samples: add .gitignore for pidfd-metadata
[linux-2.6-block.git] / kernel / fork.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7/*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
b3e58382 14#include <linux/anon_inodes.h>
1da177e4 15#include <linux/slab.h>
4eb5aaa3 16#include <linux/sched/autogroup.h>
6e84f315 17#include <linux/sched/mm.h>
f7ccbae4 18#include <linux/sched/coredump.h>
8703e8a4 19#include <linux/sched/user.h>
6a3827d7 20#include <linux/sched/numa_balancing.h>
03441a34 21#include <linux/sched/stat.h>
29930025 22#include <linux/sched/task.h>
68db0cf1 23#include <linux/sched/task_stack.h>
32ef5517 24#include <linux/sched/cputime.h>
b3e58382 25#include <linux/seq_file.h>
037741a6 26#include <linux/rtmutex.h>
1da177e4
LT
27#include <linux/init.h>
28#include <linux/unistd.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/vmalloc.h>
31#include <linux/completion.h>
1da177e4
LT
32#include <linux/personality.h>
33#include <linux/mempolicy.h>
34#include <linux/sem.h>
35#include <linux/file.h>
9f3acc31 36#include <linux/fdtable.h>
da9cbc87 37#include <linux/iocontext.h>
1da177e4
LT
38#include <linux/key.h>
39#include <linux/binfmts.h>
40#include <linux/mman.h>
cddb8a5c 41#include <linux/mmu_notifier.h>
133ff0ea 42#include <linux/hmm.h>
1da177e4 43#include <linux/fs.h>
615d6e87
DB
44#include <linux/mm.h>
45#include <linux/vmacache.h>
ab516013 46#include <linux/nsproxy.h>
c59ede7b 47#include <linux/capability.h>
1da177e4 48#include <linux/cpu.h>
b4f48b63 49#include <linux/cgroup.h>
1da177e4 50#include <linux/security.h>
a1e78772 51#include <linux/hugetlb.h>
e2cfabdf 52#include <linux/seccomp.h>
1da177e4
LT
53#include <linux/swap.h>
54#include <linux/syscalls.h>
55#include <linux/jiffies.h>
56#include <linux/futex.h>
8141c7f3 57#include <linux/compat.h>
207205a2 58#include <linux/kthread.h>
7c3ab738 59#include <linux/task_io_accounting_ops.h>
ab2af1f5 60#include <linux/rcupdate.h>
1da177e4
LT
61#include <linux/ptrace.h>
62#include <linux/mount.h>
63#include <linux/audit.h>
78fb7466 64#include <linux/memcontrol.h>
f201ae23 65#include <linux/ftrace.h>
5e2bf014 66#include <linux/proc_fs.h>
1da177e4
LT
67#include <linux/profile.h>
68#include <linux/rmap.h>
f8af4da3 69#include <linux/ksm.h>
1da177e4 70#include <linux/acct.h>
893e26e6 71#include <linux/userfaultfd_k.h>
8f0ab514 72#include <linux/tsacct_kern.h>
9f46080c 73#include <linux/cn_proc.h>
ba96a0c8 74#include <linux/freezer.h>
ca74e92b 75#include <linux/delayacct.h>
ad4ecbcb 76#include <linux/taskstats_kern.h>
0a425405 77#include <linux/random.h>
522ed776 78#include <linux/tty.h>
fd0928df 79#include <linux/blkdev.h>
5ad4e53b 80#include <linux/fs_struct.h>
7c9f8861 81#include <linux/magic.h>
cdd6c482 82#include <linux/perf_event.h>
42c4ab41 83#include <linux/posix-timers.h>
8e7cac79 84#include <linux/user-return-notifier.h>
3d5992d2 85#include <linux/oom.h>
ba76149f 86#include <linux/khugepaged.h>
d80e731e 87#include <linux/signalfd.h>
0326f5a9 88#include <linux/uprobes.h>
a27bb332 89#include <linux/aio.h>
52f5684c 90#include <linux/compiler.h>
16db3d3f 91#include <linux/sysctl.h>
5c9a8750 92#include <linux/kcov.h>
d83a7cb3 93#include <linux/livepatch.h>
48ac3c18 94#include <linux/thread_info.h>
afaef01c 95#include <linux/stackleak.h>
1da177e4
LT
96
97#include <asm/pgtable.h>
98#include <asm/pgalloc.h>
7c0f6ba6 99#include <linux/uaccess.h>
1da177e4
LT
100#include <asm/mmu_context.h>
101#include <asm/cacheflush.h>
102#include <asm/tlbflush.h>
103
ad8d75ff
SR
104#include <trace/events/sched.h>
105
43d2b113
KH
106#define CREATE_TRACE_POINTS
107#include <trace/events/task.h>
108
ac1b398d
HS
109/*
110 * Minimum number of threads to boot the kernel
111 */
112#define MIN_THREADS 20
113
114/*
115 * Maximum number of threads
116 */
117#define MAX_THREADS FUTEX_TID_MASK
118
1da177e4
LT
119/*
120 * Protected counters by write_lock_irq(&tasklist_lock)
121 */
122unsigned long total_forks; /* Handle normal Linux uptimes. */
fb0a685c 123int nr_threads; /* The idle threads do not count.. */
1da177e4
LT
124
125int max_threads; /* tunable limit on nr_threads */
126
127DEFINE_PER_CPU(unsigned long, process_counts) = 0;
128
c59923a1 129__cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
db1466b3
PM
130
131#ifdef CONFIG_PROVE_RCU
132int lockdep_tasklist_lock_is_held(void)
133{
134 return lockdep_is_held(&tasklist_lock);
135}
136EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
137#endif /* #ifdef CONFIG_PROVE_RCU */
1da177e4
LT
138
139int nr_processes(void)
140{
141 int cpu;
142 int total = 0;
143
1d510750 144 for_each_possible_cpu(cpu)
1da177e4
LT
145 total += per_cpu(process_counts, cpu);
146
147 return total;
148}
149
f19b9f74
AM
150void __weak arch_release_task_struct(struct task_struct *tsk)
151{
152}
153
f5e10287 154#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
e18b890b 155static struct kmem_cache *task_struct_cachep;
41101809
TG
156
157static inline struct task_struct *alloc_task_struct_node(int node)
158{
159 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
160}
161
41101809
TG
162static inline void free_task_struct(struct task_struct *tsk)
163{
41101809
TG
164 kmem_cache_free(task_struct_cachep, tsk);
165}
1da177e4
LT
166#endif
167
b235beea 168#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
41101809 169
0d15d74a
TG
170/*
171 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
172 * kmemcache based allocator.
173 */
ba14a194 174# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
ac496bf4
AL
175
176#ifdef CONFIG_VMAP_STACK
177/*
178 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
179 * flush. Try to minimize the number of calls by caching stacks.
180 */
181#define NR_CACHED_STACKS 2
182static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
19659c59
HR
183
184static int free_vm_stack_cache(unsigned int cpu)
185{
186 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
187 int i;
188
189 for (i = 0; i < NR_CACHED_STACKS; i++) {
190 struct vm_struct *vm_stack = cached_vm_stacks[i];
191
192 if (!vm_stack)
193 continue;
194
195 vfree(vm_stack->addr);
196 cached_vm_stacks[i] = NULL;
197 }
198
199 return 0;
200}
ac496bf4
AL
201#endif
202
ba14a194 203static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
b69c49b7 204{
ba14a194 205#ifdef CONFIG_VMAP_STACK
ac496bf4
AL
206 void *stack;
207 int i;
208
ac496bf4 209 for (i = 0; i < NR_CACHED_STACKS; i++) {
112166f8
CL
210 struct vm_struct *s;
211
212 s = this_cpu_xchg(cached_stacks[i], NULL);
ac496bf4
AL
213
214 if (!s)
215 continue;
ac496bf4 216
ca182551
KK
217 /* Clear stale pointers from reused stack. */
218 memset(s->addr, 0, THREAD_SIZE);
e01e8063 219
ac496bf4 220 tsk->stack_vm_area = s;
ba4a4574 221 tsk->stack = s->addr;
ac496bf4
AL
222 return s->addr;
223 }
ac496bf4 224
9b6f7e16
RG
225 /*
226 * Allocated stacks are cached and later reused by new threads,
227 * so memcg accounting is performed manually on assigning/releasing
228 * stacks to tasks. Drop __GFP_ACCOUNT.
229 */
48ac3c18 230 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
ac496bf4 231 VMALLOC_START, VMALLOC_END,
9b6f7e16 232 THREADINFO_GFP & ~__GFP_ACCOUNT,
ac496bf4
AL
233 PAGE_KERNEL,
234 0, node, __builtin_return_address(0));
ba14a194
AL
235
236 /*
237 * We can't call find_vm_area() in interrupt context, and
238 * free_thread_stack() can be called in interrupt context,
239 * so cache the vm_struct.
240 */
5eed6f1d 241 if (stack) {
ba14a194 242 tsk->stack_vm_area = find_vm_area(stack);
5eed6f1d
RR
243 tsk->stack = stack;
244 }
ba14a194
AL
245 return stack;
246#else
4949148a
VD
247 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
248 THREAD_SIZE_ORDER);
b6a84016
ED
249
250 return page ? page_address(page) : NULL;
ba14a194 251#endif
b69c49b7
FT
252}
253
ba14a194 254static inline void free_thread_stack(struct task_struct *tsk)
b69c49b7 255{
ac496bf4 256#ifdef CONFIG_VMAP_STACK
9b6f7e16
RG
257 struct vm_struct *vm = task_stack_vm_area(tsk);
258
259 if (vm) {
ac496bf4
AL
260 int i;
261
9b6f7e16
RG
262 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
263 mod_memcg_page_state(vm->pages[i],
264 MEMCG_KERNEL_STACK_KB,
265 -(int)(PAGE_SIZE / 1024));
266
267 memcg_kmem_uncharge(vm->pages[i], 0);
268 }
269
ac496bf4 270 for (i = 0; i < NR_CACHED_STACKS; i++) {
112166f8
CL
271 if (this_cpu_cmpxchg(cached_stacks[i],
272 NULL, tsk->stack_vm_area) != NULL)
ac496bf4
AL
273 continue;
274
ac496bf4
AL
275 return;
276 }
ac496bf4 277
0f110a9b 278 vfree_atomic(tsk->stack);
ac496bf4
AL
279 return;
280 }
281#endif
282
283 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
b69c49b7 284}
0d15d74a 285# else
b235beea 286static struct kmem_cache *thread_stack_cache;
0d15d74a 287
9521d399 288static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
0d15d74a
TG
289 int node)
290{
5eed6f1d
RR
291 unsigned long *stack;
292 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
293 tsk->stack = stack;
294 return stack;
0d15d74a
TG
295}
296
ba14a194 297static void free_thread_stack(struct task_struct *tsk)
0d15d74a 298{
ba14a194 299 kmem_cache_free(thread_stack_cache, tsk->stack);
0d15d74a
TG
300}
301
b235beea 302void thread_stack_cache_init(void)
0d15d74a 303{
f9d29946
DW
304 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
305 THREAD_SIZE, THREAD_SIZE, 0, 0,
306 THREAD_SIZE, NULL);
b235beea 307 BUG_ON(thread_stack_cache == NULL);
0d15d74a
TG
308}
309# endif
b69c49b7
FT
310#endif
311
1da177e4 312/* SLAB cache for signal_struct structures (tsk->signal) */
e18b890b 313static struct kmem_cache *signal_cachep;
1da177e4
LT
314
315/* SLAB cache for sighand_struct structures (tsk->sighand) */
e18b890b 316struct kmem_cache *sighand_cachep;
1da177e4
LT
317
318/* SLAB cache for files_struct structures (tsk->files) */
e18b890b 319struct kmem_cache *files_cachep;
1da177e4
LT
320
321/* SLAB cache for fs_struct structures (tsk->fs) */
e18b890b 322struct kmem_cache *fs_cachep;
1da177e4
LT
323
324/* SLAB cache for vm_area_struct structures */
3928d4f5 325static struct kmem_cache *vm_area_cachep;
1da177e4
LT
326
327/* SLAB cache for mm_struct structures (tsk->mm) */
e18b890b 328static struct kmem_cache *mm_cachep;
1da177e4 329
490fc053 330struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
3928d4f5 331{
a670468f 332 struct vm_area_struct *vma;
490fc053 333
a670468f 334 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
027232da
KS
335 if (vma)
336 vma_init(vma, mm);
490fc053 337 return vma;
3928d4f5
LT
338}
339
340struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
341{
95faf699
LT
342 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
343
344 if (new) {
345 *new = *orig;
346 INIT_LIST_HEAD(&new->anon_vma_chain);
347 }
348 return new;
3928d4f5
LT
349}
350
351void vm_area_free(struct vm_area_struct *vma)
352{
353 kmem_cache_free(vm_area_cachep, vma);
354}
355
ba14a194 356static void account_kernel_stack(struct task_struct *tsk, int account)
c6a7f572 357{
ba14a194
AL
358 void *stack = task_stack_page(tsk);
359 struct vm_struct *vm = task_stack_vm_area(tsk);
360
361 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
362
363 if (vm) {
364 int i;
365
366 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
367
368 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
369 mod_zone_page_state(page_zone(vm->pages[i]),
370 NR_KERNEL_STACK_KB,
371 PAGE_SIZE / 1024 * account);
372 }
ba14a194
AL
373 } else {
374 /*
375 * All stack pages are in the same zone and belong to the
376 * same memcg.
377 */
378 struct page *first_page = virt_to_page(stack);
379
380 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
381 THREAD_SIZE / 1024 * account);
382
ed52be7b
JW
383 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
384 account * (THREAD_SIZE / 1024));
ba14a194 385 }
c6a7f572
KM
386}
387
9b6f7e16
RG
388static int memcg_charge_kernel_stack(struct task_struct *tsk)
389{
390#ifdef CONFIG_VMAP_STACK
391 struct vm_struct *vm = task_stack_vm_area(tsk);
392 int ret;
393
394 if (vm) {
395 int i;
396
397 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
398 /*
399 * If memcg_kmem_charge() fails, page->mem_cgroup
400 * pointer is NULL, and both memcg_kmem_uncharge()
401 * and mod_memcg_page_state() in free_thread_stack()
402 * will ignore this page. So it's safe.
403 */
404 ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
405 if (ret)
406 return ret;
407
408 mod_memcg_page_state(vm->pages[i],
409 MEMCG_KERNEL_STACK_KB,
410 PAGE_SIZE / 1024);
411 }
412 }
413#endif
414 return 0;
415}
416
68f24b08 417static void release_task_stack(struct task_struct *tsk)
1da177e4 418{
405c0759
AL
419 if (WARN_ON(tsk->state != TASK_DEAD))
420 return; /* Better to leak the stack than to free prematurely */
421
ba14a194 422 account_kernel_stack(tsk, -1);
ba14a194 423 free_thread_stack(tsk);
68f24b08
AL
424 tsk->stack = NULL;
425#ifdef CONFIG_VMAP_STACK
426 tsk->stack_vm_area = NULL;
427#endif
428}
429
430#ifdef CONFIG_THREAD_INFO_IN_TASK
431void put_task_stack(struct task_struct *tsk)
432{
f0b89d39 433 if (refcount_dec_and_test(&tsk->stack_refcount))
68f24b08
AL
434 release_task_stack(tsk);
435}
436#endif
437
438void free_task(struct task_struct *tsk)
439{
440#ifndef CONFIG_THREAD_INFO_IN_TASK
441 /*
442 * The task is finally done with both the stack and thread_info,
443 * so free both.
444 */
445 release_task_stack(tsk);
446#else
447 /*
448 * If the task had a separate stack allocation, it should be gone
449 * by now.
450 */
f0b89d39 451 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
68f24b08 452#endif
23f78d4a 453 rt_mutex_debug_task_free(tsk);
fb52607a 454 ftrace_graph_exit_task(tsk);
e2cfabdf 455 put_seccomp_filter(tsk);
f19b9f74 456 arch_release_task_struct(tsk);
1da5c46f
ON
457 if (tsk->flags & PF_KTHREAD)
458 free_kthread_struct(tsk);
1da177e4
LT
459 free_task_struct(tsk);
460}
461EXPORT_SYMBOL(free_task);
462
d70f2a14
AM
463#ifdef CONFIG_MMU
464static __latent_entropy int dup_mmap(struct mm_struct *mm,
465 struct mm_struct *oldmm)
466{
467 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
468 struct rb_node **rb_link, *rb_parent;
469 int retval;
470 unsigned long charge;
471 LIST_HEAD(uf);
472
473 uprobe_start_dup_mmap();
474 if (down_write_killable(&oldmm->mmap_sem)) {
475 retval = -EINTR;
476 goto fail_uprobe_end;
477 }
478 flush_cache_dup_mm(oldmm);
479 uprobe_dup_mmap(oldmm, mm);
480 /*
481 * Not linked in yet - no deadlock potential:
482 */
483 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
484
485 /* No ordering required: file already has been exposed. */
486 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
487
488 mm->total_vm = oldmm->total_vm;
489 mm->data_vm = oldmm->data_vm;
490 mm->exec_vm = oldmm->exec_vm;
491 mm->stack_vm = oldmm->stack_vm;
492
493 rb_link = &mm->mm_rb.rb_node;
494 rb_parent = NULL;
495 pprev = &mm->mmap;
496 retval = ksm_fork(mm, oldmm);
497 if (retval)
498 goto out;
499 retval = khugepaged_fork(mm, oldmm);
500 if (retval)
501 goto out;
502
503 prev = NULL;
504 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
505 struct file *file;
506
507 if (mpnt->vm_flags & VM_DONTCOPY) {
508 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
509 continue;
510 }
511 charge = 0;
655c79bb
TH
512 /*
513 * Don't duplicate many vmas if we've been oom-killed (for
514 * example)
515 */
516 if (fatal_signal_pending(current)) {
517 retval = -EINTR;
518 goto out;
519 }
d70f2a14
AM
520 if (mpnt->vm_flags & VM_ACCOUNT) {
521 unsigned long len = vma_pages(mpnt);
522
523 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
524 goto fail_nomem;
525 charge = len;
526 }
3928d4f5 527 tmp = vm_area_dup(mpnt);
d70f2a14
AM
528 if (!tmp)
529 goto fail_nomem;
d70f2a14
AM
530 retval = vma_dup_policy(mpnt, tmp);
531 if (retval)
532 goto fail_nomem_policy;
533 tmp->vm_mm = mm;
534 retval = dup_userfaultfd(tmp, &uf);
535 if (retval)
536 goto fail_nomem_anon_vma_fork;
537 if (tmp->vm_flags & VM_WIPEONFORK) {
538 /* VM_WIPEONFORK gets a clean slate in the child. */
539 tmp->anon_vma = NULL;
540 if (anon_vma_prepare(tmp))
541 goto fail_nomem_anon_vma_fork;
542 } else if (anon_vma_fork(tmp, mpnt))
543 goto fail_nomem_anon_vma_fork;
544 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
545 tmp->vm_next = tmp->vm_prev = NULL;
546 file = tmp->vm_file;
547 if (file) {
548 struct inode *inode = file_inode(file);
549 struct address_space *mapping = file->f_mapping;
550
551 get_file(file);
552 if (tmp->vm_flags & VM_DENYWRITE)
553 atomic_dec(&inode->i_writecount);
554 i_mmap_lock_write(mapping);
555 if (tmp->vm_flags & VM_SHARED)
556 atomic_inc(&mapping->i_mmap_writable);
557 flush_dcache_mmap_lock(mapping);
558 /* insert tmp into the share list, just after mpnt */
559 vma_interval_tree_insert_after(tmp, mpnt,
560 &mapping->i_mmap);
561 flush_dcache_mmap_unlock(mapping);
562 i_mmap_unlock_write(mapping);
563 }
564
565 /*
566 * Clear hugetlb-related page reserves for children. This only
567 * affects MAP_PRIVATE mappings. Faults generated by the child
568 * are not guaranteed to succeed, even if read-only
569 */
570 if (is_vm_hugetlb_page(tmp))
571 reset_vma_resv_huge_pages(tmp);
572
573 /*
574 * Link in the new vma and copy the page table entries.
575 */
576 *pprev = tmp;
577 pprev = &tmp->vm_next;
578 tmp->vm_prev = prev;
579 prev = tmp;
580
581 __vma_link_rb(mm, tmp, rb_link, rb_parent);
582 rb_link = &tmp->vm_rb.rb_right;
583 rb_parent = &tmp->vm_rb;
584
585 mm->map_count++;
586 if (!(tmp->vm_flags & VM_WIPEONFORK))
587 retval = copy_page_range(mm, oldmm, mpnt);
588
589 if (tmp->vm_ops && tmp->vm_ops->open)
590 tmp->vm_ops->open(tmp);
591
592 if (retval)
593 goto out;
594 }
595 /* a new mm has just been created */
1ed0cc5a 596 retval = arch_dup_mmap(oldmm, mm);
d70f2a14
AM
597out:
598 up_write(&mm->mmap_sem);
599 flush_tlb_mm(oldmm);
600 up_write(&oldmm->mmap_sem);
601 dup_userfaultfd_complete(&uf);
602fail_uprobe_end:
603 uprobe_end_dup_mmap();
604 return retval;
605fail_nomem_anon_vma_fork:
606 mpol_put(vma_policy(tmp));
607fail_nomem_policy:
3928d4f5 608 vm_area_free(tmp);
d70f2a14
AM
609fail_nomem:
610 retval = -ENOMEM;
611 vm_unacct_memory(charge);
612 goto out;
613}
614
615static inline int mm_alloc_pgd(struct mm_struct *mm)
616{
617 mm->pgd = pgd_alloc(mm);
618 if (unlikely(!mm->pgd))
619 return -ENOMEM;
620 return 0;
621}
622
623static inline void mm_free_pgd(struct mm_struct *mm)
624{
625 pgd_free(mm, mm->pgd);
626}
627#else
628static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
629{
630 down_write(&oldmm->mmap_sem);
631 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
632 up_write(&oldmm->mmap_sem);
633 return 0;
634}
635#define mm_alloc_pgd(mm) (0)
636#define mm_free_pgd(mm)
637#endif /* CONFIG_MMU */
638
639static void check_mm(struct mm_struct *mm)
640{
641 int i;
642
643 for (i = 0; i < NR_MM_COUNTERS; i++) {
644 long x = atomic_long_read(&mm->rss_stat.count[i]);
645
646 if (unlikely(x))
647 printk(KERN_ALERT "BUG: Bad rss-counter state "
648 "mm:%p idx:%d val:%ld\n", mm, i, x);
649 }
650
651 if (mm_pgtables_bytes(mm))
652 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
653 mm_pgtables_bytes(mm));
654
655#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
656 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
657#endif
658}
659
660#define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
661#define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
662
663/*
664 * Called when the last reference to the mm
665 * is dropped: either by a lazy thread or by
666 * mmput. Free the page directory and the mm.
667 */
d34bc48f 668void __mmdrop(struct mm_struct *mm)
d70f2a14
AM
669{
670 BUG_ON(mm == &init_mm);
3eda69c9
MR
671 WARN_ON_ONCE(mm == current->mm);
672 WARN_ON_ONCE(mm == current->active_mm);
d70f2a14
AM
673 mm_free_pgd(mm);
674 destroy_context(mm);
675 hmm_mm_destroy(mm);
676 mmu_notifier_mm_destroy(mm);
677 check_mm(mm);
678 put_user_ns(mm->user_ns);
679 free_mm(mm);
680}
d34bc48f 681EXPORT_SYMBOL_GPL(__mmdrop);
d70f2a14
AM
682
683static void mmdrop_async_fn(struct work_struct *work)
684{
685 struct mm_struct *mm;
686
687 mm = container_of(work, struct mm_struct, async_put_work);
688 __mmdrop(mm);
689}
690
691static void mmdrop_async(struct mm_struct *mm)
692{
693 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
694 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
695 schedule_work(&mm->async_put_work);
696 }
697}
698
ea6d290c
ON
699static inline void free_signal_struct(struct signal_struct *sig)
700{
97101eb4 701 taskstats_tgid_free(sig);
1c5354de 702 sched_autogroup_exit(sig);
7283094e
MH
703 /*
704 * __mmdrop is not safe to call from softirq context on x86 due to
705 * pgd_dtor so postpone it to the async context
706 */
26db62f1 707 if (sig->oom_mm)
7283094e 708 mmdrop_async(sig->oom_mm);
ea6d290c
ON
709 kmem_cache_free(signal_cachep, sig);
710}
711
712static inline void put_signal_struct(struct signal_struct *sig)
713{
60d4de3f 714 if (refcount_dec_and_test(&sig->sigcnt))
ea6d290c
ON
715 free_signal_struct(sig);
716}
717
158d9ebd 718void __put_task_struct(struct task_struct *tsk)
1da177e4 719{
270f722d 720 WARN_ON(!tsk->exit_state);
ec1d2819 721 WARN_ON(refcount_read(&tsk->usage));
1da177e4
LT
722 WARN_ON(tsk == current);
723
2e91fa7f 724 cgroup_free(tsk);
156654f4 725 task_numa_free(tsk);
1a2a4d06 726 security_task_free(tsk);
e0e81739 727 exit_creds(tsk);
35df17c5 728 delayacct_tsk_free(tsk);
ea6d290c 729 put_signal_struct(tsk->signal);
1da177e4
LT
730
731 if (!profile_handoff_task(tsk))
732 free_task(tsk);
733}
77c100c8 734EXPORT_SYMBOL_GPL(__put_task_struct);
1da177e4 735
6c0a9fa6 736void __init __weak arch_task_cache_init(void) { }
61c4628b 737
ff691f6e
HS
738/*
739 * set_max_threads
740 */
16db3d3f 741static void set_max_threads(unsigned int max_threads_suggested)
ff691f6e 742{
ac1b398d 743 u64 threads;
ca79b0c2 744 unsigned long nr_pages = totalram_pages();
ff691f6e
HS
745
746 /*
ac1b398d
HS
747 * The number of threads shall be limited such that the thread
748 * structures may only consume a small part of the available memory.
ff691f6e 749 */
3d6357de 750 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
ac1b398d
HS
751 threads = MAX_THREADS;
752 else
3d6357de 753 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
ac1b398d
HS
754 (u64) THREAD_SIZE * 8UL);
755
16db3d3f
HS
756 if (threads > max_threads_suggested)
757 threads = max_threads_suggested;
758
ac1b398d 759 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
ff691f6e
HS
760}
761
5aaeb5c0
IM
762#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
763/* Initialized by the architecture: */
764int arch_task_struct_size __read_mostly;
765#endif
0c8c0f03 766
5905429a
KC
767static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
768{
769 /* Fetch thread_struct whitelist for the architecture. */
770 arch_thread_struct_whitelist(offset, size);
771
772 /*
773 * Handle zero-sized whitelist or empty thread_struct, otherwise
774 * adjust offset to position of thread_struct in task_struct.
775 */
776 if (unlikely(*size == 0))
777 *offset = 0;
778 else
779 *offset += offsetof(struct task_struct, thread);
780}
781
ff691f6e 782void __init fork_init(void)
1da177e4 783{
25f9c081 784 int i;
f5e10287 785#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1da177e4 786#ifndef ARCH_MIN_TASKALIGN
e274795e 787#define ARCH_MIN_TASKALIGN 0
1da177e4 788#endif
95cb64c1 789 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
5905429a 790 unsigned long useroffset, usersize;
e274795e 791
1da177e4 792 /* create a slab on which task_structs can be allocated */
5905429a
KC
793 task_struct_whitelist(&useroffset, &usersize);
794 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
e274795e 795 arch_task_struct_size, align,
5905429a
KC
796 SLAB_PANIC|SLAB_ACCOUNT,
797 useroffset, usersize, NULL);
1da177e4
LT
798#endif
799
61c4628b
SS
800 /* do the arch specific task caches init */
801 arch_task_cache_init();
802
16db3d3f 803 set_max_threads(MAX_THREADS);
1da177e4
LT
804
805 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
806 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
807 init_task.signal->rlim[RLIMIT_SIGPENDING] =
808 init_task.signal->rlim[RLIMIT_NPROC];
b376c3e1 809
25f9c081
EB
810 for (i = 0; i < UCOUNT_COUNTS; i++) {
811 init_user_ns.ucount_max[i] = max_threads/2;
812 }
19659c59
HR
813
814#ifdef CONFIG_VMAP_STACK
815 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
816 NULL, free_vm_stack_cache);
817#endif
b09be676
BP
818
819 lockdep_init_task(&init_task);
aad42dd4 820 uprobes_init();
1da177e4
LT
821}
822
52f5684c 823int __weak arch_dup_task_struct(struct task_struct *dst,
61c4628b
SS
824 struct task_struct *src)
825{
826 *dst = *src;
827 return 0;
828}
829
d4311ff1
AT
830void set_task_stack_end_magic(struct task_struct *tsk)
831{
832 unsigned long *stackend;
833
834 stackend = end_of_stack(tsk);
835 *stackend = STACK_END_MAGIC; /* for overflow detection */
836}
837
725fc629 838static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1da177e4
LT
839{
840 struct task_struct *tsk;
b235beea 841 unsigned long *stack;
0f4991e8 842 struct vm_struct *stack_vm_area __maybe_unused;
3e26c149 843 int err;
1da177e4 844
725fc629
AK
845 if (node == NUMA_NO_NODE)
846 node = tsk_fork_get_node(orig);
504f52b5 847 tsk = alloc_task_struct_node(node);
1da177e4
LT
848 if (!tsk)
849 return NULL;
850
b235beea
LT
851 stack = alloc_thread_stack_node(tsk, node);
852 if (!stack)
f19b9f74 853 goto free_tsk;
1da177e4 854
9b6f7e16
RG
855 if (memcg_charge_kernel_stack(tsk))
856 goto free_stack;
857
ba14a194
AL
858 stack_vm_area = task_stack_vm_area(tsk);
859
fb0a685c 860 err = arch_dup_task_struct(tsk, orig);
ba14a194
AL
861
862 /*
863 * arch_dup_task_struct() clobbers the stack-related fields. Make
864 * sure they're properly initialized before using any stack-related
865 * functions again.
866 */
867 tsk->stack = stack;
868#ifdef CONFIG_VMAP_STACK
869 tsk->stack_vm_area = stack_vm_area;
870#endif
68f24b08 871#ifdef CONFIG_THREAD_INFO_IN_TASK
f0b89d39 872 refcount_set(&tsk->stack_refcount, 1);
68f24b08 873#endif
ba14a194 874
164c33c6 875 if (err)
b235beea 876 goto free_stack;
164c33c6 877
dbd95212
KC
878#ifdef CONFIG_SECCOMP
879 /*
880 * We must handle setting up seccomp filters once we're under
881 * the sighand lock in case orig has changed between now and
882 * then. Until then, filter must be NULL to avoid messing up
883 * the usage counts on the error path calling free_task.
884 */
885 tsk->seccomp.filter = NULL;
886#endif
87bec58a
AM
887
888 setup_thread_stack(tsk, orig);
8e7cac79 889 clear_user_return_notifier(tsk);
f26f9aff 890 clear_tsk_need_resched(tsk);
d4311ff1 891 set_task_stack_end_magic(tsk);
1da177e4 892
050e9baa 893#ifdef CONFIG_STACKPROTECTOR
7cd815bc 894 tsk->stack_canary = get_random_canary();
0a425405
AV
895#endif
896
fb0a685c
DRO
897 /*
898 * One for us, one for whoever does the "release_task()" (usually
899 * parent)
900 */
ec1d2819 901 refcount_set(&tsk->usage, 2);
6c5c9341 902#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 903 tsk->btrace_seq = 0;
6c5c9341 904#endif
a0aa7f68 905 tsk->splice_pipe = NULL;
5640f768 906 tsk->task_frag.page = NULL;
093e5840 907 tsk->wake_q.next = NULL;
c6a7f572 908
ba14a194 909 account_kernel_stack(tsk, 1);
c6a7f572 910
5c9a8750
DV
911 kcov_task_init(tsk);
912
e41d5818
DV
913#ifdef CONFIG_FAULT_INJECTION
914 tsk->fail_nth = 0;
915#endif
916
2c323017
JB
917#ifdef CONFIG_BLK_CGROUP
918 tsk->throttle_queue = NULL;
919 tsk->use_memdelay = 0;
920#endif
921
d46eb14b
SB
922#ifdef CONFIG_MEMCG
923 tsk->active_memcg = NULL;
924#endif
1da177e4 925 return tsk;
61c4628b 926
b235beea 927free_stack:
ba14a194 928 free_thread_stack(tsk);
f19b9f74 929free_tsk:
61c4628b
SS
930 free_task_struct(tsk);
931 return NULL;
1da177e4
LT
932}
933
23ff4440 934__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1da177e4 935
4cb0e11b
HK
936static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
937
938static int __init coredump_filter_setup(char *s)
939{
940 default_dump_filter =
941 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
942 MMF_DUMP_FILTER_MASK;
943 return 1;
944}
945
946__setup("coredump_filter=", coredump_filter_setup);
947
1da177e4
LT
948#include <linux/init_task.h>
949
858f0993
AD
950static void mm_init_aio(struct mm_struct *mm)
951{
952#ifdef CONFIG_AIO
953 spin_lock_init(&mm->ioctx_lock);
db446a08 954 mm->ioctx_table = NULL;
858f0993
AD
955#endif
956}
957
33144e84
VD
958static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
959{
960#ifdef CONFIG_MEMCG
961 mm->owner = p;
962#endif
963}
964
355627f5
EB
965static void mm_init_uprobes_state(struct mm_struct *mm)
966{
967#ifdef CONFIG_UPROBES
968 mm->uprobes_state.xol_area = NULL;
969#endif
970}
971
bfedb589
EB
972static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
973 struct user_namespace *user_ns)
1da177e4 974{
41f727fd
VD
975 mm->mmap = NULL;
976 mm->mm_rb = RB_ROOT;
977 mm->vmacache_seqnum = 0;
1da177e4
LT
978 atomic_set(&mm->mm_users, 1);
979 atomic_set(&mm->mm_count, 1);
980 init_rwsem(&mm->mmap_sem);
981 INIT_LIST_HEAD(&mm->mmlist);
999d9fc1 982 mm->core_state = NULL;
af5b0f6a 983 mm_pgtables_bytes_init(mm);
41f727fd
VD
984 mm->map_count = 0;
985 mm->locked_vm = 0;
70f8a3ca 986 atomic64_set(&mm->pinned_vm, 0);
d559db08 987 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1da177e4 988 spin_lock_init(&mm->page_table_lock);
88aa7cc6 989 spin_lock_init(&mm->arg_lock);
41f727fd 990 mm_init_cpumask(mm);
858f0993 991 mm_init_aio(mm);
cf475ad2 992 mm_init_owner(mm, p);
2b7e8665 993 RCU_INIT_POINTER(mm->exe_file, NULL);
41f727fd 994 mmu_notifier_mm_init(mm);
133ff0ea 995 hmm_mm_init(mm);
16af97dc 996 init_tlb_flush_pending(mm);
41f727fd
VD
997#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
998 mm->pmd_huge_pte = NULL;
999#endif
355627f5 1000 mm_init_uprobes_state(mm);
1da177e4 1001
a0715cc2
AT
1002 if (current->mm) {
1003 mm->flags = current->mm->flags & MMF_INIT_MASK;
1004 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1005 } else {
1006 mm->flags = default_dump_filter;
1da177e4 1007 mm->def_flags = 0;
a0715cc2
AT
1008 }
1009
41f727fd
VD
1010 if (mm_alloc_pgd(mm))
1011 goto fail_nopgd;
1012
1013 if (init_new_context(p, mm))
1014 goto fail_nocontext;
78fb7466 1015
bfedb589 1016 mm->user_ns = get_user_ns(user_ns);
41f727fd
VD
1017 return mm;
1018
1019fail_nocontext:
1020 mm_free_pgd(mm);
1021fail_nopgd:
1da177e4
LT
1022 free_mm(mm);
1023 return NULL;
1024}
1025
1026/*
1027 * Allocate and initialize an mm_struct.
1028 */
fb0a685c 1029struct mm_struct *mm_alloc(void)
1da177e4 1030{
fb0a685c 1031 struct mm_struct *mm;
1da177e4
LT
1032
1033 mm = allocate_mm();
de03c72c
KM
1034 if (!mm)
1035 return NULL;
1036
1037 memset(mm, 0, sizeof(*mm));
bfedb589 1038 return mm_init(mm, current, current_user_ns());
1da177e4
LT
1039}
1040
ec8d7c14
MH
1041static inline void __mmput(struct mm_struct *mm)
1042{
1043 VM_BUG_ON(atomic_read(&mm->mm_users));
1044
1045 uprobe_clear_state(mm);
1046 exit_aio(mm);
1047 ksm_exit(mm);
1048 khugepaged_exit(mm); /* must run before exit_mmap */
1049 exit_mmap(mm);
6fcb52a5 1050 mm_put_huge_zero_page(mm);
ec8d7c14
MH
1051 set_mm_exe_file(mm, NULL);
1052 if (!list_empty(&mm->mmlist)) {
1053 spin_lock(&mmlist_lock);
1054 list_del(&mm->mmlist);
1055 spin_unlock(&mmlist_lock);
1056 }
1057 if (mm->binfmt)
1058 module_put(mm->binfmt->module);
1059 mmdrop(mm);
1060}
1061
1da177e4
LT
1062/*
1063 * Decrement the use count and release all resources for an mm.
1064 */
1065void mmput(struct mm_struct *mm)
1066{
0ae26f1b
AM
1067 might_sleep();
1068
ec8d7c14
MH
1069 if (atomic_dec_and_test(&mm->mm_users))
1070 __mmput(mm);
1071}
1072EXPORT_SYMBOL_GPL(mmput);
1073
a1b2289c
SY
1074#ifdef CONFIG_MMU
1075static void mmput_async_fn(struct work_struct *work)
1076{
1077 struct mm_struct *mm = container_of(work, struct mm_struct,
1078 async_put_work);
1079
1080 __mmput(mm);
1081}
1082
1083void mmput_async(struct mm_struct *mm)
1084{
1085 if (atomic_dec_and_test(&mm->mm_users)) {
1086 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1087 schedule_work(&mm->async_put_work);
1088 }
1089}
1090#endif
1091
90f31d0e
KK
1092/**
1093 * set_mm_exe_file - change a reference to the mm's executable file
1094 *
1095 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1096 *
6e399cd1
DB
1097 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1098 * invocations: in mmput() nobody alive left, in execve task is single
1099 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1100 * mm->exe_file, but does so without using set_mm_exe_file() in order
1101 * to do avoid the need for any locks.
90f31d0e 1102 */
38646013
JS
1103void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1104{
6e399cd1
DB
1105 struct file *old_exe_file;
1106
1107 /*
1108 * It is safe to dereference the exe_file without RCU as
1109 * this function is only called if nobody else can access
1110 * this mm -- see comment above for justification.
1111 */
1112 old_exe_file = rcu_dereference_raw(mm->exe_file);
90f31d0e 1113
38646013
JS
1114 if (new_exe_file)
1115 get_file(new_exe_file);
90f31d0e
KK
1116 rcu_assign_pointer(mm->exe_file, new_exe_file);
1117 if (old_exe_file)
1118 fput(old_exe_file);
38646013
JS
1119}
1120
90f31d0e
KK
1121/**
1122 * get_mm_exe_file - acquire a reference to the mm's executable file
1123 *
1124 * Returns %NULL if mm has no associated executable file.
1125 * User must release file via fput().
1126 */
38646013
JS
1127struct file *get_mm_exe_file(struct mm_struct *mm)
1128{
1129 struct file *exe_file;
1130
90f31d0e
KK
1131 rcu_read_lock();
1132 exe_file = rcu_dereference(mm->exe_file);
1133 if (exe_file && !get_file_rcu(exe_file))
1134 exe_file = NULL;
1135 rcu_read_unlock();
38646013
JS
1136 return exe_file;
1137}
11163348 1138EXPORT_SYMBOL(get_mm_exe_file);
38646013 1139
cd81a917
MG
1140/**
1141 * get_task_exe_file - acquire a reference to the task's executable file
1142 *
1143 * Returns %NULL if task's mm (if any) has no associated executable file or
1144 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1145 * User must release file via fput().
1146 */
1147struct file *get_task_exe_file(struct task_struct *task)
1148{
1149 struct file *exe_file = NULL;
1150 struct mm_struct *mm;
1151
1152 task_lock(task);
1153 mm = task->mm;
1154 if (mm) {
1155 if (!(task->flags & PF_KTHREAD))
1156 exe_file = get_mm_exe_file(mm);
1157 }
1158 task_unlock(task);
1159 return exe_file;
1160}
1161EXPORT_SYMBOL(get_task_exe_file);
38646013 1162
1da177e4
LT
1163/**
1164 * get_task_mm - acquire a reference to the task's mm
1165 *
246bb0b1 1166 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1da177e4
LT
1167 * this kernel workthread has transiently adopted a user mm with use_mm,
1168 * to do its AIO) is not set and if so returns a reference to it, after
1169 * bumping up the use count. User must release the mm via mmput()
1170 * after use. Typically used by /proc and ptrace.
1171 */
1172struct mm_struct *get_task_mm(struct task_struct *task)
1173{
1174 struct mm_struct *mm;
1175
1176 task_lock(task);
1177 mm = task->mm;
1178 if (mm) {
246bb0b1 1179 if (task->flags & PF_KTHREAD)
1da177e4
LT
1180 mm = NULL;
1181 else
3fce371b 1182 mmget(mm);
1da177e4
LT
1183 }
1184 task_unlock(task);
1185 return mm;
1186}
1187EXPORT_SYMBOL_GPL(get_task_mm);
1188
8cdb878d
CY
1189struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1190{
1191 struct mm_struct *mm;
1192 int err;
1193
1194 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1195 if (err)
1196 return ERR_PTR(err);
1197
1198 mm = get_task_mm(task);
1199 if (mm && mm != current->mm &&
1200 !ptrace_may_access(task, mode)) {
1201 mmput(mm);
1202 mm = ERR_PTR(-EACCES);
1203 }
1204 mutex_unlock(&task->signal->cred_guard_mutex);
1205
1206 return mm;
1207}
1208
57b59c4a 1209static void complete_vfork_done(struct task_struct *tsk)
c415c3b4 1210{
d68b46fe 1211 struct completion *vfork;
c415c3b4 1212
d68b46fe
ON
1213 task_lock(tsk);
1214 vfork = tsk->vfork_done;
1215 if (likely(vfork)) {
1216 tsk->vfork_done = NULL;
1217 complete(vfork);
1218 }
1219 task_unlock(tsk);
1220}
1221
1222static int wait_for_vfork_done(struct task_struct *child,
1223 struct completion *vfork)
1224{
1225 int killed;
1226
1227 freezer_do_not_count();
76f969e8 1228 cgroup_enter_frozen();
d68b46fe 1229 killed = wait_for_completion_killable(vfork);
76f969e8 1230 cgroup_leave_frozen(false);
d68b46fe
ON
1231 freezer_count();
1232
1233 if (killed) {
1234 task_lock(child);
1235 child->vfork_done = NULL;
1236 task_unlock(child);
1237 }
1238
1239 put_task_struct(child);
1240 return killed;
c415c3b4
ON
1241}
1242
1da177e4
LT
1243/* Please note the differences between mmput and mm_release.
1244 * mmput is called whenever we stop holding onto a mm_struct,
1245 * error success whatever.
1246 *
1247 * mm_release is called after a mm_struct has been removed
1248 * from the current process.
1249 *
1250 * This difference is important for error handling, when we
1251 * only half set up a mm_struct for a new process and need to restore
1252 * the old one. Because we mmput the new mm_struct before
1253 * restoring the old one. . .
1254 * Eric Biederman 10 January 1998
1255 */
1256void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1257{
8141c7f3
LT
1258 /* Get rid of any futexes when releasing the mm */
1259#ifdef CONFIG_FUTEX
fc6b177d 1260 if (unlikely(tsk->robust_list)) {
8141c7f3 1261 exit_robust_list(tsk);
fc6b177d
PZ
1262 tsk->robust_list = NULL;
1263 }
8141c7f3 1264#ifdef CONFIG_COMPAT
fc6b177d 1265 if (unlikely(tsk->compat_robust_list)) {
8141c7f3 1266 compat_exit_robust_list(tsk);
fc6b177d
PZ
1267 tsk->compat_robust_list = NULL;
1268 }
8141c7f3 1269#endif
322a2c10
TG
1270 if (unlikely(!list_empty(&tsk->pi_state_list)))
1271 exit_pi_state_list(tsk);
8141c7f3
LT
1272#endif
1273
0326f5a9
SD
1274 uprobe_free_utask(tsk);
1275
1da177e4
LT
1276 /* Get rid of any cached register state */
1277 deactivate_mm(tsk, mm);
1278
fec1d011 1279 /*
735f2770
MH
1280 * Signal userspace if we're not exiting with a core dump
1281 * because we want to leave the value intact for debugging
1282 * purposes.
fec1d011 1283 */
9c8a8228 1284 if (tsk->clear_child_tid) {
735f2770 1285 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
9c8a8228
ED
1286 atomic_read(&mm->mm_users) > 1) {
1287 /*
1288 * We don't check the error code - if userspace has
1289 * not set up a proper pointer then tough luck.
1290 */
1291 put_user(0, tsk->clear_child_tid);
2de0db99
DB
1292 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1293 1, NULL, NULL, 0, 0);
9c8a8228 1294 }
1da177e4 1295 tsk->clear_child_tid = NULL;
1da177e4 1296 }
f7505d64
KK
1297
1298 /*
1299 * All done, finally we can wake up parent and return this mm to him.
1300 * Also kthread_stop() uses this completion for synchronization.
1301 */
1302 if (tsk->vfork_done)
1303 complete_vfork_done(tsk);
1da177e4
LT
1304}
1305
13585fa0
NA
1306/**
1307 * dup_mm() - duplicates an existing mm structure
1308 * @tsk: the task_struct with which the new mm will be associated.
1309 * @oldmm: the mm to duplicate.
1310 *
1311 * Allocates a new mm structure and duplicates the provided @oldmm structure
1312 * content into it.
1313 *
1314 * Return: the duplicated mm or NULL on failure.
a0a7ec30 1315 */
13585fa0
NA
1316static struct mm_struct *dup_mm(struct task_struct *tsk,
1317 struct mm_struct *oldmm)
a0a7ec30 1318{
13585fa0 1319 struct mm_struct *mm;
a0a7ec30
JD
1320 int err;
1321
a0a7ec30
JD
1322 mm = allocate_mm();
1323 if (!mm)
1324 goto fail_nomem;
1325
1326 memcpy(mm, oldmm, sizeof(*mm));
1327
bfedb589 1328 if (!mm_init(mm, tsk, mm->user_ns))
a0a7ec30
JD
1329 goto fail_nomem;
1330
a0a7ec30
JD
1331 err = dup_mmap(mm, oldmm);
1332 if (err)
1333 goto free_pt;
1334
1335 mm->hiwater_rss = get_mm_rss(mm);
1336 mm->hiwater_vm = mm->total_vm;
1337
801460d0
HS
1338 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1339 goto free_pt;
1340
a0a7ec30
JD
1341 return mm;
1342
1343free_pt:
801460d0
HS
1344 /* don't put binfmt in mmput, we haven't got module yet */
1345 mm->binfmt = NULL;
a0a7ec30
JD
1346 mmput(mm);
1347
1348fail_nomem:
1349 return NULL;
a0a7ec30
JD
1350}
1351
fb0a685c 1352static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1da177e4 1353{
fb0a685c 1354 struct mm_struct *mm, *oldmm;
1da177e4
LT
1355 int retval;
1356
1357 tsk->min_flt = tsk->maj_flt = 0;
1358 tsk->nvcsw = tsk->nivcsw = 0;
17406b82
MSB
1359#ifdef CONFIG_DETECT_HUNG_TASK
1360 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
a2e51445 1361 tsk->last_switch_time = 0;
17406b82 1362#endif
1da177e4
LT
1363
1364 tsk->mm = NULL;
1365 tsk->active_mm = NULL;
1366
1367 /*
1368 * Are we cloning a kernel thread?
1369 *
1370 * We need to steal a active VM for that..
1371 */
1372 oldmm = current->mm;
1373 if (!oldmm)
1374 return 0;
1375
615d6e87
DB
1376 /* initialize the new vmacache entries */
1377 vmacache_flush(tsk);
1378
1da177e4 1379 if (clone_flags & CLONE_VM) {
3fce371b 1380 mmget(oldmm);
1da177e4 1381 mm = oldmm;
1da177e4
LT
1382 goto good_mm;
1383 }
1384
1385 retval = -ENOMEM;
13585fa0 1386 mm = dup_mm(tsk, current->mm);
1da177e4
LT
1387 if (!mm)
1388 goto fail_nomem;
1389
1da177e4
LT
1390good_mm:
1391 tsk->mm = mm;
1392 tsk->active_mm = mm;
1393 return 0;
1394
1da177e4
LT
1395fail_nomem:
1396 return retval;
1da177e4
LT
1397}
1398
a39bc516 1399static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1da177e4 1400{
498052bb 1401 struct fs_struct *fs = current->fs;
1da177e4 1402 if (clone_flags & CLONE_FS) {
498052bb 1403 /* tsk->fs is already what we want */
2a4419b5 1404 spin_lock(&fs->lock);
498052bb 1405 if (fs->in_exec) {
2a4419b5 1406 spin_unlock(&fs->lock);
498052bb
AV
1407 return -EAGAIN;
1408 }
1409 fs->users++;
2a4419b5 1410 spin_unlock(&fs->lock);
1da177e4
LT
1411 return 0;
1412 }
498052bb 1413 tsk->fs = copy_fs_struct(fs);
1da177e4
LT
1414 if (!tsk->fs)
1415 return -ENOMEM;
1416 return 0;
1417}
1418
fb0a685c 1419static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
a016f338
JD
1420{
1421 struct files_struct *oldf, *newf;
1422 int error = 0;
1423
1424 /*
1425 * A background process may not have any files ...
1426 */
1427 oldf = current->files;
1428 if (!oldf)
1429 goto out;
1430
1431 if (clone_flags & CLONE_FILES) {
1432 atomic_inc(&oldf->count);
1433 goto out;
1434 }
1435
a016f338
JD
1436 newf = dup_fd(oldf, &error);
1437 if (!newf)
1438 goto out;
1439
1440 tsk->files = newf;
1441 error = 0;
1442out:
1443 return error;
1444}
1445
fadad878 1446static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
fd0928df
JA
1447{
1448#ifdef CONFIG_BLOCK
1449 struct io_context *ioc = current->io_context;
6e736be7 1450 struct io_context *new_ioc;
fd0928df
JA
1451
1452 if (!ioc)
1453 return 0;
fadad878
JA
1454 /*
1455 * Share io context with parent, if CLONE_IO is set
1456 */
1457 if (clone_flags & CLONE_IO) {
3d48749d
TH
1458 ioc_task_link(ioc);
1459 tsk->io_context = ioc;
fadad878 1460 } else if (ioprio_valid(ioc->ioprio)) {
6e736be7
TH
1461 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1462 if (unlikely(!new_ioc))
fd0928df
JA
1463 return -ENOMEM;
1464
6e736be7 1465 new_ioc->ioprio = ioc->ioprio;
11a3122f 1466 put_io_context(new_ioc);
fd0928df
JA
1467 }
1468#endif
1469 return 0;
1470}
1471
a39bc516 1472static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1da177e4
LT
1473{
1474 struct sighand_struct *sig;
1475
60348802 1476 if (clone_flags & CLONE_SIGHAND) {
d036bda7 1477 refcount_inc(&current->sighand->count);
1da177e4
LT
1478 return 0;
1479 }
1480 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
e56d0903 1481 rcu_assign_pointer(tsk->sighand, sig);
1da177e4
LT
1482 if (!sig)
1483 return -ENOMEM;
9d7fb042 1484
d036bda7 1485 refcount_set(&sig->count, 1);
06e62a46 1486 spin_lock_irq(&current->sighand->siglock);
1da177e4 1487 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
06e62a46 1488 spin_unlock_irq(&current->sighand->siglock);
1da177e4
LT
1489 return 0;
1490}
1491
a7e5328a 1492void __cleanup_sighand(struct sighand_struct *sighand)
c81addc9 1493{
d036bda7 1494 if (refcount_dec_and_test(&sighand->count)) {
d80e731e 1495 signalfd_cleanup(sighand);
392809b2 1496 /*
5f0d5a3a 1497 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
392809b2
ON
1498 * without an RCU grace period, see __lock_task_sighand().
1499 */
c81addc9 1500 kmem_cache_free(sighand_cachep, sighand);
d80e731e 1501 }
c81addc9
ON
1502}
1503
b18b6a9c 1504#ifdef CONFIG_POSIX_TIMERS
f06febc9
FM
1505/*
1506 * Initialize POSIX timer handling for a thread group.
1507 */
1508static void posix_cpu_timers_init_group(struct signal_struct *sig)
1509{
78d7d407
JS
1510 unsigned long cpu_limit;
1511
316c1608 1512 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
78d7d407 1513 if (cpu_limit != RLIM_INFINITY) {
ebd7e7fc 1514 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
d5c373eb 1515 sig->cputimer.running = true;
6279a751
ON
1516 }
1517
f06febc9
FM
1518 /* The timer lists. */
1519 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1520 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1521 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1522}
b18b6a9c
NP
1523#else
1524static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1525#endif
f06febc9 1526
a39bc516 1527static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1da177e4
LT
1528{
1529 struct signal_struct *sig;
1da177e4 1530
4ab6c083 1531 if (clone_flags & CLONE_THREAD)
490dea45 1532 return 0;
490dea45 1533
a56704ef 1534 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1da177e4
LT
1535 tsk->signal = sig;
1536 if (!sig)
1537 return -ENOMEM;
1538
b3ac022c 1539 sig->nr_threads = 1;
1da177e4 1540 atomic_set(&sig->live, 1);
60d4de3f 1541 refcount_set(&sig->sigcnt, 1);
0c740d0a
ON
1542
1543 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1544 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1545 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1546
1da177e4 1547 init_waitqueue_head(&sig->wait_chldexit);
db51aecc 1548 sig->curr_target = tsk;
1da177e4 1549 init_sigpending(&sig->shared_pending);
c3ad2c3b 1550 INIT_HLIST_HEAD(&sig->multiprocess);
e78c3496 1551 seqlock_init(&sig->stats_lock);
9d7fb042 1552 prev_cputime_init(&sig->prev_cputime);
1da177e4 1553
baa73d9e 1554#ifdef CONFIG_POSIX_TIMERS
b18b6a9c 1555 INIT_LIST_HEAD(&sig->posix_timers);
c9cb2e3d 1556 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1da177e4 1557 sig->real_timer.function = it_real_fn;
baa73d9e 1558#endif
1da177e4 1559
1da177e4
LT
1560 task_lock(current->group_leader);
1561 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1562 task_unlock(current->group_leader);
1563
6279a751
ON
1564 posix_cpu_timers_init_group(sig);
1565
522ed776 1566 tty_audit_fork(sig);
5091faa4 1567 sched_autogroup_fork(sig);
522ed776 1568
a63d83f4 1569 sig->oom_score_adj = current->signal->oom_score_adj;
dabb16f6 1570 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
28b83c51 1571
9b1bf12d
KM
1572 mutex_init(&sig->cred_guard_mutex);
1573
1da177e4
LT
1574 return 0;
1575}
1576
dbd95212
KC
1577static void copy_seccomp(struct task_struct *p)
1578{
1579#ifdef CONFIG_SECCOMP
1580 /*
1581 * Must be called with sighand->lock held, which is common to
1582 * all threads in the group. Holding cred_guard_mutex is not
1583 * needed because this new task is not yet running and cannot
1584 * be racing exec.
1585 */
69f6a34b 1586 assert_spin_locked(&current->sighand->siglock);
dbd95212
KC
1587
1588 /* Ref-count the new filter user, and assign it. */
1589 get_seccomp_filter(current);
1590 p->seccomp = current->seccomp;
1591
1592 /*
1593 * Explicitly enable no_new_privs here in case it got set
1594 * between the task_struct being duplicated and holding the
1595 * sighand lock. The seccomp state and nnp must be in sync.
1596 */
1597 if (task_no_new_privs(current))
1598 task_set_no_new_privs(p);
1599
1600 /*
1601 * If the parent gained a seccomp mode after copying thread
1602 * flags and between before we held the sighand lock, we have
1603 * to manually enable the seccomp thread flag here.
1604 */
1605 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1606 set_tsk_thread_flag(p, TIF_SECCOMP);
1607#endif
1608}
1609
17da2bd9 1610SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1da177e4
LT
1611{
1612 current->clear_child_tid = tidptr;
1613
b488893a 1614 return task_pid_vnr(current);
1da177e4
LT
1615}
1616
a39bc516 1617static void rt_mutex_init_task(struct task_struct *p)
23f78d4a 1618{
1d615482 1619 raw_spin_lock_init(&p->pi_lock);
e29e175b 1620#ifdef CONFIG_RT_MUTEXES
a23ba907 1621 p->pi_waiters = RB_ROOT_CACHED;
e96a7705 1622 p->pi_top_task = NULL;
23f78d4a 1623 p->pi_blocked_on = NULL;
23f78d4a
IM
1624#endif
1625}
1626
b18b6a9c 1627#ifdef CONFIG_POSIX_TIMERS
f06febc9
FM
1628/*
1629 * Initialize POSIX timer handling for a single task.
1630 */
1631static void posix_cpu_timers_init(struct task_struct *tsk)
1632{
64861634
MS
1633 tsk->cputime_expires.prof_exp = 0;
1634 tsk->cputime_expires.virt_exp = 0;
f06febc9
FM
1635 tsk->cputime_expires.sched_exp = 0;
1636 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1637 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1638 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1639}
b18b6a9c
NP
1640#else
1641static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1642#endif
f06febc9 1643
2c470475
EB
1644static inline void init_task_pid_links(struct task_struct *task)
1645{
1646 enum pid_type type;
1647
1648 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1649 INIT_HLIST_NODE(&task->pid_links[type]);
1650 }
1651}
1652
81907739
ON
1653static inline void
1654init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1655{
2c470475
EB
1656 if (type == PIDTYPE_PID)
1657 task->thread_pid = pid;
1658 else
1659 task->signal->pids[type] = pid;
81907739
ON
1660}
1661
6bfbaa51
IM
1662static inline void rcu_copy_process(struct task_struct *p)
1663{
1664#ifdef CONFIG_PREEMPT_RCU
1665 p->rcu_read_lock_nesting = 0;
1666 p->rcu_read_unlock_special.s = 0;
1667 p->rcu_blocked_node = NULL;
1668 INIT_LIST_HEAD(&p->rcu_node_entry);
1669#endif /* #ifdef CONFIG_PREEMPT_RCU */
1670#ifdef CONFIG_TASKS_RCU
1671 p->rcu_tasks_holdout = false;
1672 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1673 p->rcu_tasks_idle_cpu = -1;
1674#endif /* #ifdef CONFIG_TASKS_RCU */
1675}
1676
b3e58382
CB
1677static int pidfd_release(struct inode *inode, struct file *file)
1678{
1679 struct pid *pid = file->private_data;
1680
1681 file->private_data = NULL;
1682 put_pid(pid);
1683 return 0;
1684}
1685
1686#ifdef CONFIG_PROC_FS
1687static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1688{
1689 struct pid_namespace *ns = proc_pid_ns(file_inode(m->file));
1690 struct pid *pid = f->private_data;
1691
1692 seq_put_decimal_ull(m, "Pid:\t", pid_nr_ns(pid, ns));
1693 seq_putc(m, '\n');
1694}
1695#endif
1696
1697const struct file_operations pidfd_fops = {
1698 .release = pidfd_release,
1699#ifdef CONFIG_PROC_FS
1700 .show_fdinfo = pidfd_show_fdinfo,
1701#endif
1702};
1703
1704/**
1705 * pidfd_create() - Create a new pid file descriptor.
1706 *
1707 * @pid: struct pid that the pidfd will reference
1708 *
1709 * This creates a new pid file descriptor with the O_CLOEXEC flag set.
1710 *
1711 * Note, that this function can only be called after the fd table has
1712 * been unshared to avoid leaking the pidfd to the new process.
1713 *
1714 * Return: On success, a cloexec pidfd is returned.
1715 * On error, a negative errno number will be returned.
1716 */
1717static int pidfd_create(struct pid *pid)
1718{
1719 int fd;
1720
1721 fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid),
1722 O_RDWR | O_CLOEXEC);
1723 if (fd < 0)
1724 put_pid(pid);
1725
1726 return fd;
1727}
1728
1da177e4
LT
1729/*
1730 * This creates a new process as a copy of the old one,
1731 * but does not actually start it yet.
1732 *
1733 * It copies the registers, and all the appropriate
1734 * parts of the process environment (as per the clone
1735 * flags). The actual kick-off is left to the caller.
1736 */
0766f788
ER
1737static __latent_entropy struct task_struct *copy_process(
1738 unsigned long clone_flags,
36c8b586 1739 unsigned long stack_start,
36c8b586 1740 unsigned long stack_size,
b3e58382 1741 int __user *parent_tidptr,
36c8b586 1742 int __user *child_tidptr,
09a05394 1743 struct pid *pid,
3033f14a 1744 int trace,
725fc629
AK
1745 unsigned long tls,
1746 int node)
1da177e4 1747{
b3e58382 1748 int pidfd = -1, retval;
a24efe62 1749 struct task_struct *p;
c3ad2c3b 1750 struct multiprocess_signals delayed;
1da177e4 1751
667b6094
MPS
1752 /*
1753 * Don't allow sharing the root directory with processes in a different
1754 * namespace
1755 */
1da177e4
LT
1756 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1757 return ERR_PTR(-EINVAL);
1758
e66eded8
EB
1759 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1760 return ERR_PTR(-EINVAL);
1761
1da177e4
LT
1762 /*
1763 * Thread groups must share signals as well, and detached threads
1764 * can only be started up within the thread group.
1765 */
1766 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1767 return ERR_PTR(-EINVAL);
1768
1769 /*
1770 * Shared signal handlers imply shared VM. By way of the above,
1771 * thread groups also imply shared VM. Blocking this case allows
1772 * for various simplifications in other code.
1773 */
1774 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1775 return ERR_PTR(-EINVAL);
1776
123be07b
SB
1777 /*
1778 * Siblings of global init remain as zombies on exit since they are
1779 * not reaped by their parent (swapper). To solve this and to avoid
1780 * multi-rooted process trees, prevent global and container-inits
1781 * from creating siblings.
1782 */
1783 if ((clone_flags & CLONE_PARENT) &&
1784 current->signal->flags & SIGNAL_UNKILLABLE)
1785 return ERR_PTR(-EINVAL);
1786
8382fcac 1787 /*
40a0d32d 1788 * If the new process will be in a different pid or user namespace
faf00da5 1789 * do not allow it to share a thread group with the forking task.
8382fcac 1790 */
faf00da5 1791 if (clone_flags & CLONE_THREAD) {
40a0d32d
ON
1792 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1793 (task_active_pid_ns(current) !=
1794 current->nsproxy->pid_ns_for_children))
1795 return ERR_PTR(-EINVAL);
1796 }
8382fcac 1797
b3e58382
CB
1798 if (clone_flags & CLONE_PIDFD) {
1799 int reserved;
1800
1801 /*
1802 * - CLONE_PARENT_SETTID is useless for pidfds and also
1803 * parent_tidptr is used to return pidfds.
1804 * - CLONE_DETACHED is blocked so that we can potentially
1805 * reuse it later for CLONE_PIDFD.
1806 * - CLONE_THREAD is blocked until someone really needs it.
1807 */
1808 if (clone_flags &
1809 (CLONE_DETACHED | CLONE_PARENT_SETTID | CLONE_THREAD))
1810 return ERR_PTR(-EINVAL);
1811
1812 /*
1813 * Verify that parent_tidptr is sane so we can potentially
1814 * reuse it later.
1815 */
1816 if (get_user(reserved, parent_tidptr))
1817 return ERR_PTR(-EFAULT);
1818
1819 if (reserved != 0)
1820 return ERR_PTR(-EINVAL);
1821 }
1822
c3ad2c3b
EB
1823 /*
1824 * Force any signals received before this point to be delivered
1825 * before the fork happens. Collect up signals sent to multiple
1826 * processes that happen during the fork and delay them so that
1827 * they appear to happen after the fork.
1828 */
1829 sigemptyset(&delayed.signal);
1830 INIT_HLIST_NODE(&delayed.node);
1831
1832 spin_lock_irq(&current->sighand->siglock);
1833 if (!(clone_flags & CLONE_THREAD))
1834 hlist_add_head(&delayed.node, &current->signal->multiprocess);
1835 recalc_sigpending();
1836 spin_unlock_irq(&current->sighand->siglock);
1837 retval = -ERESTARTNOINTR;
1838 if (signal_pending(current))
1839 goto fork_out;
1840
1da177e4 1841 retval = -ENOMEM;
725fc629 1842 p = dup_task_struct(current, node);
1da177e4
LT
1843 if (!p)
1844 goto fork_out;
1845
4d6501dc
VN
1846 /*
1847 * This _must_ happen before we call free_task(), i.e. before we jump
1848 * to any of the bad_fork_* labels. This is to avoid freeing
1849 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1850 * kernel threads (PF_KTHREAD).
1851 */
1852 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1853 /*
1854 * Clear TID on mm_release()?
1855 */
1856 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1857
f7e8b616
SR
1858 ftrace_graph_init_task(p);
1859
bea493a0
PZ
1860 rt_mutex_init_task(p);
1861
d12c1a37 1862#ifdef CONFIG_PROVE_LOCKING
de30a2b3
IM
1863 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1864 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1865#endif
1da177e4 1866 retval = -EAGAIN;
3b11a1de 1867 if (atomic_read(&p->real_cred->user->processes) >=
78d7d407 1868 task_rlimit(p, RLIMIT_NPROC)) {
b57922b6
EP
1869 if (p->real_cred->user != INIT_USER &&
1870 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1da177e4
LT
1871 goto bad_fork_free;
1872 }
72fa5997 1873 current->flags &= ~PF_NPROC_EXCEEDED;
1da177e4 1874
f1752eec
DH
1875 retval = copy_creds(p, clone_flags);
1876 if (retval < 0)
1877 goto bad_fork_free;
1da177e4
LT
1878
1879 /*
1880 * If multiple threads are within copy_process(), then this check
1881 * triggers too late. This doesn't hurt, the check is only there
1882 * to stop root fork bombs.
1883 */
04ec93fe 1884 retval = -EAGAIN;
1da177e4
LT
1885 if (nr_threads >= max_threads)
1886 goto bad_fork_cleanup_count;
1887
ca74e92b 1888 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
c1de45ca 1889 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
514ddb44 1890 p->flags |= PF_FORKNOEXEC;
1da177e4
LT
1891 INIT_LIST_HEAD(&p->children);
1892 INIT_LIST_HEAD(&p->sibling);
f41d911f 1893 rcu_copy_process(p);
1da177e4
LT
1894 p->vfork_done = NULL;
1895 spin_lock_init(&p->alloc_lock);
1da177e4 1896
1da177e4
LT
1897 init_sigpending(&p->pending);
1898
64861634 1899 p->utime = p->stime = p->gtime = 0;
40565b5a 1900#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
64861634 1901 p->utimescaled = p->stimescaled = 0;
40565b5a 1902#endif
9d7fb042
PZ
1903 prev_cputime_init(&p->prev_cputime);
1904
6a61671b 1905#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6
FW
1906 seqcount_init(&p->vtime.seqcount);
1907 p->vtime.starttime = 0;
1908 p->vtime.state = VTIME_INACTIVE;
6a61671b
FW
1909#endif
1910
a3a2e76c
KH
1911#if defined(SPLIT_RSS_COUNTING)
1912 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1913#endif
172ba844 1914
6976675d
AV
1915 p->default_timer_slack_ns = current->timer_slack_ns;
1916
eb414681
JW
1917#ifdef CONFIG_PSI
1918 p->psi_flags = 0;
1919#endif
1920
5995477a 1921 task_io_accounting_init(&p->ioac);
1da177e4
LT
1922 acct_clear_integrals(p);
1923
f06febc9 1924 posix_cpu_timers_init(p);
1da177e4 1925
1da177e4 1926 p->io_context = NULL;
c0b0ae8a 1927 audit_set_context(p, NULL);
b4f48b63 1928 cgroup_fork(p);
1da177e4 1929#ifdef CONFIG_NUMA
846a16bf 1930 p->mempolicy = mpol_dup(p->mempolicy);
fb0a685c
DRO
1931 if (IS_ERR(p->mempolicy)) {
1932 retval = PTR_ERR(p->mempolicy);
1933 p->mempolicy = NULL;
e8604cb4 1934 goto bad_fork_cleanup_threadgroup_lock;
fb0a685c 1935 }
1da177e4 1936#endif
778d3b0f
MH
1937#ifdef CONFIG_CPUSETS
1938 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1939 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
cc9a6c87 1940 seqcount_init(&p->mems_allowed_seq);
778d3b0f 1941#endif
de30a2b3
IM
1942#ifdef CONFIG_TRACE_IRQFLAGS
1943 p->irq_events = 0;
1944 p->hardirqs_enabled = 0;
1945 p->hardirq_enable_ip = 0;
1946 p->hardirq_enable_event = 0;
1947 p->hardirq_disable_ip = _THIS_IP_;
1948 p->hardirq_disable_event = 0;
1949 p->softirqs_enabled = 1;
1950 p->softirq_enable_ip = _THIS_IP_;
1951 p->softirq_enable_event = 0;
1952 p->softirq_disable_ip = 0;
1953 p->softirq_disable_event = 0;
1954 p->hardirq_context = 0;
1955 p->softirq_context = 0;
1956#endif
8bcbde54
DH
1957
1958 p->pagefault_disabled = 0;
1959
fbb9ce95
IM
1960#ifdef CONFIG_LOCKDEP
1961 p->lockdep_depth = 0; /* no locks held yet */
1962 p->curr_chain_key = 0;
1963 p->lockdep_recursion = 0;
b09be676 1964 lockdep_init_task(p);
fbb9ce95 1965#endif
1da177e4 1966
408894ee
IM
1967#ifdef CONFIG_DEBUG_MUTEXES
1968 p->blocked_on = NULL; /* not blocked yet */
1969#endif
cafe5635
KO
1970#ifdef CONFIG_BCACHE
1971 p->sequential_io = 0;
1972 p->sequential_io_avg = 0;
1973#endif
0f481406 1974
3c90e6e9 1975 /* Perform scheduler related setup. Assign this task to a CPU. */
aab03e05
DF
1976 retval = sched_fork(clone_flags, p);
1977 if (retval)
1978 goto bad_fork_cleanup_policy;
6ab423e0 1979
cdd6c482 1980 retval = perf_event_init_task(p);
6ab423e0
PZ
1981 if (retval)
1982 goto bad_fork_cleanup_policy;
fb0a685c
DRO
1983 retval = audit_alloc(p);
1984 if (retval)
6c72e350 1985 goto bad_fork_cleanup_perf;
1da177e4 1986 /* copy all the process information */
ab602f79 1987 shm_init_task(p);
e4e55b47 1988 retval = security_task_alloc(p, clone_flags);
fb0a685c 1989 if (retval)
1da177e4 1990 goto bad_fork_cleanup_audit;
e4e55b47
TH
1991 retval = copy_semundo(clone_flags, p);
1992 if (retval)
1993 goto bad_fork_cleanup_security;
fb0a685c
DRO
1994 retval = copy_files(clone_flags, p);
1995 if (retval)
1da177e4 1996 goto bad_fork_cleanup_semundo;
fb0a685c
DRO
1997 retval = copy_fs(clone_flags, p);
1998 if (retval)
1da177e4 1999 goto bad_fork_cleanup_files;
fb0a685c
DRO
2000 retval = copy_sighand(clone_flags, p);
2001 if (retval)
1da177e4 2002 goto bad_fork_cleanup_fs;
fb0a685c
DRO
2003 retval = copy_signal(clone_flags, p);
2004 if (retval)
1da177e4 2005 goto bad_fork_cleanup_sighand;
fb0a685c
DRO
2006 retval = copy_mm(clone_flags, p);
2007 if (retval)
1da177e4 2008 goto bad_fork_cleanup_signal;
fb0a685c
DRO
2009 retval = copy_namespaces(clone_flags, p);
2010 if (retval)
d84f4f99 2011 goto bad_fork_cleanup_mm;
fb0a685c
DRO
2012 retval = copy_io(clone_flags, p);
2013 if (retval)
fd0928df 2014 goto bad_fork_cleanup_namespaces;
3033f14a 2015 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1da177e4 2016 if (retval)
fd0928df 2017 goto bad_fork_cleanup_io;
1da177e4 2018
afaef01c
AP
2019 stackleak_task_init(p);
2020
425fb2b4 2021 if (pid != &init_struct_pid) {
c2b1df2e 2022 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
35f71bc0
MH
2023 if (IS_ERR(pid)) {
2024 retval = PTR_ERR(pid);
0740aa5f 2025 goto bad_fork_cleanup_thread;
35f71bc0 2026 }
425fb2b4
PE
2027 }
2028
b3e58382
CB
2029 /*
2030 * This has to happen after we've potentially unshared the file
2031 * descriptor table (so that the pidfd doesn't leak into the child
2032 * if the fd table isn't shared).
2033 */
2034 if (clone_flags & CLONE_PIDFD) {
2035 retval = pidfd_create(pid);
2036 if (retval < 0)
2037 goto bad_fork_free_pid;
2038
2039 pidfd = retval;
2040 retval = put_user(pidfd, parent_tidptr);
2041 if (retval)
2042 goto bad_fork_put_pidfd;
2043 }
2044
73c10101
JA
2045#ifdef CONFIG_BLOCK
2046 p->plug = NULL;
2047#endif
42b2dd0a 2048#ifdef CONFIG_FUTEX
8f17d3a5
IM
2049 p->robust_list = NULL;
2050#ifdef CONFIG_COMPAT
2051 p->compat_robust_list = NULL;
2052#endif
c87e2837
IM
2053 INIT_LIST_HEAD(&p->pi_state_list);
2054 p->pi_state_cache = NULL;
42b2dd0a 2055#endif
f9a3879a
GM
2056 /*
2057 * sigaltstack should be cleared when sharing the same VM
2058 */
2059 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2a742138 2060 sas_ss_reset(p);
f9a3879a 2061
1da177e4 2062 /*
6580807d
ON
2063 * Syscall tracing and stepping should be turned off in the
2064 * child regardless of CLONE_PTRACE.
1da177e4 2065 */
6580807d 2066 user_disable_single_step(p);
1da177e4 2067 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
ed75e8d5
LV
2068#ifdef TIF_SYSCALL_EMU
2069 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2070#endif
9745512c 2071 clear_all_latency_tracing(p);
1da177e4 2072
1da177e4 2073 /* ok, now we should be set up.. */
18c830df
ON
2074 p->pid = pid_nr(pid);
2075 if (clone_flags & CLONE_THREAD) {
5f8aadd8 2076 p->exit_signal = -1;
18c830df
ON
2077 p->group_leader = current->group_leader;
2078 p->tgid = current->tgid;
2079 } else {
2080 if (clone_flags & CLONE_PARENT)
2081 p->exit_signal = current->group_leader->exit_signal;
2082 else
2083 p->exit_signal = (clone_flags & CSIGNAL);
2084 p->group_leader = p;
2085 p->tgid = p->pid;
2086 }
5f8aadd8 2087
9d823e8f
WF
2088 p->nr_dirtied = 0;
2089 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
83712358 2090 p->dirty_paused_when = 0;
9d823e8f 2091
bb8cbbfe 2092 p->pdeath_signal = 0;
47e65328 2093 INIT_LIST_HEAD(&p->thread_group);
158e1645 2094 p->task_works = NULL;
1da177e4 2095
780de9dd 2096 cgroup_threadgroup_change_begin(current);
7e47682e
AS
2097 /*
2098 * Ensure that the cgroup subsystem policies allow the new process to be
2099 * forked. It should be noted the the new process's css_set can be changed
2100 * between here and cgroup_post_fork() if an organisation operation is in
2101 * progress.
2102 */
b53202e6 2103 retval = cgroup_can_fork(p);
7e47682e 2104 if (retval)
b3e58382 2105 goto bad_fork_put_pidfd;
7e47682e 2106
7b558513
DH
2107 /*
2108 * From this point on we must avoid any synchronous user-space
2109 * communication until we take the tasklist-lock. In particular, we do
2110 * not want user-space to be able to predict the process start-time by
2111 * stalling fork(2) after we recorded the start_time but before it is
2112 * visible to the system.
2113 */
2114
2115 p->start_time = ktime_get_ns();
2116 p->real_start_time = ktime_get_boot_ns();
2117
18c830df
ON
2118 /*
2119 * Make it visible to the rest of the system, but dont wake it up yet.
2120 * Need tasklist lock for parent etc handling!
2121 */
1da177e4
LT
2122 write_lock_irq(&tasklist_lock);
2123
1da177e4 2124 /* CLONE_PARENT re-uses the old parent */
2d5516cb 2125 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1da177e4 2126 p->real_parent = current->real_parent;
2d5516cb
ON
2127 p->parent_exec_id = current->parent_exec_id;
2128 } else {
1da177e4 2129 p->real_parent = current;
2d5516cb
ON
2130 p->parent_exec_id = current->self_exec_id;
2131 }
1da177e4 2132
d83a7cb3
JP
2133 klp_copy_process(p);
2134
3f17da69 2135 spin_lock(&current->sighand->siglock);
4a2c7a78 2136
dbd95212
KC
2137 /*
2138 * Copy seccomp details explicitly here, in case they were changed
2139 * before holding sighand lock.
2140 */
2141 copy_seccomp(p);
2142
d7822b1e
MD
2143 rseq_fork(p, clone_flags);
2144
4ca1d3ee 2145 /* Don't start children in a dying pid namespace */
e8cfbc24 2146 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
3fd37226
KT
2147 retval = -ENOMEM;
2148 goto bad_fork_cancel_cgroup;
2149 }
4a2c7a78 2150
7673bf55
EB
2151 /* Let kill terminate clone/fork in the middle */
2152 if (fatal_signal_pending(current)) {
2153 retval = -EINTR;
2154 goto bad_fork_cancel_cgroup;
2155 }
2156
4a2c7a78 2157
2c470475 2158 init_task_pid_links(p);
73b9ebfe 2159 if (likely(p->pid)) {
4b9d33e6 2160 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
73b9ebfe 2161
81907739 2162 init_task_pid(p, PIDTYPE_PID, pid);
73b9ebfe 2163 if (thread_group_leader(p)) {
6883f81a 2164 init_task_pid(p, PIDTYPE_TGID, pid);
81907739
ON
2165 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2166 init_task_pid(p, PIDTYPE_SID, task_session(current));
2167
1c4042c2 2168 if (is_child_reaper(pid)) {
17cf22c3 2169 ns_of_pid(pid)->child_reaper = p;
1c4042c2
EB
2170 p->signal->flags |= SIGNAL_UNKILLABLE;
2171 }
c3ad2c3b 2172 p->signal->shared_pending.signal = delayed.signal;
9c9f4ded 2173 p->signal->tty = tty_kref_get(current->signal->tty);
749860ce
PT
2174 /*
2175 * Inherit has_child_subreaper flag under the same
2176 * tasklist_lock with adding child to the process tree
2177 * for propagate_has_child_subreaper optimization.
2178 */
2179 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2180 p->real_parent->signal->is_child_subreaper;
9cd80bbb 2181 list_add_tail(&p->sibling, &p->real_parent->children);
5e85d4ab 2182 list_add_tail_rcu(&p->tasks, &init_task.tasks);
6883f81a 2183 attach_pid(p, PIDTYPE_TGID);
81907739
ON
2184 attach_pid(p, PIDTYPE_PGID);
2185 attach_pid(p, PIDTYPE_SID);
909ea964 2186 __this_cpu_inc(process_counts);
80628ca0
ON
2187 } else {
2188 current->signal->nr_threads++;
2189 atomic_inc(&current->signal->live);
60d4de3f 2190 refcount_inc(&current->signal->sigcnt);
924de3b8 2191 task_join_group_stop(p);
80628ca0
ON
2192 list_add_tail_rcu(&p->thread_group,
2193 &p->group_leader->thread_group);
0c740d0a
ON
2194 list_add_tail_rcu(&p->thread_node,
2195 &p->signal->thread_head);
73b9ebfe 2196 }
81907739 2197 attach_pid(p, PIDTYPE_PID);
73b9ebfe 2198 nr_threads++;
1da177e4 2199 }
1da177e4 2200 total_forks++;
c3ad2c3b 2201 hlist_del_init(&delayed.node);
3f17da69 2202 spin_unlock(&current->sighand->siglock);
4af4206b 2203 syscall_tracepoint_update(p);
1da177e4 2204 write_unlock_irq(&tasklist_lock);
4af4206b 2205
c13cf856 2206 proc_fork_connector(p);
b53202e6 2207 cgroup_post_fork(p);
780de9dd 2208 cgroup_threadgroup_change_end(current);
cdd6c482 2209 perf_event_fork(p);
43d2b113
KH
2210
2211 trace_task_newtask(p, clone_flags);
3ab67966 2212 uprobe_copy_process(p, clone_flags);
43d2b113 2213
1da177e4
LT
2214 return p;
2215
7e47682e 2216bad_fork_cancel_cgroup:
3fd37226
KT
2217 spin_unlock(&current->sighand->siglock);
2218 write_unlock_irq(&tasklist_lock);
b53202e6 2219 cgroup_cancel_fork(p);
b3e58382
CB
2220bad_fork_put_pidfd:
2221 if (clone_flags & CLONE_PIDFD)
2222 ksys_close(pidfd);
425fb2b4 2223bad_fork_free_pid:
780de9dd 2224 cgroup_threadgroup_change_end(current);
425fb2b4
PE
2225 if (pid != &init_struct_pid)
2226 free_pid(pid);
0740aa5f
JS
2227bad_fork_cleanup_thread:
2228 exit_thread(p);
fd0928df 2229bad_fork_cleanup_io:
b69f2292
LR
2230 if (p->io_context)
2231 exit_io_context(p);
ab516013 2232bad_fork_cleanup_namespaces:
444f378b 2233 exit_task_namespaces(p);
1da177e4 2234bad_fork_cleanup_mm:
c9f01245 2235 if (p->mm)
1da177e4
LT
2236 mmput(p->mm);
2237bad_fork_cleanup_signal:
4ab6c083 2238 if (!(clone_flags & CLONE_THREAD))
1c5354de 2239 free_signal_struct(p->signal);
1da177e4 2240bad_fork_cleanup_sighand:
a7e5328a 2241 __cleanup_sighand(p->sighand);
1da177e4
LT
2242bad_fork_cleanup_fs:
2243 exit_fs(p); /* blocking */
2244bad_fork_cleanup_files:
2245 exit_files(p); /* blocking */
2246bad_fork_cleanup_semundo:
2247 exit_sem(p);
e4e55b47
TH
2248bad_fork_cleanup_security:
2249 security_task_free(p);
1da177e4
LT
2250bad_fork_cleanup_audit:
2251 audit_free(p);
6c72e350 2252bad_fork_cleanup_perf:
cdd6c482 2253 perf_event_free_task(p);
6c72e350 2254bad_fork_cleanup_policy:
b09be676 2255 lockdep_free_task(p);
1da177e4 2256#ifdef CONFIG_NUMA
f0be3d32 2257 mpol_put(p->mempolicy);
e8604cb4 2258bad_fork_cleanup_threadgroup_lock:
1da177e4 2259#endif
35df17c5 2260 delayacct_tsk_free(p);
1da177e4 2261bad_fork_cleanup_count:
d84f4f99 2262 atomic_dec(&p->cred->user->processes);
e0e81739 2263 exit_creds(p);
1da177e4 2264bad_fork_free:
405c0759 2265 p->state = TASK_DEAD;
68f24b08 2266 put_task_stack(p);
1da177e4 2267 free_task(p);
fe7d37d1 2268fork_out:
c3ad2c3b
EB
2269 spin_lock_irq(&current->sighand->siglock);
2270 hlist_del_init(&delayed.node);
2271 spin_unlock_irq(&current->sighand->siglock);
fe7d37d1 2272 return ERR_PTR(retval);
1da177e4
LT
2273}
2274
2c470475 2275static inline void init_idle_pids(struct task_struct *idle)
f106eee1
ON
2276{
2277 enum pid_type type;
2278
2279 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2c470475
EB
2280 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2281 init_task_pid(idle, type, &init_struct_pid);
f106eee1
ON
2282 }
2283}
2284
0db0628d 2285struct task_struct *fork_idle(int cpu)
1da177e4 2286{
36c8b586 2287 struct task_struct *task;
b3e58382 2288 task = copy_process(CLONE_VM, 0, 0, NULL, NULL, &init_struct_pid, 0, 0,
725fc629 2289 cpu_to_node(cpu));
f106eee1 2290 if (!IS_ERR(task)) {
2c470475 2291 init_idle_pids(task);
753ca4f3 2292 init_idle(task, cpu);
f106eee1 2293 }
73b9ebfe 2294
1da177e4
LT
2295 return task;
2296}
2297
13585fa0
NA
2298struct mm_struct *copy_init_mm(void)
2299{
2300 return dup_mm(NULL, &init_mm);
2301}
2302
1da177e4
LT
2303/*
2304 * Ok, this is the main fork-routine.
2305 *
2306 * It copies the process, and if successful kick-starts
2307 * it and waits for it to finish using the VM if required.
2308 */
3033f14a 2309long _do_fork(unsigned long clone_flags,
1da177e4 2310 unsigned long stack_start,
1da177e4
LT
2311 unsigned long stack_size,
2312 int __user *parent_tidptr,
3033f14a
JT
2313 int __user *child_tidptr,
2314 unsigned long tls)
1da177e4 2315{
9f5325aa
MPS
2316 struct completion vfork;
2317 struct pid *pid;
1da177e4
LT
2318 struct task_struct *p;
2319 int trace = 0;
92476d7f 2320 long nr;
1da177e4 2321
09a05394 2322 /*
4b9d33e6
TH
2323 * Determine whether and which event to report to ptracer. When
2324 * called from kernel_thread or CLONE_UNTRACED is explicitly
2325 * requested, no event is reported; otherwise, report if the event
2326 * for the type of forking is enabled.
09a05394 2327 */
e80d6661 2328 if (!(clone_flags & CLONE_UNTRACED)) {
4b9d33e6
TH
2329 if (clone_flags & CLONE_VFORK)
2330 trace = PTRACE_EVENT_VFORK;
2331 else if ((clone_flags & CSIGNAL) != SIGCHLD)
2332 trace = PTRACE_EVENT_CLONE;
2333 else
2334 trace = PTRACE_EVENT_FORK;
2335
2336 if (likely(!ptrace_event_enabled(current, trace)))
2337 trace = 0;
2338 }
1da177e4 2339
b3e58382 2340 p = copy_process(clone_flags, stack_start, stack_size, parent_tidptr,
725fc629 2341 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
38addce8 2342 add_latent_entropy();
9f5325aa
MPS
2343
2344 if (IS_ERR(p))
2345 return PTR_ERR(p);
2346
1da177e4
LT
2347 /*
2348 * Do this prior waking up the new thread - the thread pointer
2349 * might get invalid after that point, if the thread exits quickly.
2350 */
9f5325aa 2351 trace_sched_process_fork(current, p);
0a16b607 2352
9f5325aa
MPS
2353 pid = get_task_pid(p, PIDTYPE_PID);
2354 nr = pid_vnr(pid);
30e49c26 2355
9f5325aa
MPS
2356 if (clone_flags & CLONE_PARENT_SETTID)
2357 put_user(nr, parent_tidptr);
a6f5e063 2358
9f5325aa
MPS
2359 if (clone_flags & CLONE_VFORK) {
2360 p->vfork_done = &vfork;
2361 init_completion(&vfork);
2362 get_task_struct(p);
2363 }
1da177e4 2364
9f5325aa 2365 wake_up_new_task(p);
09a05394 2366
9f5325aa
MPS
2367 /* forking complete and child started to run, tell ptracer */
2368 if (unlikely(trace))
2369 ptrace_event_pid(trace, pid);
4e52365f 2370
9f5325aa
MPS
2371 if (clone_flags & CLONE_VFORK) {
2372 if (!wait_for_vfork_done(p, &vfork))
2373 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1da177e4 2374 }
9f5325aa
MPS
2375
2376 put_pid(pid);
92476d7f 2377 return nr;
1da177e4
LT
2378}
2379
3033f14a
JT
2380#ifndef CONFIG_HAVE_COPY_THREAD_TLS
2381/* For compatibility with architectures that call do_fork directly rather than
2382 * using the syscall entry points below. */
2383long do_fork(unsigned long clone_flags,
2384 unsigned long stack_start,
2385 unsigned long stack_size,
2386 int __user *parent_tidptr,
2387 int __user *child_tidptr)
2388{
2389 return _do_fork(clone_flags, stack_start, stack_size,
2390 parent_tidptr, child_tidptr, 0);
2391}
2392#endif
2393
2aa3a7f8
AV
2394/*
2395 * Create a kernel thread.
2396 */
2397pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2398{
3033f14a
JT
2399 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2400 (unsigned long)arg, NULL, NULL, 0);
2aa3a7f8 2401}
2aa3a7f8 2402
d2125043
AV
2403#ifdef __ARCH_WANT_SYS_FORK
2404SYSCALL_DEFINE0(fork)
2405{
2406#ifdef CONFIG_MMU
3033f14a 2407 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
d2125043
AV
2408#else
2409 /* can not support in nommu mode */
5d59e182 2410 return -EINVAL;
d2125043
AV
2411#endif
2412}
2413#endif
2414
2415#ifdef __ARCH_WANT_SYS_VFORK
2416SYSCALL_DEFINE0(vfork)
2417{
3033f14a
JT
2418 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2419 0, NULL, NULL, 0);
d2125043
AV
2420}
2421#endif
2422
2423#ifdef __ARCH_WANT_SYS_CLONE
2424#ifdef CONFIG_CLONE_BACKWARDS
2425SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2426 int __user *, parent_tidptr,
3033f14a 2427 unsigned long, tls,
d2125043
AV
2428 int __user *, child_tidptr)
2429#elif defined(CONFIG_CLONE_BACKWARDS2)
2430SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2431 int __user *, parent_tidptr,
2432 int __user *, child_tidptr,
3033f14a 2433 unsigned long, tls)
dfa9771a
MS
2434#elif defined(CONFIG_CLONE_BACKWARDS3)
2435SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2436 int, stack_size,
2437 int __user *, parent_tidptr,
2438 int __user *, child_tidptr,
3033f14a 2439 unsigned long, tls)
d2125043
AV
2440#else
2441SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2442 int __user *, parent_tidptr,
2443 int __user *, child_tidptr,
3033f14a 2444 unsigned long, tls)
d2125043
AV
2445#endif
2446{
3033f14a 2447 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
d2125043
AV
2448}
2449#endif
2450
0f1b92cb
ON
2451void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2452{
2453 struct task_struct *leader, *parent, *child;
2454 int res;
2455
2456 read_lock(&tasklist_lock);
2457 leader = top = top->group_leader;
2458down:
2459 for_each_thread(leader, parent) {
2460 list_for_each_entry(child, &parent->children, sibling) {
2461 res = visitor(child, data);
2462 if (res) {
2463 if (res < 0)
2464 goto out;
2465 leader = child;
2466 goto down;
2467 }
2468up:
2469 ;
2470 }
2471 }
2472
2473 if (leader != top) {
2474 child = leader;
2475 parent = child->real_parent;
2476 leader = parent->group_leader;
2477 goto up;
2478 }
2479out:
2480 read_unlock(&tasklist_lock);
2481}
2482
5fd63b30
RT
2483#ifndef ARCH_MIN_MMSTRUCT_ALIGN
2484#define ARCH_MIN_MMSTRUCT_ALIGN 0
2485#endif
2486
51cc5068 2487static void sighand_ctor(void *data)
aa1757f9
ON
2488{
2489 struct sighand_struct *sighand = data;
2490
a35afb83 2491 spin_lock_init(&sighand->siglock);
b8fceee1 2492 init_waitqueue_head(&sighand->signalfd_wqh);
aa1757f9
ON
2493}
2494
1da177e4
LT
2495void __init proc_caches_init(void)
2496{
c1a2f7f0
RR
2497 unsigned int mm_size;
2498
1da177e4
LT
2499 sighand_cachep = kmem_cache_create("sighand_cache",
2500 sizeof(struct sighand_struct), 0,
5f0d5a3a 2501 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
75f296d9 2502 SLAB_ACCOUNT, sighand_ctor);
1da177e4
LT
2503 signal_cachep = kmem_cache_create("signal_cache",
2504 sizeof(struct signal_struct), 0,
75f296d9 2505 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 2506 NULL);
20c2df83 2507 files_cachep = kmem_cache_create("files_cache",
1da177e4 2508 sizeof(struct files_struct), 0,
75f296d9 2509 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 2510 NULL);
20c2df83 2511 fs_cachep = kmem_cache_create("fs_cache",
1da177e4 2512 sizeof(struct fs_struct), 0,
75f296d9 2513 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 2514 NULL);
c1a2f7f0 2515
6345d24d 2516 /*
c1a2f7f0
RR
2517 * The mm_cpumask is located at the end of mm_struct, and is
2518 * dynamically sized based on the maximum CPU number this system
2519 * can have, taking hotplug into account (nr_cpu_ids).
6345d24d 2520 */
c1a2f7f0
RR
2521 mm_size = sizeof(struct mm_struct) + cpumask_size();
2522
07dcd7fe 2523 mm_cachep = kmem_cache_create_usercopy("mm_struct",
c1a2f7f0 2524 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
75f296d9 2525 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
07dcd7fe
DW
2526 offsetof(struct mm_struct, saved_auxv),
2527 sizeof_field(struct mm_struct, saved_auxv),
5d097056
VD
2528 NULL);
2529 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
8feae131 2530 mmap_init();
66577193 2531 nsproxy_cache_init();
1da177e4 2532}
cf2e340f 2533
cf2e340f 2534/*
9bfb23fc 2535 * Check constraints on flags passed to the unshare system call.
cf2e340f 2536 */
9bfb23fc 2537static int check_unshare_flags(unsigned long unshare_flags)
cf2e340f 2538{
9bfb23fc
ON
2539 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2540 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
50804fe3 2541 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
a79a908f 2542 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
9bfb23fc 2543 return -EINVAL;
cf2e340f 2544 /*
12c641ab
EB
2545 * Not implemented, but pretend it works if there is nothing
2546 * to unshare. Note that unsharing the address space or the
2547 * signal handlers also need to unshare the signal queues (aka
2548 * CLONE_THREAD).
cf2e340f 2549 */
9bfb23fc 2550 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
12c641ab
EB
2551 if (!thread_group_empty(current))
2552 return -EINVAL;
2553 }
2554 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
d036bda7 2555 if (refcount_read(&current->sighand->count) > 1)
12c641ab
EB
2556 return -EINVAL;
2557 }
2558 if (unshare_flags & CLONE_VM) {
2559 if (!current_is_single_threaded())
9bfb23fc
ON
2560 return -EINVAL;
2561 }
cf2e340f
JD
2562
2563 return 0;
2564}
2565
2566/*
99d1419d 2567 * Unshare the filesystem structure if it is being shared
cf2e340f
JD
2568 */
2569static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2570{
2571 struct fs_struct *fs = current->fs;
2572
498052bb
AV
2573 if (!(unshare_flags & CLONE_FS) || !fs)
2574 return 0;
2575
2576 /* don't need lock here; in the worst case we'll do useless copy */
2577 if (fs->users == 1)
2578 return 0;
2579
2580 *new_fsp = copy_fs_struct(fs);
2581 if (!*new_fsp)
2582 return -ENOMEM;
cf2e340f
JD
2583
2584 return 0;
2585}
2586
cf2e340f 2587/*
a016f338 2588 * Unshare file descriptor table if it is being shared
cf2e340f
JD
2589 */
2590static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2591{
2592 struct files_struct *fd = current->files;
a016f338 2593 int error = 0;
cf2e340f
JD
2594
2595 if ((unshare_flags & CLONE_FILES) &&
a016f338
JD
2596 (fd && atomic_read(&fd->count) > 1)) {
2597 *new_fdp = dup_fd(fd, &error);
2598 if (!*new_fdp)
2599 return error;
2600 }
cf2e340f
JD
2601
2602 return 0;
2603}
2604
cf2e340f
JD
2605/*
2606 * unshare allows a process to 'unshare' part of the process
2607 * context which was originally shared using clone. copy_*
2608 * functions used by do_fork() cannot be used here directly
2609 * because they modify an inactive task_struct that is being
2610 * constructed. Here we are modifying the current, active,
2611 * task_struct.
2612 */
9b32105e 2613int ksys_unshare(unsigned long unshare_flags)
cf2e340f 2614{
cf2e340f 2615 struct fs_struct *fs, *new_fs = NULL;
cf2e340f 2616 struct files_struct *fd, *new_fd = NULL;
b2e0d987 2617 struct cred *new_cred = NULL;
cf7b708c 2618 struct nsproxy *new_nsproxy = NULL;
9edff4ab 2619 int do_sysvsem = 0;
9bfb23fc 2620 int err;
cf2e340f 2621
b2e0d987 2622 /*
faf00da5
EB
2623 * If unsharing a user namespace must also unshare the thread group
2624 * and unshare the filesystem root and working directories.
b2e0d987
EB
2625 */
2626 if (unshare_flags & CLONE_NEWUSER)
e66eded8 2627 unshare_flags |= CLONE_THREAD | CLONE_FS;
50804fe3
EB
2628 /*
2629 * If unsharing vm, must also unshare signal handlers.
2630 */
2631 if (unshare_flags & CLONE_VM)
2632 unshare_flags |= CLONE_SIGHAND;
12c641ab
EB
2633 /*
2634 * If unsharing a signal handlers, must also unshare the signal queues.
2635 */
2636 if (unshare_flags & CLONE_SIGHAND)
2637 unshare_flags |= CLONE_THREAD;
9bfb23fc
ON
2638 /*
2639 * If unsharing namespace, must also unshare filesystem information.
2640 */
2641 if (unshare_flags & CLONE_NEWNS)
2642 unshare_flags |= CLONE_FS;
50804fe3
EB
2643
2644 err = check_unshare_flags(unshare_flags);
2645 if (err)
2646 goto bad_unshare_out;
6013f67f
MS
2647 /*
2648 * CLONE_NEWIPC must also detach from the undolist: after switching
2649 * to a new ipc namespace, the semaphore arrays from the old
2650 * namespace are unreachable.
2651 */
2652 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
9edff4ab 2653 do_sysvsem = 1;
fb0a685c
DRO
2654 err = unshare_fs(unshare_flags, &new_fs);
2655 if (err)
9bfb23fc 2656 goto bad_unshare_out;
fb0a685c
DRO
2657 err = unshare_fd(unshare_flags, &new_fd);
2658 if (err)
9bfb23fc 2659 goto bad_unshare_cleanup_fs;
b2e0d987 2660 err = unshare_userns(unshare_flags, &new_cred);
fb0a685c 2661 if (err)
9edff4ab 2662 goto bad_unshare_cleanup_fd;
b2e0d987
EB
2663 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2664 new_cred, new_fs);
2665 if (err)
2666 goto bad_unshare_cleanup_cred;
c0b2fc31 2667
b2e0d987 2668 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
9edff4ab
MS
2669 if (do_sysvsem) {
2670 /*
2671 * CLONE_SYSVSEM is equivalent to sys_exit().
2672 */
2673 exit_sem(current);
2674 }
ab602f79
JM
2675 if (unshare_flags & CLONE_NEWIPC) {
2676 /* Orphan segments in old ns (see sem above). */
2677 exit_shm(current);
2678 shm_init_task(current);
2679 }
ab516013 2680
6f977e6b 2681 if (new_nsproxy)
cf7b708c 2682 switch_task_namespaces(current, new_nsproxy);
cf2e340f 2683
cf7b708c
PE
2684 task_lock(current);
2685
cf2e340f
JD
2686 if (new_fs) {
2687 fs = current->fs;
2a4419b5 2688 spin_lock(&fs->lock);
cf2e340f 2689 current->fs = new_fs;
498052bb
AV
2690 if (--fs->users)
2691 new_fs = NULL;
2692 else
2693 new_fs = fs;
2a4419b5 2694 spin_unlock(&fs->lock);
cf2e340f
JD
2695 }
2696
cf2e340f
JD
2697 if (new_fd) {
2698 fd = current->files;
2699 current->files = new_fd;
2700 new_fd = fd;
2701 }
2702
2703 task_unlock(current);
b2e0d987
EB
2704
2705 if (new_cred) {
2706 /* Install the new user namespace */
2707 commit_creds(new_cred);
2708 new_cred = NULL;
2709 }
cf2e340f
JD
2710 }
2711
e4222673
HB
2712 perf_event_namespaces(current);
2713
b2e0d987
EB
2714bad_unshare_cleanup_cred:
2715 if (new_cred)
2716 put_cred(new_cred);
cf2e340f
JD
2717bad_unshare_cleanup_fd:
2718 if (new_fd)
2719 put_files_struct(new_fd);
2720
cf2e340f
JD
2721bad_unshare_cleanup_fs:
2722 if (new_fs)
498052bb 2723 free_fs_struct(new_fs);
cf2e340f 2724
cf2e340f
JD
2725bad_unshare_out:
2726 return err;
2727}
3b125388 2728
9b32105e
DB
2729SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2730{
2731 return ksys_unshare(unshare_flags);
2732}
2733
3b125388
AV
2734/*
2735 * Helper to unshare the files of the current task.
2736 * We don't want to expose copy_files internals to
2737 * the exec layer of the kernel.
2738 */
2739
2740int unshare_files(struct files_struct **displaced)
2741{
2742 struct task_struct *task = current;
50704516 2743 struct files_struct *copy = NULL;
3b125388
AV
2744 int error;
2745
2746 error = unshare_fd(CLONE_FILES, &copy);
2747 if (error || !copy) {
2748 *displaced = NULL;
2749 return error;
2750 }
2751 *displaced = task->files;
2752 task_lock(task);
2753 task->files = copy;
2754 task_unlock(task);
2755 return 0;
2756}
16db3d3f
HS
2757
2758int sysctl_max_threads(struct ctl_table *table, int write,
2759 void __user *buffer, size_t *lenp, loff_t *ppos)
2760{
2761 struct ctl_table t;
2762 int ret;
2763 int threads = max_threads;
2764 int min = MIN_THREADS;
2765 int max = MAX_THREADS;
2766
2767 t = *table;
2768 t.data = &threads;
2769 t.extra1 = &min;
2770 t.extra2 = &max;
2771
2772 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2773 if (ret || !write)
2774 return ret;
2775
2776 set_max_threads(threads);
2777
2778 return 0;
2779}