Merge tag 'mm-nonmm-stable-2024-01-09-10-33' of git://git.kernel.org/pub/scm/linux...
[linux-2.6-block.git] / kernel / fork.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8/*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
b3e58382 15#include <linux/anon_inodes.h>
1da177e4 16#include <linux/slab.h>
4eb5aaa3 17#include <linux/sched/autogroup.h>
6e84f315 18#include <linux/sched/mm.h>
f7ccbae4 19#include <linux/sched/coredump.h>
8703e8a4 20#include <linux/sched/user.h>
6a3827d7 21#include <linux/sched/numa_balancing.h>
03441a34 22#include <linux/sched/stat.h>
29930025 23#include <linux/sched/task.h>
68db0cf1 24#include <linux/sched/task_stack.h>
32ef5517 25#include <linux/sched/cputime.h>
b3e58382 26#include <linux/seq_file.h>
037741a6 27#include <linux/rtmutex.h>
1da177e4
LT
28#include <linux/init.h>
29#include <linux/unistd.h>
1da177e4
LT
30#include <linux/module.h>
31#include <linux/vmalloc.h>
32#include <linux/completion.h>
1da177e4
LT
33#include <linux/personality.h>
34#include <linux/mempolicy.h>
35#include <linux/sem.h>
36#include <linux/file.h>
9f3acc31 37#include <linux/fdtable.h>
da9cbc87 38#include <linux/iocontext.h>
1da177e4 39#include <linux/key.h>
50b5e49c 40#include <linux/kmsan.h>
1da177e4
LT
41#include <linux/binfmts.h>
42#include <linux/mman.h>
cddb8a5c 43#include <linux/mmu_notifier.h>
1da177e4 44#include <linux/fs.h>
615d6e87 45#include <linux/mm.h>
17fca131 46#include <linux/mm_inline.h>
ab516013 47#include <linux/nsproxy.h>
c59ede7b 48#include <linux/capability.h>
1da177e4 49#include <linux/cpu.h>
b4f48b63 50#include <linux/cgroup.h>
1da177e4 51#include <linux/security.h>
a1e78772 52#include <linux/hugetlb.h>
e2cfabdf 53#include <linux/seccomp.h>
1da177e4
LT
54#include <linux/swap.h>
55#include <linux/syscalls.h>
56#include <linux/jiffies.h>
57#include <linux/futex.h>
8141c7f3 58#include <linux/compat.h>
207205a2 59#include <linux/kthread.h>
7c3ab738 60#include <linux/task_io_accounting_ops.h>
ab2af1f5 61#include <linux/rcupdate.h>
1da177e4
LT
62#include <linux/ptrace.h>
63#include <linux/mount.h>
64#include <linux/audit.h>
78fb7466 65#include <linux/memcontrol.h>
f201ae23 66#include <linux/ftrace.h>
5e2bf014 67#include <linux/proc_fs.h>
1da177e4
LT
68#include <linux/profile.h>
69#include <linux/rmap.h>
f8af4da3 70#include <linux/ksm.h>
1da177e4 71#include <linux/acct.h>
893e26e6 72#include <linux/userfaultfd_k.h>
8f0ab514 73#include <linux/tsacct_kern.h>
9f46080c 74#include <linux/cn_proc.h>
ba96a0c8 75#include <linux/freezer.h>
ca74e92b 76#include <linux/delayacct.h>
ad4ecbcb 77#include <linux/taskstats_kern.h>
522ed776 78#include <linux/tty.h>
5ad4e53b 79#include <linux/fs_struct.h>
7c9f8861 80#include <linux/magic.h>
cdd6c482 81#include <linux/perf_event.h>
42c4ab41 82#include <linux/posix-timers.h>
8e7cac79 83#include <linux/user-return-notifier.h>
3d5992d2 84#include <linux/oom.h>
ba76149f 85#include <linux/khugepaged.h>
d80e731e 86#include <linux/signalfd.h>
0326f5a9 87#include <linux/uprobes.h>
a27bb332 88#include <linux/aio.h>
52f5684c 89#include <linux/compiler.h>
16db3d3f 90#include <linux/sysctl.h>
5c9a8750 91#include <linux/kcov.h>
d83a7cb3 92#include <linux/livepatch.h>
48ac3c18 93#include <linux/thread_info.h>
afaef01c 94#include <linux/stackleak.h>
eafb149e 95#include <linux/kasan.h>
d08b9f0c 96#include <linux/scs.h>
0f212204 97#include <linux/io_uring.h>
a10787e6 98#include <linux/bpf.h>
b3883a9a 99#include <linux/stackprotector.h>
fd593511 100#include <linux/user_events.h>
cd389115 101#include <linux/iommu.h>
1da177e4 102
1da177e4 103#include <asm/pgalloc.h>
7c0f6ba6 104#include <linux/uaccess.h>
1da177e4
LT
105#include <asm/mmu_context.h>
106#include <asm/cacheflush.h>
107#include <asm/tlbflush.h>
108
ad8d75ff
SR
109#include <trace/events/sched.h>
110
43d2b113
KH
111#define CREATE_TRACE_POINTS
112#include <trace/events/task.h>
113
ac1b398d
HS
114/*
115 * Minimum number of threads to boot the kernel
116 */
117#define MIN_THREADS 20
118
119/*
120 * Maximum number of threads
121 */
122#define MAX_THREADS FUTEX_TID_MASK
123
1da177e4
LT
124/*
125 * Protected counters by write_lock_irq(&tasklist_lock)
126 */
127unsigned long total_forks; /* Handle normal Linux uptimes. */
fb0a685c 128int nr_threads; /* The idle threads do not count.. */
1da177e4 129
8856ae4d 130static int max_threads; /* tunable limit on nr_threads */
1da177e4 131
8495f7e6
SPP
132#define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
133
134static const char * const resident_page_types[] = {
135 NAMED_ARRAY_INDEX(MM_FILEPAGES),
136 NAMED_ARRAY_INDEX(MM_ANONPAGES),
137 NAMED_ARRAY_INDEX(MM_SWAPENTS),
138 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
139};
140
1da177e4
LT
141DEFINE_PER_CPU(unsigned long, process_counts) = 0;
142
c59923a1 143__cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
db1466b3
PM
144
145#ifdef CONFIG_PROVE_RCU
146int lockdep_tasklist_lock_is_held(void)
147{
148 return lockdep_is_held(&tasklist_lock);
149}
150EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
151#endif /* #ifdef CONFIG_PROVE_RCU */
1da177e4
LT
152
153int nr_processes(void)
154{
155 int cpu;
156 int total = 0;
157
1d510750 158 for_each_possible_cpu(cpu)
1da177e4
LT
159 total += per_cpu(process_counts, cpu);
160
161 return total;
162}
163
f19b9f74
AM
164void __weak arch_release_task_struct(struct task_struct *tsk)
165{
166}
167
e18b890b 168static struct kmem_cache *task_struct_cachep;
41101809
TG
169
170static inline struct task_struct *alloc_task_struct_node(int node)
171{
172 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
173}
174
41101809
TG
175static inline void free_task_struct(struct task_struct *tsk)
176{
41101809
TG
177 kmem_cache_free(task_struct_cachep, tsk);
178}
41101809 179
0d15d74a
TG
180/*
181 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
182 * kmemcache based allocator.
183 */
ba14a194 184# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
ac496bf4 185
be9a2277 186# ifdef CONFIG_VMAP_STACK
ac496bf4
AL
187/*
188 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
189 * flush. Try to minimize the number of calls by caching stacks.
190 */
191#define NR_CACHED_STACKS 2
192static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
19659c59 193
e540bf31
SAS
194struct vm_stack {
195 struct rcu_head rcu;
196 struct vm_struct *stack_vm_area;
197};
198
199static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
200{
201 unsigned int i;
202
203 for (i = 0; i < NR_CACHED_STACKS; i++) {
204 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
205 continue;
206 return true;
207 }
208 return false;
209}
210
211static void thread_stack_free_rcu(struct rcu_head *rh)
212{
213 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
214
215 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
216 return;
217
218 vfree(vm_stack);
219}
220
221static void thread_stack_delayed_free(struct task_struct *tsk)
222{
223 struct vm_stack *vm_stack = tsk->stack;
224
225 vm_stack->stack_vm_area = tsk->stack_vm_area;
226 call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
227}
228
19659c59
HR
229static int free_vm_stack_cache(unsigned int cpu)
230{
231 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
232 int i;
233
234 for (i = 0; i < NR_CACHED_STACKS; i++) {
235 struct vm_struct *vm_stack = cached_vm_stacks[i];
236
237 if (!vm_stack)
238 continue;
239
240 vfree(vm_stack->addr);
241 cached_vm_stacks[i] = NULL;
242 }
243
244 return 0;
245}
ac496bf4 246
1a03d3f1 247static int memcg_charge_kernel_stack(struct vm_struct *vm)
b69c49b7 248{
f1c1a9ee
SAS
249 int i;
250 int ret;
4e2f6342 251 int nr_charged = 0;
f1c1a9ee 252
f1c1a9ee
SAS
253 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
254
255 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
256 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
257 if (ret)
258 goto err;
4e2f6342 259 nr_charged++;
f1c1a9ee
SAS
260 }
261 return 0;
262err:
4e2f6342 263 for (i = 0; i < nr_charged; i++)
f1c1a9ee
SAS
264 memcg_kmem_uncharge_page(vm->pages[i], 0);
265 return ret;
266}
267
7865aba3 268static int alloc_thread_stack_node(struct task_struct *tsk, int node)
b69c49b7 269{
1a03d3f1 270 struct vm_struct *vm;
ac496bf4
AL
271 void *stack;
272 int i;
273
ac496bf4 274 for (i = 0; i < NR_CACHED_STACKS; i++) {
112166f8
CL
275 struct vm_struct *s;
276
277 s = this_cpu_xchg(cached_stacks[i], NULL);
ac496bf4
AL
278
279 if (!s)
280 continue;
ac496bf4 281
51fb34de 282 /* Reset stack metadata. */
cebd0eb2 283 kasan_unpoison_range(s->addr, THREAD_SIZE);
eafb149e 284
51fb34de
AK
285 stack = kasan_reset_tag(s->addr);
286
ca182551 287 /* Clear stale pointers from reused stack. */
51fb34de 288 memset(stack, 0, THREAD_SIZE);
e01e8063 289
1a03d3f1 290 if (memcg_charge_kernel_stack(s)) {
f1c1a9ee
SAS
291 vfree(s->addr);
292 return -ENOMEM;
293 }
294
ac496bf4 295 tsk->stack_vm_area = s;
51fb34de 296 tsk->stack = stack;
7865aba3 297 return 0;
ac496bf4 298 }
ac496bf4 299
9b6f7e16
RG
300 /*
301 * Allocated stacks are cached and later reused by new threads,
302 * so memcg accounting is performed manually on assigning/releasing
303 * stacks to tasks. Drop __GFP_ACCOUNT.
304 */
48ac3c18 305 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
ac496bf4 306 VMALLOC_START, VMALLOC_END,
9b6f7e16 307 THREADINFO_GFP & ~__GFP_ACCOUNT,
ac496bf4
AL
308 PAGE_KERNEL,
309 0, node, __builtin_return_address(0));
7865aba3
SAS
310 if (!stack)
311 return -ENOMEM;
ba14a194 312
1a03d3f1
SAS
313 vm = find_vm_area(stack);
314 if (memcg_charge_kernel_stack(vm)) {
f1c1a9ee
SAS
315 vfree(stack);
316 return -ENOMEM;
317 }
ba14a194
AL
318 /*
319 * We can't call find_vm_area() in interrupt context, and
320 * free_thread_stack() can be called in interrupt context,
321 * so cache the vm_struct.
322 */
1a03d3f1 323 tsk->stack_vm_area = vm;
51fb34de 324 stack = kasan_reset_tag(stack);
7865aba3
SAS
325 tsk->stack = stack;
326 return 0;
b69c49b7
FT
327}
328
be9a2277 329static void free_thread_stack(struct task_struct *tsk)
b69c49b7 330{
e540bf31
SAS
331 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
332 thread_stack_delayed_free(tsk);
9b6f7e16 333
be9a2277
SAS
334 tsk->stack = NULL;
335 tsk->stack_vm_area = NULL;
336}
ac496bf4 337
be9a2277 338# else /* !CONFIG_VMAP_STACK */
ac496bf4 339
e540bf31
SAS
340static void thread_stack_free_rcu(struct rcu_head *rh)
341{
342 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
343}
344
345static void thread_stack_delayed_free(struct task_struct *tsk)
346{
347 struct rcu_head *rh = tsk->stack;
348
349 call_rcu(rh, thread_stack_free_rcu);
350}
351
7865aba3 352static int alloc_thread_stack_node(struct task_struct *tsk, int node)
be9a2277 353{
4949148a
VD
354 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
355 THREAD_SIZE_ORDER);
b6a84016 356
1bf4580e 357 if (likely(page)) {
8dcc1d34 358 tsk->stack = kasan_reset_tag(page_address(page));
7865aba3 359 return 0;
1bf4580e 360 }
7865aba3 361 return -ENOMEM;
b69c49b7
FT
362}
363
be9a2277 364static void free_thread_stack(struct task_struct *tsk)
b69c49b7 365{
e540bf31 366 thread_stack_delayed_free(tsk);
be9a2277 367 tsk->stack = NULL;
b69c49b7 368}
ac496bf4 369
be9a2277
SAS
370# endif /* CONFIG_VMAP_STACK */
371# else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
9b6f7e16 372
b235beea 373static struct kmem_cache *thread_stack_cache;
ac496bf4 374
e540bf31
SAS
375static void thread_stack_free_rcu(struct rcu_head *rh)
376{
377 kmem_cache_free(thread_stack_cache, rh);
378}
ac496bf4 379
e540bf31
SAS
380static void thread_stack_delayed_free(struct task_struct *tsk)
381{
382 struct rcu_head *rh = tsk->stack;
ac496bf4 383
e540bf31 384 call_rcu(rh, thread_stack_free_rcu);
b69c49b7 385}
0d15d74a 386
7865aba3 387static int alloc_thread_stack_node(struct task_struct *tsk, int node)
0d15d74a 388{
5eed6f1d
RR
389 unsigned long *stack;
390 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
8dcc1d34 391 stack = kasan_reset_tag(stack);
5eed6f1d 392 tsk->stack = stack;
7865aba3 393 return stack ? 0 : -ENOMEM;
0d15d74a
TG
394}
395
ba14a194 396static void free_thread_stack(struct task_struct *tsk)
0d15d74a 397{
e540bf31 398 thread_stack_delayed_free(tsk);
be9a2277 399 tsk->stack = NULL;
0d15d74a
TG
400}
401
b235beea 402void thread_stack_cache_init(void)
0d15d74a 403{
f9d29946
DW
404 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
405 THREAD_SIZE, THREAD_SIZE, 0, 0,
406 THREAD_SIZE, NULL);
b235beea 407 BUG_ON(thread_stack_cache == NULL);
0d15d74a 408}
be9a2277
SAS
409
410# endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
b69c49b7 411
1da177e4 412/* SLAB cache for signal_struct structures (tsk->signal) */
e18b890b 413static struct kmem_cache *signal_cachep;
1da177e4
LT
414
415/* SLAB cache for sighand_struct structures (tsk->sighand) */
e18b890b 416struct kmem_cache *sighand_cachep;
1da177e4
LT
417
418/* SLAB cache for files_struct structures (tsk->files) */
e18b890b 419struct kmem_cache *files_cachep;
1da177e4
LT
420
421/* SLAB cache for fs_struct structures (tsk->fs) */
e18b890b 422struct kmem_cache *fs_cachep;
1da177e4
LT
423
424/* SLAB cache for vm_area_struct structures */
3928d4f5 425static struct kmem_cache *vm_area_cachep;
1da177e4
LT
426
427/* SLAB cache for mm_struct structures (tsk->mm) */
e18b890b 428static struct kmem_cache *mm_cachep;
1da177e4 429
c7f8f31c
SB
430#ifdef CONFIG_PER_VMA_LOCK
431
432/* SLAB cache for vm_area_struct.lock */
433static struct kmem_cache *vma_lock_cachep;
434
435static bool vma_lock_alloc(struct vm_area_struct *vma)
436{
437 vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
438 if (!vma->vm_lock)
439 return false;
440
441 init_rwsem(&vma->vm_lock->lock);
442 vma->vm_lock_seq = -1;
443
444 return true;
445}
446
447static inline void vma_lock_free(struct vm_area_struct *vma)
448{
449 kmem_cache_free(vma_lock_cachep, vma->vm_lock);
450}
451
452#else /* CONFIG_PER_VMA_LOCK */
453
454static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
455static inline void vma_lock_free(struct vm_area_struct *vma) {}
456
457#endif /* CONFIG_PER_VMA_LOCK */
458
490fc053 459struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
3928d4f5 460{
a670468f 461 struct vm_area_struct *vma;
490fc053 462
a670468f 463 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
c7f8f31c
SB
464 if (!vma)
465 return NULL;
466
467 vma_init(vma, mm);
468 if (!vma_lock_alloc(vma)) {
469 kmem_cache_free(vm_area_cachep, vma);
470 return NULL;
471 }
472
490fc053 473 return vma;
3928d4f5
LT
474}
475
476struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
477{
95faf699
LT
478 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
479
c7f8f31c
SB
480 if (!new)
481 return NULL;
482
483 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
484 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
485 /*
486 * orig->shared.rb may be modified concurrently, but the clone
487 * will be reinitialized.
488 */
489 data_race(memcpy(new, orig, sizeof(*new)));
490 if (!vma_lock_alloc(new)) {
491 kmem_cache_free(vm_area_cachep, new);
492 return NULL;
95faf699 493 }
c7f8f31c 494 INIT_LIST_HEAD(&new->anon_vma_chain);
ef6a22b7 495 vma_numab_state_init(new);
c7f8f31c
SB
496 dup_anon_vma_name(orig, new);
497
95faf699 498 return new;
3928d4f5
LT
499}
500
0d2ebf9c 501void __vm_area_free(struct vm_area_struct *vma)
3928d4f5 502{
ef6a22b7 503 vma_numab_state_free(vma);
5c26f6ac 504 free_anon_vma_name(vma);
c7f8f31c 505 vma_lock_free(vma);
3928d4f5
LT
506 kmem_cache_free(vm_area_cachep, vma);
507}
508
20cce633
ML
509#ifdef CONFIG_PER_VMA_LOCK
510static void vm_area_free_rcu_cb(struct rcu_head *head)
511{
512 struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
513 vm_rcu);
f2e13784
SB
514
515 /* The vma should not be locked while being destroyed. */
c7f8f31c 516 VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
20cce633
ML
517 __vm_area_free(vma);
518}
519#endif
520
521void vm_area_free(struct vm_area_struct *vma)
522{
523#ifdef CONFIG_PER_VMA_LOCK
524 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
525#else
526 __vm_area_free(vma);
527#endif
528}
529
ba14a194 530static void account_kernel_stack(struct task_struct *tsk, int account)
c6a7f572 531{
0ce055f8
SAS
532 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
533 struct vm_struct *vm = task_stack_vm_area(tsk);
27faca83 534 int i;
ba14a194 535
27faca83
MS
536 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
537 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
538 account * (PAGE_SIZE / 1024));
539 } else {
0ce055f8
SAS
540 void *stack = task_stack_page(tsk);
541
27faca83 542 /* All stack pages are in the same node. */
da3ceeff 543 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
991e7673 544 account * (THREAD_SIZE / 1024));
27faca83 545 }
c6a7f572
KM
546}
547
1a03d3f1 548void exit_task_stack_account(struct task_struct *tsk)
9b6f7e16 549{
1a03d3f1 550 account_kernel_stack(tsk, -1);
991e7673 551
1a03d3f1
SAS
552 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
553 struct vm_struct *vm;
9b6f7e16
RG
554 int i;
555
1a03d3f1
SAS
556 vm = task_stack_vm_area(tsk);
557 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
558 memcg_kmem_uncharge_page(vm->pages[i], 0);
9b6f7e16 559 }
9b6f7e16
RG
560}
561
68f24b08 562static void release_task_stack(struct task_struct *tsk)
1da177e4 563{
2f064a59 564 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
405c0759
AL
565 return; /* Better to leak the stack than to free prematurely */
566
ba14a194 567 free_thread_stack(tsk);
68f24b08
AL
568}
569
570#ifdef CONFIG_THREAD_INFO_IN_TASK
571void put_task_stack(struct task_struct *tsk)
572{
f0b89d39 573 if (refcount_dec_and_test(&tsk->stack_refcount))
68f24b08
AL
574 release_task_stack(tsk);
575}
576#endif
577
578void free_task(struct task_struct *tsk)
579{
a1140cb2
KI
580#ifdef CONFIG_SECCOMP
581 WARN_ON_ONCE(tsk->seccomp.filter);
582#endif
b90ca8ba 583 release_user_cpus_ptr(tsk);
d08b9f0c
ST
584 scs_release(tsk);
585
68f24b08
AL
586#ifndef CONFIG_THREAD_INFO_IN_TASK
587 /*
588 * The task is finally done with both the stack and thread_info,
589 * so free both.
590 */
591 release_task_stack(tsk);
592#else
593 /*
594 * If the task had a separate stack allocation, it should be gone
595 * by now.
596 */
f0b89d39 597 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
68f24b08 598#endif
23f78d4a 599 rt_mutex_debug_task_free(tsk);
fb52607a 600 ftrace_graph_exit_task(tsk);
f19b9f74 601 arch_release_task_struct(tsk);
1da5c46f
ON
602 if (tsk->flags & PF_KTHREAD)
603 free_kthread_struct(tsk);
b0fd1852 604 bpf_task_storage_free(tsk);
1da177e4
LT
605 free_task_struct(tsk);
606}
607EXPORT_SYMBOL(free_task);
608
fe69d560
DH
609static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
610{
611 struct file *exe_file;
612
613 exe_file = get_mm_exe_file(oldmm);
614 RCU_INIT_POINTER(mm->exe_file, exe_file);
615 /*
616 * We depend on the oldmm having properly denied write access to the
617 * exe_file already.
618 */
619 if (exe_file && deny_write_access(exe_file))
620 pr_warn_once("deny_write_access() failed in %s\n", __func__);
621}
622
d70f2a14
AM
623#ifdef CONFIG_MMU
624static __latent_entropy int dup_mmap(struct mm_struct *mm,
625 struct mm_struct *oldmm)
626{
763ecb03 627 struct vm_area_struct *mpnt, *tmp;
d70f2a14 628 int retval;
c9dbe82c 629 unsigned long charge = 0;
d70f2a14 630 LIST_HEAD(uf);
3b9dbd5e 631 VMA_ITERATOR(vmi, mm, 0);
d70f2a14
AM
632
633 uprobe_start_dup_mmap();
d8ed45c5 634 if (mmap_write_lock_killable(oldmm)) {
d70f2a14
AM
635 retval = -EINTR;
636 goto fail_uprobe_end;
637 }
638 flush_cache_dup_mm(oldmm);
639 uprobe_dup_mmap(oldmm, mm);
640 /*
641 * Not linked in yet - no deadlock potential:
642 */
aaa2cc56 643 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
d70f2a14
AM
644
645 /* No ordering required: file already has been exposed. */
fe69d560 646 dup_mm_exe_file(mm, oldmm);
d70f2a14
AM
647
648 mm->total_vm = oldmm->total_vm;
649 mm->data_vm = oldmm->data_vm;
650 mm->exec_vm = oldmm->exec_vm;
651 mm->stack_vm = oldmm->stack_vm;
652
d70f2a14
AM
653 retval = ksm_fork(mm, oldmm);
654 if (retval)
655 goto out;
d2081b2b 656 khugepaged_fork(mm, oldmm);
d70f2a14 657
d2406291
PZ
658 /* Use __mt_dup() to efficiently build an identical maple tree. */
659 retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL);
660 if (unlikely(retval))
c9dbe82c
LH
661 goto out;
662
3dd44325 663 mt_clear_in_rcu(vmi.mas.tree);
d2406291 664 for_each_vma(vmi, mpnt) {
d70f2a14
AM
665 struct file *file;
666
fb49c455 667 vma_start_write(mpnt);
d70f2a14 668 if (mpnt->vm_flags & VM_DONTCOPY) {
d2406291
PZ
669 retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start,
670 mpnt->vm_end, GFP_KERNEL);
671 if (retval)
672 goto loop_out;
673
d70f2a14
AM
674 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
675 continue;
676 }
677 charge = 0;
655c79bb
TH
678 /*
679 * Don't duplicate many vmas if we've been oom-killed (for
680 * example)
681 */
682 if (fatal_signal_pending(current)) {
683 retval = -EINTR;
d4af56c5 684 goto loop_out;
655c79bb 685 }
d70f2a14
AM
686 if (mpnt->vm_flags & VM_ACCOUNT) {
687 unsigned long len = vma_pages(mpnt);
688
689 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
690 goto fail_nomem;
691 charge = len;
692 }
3928d4f5 693 tmp = vm_area_dup(mpnt);
d70f2a14
AM
694 if (!tmp)
695 goto fail_nomem;
d70f2a14
AM
696 retval = vma_dup_policy(mpnt, tmp);
697 if (retval)
698 goto fail_nomem_policy;
699 tmp->vm_mm = mm;
700 retval = dup_userfaultfd(tmp, &uf);
701 if (retval)
702 goto fail_nomem_anon_vma_fork;
703 if (tmp->vm_flags & VM_WIPEONFORK) {
93949bb2
LX
704 /*
705 * VM_WIPEONFORK gets a clean slate in the child.
706 * Don't prepare anon_vma until fault since we don't
707 * copy page for current vma.
708 */
d70f2a14 709 tmp->anon_vma = NULL;
d70f2a14
AM
710 } else if (anon_vma_fork(tmp, mpnt))
711 goto fail_nomem_anon_vma_fork;
e430a95a 712 vm_flags_clear(tmp, VM_LOCKED_MASK);
d70f2a14
AM
713 file = tmp->vm_file;
714 if (file) {
d70f2a14
AM
715 struct address_space *mapping = file->f_mapping;
716
717 get_file(file);
d70f2a14 718 i_mmap_lock_write(mapping);
e8e17ee9 719 if (vma_is_shared_maywrite(tmp))
cf508b58 720 mapping_allow_writable(mapping);
d70f2a14
AM
721 flush_dcache_mmap_lock(mapping);
722 /* insert tmp into the share list, just after mpnt */
723 vma_interval_tree_insert_after(tmp, mpnt,
724 &mapping->i_mmap);
725 flush_dcache_mmap_unlock(mapping);
726 i_mmap_unlock_write(mapping);
727 }
728
729 /*
8d9bfb26 730 * Copy/update hugetlb private vma information.
d70f2a14
AM
731 */
732 if (is_vm_hugetlb_page(tmp))
8d9bfb26 733 hugetlb_dup_vma_private(tmp);
d70f2a14 734
d2406291
PZ
735 /*
736 * Link the vma into the MT. After using __mt_dup(), memory
737 * allocation is not necessary here, so it cannot fail.
738 */
739 vma_iter_bulk_store(&vmi, tmp);
d70f2a14
AM
740
741 mm->map_count++;
742 if (!(tmp->vm_flags & VM_WIPEONFORK))
c78f4636 743 retval = copy_page_range(tmp, mpnt);
d70f2a14
AM
744
745 if (tmp->vm_ops && tmp->vm_ops->open)
746 tmp->vm_ops->open(tmp);
747
d2406291
PZ
748 if (retval) {
749 mpnt = vma_next(&vmi);
d4af56c5 750 goto loop_out;
d2406291 751 }
d70f2a14
AM
752 }
753 /* a new mm has just been created */
1ed0cc5a 754 retval = arch_dup_mmap(oldmm, mm);
d4af56c5 755loop_out:
3b9dbd5e 756 vma_iter_free(&vmi);
d2406291 757 if (!retval) {
3dd44325 758 mt_set_in_rcu(vmi.mas.tree);
d2406291
PZ
759 } else if (mpnt) {
760 /*
761 * The entire maple tree has already been duplicated. If the
762 * mmap duplication fails, mark the failure point with
763 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered,
764 * stop releasing VMAs that have not been duplicated after this
765 * point.
766 */
767 mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1);
768 mas_store(&vmi.mas, XA_ZERO_ENTRY);
769 }
d70f2a14 770out:
d8ed45c5 771 mmap_write_unlock(mm);
d70f2a14 772 flush_tlb_mm(oldmm);
d8ed45c5 773 mmap_write_unlock(oldmm);
d70f2a14
AM
774 dup_userfaultfd_complete(&uf);
775fail_uprobe_end:
776 uprobe_end_dup_mmap();
777 return retval;
c9dbe82c 778
d70f2a14
AM
779fail_nomem_anon_vma_fork:
780 mpol_put(vma_policy(tmp));
781fail_nomem_policy:
3928d4f5 782 vm_area_free(tmp);
d70f2a14
AM
783fail_nomem:
784 retval = -ENOMEM;
785 vm_unacct_memory(charge);
d4af56c5 786 goto loop_out;
d70f2a14
AM
787}
788
789static inline int mm_alloc_pgd(struct mm_struct *mm)
790{
791 mm->pgd = pgd_alloc(mm);
792 if (unlikely(!mm->pgd))
793 return -ENOMEM;
794 return 0;
795}
796
797static inline void mm_free_pgd(struct mm_struct *mm)
798{
799 pgd_free(mm, mm->pgd);
800}
801#else
802static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
803{
d8ed45c5 804 mmap_write_lock(oldmm);
fe69d560 805 dup_mm_exe_file(mm, oldmm);
d8ed45c5 806 mmap_write_unlock(oldmm);
d70f2a14
AM
807 return 0;
808}
809#define mm_alloc_pgd(mm) (0)
810#define mm_free_pgd(mm)
811#endif /* CONFIG_MMU */
812
813static void check_mm(struct mm_struct *mm)
814{
815 int i;
816
8495f7e6
SPP
817 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
818 "Please make sure 'struct resident_page_types[]' is updated as well");
819
d70f2a14 820 for (i = 0; i < NR_MM_COUNTERS; i++) {
f1a79412 821 long x = percpu_counter_sum(&mm->rss_stat[i]);
d70f2a14
AM
822
823 if (unlikely(x))
8495f7e6
SPP
824 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
825 mm, resident_page_types[i], x);
d70f2a14
AM
826 }
827
828 if (mm_pgtables_bytes(mm))
829 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
830 mm_pgtables_bytes(mm));
831
832#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
833 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
834#endif
835}
836
837#define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
838#define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
839
2655421a
NP
840static void do_check_lazy_tlb(void *arg)
841{
842 struct mm_struct *mm = arg;
843
844 WARN_ON_ONCE(current->active_mm == mm);
845}
846
847static void do_shoot_lazy_tlb(void *arg)
848{
849 struct mm_struct *mm = arg;
850
851 if (current->active_mm == mm) {
852 WARN_ON_ONCE(current->mm);
853 current->active_mm = &init_mm;
854 switch_mm(mm, &init_mm, current);
855 }
856}
857
858static void cleanup_lazy_tlbs(struct mm_struct *mm)
859{
860 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
861 /*
862 * In this case, lazy tlb mms are refounted and would not reach
863 * __mmdrop until all CPUs have switched away and mmdrop()ed.
864 */
865 return;
866 }
867
868 /*
869 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
870 * requires lazy mm users to switch to another mm when the refcount
871 * drops to zero, before the mm is freed. This requires IPIs here to
872 * switch kernel threads to init_mm.
873 *
874 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
875 * switch with the final userspace teardown TLB flush which leaves the
876 * mm lazy on this CPU but no others, reducing the need for additional
877 * IPIs here. There are cases where a final IPI is still required here,
878 * such as the final mmdrop being performed on a different CPU than the
879 * one exiting, or kernel threads using the mm when userspace exits.
880 *
881 * IPI overheads have not found to be expensive, but they could be
882 * reduced in a number of possible ways, for example (roughly
883 * increasing order of complexity):
884 * - The last lazy reference created by exit_mm() could instead switch
885 * to init_mm, however it's probable this will run on the same CPU
886 * immediately afterwards, so this may not reduce IPIs much.
887 * - A batch of mms requiring IPIs could be gathered and freed at once.
888 * - CPUs store active_mm where it can be remotely checked without a
889 * lock, to filter out false-positives in the cpumask.
890 * - After mm_users or mm_count reaches zero, switching away from the
891 * mm could clear mm_cpumask to reduce some IPIs, perhaps together
892 * with some batching or delaying of the final IPIs.
893 * - A delayed freeing and RCU-like quiescing sequence based on mm
894 * switching to avoid IPIs completely.
895 */
896 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
897 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
898 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
899}
900
d70f2a14
AM
901/*
902 * Called when the last reference to the mm
903 * is dropped: either by a lazy thread or by
904 * mmput. Free the page directory and the mm.
905 */
d34bc48f 906void __mmdrop(struct mm_struct *mm)
d70f2a14
AM
907{
908 BUG_ON(mm == &init_mm);
3eda69c9 909 WARN_ON_ONCE(mm == current->mm);
2655421a
NP
910
911 /* Ensure no CPUs are using this as their lazy tlb mm */
912 cleanup_lazy_tlbs(mm);
913
3eda69c9 914 WARN_ON_ONCE(mm == current->active_mm);
d70f2a14
AM
915 mm_free_pgd(mm);
916 destroy_context(mm);
984cfe4e 917 mmu_notifier_subscriptions_destroy(mm);
d70f2a14
AM
918 check_mm(mm);
919 put_user_ns(mm->user_ns);
2667ed10 920 mm_pasid_drop(mm);
223baf9d 921 mm_destroy_cid(mm);
14ef95be 922 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
f1a79412 923
d70f2a14
AM
924 free_mm(mm);
925}
d34bc48f 926EXPORT_SYMBOL_GPL(__mmdrop);
d70f2a14
AM
927
928static void mmdrop_async_fn(struct work_struct *work)
929{
930 struct mm_struct *mm;
931
932 mm = container_of(work, struct mm_struct, async_put_work);
933 __mmdrop(mm);
934}
935
936static void mmdrop_async(struct mm_struct *mm)
937{
938 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
939 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
940 schedule_work(&mm->async_put_work);
941 }
942}
943
ea6d290c
ON
944static inline void free_signal_struct(struct signal_struct *sig)
945{
97101eb4 946 taskstats_tgid_free(sig);
1c5354de 947 sched_autogroup_exit(sig);
7283094e
MH
948 /*
949 * __mmdrop is not safe to call from softirq context on x86 due to
950 * pgd_dtor so postpone it to the async context
951 */
26db62f1 952 if (sig->oom_mm)
7283094e 953 mmdrop_async(sig->oom_mm);
ea6d290c
ON
954 kmem_cache_free(signal_cachep, sig);
955}
956
957static inline void put_signal_struct(struct signal_struct *sig)
958{
60d4de3f 959 if (refcount_dec_and_test(&sig->sigcnt))
ea6d290c
ON
960 free_signal_struct(sig);
961}
962
158d9ebd 963void __put_task_struct(struct task_struct *tsk)
1da177e4 964{
270f722d 965 WARN_ON(!tsk->exit_state);
ec1d2819 966 WARN_ON(refcount_read(&tsk->usage));
1da177e4
LT
967 WARN_ON(tsk == current);
968
0f212204 969 io_uring_free(tsk);
2e91fa7f 970 cgroup_free(tsk);
16d51a59 971 task_numa_free(tsk, true);
1a2a4d06 972 security_task_free(tsk);
e0e81739 973 exit_creds(tsk);
35df17c5 974 delayacct_tsk_free(tsk);
ea6d290c 975 put_signal_struct(tsk->signal);
6e33cad0 976 sched_core_free(tsk);
2873cd31 977 free_task(tsk);
1da177e4 978}
77c100c8 979EXPORT_SYMBOL_GPL(__put_task_struct);
1da177e4 980
d243b344
WLC
981void __put_task_struct_rcu_cb(struct rcu_head *rhp)
982{
983 struct task_struct *task = container_of(rhp, struct task_struct, rcu);
984
985 __put_task_struct(task);
986}
987EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
988
6c0a9fa6 989void __init __weak arch_task_cache_init(void) { }
61c4628b 990
ff691f6e
HS
991/*
992 * set_max_threads
993 */
16db3d3f 994static void set_max_threads(unsigned int max_threads_suggested)
ff691f6e 995{
ac1b398d 996 u64 threads;
ca79b0c2 997 unsigned long nr_pages = totalram_pages();
ff691f6e
HS
998
999 /*
ac1b398d
HS
1000 * The number of threads shall be limited such that the thread
1001 * structures may only consume a small part of the available memory.
ff691f6e 1002 */
3d6357de 1003 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
ac1b398d
HS
1004 threads = MAX_THREADS;
1005 else
3d6357de 1006 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
ac1b398d
HS
1007 (u64) THREAD_SIZE * 8UL);
1008
16db3d3f
HS
1009 if (threads > max_threads_suggested)
1010 threads = max_threads_suggested;
1011
ac1b398d 1012 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
ff691f6e
HS
1013}
1014
5aaeb5c0
IM
1015#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1016/* Initialized by the architecture: */
1017int arch_task_struct_size __read_mostly;
1018#endif
0c8c0f03 1019
5905429a
KC
1020static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
1021{
1022 /* Fetch thread_struct whitelist for the architecture. */
1023 arch_thread_struct_whitelist(offset, size);
1024
1025 /*
1026 * Handle zero-sized whitelist or empty thread_struct, otherwise
1027 * adjust offset to position of thread_struct in task_struct.
1028 */
1029 if (unlikely(*size == 0))
1030 *offset = 0;
1031 else
1032 *offset += offsetof(struct task_struct, thread);
1033}
1034
ff691f6e 1035void __init fork_init(void)
1da177e4 1036{
25f9c081 1037 int i;
1da177e4 1038#ifndef ARCH_MIN_TASKALIGN
e274795e 1039#define ARCH_MIN_TASKALIGN 0
1da177e4 1040#endif
95cb64c1 1041 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
5905429a 1042 unsigned long useroffset, usersize;
e274795e 1043
1da177e4 1044 /* create a slab on which task_structs can be allocated */
5905429a
KC
1045 task_struct_whitelist(&useroffset, &usersize);
1046 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
e274795e 1047 arch_task_struct_size, align,
5905429a
KC
1048 SLAB_PANIC|SLAB_ACCOUNT,
1049 useroffset, usersize, NULL);
1da177e4 1050
61c4628b
SS
1051 /* do the arch specific task caches init */
1052 arch_task_cache_init();
1053
16db3d3f 1054 set_max_threads(MAX_THREADS);
1da177e4
LT
1055
1056 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1057 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1058 init_task.signal->rlim[RLIMIT_SIGPENDING] =
1059 init_task.signal->rlim[RLIMIT_NPROC];
b376c3e1 1060
de399236 1061 for (i = 0; i < UCOUNT_COUNTS; i++)
25f9c081 1062 init_user_ns.ucount_max[i] = max_threads/2;
19659c59 1063
de399236
AG
1064 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY);
1065 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY);
1066 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1067 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY);
21d1c5e3 1068
19659c59
HR
1069#ifdef CONFIG_VMAP_STACK
1070 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1071 NULL, free_vm_stack_cache);
1072#endif
b09be676 1073
d08b9f0c
ST
1074 scs_init();
1075
b09be676 1076 lockdep_init_task(&init_task);
aad42dd4 1077 uprobes_init();
1da177e4
LT
1078}
1079
52f5684c 1080int __weak arch_dup_task_struct(struct task_struct *dst,
61c4628b
SS
1081 struct task_struct *src)
1082{
1083 *dst = *src;
1084 return 0;
1085}
1086
d4311ff1
AT
1087void set_task_stack_end_magic(struct task_struct *tsk)
1088{
1089 unsigned long *stackend;
1090
1091 stackend = end_of_stack(tsk);
1092 *stackend = STACK_END_MAGIC; /* for overflow detection */
1093}
1094
725fc629 1095static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1da177e4
LT
1096{
1097 struct task_struct *tsk;
3e26c149 1098 int err;
1da177e4 1099
725fc629
AK
1100 if (node == NUMA_NO_NODE)
1101 node = tsk_fork_get_node(orig);
504f52b5 1102 tsk = alloc_task_struct_node(node);
1da177e4
LT
1103 if (!tsk)
1104 return NULL;
1105
546c42b2
SAS
1106 err = arch_dup_task_struct(tsk, orig);
1107 if (err)
f19b9f74 1108 goto free_tsk;
1da177e4 1109
7865aba3
SAS
1110 err = alloc_thread_stack_node(tsk, node);
1111 if (err)
f19b9f74 1112 goto free_tsk;
ba14a194 1113
68f24b08 1114#ifdef CONFIG_THREAD_INFO_IN_TASK
f0b89d39 1115 refcount_set(&tsk->stack_refcount, 1);
68f24b08 1116#endif
1a03d3f1 1117 account_kernel_stack(tsk, 1);
164c33c6 1118
d08b9f0c
ST
1119 err = scs_prepare(tsk, node);
1120 if (err)
1121 goto free_stack;
1122
dbd95212
KC
1123#ifdef CONFIG_SECCOMP
1124 /*
1125 * We must handle setting up seccomp filters once we're under
1126 * the sighand lock in case orig has changed between now and
1127 * then. Until then, filter must be NULL to avoid messing up
1128 * the usage counts on the error path calling free_task.
1129 */
1130 tsk->seccomp.filter = NULL;
1131#endif
87bec58a
AM
1132
1133 setup_thread_stack(tsk, orig);
8e7cac79 1134 clear_user_return_notifier(tsk);
f26f9aff 1135 clear_tsk_need_resched(tsk);
d4311ff1 1136 set_task_stack_end_magic(tsk);
1446e1df 1137 clear_syscall_work_syscall_user_dispatch(tsk);
1da177e4 1138
050e9baa 1139#ifdef CONFIG_STACKPROTECTOR
7cd815bc 1140 tsk->stack_canary = get_random_canary();
0a425405 1141#endif
3bd37062
SAS
1142 if (orig->cpus_ptr == &orig->cpus_mask)
1143 tsk->cpus_ptr = &tsk->cpus_mask;
b90ca8ba 1144 dup_user_cpus_ptr(tsk, orig, node);
0a425405 1145
fb0a685c 1146 /*
0ff7b2cf
EB
1147 * One for the user space visible state that goes away when reaped.
1148 * One for the scheduler.
fb0a685c 1149 */
0ff7b2cf
EB
1150 refcount_set(&tsk->rcu_users, 2);
1151 /* One for the rcu users */
1152 refcount_set(&tsk->usage, 1);
6c5c9341 1153#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 1154 tsk->btrace_seq = 0;
6c5c9341 1155#endif
a0aa7f68 1156 tsk->splice_pipe = NULL;
5640f768 1157 tsk->task_frag.page = NULL;
093e5840 1158 tsk->wake_q.next = NULL;
e32cf5df 1159 tsk->worker_private = NULL;
c6a7f572 1160
5c9a8750 1161 kcov_task_init(tsk);
50b5e49c 1162 kmsan_task_create(tsk);
5fbda3ec 1163 kmap_local_fork(tsk);
5c9a8750 1164
e41d5818
DV
1165#ifdef CONFIG_FAULT_INJECTION
1166 tsk->fail_nth = 0;
1167#endif
1168
2c323017 1169#ifdef CONFIG_BLK_CGROUP
f05837ed 1170 tsk->throttle_disk = NULL;
2c323017
JB
1171 tsk->use_memdelay = 0;
1172#endif
1173
a3d29e82
PZ
1174#ifdef CONFIG_IOMMU_SVA
1175 tsk->pasid_activated = 0;
1176#endif
1177
d46eb14b
SB
1178#ifdef CONFIG_MEMCG
1179 tsk->active_memcg = NULL;
1180#endif
b041b525
TL
1181
1182#ifdef CONFIG_CPU_SUP_INTEL
1183 tsk->reported_split_lock = 0;
1184#endif
1185
af7f588d
MD
1186#ifdef CONFIG_SCHED_MM_CID
1187 tsk->mm_cid = -1;
223baf9d 1188 tsk->last_mm_cid = -1;
af7f588d 1189 tsk->mm_cid_active = 0;
223baf9d 1190 tsk->migrate_from_cpu = -1;
af7f588d 1191#endif
1da177e4 1192 return tsk;
61c4628b 1193
b235beea 1194free_stack:
1a03d3f1 1195 exit_task_stack_account(tsk);
ba14a194 1196 free_thread_stack(tsk);
f19b9f74 1197free_tsk:
61c4628b
SS
1198 free_task_struct(tsk);
1199 return NULL;
1da177e4
LT
1200}
1201
23ff4440 1202__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1da177e4 1203
4cb0e11b
HK
1204static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1205
1206static int __init coredump_filter_setup(char *s)
1207{
1208 default_dump_filter =
1209 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1210 MMF_DUMP_FILTER_MASK;
1211 return 1;
1212}
1213
1214__setup("coredump_filter=", coredump_filter_setup);
1215
1da177e4
LT
1216#include <linux/init_task.h>
1217
858f0993
AD
1218static void mm_init_aio(struct mm_struct *mm)
1219{
1220#ifdef CONFIG_AIO
1221 spin_lock_init(&mm->ioctx_lock);
db446a08 1222 mm->ioctx_table = NULL;
858f0993
AD
1223#endif
1224}
1225
c3f3ce04
AA
1226static __always_inline void mm_clear_owner(struct mm_struct *mm,
1227 struct task_struct *p)
1228{
1229#ifdef CONFIG_MEMCG
1230 if (mm->owner == p)
1231 WRITE_ONCE(mm->owner, NULL);
1232#endif
1233}
1234
33144e84
VD
1235static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1236{
1237#ifdef CONFIG_MEMCG
1238 mm->owner = p;
1239#endif
1240}
1241
355627f5
EB
1242static void mm_init_uprobes_state(struct mm_struct *mm)
1243{
1244#ifdef CONFIG_UPROBES
1245 mm->uprobes_state.xol_area = NULL;
1246#endif
1247}
1248
bfedb589
EB
1249static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1250 struct user_namespace *user_ns)
1da177e4 1251{
d4af56c5
LH
1252 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1253 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1da177e4
LT
1254 atomic_set(&mm->mm_users, 1);
1255 atomic_set(&mm->mm_count, 1);
57efa1fe 1256 seqcount_init(&mm->write_protect_seq);
d8ed45c5 1257 mmap_init_lock(mm);
1da177e4 1258 INIT_LIST_HEAD(&mm->mmlist);
5e31275c
SB
1259#ifdef CONFIG_PER_VMA_LOCK
1260 mm->mm_lock_seq = 0;
1261#endif
af5b0f6a 1262 mm_pgtables_bytes_init(mm);
41f727fd
VD
1263 mm->map_count = 0;
1264 mm->locked_vm = 0;
70f8a3ca 1265 atomic64_set(&mm->pinned_vm, 0);
d559db08 1266 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1da177e4 1267 spin_lock_init(&mm->page_table_lock);
88aa7cc6 1268 spin_lock_init(&mm->arg_lock);
41f727fd 1269 mm_init_cpumask(mm);
858f0993 1270 mm_init_aio(mm);
cf475ad2 1271 mm_init_owner(mm, p);
a6cbd440 1272 mm_pasid_init(mm);
2b7e8665 1273 RCU_INIT_POINTER(mm->exe_file, NULL);
984cfe4e 1274 mmu_notifier_subscriptions_init(mm);
16af97dc 1275 init_tlb_flush_pending(mm);
41f727fd
VD
1276#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1277 mm->pmd_huge_pte = NULL;
1278#endif
355627f5 1279 mm_init_uprobes_state(mm);
13db8c50 1280 hugetlb_count_init(mm);
1da177e4 1281
a0715cc2 1282 if (current->mm) {
24e41bf8 1283 mm->flags = mmf_init_flags(current->mm->flags);
a0715cc2
AT
1284 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1285 } else {
1286 mm->flags = default_dump_filter;
1da177e4 1287 mm->def_flags = 0;
a0715cc2
AT
1288 }
1289
41f727fd
VD
1290 if (mm_alloc_pgd(mm))
1291 goto fail_nopgd;
1292
1293 if (init_new_context(p, mm))
1294 goto fail_nocontext;
78fb7466 1295
223baf9d
MD
1296 if (mm_alloc_cid(mm))
1297 goto fail_cid;
1298
14ef95be
MG
1299 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1300 NR_MM_COUNTERS))
1301 goto fail_pcpu;
f1a79412 1302
bfedb589 1303 mm->user_ns = get_user_ns(user_ns);
bd74fdae 1304 lru_gen_init_mm(mm);
41f727fd
VD
1305 return mm;
1306
f1a79412 1307fail_pcpu:
223baf9d
MD
1308 mm_destroy_cid(mm);
1309fail_cid:
b20b0368 1310 destroy_context(mm);
41f727fd
VD
1311fail_nocontext:
1312 mm_free_pgd(mm);
1313fail_nopgd:
1da177e4
LT
1314 free_mm(mm);
1315 return NULL;
1316}
1317
1318/*
1319 * Allocate and initialize an mm_struct.
1320 */
fb0a685c 1321struct mm_struct *mm_alloc(void)
1da177e4 1322{
fb0a685c 1323 struct mm_struct *mm;
1da177e4
LT
1324
1325 mm = allocate_mm();
de03c72c
KM
1326 if (!mm)
1327 return NULL;
1328
1329 memset(mm, 0, sizeof(*mm));
bfedb589 1330 return mm_init(mm, current, current_user_ns());
1da177e4
LT
1331}
1332
ec8d7c14
MH
1333static inline void __mmput(struct mm_struct *mm)
1334{
1335 VM_BUG_ON(atomic_read(&mm->mm_users));
1336
1337 uprobe_clear_state(mm);
1338 exit_aio(mm);
1339 ksm_exit(mm);
1340 khugepaged_exit(mm); /* must run before exit_mmap */
1341 exit_mmap(mm);
6fcb52a5 1342 mm_put_huge_zero_page(mm);
ec8d7c14
MH
1343 set_mm_exe_file(mm, NULL);
1344 if (!list_empty(&mm->mmlist)) {
1345 spin_lock(&mmlist_lock);
1346 list_del(&mm->mmlist);
1347 spin_unlock(&mmlist_lock);
1348 }
1349 if (mm->binfmt)
1350 module_put(mm->binfmt->module);
bd74fdae 1351 lru_gen_del_mm(mm);
ec8d7c14
MH
1352 mmdrop(mm);
1353}
1354
1da177e4
LT
1355/*
1356 * Decrement the use count and release all resources for an mm.
1357 */
1358void mmput(struct mm_struct *mm)
1359{
0ae26f1b
AM
1360 might_sleep();
1361
ec8d7c14
MH
1362 if (atomic_dec_and_test(&mm->mm_users))
1363 __mmput(mm);
1364}
1365EXPORT_SYMBOL_GPL(mmput);
1366
a1b2289c
SY
1367#ifdef CONFIG_MMU
1368static void mmput_async_fn(struct work_struct *work)
1369{
1370 struct mm_struct *mm = container_of(work, struct mm_struct,
1371 async_put_work);
1372
1373 __mmput(mm);
1374}
1375
1376void mmput_async(struct mm_struct *mm)
1377{
1378 if (atomic_dec_and_test(&mm->mm_users)) {
1379 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1380 schedule_work(&mm->async_put_work);
1381 }
1382}
85eaeb50 1383EXPORT_SYMBOL_GPL(mmput_async);
a1b2289c
SY
1384#endif
1385
90f31d0e
KK
1386/**
1387 * set_mm_exe_file - change a reference to the mm's executable file
ff0712ea
MWO
1388 * @mm: The mm to change.
1389 * @new_exe_file: The new file to use.
90f31d0e
KK
1390 *
1391 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1392 *
6e399cd1 1393 * Main users are mmput() and sys_execve(). Callers prevent concurrent
a7031f14
MG
1394 * invocations: in mmput() nobody alive left, in execve it happens before
1395 * the new mm is made visible to anyone.
fe69d560
DH
1396 *
1397 * Can only fail if new_exe_file != NULL.
90f31d0e 1398 */
fe69d560 1399int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
38646013 1400{
6e399cd1
DB
1401 struct file *old_exe_file;
1402
1403 /*
1404 * It is safe to dereference the exe_file without RCU as
1405 * this function is only called if nobody else can access
1406 * this mm -- see comment above for justification.
1407 */
1408 old_exe_file = rcu_dereference_raw(mm->exe_file);
90f31d0e 1409
fe69d560
DH
1410 if (new_exe_file) {
1411 /*
1412 * We expect the caller (i.e., sys_execve) to already denied
1413 * write access, so this is unlikely to fail.
1414 */
1415 if (unlikely(deny_write_access(new_exe_file)))
1416 return -EACCES;
38646013 1417 get_file(new_exe_file);
fe69d560 1418 }
90f31d0e 1419 rcu_assign_pointer(mm->exe_file, new_exe_file);
fe69d560
DH
1420 if (old_exe_file) {
1421 allow_write_access(old_exe_file);
90f31d0e 1422 fput(old_exe_file);
fe69d560
DH
1423 }
1424 return 0;
38646013
JS
1425}
1426
35d7bdc8
DH
1427/**
1428 * replace_mm_exe_file - replace a reference to the mm's executable file
ff0712ea
MWO
1429 * @mm: The mm to change.
1430 * @new_exe_file: The new file to use.
35d7bdc8 1431 *
a7031f14 1432 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
35d7bdc8
DH
1433 *
1434 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1435 */
1436int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1437{
1438 struct vm_area_struct *vma;
1439 struct file *old_exe_file;
1440 int ret = 0;
1441
1442 /* Forbid mm->exe_file change if old file still mapped. */
1443 old_exe_file = get_mm_exe_file(mm);
1444 if (old_exe_file) {
fa5e5876 1445 VMA_ITERATOR(vmi, mm, 0);
35d7bdc8 1446 mmap_read_lock(mm);
fa5e5876 1447 for_each_vma(vmi, vma) {
35d7bdc8
DH
1448 if (!vma->vm_file)
1449 continue;
1450 if (path_equal(&vma->vm_file->f_path,
fa5e5876 1451 &old_exe_file->f_path)) {
35d7bdc8 1452 ret = -EBUSY;
fa5e5876
MWO
1453 break;
1454 }
35d7bdc8
DH
1455 }
1456 mmap_read_unlock(mm);
1457 fput(old_exe_file);
1458 if (ret)
1459 return ret;
1460 }
1461
fe69d560
DH
1462 ret = deny_write_access(new_exe_file);
1463 if (ret)
1464 return -EACCES;
35d7bdc8 1465 get_file(new_exe_file);
fe69d560 1466
a7031f14
MG
1467 /* set the new file */
1468 mmap_write_lock(mm);
1469 old_exe_file = rcu_dereference_raw(mm->exe_file);
1470 rcu_assign_pointer(mm->exe_file, new_exe_file);
1471 mmap_write_unlock(mm);
1472
fe69d560 1473 if (old_exe_file) {
fe69d560 1474 allow_write_access(old_exe_file);
35d7bdc8 1475 fput(old_exe_file);
fe69d560 1476 }
35d7bdc8 1477 return 0;
38646013
JS
1478}
1479
90f31d0e
KK
1480/**
1481 * get_mm_exe_file - acquire a reference to the mm's executable file
ff0712ea 1482 * @mm: The mm of interest.
90f31d0e
KK
1483 *
1484 * Returns %NULL if mm has no associated executable file.
1485 * User must release file via fput().
1486 */
38646013
JS
1487struct file *get_mm_exe_file(struct mm_struct *mm)
1488{
1489 struct file *exe_file;
1490
90f31d0e 1491 rcu_read_lock();
0ede61d8 1492 exe_file = get_file_rcu(&mm->exe_file);
90f31d0e 1493 rcu_read_unlock();
38646013
JS
1494 return exe_file;
1495}
1496
cd81a917
MG
1497/**
1498 * get_task_exe_file - acquire a reference to the task's executable file
ff0712ea 1499 * @task: The task.
cd81a917
MG
1500 *
1501 * Returns %NULL if task's mm (if any) has no associated executable file or
1502 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1503 * User must release file via fput().
1504 */
1505struct file *get_task_exe_file(struct task_struct *task)
1506{
1507 struct file *exe_file = NULL;
1508 struct mm_struct *mm;
1509
1510 task_lock(task);
1511 mm = task->mm;
1512 if (mm) {
1513 if (!(task->flags & PF_KTHREAD))
1514 exe_file = get_mm_exe_file(mm);
1515 }
1516 task_unlock(task);
1517 return exe_file;
1518}
38646013 1519
1da177e4
LT
1520/**
1521 * get_task_mm - acquire a reference to the task's mm
ff0712ea 1522 * @task: The task.
1da177e4 1523 *
246bb0b1 1524 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1da177e4
LT
1525 * this kernel workthread has transiently adopted a user mm with use_mm,
1526 * to do its AIO) is not set and if so returns a reference to it, after
1527 * bumping up the use count. User must release the mm via mmput()
1528 * after use. Typically used by /proc and ptrace.
1529 */
1530struct mm_struct *get_task_mm(struct task_struct *task)
1531{
1532 struct mm_struct *mm;
1533
1534 task_lock(task);
1535 mm = task->mm;
1536 if (mm) {
246bb0b1 1537 if (task->flags & PF_KTHREAD)
1da177e4
LT
1538 mm = NULL;
1539 else
3fce371b 1540 mmget(mm);
1da177e4
LT
1541 }
1542 task_unlock(task);
1543 return mm;
1544}
1545EXPORT_SYMBOL_GPL(get_task_mm);
1546
8cdb878d
CY
1547struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1548{
1549 struct mm_struct *mm;
1550 int err;
1551
f7cfd871 1552 err = down_read_killable(&task->signal->exec_update_lock);
8cdb878d
CY
1553 if (err)
1554 return ERR_PTR(err);
1555
1556 mm = get_task_mm(task);
1557 if (mm && mm != current->mm &&
1558 !ptrace_may_access(task, mode)) {
1559 mmput(mm);
1560 mm = ERR_PTR(-EACCES);
1561 }
f7cfd871 1562 up_read(&task->signal->exec_update_lock);
8cdb878d
CY
1563
1564 return mm;
1565}
1566
57b59c4a 1567static void complete_vfork_done(struct task_struct *tsk)
c415c3b4 1568{
d68b46fe 1569 struct completion *vfork;
c415c3b4 1570
d68b46fe
ON
1571 task_lock(tsk);
1572 vfork = tsk->vfork_done;
1573 if (likely(vfork)) {
1574 tsk->vfork_done = NULL;
1575 complete(vfork);
1576 }
1577 task_unlock(tsk);
1578}
1579
1580static int wait_for_vfork_done(struct task_struct *child,
1581 struct completion *vfork)
1582{
a903904c 1583 unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
d68b46fe
ON
1584 int killed;
1585
76f969e8 1586 cgroup_enter_frozen();
f5d39b02 1587 killed = wait_for_completion_state(vfork, state);
76f969e8 1588 cgroup_leave_frozen(false);
d68b46fe
ON
1589
1590 if (killed) {
1591 task_lock(child);
1592 child->vfork_done = NULL;
1593 task_unlock(child);
1594 }
1595
1596 put_task_struct(child);
1597 return killed;
c415c3b4
ON
1598}
1599
1da177e4
LT
1600/* Please note the differences between mmput and mm_release.
1601 * mmput is called whenever we stop holding onto a mm_struct,
1602 * error success whatever.
1603 *
1604 * mm_release is called after a mm_struct has been removed
1605 * from the current process.
1606 *
1607 * This difference is important for error handling, when we
1608 * only half set up a mm_struct for a new process and need to restore
1609 * the old one. Because we mmput the new mm_struct before
1610 * restoring the old one. . .
1611 * Eric Biederman 10 January 1998
1612 */
4610ba7a 1613static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1da177e4 1614{
0326f5a9
SD
1615 uprobe_free_utask(tsk);
1616
1da177e4
LT
1617 /* Get rid of any cached register state */
1618 deactivate_mm(tsk, mm);
1619
fec1d011 1620 /*
735f2770
MH
1621 * Signal userspace if we're not exiting with a core dump
1622 * because we want to leave the value intact for debugging
1623 * purposes.
fec1d011 1624 */
9c8a8228 1625 if (tsk->clear_child_tid) {
92307383 1626 if (atomic_read(&mm->mm_users) > 1) {
9c8a8228
ED
1627 /*
1628 * We don't check the error code - if userspace has
1629 * not set up a proper pointer then tough luck.
1630 */
1631 put_user(0, tsk->clear_child_tid);
2de0db99
DB
1632 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1633 1, NULL, NULL, 0, 0);
9c8a8228 1634 }
1da177e4 1635 tsk->clear_child_tid = NULL;
1da177e4 1636 }
f7505d64
KK
1637
1638 /*
1639 * All done, finally we can wake up parent and return this mm to him.
1640 * Also kthread_stop() uses this completion for synchronization.
1641 */
1642 if (tsk->vfork_done)
1643 complete_vfork_done(tsk);
1da177e4
LT
1644}
1645
4610ba7a
TG
1646void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1647{
150d7158 1648 futex_exit_release(tsk);
4610ba7a
TG
1649 mm_release(tsk, mm);
1650}
1651
1652void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1653{
150d7158 1654 futex_exec_release(tsk);
4610ba7a
TG
1655 mm_release(tsk, mm);
1656}
1657
13585fa0
NA
1658/**
1659 * dup_mm() - duplicates an existing mm structure
1660 * @tsk: the task_struct with which the new mm will be associated.
1661 * @oldmm: the mm to duplicate.
1662 *
1663 * Allocates a new mm structure and duplicates the provided @oldmm structure
1664 * content into it.
1665 *
1666 * Return: the duplicated mm or NULL on failure.
a0a7ec30 1667 */
13585fa0
NA
1668static struct mm_struct *dup_mm(struct task_struct *tsk,
1669 struct mm_struct *oldmm)
a0a7ec30 1670{
13585fa0 1671 struct mm_struct *mm;
a0a7ec30
JD
1672 int err;
1673
a0a7ec30
JD
1674 mm = allocate_mm();
1675 if (!mm)
1676 goto fail_nomem;
1677
1678 memcpy(mm, oldmm, sizeof(*mm));
1679
bfedb589 1680 if (!mm_init(mm, tsk, mm->user_ns))
a0a7ec30
JD
1681 goto fail_nomem;
1682
a0a7ec30
JD
1683 err = dup_mmap(mm, oldmm);
1684 if (err)
1685 goto free_pt;
1686
1687 mm->hiwater_rss = get_mm_rss(mm);
1688 mm->hiwater_vm = mm->total_vm;
1689
801460d0
HS
1690 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1691 goto free_pt;
1692
a0a7ec30
JD
1693 return mm;
1694
1695free_pt:
801460d0
HS
1696 /* don't put binfmt in mmput, we haven't got module yet */
1697 mm->binfmt = NULL;
c3f3ce04 1698 mm_init_owner(mm, NULL);
a0a7ec30
JD
1699 mmput(mm);
1700
1701fail_nomem:
1702 return NULL;
a0a7ec30
JD
1703}
1704
fb0a685c 1705static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1da177e4 1706{
fb0a685c 1707 struct mm_struct *mm, *oldmm;
1da177e4
LT
1708
1709 tsk->min_flt = tsk->maj_flt = 0;
1710 tsk->nvcsw = tsk->nivcsw = 0;
17406b82
MSB
1711#ifdef CONFIG_DETECT_HUNG_TASK
1712 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
a2e51445 1713 tsk->last_switch_time = 0;
17406b82 1714#endif
1da177e4
LT
1715
1716 tsk->mm = NULL;
1717 tsk->active_mm = NULL;
1718
1719 /*
1720 * Are we cloning a kernel thread?
1721 *
1722 * We need to steal a active VM for that..
1723 */
1724 oldmm = current->mm;
1725 if (!oldmm)
1726 return 0;
1727
1728 if (clone_flags & CLONE_VM) {
3fce371b 1729 mmget(oldmm);
1da177e4 1730 mm = oldmm;
a6895399
REB
1731 } else {
1732 mm = dup_mm(tsk, current->mm);
1733 if (!mm)
1734 return -ENOMEM;
1da177e4
LT
1735 }
1736
1da177e4
LT
1737 tsk->mm = mm;
1738 tsk->active_mm = mm;
af7f588d 1739 sched_mm_cid_fork(tsk);
1da177e4 1740 return 0;
1da177e4
LT
1741}
1742
a39bc516 1743static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1da177e4 1744{
498052bb 1745 struct fs_struct *fs = current->fs;
1da177e4 1746 if (clone_flags & CLONE_FS) {
498052bb 1747 /* tsk->fs is already what we want */
2a4419b5 1748 spin_lock(&fs->lock);
498052bb 1749 if (fs->in_exec) {
2a4419b5 1750 spin_unlock(&fs->lock);
498052bb
AV
1751 return -EAGAIN;
1752 }
1753 fs->users++;
2a4419b5 1754 spin_unlock(&fs->lock);
1da177e4
LT
1755 return 0;
1756 }
498052bb 1757 tsk->fs = copy_fs_struct(fs);
1da177e4
LT
1758 if (!tsk->fs)
1759 return -ENOMEM;
1760 return 0;
1761}
1762
11f3f500
MC
1763static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1764 int no_files)
a016f338
JD
1765{
1766 struct files_struct *oldf, *newf;
1767 int error = 0;
1768
1769 /*
1770 * A background process may not have any files ...
1771 */
1772 oldf = current->files;
1773 if (!oldf)
1774 goto out;
1775
11f3f500
MC
1776 if (no_files) {
1777 tsk->files = NULL;
1778 goto out;
1779 }
1780
a016f338
JD
1781 if (clone_flags & CLONE_FILES) {
1782 atomic_inc(&oldf->count);
1783 goto out;
1784 }
1785
60997c3d 1786 newf = dup_fd(oldf, NR_OPEN_MAX, &error);
a016f338
JD
1787 if (!newf)
1788 goto out;
1789
1790 tsk->files = newf;
1791 error = 0;
1792out:
1793 return error;
1794}
1795
a39bc516 1796static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1da177e4
LT
1797{
1798 struct sighand_struct *sig;
1799
60348802 1800 if (clone_flags & CLONE_SIGHAND) {
d036bda7 1801 refcount_inc(&current->sighand->count);
1da177e4
LT
1802 return 0;
1803 }
1804 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
0c282b06 1805 RCU_INIT_POINTER(tsk->sighand, sig);
1da177e4
LT
1806 if (!sig)
1807 return -ENOMEM;
9d7fb042 1808
d036bda7 1809 refcount_set(&sig->count, 1);
06e62a46 1810 spin_lock_irq(&current->sighand->siglock);
1da177e4 1811 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
06e62a46 1812 spin_unlock_irq(&current->sighand->siglock);
b612e5df
CB
1813
1814 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1815 if (clone_flags & CLONE_CLEAR_SIGHAND)
1816 flush_signal_handlers(tsk, 0);
1817
1da177e4
LT
1818 return 0;
1819}
1820
a7e5328a 1821void __cleanup_sighand(struct sighand_struct *sighand)
c81addc9 1822{
d036bda7 1823 if (refcount_dec_and_test(&sighand->count)) {
d80e731e 1824 signalfd_cleanup(sighand);
392809b2 1825 /*
5f0d5a3a 1826 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
392809b2
ON
1827 * without an RCU grace period, see __lock_task_sighand().
1828 */
c81addc9 1829 kmem_cache_free(sighand_cachep, sighand);
d80e731e 1830 }
c81addc9
ON
1831}
1832
f06febc9
FM
1833/*
1834 * Initialize POSIX timer handling for a thread group.
1835 */
1836static void posix_cpu_timers_init_group(struct signal_struct *sig)
1837{
2b69942f 1838 struct posix_cputimers *pct = &sig->posix_cputimers;
78d7d407
JS
1839 unsigned long cpu_limit;
1840
316c1608 1841 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
3a245c0f 1842 posix_cputimers_group_init(pct, cpu_limit);
f06febc9
FM
1843}
1844
a39bc516 1845static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1da177e4
LT
1846{
1847 struct signal_struct *sig;
1da177e4 1848
4ab6c083 1849 if (clone_flags & CLONE_THREAD)
490dea45 1850 return 0;
490dea45 1851
a56704ef 1852 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1da177e4
LT
1853 tsk->signal = sig;
1854 if (!sig)
1855 return -ENOMEM;
1856
b3ac022c 1857 sig->nr_threads = 1;
d80f7d7b 1858 sig->quick_threads = 1;
1da177e4 1859 atomic_set(&sig->live, 1);
60d4de3f 1860 refcount_set(&sig->sigcnt, 1);
0c740d0a
ON
1861
1862 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1863 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1864 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1865
1da177e4 1866 init_waitqueue_head(&sig->wait_chldexit);
db51aecc 1867 sig->curr_target = tsk;
1da177e4 1868 init_sigpending(&sig->shared_pending);
c3ad2c3b 1869 INIT_HLIST_HEAD(&sig->multiprocess);
e78c3496 1870 seqlock_init(&sig->stats_lock);
9d7fb042 1871 prev_cputime_init(&sig->prev_cputime);
1da177e4 1872
baa73d9e 1873#ifdef CONFIG_POSIX_TIMERS
b18b6a9c 1874 INIT_LIST_HEAD(&sig->posix_timers);
c9cb2e3d 1875 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1da177e4 1876 sig->real_timer.function = it_real_fn;
baa73d9e 1877#endif
1da177e4 1878
1da177e4
LT
1879 task_lock(current->group_leader);
1880 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1881 task_unlock(current->group_leader);
1882
6279a751
ON
1883 posix_cpu_timers_init_group(sig);
1884
522ed776 1885 tty_audit_fork(sig);
5091faa4 1886 sched_autogroup_fork(sig);
522ed776 1887
a63d83f4 1888 sig->oom_score_adj = current->signal->oom_score_adj;
dabb16f6 1889 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
28b83c51 1890
9b1bf12d 1891 mutex_init(&sig->cred_guard_mutex);
f7cfd871 1892 init_rwsem(&sig->exec_update_lock);
9b1bf12d 1893
1da177e4
LT
1894 return 0;
1895}
1896
dbd95212
KC
1897static void copy_seccomp(struct task_struct *p)
1898{
1899#ifdef CONFIG_SECCOMP
1900 /*
1901 * Must be called with sighand->lock held, which is common to
1902 * all threads in the group. Holding cred_guard_mutex is not
1903 * needed because this new task is not yet running and cannot
1904 * be racing exec.
1905 */
69f6a34b 1906 assert_spin_locked(&current->sighand->siglock);
dbd95212
KC
1907
1908 /* Ref-count the new filter user, and assign it. */
1909 get_seccomp_filter(current);
1910 p->seccomp = current->seccomp;
1911
1912 /*
1913 * Explicitly enable no_new_privs here in case it got set
1914 * between the task_struct being duplicated and holding the
1915 * sighand lock. The seccomp state and nnp must be in sync.
1916 */
1917 if (task_no_new_privs(current))
1918 task_set_no_new_privs(p);
1919
1920 /*
1921 * If the parent gained a seccomp mode after copying thread
1922 * flags and between before we held the sighand lock, we have
1923 * to manually enable the seccomp thread flag here.
1924 */
1925 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
23d67a54 1926 set_task_syscall_work(p, SECCOMP);
dbd95212
KC
1927#endif
1928}
1929
17da2bd9 1930SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1da177e4
LT
1931{
1932 current->clear_child_tid = tidptr;
1933
b488893a 1934 return task_pid_vnr(current);
1da177e4
LT
1935}
1936
a39bc516 1937static void rt_mutex_init_task(struct task_struct *p)
23f78d4a 1938{
1d615482 1939 raw_spin_lock_init(&p->pi_lock);
e29e175b 1940#ifdef CONFIG_RT_MUTEXES
a23ba907 1941 p->pi_waiters = RB_ROOT_CACHED;
e96a7705 1942 p->pi_top_task = NULL;
23f78d4a 1943 p->pi_blocked_on = NULL;
23f78d4a
IM
1944#endif
1945}
1946
2c470475
EB
1947static inline void init_task_pid_links(struct task_struct *task)
1948{
1949 enum pid_type type;
1950
96e1e984 1951 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
2c470475 1952 INIT_HLIST_NODE(&task->pid_links[type]);
2c470475
EB
1953}
1954
81907739
ON
1955static inline void
1956init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1957{
2c470475
EB
1958 if (type == PIDTYPE_PID)
1959 task->thread_pid = pid;
1960 else
1961 task->signal->pids[type] = pid;
81907739
ON
1962}
1963
6bfbaa51
IM
1964static inline void rcu_copy_process(struct task_struct *p)
1965{
1966#ifdef CONFIG_PREEMPT_RCU
1967 p->rcu_read_lock_nesting = 0;
1968 p->rcu_read_unlock_special.s = 0;
1969 p->rcu_blocked_node = NULL;
1970 INIT_LIST_HEAD(&p->rcu_node_entry);
1971#endif /* #ifdef CONFIG_PREEMPT_RCU */
1972#ifdef CONFIG_TASKS_RCU
1973 p->rcu_tasks_holdout = false;
1974 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1975 p->rcu_tasks_idle_cpu = -1;
1976#endif /* #ifdef CONFIG_TASKS_RCU */
d5f177d3
PM
1977#ifdef CONFIG_TASKS_TRACE_RCU
1978 p->trc_reader_nesting = 0;
276c4104 1979 p->trc_reader_special.s = 0;
d5f177d3 1980 INIT_LIST_HEAD(&p->trc_holdout_list);
434c9eef 1981 INIT_LIST_HEAD(&p->trc_blkd_node);
d5f177d3 1982#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
6bfbaa51
IM
1983}
1984
3695eae5
CB
1985struct pid *pidfd_pid(const struct file *file)
1986{
1987 if (file->f_op == &pidfd_fops)
1988 return file->private_data;
1989
1990 return ERR_PTR(-EBADF);
1991}
1992
b3e58382
CB
1993static int pidfd_release(struct inode *inode, struct file *file)
1994{
1995 struct pid *pid = file->private_data;
1996
1997 file->private_data = NULL;
1998 put_pid(pid);
1999 return 0;
2000}
2001
2002#ifdef CONFIG_PROC_FS
15d42eb2
CK
2003/**
2004 * pidfd_show_fdinfo - print information about a pidfd
2005 * @m: proc fdinfo file
2006 * @f: file referencing a pidfd
2007 *
2008 * Pid:
2009 * This function will print the pid that a given pidfd refers to in the
2010 * pid namespace of the procfs instance.
2011 * If the pid namespace of the process is not a descendant of the pid
2012 * namespace of the procfs instance 0 will be shown as its pid. This is
2013 * similar to calling getppid() on a process whose parent is outside of
2014 * its pid namespace.
2015 *
2016 * NSpid:
2017 * If pid namespaces are supported then this function will also print
2018 * the pid of a given pidfd refers to for all descendant pid namespaces
2019 * starting from the current pid namespace of the instance, i.e. the
2020 * Pid field and the first entry in the NSpid field will be identical.
2021 * If the pid namespace of the process is not a descendant of the pid
2022 * namespace of the procfs instance 0 will be shown as its first NSpid
2023 * entry and no others will be shown.
2024 * Note that this differs from the Pid and NSpid fields in
2025 * /proc/<pid>/status where Pid and NSpid are always shown relative to
2026 * the pid namespace of the procfs instance. The difference becomes
2027 * obvious when sending around a pidfd between pid namespaces from a
a8ca6b13 2028 * different branch of the tree, i.e. where no ancestral relation is
15d42eb2
CK
2029 * present between the pid namespaces:
2030 * - create two new pid namespaces ns1 and ns2 in the initial pid
2031 * namespace (also take care to create new mount namespaces in the
2032 * new pid namespace and mount procfs)
2033 * - create a process with a pidfd in ns1
2034 * - send pidfd from ns1 to ns2
2035 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
2036 * have exactly one entry, which is 0
2037 */
b3e58382
CB
2038static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
2039{
b3e58382 2040 struct pid *pid = f->private_data;
3d6d8da4
CB
2041 struct pid_namespace *ns;
2042 pid_t nr = -1;
15d42eb2 2043
3d6d8da4 2044 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
9d78edea 2045 ns = proc_pid_ns(file_inode(m->file)->i_sb);
3d6d8da4
CB
2046 nr = pid_nr_ns(pid, ns);
2047 }
2048
2049 seq_put_decimal_ll(m, "Pid:\t", nr);
b3e58382 2050
15d42eb2 2051#ifdef CONFIG_PID_NS
3d6d8da4
CB
2052 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
2053 if (nr > 0) {
15d42eb2 2054 int i;
b3e58382 2055
15d42eb2
CK
2056 /* If nr is non-zero it means that 'pid' is valid and that
2057 * ns, i.e. the pid namespace associated with the procfs
2058 * instance, is in the pid namespace hierarchy of pid.
2059 * Start at one below the already printed level.
2060 */
2061 for (i = ns->level + 1; i <= pid->level; i++)
3d6d8da4 2062 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
15d42eb2
CK
2063 }
2064#endif
b3e58382
CB
2065 seq_putc(m, '\n');
2066}
2067#endif
2068
b53b0b9d
JFG
2069/*
2070 * Poll support for process exit notification.
2071 */
9e77716a 2072static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
b53b0b9d 2073{
b53b0b9d 2074 struct pid *pid = file->private_data;
9e77716a 2075 __poll_t poll_flags = 0;
b53b0b9d
JFG
2076
2077 poll_wait(file, &pid->wait_pidfd, pts);
2078
b53b0b9d
JFG
2079 /*
2080 * Inform pollers only when the whole thread group exits.
2081 * If the thread group leader exits before all other threads in the
2082 * group, then poll(2) should block, similar to the wait(2) family.
2083 */
38fd525a 2084 if (thread_group_exited(pid))
9e77716a 2085 poll_flags = EPOLLIN | EPOLLRDNORM;
b53b0b9d
JFG
2086
2087 return poll_flags;
2088}
2089
b3e58382
CB
2090const struct file_operations pidfd_fops = {
2091 .release = pidfd_release,
b53b0b9d 2092 .poll = pidfd_poll,
b3e58382
CB
2093#ifdef CONFIG_PROC_FS
2094 .show_fdinfo = pidfd_show_fdinfo,
2095#endif
2096};
2097
6ae930d9
CB
2098/**
2099 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2100 * @pid: the struct pid for which to create a pidfd
2101 * @flags: flags of the new @pidfd
ff0712ea 2102 * @ret: Where to return the file for the pidfd.
6ae930d9
CB
2103 *
2104 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2105 * caller's file descriptor table. The pidfd is reserved but not installed yet.
ff0712ea 2106 *
6ae930d9
CB
2107 * The helper doesn't perform checks on @pid which makes it useful for pidfds
2108 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2109 * pidfd file are prepared.
2110 *
2111 * If this function returns successfully the caller is responsible to either
2112 * call fd_install() passing the returned pidfd and pidfd file as arguments in
2113 * order to install the pidfd into its file descriptor table or they must use
2114 * put_unused_fd() and fput() on the returned pidfd and pidfd file
2115 * respectively.
2116 *
2117 * This function is useful when a pidfd must already be reserved but there
2118 * might still be points of failure afterwards and the caller wants to ensure
2119 * that no pidfd is leaked into its file descriptor table.
2120 *
2121 * Return: On success, a reserved pidfd is returned from the function and a new
2122 * pidfd file is returned in the last argument to the function. On
2123 * error, a negative error code is returned from the function and the
2124 * last argument remains unchanged.
2125 */
2126static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2127{
2128 int pidfd;
2129 struct file *pidfd_file;
2130
2131 if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC))
2132 return -EINVAL;
2133
2134 pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2135 if (pidfd < 0)
2136 return pidfd;
2137
2138 pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2139 flags | O_RDWR | O_CLOEXEC);
2140 if (IS_ERR(pidfd_file)) {
2141 put_unused_fd(pidfd);
2142 return PTR_ERR(pidfd_file);
2143 }
2144 get_pid(pid); /* held by pidfd_file now */
2145 *ret = pidfd_file;
2146 return pidfd;
2147}
2148
2149/**
2150 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2151 * @pid: the struct pid for which to create a pidfd
2152 * @flags: flags of the new @pidfd
ff0712ea 2153 * @ret: Where to return the pidfd.
6ae930d9
CB
2154 *
2155 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2156 * caller's file descriptor table. The pidfd is reserved but not installed yet.
2157 *
2158 * The helper verifies that @pid is used as a thread group leader.
2159 *
2160 * If this function returns successfully the caller is responsible to either
2161 * call fd_install() passing the returned pidfd and pidfd file as arguments in
2162 * order to install the pidfd into its file descriptor table or they must use
2163 * put_unused_fd() and fput() on the returned pidfd and pidfd file
2164 * respectively.
2165 *
2166 * This function is useful when a pidfd must already be reserved but there
2167 * might still be points of failure afterwards and the caller wants to ensure
2168 * that no pidfd is leaked into its file descriptor table.
2169 *
2170 * Return: On success, a reserved pidfd is returned from the function and a new
2171 * pidfd file is returned in the last argument to the function. On
2172 * error, a negative error code is returned from the function and the
2173 * last argument remains unchanged.
2174 */
2175int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2176{
2177 if (!pid || !pid_has_task(pid, PIDTYPE_TGID))
2178 return -EINVAL;
2179
2180 return __pidfd_prepare(pid, flags, ret);
2181}
2182
c3f3ce04
AA
2183static void __delayed_free_task(struct rcu_head *rhp)
2184{
2185 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2186
2187 free_task(tsk);
2188}
2189
2190static __always_inline void delayed_free_task(struct task_struct *tsk)
2191{
2192 if (IS_ENABLED(CONFIG_MEMCG))
2193 call_rcu(&tsk->rcu, __delayed_free_task);
2194 else
2195 free_task(tsk);
2196}
2197
67197a4f
SB
2198static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2199{
2200 /* Skip if kernel thread */
2201 if (!tsk->mm)
2202 return;
2203
2204 /* Skip if spawning a thread or using vfork */
2205 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2206 return;
2207
2208 /* We need to synchronize with __set_oom_adj */
2209 mutex_lock(&oom_adj_mutex);
2210 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2211 /* Update the values in case they were changed after copy_signal */
2212 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2213 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2214 mutex_unlock(&oom_adj_mutex);
2215}
2216
79257534
DBO
2217#ifdef CONFIG_RV
2218static void rv_task_fork(struct task_struct *p)
2219{
2220 int i;
2221
2222 for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2223 p->rv[i].da_mon.monitoring = false;
2224}
2225#else
2226#define rv_task_fork(p) do {} while (0)
2227#endif
2228
1da177e4
LT
2229/*
2230 * This creates a new process as a copy of the old one,
2231 * but does not actually start it yet.
2232 *
2233 * It copies the registers, and all the appropriate
2234 * parts of the process environment (as per the clone
2235 * flags). The actual kick-off is left to the caller.
2236 */
89c8e98d 2237__latent_entropy struct task_struct *copy_process(
09a05394 2238 struct pid *pid,
3033f14a 2239 int trace,
7f192e3c
CB
2240 int node,
2241 struct kernel_clone_args *args)
1da177e4 2242{
b3e58382 2243 int pidfd = -1, retval;
a24efe62 2244 struct task_struct *p;
c3ad2c3b 2245 struct multiprocess_signals delayed;
6fd2fe49 2246 struct file *pidfile = NULL;
c5febea0 2247 const u64 clone_flags = args->flags;
769071ac 2248 struct nsproxy *nsp = current->nsproxy;
1da177e4 2249
667b6094
MPS
2250 /*
2251 * Don't allow sharing the root directory with processes in a different
2252 * namespace
2253 */
1da177e4
LT
2254 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2255 return ERR_PTR(-EINVAL);
2256
e66eded8
EB
2257 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2258 return ERR_PTR(-EINVAL);
2259
1da177e4
LT
2260 /*
2261 * Thread groups must share signals as well, and detached threads
2262 * can only be started up within the thread group.
2263 */
2264 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2265 return ERR_PTR(-EINVAL);
2266
2267 /*
2268 * Shared signal handlers imply shared VM. By way of the above,
2269 * thread groups also imply shared VM. Blocking this case allows
2270 * for various simplifications in other code.
2271 */
2272 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2273 return ERR_PTR(-EINVAL);
2274
123be07b
SB
2275 /*
2276 * Siblings of global init remain as zombies on exit since they are
2277 * not reaped by their parent (swapper). To solve this and to avoid
2278 * multi-rooted process trees, prevent global and container-inits
2279 * from creating siblings.
2280 */
2281 if ((clone_flags & CLONE_PARENT) &&
2282 current->signal->flags & SIGNAL_UNKILLABLE)
2283 return ERR_PTR(-EINVAL);
2284
8382fcac 2285 /*
40a0d32d 2286 * If the new process will be in a different pid or user namespace
faf00da5 2287 * do not allow it to share a thread group with the forking task.
8382fcac 2288 */
faf00da5 2289 if (clone_flags & CLONE_THREAD) {
40a0d32d 2290 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
769071ac
AV
2291 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2292 return ERR_PTR(-EINVAL);
2293 }
2294
b3e58382 2295 if (clone_flags & CLONE_PIDFD) {
b3e58382 2296 /*
b3e58382
CB
2297 * - CLONE_DETACHED is blocked so that we can potentially
2298 * reuse it later for CLONE_PIDFD.
2299 * - CLONE_THREAD is blocked until someone really needs it.
2300 */
7f192e3c 2301 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
b3e58382 2302 return ERR_PTR(-EINVAL);
b3e58382
CB
2303 }
2304
c3ad2c3b
EB
2305 /*
2306 * Force any signals received before this point to be delivered
2307 * before the fork happens. Collect up signals sent to multiple
2308 * processes that happen during the fork and delay them so that
2309 * they appear to happen after the fork.
2310 */
2311 sigemptyset(&delayed.signal);
2312 INIT_HLIST_NODE(&delayed.node);
2313
2314 spin_lock_irq(&current->sighand->siglock);
2315 if (!(clone_flags & CLONE_THREAD))
2316 hlist_add_head(&delayed.node, &current->signal->multiprocess);
2317 recalc_sigpending();
2318 spin_unlock_irq(&current->sighand->siglock);
2319 retval = -ERESTARTNOINTR;
66ae0d1e 2320 if (task_sigpending(current))
c3ad2c3b
EB
2321 goto fork_out;
2322
1da177e4 2323 retval = -ENOMEM;
725fc629 2324 p = dup_task_struct(current, node);
1da177e4
LT
2325 if (!p)
2326 goto fork_out;
753550eb
EB
2327 p->flags &= ~PF_KTHREAD;
2328 if (args->kthread)
2329 p->flags |= PF_KTHREAD;
f9010dbd 2330 if (args->user_worker) {
b16b3855 2331 /*
f9010dbd 2332 * Mark us a user worker, and block any signal that isn't
b16b3855
JA
2333 * fatal or STOP
2334 */
f9010dbd 2335 p->flags |= PF_USER_WORKER;
b16b3855
JA
2336 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2337 }
f9010dbd
MC
2338 if (args->io_thread)
2339 p->flags |= PF_IO_WORKER;
1da177e4 2340
cf587db2
MC
2341 if (args->name)
2342 strscpy_pad(p->comm, args->name, sizeof(p->comm));
2343
7f192e3c 2344 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
4d6501dc
VN
2345 /*
2346 * Clear TID on mm_release()?
2347 */
7f192e3c 2348 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
4d6501dc 2349
f7e8b616
SR
2350 ftrace_graph_init_task(p);
2351
bea493a0
PZ
2352 rt_mutex_init_task(p);
2353
a21ee605 2354 lockdep_assert_irqs_enabled();
d12c1a37 2355#ifdef CONFIG_PROVE_LOCKING
de30a2b3
IM
2356 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2357#endif
8f2f9c4d
EB
2358 retval = copy_creds(p, clone_flags);
2359 if (retval < 0)
2360 goto bad_fork_free;
2361
1da177e4 2362 retval = -EAGAIN;
de399236 2363 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
b57922b6
EP
2364 if (p->real_cred->user != INIT_USER &&
2365 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
8f2f9c4d 2366 goto bad_fork_cleanup_count;
1da177e4 2367 }
72fa5997 2368 current->flags &= ~PF_NPROC_EXCEEDED;
1da177e4 2369
1da177e4
LT
2370 /*
2371 * If multiple threads are within copy_process(), then this check
2372 * triggers too late. This doesn't hurt, the check is only there
2373 * to stop root fork bombs.
2374 */
04ec93fe 2375 retval = -EAGAIN;
c17d1a3a 2376 if (data_race(nr_threads >= max_threads))
1da177e4
LT
2377 goto bad_fork_cleanup_count;
2378
ca74e92b 2379 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
a8ea6fc9 2380 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
514ddb44 2381 p->flags |= PF_FORKNOEXEC;
1da177e4
LT
2382 INIT_LIST_HEAD(&p->children);
2383 INIT_LIST_HEAD(&p->sibling);
f41d911f 2384 rcu_copy_process(p);
1da177e4
LT
2385 p->vfork_done = NULL;
2386 spin_lock_init(&p->alloc_lock);
1da177e4 2387
1da177e4
LT
2388 init_sigpending(&p->pending);
2389
64861634 2390 p->utime = p->stime = p->gtime = 0;
40565b5a 2391#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
64861634 2392 p->utimescaled = p->stimescaled = 0;
40565b5a 2393#endif
9d7fb042
PZ
2394 prev_cputime_init(&p->prev_cputime);
2395
6a61671b 2396#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6
FW
2397 seqcount_init(&p->vtime.seqcount);
2398 p->vtime.starttime = 0;
2399 p->vtime.state = VTIME_INACTIVE;
6a61671b
FW
2400#endif
2401
0f212204
JA
2402#ifdef CONFIG_IO_URING
2403 p->io_uring = NULL;
2404#endif
2405
6976675d
AV
2406 p->default_timer_slack_ns = current->timer_slack_ns;
2407
eb414681
JW
2408#ifdef CONFIG_PSI
2409 p->psi_flags = 0;
2410#endif
2411
5995477a 2412 task_io_accounting_init(&p->ioac);
1da177e4
LT
2413 acct_clear_integrals(p);
2414
3a245c0f 2415 posix_cputimers_init(&p->posix_cputimers);
1da177e4 2416
1da177e4 2417 p->io_context = NULL;
c0b0ae8a 2418 audit_set_context(p, NULL);
b4f48b63 2419 cgroup_fork(p);
343f4c49 2420 if (args->kthread) {
40966e31 2421 if (!set_kthread_struct(p))
ff8288ff 2422 goto bad_fork_cleanup_delayacct;
40966e31 2423 }
1da177e4 2424#ifdef CONFIG_NUMA
846a16bf 2425 p->mempolicy = mpol_dup(p->mempolicy);
fb0a685c
DRO
2426 if (IS_ERR(p->mempolicy)) {
2427 retval = PTR_ERR(p->mempolicy);
2428 p->mempolicy = NULL;
ff8288ff 2429 goto bad_fork_cleanup_delayacct;
fb0a685c 2430 }
1da177e4 2431#endif
778d3b0f
MH
2432#ifdef CONFIG_CPUSETS
2433 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2434 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
b7505861 2435 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
778d3b0f 2436#endif
de30a2b3 2437#ifdef CONFIG_TRACE_IRQFLAGS
0584df9c
ME
2438 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2439 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2440 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2441 p->softirqs_enabled = 1;
2442 p->softirq_context = 0;
de30a2b3 2443#endif
8bcbde54
DH
2444
2445 p->pagefault_disabled = 0;
2446
fbb9ce95 2447#ifdef CONFIG_LOCKDEP
b09be676 2448 lockdep_init_task(p);
fbb9ce95 2449#endif
1da177e4 2450
408894ee
IM
2451#ifdef CONFIG_DEBUG_MUTEXES
2452 p->blocked_on = NULL; /* not blocked yet */
2453#endif
cafe5635
KO
2454#ifdef CONFIG_BCACHE
2455 p->sequential_io = 0;
2456 p->sequential_io_avg = 0;
2457#endif
a10787e6
SL
2458#ifdef CONFIG_BPF_SYSCALL
2459 RCU_INIT_POINTER(p->bpf_storage, NULL);
c7603cfa 2460 p->bpf_ctx = NULL;
a10787e6 2461#endif
0f481406 2462
3c90e6e9 2463 /* Perform scheduler related setup. Assign this task to a CPU. */
aab03e05
DF
2464 retval = sched_fork(clone_flags, p);
2465 if (retval)
2466 goto bad_fork_cleanup_policy;
6ab423e0 2467
2b26f0aa 2468 retval = perf_event_init_task(p, clone_flags);
6ab423e0
PZ
2469 if (retval)
2470 goto bad_fork_cleanup_policy;
fb0a685c
DRO
2471 retval = audit_alloc(p);
2472 if (retval)
6c72e350 2473 goto bad_fork_cleanup_perf;
1da177e4 2474 /* copy all the process information */
ab602f79 2475 shm_init_task(p);
e4e55b47 2476 retval = security_task_alloc(p, clone_flags);
fb0a685c 2477 if (retval)
1da177e4 2478 goto bad_fork_cleanup_audit;
e4e55b47
TH
2479 retval = copy_semundo(clone_flags, p);
2480 if (retval)
2481 goto bad_fork_cleanup_security;
11f3f500 2482 retval = copy_files(clone_flags, p, args->no_files);
fb0a685c 2483 if (retval)
1da177e4 2484 goto bad_fork_cleanup_semundo;
fb0a685c
DRO
2485 retval = copy_fs(clone_flags, p);
2486 if (retval)
1da177e4 2487 goto bad_fork_cleanup_files;
fb0a685c
DRO
2488 retval = copy_sighand(clone_flags, p);
2489 if (retval)
1da177e4 2490 goto bad_fork_cleanup_fs;
fb0a685c
DRO
2491 retval = copy_signal(clone_flags, p);
2492 if (retval)
1da177e4 2493 goto bad_fork_cleanup_sighand;
fb0a685c
DRO
2494 retval = copy_mm(clone_flags, p);
2495 if (retval)
1da177e4 2496 goto bad_fork_cleanup_signal;
fb0a685c
DRO
2497 retval = copy_namespaces(clone_flags, p);
2498 if (retval)
d84f4f99 2499 goto bad_fork_cleanup_mm;
fb0a685c
DRO
2500 retval = copy_io(clone_flags, p);
2501 if (retval)
fd0928df 2502 goto bad_fork_cleanup_namespaces;
c5febea0 2503 retval = copy_thread(p, args);
1da177e4 2504 if (retval)
fd0928df 2505 goto bad_fork_cleanup_io;
1da177e4 2506
afaef01c
AP
2507 stackleak_task_init(p);
2508
425fb2b4 2509 if (pid != &init_struct_pid) {
49cb2fc4
AR
2510 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2511 args->set_tid_size);
35f71bc0
MH
2512 if (IS_ERR(pid)) {
2513 retval = PTR_ERR(pid);
0740aa5f 2514 goto bad_fork_cleanup_thread;
35f71bc0 2515 }
425fb2b4
PE
2516 }
2517
b3e58382
CB
2518 /*
2519 * This has to happen after we've potentially unshared the file
2520 * descriptor table (so that the pidfd doesn't leak into the child
2521 * if the fd table isn't shared).
2522 */
2523 if (clone_flags & CLONE_PIDFD) {
ca7707f5
CB
2524 /* Note that no task has been attached to @pid yet. */
2525 retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile);
b3e58382
CB
2526 if (retval < 0)
2527 goto bad_fork_free_pid;
b3e58382 2528 pidfd = retval;
6fd2fe49 2529
7f192e3c 2530 retval = put_user(pidfd, args->pidfd);
b3e58382
CB
2531 if (retval)
2532 goto bad_fork_put_pidfd;
2533 }
2534
73c10101
JA
2535#ifdef CONFIG_BLOCK
2536 p->plug = NULL;
2537#endif
ba31c1a4
TG
2538 futex_init_task(p);
2539
f9a3879a
GM
2540 /*
2541 * sigaltstack should be cleared when sharing the same VM
2542 */
2543 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2a742138 2544 sas_ss_reset(p);
f9a3879a 2545
1da177e4 2546 /*
6580807d
ON
2547 * Syscall tracing and stepping should be turned off in the
2548 * child regardless of CLONE_PTRACE.
1da177e4 2549 */
6580807d 2550 user_disable_single_step(p);
64c19ba2 2551 clear_task_syscall_work(p, SYSCALL_TRACE);
64eb35f7
GKB
2552#if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2553 clear_task_syscall_work(p, SYSCALL_EMU);
ed75e8d5 2554#endif
e02c9b0d 2555 clear_tsk_latency_tracing(p);
1da177e4 2556
1da177e4 2557 /* ok, now we should be set up.. */
18c830df
ON
2558 p->pid = pid_nr(pid);
2559 if (clone_flags & CLONE_THREAD) {
18c830df
ON
2560 p->group_leader = current->group_leader;
2561 p->tgid = current->tgid;
2562 } else {
18c830df
ON
2563 p->group_leader = p;
2564 p->tgid = p->pid;
2565 }
5f8aadd8 2566
9d823e8f
WF
2567 p->nr_dirtied = 0;
2568 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
83712358 2569 p->dirty_paused_when = 0;
9d823e8f 2570
bb8cbbfe 2571 p->pdeath_signal = 0;
158e1645 2572 p->task_works = NULL;
ca7752ca 2573 clear_posix_cputimers_work(p);
1da177e4 2574
d741bf41
PZ
2575#ifdef CONFIG_KRETPROBES
2576 p->kretprobe_instances.first = NULL;
2577#endif
54ecbe6f
MH
2578#ifdef CONFIG_RETHOOK
2579 p->rethooks.first = NULL;
2580#endif
d741bf41 2581
7e47682e
AS
2582 /*
2583 * Ensure that the cgroup subsystem policies allow the new process to be
7b7b8a2c 2584 * forked. It should be noted that the new process's css_set can be changed
7e47682e
AS
2585 * between here and cgroup_post_fork() if an organisation operation is in
2586 * progress.
2587 */
ef2c41cf 2588 retval = cgroup_can_fork(p, args);
7e47682e 2589 if (retval)
5a5cf5cb 2590 goto bad_fork_put_pidfd;
7e47682e 2591
b1e82065
PZ
2592 /*
2593 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2594 * the new task on the correct runqueue. All this *before* the task
2595 * becomes visible.
2596 *
2597 * This isn't part of ->can_fork() because while the re-cloning is
2598 * cgroup specific, it unconditionally needs to place the task on a
2599 * runqueue.
2600 */
2601 sched_cgroup_fork(p, args);
2602
7b558513
DH
2603 /*
2604 * From this point on we must avoid any synchronous user-space
2605 * communication until we take the tasklist-lock. In particular, we do
2606 * not want user-space to be able to predict the process start-time by
2607 * stalling fork(2) after we recorded the start_time but before it is
2608 * visible to the system.
2609 */
2610
2611 p->start_time = ktime_get_ns();
cf25e24d 2612 p->start_boottime = ktime_get_boottime_ns();
7b558513 2613
18c830df
ON
2614 /*
2615 * Make it visible to the rest of the system, but dont wake it up yet.
2616 * Need tasklist lock for parent etc handling!
2617 */
1da177e4
LT
2618 write_lock_irq(&tasklist_lock);
2619
1da177e4 2620 /* CLONE_PARENT re-uses the old parent */
2d5516cb 2621 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1da177e4 2622 p->real_parent = current->real_parent;
2d5516cb 2623 p->parent_exec_id = current->parent_exec_id;
b4e00444
EW
2624 if (clone_flags & CLONE_THREAD)
2625 p->exit_signal = -1;
2626 else
2627 p->exit_signal = current->group_leader->exit_signal;
2d5516cb 2628 } else {
1da177e4 2629 p->real_parent = current;
2d5516cb 2630 p->parent_exec_id = current->self_exec_id;
b4e00444 2631 p->exit_signal = args->exit_signal;
2d5516cb 2632 }
1da177e4 2633
d83a7cb3
JP
2634 klp_copy_process(p);
2635
85dd3f61
PZ
2636 sched_core_fork(p);
2637
3f17da69 2638 spin_lock(&current->sighand->siglock);
4a2c7a78 2639
79257534
DBO
2640 rv_task_fork(p);
2641
d7822b1e
MD
2642 rseq_fork(p, clone_flags);
2643
4ca1d3ee 2644 /* Don't start children in a dying pid namespace */
e8cfbc24 2645 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
3fd37226
KT
2646 retval = -ENOMEM;
2647 goto bad_fork_cancel_cgroup;
2648 }
4a2c7a78 2649
7673bf55
EB
2650 /* Let kill terminate clone/fork in the middle */
2651 if (fatal_signal_pending(current)) {
2652 retval = -EINTR;
2653 goto bad_fork_cancel_cgroup;
2654 }
2655
a1140cb2
KI
2656 /* No more failure paths after this point. */
2657
2658 /*
2659 * Copy seccomp details explicitly here, in case they were changed
2660 * before holding sighand lock.
2661 */
2662 copy_seccomp(p);
2663
2c470475 2664 init_task_pid_links(p);
73b9ebfe 2665 if (likely(p->pid)) {
4b9d33e6 2666 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
73b9ebfe 2667
81907739 2668 init_task_pid(p, PIDTYPE_PID, pid);
73b9ebfe 2669 if (thread_group_leader(p)) {
6883f81a 2670 init_task_pid(p, PIDTYPE_TGID, pid);
81907739
ON
2671 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2672 init_task_pid(p, PIDTYPE_SID, task_session(current));
2673
1c4042c2 2674 if (is_child_reaper(pid)) {
17cf22c3 2675 ns_of_pid(pid)->child_reaper = p;
1c4042c2
EB
2676 p->signal->flags |= SIGNAL_UNKILLABLE;
2677 }
c3ad2c3b 2678 p->signal->shared_pending.signal = delayed.signal;
9c9f4ded 2679 p->signal->tty = tty_kref_get(current->signal->tty);
749860ce
PT
2680 /*
2681 * Inherit has_child_subreaper flag under the same
2682 * tasklist_lock with adding child to the process tree
2683 * for propagate_has_child_subreaper optimization.
2684 */
2685 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2686 p->real_parent->signal->is_child_subreaper;
9cd80bbb 2687 list_add_tail(&p->sibling, &p->real_parent->children);
5e85d4ab 2688 list_add_tail_rcu(&p->tasks, &init_task.tasks);
6883f81a 2689 attach_pid(p, PIDTYPE_TGID);
81907739
ON
2690 attach_pid(p, PIDTYPE_PGID);
2691 attach_pid(p, PIDTYPE_SID);
909ea964 2692 __this_cpu_inc(process_counts);
80628ca0
ON
2693 } else {
2694 current->signal->nr_threads++;
d80f7d7b 2695 current->signal->quick_threads++;
80628ca0 2696 atomic_inc(&current->signal->live);
60d4de3f 2697 refcount_inc(&current->signal->sigcnt);
924de3b8 2698 task_join_group_stop(p);
0c740d0a
ON
2699 list_add_tail_rcu(&p->thread_node,
2700 &p->signal->thread_head);
73b9ebfe 2701 }
81907739 2702 attach_pid(p, PIDTYPE_PID);
73b9ebfe 2703 nr_threads++;
1da177e4 2704 }
1da177e4 2705 total_forks++;
c3ad2c3b 2706 hlist_del_init(&delayed.node);
3f17da69 2707 spin_unlock(&current->sighand->siglock);
4af4206b 2708 syscall_tracepoint_update(p);
1da177e4 2709 write_unlock_irq(&tasklist_lock);
4af4206b 2710
ddc204b5
WL
2711 if (pidfile)
2712 fd_install(pidfd, pidfile);
2713
c13cf856 2714 proc_fork_connector(p);
b1e82065 2715 sched_post_fork(p);
ef2c41cf 2716 cgroup_post_fork(p, args);
cdd6c482 2717 perf_event_fork(p);
43d2b113
KH
2718
2719 trace_task_newtask(p, clone_flags);
3ab67966 2720 uprobe_copy_process(p, clone_flags);
fd593511 2721 user_events_fork(p, clone_flags);
43d2b113 2722
67197a4f
SB
2723 copy_oom_score_adj(clone_flags, p);
2724
1da177e4
LT
2725 return p;
2726
7e47682e 2727bad_fork_cancel_cgroup:
85dd3f61 2728 sched_core_free(p);
3fd37226
KT
2729 spin_unlock(&current->sighand->siglock);
2730 write_unlock_irq(&tasklist_lock);
ef2c41cf 2731 cgroup_cancel_fork(p, args);
b3e58382 2732bad_fork_put_pidfd:
6fd2fe49
AV
2733 if (clone_flags & CLONE_PIDFD) {
2734 fput(pidfile);
2735 put_unused_fd(pidfd);
2736 }
425fb2b4
PE
2737bad_fork_free_pid:
2738 if (pid != &init_struct_pid)
2739 free_pid(pid);
0740aa5f
JS
2740bad_fork_cleanup_thread:
2741 exit_thread(p);
fd0928df 2742bad_fork_cleanup_io:
b69f2292
LR
2743 if (p->io_context)
2744 exit_io_context(p);
ab516013 2745bad_fork_cleanup_namespaces:
444f378b 2746 exit_task_namespaces(p);
1da177e4 2747bad_fork_cleanup_mm:
c3f3ce04
AA
2748 if (p->mm) {
2749 mm_clear_owner(p->mm, p);
1da177e4 2750 mmput(p->mm);
c3f3ce04 2751 }
1da177e4 2752bad_fork_cleanup_signal:
4ab6c083 2753 if (!(clone_flags & CLONE_THREAD))
1c5354de 2754 free_signal_struct(p->signal);
1da177e4 2755bad_fork_cleanup_sighand:
a7e5328a 2756 __cleanup_sighand(p->sighand);
1da177e4
LT
2757bad_fork_cleanup_fs:
2758 exit_fs(p); /* blocking */
2759bad_fork_cleanup_files:
2760 exit_files(p); /* blocking */
2761bad_fork_cleanup_semundo:
2762 exit_sem(p);
e4e55b47
TH
2763bad_fork_cleanup_security:
2764 security_task_free(p);
1da177e4
LT
2765bad_fork_cleanup_audit:
2766 audit_free(p);
6c72e350 2767bad_fork_cleanup_perf:
cdd6c482 2768 perf_event_free_task(p);
6c72e350 2769bad_fork_cleanup_policy:
b09be676 2770 lockdep_free_task(p);
1da177e4 2771#ifdef CONFIG_NUMA
f0be3d32 2772 mpol_put(p->mempolicy);
1da177e4 2773#endif
ff8288ff 2774bad_fork_cleanup_delayacct:
35df17c5 2775 delayacct_tsk_free(p);
1da177e4 2776bad_fork_cleanup_count:
21d1c5e3 2777 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
e0e81739 2778 exit_creds(p);
1da177e4 2779bad_fork_free:
2f064a59 2780 WRITE_ONCE(p->__state, TASK_DEAD);
1a03d3f1 2781 exit_task_stack_account(p);
68f24b08 2782 put_task_stack(p);
c3f3ce04 2783 delayed_free_task(p);
fe7d37d1 2784fork_out:
c3ad2c3b
EB
2785 spin_lock_irq(&current->sighand->siglock);
2786 hlist_del_init(&delayed.node);
2787 spin_unlock_irq(&current->sighand->siglock);
fe7d37d1 2788 return ERR_PTR(retval);
1da177e4
LT
2789}
2790
2c470475 2791static inline void init_idle_pids(struct task_struct *idle)
f106eee1
ON
2792{
2793 enum pid_type type;
2794
2795 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2c470475
EB
2796 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2797 init_task_pid(idle, type, &init_struct_pid);
f106eee1
ON
2798 }
2799}
2800
36cb0e1c
EB
2801static int idle_dummy(void *dummy)
2802{
2803 /* This function is never called */
2804 return 0;
2805}
2806
f1a0a376 2807struct task_struct * __init fork_idle(int cpu)
1da177e4 2808{
36c8b586 2809 struct task_struct *task;
7f192e3c 2810 struct kernel_clone_args args = {
343f4c49 2811 .flags = CLONE_VM,
5bd2e97c
EB
2812 .fn = &idle_dummy,
2813 .fn_arg = NULL,
343f4c49 2814 .kthread = 1,
36cb0e1c 2815 .idle = 1,
7f192e3c
CB
2816 };
2817
2818 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
f106eee1 2819 if (!IS_ERR(task)) {
2c470475 2820 init_idle_pids(task);
753ca4f3 2821 init_idle(task, cpu);
f106eee1 2822 }
73b9ebfe 2823
1da177e4
LT
2824 return task;
2825}
2826
cc440e87
JA
2827/*
2828 * This is like kernel_clone(), but shaved down and tailored to just
2829 * creating io_uring workers. It returns a created task, or an error pointer.
2830 * The returned task is inactive, and the caller must fire it up through
2831 * wake_up_new_task(p). All signals are blocked in the created task.
2832 */
2833struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2834{
2835 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2836 CLONE_IO;
2837 struct kernel_clone_args args = {
2838 .flags = ((lower_32_bits(flags) | CLONE_VM |
2839 CLONE_UNTRACED) & ~CSIGNAL),
2840 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
5bd2e97c
EB
2841 .fn = fn,
2842 .fn_arg = arg,
cc440e87 2843 .io_thread = 1,
54e6842d 2844 .user_worker = 1,
cc440e87 2845 };
cc440e87 2846
b16b3855 2847 return copy_process(NULL, 0, node, &args);
cc440e87
JA
2848}
2849
1da177e4
LT
2850/*
2851 * Ok, this is the main fork-routine.
2852 *
2853 * It copies the process, and if successful kick-starts
2854 * it and waits for it to finish using the VM if required.
a0eb9abd
ES
2855 *
2856 * args->exit_signal is expected to be checked for sanity by the caller.
1da177e4 2857 */
cad6967a 2858pid_t kernel_clone(struct kernel_clone_args *args)
1da177e4 2859{
7f192e3c 2860 u64 clone_flags = args->flags;
9f5325aa
MPS
2861 struct completion vfork;
2862 struct pid *pid;
1da177e4
LT
2863 struct task_struct *p;
2864 int trace = 0;
cad6967a 2865 pid_t nr;
1da177e4 2866
3af8588c
CB
2867 /*
2868 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2869 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2870 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2871 * field in struct clone_args and it still doesn't make sense to have
2872 * them both point at the same memory location. Performing this check
2873 * here has the advantage that we don't need to have a separate helper
2874 * to check for legacy clone().
2875 */
2876 if ((args->flags & CLONE_PIDFD) &&
2877 (args->flags & CLONE_PARENT_SETTID) &&
2878 (args->pidfd == args->parent_tid))
2879 return -EINVAL;
2880
09a05394 2881 /*
4b9d33e6
TH
2882 * Determine whether and which event to report to ptracer. When
2883 * called from kernel_thread or CLONE_UNTRACED is explicitly
2884 * requested, no event is reported; otherwise, report if the event
2885 * for the type of forking is enabled.
09a05394 2886 */
e80d6661 2887 if (!(clone_flags & CLONE_UNTRACED)) {
4b9d33e6
TH
2888 if (clone_flags & CLONE_VFORK)
2889 trace = PTRACE_EVENT_VFORK;
7f192e3c 2890 else if (args->exit_signal != SIGCHLD)
4b9d33e6
TH
2891 trace = PTRACE_EVENT_CLONE;
2892 else
2893 trace = PTRACE_EVENT_FORK;
2894
2895 if (likely(!ptrace_event_enabled(current, trace)))
2896 trace = 0;
2897 }
1da177e4 2898
7f192e3c 2899 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
38addce8 2900 add_latent_entropy();
9f5325aa
MPS
2901
2902 if (IS_ERR(p))
2903 return PTR_ERR(p);
2904
1da177e4
LT
2905 /*
2906 * Do this prior waking up the new thread - the thread pointer
2907 * might get invalid after that point, if the thread exits quickly.
2908 */
9f5325aa 2909 trace_sched_process_fork(current, p);
0a16b607 2910
9f5325aa
MPS
2911 pid = get_task_pid(p, PIDTYPE_PID);
2912 nr = pid_vnr(pid);
30e49c26 2913
9f5325aa 2914 if (clone_flags & CLONE_PARENT_SETTID)
7f192e3c 2915 put_user(nr, args->parent_tid);
a6f5e063 2916
9f5325aa
MPS
2917 if (clone_flags & CLONE_VFORK) {
2918 p->vfork_done = &vfork;
2919 init_completion(&vfork);
2920 get_task_struct(p);
2921 }
1da177e4 2922
61dd3f24 2923 if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
bd74fdae
YZ
2924 /* lock the task to synchronize with memcg migration */
2925 task_lock(p);
2926 lru_gen_add_mm(p->mm);
2927 task_unlock(p);
2928 }
2929
9f5325aa 2930 wake_up_new_task(p);
09a05394 2931
9f5325aa
MPS
2932 /* forking complete and child started to run, tell ptracer */
2933 if (unlikely(trace))
2934 ptrace_event_pid(trace, pid);
4e52365f 2935
9f5325aa
MPS
2936 if (clone_flags & CLONE_VFORK) {
2937 if (!wait_for_vfork_done(p, &vfork))
2938 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1da177e4 2939 }
9f5325aa
MPS
2940
2941 put_pid(pid);
92476d7f 2942 return nr;
1da177e4
LT
2943}
2944
2aa3a7f8
AV
2945/*
2946 * Create a kernel thread.
2947 */
cf587db2
MC
2948pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2949 unsigned long flags)
2aa3a7f8 2950{
7f192e3c 2951 struct kernel_clone_args args = {
3f2c788a
CB
2952 .flags = ((lower_32_bits(flags) | CLONE_VM |
2953 CLONE_UNTRACED) & ~CSIGNAL),
2954 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
5bd2e97c
EB
2955 .fn = fn,
2956 .fn_arg = arg,
cf587db2 2957 .name = name,
343f4c49
EB
2958 .kthread = 1,
2959 };
2960
2961 return kernel_clone(&args);
2962}
2963
2964/*
2965 * Create a user mode thread.
2966 */
2967pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2aa3a7f8 2968{
7f192e3c 2969 struct kernel_clone_args args = {
3f2c788a
CB
2970 .flags = ((lower_32_bits(flags) | CLONE_VM |
2971 CLONE_UNTRACED) & ~CSIGNAL),
2972 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
5bd2e97c
EB
2973 .fn = fn,
2974 .fn_arg = arg,
7f192e3c
CB
2975 };
2976
cad6967a 2977 return kernel_clone(&args);
2aa3a7f8 2978}
2aa3a7f8 2979
d2125043
AV
2980#ifdef __ARCH_WANT_SYS_FORK
2981SYSCALL_DEFINE0(fork)
2982{
2983#ifdef CONFIG_MMU
7f192e3c
CB
2984 struct kernel_clone_args args = {
2985 .exit_signal = SIGCHLD,
2986 };
2987
cad6967a 2988 return kernel_clone(&args);
d2125043
AV
2989#else
2990 /* can not support in nommu mode */
5d59e182 2991 return -EINVAL;
d2125043
AV
2992#endif
2993}
2994#endif
2995
2996#ifdef __ARCH_WANT_SYS_VFORK
2997SYSCALL_DEFINE0(vfork)
2998{
7f192e3c
CB
2999 struct kernel_clone_args args = {
3000 .flags = CLONE_VFORK | CLONE_VM,
3001 .exit_signal = SIGCHLD,
3002 };
3003
cad6967a 3004 return kernel_clone(&args);
d2125043
AV
3005}
3006#endif
3007
3008#ifdef __ARCH_WANT_SYS_CLONE
3009#ifdef CONFIG_CLONE_BACKWARDS
3010SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3011 int __user *, parent_tidptr,
3033f14a 3012 unsigned long, tls,
d2125043
AV
3013 int __user *, child_tidptr)
3014#elif defined(CONFIG_CLONE_BACKWARDS2)
3015SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
3016 int __user *, parent_tidptr,
3017 int __user *, child_tidptr,
3033f14a 3018 unsigned long, tls)
dfa9771a
MS
3019#elif defined(CONFIG_CLONE_BACKWARDS3)
3020SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
3021 int, stack_size,
3022 int __user *, parent_tidptr,
3023 int __user *, child_tidptr,
3033f14a 3024 unsigned long, tls)
d2125043
AV
3025#else
3026SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3027 int __user *, parent_tidptr,
3028 int __user *, child_tidptr,
3033f14a 3029 unsigned long, tls)
d2125043
AV
3030#endif
3031{
7f192e3c 3032 struct kernel_clone_args args = {
3f2c788a 3033 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
7f192e3c
CB
3034 .pidfd = parent_tidptr,
3035 .child_tid = child_tidptr,
3036 .parent_tid = parent_tidptr,
3f2c788a 3037 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
7f192e3c
CB
3038 .stack = newsp,
3039 .tls = tls,
3040 };
3041
cad6967a 3042 return kernel_clone(&args);
7f192e3c 3043}
d68dbb0c 3044#endif
7f192e3c 3045
d68dbb0c 3046#ifdef __ARCH_WANT_SYS_CLONE3
dd499f7a 3047
7f192e3c
CB
3048noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
3049 struct clone_args __user *uargs,
f14c234b 3050 size_t usize)
7f192e3c 3051{
f14c234b 3052 int err;
7f192e3c 3053 struct clone_args args;
49cb2fc4 3054 pid_t *kset_tid = kargs->set_tid;
7f192e3c 3055
a966dcfe
ES
3056 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
3057 CLONE_ARGS_SIZE_VER0);
3058 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
3059 CLONE_ARGS_SIZE_VER1);
3060 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
3061 CLONE_ARGS_SIZE_VER2);
3062 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
3063
f14c234b 3064 if (unlikely(usize > PAGE_SIZE))
7f192e3c 3065 return -E2BIG;
f14c234b 3066 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
7f192e3c
CB
3067 return -EINVAL;
3068
f14c234b
AS
3069 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
3070 if (err)
3071 return err;
7f192e3c 3072
49cb2fc4
AR
3073 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
3074 return -EINVAL;
3075
3076 if (unlikely(!args.set_tid && args.set_tid_size > 0))
3077 return -EINVAL;
3078
3079 if (unlikely(args.set_tid && args.set_tid_size == 0))
3080 return -EINVAL;
3081
a0eb9abd
ES
3082 /*
3083 * Verify that higher 32bits of exit_signal are unset and that
3084 * it is a valid signal
3085 */
3086 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
3087 !valid_signal(args.exit_signal)))
3088 return -EINVAL;
3089
62173872
ES
3090 if ((args.flags & CLONE_INTO_CGROUP) &&
3091 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
ef2c41cf
CB
3092 return -EINVAL;
3093
7f192e3c
CB
3094 *kargs = (struct kernel_clone_args){
3095 .flags = args.flags,
3096 .pidfd = u64_to_user_ptr(args.pidfd),
3097 .child_tid = u64_to_user_ptr(args.child_tid),
3098 .parent_tid = u64_to_user_ptr(args.parent_tid),
3099 .exit_signal = args.exit_signal,
3100 .stack = args.stack,
3101 .stack_size = args.stack_size,
3102 .tls = args.tls,
49cb2fc4 3103 .set_tid_size = args.set_tid_size,
ef2c41cf 3104 .cgroup = args.cgroup,
7f192e3c
CB
3105 };
3106
49cb2fc4
AR
3107 if (args.set_tid &&
3108 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3109 (kargs->set_tid_size * sizeof(pid_t))))
3110 return -EFAULT;
3111
3112 kargs->set_tid = kset_tid;
3113
7f192e3c
CB
3114 return 0;
3115}
3116
fa729c4d
CB
3117/**
3118 * clone3_stack_valid - check and prepare stack
3119 * @kargs: kernel clone args
3120 *
3121 * Verify that the stack arguments userspace gave us are sane.
3122 * In addition, set the stack direction for userspace since it's easy for us to
3123 * determine.
3124 */
3125static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3126{
3127 if (kargs->stack == 0) {
3128 if (kargs->stack_size > 0)
3129 return false;
3130 } else {
3131 if (kargs->stack_size == 0)
3132 return false;
3133
3134 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3135 return false;
3136
cf8e8658 3137#if !defined(CONFIG_STACK_GROWSUP)
fa729c4d
CB
3138 kargs->stack += kargs->stack_size;
3139#endif
3140 }
3141
3142 return true;
3143}
3144
3145static bool clone3_args_valid(struct kernel_clone_args *kargs)
7f192e3c 3146{
b612e5df 3147 /* Verify that no unknown flags are passed along. */
ef2c41cf
CB
3148 if (kargs->flags &
3149 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
7f192e3c
CB
3150 return false;
3151
3152 /*
a8ca6b13
XC
3153 * - make the CLONE_DETACHED bit reusable for clone3
3154 * - make the CSIGNAL bits reusable for clone3
7f192e3c 3155 */
a402f1e3 3156 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
7f192e3c
CB
3157 return false;
3158
b612e5df
CB
3159 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3160 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3161 return false;
3162
7f192e3c
CB
3163 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3164 kargs->exit_signal)
3165 return false;
3166
fa729c4d
CB
3167 if (!clone3_stack_valid(kargs))
3168 return false;
3169
7f192e3c
CB
3170 return true;
3171}
3172
501bd016 3173/**
ff0712ea 3174 * sys_clone3 - create a new process with specific properties
501bd016
CB
3175 * @uargs: argument structure
3176 * @size: size of @uargs
3177 *
3178 * clone3() is the extensible successor to clone()/clone2().
3179 * It takes a struct as argument that is versioned by its size.
3180 *
3181 * Return: On success, a positive PID for the child process.
3182 * On error, a negative errno number.
3183 */
7f192e3c
CB
3184SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3185{
3186 int err;
3187
3188 struct kernel_clone_args kargs;
49cb2fc4
AR
3189 pid_t set_tid[MAX_PID_NS_LEVEL];
3190
3191 kargs.set_tid = set_tid;
7f192e3c
CB
3192
3193 err = copy_clone_args_from_user(&kargs, uargs, size);
3194 if (err)
3195 return err;
3196
3197 if (!clone3_args_valid(&kargs))
3198 return -EINVAL;
3199
cad6967a 3200 return kernel_clone(&kargs);
d2125043
AV
3201}
3202#endif
3203
0f1b92cb
ON
3204void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3205{
3206 struct task_struct *leader, *parent, *child;
3207 int res;
3208
3209 read_lock(&tasklist_lock);
3210 leader = top = top->group_leader;
3211down:
3212 for_each_thread(leader, parent) {
3213 list_for_each_entry(child, &parent->children, sibling) {
3214 res = visitor(child, data);
3215 if (res) {
3216 if (res < 0)
3217 goto out;
3218 leader = child;
3219 goto down;
3220 }
3221up:
3222 ;
3223 }
3224 }
3225
3226 if (leader != top) {
3227 child = leader;
3228 parent = child->real_parent;
3229 leader = parent->group_leader;
3230 goto up;
3231 }
3232out:
3233 read_unlock(&tasklist_lock);
3234}
3235
5fd63b30
RT
3236#ifndef ARCH_MIN_MMSTRUCT_ALIGN
3237#define ARCH_MIN_MMSTRUCT_ALIGN 0
3238#endif
3239
51cc5068 3240static void sighand_ctor(void *data)
aa1757f9
ON
3241{
3242 struct sighand_struct *sighand = data;
3243
a35afb83 3244 spin_lock_init(&sighand->siglock);
b8fceee1 3245 init_waitqueue_head(&sighand->signalfd_wqh);
aa1757f9
ON
3246}
3247
af806027 3248void __init mm_cache_init(void)
1da177e4 3249{
c1a2f7f0
RR
3250 unsigned int mm_size;
3251
af806027
PZ
3252 /*
3253 * The mm_cpumask is located at the end of mm_struct, and is
3254 * dynamically sized based on the maximum CPU number this system
3255 * can have, taking hotplug into account (nr_cpu_ids).
3256 */
af7f588d 3257 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
af806027
PZ
3258
3259 mm_cachep = kmem_cache_create_usercopy("mm_struct",
3260 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3261 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3262 offsetof(struct mm_struct, saved_auxv),
3263 sizeof_field(struct mm_struct, saved_auxv),
3264 NULL);
3265}
3266
3267void __init proc_caches_init(void)
3268{
1da177e4
LT
3269 sighand_cachep = kmem_cache_create("sighand_cache",
3270 sizeof(struct sighand_struct), 0,
5f0d5a3a 3271 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
75f296d9 3272 SLAB_ACCOUNT, sighand_ctor);
1da177e4
LT
3273 signal_cachep = kmem_cache_create("signal_cache",
3274 sizeof(struct signal_struct), 0,
75f296d9 3275 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 3276 NULL);
20c2df83 3277 files_cachep = kmem_cache_create("files_cache",
1da177e4 3278 sizeof(struct files_struct), 0,
75f296d9 3279 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 3280 NULL);
20c2df83 3281 fs_cachep = kmem_cache_create("fs_cache",
1da177e4 3282 sizeof(struct fs_struct), 0,
75f296d9 3283 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 3284 NULL);
c1a2f7f0 3285
5d097056 3286 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
c7f8f31c
SB
3287#ifdef CONFIG_PER_VMA_LOCK
3288 vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3289#endif
8feae131 3290 mmap_init();
66577193 3291 nsproxy_cache_init();
1da177e4 3292}
cf2e340f 3293
cf2e340f 3294/*
9bfb23fc 3295 * Check constraints on flags passed to the unshare system call.
cf2e340f 3296 */
9bfb23fc 3297static int check_unshare_flags(unsigned long unshare_flags)
cf2e340f 3298{
9bfb23fc
ON
3299 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3300 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
50804fe3 3301 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
769071ac
AV
3302 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3303 CLONE_NEWTIME))
9bfb23fc 3304 return -EINVAL;
cf2e340f 3305 /*
12c641ab
EB
3306 * Not implemented, but pretend it works if there is nothing
3307 * to unshare. Note that unsharing the address space or the
3308 * signal handlers also need to unshare the signal queues (aka
3309 * CLONE_THREAD).
cf2e340f 3310 */
9bfb23fc 3311 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
12c641ab
EB
3312 if (!thread_group_empty(current))
3313 return -EINVAL;
3314 }
3315 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
d036bda7 3316 if (refcount_read(&current->sighand->count) > 1)
12c641ab
EB
3317 return -EINVAL;
3318 }
3319 if (unshare_flags & CLONE_VM) {
3320 if (!current_is_single_threaded())
9bfb23fc
ON
3321 return -EINVAL;
3322 }
cf2e340f
JD
3323
3324 return 0;
3325}
3326
3327/*
99d1419d 3328 * Unshare the filesystem structure if it is being shared
cf2e340f
JD
3329 */
3330static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3331{
3332 struct fs_struct *fs = current->fs;
3333
498052bb
AV
3334 if (!(unshare_flags & CLONE_FS) || !fs)
3335 return 0;
3336
3337 /* don't need lock here; in the worst case we'll do useless copy */
3338 if (fs->users == 1)
3339 return 0;
3340
3341 *new_fsp = copy_fs_struct(fs);
3342 if (!*new_fsp)
3343 return -ENOMEM;
cf2e340f
JD
3344
3345 return 0;
3346}
3347
cf2e340f 3348/*
a016f338 3349 * Unshare file descriptor table if it is being shared
cf2e340f 3350 */
60997c3d
CB
3351int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3352 struct files_struct **new_fdp)
cf2e340f
JD
3353{
3354 struct files_struct *fd = current->files;
a016f338 3355 int error = 0;
cf2e340f
JD
3356
3357 if ((unshare_flags & CLONE_FILES) &&
a016f338 3358 (fd && atomic_read(&fd->count) > 1)) {
60997c3d 3359 *new_fdp = dup_fd(fd, max_fds, &error);
a016f338
JD
3360 if (!*new_fdp)
3361 return error;
3362 }
cf2e340f
JD
3363
3364 return 0;
3365}
3366
cf2e340f
JD
3367/*
3368 * unshare allows a process to 'unshare' part of the process
3369 * context which was originally shared using clone. copy_*
cad6967a 3370 * functions used by kernel_clone() cannot be used here directly
cf2e340f
JD
3371 * because they modify an inactive task_struct that is being
3372 * constructed. Here we are modifying the current, active,
3373 * task_struct.
3374 */
9b32105e 3375int ksys_unshare(unsigned long unshare_flags)
cf2e340f 3376{
cf2e340f 3377 struct fs_struct *fs, *new_fs = NULL;
ba1f70dd 3378 struct files_struct *new_fd = NULL;
b2e0d987 3379 struct cred *new_cred = NULL;
cf7b708c 3380 struct nsproxy *new_nsproxy = NULL;
9edff4ab 3381 int do_sysvsem = 0;
9bfb23fc 3382 int err;
cf2e340f 3383
b2e0d987 3384 /*
faf00da5
EB
3385 * If unsharing a user namespace must also unshare the thread group
3386 * and unshare the filesystem root and working directories.
b2e0d987
EB
3387 */
3388 if (unshare_flags & CLONE_NEWUSER)
e66eded8 3389 unshare_flags |= CLONE_THREAD | CLONE_FS;
50804fe3
EB
3390 /*
3391 * If unsharing vm, must also unshare signal handlers.
3392 */
3393 if (unshare_flags & CLONE_VM)
3394 unshare_flags |= CLONE_SIGHAND;
12c641ab
EB
3395 /*
3396 * If unsharing a signal handlers, must also unshare the signal queues.
3397 */
3398 if (unshare_flags & CLONE_SIGHAND)
3399 unshare_flags |= CLONE_THREAD;
9bfb23fc
ON
3400 /*
3401 * If unsharing namespace, must also unshare filesystem information.
3402 */
3403 if (unshare_flags & CLONE_NEWNS)
3404 unshare_flags |= CLONE_FS;
50804fe3
EB
3405
3406 err = check_unshare_flags(unshare_flags);
3407 if (err)
3408 goto bad_unshare_out;
6013f67f
MS
3409 /*
3410 * CLONE_NEWIPC must also detach from the undolist: after switching
3411 * to a new ipc namespace, the semaphore arrays from the old
3412 * namespace are unreachable.
3413 */
3414 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
9edff4ab 3415 do_sysvsem = 1;
fb0a685c
DRO
3416 err = unshare_fs(unshare_flags, &new_fs);
3417 if (err)
9bfb23fc 3418 goto bad_unshare_out;
60997c3d 3419 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
fb0a685c 3420 if (err)
9bfb23fc 3421 goto bad_unshare_cleanup_fs;
b2e0d987 3422 err = unshare_userns(unshare_flags, &new_cred);
fb0a685c 3423 if (err)
9edff4ab 3424 goto bad_unshare_cleanup_fd;
b2e0d987
EB
3425 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3426 new_cred, new_fs);
3427 if (err)
3428 goto bad_unshare_cleanup_cred;
c0b2fc31 3429
905ae01c
AG
3430 if (new_cred) {
3431 err = set_cred_ucounts(new_cred);
3432 if (err)
3433 goto bad_unshare_cleanup_cred;
3434 }
3435
b2e0d987 3436 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
9edff4ab
MS
3437 if (do_sysvsem) {
3438 /*
3439 * CLONE_SYSVSEM is equivalent to sys_exit().
3440 */
3441 exit_sem(current);
3442 }
ab602f79
JM
3443 if (unshare_flags & CLONE_NEWIPC) {
3444 /* Orphan segments in old ns (see sem above). */
3445 exit_shm(current);
3446 shm_init_task(current);
3447 }
ab516013 3448
6f977e6b 3449 if (new_nsproxy)
cf7b708c 3450 switch_task_namespaces(current, new_nsproxy);
cf2e340f 3451
cf7b708c
PE
3452 task_lock(current);
3453
cf2e340f
JD
3454 if (new_fs) {
3455 fs = current->fs;
2a4419b5 3456 spin_lock(&fs->lock);
cf2e340f 3457 current->fs = new_fs;
498052bb
AV
3458 if (--fs->users)
3459 new_fs = NULL;
3460 else
3461 new_fs = fs;
2a4419b5 3462 spin_unlock(&fs->lock);
cf2e340f
JD
3463 }
3464
ba1f70dd
RX
3465 if (new_fd)
3466 swap(current->files, new_fd);
cf2e340f
JD
3467
3468 task_unlock(current);
b2e0d987
EB
3469
3470 if (new_cred) {
3471 /* Install the new user namespace */
3472 commit_creds(new_cred);
3473 new_cred = NULL;
3474 }
cf2e340f
JD
3475 }
3476
e4222673
HB
3477 perf_event_namespaces(current);
3478
b2e0d987
EB
3479bad_unshare_cleanup_cred:
3480 if (new_cred)
3481 put_cred(new_cred);
cf2e340f
JD
3482bad_unshare_cleanup_fd:
3483 if (new_fd)
3484 put_files_struct(new_fd);
3485
cf2e340f
JD
3486bad_unshare_cleanup_fs:
3487 if (new_fs)
498052bb 3488 free_fs_struct(new_fs);
cf2e340f 3489
cf2e340f
JD
3490bad_unshare_out:
3491 return err;
3492}
3b125388 3493
9b32105e
DB
3494SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3495{
3496 return ksys_unshare(unshare_flags);
3497}
3498
3b125388
AV
3499/*
3500 * Helper to unshare the files of the current task.
3501 * We don't want to expose copy_files internals to
3502 * the exec layer of the kernel.
3503 */
3504
1f702603 3505int unshare_files(void)
3b125388
AV
3506{
3507 struct task_struct *task = current;
1f702603 3508 struct files_struct *old, *copy = NULL;
3b125388
AV
3509 int error;
3510
60997c3d 3511 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
1f702603 3512 if (error || !copy)
3b125388 3513 return error;
1f702603
EB
3514
3515 old = task->files;
3b125388
AV
3516 task_lock(task);
3517 task->files = copy;
3518 task_unlock(task);
1f702603 3519 put_files_struct(old);
3b125388
AV
3520 return 0;
3521}
16db3d3f
HS
3522
3523int sysctl_max_threads(struct ctl_table *table, int write,
b0daa2c7 3524 void *buffer, size_t *lenp, loff_t *ppos)
16db3d3f
HS
3525{
3526 struct ctl_table t;
3527 int ret;
3528 int threads = max_threads;
b0f53dbc 3529 int min = 1;
16db3d3f
HS
3530 int max = MAX_THREADS;
3531
3532 t = *table;
3533 t.data = &threads;
3534 t.extra1 = &min;
3535 t.extra2 = &max;
3536
3537 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3538 if (ret || !write)
3539 return ret;
3540
b0f53dbc 3541 max_threads = threads;
16db3d3f
HS
3542
3543 return 0;
3544}