 retval = security_task_alloc(p, clone_flags);
fb0a685c 2223 if (retval)
1da177e4 2224 goto bad_fork_cleanup_audit;
e4e55b47
TH
2225 retval = copy_semundo(clone_flags, p);
2226 if (retval)
2227 goto bad_fork_cleanup_security;
fb0a685c
DRO
2228 retval = copy_files(clone_flags, p);
2229 if (retval)
1da177e4 2230 goto bad_fork_cleanup_semundo;
fb0a685c
DRO
2231 retval = copy_fs(clone_flags, p);
2232 if (retval)
1da177e4 2233 goto bad_fork_cleanup_files;
fb0a685c
DRO
2234 retval = copy_sighand(clone_flags, p);
2235 if (retval)
1da177e4 2236 goto bad_fork_cleanup_fs;
fb0a685c
DRO
2237 retval = copy_signal(clone_flags, p);
2238 if (retval)
1da177e4 2239 goto bad_fork_cleanup_sighand;
fb0a685c
DRO
2240 retval = copy_mm(clone_flags, p);
2241 if (retval)
1da177e4 2242 goto bad_fork_cleanup_signal;
fb0a685c
DRO
2243 retval = copy_namespaces(clone_flags, p);
2244 if (retval)
d84f4f99 2245 goto bad_fork_cleanup_mm;
fb0a685c
DRO
2246 retval = copy_io(clone_flags, p);
2247 if (retval)
fd0928df 2248 goto bad_fork_cleanup_namespaces;
c5febea0 2249 retval = copy_thread(p, args);
1da177e4 2250 if (retval)
fd0928df 2251 goto bad_fork_cleanup_io;
1da177e4 2252
afaef01c
AP
2253 stackleak_task_init(p);
2254
425fb2b4 2255 if (pid != &init_struct_pid) {
49cb2fc4
AR
2256 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2257 args->set_tid_size);
35f71bc0
MH
2258 if (IS_ERR(pid)) {
2259 retval = PTR_ERR(pid);
0740aa5f 2260 goto bad_fork_cleanup_thread;
35f71bc0 2261 }
425fb2b4
PE
2262 }
2263
b3e58382
CB
2264 /*
2265 * This has to happen after we've potentially unshared the file
2266 * descriptor table (so that the pidfd doesn't leak into the child
2267 * if the fd table isn't shared).
2268 */
2269 if (clone_flags & CLONE_PIDFD) {
6fd2fe49 2270 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
b3e58382
CB
2271 if (retval < 0)
2272 goto bad_fork_free_pid;
2273
2274 pidfd = retval;
6fd2fe49
AV
2275
2276 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2277 O_RDWR | O_CLOEXEC);
2278 if (IS_ERR(pidfile)) {
2279 put_unused_fd(pidfd);
28dd29c0 2280 retval = PTR_ERR(pidfile);
6fd2fe49
AV
2281 goto bad_fork_free_pid;
2282 }
2283 get_pid(pid); /* held by pidfile now */
2284
7f192e3c 2285 retval = put_user(pidfd, args->pidfd);
b3e58382
CB
2286 if (retval)
2287 goto bad_fork_put_pidfd;
2288 }
2289
73c10101
JA
2290#ifdef CONFIG_BLOCK
2291 p->plug = NULL;
2292#endif
ba31c1a4
TG
2293 futex_init_task(p);
2294
f9a3879a
GM
2295 /*
2296 * sigaltstack should be cleared when sharing the same VM
2297 */
2298 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2a742138 2299 sas_ss_reset(p);
f9a3879a 2300
1da177e4 2301 /*
6580807d
ON
2302 * Syscall tracing and stepping should be turned off in the
2303 * child regardless of CLONE_PTRACE.
1da177e4 2304 */
6580807d 2305 user_disable_single_step(p);
64c19ba2 2306 clear_task_syscall_work(p, SYSCALL_TRACE);
64eb35f7
GKB
2307#if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2308 clear_task_syscall_work(p, SYSCALL_EMU);
ed75e8d5 2309#endif
e02c9b0d 2310 clear_tsk_latency_tracing(p);
1da177e4 2311
1da177e4 2312 /* ok, now we should be set up.. */
18c830df
ON
2313 p->pid = pid_nr(pid);
2314 if (clone_flags & CLONE_THREAD) {
18c830df
ON
2315 p->group_leader = current->group_leader;
2316 p->tgid = current->tgid;
2317 } else {
18c830df
ON
2318 p->group_leader = p;
2319 p->tgid = p->pid;
2320 }
5f8aadd8 2321
9d823e8f
WF
2322 p->nr_dirtied = 0;
2323 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
83712358 2324 p->dirty_paused_when = 0;
9d823e8f 2325
bb8cbbfe 2326 p->pdeath_signal = 0;
47e65328 2327 INIT_LIST_HEAD(&p->thread_group);
158e1645 2328 p->task_works = NULL;
ca7752ca 2329 clear_posix_cputimers_work(p);
1da177e4 2330
d741bf41
PZ
2331#ifdef CONFIG_KRETPROBES
2332 p->kretprobe_instances.first = NULL;
2333#endif
54ecbe6f
MH
2334#ifdef CONFIG_RETHOOK
2335 p->rethooks.first = NULL;
2336#endif
d741bf41 2337
7e47682e
AS
2338 /*
2339 * Ensure that the cgroup subsystem policies allow the new process to be
7b7b8a2c 2340 * forked. It should be noted that the new process's css_set can be changed
7e47682e
AS
2341 * between here and cgroup_post_fork() if an organisation operation is in
2342 * progress.
2343 */
ef2c41cf 2344 retval = cgroup_can_fork(p, args);
7e47682e 2345 if (retval)
5a5cf5cb 2346 goto bad_fork_put_pidfd;
7e47682e 2347
b1e82065
PZ
2348 /*
2349 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2350 * the new task on the correct runqueue. All this *before* the task
2351 * becomes visible.
2352 *
2353 * This isn't part of ->can_fork() because while the re-cloning is
2354 * cgroup specific, it unconditionally needs to place the task on a
2355 * runqueue.
2356 */
2357 sched_cgroup_fork(p, args);
2358
7b558513
DH
2359 /*
2360 * From this point on we must avoid any synchronous user-space
2361 * communication until we take the tasklist-lock. In particular, we do
2362 * not want user-space to be able to predict the process start-time by
2363 * stalling fork(2) after we recorded the start_time but before it is
2364 * visible to the system.
2365 */
2366
2367 p->start_time = ktime_get_ns();
cf25e24d 2368 p->start_boottime = ktime_get_boottime_ns();
7b558513 2369
18c830df
ON
2370 /*
2371 * Make it visible to the rest of the system, but dont wake it up yet.
2372 * Need tasklist lock for parent etc handling!
2373 */
1da177e4
LT
2374 write_lock_irq(&tasklist_lock);
2375
1da177e4 2376 /* CLONE_PARENT re-uses the old parent */
2d5516cb 2377 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1da177e4 2378 p->real_parent = current->real_parent;
2d5516cb 2379 p->parent_exec_id = current->parent_exec_id;
b4e00444
EW
2380 if (clone_flags & CLONE_THREAD)
2381 p->exit_signal = -1;
2382 else
2383 p->exit_signal = current->group_leader->exit_signal;
2d5516cb 2384 } else {
1da177e4 2385 p->real_parent = current;
2d5516cb 2386 p->parent_exec_id = current->self_exec_id;
b4e00444 2387 p->exit_signal = args->exit_signal;
2d5516cb 2388 }
1da177e4 2389
d83a7cb3
JP
2390 klp_copy_process(p);
2391
85dd3f61
PZ
2392 sched_core_fork(p);
2393
3f17da69 2394 spin_lock(&current->sighand->siglock);
4a2c7a78 2395
dbd95212
KC
2396 /*
2397 * Copy seccomp details explicitly here, in case they were changed
2398 * before holding sighand lock.
2399 */
2400 copy_seccomp(p);
2401
d7822b1e
MD
2402 rseq_fork(p, clone_flags);
2403
4ca1d3ee 2404 /* Don't start children in a dying pid namespace */
e8cfbc24 2405 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
3fd37226
KT
2406 retval = -ENOMEM;
2407 goto bad_fork_cancel_cgroup;
2408 }
4a2c7a78 2409
7673bf55
EB
2410 /* Let kill terminate clone/fork in the middle */
2411 if (fatal_signal_pending(current)) {
2412 retval = -EINTR;
2413 goto bad_fork_cancel_cgroup;
2414 }
2415
2c470475 2416 init_task_pid_links(p);
73b9ebfe 2417 if (likely(p->pid)) {
4b9d33e6 2418 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
73b9ebfe 2419
81907739 2420 init_task_pid(p, PIDTYPE_PID, pid);
73b9ebfe 2421 if (thread_group_leader(p)) {
6883f81a 2422 init_task_pid(p, PIDTYPE_TGID, pid);
81907739
ON
2423 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2424 init_task_pid(p, PIDTYPE_SID, task_session(current));
2425
1c4042c2 2426 if (is_child_reaper(pid)) {
17cf22c3 2427 ns_of_pid(pid)->child_reaper = p;
1c4042c2
EB
2428 p->signal->flags |= SIGNAL_UNKILLABLE;
2429 }
c3ad2c3b 2430 p->signal->shared_pending.signal = delayed.signal;
9c9f4ded 2431 p->signal->tty = tty_kref_get(current->signal->tty);
749860ce
PT
2432 /*
2433 * Inherit has_child_subreaper flag under the same
2434 * tasklist_lock with adding child to the process tree
2435 * for propagate_has_child_subreaper optimization.
2436 */
2437 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2438 p->real_parent->signal->is_child_subreaper;
9cd80bbb 2439 list_add_tail(&p->sibling, &p->real_parent->children);
5e85d4ab 2440 list_add_tail_rcu(&p->tasks, &init_task.tasks);
6883f81a 2441 attach_pid(p, PIDTYPE_TGID);
81907739
ON
2442 attach_pid(p, PIDTYPE_PGID);
2443 attach_pid(p, PIDTYPE_SID);
909ea964 2444 __this_cpu_inc(process_counts);
80628ca0
ON
2445 } else {
2446 current->signal->nr_threads++;
2447 atomic_inc(&current->signal->live);
60d4de3f 2448 refcount_inc(&current->signal->sigcnt);
924de3b8 2449 task_join_group_stop(p);
80628ca0
ON
2450 list_add_tail_rcu(&p->thread_group,
2451 &p->group_leader->thread_group);
0c740d0a
ON
2452 list_add_tail_rcu(&p->thread_node,
2453 &p->signal->thread_head);
73b9ebfe 2454 }
81907739 2455 attach_pid(p, PIDTYPE_PID);
73b9ebfe 2456 nr_threads++;
1da177e4 2457 }
1da177e4 2458 total_forks++;
c3ad2c3b 2459 hlist_del_init(&delayed.node);
3f17da69 2460 spin_unlock(&current->sighand->siglock);
4af4206b 2461 syscall_tracepoint_update(p);
1da177e4 2462 write_unlock_irq(&tasklist_lock);
4af4206b 2463
ddc204b5
WL
2464 if (pidfile)
2465 fd_install(pidfd, pidfile);
2466
c13cf856 2467 proc_fork_connector(p);
b1e82065 2468 sched_post_fork(p);
ef2c41cf 2469 cgroup_post_fork(p, args);
cdd6c482 2470 perf_event_fork(p);
43d2b113
KH
2471
2472 trace_task_newtask(p, clone_flags);
3ab67966 2473 uprobe_copy_process(p, clone_flags);
43d2b113 2474
67197a4f
SB
2475 copy_oom_score_adj(clone_flags, p);
2476
1da177e4
LT
2477 return p;
2478
7e47682e 2479bad_fork_cancel_cgroup:
85dd3f61 2480 sched_core_free(p);
3fd37226
KT
2481 spin_unlock(&current->sighand->siglock);
2482 write_unlock_irq(&tasklist_lock);
ef2c41cf 2483 cgroup_cancel_fork(p, args);
b3e58382 2484bad_fork_put_pidfd:
6fd2fe49
AV
2485 if (clone_flags & CLONE_PIDFD) {
2486 fput(pidfile);
2487 put_unused_fd(pidfd);
2488 }
425fb2b4
PE
2489bad_fork_free_pid:
2490 if (pid != &init_struct_pid)
2491 free_pid(pid);
0740aa5f
JS
2492bad_fork_cleanup_thread:
2493 exit_thread(p);
fd0928df 2494bad_fork_cleanup_io:
b69f2292
LR
2495 if (p->io_context)
2496 exit_io_context(p);
ab516013 2497bad_fork_cleanup_namespaces:
444f378b 2498 exit_task_namespaces(p);
1da177e4 2499bad_fork_cleanup_mm:
c3f3ce04
AA
2500 if (p->mm) {
2501 mm_clear_owner(p->mm, p);
1da177e4 2502 mmput(p->mm);
c3f3ce04 2503 }
1da177e4 2504bad_fork_cleanup_signal:
4ab6c083 2505 if (!(clone_flags & CLONE_THREAD))
1c5354de 2506 free_signal_struct(p->signal);
1da177e4 2507bad_fork_cleanup_sighand:
a7e5328a 2508 __cleanup_sighand(p->sighand);
1da177e4
LT
2509bad_fork_cleanup_fs:
2510 exit_fs(p); /* blocking */
2511bad_fork_cleanup_files:
2512 exit_files(p); /* blocking */
2513bad_fork_cleanup_semundo:
2514 exit_sem(p);
e4e55b47
TH
2515bad_fork_cleanup_security:
2516 security_task_free(p);
1da177e4
LT
2517bad_fork_cleanup_audit:
2518 audit_free(p);
6c72e350 2519bad_fork_cleanup_perf:
cdd6c482 2520 perf_event_free_task(p);
6c72e350 2521bad_fork_cleanup_policy:
b09be676 2522 lockdep_free_task(p);
1da177e4 2523#ifdef CONFIG_NUMA
f0be3d32 2524 mpol_put(p->mempolicy);
1da177e4 2525#endif
ff8288ff 2526bad_fork_cleanup_delayacct:
35df17c5 2527 delayacct_tsk_free(p);
1da177e4 2528bad_fork_cleanup_count:
21d1c5e3 2529 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
e0e81739 2530 exit_creds(p);
1da177e4 2531bad_fork_free:
2f064a59 2532 WRITE_ONCE(p->__state, TASK_DEAD);
1a03d3f1 2533 exit_task_stack_account(p);
68f24b08 2534 put_task_stack(p);
c3f3ce04 2535 delayed_free_task(p);
fe7d37d1 2536fork_out:
c3ad2c3b
EB
2537 spin_lock_irq(&current->sighand->siglock);
2538 hlist_del_init(&delayed.node);
2539 spin_unlock_irq(&current->sighand->siglock);
fe7d37d1 2540 return ERR_PTR(retval);
1da177e4
LT
2541}
2542
2c470475 2543static inline void init_idle_pids(struct task_struct *idle)
f106eee1
ON
2544{
2545 enum pid_type type;
2546
2547 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2c470475
EB
2548 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2549 init_task_pid(idle, type, &init_struct_pid);
f106eee1
ON
2550 }
2551}
2552
36cb0e1c
EB
2553static int idle_dummy(void *dummy)
2554{
2555 /* This function is never called */
2556 return 0;
2557}
2558
f1a0a376 2559struct task_struct * __init fork_idle(int cpu)
1da177e4 2560{
36c8b586 2561 struct task_struct *task;
7f192e3c 2562 struct kernel_clone_args args = {
343f4c49 2563 .flags = CLONE_VM,
5bd2e97c
EB
2564 .fn = &idle_dummy,
2565 .fn_arg = NULL,
343f4c49 2566 .kthread = 1,
36cb0e1c 2567 .idle = 1,
7f192e3c
CB
2568 };
2569
2570 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
f106eee1 2571 if (!IS_ERR(task)) {
2c470475 2572 init_idle_pids(task);
753ca4f3 2573 init_idle(task, cpu);
f106eee1 2574 }
73b9ebfe 2575
1da177e4
LT
2576 return task;
2577}
2578
13585fa0
NA
2579struct mm_struct *copy_init_mm(void)
2580{
2581 return dup_mm(NULL, &init_mm);
2582}
2583
cc440e87
JA
2584/*
2585 * This is like kernel_clone(), but shaved down and tailored to just
2586 * creating io_uring workers. It returns a created task, or an error pointer.
2587 * The returned task is inactive, and the caller must fire it up through
2588 * wake_up_new_task(p). All signals are blocked in the created task.
2589 */
2590struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2591{
2592 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2593 CLONE_IO;
2594 struct kernel_clone_args args = {
2595 .flags = ((lower_32_bits(flags) | CLONE_VM |
2596 CLONE_UNTRACED) & ~CSIGNAL),
2597 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
5bd2e97c
EB
2598 .fn = fn,
2599 .fn_arg = arg,
cc440e87
JA
2600 .io_thread = 1,
2601 };
cc440e87 2602
b16b3855 2603 return copy_process(NULL, 0, node, &args);
cc440e87
JA
2604}
2605
1da177e4
LT
2606/*
2607 * Ok, this is the main fork-routine.
2608 *
2609 * It copies the process, and if successful kick-starts
2610 * it and waits for it to finish using the VM if required.
a0eb9abd
ES
2611 *
2612 * args->exit_signal is expected to be checked for sanity by the caller.
1da177e4 2613 */
cad6967a 2614pid_t kernel_clone(struct kernel_clone_args *args)
1da177e4 2615{
7f192e3c 2616 u64 clone_flags = args->flags;
9f5325aa
MPS
2617 struct completion vfork;
2618 struct pid *pid;
1da177e4
LT
2619 struct task_struct *p;
2620 int trace = 0;
cad6967a 2621 pid_t nr;
1da177e4 2622
3af8588c
CB
2623 /*
2624 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2625 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2626 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2627 * field in struct clone_args and it still doesn't make sense to have
2628 * them both point at the same memory location. Performing this check
2629 * here has the advantage that we don't need to have a separate helper
2630 * to check for legacy clone().
2631 */
2632 if ((args->flags & CLONE_PIDFD) &&
2633 (args->flags & CLONE_PARENT_SETTID) &&
2634 (args->pidfd == args->parent_tid))
2635 return -EINVAL;
2636
09a05394 2637 /*
4b9d33e6
TH
2638 * Determine whether and which event to report to ptracer. When
2639 * called from kernel_thread or CLONE_UNTRACED is explicitly
2640 * requested, no event is reported; otherwise, report if the event
2641 * for the type of forking is enabled.
09a05394 2642 */
e80d6661 2643 if (!(clone_flags & CLONE_UNTRACED)) {
4b9d33e6
TH
2644 if (clone_flags & CLONE_VFORK)
2645 trace = PTRACE_EVENT_VFORK;
7f192e3c 2646 else if (args->exit_signal != SIGCHLD)
4b9d33e6
TH
2647 trace = PTRACE_EVENT_CLONE;
2648 else
2649 trace = PTRACE_EVENT_FORK;
2650
2651 if (likely(!ptrace_event_enabled(current, trace)))
2652 trace = 0;
2653 }
1da177e4 2654
7f192e3c 2655 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
38addce8 2656 add_latent_entropy();
9f5325aa
MPS
2657
2658 if (IS_ERR(p))
2659 return PTR_ERR(p);
2660
1da177e4
LT
2661 /*
2662 * Do this prior waking up the new thread - the thread pointer
2663 * might get invalid after that point, if the thread exits quickly.
2664 */
9f5325aa 2665 trace_sched_process_fork(current, p);
0a16b607 2666
9f5325aa
MPS
2667 pid = get_task_pid(p, PIDTYPE_PID);
2668 nr = pid_vnr(pid);
30e49c26 2669
9f5325aa 2670 if (clone_flags & CLONE_PARENT_SETTID)
7f192e3c 2671 put_user(nr, args->parent_tid);
a6f5e063 2672
9f5325aa
MPS
2673 if (clone_flags & CLONE_VFORK) {
2674 p->vfork_done = &vfork;
2675 init_completion(&vfork);
2676 get_task_struct(p);
2677 }
1da177e4 2678
9f5325aa 2679 wake_up_new_task(p);
09a05394 2680
9f5325aa
MPS
2681 /* forking complete and child started to run, tell ptracer */
2682 if (unlikely(trace))
2683 ptrace_event_pid(trace, pid);
4e52365f 2684
9f5325aa
MPS
2685 if (clone_flags & CLONE_VFORK) {
2686 if (!wait_for_vfork_done(p, &vfork))
2687 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1da177e4 2688 }
9f5325aa
MPS
2689
2690 put_pid(pid);
92476d7f 2691 return nr;
1da177e4
LT
2692}
2693
2aa3a7f8
AV
2694/*
2695 * Create a kernel thread.
2696 */
2697pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2698{
7f192e3c 2699 struct kernel_clone_args args = {
3f2c788a
CB
2700 .flags = ((lower_32_bits(flags) | CLONE_VM |
2701 CLONE_UNTRACED) & ~CSIGNAL),
2702 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
5bd2e97c
EB
2703 .fn = fn,
2704 .fn_arg = arg,
343f4c49
EB
2705 .kthread = 1,
2706 };
2707
2708 return kernel_clone(&args);
2709}
2710
2711/*
2712 * Create a user mode thread.
2713 */
2714pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2aa3a7f8 2715{
7f192e3c 2716 struct kernel_clone_args args = {
3f2c788a
CB
2717 .flags = ((lower_32_bits(flags) | CLONE_VM |
2718 CLONE_UNTRACED) & ~CSIGNAL),
2719 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
5bd2e97c
EB
2720 .fn = fn,
2721 .fn_arg = arg,
7f192e3c
CB
2722 };
2723
cad6967a 2724 return kernel_clone(&args);
2aa3a7f8 2725}
2aa3a7f8 2726
d2125043
AV
2727#ifdef __ARCH_WANT_SYS_FORK
2728SYSCALL_DEFINE0(fork)
2729{
2730#ifdef CONFIG_MMU
7f192e3c
CB
2731 struct kernel_clone_args args = {
2732 .exit_signal = SIGCHLD,
2733 };
2734
cad6967a 2735 return kernel_clone(&args);
d2125043
AV
2736#else
2737 /* can not support in nommu mode */
5d59e182 2738 return -EINVAL;
d2125043
AV
2739#endif
2740}
2741#endif
2742
2743#ifdef __ARCH_WANT_SYS_VFORK
2744SYSCALL_DEFINE0(vfork)
2745{
7f192e3c
CB
2746 struct kernel_clone_args args = {
2747 .flags = CLONE_VFORK | CLONE_VM,
2748 .exit_signal = SIGCHLD,
2749 };
2750
cad6967a 2751 return kernel_clone(&args);
d2125043
AV
2752}
2753#endif
2754
2755#ifdef __ARCH_WANT_SYS_CLONE
2756#ifdef CONFIG_CLONE_BACKWARDS
2757SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2758 int __user *, parent_tidptr,
3033f14a 2759 unsigned long, tls,
d2125043
AV
2760 int __user *, child_tidptr)
2761#elif defined(CONFIG_CLONE_BACKWARDS2)
2762SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2763 int __user *, parent_tidptr,
2764 int __user *, child_tidptr,
3033f14a 2765 unsigned long, tls)
dfa9771a
MS
2766#elif defined(CONFIG_CLONE_BACKWARDS3)
2767SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2768 int, stack_size,
2769 int __user *, parent_tidptr,
2770 int __user *, child_tidptr,
3033f14a 2771 unsigned long, tls)
d2125043
AV
2772#else
2773SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2774 int __user *, parent_tidptr,
2775 int __user *, child_tidptr,
3033f14a 2776 unsigned long, tls)
d2125043
AV
2777#endif
2778{
7f192e3c 2779 struct kernel_clone_args args = {
3f2c788a 2780 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
7f192e3c
CB
2781 .pidfd = parent_tidptr,
2782 .child_tid = child_tidptr,
2783 .parent_tid = parent_tidptr,
3f2c788a 2784 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
7f192e3c
CB
2785 .stack = newsp,
2786 .tls = tls,
2787 };
2788
cad6967a 2789 return kernel_clone(&args);
7f192e3c 2790}
d68dbb0c 2791#endif
7f192e3c 2792
d68dbb0c 2793#ifdef __ARCH_WANT_SYS_CLONE3
dd499f7a 2794
7f192e3c
CB
2795noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2796 struct clone_args __user *uargs,
f14c234b 2797 size_t usize)
7f192e3c 2798{
f14c234b 2799 int err;
7f192e3c 2800 struct clone_args args;
49cb2fc4 2801 pid_t *kset_tid = kargs->set_tid;
7f192e3c 2802
a966dcfe
ES
2803 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2804 CLONE_ARGS_SIZE_VER0);
2805 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2806 CLONE_ARGS_SIZE_VER1);
2807 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2808 CLONE_ARGS_SIZE_VER2);
2809 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2810
f14c234b 2811 if (unlikely(usize > PAGE_SIZE))
7f192e3c 2812 return -E2BIG;
f14c234b 2813 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
7f192e3c
CB
2814 return -EINVAL;
2815
f14c234b
AS
2816 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2817 if (err)
2818 return err;
7f192e3c 2819
49cb2fc4
AR
2820 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2821 return -EINVAL;
2822
2823 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2824 return -EINVAL;
2825
2826 if (unlikely(args.set_tid && args.set_tid_size == 0))
2827 return -EINVAL;
2828
a0eb9abd
ES
2829 /*
2830 * Verify that higher 32bits of exit_signal are unset and that
2831 * it is a valid signal
2832 */
2833 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2834 !valid_signal(args.exit_signal)))
2835 return -EINVAL;
2836
62173872
ES
2837 if ((args.flags & CLONE_INTO_CGROUP) &&
2838 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
ef2c41cf
CB
2839 return -EINVAL;
2840
7f192e3c
CB
2841 *kargs = (struct kernel_clone_args){
2842 .flags = args.flags,
2843 .pidfd = u64_to_user_ptr(args.pidfd),
2844 .child_tid = u64_to_user_ptr(args.child_tid),
2845 .parent_tid = u64_to_user_ptr(args.parent_tid),
2846 .exit_signal = args.exit_signal,
2847 .stack = args.stack,
2848 .stack_size = args.stack_size,
2849 .tls = args.tls,
49cb2fc4 2850 .set_tid_size = args.set_tid_size,
ef2c41cf 2851 .cgroup = args.cgroup,
7f192e3c
CB
2852 };
2853
49cb2fc4
AR
2854 if (args.set_tid &&
2855 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2856 (kargs->set_tid_size * sizeof(pid_t))))
2857 return -EFAULT;
2858
2859 kargs->set_tid = kset_tid;
2860
7f192e3c
CB
2861 return 0;
2862}
2863
fa729c4d
CB
2864/**
2865 * clone3_stack_valid - check and prepare stack
2866 * @kargs: kernel clone args
2867 *
2868 * Verify that the stack arguments userspace gave us are sane.
2869 * In addition, set the stack direction for userspace since it's easy for us to
2870 * determine.
2871 */
2872static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2873{
2874 if (kargs->stack == 0) {
2875 if (kargs->stack_size > 0)
2876 return false;
2877 } else {
2878 if (kargs->stack_size == 0)
2879 return false;
2880
2881 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2882 return false;
2883
2884#if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2885 kargs->stack += kargs->stack_size;
2886#endif
2887 }
2888
2889 return true;
2890}
2891
2892static bool clone3_args_valid(struct kernel_clone_args *kargs)
7f192e3c 2893{
b612e5df 2894 /* Verify that no unknown flags are passed along. */
ef2c41cf
CB
2895 if (kargs->flags &
2896 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
7f192e3c
CB
2897 return false;
2898
2899 /*
a8ca6b13
XC
2900 * - make the CLONE_DETACHED bit reusable for clone3
2901 * - make the CSIGNAL bits reusable for clone3
7f192e3c
CB
2902 */
2903 if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2904 return false;
2905
b612e5df
CB
2906 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2907 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2908 return false;
2909
7f192e3c
CB
2910 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2911 kargs->exit_signal)
2912 return false;
2913
fa729c4d
CB
2914 if (!clone3_stack_valid(kargs))
2915 return false;
2916
7f192e3c
CB
2917 return true;
2918}
2919
501bd016
CB
2920/**
2921 * clone3 - create a new process with specific properties
2922 * @uargs: argument structure
2923 * @size: size of @uargs
2924 *
2925 * clone3() is the extensible successor to clone()/clone2().
2926 * It takes a struct as argument that is versioned by its size.
2927 *
2928 * Return: On success, a positive PID for the child process.
2929 * On error, a negative errno number.
2930 */
7f192e3c
CB
2931SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2932{
2933 int err;
2934
2935 struct kernel_clone_args kargs;
49cb2fc4
AR
2936 pid_t set_tid[MAX_PID_NS_LEVEL];
2937
2938 kargs.set_tid = set_tid;
7f192e3c
CB
2939
2940 err = copy_clone_args_from_user(&kargs, uargs, size);
2941 if (err)
2942 return err;
2943
2944 if (!clone3_args_valid(&kargs))
2945 return -EINVAL;
2946
cad6967a 2947 return kernel_clone(&kargs);
d2125043
AV
2948}
2949#endif
2950
0f1b92cb
ON
2951void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2952{
2953 struct task_struct *leader, *parent, *child;
2954 int res;
2955
2956 read_lock(&tasklist_lock);
2957 leader = top = top->group_leader;
2958down:
2959 for_each_thread(leader, parent) {
2960 list_for_each_entry(child, &parent->children, sibling) {
2961 res = visitor(child, data);
2962 if (res) {
2963 if (res < 0)
2964 goto out;
2965 leader = child;
2966 goto down;
2967 }
2968up:
2969 ;
2970 }
2971 }
2972
2973 if (leader != top) {
2974 child = leader;
2975 parent = child->real_parent;
2976 leader = parent->group_leader;
2977 goto up;
2978 }
2979out:
2980 read_unlock(&tasklist_lock);
2981}
2982
5fd63b30
RT
2983#ifndef ARCH_MIN_MMSTRUCT_ALIGN
2984#define ARCH_MIN_MMSTRUCT_ALIGN 0
2985#endif
2986
51cc5068 2987static void sighand_ctor(void *data)
aa1757f9
ON
2988{
2989 struct sighand_struct *sighand = data;
2990
a35afb83 2991 spin_lock_init(&sighand->siglock);
b8fceee1 2992 init_waitqueue_head(&sighand->signalfd_wqh);
aa1757f9
ON
2993}
2994
1da177e4
LT
2995void __init proc_caches_init(void)
2996{
c1a2f7f0
RR
2997 unsigned int mm_size;
2998
1da177e4
LT
2999 sighand_cachep = kmem_cache_create("sighand_cache",
3000 sizeof(struct sighand_struct), 0,
5f0d5a3a 3001 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
75f296d9 3002 SLAB_ACCOUNT, sighand_ctor);
1da177e4
LT
3003 signal_cachep = kmem_cache_create("signal_cache",
3004 sizeof(struct signal_struct), 0,
75f296d9 3005 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 3006 NULL);
20c2df83 3007 files_cachep = kmem_cache_create("files_cache",
1da177e4 3008 sizeof(struct files_struct), 0,
75f296d9 3009 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 3010 NULL);
20c2df83 3011 fs_cachep = kmem_cache_create("fs_cache",
1da177e4 3012 sizeof(struct fs_struct), 0,
75f296d9 3013 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 3014 NULL);
c1a2f7f0 3015
6345d24d 3016 /*
c1a2f7f0
RR
3017 * The mm_cpumask is located at the end of mm_struct, and is
3018 * dynamically sized based on the maximum CPU number this system
3019 * can have, taking hotplug into account (nr_cpu_ids).
6345d24d 3020 */
c1a2f7f0
RR
3021 mm_size = sizeof(struct mm_struct) + cpumask_size();
3022
07dcd7fe 3023 mm_cachep = kmem_cache_create_usercopy("mm_struct",
c1a2f7f0 3024 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
75f296d9 3025 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
07dcd7fe
DW
3026 offsetof(struct mm_struct, saved_auxv),
3027 sizeof_field(struct mm_struct, saved_auxv),
5d097056
VD
3028 NULL);
3029 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
8feae131 3030 mmap_init();
66577193 3031 nsproxy_cache_init();
1da177e4 3032}
cf2e340f 3033
cf2e340f 3034/*
9bfb23fc 3035 * Check constraints on flags passed to the unshare system call.
cf2e340f 3036 */
9bfb23fc 3037static int check_unshare_flags(unsigned long unshare_flags)
cf2e340f 3038{
9bfb23fc
ON
3039 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3040 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
50804fe3 3041 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
769071ac
AV
3042 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3043 CLONE_NEWTIME))
9bfb23fc 3044 return -EINVAL;
cf2e340f 3045 /*
12c641ab
EB
3046 * Not implemented, but pretend it works if there is nothing
3047 * to unshare. Note that unsharing the address space or the
3048 * signal handlers also need to unshare the signal queues (aka
3049 * CLONE_THREAD).
cf2e340f 3050 */
9bfb23fc 3051 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
12c641ab
EB
3052 if (!thread_group_empty(current))
3053 return -EINVAL;
3054 }
3055 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
d036bda7 3056 if (refcount_read(&current->sighand->count) > 1)
12c641ab
EB
3057 return -EINVAL;
3058 }
3059 if (unshare_flags & CLONE_VM) {
3060 if (!current_is_single_threaded())
9bfb23fc
ON
3061 return -EINVAL;
3062 }
cf2e340f
JD
3063
3064 return 0;
3065}
3066
3067/*
99d1419d 3068 * Unshare the filesystem structure if it is being shared
cf2e340f
JD
3069 */
3070static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3071{
3072 struct fs_struct *fs = current->fs;
3073
498052bb
AV
3074 if (!(unshare_flags & CLONE_FS) || !fs)
3075 return 0;
3076
3077 /* don't need lock here; in the worst case we'll do useless copy */
3078 if (fs->users == 1)
3079 return 0;
3080
3081 *new_fsp = copy_fs_struct(fs);
3082 if (!*new_fsp)
3083 return -ENOMEM;
cf2e340f
JD
3084
3085 return 0;
3086}
3087
cf2e340f 3088/*
a016f338 3089 * Unshare file descriptor table if it is being shared
cf2e340f 3090 */
60997c3d
CB
3091int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3092 struct files_struct **new_fdp)
cf2e340f
JD
3093{
3094 struct files_struct *fd = current->files;
a016f338 3095 int error = 0;
cf2e340f
JD
3096
3097 if ((unshare_flags & CLONE_FILES) &&
a016f338 3098 (fd && atomic_read(&fd->count) > 1)) {
60997c3d 3099 *new_fdp = dup_fd(fd, max_fds, &error);
a016f338
JD
3100 if (!*new_fdp)
3101 return error;
3102 }
cf2e340f
JD
3103
3104 return 0;
3105}
3106
cf2e340f
JD
3107/*
3108 * unshare allows a process to 'unshare' part of the process
3109 * context which was originally shared using clone. copy_*
cad6967a 3110 * functions used by kernel_clone() cannot be used here directly
cf2e340f
JD
3111 * because they modify an inactive task_struct that is being
3112 * constructed. Here we are modifying the current, active,
3113 * task_struct.
3114 */
9b32105e 3115int ksys_unshare(unsigned long unshare_flags)
cf2e340f 3116{
cf2e340f 3117 struct fs_struct *fs, *new_fs = NULL;
ba1f70dd 3118 struct files_struct *new_fd = NULL;
b2e0d987 3119 struct cred *new_cred = NULL;
cf7b708c 3120 struct nsproxy *new_nsproxy = NULL;
9edff4ab 3121 int do_sysvsem = 0;
9bfb23fc 3122 int err;
cf2e340f 3123
b2e0d987 3124 /*
faf00da5
EB
3125 * If unsharing a user namespace must also unshare the thread group
3126 * and unshare the filesystem root and working directories.
b2e0d987
EB
3127 */
3128 if (unshare_flags & CLONE_NEWUSER)
e66eded8 3129 unshare_flags |= CLONE_THREAD | CLONE_FS;
50804fe3
EB
3130 /*
3131 * If unsharing vm, must also unshare signal handlers.
3132 */
3133 if (unshare_flags & CLONE_VM)
3134 unshare_flags |= CLONE_SIGHAND;
12c641ab
EB
3135 /*
3136 * If unsharing a signal handlers, must also unshare the signal queues.
3137 */
3138 if (unshare_flags & CLONE_SIGHAND)
3139 unshare_flags |= CLONE_THREAD;
9bfb23fc
ON
3140 /*
3141 * If unsharing namespace, must also unshare filesystem information.
3142 */
3143 if (unshare_flags & CLONE_NEWNS)
3144 unshare_flags |= CLONE_FS;
50804fe3
EB
3145
3146 err = check_unshare_flags(unshare_flags);
3147 if (err)
3148 goto bad_unshare_out;
6013f67f
MS
3149 /*
3150 * CLONE_NEWIPC must also detach from the undolist: after switching
3151 * to a new ipc namespace, the semaphore arrays from the old
3152 * namespace are unreachable.
3153 */
3154 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
9edff4ab 3155 do_sysvsem = 1;
fb0a685c
DRO
3156 err = unshare_fs(unshare_flags, &new_fs);
3157 if (err)
9bfb23fc 3158 goto bad_unshare_out;
60997c3d 3159 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
fb0a685c 3160 if (err)
9bfb23fc 3161 goto bad_unshare_cleanup_fs;
b2e0d987 3162 err = unshare_userns(unshare_flags, &new_cred);
fb0a685c 3163 if (err)
9edff4ab 3164 goto bad_unshare_cleanup_fd;
b2e0d987
EB
3165 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3166 new_cred, new_fs);
3167 if (err)
3168 goto bad_unshare_cleanup_cred;
c0b2fc31 3169
905ae01c
AG
3170 if (new_cred) {
3171 err = set_cred_ucounts(new_cred);
3172 if (err)
3173 goto bad_unshare_cleanup_cred;
3174 }
3175
b2e0d987 3176 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
9edff4ab
MS
3177 if (do_sysvsem) {
3178 /*
3179 * CLONE_SYSVSEM is equivalent to sys_exit().
3180 */
3181 exit_sem(current);
3182 }
ab602f79
JM
3183 if (unshare_flags & CLONE_NEWIPC) {
3184 /* Orphan segments in old ns (see sem above). */
3185 exit_shm(current);
3186 shm_init_task(current);
3187 }
ab516013 3188
6f977e6b 3189 if (new_nsproxy)
cf7b708c 3190 switch_task_namespaces(current, new_nsproxy);
cf2e340f 3191
cf7b708c
PE
3192 task_lock(current);
3193
cf2e340f
JD
3194 if (new_fs) {
3195 fs = current->fs;
2a4419b5 3196 spin_lock(&fs->lock);
cf2e340f 3197 current->fs = new_fs;
498052bb
AV
3198 if (--fs->users)
3199 new_fs = NULL;
3200 else
3201 new_fs = fs;
2a4419b5 3202 spin_unlock(&fs->lock);
cf2e340f
JD
3203 }
3204
ba1f70dd
RX
3205 if (new_fd)
3206 swap(current->files, new_fd);
cf2e340f
JD
3207
3208 task_unlock(current);
b2e0d987
EB
3209
3210 if (new_cred) {
3211 /* Install the new user namespace */
3212 commit_creds(new_cred);
3213 new_cred = NULL;
3214 }
cf2e340f
JD
3215 }
3216
e4222673
HB
3217 perf_event_namespaces(current);
3218
b2e0d987
EB
3219bad_unshare_cleanup_cred:
3220 if (new_cred)
3221 put_cred(new_cred);
cf2e340f
JD
3222bad_unshare_cleanup_fd:
3223 if (new_fd)
3224 put_files_struct(new_fd);
3225
cf2e340f
JD
3226bad_unshare_cleanup_fs:
3227 if (new_fs)
498052bb 3228 free_fs_struct(new_fs);
cf2e340f 3229
cf2e340f
JD
3230bad_unshare_out:
3231 return err;
3232}
3b125388 3233
9b32105e
DB
3234SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3235{
3236 return ksys_unshare(unshare_flags);
3237}
3238
3b125388
AV
3239/*
3240 * Helper to unshare the files of the current task.
3241 * We don't want to expose copy_files internals to
3242 * the exec layer of the kernel.
3243 */
3244
1f702603 3245int unshare_files(void)
3b125388
AV
3246{
3247 struct task_struct *task = current;
1f702603 3248 struct files_struct *old, *copy = NULL;
3b125388
AV
3249 int error;
3250
60997c3d 3251 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
1f702603 3252 if (error || !copy)
3b125388 3253 return error;
1f702603
EB
3254
3255 old = task->files;
3b125388
AV
3256 task_lock(task);
3257 task->files = copy;
3258 task_unlock(task);
1f702603 3259 put_files_struct(old);
3b125388
AV
3260 return 0;
3261}
16db3d3f
HS
3262
3263int sysctl_max_threads(struct ctl_table *table, int write,
b0daa2c7 3264 void *buffer, size_t *lenp, loff_t *ppos)
16db3d3f
HS
3265{
3266 struct ctl_table t;
3267 int ret;
3268 int threads = max_threads;
b0f53dbc 3269 int min = 1;
16db3d3f
HS
3270 int max = MAX_THREADS;
3271
3272 t = *table;
3273 t.data = &threads;
3274 t.extra1 = &min;
3275 t.extra2 = &max;
3276
3277 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3278 if (ret || !write)
3279 return ret;
3280
b0f53dbc 3281 max_threads = threads;
16db3d3f
HS
3282
3283 return 0;
3284}