mm/mglru: add CONFIG_LRU_GEN_WALKS_MMU
[linux-2.6-block.git] / kernel / fork.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8/*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
b3e58382 15#include <linux/anon_inodes.h>
1da177e4 16#include <linux/slab.h>
4eb5aaa3 17#include <linux/sched/autogroup.h>
6e84f315 18#include <linux/sched/mm.h>
f7ccbae4 19#include <linux/sched/coredump.h>
8703e8a4 20#include <linux/sched/user.h>
6a3827d7 21#include <linux/sched/numa_balancing.h>
03441a34 22#include <linux/sched/stat.h>
29930025 23#include <linux/sched/task.h>
68db0cf1 24#include <linux/sched/task_stack.h>
32ef5517 25#include <linux/sched/cputime.h>
b3e58382 26#include <linux/seq_file.h>
037741a6 27#include <linux/rtmutex.h>
1da177e4
LT
28#include <linux/init.h>
29#include <linux/unistd.h>
1da177e4
LT
30#include <linux/module.h>
31#include <linux/vmalloc.h>
32#include <linux/completion.h>
1da177e4
LT
33#include <linux/personality.h>
34#include <linux/mempolicy.h>
35#include <linux/sem.h>
36#include <linux/file.h>
9f3acc31 37#include <linux/fdtable.h>
da9cbc87 38#include <linux/iocontext.h>
1da177e4 39#include <linux/key.h>
50b5e49c 40#include <linux/kmsan.h>
1da177e4
LT
41#include <linux/binfmts.h>
42#include <linux/mman.h>
cddb8a5c 43#include <linux/mmu_notifier.h>
1da177e4 44#include <linux/fs.h>
615d6e87 45#include <linux/mm.h>
17fca131 46#include <linux/mm_inline.h>
ab516013 47#include <linux/nsproxy.h>
c59ede7b 48#include <linux/capability.h>
1da177e4 49#include <linux/cpu.h>
b4f48b63 50#include <linux/cgroup.h>
1da177e4 51#include <linux/security.h>
a1e78772 52#include <linux/hugetlb.h>
e2cfabdf 53#include <linux/seccomp.h>
1da177e4
LT
54#include <linux/swap.h>
55#include <linux/syscalls.h>
56#include <linux/jiffies.h>
57#include <linux/futex.h>
8141c7f3 58#include <linux/compat.h>
207205a2 59#include <linux/kthread.h>
7c3ab738 60#include <linux/task_io_accounting_ops.h>
ab2af1f5 61#include <linux/rcupdate.h>
1da177e4
LT
62#include <linux/ptrace.h>
63#include <linux/mount.h>
64#include <linux/audit.h>
78fb7466 65#include <linux/memcontrol.h>
f201ae23 66#include <linux/ftrace.h>
5e2bf014 67#include <linux/proc_fs.h>
1da177e4
LT
68#include <linux/profile.h>
69#include <linux/rmap.h>
f8af4da3 70#include <linux/ksm.h>
1da177e4 71#include <linux/acct.h>
893e26e6 72#include <linux/userfaultfd_k.h>
8f0ab514 73#include <linux/tsacct_kern.h>
9f46080c 74#include <linux/cn_proc.h>
ba96a0c8 75#include <linux/freezer.h>
ca74e92b 76#include <linux/delayacct.h>
ad4ecbcb 77#include <linux/taskstats_kern.h>
522ed776 78#include <linux/tty.h>
5ad4e53b 79#include <linux/fs_struct.h>
7c9f8861 80#include <linux/magic.h>
cdd6c482 81#include <linux/perf_event.h>
42c4ab41 82#include <linux/posix-timers.h>
8e7cac79 83#include <linux/user-return-notifier.h>
3d5992d2 84#include <linux/oom.h>
ba76149f 85#include <linux/khugepaged.h>
d80e731e 86#include <linux/signalfd.h>
0326f5a9 87#include <linux/uprobes.h>
a27bb332 88#include <linux/aio.h>
52f5684c 89#include <linux/compiler.h>
16db3d3f 90#include <linux/sysctl.h>
5c9a8750 91#include <linux/kcov.h>
d83a7cb3 92#include <linux/livepatch.h>
48ac3c18 93#include <linux/thread_info.h>
afaef01c 94#include <linux/stackleak.h>
eafb149e 95#include <linux/kasan.h>
d08b9f0c 96#include <linux/scs.h>
0f212204 97#include <linux/io_uring.h>
a10787e6 98#include <linux/bpf.h>
b3883a9a 99#include <linux/stackprotector.h>
fd593511 100#include <linux/user_events.h>
cd389115 101#include <linux/iommu.h>
1da177e4 102
1da177e4 103#include <asm/pgalloc.h>
7c0f6ba6 104#include <linux/uaccess.h>
1da177e4
LT
105#include <asm/mmu_context.h>
106#include <asm/cacheflush.h>
107#include <asm/tlbflush.h>
108
ad8d75ff
SR
109#include <trace/events/sched.h>
110
43d2b113
KH
111#define CREATE_TRACE_POINTS
112#include <trace/events/task.h>
113
ac1b398d
HS
114/*
115 * Minimum number of threads to boot the kernel
116 */
117#define MIN_THREADS 20
118
119/*
120 * Maximum number of threads
121 */
122#define MAX_THREADS FUTEX_TID_MASK
123
1da177e4
LT
124/*
125 * Protected counters by write_lock_irq(&tasklist_lock)
126 */
127unsigned long total_forks; /* Handle normal Linux uptimes. */
fb0a685c 128int nr_threads; /* The idle threads do not count.. */
1da177e4 129
8856ae4d 130static int max_threads; /* tunable limit on nr_threads */
1da177e4 131
8495f7e6
SPP
132#define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
133
134static const char * const resident_page_types[] = {
135 NAMED_ARRAY_INDEX(MM_FILEPAGES),
136 NAMED_ARRAY_INDEX(MM_ANONPAGES),
137 NAMED_ARRAY_INDEX(MM_SWAPENTS),
138 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
139};
140
1da177e4
LT
141DEFINE_PER_CPU(unsigned long, process_counts) = 0;
142
c59923a1 143__cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
db1466b3
PM
144
145#ifdef CONFIG_PROVE_RCU
146int lockdep_tasklist_lock_is_held(void)
147{
148 return lockdep_is_held(&tasklist_lock);
149}
150EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
151#endif /* #ifdef CONFIG_PROVE_RCU */
1da177e4
LT
152
153int nr_processes(void)
154{
155 int cpu;
156 int total = 0;
157
1d510750 158 for_each_possible_cpu(cpu)
1da177e4
LT
159 total += per_cpu(process_counts, cpu);
160
161 return total;
162}
163
f19b9f74
AM
164void __weak arch_release_task_struct(struct task_struct *tsk)
165{
166}
167
f5e10287 168#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
e18b890b 169static struct kmem_cache *task_struct_cachep;
41101809
TG
170
171static inline struct task_struct *alloc_task_struct_node(int node)
172{
173 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
174}
175
41101809
TG
176static inline void free_task_struct(struct task_struct *tsk)
177{
41101809
TG
178 kmem_cache_free(task_struct_cachep, tsk);
179}
1da177e4
LT
180#endif
181
b235beea 182#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
41101809 183
0d15d74a
TG
184/*
185 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
186 * kmemcache based allocator.
187 */
ba14a194 188# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
ac496bf4 189
be9a2277 190# ifdef CONFIG_VMAP_STACK
ac496bf4
AL
191/*
192 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
193 * flush. Try to minimize the number of calls by caching stacks.
194 */
195#define NR_CACHED_STACKS 2
196static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
19659c59 197
e540bf31
SAS
198struct vm_stack {
199 struct rcu_head rcu;
200 struct vm_struct *stack_vm_area;
201};
202
203static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
204{
205 unsigned int i;
206
207 for (i = 0; i < NR_CACHED_STACKS; i++) {
208 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
209 continue;
210 return true;
211 }
212 return false;
213}
214
215static void thread_stack_free_rcu(struct rcu_head *rh)
216{
217 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
218
219 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
220 return;
221
222 vfree(vm_stack);
223}
224
225static void thread_stack_delayed_free(struct task_struct *tsk)
226{
227 struct vm_stack *vm_stack = tsk->stack;
228
229 vm_stack->stack_vm_area = tsk->stack_vm_area;
230 call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
231}
232
19659c59
HR
233static int free_vm_stack_cache(unsigned int cpu)
234{
235 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
236 int i;
237
238 for (i = 0; i < NR_CACHED_STACKS; i++) {
239 struct vm_struct *vm_stack = cached_vm_stacks[i];
240
241 if (!vm_stack)
242 continue;
243
244 vfree(vm_stack->addr);
245 cached_vm_stacks[i] = NULL;
246 }
247
248 return 0;
249}
ac496bf4 250
1a03d3f1 251static int memcg_charge_kernel_stack(struct vm_struct *vm)
b69c49b7 252{
f1c1a9ee
SAS
253 int i;
254 int ret;
4e2f6342 255 int nr_charged = 0;
f1c1a9ee 256
f1c1a9ee
SAS
257 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
258
259 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
260 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
261 if (ret)
262 goto err;
4e2f6342 263 nr_charged++;
f1c1a9ee
SAS
264 }
265 return 0;
266err:
4e2f6342 267 for (i = 0; i < nr_charged; i++)
f1c1a9ee
SAS
268 memcg_kmem_uncharge_page(vm->pages[i], 0);
269 return ret;
270}
271
7865aba3 272static int alloc_thread_stack_node(struct task_struct *tsk, int node)
b69c49b7 273{
1a03d3f1 274 struct vm_struct *vm;
ac496bf4
AL
275 void *stack;
276 int i;
277
ac496bf4 278 for (i = 0; i < NR_CACHED_STACKS; i++) {
112166f8
CL
279 struct vm_struct *s;
280
281 s = this_cpu_xchg(cached_stacks[i], NULL);
ac496bf4
AL
282
283 if (!s)
284 continue;
ac496bf4 285
51fb34de 286 /* Reset stack metadata. */
cebd0eb2 287 kasan_unpoison_range(s->addr, THREAD_SIZE);
eafb149e 288
51fb34de
AK
289 stack = kasan_reset_tag(s->addr);
290
ca182551 291 /* Clear stale pointers from reused stack. */
51fb34de 292 memset(stack, 0, THREAD_SIZE);
e01e8063 293
1a03d3f1 294 if (memcg_charge_kernel_stack(s)) {
f1c1a9ee
SAS
295 vfree(s->addr);
296 return -ENOMEM;
297 }
298
ac496bf4 299 tsk->stack_vm_area = s;
51fb34de 300 tsk->stack = stack;
7865aba3 301 return 0;
ac496bf4 302 }
ac496bf4 303
9b6f7e16
RG
304 /*
305 * Allocated stacks are cached and later reused by new threads,
306 * so memcg accounting is performed manually on assigning/releasing
307 * stacks to tasks. Drop __GFP_ACCOUNT.
308 */
48ac3c18 309 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
ac496bf4 310 VMALLOC_START, VMALLOC_END,
9b6f7e16 311 THREADINFO_GFP & ~__GFP_ACCOUNT,
ac496bf4
AL
312 PAGE_KERNEL,
313 0, node, __builtin_return_address(0));
7865aba3
SAS
314 if (!stack)
315 return -ENOMEM;
ba14a194 316
1a03d3f1
SAS
317 vm = find_vm_area(stack);
318 if (memcg_charge_kernel_stack(vm)) {
f1c1a9ee
SAS
319 vfree(stack);
320 return -ENOMEM;
321 }
ba14a194
AL
322 /*
323 * We can't call find_vm_area() in interrupt context, and
324 * free_thread_stack() can be called in interrupt context,
325 * so cache the vm_struct.
326 */
1a03d3f1 327 tsk->stack_vm_area = vm;
51fb34de 328 stack = kasan_reset_tag(stack);
7865aba3
SAS
329 tsk->stack = stack;
330 return 0;
b69c49b7
FT
331}
332
be9a2277 333static void free_thread_stack(struct task_struct *tsk)
b69c49b7 334{
e540bf31
SAS
335 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
336 thread_stack_delayed_free(tsk);
9b6f7e16 337
be9a2277
SAS
338 tsk->stack = NULL;
339 tsk->stack_vm_area = NULL;
340}
ac496bf4 341
be9a2277 342# else /* !CONFIG_VMAP_STACK */
ac496bf4 343
e540bf31
SAS
344static void thread_stack_free_rcu(struct rcu_head *rh)
345{
346 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
347}
348
349static void thread_stack_delayed_free(struct task_struct *tsk)
350{
351 struct rcu_head *rh = tsk->stack;
352
353 call_rcu(rh, thread_stack_free_rcu);
354}
355
7865aba3 356static int alloc_thread_stack_node(struct task_struct *tsk, int node)
be9a2277 357{
4949148a
VD
358 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
359 THREAD_SIZE_ORDER);
b6a84016 360
1bf4580e 361 if (likely(page)) {
8dcc1d34 362 tsk->stack = kasan_reset_tag(page_address(page));
7865aba3 363 return 0;
1bf4580e 364 }
7865aba3 365 return -ENOMEM;
b69c49b7
FT
366}
367
be9a2277 368static void free_thread_stack(struct task_struct *tsk)
b69c49b7 369{
e540bf31 370 thread_stack_delayed_free(tsk);
be9a2277 371 tsk->stack = NULL;
b69c49b7 372}
ac496bf4 373
be9a2277
SAS
374# endif /* CONFIG_VMAP_STACK */
375# else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
9b6f7e16 376
b235beea 377static struct kmem_cache *thread_stack_cache;
ac496bf4 378
e540bf31
SAS
379static void thread_stack_free_rcu(struct rcu_head *rh)
380{
381 kmem_cache_free(thread_stack_cache, rh);
382}
ac496bf4 383
e540bf31
SAS
384static void thread_stack_delayed_free(struct task_struct *tsk)
385{
386 struct rcu_head *rh = tsk->stack;
ac496bf4 387
e540bf31 388 call_rcu(rh, thread_stack_free_rcu);
b69c49b7 389}
0d15d74a 390
7865aba3 391static int alloc_thread_stack_node(struct task_struct *tsk, int node)
0d15d74a 392{
5eed6f1d
RR
393 unsigned long *stack;
394 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
8dcc1d34 395 stack = kasan_reset_tag(stack);
5eed6f1d 396 tsk->stack = stack;
7865aba3 397 return stack ? 0 : -ENOMEM;
0d15d74a
TG
398}
399
ba14a194 400static void free_thread_stack(struct task_struct *tsk)
0d15d74a 401{
e540bf31 402 thread_stack_delayed_free(tsk);
be9a2277 403 tsk->stack = NULL;
0d15d74a
TG
404}
405
b235beea 406void thread_stack_cache_init(void)
0d15d74a 407{
f9d29946
DW
408 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
409 THREAD_SIZE, THREAD_SIZE, 0, 0,
410 THREAD_SIZE, NULL);
b235beea 411 BUG_ON(thread_stack_cache == NULL);
0d15d74a 412}
be9a2277
SAS
413
414# endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
2bb0529c
SAS
415#else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
416
7865aba3 417static int alloc_thread_stack_node(struct task_struct *tsk, int node)
2bb0529c
SAS
418{
419 unsigned long *stack;
420
421 stack = arch_alloc_thread_stack_node(tsk, node);
422 tsk->stack = stack;
7865aba3 423 return stack ? 0 : -ENOMEM;
2bb0529c
SAS
424}
425
426static void free_thread_stack(struct task_struct *tsk)
427{
428 arch_free_thread_stack(tsk);
429 tsk->stack = NULL;
430}
431
be9a2277 432#endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
b69c49b7 433
1da177e4 434/* SLAB cache for signal_struct structures (tsk->signal) */
e18b890b 435static struct kmem_cache *signal_cachep;
1da177e4
LT
436
437/* SLAB cache for sighand_struct structures (tsk->sighand) */
e18b890b 438struct kmem_cache *sighand_cachep;
1da177e4
LT
439
440/* SLAB cache for files_struct structures (tsk->files) */
e18b890b 441struct kmem_cache *files_cachep;
1da177e4
LT
442
443/* SLAB cache for fs_struct structures (tsk->fs) */
e18b890b 444struct kmem_cache *fs_cachep;
1da177e4
LT
445
446/* SLAB cache for vm_area_struct structures */
3928d4f5 447static struct kmem_cache *vm_area_cachep;
1da177e4
LT
448
449/* SLAB cache for mm_struct structures (tsk->mm) */
e18b890b 450static struct kmem_cache *mm_cachep;
1da177e4 451
c7f8f31c
SB
452#ifdef CONFIG_PER_VMA_LOCK
453
454/* SLAB cache for vm_area_struct.lock */
455static struct kmem_cache *vma_lock_cachep;
456
457static bool vma_lock_alloc(struct vm_area_struct *vma)
458{
459 vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
460 if (!vma->vm_lock)
461 return false;
462
463 init_rwsem(&vma->vm_lock->lock);
464 vma->vm_lock_seq = -1;
465
466 return true;
467}
468
469static inline void vma_lock_free(struct vm_area_struct *vma)
470{
471 kmem_cache_free(vma_lock_cachep, vma->vm_lock);
472}
473
474#else /* CONFIG_PER_VMA_LOCK */
475
476static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
477static inline void vma_lock_free(struct vm_area_struct *vma) {}
478
479#endif /* CONFIG_PER_VMA_LOCK */
480
490fc053 481struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
3928d4f5 482{
a670468f 483 struct vm_area_struct *vma;
490fc053 484
a670468f 485 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
c7f8f31c
SB
486 if (!vma)
487 return NULL;
488
489 vma_init(vma, mm);
490 if (!vma_lock_alloc(vma)) {
491 kmem_cache_free(vm_area_cachep, vma);
492 return NULL;
493 }
494
490fc053 495 return vma;
3928d4f5
LT
496}
497
498struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
499{
95faf699
LT
500 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
501
c7f8f31c
SB
502 if (!new)
503 return NULL;
504
505 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
506 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
507 /*
508 * orig->shared.rb may be modified concurrently, but the clone
509 * will be reinitialized.
510 */
511 data_race(memcpy(new, orig, sizeof(*new)));
512 if (!vma_lock_alloc(new)) {
513 kmem_cache_free(vm_area_cachep, new);
514 return NULL;
95faf699 515 }
c7f8f31c 516 INIT_LIST_HEAD(&new->anon_vma_chain);
ef6a22b7 517 vma_numab_state_init(new);
c7f8f31c
SB
518 dup_anon_vma_name(orig, new);
519
95faf699 520 return new;
3928d4f5
LT
521}
522
0d2ebf9c 523void __vm_area_free(struct vm_area_struct *vma)
3928d4f5 524{
ef6a22b7 525 vma_numab_state_free(vma);
5c26f6ac 526 free_anon_vma_name(vma);
c7f8f31c 527 vma_lock_free(vma);
3928d4f5
LT
528 kmem_cache_free(vm_area_cachep, vma);
529}
530
20cce633
ML
531#ifdef CONFIG_PER_VMA_LOCK
532static void vm_area_free_rcu_cb(struct rcu_head *head)
533{
534 struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
535 vm_rcu);
f2e13784
SB
536
537 /* The vma should not be locked while being destroyed. */
c7f8f31c 538 VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
20cce633
ML
539 __vm_area_free(vma);
540}
541#endif
542
543void vm_area_free(struct vm_area_struct *vma)
544{
545#ifdef CONFIG_PER_VMA_LOCK
546 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
547#else
548 __vm_area_free(vma);
549#endif
550}
551
ba14a194 552static void account_kernel_stack(struct task_struct *tsk, int account)
c6a7f572 553{
0ce055f8
SAS
554 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
555 struct vm_struct *vm = task_stack_vm_area(tsk);
27faca83 556 int i;
ba14a194 557
27faca83
MS
558 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
559 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
560 account * (PAGE_SIZE / 1024));
561 } else {
0ce055f8
SAS
562 void *stack = task_stack_page(tsk);
563
27faca83 564 /* All stack pages are in the same node. */
da3ceeff 565 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
991e7673 566 account * (THREAD_SIZE / 1024));
27faca83 567 }
c6a7f572
KM
568}
569
1a03d3f1 570void exit_task_stack_account(struct task_struct *tsk)
9b6f7e16 571{
1a03d3f1 572 account_kernel_stack(tsk, -1);
991e7673 573
1a03d3f1
SAS
574 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
575 struct vm_struct *vm;
9b6f7e16
RG
576 int i;
577
1a03d3f1
SAS
578 vm = task_stack_vm_area(tsk);
579 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
580 memcg_kmem_uncharge_page(vm->pages[i], 0);
9b6f7e16 581 }
9b6f7e16
RG
582}
583
68f24b08 584static void release_task_stack(struct task_struct *tsk)
1da177e4 585{
2f064a59 586 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
405c0759
AL
587 return; /* Better to leak the stack than to free prematurely */
588
ba14a194 589 free_thread_stack(tsk);
68f24b08
AL
590}
591
592#ifdef CONFIG_THREAD_INFO_IN_TASK
593void put_task_stack(struct task_struct *tsk)
594{
f0b89d39 595 if (refcount_dec_and_test(&tsk->stack_refcount))
68f24b08
AL
596 release_task_stack(tsk);
597}
598#endif
599
600void free_task(struct task_struct *tsk)
601{
a1140cb2
KI
602#ifdef CONFIG_SECCOMP
603 WARN_ON_ONCE(tsk->seccomp.filter);
604#endif
b90ca8ba 605 release_user_cpus_ptr(tsk);
d08b9f0c
ST
606 scs_release(tsk);
607
68f24b08
AL
608#ifndef CONFIG_THREAD_INFO_IN_TASK
609 /*
610 * The task is finally done with both the stack and thread_info,
611 * so free both.
612 */
613 release_task_stack(tsk);
614#else
615 /*
616 * If the task had a separate stack allocation, it should be gone
617 * by now.
618 */
f0b89d39 619 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
68f24b08 620#endif
23f78d4a 621 rt_mutex_debug_task_free(tsk);
fb52607a 622 ftrace_graph_exit_task(tsk);
f19b9f74 623 arch_release_task_struct(tsk);
1da5c46f
ON
624 if (tsk->flags & PF_KTHREAD)
625 free_kthread_struct(tsk);
b0fd1852 626 bpf_task_storage_free(tsk);
1da177e4
LT
627 free_task_struct(tsk);
628}
629EXPORT_SYMBOL(free_task);
630
fe69d560
DH
631static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
632{
633 struct file *exe_file;
634
635 exe_file = get_mm_exe_file(oldmm);
636 RCU_INIT_POINTER(mm->exe_file, exe_file);
637 /*
638 * We depend on the oldmm having properly denied write access to the
639 * exe_file already.
640 */
641 if (exe_file && deny_write_access(exe_file))
642 pr_warn_once("deny_write_access() failed in %s\n", __func__);
643}
644
d70f2a14
AM
645#ifdef CONFIG_MMU
646static __latent_entropy int dup_mmap(struct mm_struct *mm,
647 struct mm_struct *oldmm)
648{
763ecb03 649 struct vm_area_struct *mpnt, *tmp;
d70f2a14 650 int retval;
c9dbe82c 651 unsigned long charge = 0;
d70f2a14 652 LIST_HEAD(uf);
3b9dbd5e 653 VMA_ITERATOR(vmi, mm, 0);
d70f2a14
AM
654
655 uprobe_start_dup_mmap();
d8ed45c5 656 if (mmap_write_lock_killable(oldmm)) {
d70f2a14
AM
657 retval = -EINTR;
658 goto fail_uprobe_end;
659 }
660 flush_cache_dup_mm(oldmm);
661 uprobe_dup_mmap(oldmm, mm);
662 /*
663 * Not linked in yet - no deadlock potential:
664 */
aaa2cc56 665 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
d70f2a14
AM
666
667 /* No ordering required: file already has been exposed. */
fe69d560 668 dup_mm_exe_file(mm, oldmm);
d70f2a14
AM
669
670 mm->total_vm = oldmm->total_vm;
671 mm->data_vm = oldmm->data_vm;
672 mm->exec_vm = oldmm->exec_vm;
673 mm->stack_vm = oldmm->stack_vm;
674
d70f2a14
AM
675 retval = ksm_fork(mm, oldmm);
676 if (retval)
677 goto out;
d2081b2b 678 khugepaged_fork(mm, oldmm);
d70f2a14 679
d2406291
PZ
680 /* Use __mt_dup() to efficiently build an identical maple tree. */
681 retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL);
682 if (unlikely(retval))
c9dbe82c
LH
683 goto out;
684
3dd44325 685 mt_clear_in_rcu(vmi.mas.tree);
d2406291 686 for_each_vma(vmi, mpnt) {
d70f2a14
AM
687 struct file *file;
688
fb49c455 689 vma_start_write(mpnt);
d70f2a14 690 if (mpnt->vm_flags & VM_DONTCOPY) {
d2406291
PZ
691 retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start,
692 mpnt->vm_end, GFP_KERNEL);
693 if (retval)
694 goto loop_out;
695
d70f2a14
AM
696 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
697 continue;
698 }
699 charge = 0;
655c79bb
TH
700 /*
701 * Don't duplicate many vmas if we've been oom-killed (for
702 * example)
703 */
704 if (fatal_signal_pending(current)) {
705 retval = -EINTR;
d4af56c5 706 goto loop_out;
655c79bb 707 }
d70f2a14
AM
708 if (mpnt->vm_flags & VM_ACCOUNT) {
709 unsigned long len = vma_pages(mpnt);
710
711 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
712 goto fail_nomem;
713 charge = len;
714 }
3928d4f5 715 tmp = vm_area_dup(mpnt);
d70f2a14
AM
716 if (!tmp)
717 goto fail_nomem;
d70f2a14
AM
718 retval = vma_dup_policy(mpnt, tmp);
719 if (retval)
720 goto fail_nomem_policy;
721 tmp->vm_mm = mm;
722 retval = dup_userfaultfd(tmp, &uf);
723 if (retval)
724 goto fail_nomem_anon_vma_fork;
725 if (tmp->vm_flags & VM_WIPEONFORK) {
93949bb2
LX
726 /*
727 * VM_WIPEONFORK gets a clean slate in the child.
728 * Don't prepare anon_vma until fault since we don't
729 * copy page for current vma.
730 */
d70f2a14 731 tmp->anon_vma = NULL;
d70f2a14
AM
732 } else if (anon_vma_fork(tmp, mpnt))
733 goto fail_nomem_anon_vma_fork;
e430a95a 734 vm_flags_clear(tmp, VM_LOCKED_MASK);
d70f2a14
AM
735 file = tmp->vm_file;
736 if (file) {
d70f2a14
AM
737 struct address_space *mapping = file->f_mapping;
738
739 get_file(file);
d70f2a14 740 i_mmap_lock_write(mapping);
e8e17ee9 741 if (vma_is_shared_maywrite(tmp))
cf508b58 742 mapping_allow_writable(mapping);
d70f2a14
AM
743 flush_dcache_mmap_lock(mapping);
744 /* insert tmp into the share list, just after mpnt */
745 vma_interval_tree_insert_after(tmp, mpnt,
746 &mapping->i_mmap);
747 flush_dcache_mmap_unlock(mapping);
748 i_mmap_unlock_write(mapping);
749 }
750
751 /*
8d9bfb26 752 * Copy/update hugetlb private vma information.
d70f2a14
AM
753 */
754 if (is_vm_hugetlb_page(tmp))
8d9bfb26 755 hugetlb_dup_vma_private(tmp);
d70f2a14 756
d2406291
PZ
757 /*
758 * Link the vma into the MT. After using __mt_dup(), memory
759 * allocation is not necessary here, so it cannot fail.
760 */
761 vma_iter_bulk_store(&vmi, tmp);
d70f2a14
AM
762
763 mm->map_count++;
764 if (!(tmp->vm_flags & VM_WIPEONFORK))
c78f4636 765 retval = copy_page_range(tmp, mpnt);
d70f2a14
AM
766
767 if (tmp->vm_ops && tmp->vm_ops->open)
768 tmp->vm_ops->open(tmp);
769
d2406291
PZ
770 if (retval) {
771 mpnt = vma_next(&vmi);
d4af56c5 772 goto loop_out;
d2406291 773 }
d70f2a14
AM
774 }
775 /* a new mm has just been created */
1ed0cc5a 776 retval = arch_dup_mmap(oldmm, mm);
d4af56c5 777loop_out:
3b9dbd5e 778 vma_iter_free(&vmi);
d2406291 779 if (!retval) {
3dd44325 780 mt_set_in_rcu(vmi.mas.tree);
d2406291
PZ
781 } else if (mpnt) {
782 /*
783 * The entire maple tree has already been duplicated. If the
784 * mmap duplication fails, mark the failure point with
785 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered,
786 * stop releasing VMAs that have not been duplicated after this
787 * point.
788 */
789 mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1);
790 mas_store(&vmi.mas, XA_ZERO_ENTRY);
791 }
d70f2a14 792out:
d8ed45c5 793 mmap_write_unlock(mm);
d70f2a14 794 flush_tlb_mm(oldmm);
d8ed45c5 795 mmap_write_unlock(oldmm);
d70f2a14
AM
796 dup_userfaultfd_complete(&uf);
797fail_uprobe_end:
798 uprobe_end_dup_mmap();
799 return retval;
c9dbe82c 800
d70f2a14
AM
801fail_nomem_anon_vma_fork:
802 mpol_put(vma_policy(tmp));
803fail_nomem_policy:
3928d4f5 804 vm_area_free(tmp);
d70f2a14
AM
805fail_nomem:
806 retval = -ENOMEM;
807 vm_unacct_memory(charge);
d4af56c5 808 goto loop_out;
d70f2a14
AM
809}
810
811static inline int mm_alloc_pgd(struct mm_struct *mm)
812{
813 mm->pgd = pgd_alloc(mm);
814 if (unlikely(!mm->pgd))
815 return -ENOMEM;
816 return 0;
817}
818
819static inline void mm_free_pgd(struct mm_struct *mm)
820{
821 pgd_free(mm, mm->pgd);
822}
823#else
824static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
825{
d8ed45c5 826 mmap_write_lock(oldmm);
fe69d560 827 dup_mm_exe_file(mm, oldmm);
d8ed45c5 828 mmap_write_unlock(oldmm);
d70f2a14
AM
829 return 0;
830}
831#define mm_alloc_pgd(mm) (0)
832#define mm_free_pgd(mm)
833#endif /* CONFIG_MMU */
834
835static void check_mm(struct mm_struct *mm)
836{
837 int i;
838
8495f7e6
SPP
839 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
840 "Please make sure 'struct resident_page_types[]' is updated as well");
841
d70f2a14 842 for (i = 0; i < NR_MM_COUNTERS; i++) {
f1a79412 843 long x = percpu_counter_sum(&mm->rss_stat[i]);
d70f2a14
AM
844
845 if (unlikely(x))
8495f7e6
SPP
846 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
847 mm, resident_page_types[i], x);
d70f2a14
AM
848 }
849
850 if (mm_pgtables_bytes(mm))
851 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
852 mm_pgtables_bytes(mm));
853
854#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
855 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
856#endif
857}
858
859#define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
860#define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
861
2655421a
NP
862static void do_check_lazy_tlb(void *arg)
863{
864 struct mm_struct *mm = arg;
865
866 WARN_ON_ONCE(current->active_mm == mm);
867}
868
869static void do_shoot_lazy_tlb(void *arg)
870{
871 struct mm_struct *mm = arg;
872
873 if (current->active_mm == mm) {
874 WARN_ON_ONCE(current->mm);
875 current->active_mm = &init_mm;
876 switch_mm(mm, &init_mm, current);
877 }
878}
879
880static void cleanup_lazy_tlbs(struct mm_struct *mm)
881{
882 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
883 /*
884 * In this case, lazy tlb mms are refounted and would not reach
885 * __mmdrop until all CPUs have switched away and mmdrop()ed.
886 */
887 return;
888 }
889
890 /*
891 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
892 * requires lazy mm users to switch to another mm when the refcount
893 * drops to zero, before the mm is freed. This requires IPIs here to
894 * switch kernel threads to init_mm.
895 *
896 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
897 * switch with the final userspace teardown TLB flush which leaves the
898 * mm lazy on this CPU but no others, reducing the need for additional
899 * IPIs here. There are cases where a final IPI is still required here,
900 * such as the final mmdrop being performed on a different CPU than the
901 * one exiting, or kernel threads using the mm when userspace exits.
902 *
903 * IPI overheads have not found to be expensive, but they could be
904 * reduced in a number of possible ways, for example (roughly
905 * increasing order of complexity):
906 * - The last lazy reference created by exit_mm() could instead switch
907 * to init_mm, however it's probable this will run on the same CPU
908 * immediately afterwards, so this may not reduce IPIs much.
909 * - A batch of mms requiring IPIs could be gathered and freed at once.
910 * - CPUs store active_mm where it can be remotely checked without a
911 * lock, to filter out false-positives in the cpumask.
912 * - After mm_users or mm_count reaches zero, switching away from the
913 * mm could clear mm_cpumask to reduce some IPIs, perhaps together
914 * with some batching or delaying of the final IPIs.
915 * - A delayed freeing and RCU-like quiescing sequence based on mm
916 * switching to avoid IPIs completely.
917 */
918 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
919 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
920 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
921}
922
d70f2a14
AM
923/*
924 * Called when the last reference to the mm
925 * is dropped: either by a lazy thread or by
926 * mmput. Free the page directory and the mm.
927 */
d34bc48f 928void __mmdrop(struct mm_struct *mm)
d70f2a14
AM
929{
930 BUG_ON(mm == &init_mm);
3eda69c9 931 WARN_ON_ONCE(mm == current->mm);
2655421a
NP
932
933 /* Ensure no CPUs are using this as their lazy tlb mm */
934 cleanup_lazy_tlbs(mm);
935
3eda69c9 936 WARN_ON_ONCE(mm == current->active_mm);
d70f2a14
AM
937 mm_free_pgd(mm);
938 destroy_context(mm);
984cfe4e 939 mmu_notifier_subscriptions_destroy(mm);
d70f2a14
AM
940 check_mm(mm);
941 put_user_ns(mm->user_ns);
2667ed10 942 mm_pasid_drop(mm);
223baf9d 943 mm_destroy_cid(mm);
14ef95be 944 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
f1a79412 945
d70f2a14
AM
946 free_mm(mm);
947}
d34bc48f 948EXPORT_SYMBOL_GPL(__mmdrop);
d70f2a14
AM
949
950static void mmdrop_async_fn(struct work_struct *work)
951{
952 struct mm_struct *mm;
953
954 mm = container_of(work, struct mm_struct, async_put_work);
955 __mmdrop(mm);
956}
957
958static void mmdrop_async(struct mm_struct *mm)
959{
960 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
961 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
962 schedule_work(&mm->async_put_work);
963 }
964}
965
ea6d290c
ON
966static inline void free_signal_struct(struct signal_struct *sig)
967{
97101eb4 968 taskstats_tgid_free(sig);
1c5354de 969 sched_autogroup_exit(sig);
7283094e
MH
970 /*
971 * __mmdrop is not safe to call from softirq context on x86 due to
972 * pgd_dtor so postpone it to the async context
973 */
26db62f1 974 if (sig->oom_mm)
7283094e 975 mmdrop_async(sig->oom_mm);
ea6d290c
ON
976 kmem_cache_free(signal_cachep, sig);
977}
978
979static inline void put_signal_struct(struct signal_struct *sig)
980{
60d4de3f 981 if (refcount_dec_and_test(&sig->sigcnt))
ea6d290c
ON
982 free_signal_struct(sig);
983}
984
158d9ebd 985void __put_task_struct(struct task_struct *tsk)
1da177e4 986{
270f722d 987 WARN_ON(!tsk->exit_state);
ec1d2819 988 WARN_ON(refcount_read(&tsk->usage));
1da177e4
LT
989 WARN_ON(tsk == current);
990
0f212204 991 io_uring_free(tsk);
2e91fa7f 992 cgroup_free(tsk);
16d51a59 993 task_numa_free(tsk, true);
1a2a4d06 994 security_task_free(tsk);
e0e81739 995 exit_creds(tsk);
35df17c5 996 delayacct_tsk_free(tsk);
ea6d290c 997 put_signal_struct(tsk->signal);
6e33cad0 998 sched_core_free(tsk);
2873cd31 999 free_task(tsk);
1da177e4 1000}
77c100c8 1001EXPORT_SYMBOL_GPL(__put_task_struct);
1da177e4 1002
d243b344
WLC
1003void __put_task_struct_rcu_cb(struct rcu_head *rhp)
1004{
1005 struct task_struct *task = container_of(rhp, struct task_struct, rcu);
1006
1007 __put_task_struct(task);
1008}
1009EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
1010
6c0a9fa6 1011void __init __weak arch_task_cache_init(void) { }
61c4628b 1012
ff691f6e
HS
1013/*
1014 * set_max_threads
1015 */
16db3d3f 1016static void set_max_threads(unsigned int max_threads_suggested)
ff691f6e 1017{
ac1b398d 1018 u64 threads;
ca79b0c2 1019 unsigned long nr_pages = totalram_pages();
ff691f6e
HS
1020
1021 /*
ac1b398d
HS
1022 * The number of threads shall be limited such that the thread
1023 * structures may only consume a small part of the available memory.
ff691f6e 1024 */
3d6357de 1025 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
ac1b398d
HS
1026 threads = MAX_THREADS;
1027 else
3d6357de 1028 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
ac1b398d
HS
1029 (u64) THREAD_SIZE * 8UL);
1030
16db3d3f
HS
1031 if (threads > max_threads_suggested)
1032 threads = max_threads_suggested;
1033
ac1b398d 1034 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
ff691f6e
HS
1035}
1036
5aaeb5c0
IM
1037#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1038/* Initialized by the architecture: */
1039int arch_task_struct_size __read_mostly;
1040#endif
0c8c0f03 1041
4189ff23 1042#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
5905429a
KC
1043static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
1044{
1045 /* Fetch thread_struct whitelist for the architecture. */
1046 arch_thread_struct_whitelist(offset, size);
1047
1048 /*
1049 * Handle zero-sized whitelist or empty thread_struct, otherwise
1050 * adjust offset to position of thread_struct in task_struct.
1051 */
1052 if (unlikely(*size == 0))
1053 *offset = 0;
1054 else
1055 *offset += offsetof(struct task_struct, thread);
1056}
4189ff23 1057#endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
5905429a 1058
ff691f6e 1059void __init fork_init(void)
1da177e4 1060{
25f9c081 1061 int i;
f5e10287 1062#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1da177e4 1063#ifndef ARCH_MIN_TASKALIGN
e274795e 1064#define ARCH_MIN_TASKALIGN 0
1da177e4 1065#endif
95cb64c1 1066 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
5905429a 1067 unsigned long useroffset, usersize;
e274795e 1068
1da177e4 1069 /* create a slab on which task_structs can be allocated */
5905429a
KC
1070 task_struct_whitelist(&useroffset, &usersize);
1071 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
e274795e 1072 arch_task_struct_size, align,
5905429a
KC
1073 SLAB_PANIC|SLAB_ACCOUNT,
1074 useroffset, usersize, NULL);
1da177e4
LT
1075#endif
1076
61c4628b
SS
1077 /* do the arch specific task caches init */
1078 arch_task_cache_init();
1079
16db3d3f 1080 set_max_threads(MAX_THREADS);
1da177e4
LT
1081
1082 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1083 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1084 init_task.signal->rlim[RLIMIT_SIGPENDING] =
1085 init_task.signal->rlim[RLIMIT_NPROC];
b376c3e1 1086
de399236 1087 for (i = 0; i < UCOUNT_COUNTS; i++)
25f9c081 1088 init_user_ns.ucount_max[i] = max_threads/2;
19659c59 1089
de399236
AG
1090 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY);
1091 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY);
1092 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1093 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY);
21d1c5e3 1094
19659c59
HR
1095#ifdef CONFIG_VMAP_STACK
1096 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1097 NULL, free_vm_stack_cache);
1098#endif
b09be676 1099
d08b9f0c
ST
1100 scs_init();
1101
b09be676 1102 lockdep_init_task(&init_task);
aad42dd4 1103 uprobes_init();
1da177e4
LT
1104}
1105
52f5684c 1106int __weak arch_dup_task_struct(struct task_struct *dst,
61c4628b
SS
1107 struct task_struct *src)
1108{
1109 *dst = *src;
1110 return 0;
1111}
1112
d4311ff1
AT
1113void set_task_stack_end_magic(struct task_struct *tsk)
1114{
1115 unsigned long *stackend;
1116
1117 stackend = end_of_stack(tsk);
1118 *stackend = STACK_END_MAGIC; /* for overflow detection */
1119}
1120
725fc629 1121static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1da177e4
LT
1122{
1123 struct task_struct *tsk;
3e26c149 1124 int err;
1da177e4 1125
725fc629
AK
1126 if (node == NUMA_NO_NODE)
1127 node = tsk_fork_get_node(orig);
504f52b5 1128 tsk = alloc_task_struct_node(node);
1da177e4
LT
1129 if (!tsk)
1130 return NULL;
1131
546c42b2
SAS
1132 err = arch_dup_task_struct(tsk, orig);
1133 if (err)
f19b9f74 1134 goto free_tsk;
1da177e4 1135
7865aba3
SAS
1136 err = alloc_thread_stack_node(tsk, node);
1137 if (err)
f19b9f74 1138 goto free_tsk;
ba14a194 1139
68f24b08 1140#ifdef CONFIG_THREAD_INFO_IN_TASK
f0b89d39 1141 refcount_set(&tsk->stack_refcount, 1);
68f24b08 1142#endif
1a03d3f1 1143 account_kernel_stack(tsk, 1);
164c33c6 1144
d08b9f0c
ST
1145 err = scs_prepare(tsk, node);
1146 if (err)
1147 goto free_stack;
1148
dbd95212
KC
1149#ifdef CONFIG_SECCOMP
1150 /*
1151 * We must handle setting up seccomp filters once we're under
1152 * the sighand lock in case orig has changed between now and
1153 * then. Until then, filter must be NULL to avoid messing up
1154 * the usage counts on the error path calling free_task.
1155 */
1156 tsk->seccomp.filter = NULL;
1157#endif
87bec58a
AM
1158
1159 setup_thread_stack(tsk, orig);
8e7cac79 1160 clear_user_return_notifier(tsk);
f26f9aff 1161 clear_tsk_need_resched(tsk);
d4311ff1 1162 set_task_stack_end_magic(tsk);
1446e1df 1163 clear_syscall_work_syscall_user_dispatch(tsk);
1da177e4 1164
050e9baa 1165#ifdef CONFIG_STACKPROTECTOR
7cd815bc 1166 tsk->stack_canary = get_random_canary();
0a425405 1167#endif
3bd37062
SAS
1168 if (orig->cpus_ptr == &orig->cpus_mask)
1169 tsk->cpus_ptr = &tsk->cpus_mask;
b90ca8ba 1170 dup_user_cpus_ptr(tsk, orig, node);
0a425405 1171
fb0a685c 1172 /*
0ff7b2cf
EB
1173 * One for the user space visible state that goes away when reaped.
1174 * One for the scheduler.
fb0a685c 1175 */
0ff7b2cf
EB
1176 refcount_set(&tsk->rcu_users, 2);
1177 /* One for the rcu users */
1178 refcount_set(&tsk->usage, 1);
6c5c9341 1179#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 1180 tsk->btrace_seq = 0;
6c5c9341 1181#endif
a0aa7f68 1182 tsk->splice_pipe = NULL;
5640f768 1183 tsk->task_frag.page = NULL;
093e5840 1184 tsk->wake_q.next = NULL;
e32cf5df 1185 tsk->worker_private = NULL;
c6a7f572 1186
5c9a8750 1187 kcov_task_init(tsk);
50b5e49c 1188 kmsan_task_create(tsk);
5fbda3ec 1189 kmap_local_fork(tsk);
5c9a8750 1190
e41d5818
DV
1191#ifdef CONFIG_FAULT_INJECTION
1192 tsk->fail_nth = 0;
1193#endif
1194
2c323017 1195#ifdef CONFIG_BLK_CGROUP
f05837ed 1196 tsk->throttle_disk = NULL;
2c323017
JB
1197 tsk->use_memdelay = 0;
1198#endif
1199
a3d29e82
PZ
1200#ifdef CONFIG_IOMMU_SVA
1201 tsk->pasid_activated = 0;
1202#endif
1203
d46eb14b
SB
1204#ifdef CONFIG_MEMCG
1205 tsk->active_memcg = NULL;
1206#endif
b041b525
TL
1207
1208#ifdef CONFIG_CPU_SUP_INTEL
1209 tsk->reported_split_lock = 0;
1210#endif
1211
af7f588d
MD
1212#ifdef CONFIG_SCHED_MM_CID
1213 tsk->mm_cid = -1;
223baf9d 1214 tsk->last_mm_cid = -1;
af7f588d 1215 tsk->mm_cid_active = 0;
223baf9d 1216 tsk->migrate_from_cpu = -1;
af7f588d 1217#endif
1da177e4 1218 return tsk;
61c4628b 1219
b235beea 1220free_stack:
1a03d3f1 1221 exit_task_stack_account(tsk);
ba14a194 1222 free_thread_stack(tsk);
f19b9f74 1223free_tsk:
61c4628b
SS
1224 free_task_struct(tsk);
1225 return NULL;
1da177e4
LT
1226}
1227
23ff4440 1228__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1da177e4 1229
4cb0e11b
HK
1230static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1231
1232static int __init coredump_filter_setup(char *s)
1233{
1234 default_dump_filter =
1235 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1236 MMF_DUMP_FILTER_MASK;
1237 return 1;
1238}
1239
1240__setup("coredump_filter=", coredump_filter_setup);
1241
1da177e4
LT
1242#include <linux/init_task.h>
1243
858f0993
AD
1244static void mm_init_aio(struct mm_struct *mm)
1245{
1246#ifdef CONFIG_AIO
1247 spin_lock_init(&mm->ioctx_lock);
db446a08 1248 mm->ioctx_table = NULL;
858f0993
AD
1249#endif
1250}
1251
c3f3ce04
AA
1252static __always_inline void mm_clear_owner(struct mm_struct *mm,
1253 struct task_struct *p)
1254{
1255#ifdef CONFIG_MEMCG
1256 if (mm->owner == p)
1257 WRITE_ONCE(mm->owner, NULL);
1258#endif
1259}
1260
33144e84
VD
1261static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1262{
1263#ifdef CONFIG_MEMCG
1264 mm->owner = p;
1265#endif
1266}
1267
355627f5
EB
1268static void mm_init_uprobes_state(struct mm_struct *mm)
1269{
1270#ifdef CONFIG_UPROBES
1271 mm->uprobes_state.xol_area = NULL;
1272#endif
1273}
1274
bfedb589
EB
1275static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1276 struct user_namespace *user_ns)
1da177e4 1277{
d4af56c5
LH
1278 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1279 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1da177e4
LT
1280 atomic_set(&mm->mm_users, 1);
1281 atomic_set(&mm->mm_count, 1);
57efa1fe 1282 seqcount_init(&mm->write_protect_seq);
d8ed45c5 1283 mmap_init_lock(mm);
1da177e4 1284 INIT_LIST_HEAD(&mm->mmlist);
5e31275c
SB
1285#ifdef CONFIG_PER_VMA_LOCK
1286 mm->mm_lock_seq = 0;
1287#endif
af5b0f6a 1288 mm_pgtables_bytes_init(mm);
41f727fd
VD
1289 mm->map_count = 0;
1290 mm->locked_vm = 0;
70f8a3ca 1291 atomic64_set(&mm->pinned_vm, 0);
d559db08 1292 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1da177e4 1293 spin_lock_init(&mm->page_table_lock);
88aa7cc6 1294 spin_lock_init(&mm->arg_lock);
41f727fd 1295 mm_init_cpumask(mm);
858f0993 1296 mm_init_aio(mm);
cf475ad2 1297 mm_init_owner(mm, p);
a6cbd440 1298 mm_pasid_init(mm);
2b7e8665 1299 RCU_INIT_POINTER(mm->exe_file, NULL);
984cfe4e 1300 mmu_notifier_subscriptions_init(mm);
16af97dc 1301 init_tlb_flush_pending(mm);
41f727fd
VD
1302#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1303 mm->pmd_huge_pte = NULL;
1304#endif
355627f5 1305 mm_init_uprobes_state(mm);
13db8c50 1306 hugetlb_count_init(mm);
1da177e4 1307
a0715cc2 1308 if (current->mm) {
24e41bf8 1309 mm->flags = mmf_init_flags(current->mm->flags);
a0715cc2
AT
1310 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1311 } else {
1312 mm->flags = default_dump_filter;
1da177e4 1313 mm->def_flags = 0;
a0715cc2
AT
1314 }
1315
41f727fd
VD
1316 if (mm_alloc_pgd(mm))
1317 goto fail_nopgd;
1318
1319 if (init_new_context(p, mm))
1320 goto fail_nocontext;
78fb7466 1321
223baf9d
MD
1322 if (mm_alloc_cid(mm))
1323 goto fail_cid;
1324
14ef95be
MG
1325 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1326 NR_MM_COUNTERS))
1327 goto fail_pcpu;
f1a79412 1328
bfedb589 1329 mm->user_ns = get_user_ns(user_ns);
bd74fdae 1330 lru_gen_init_mm(mm);
41f727fd
VD
1331 return mm;
1332
f1a79412 1333fail_pcpu:
223baf9d
MD
1334 mm_destroy_cid(mm);
1335fail_cid:
b20b0368 1336 destroy_context(mm);
41f727fd
VD
1337fail_nocontext:
1338 mm_free_pgd(mm);
1339fail_nopgd:
1da177e4
LT
1340 free_mm(mm);
1341 return NULL;
1342}
1343
1344/*
1345 * Allocate and initialize an mm_struct.
1346 */
fb0a685c 1347struct mm_struct *mm_alloc(void)
1da177e4 1348{
fb0a685c 1349 struct mm_struct *mm;
1da177e4
LT
1350
1351 mm = allocate_mm();
de03c72c
KM
1352 if (!mm)
1353 return NULL;
1354
1355 memset(mm, 0, sizeof(*mm));
bfedb589 1356 return mm_init(mm, current, current_user_ns());
1da177e4
LT
1357}
1358
ec8d7c14
MH
1359static inline void __mmput(struct mm_struct *mm)
1360{
1361 VM_BUG_ON(atomic_read(&mm->mm_users));
1362
1363 uprobe_clear_state(mm);
1364 exit_aio(mm);
1365 ksm_exit(mm);
1366 khugepaged_exit(mm); /* must run before exit_mmap */
1367 exit_mmap(mm);
6fcb52a5 1368 mm_put_huge_zero_page(mm);
ec8d7c14
MH
1369 set_mm_exe_file(mm, NULL);
1370 if (!list_empty(&mm->mmlist)) {
1371 spin_lock(&mmlist_lock);
1372 list_del(&mm->mmlist);
1373 spin_unlock(&mmlist_lock);
1374 }
1375 if (mm->binfmt)
1376 module_put(mm->binfmt->module);
bd74fdae 1377 lru_gen_del_mm(mm);
ec8d7c14
MH
1378 mmdrop(mm);
1379}
1380
1da177e4
LT
1381/*
1382 * Decrement the use count and release all resources for an mm.
1383 */
1384void mmput(struct mm_struct *mm)
1385{
0ae26f1b
AM
1386 might_sleep();
1387
ec8d7c14
MH
1388 if (atomic_dec_and_test(&mm->mm_users))
1389 __mmput(mm);
1390}
1391EXPORT_SYMBOL_GPL(mmput);
1392
a1b2289c
SY
1393#ifdef CONFIG_MMU
1394static void mmput_async_fn(struct work_struct *work)
1395{
1396 struct mm_struct *mm = container_of(work, struct mm_struct,
1397 async_put_work);
1398
1399 __mmput(mm);
1400}
1401
1402void mmput_async(struct mm_struct *mm)
1403{
1404 if (atomic_dec_and_test(&mm->mm_users)) {
1405 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1406 schedule_work(&mm->async_put_work);
1407 }
1408}
85eaeb50 1409EXPORT_SYMBOL_GPL(mmput_async);
a1b2289c
SY
1410#endif
1411
90f31d0e
KK
1412/**
1413 * set_mm_exe_file - change a reference to the mm's executable file
ff0712ea
MWO
1414 * @mm: The mm to change.
1415 * @new_exe_file: The new file to use.
90f31d0e
KK
1416 *
1417 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1418 *
6e399cd1 1419 * Main users are mmput() and sys_execve(). Callers prevent concurrent
a7031f14
MG
1420 * invocations: in mmput() nobody alive left, in execve it happens before
1421 * the new mm is made visible to anyone.
fe69d560
DH
1422 *
1423 * Can only fail if new_exe_file != NULL.
90f31d0e 1424 */
fe69d560 1425int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
38646013 1426{
6e399cd1
DB
1427 struct file *old_exe_file;
1428
1429 /*
1430 * It is safe to dereference the exe_file without RCU as
1431 * this function is only called if nobody else can access
1432 * this mm -- see comment above for justification.
1433 */
1434 old_exe_file = rcu_dereference_raw(mm->exe_file);
90f31d0e 1435
fe69d560
DH
1436 if (new_exe_file) {
1437 /*
1438 * We expect the caller (i.e., sys_execve) to already denied
1439 * write access, so this is unlikely to fail.
1440 */
1441 if (unlikely(deny_write_access(new_exe_file)))
1442 return -EACCES;
38646013 1443 get_file(new_exe_file);
fe69d560 1444 }
90f31d0e 1445 rcu_assign_pointer(mm->exe_file, new_exe_file);
fe69d560
DH
1446 if (old_exe_file) {
1447 allow_write_access(old_exe_file);
90f31d0e 1448 fput(old_exe_file);
fe69d560
DH
1449 }
1450 return 0;
38646013
JS
1451}
1452
35d7bdc8
DH
1453/**
1454 * replace_mm_exe_file - replace a reference to the mm's executable file
ff0712ea
MWO
1455 * @mm: The mm to change.
1456 * @new_exe_file: The new file to use.
35d7bdc8 1457 *
a7031f14 1458 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
35d7bdc8
DH
1459 *
1460 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1461 */
1462int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1463{
1464 struct vm_area_struct *vma;
1465 struct file *old_exe_file;
1466 int ret = 0;
1467
1468 /* Forbid mm->exe_file change if old file still mapped. */
1469 old_exe_file = get_mm_exe_file(mm);
1470 if (old_exe_file) {
fa5e5876 1471 VMA_ITERATOR(vmi, mm, 0);
35d7bdc8 1472 mmap_read_lock(mm);
fa5e5876 1473 for_each_vma(vmi, vma) {
35d7bdc8
DH
1474 if (!vma->vm_file)
1475 continue;
1476 if (path_equal(&vma->vm_file->f_path,
fa5e5876 1477 &old_exe_file->f_path)) {
35d7bdc8 1478 ret = -EBUSY;
fa5e5876
MWO
1479 break;
1480 }
35d7bdc8
DH
1481 }
1482 mmap_read_unlock(mm);
1483 fput(old_exe_file);
1484 if (ret)
1485 return ret;
1486 }
1487
fe69d560
DH
1488 ret = deny_write_access(new_exe_file);
1489 if (ret)
1490 return -EACCES;
35d7bdc8 1491 get_file(new_exe_file);
fe69d560 1492
a7031f14
MG
1493 /* set the new file */
1494 mmap_write_lock(mm);
1495 old_exe_file = rcu_dereference_raw(mm->exe_file);
1496 rcu_assign_pointer(mm->exe_file, new_exe_file);
1497 mmap_write_unlock(mm);
1498
fe69d560 1499 if (old_exe_file) {
fe69d560 1500 allow_write_access(old_exe_file);
35d7bdc8 1501 fput(old_exe_file);
fe69d560 1502 }
35d7bdc8 1503 return 0;
38646013
JS
1504}
1505
90f31d0e
KK
1506/**
1507 * get_mm_exe_file - acquire a reference to the mm's executable file
ff0712ea 1508 * @mm: The mm of interest.
90f31d0e
KK
1509 *
1510 * Returns %NULL if mm has no associated executable file.
1511 * User must release file via fput().
1512 */
38646013
JS
1513struct file *get_mm_exe_file(struct mm_struct *mm)
1514{
1515 struct file *exe_file;
1516
90f31d0e 1517 rcu_read_lock();
0ede61d8 1518 exe_file = get_file_rcu(&mm->exe_file);
90f31d0e 1519 rcu_read_unlock();
38646013
JS
1520 return exe_file;
1521}
1522
cd81a917
MG
1523/**
1524 * get_task_exe_file - acquire a reference to the task's executable file
ff0712ea 1525 * @task: The task.
cd81a917
MG
1526 *
1527 * Returns %NULL if task's mm (if any) has no associated executable file or
1528 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1529 * User must release file via fput().
1530 */
1531struct file *get_task_exe_file(struct task_struct *task)
1532{
1533 struct file *exe_file = NULL;
1534 struct mm_struct *mm;
1535
1536 task_lock(task);
1537 mm = task->mm;
1538 if (mm) {
1539 if (!(task->flags & PF_KTHREAD))
1540 exe_file = get_mm_exe_file(mm);
1541 }
1542 task_unlock(task);
1543 return exe_file;
1544}
38646013 1545
1da177e4
LT
1546/**
1547 * get_task_mm - acquire a reference to the task's mm
ff0712ea 1548 * @task: The task.
1da177e4 1549 *
246bb0b1 1550 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1da177e4
LT
1551 * this kernel workthread has transiently adopted a user mm with use_mm,
1552 * to do its AIO) is not set and if so returns a reference to it, after
1553 * bumping up the use count. User must release the mm via mmput()
1554 * after use. Typically used by /proc and ptrace.
1555 */
1556struct mm_struct *get_task_mm(struct task_struct *task)
1557{
1558 struct mm_struct *mm;
1559
1560 task_lock(task);
1561 mm = task->mm;
1562 if (mm) {
246bb0b1 1563 if (task->flags & PF_KTHREAD)
1da177e4
LT
1564 mm = NULL;
1565 else
3fce371b 1566 mmget(mm);
1da177e4
LT
1567 }
1568 task_unlock(task);
1569 return mm;
1570}
1571EXPORT_SYMBOL_GPL(get_task_mm);
1572
8cdb878d
CY
1573struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1574{
1575 struct mm_struct *mm;
1576 int err;
1577
f7cfd871 1578 err = down_read_killable(&task->signal->exec_update_lock);
8cdb878d
CY
1579 if (err)
1580 return ERR_PTR(err);
1581
1582 mm = get_task_mm(task);
1583 if (mm && mm != current->mm &&
1584 !ptrace_may_access(task, mode)) {
1585 mmput(mm);
1586 mm = ERR_PTR(-EACCES);
1587 }
f7cfd871 1588 up_read(&task->signal->exec_update_lock);
8cdb878d
CY
1589
1590 return mm;
1591}
1592
57b59c4a 1593static void complete_vfork_done(struct task_struct *tsk)
c415c3b4 1594{
d68b46fe 1595 struct completion *vfork;
c415c3b4 1596
d68b46fe
ON
1597 task_lock(tsk);
1598 vfork = tsk->vfork_done;
1599 if (likely(vfork)) {
1600 tsk->vfork_done = NULL;
1601 complete(vfork);
1602 }
1603 task_unlock(tsk);
1604}
1605
1606static int wait_for_vfork_done(struct task_struct *child,
1607 struct completion *vfork)
1608{
f5d39b02 1609 unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
d68b46fe
ON
1610 int killed;
1611
76f969e8 1612 cgroup_enter_frozen();
f5d39b02 1613 killed = wait_for_completion_state(vfork, state);
76f969e8 1614 cgroup_leave_frozen(false);
d68b46fe
ON
1615
1616 if (killed) {
1617 task_lock(child);
1618 child->vfork_done = NULL;
1619 task_unlock(child);
1620 }
1621
1622 put_task_struct(child);
1623 return killed;
c415c3b4
ON
1624}
1625
1da177e4
LT
1626/* Please note the differences between mmput and mm_release.
1627 * mmput is called whenever we stop holding onto a mm_struct,
1628 * error success whatever.
1629 *
1630 * mm_release is called after a mm_struct has been removed
1631 * from the current process.
1632 *
1633 * This difference is important for error handling, when we
1634 * only half set up a mm_struct for a new process and need to restore
1635 * the old one. Because we mmput the new mm_struct before
1636 * restoring the old one. . .
1637 * Eric Biederman 10 January 1998
1638 */
4610ba7a 1639static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1da177e4 1640{
0326f5a9
SD
1641 uprobe_free_utask(tsk);
1642
1da177e4
LT
1643 /* Get rid of any cached register state */
1644 deactivate_mm(tsk, mm);
1645
fec1d011 1646 /*
735f2770
MH
1647 * Signal userspace if we're not exiting with a core dump
1648 * because we want to leave the value intact for debugging
1649 * purposes.
fec1d011 1650 */
9c8a8228 1651 if (tsk->clear_child_tid) {
92307383 1652 if (atomic_read(&mm->mm_users) > 1) {
9c8a8228
ED
1653 /*
1654 * We don't check the error code - if userspace has
1655 * not set up a proper pointer then tough luck.
1656 */
1657 put_user(0, tsk->clear_child_tid);
2de0db99
DB
1658 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1659 1, NULL, NULL, 0, 0);
9c8a8228 1660 }
1da177e4 1661 tsk->clear_child_tid = NULL;
1da177e4 1662 }
f7505d64
KK
1663
1664 /*
1665 * All done, finally we can wake up parent and return this mm to him.
1666 * Also kthread_stop() uses this completion for synchronization.
1667 */
1668 if (tsk->vfork_done)
1669 complete_vfork_done(tsk);
1da177e4
LT
1670}
1671
4610ba7a
TG
1672void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1673{
150d7158 1674 futex_exit_release(tsk);
4610ba7a
TG
1675 mm_release(tsk, mm);
1676}
1677
1678void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1679{
150d7158 1680 futex_exec_release(tsk);
4610ba7a
TG
1681 mm_release(tsk, mm);
1682}
1683
13585fa0
NA
1684/**
1685 * dup_mm() - duplicates an existing mm structure
1686 * @tsk: the task_struct with which the new mm will be associated.
1687 * @oldmm: the mm to duplicate.
1688 *
1689 * Allocates a new mm structure and duplicates the provided @oldmm structure
1690 * content into it.
1691 *
1692 * Return: the duplicated mm or NULL on failure.
a0a7ec30 1693 */
13585fa0
NA
1694static struct mm_struct *dup_mm(struct task_struct *tsk,
1695 struct mm_struct *oldmm)
a0a7ec30 1696{
13585fa0 1697 struct mm_struct *mm;
a0a7ec30
JD
1698 int err;
1699
a0a7ec30
JD
1700 mm = allocate_mm();
1701 if (!mm)
1702 goto fail_nomem;
1703
1704 memcpy(mm, oldmm, sizeof(*mm));
1705
bfedb589 1706 if (!mm_init(mm, tsk, mm->user_ns))
a0a7ec30
JD
1707 goto fail_nomem;
1708
a0a7ec30
JD
1709 err = dup_mmap(mm, oldmm);
1710 if (err)
1711 goto free_pt;
1712
1713 mm->hiwater_rss = get_mm_rss(mm);
1714 mm->hiwater_vm = mm->total_vm;
1715
801460d0
HS
1716 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1717 goto free_pt;
1718
a0a7ec30
JD
1719 return mm;
1720
1721free_pt:
801460d0
HS
1722 /* don't put binfmt in mmput, we haven't got module yet */
1723 mm->binfmt = NULL;
c3f3ce04 1724 mm_init_owner(mm, NULL);
a0a7ec30
JD
1725 mmput(mm);
1726
1727fail_nomem:
1728 return NULL;
a0a7ec30
JD
1729}
1730
fb0a685c 1731static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1da177e4 1732{
fb0a685c 1733 struct mm_struct *mm, *oldmm;
1da177e4
LT
1734
1735 tsk->min_flt = tsk->maj_flt = 0;
1736 tsk->nvcsw = tsk->nivcsw = 0;
17406b82
MSB
1737#ifdef CONFIG_DETECT_HUNG_TASK
1738 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
a2e51445 1739 tsk->last_switch_time = 0;
17406b82 1740#endif
1da177e4
LT
1741
1742 tsk->mm = NULL;
1743 tsk->active_mm = NULL;
1744
1745 /*
1746 * Are we cloning a kernel thread?
1747 *
1748 * We need to steal a active VM for that..
1749 */
1750 oldmm = current->mm;
1751 if (!oldmm)
1752 return 0;
1753
1754 if (clone_flags & CLONE_VM) {
3fce371b 1755 mmget(oldmm);
1da177e4 1756 mm = oldmm;
a6895399
REB
1757 } else {
1758 mm = dup_mm(tsk, current->mm);
1759 if (!mm)
1760 return -ENOMEM;
1da177e4
LT
1761 }
1762
1da177e4
LT
1763 tsk->mm = mm;
1764 tsk->active_mm = mm;
af7f588d 1765 sched_mm_cid_fork(tsk);
1da177e4 1766 return 0;
1da177e4
LT
1767}
1768
a39bc516 1769static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1da177e4 1770{
498052bb 1771 struct fs_struct *fs = current->fs;
1da177e4 1772 if (clone_flags & CLONE_FS) {
498052bb 1773 /* tsk->fs is already what we want */
2a4419b5 1774 spin_lock(&fs->lock);
498052bb 1775 if (fs->in_exec) {
2a4419b5 1776 spin_unlock(&fs->lock);
498052bb
AV
1777 return -EAGAIN;
1778 }
1779 fs->users++;
2a4419b5 1780 spin_unlock(&fs->lock);
1da177e4
LT
1781 return 0;
1782 }
498052bb 1783 tsk->fs = copy_fs_struct(fs);
1da177e4
LT
1784 if (!tsk->fs)
1785 return -ENOMEM;
1786 return 0;
1787}
1788
11f3f500
MC
1789static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1790 int no_files)
a016f338
JD
1791{
1792 struct files_struct *oldf, *newf;
1793 int error = 0;
1794
1795 /*
1796 * A background process may not have any files ...
1797 */
1798 oldf = current->files;
1799 if (!oldf)
1800 goto out;
1801
11f3f500
MC
1802 if (no_files) {
1803 tsk->files = NULL;
1804 goto out;
1805 }
1806
a016f338
JD
1807 if (clone_flags & CLONE_FILES) {
1808 atomic_inc(&oldf->count);
1809 goto out;
1810 }
1811
60997c3d 1812 newf = dup_fd(oldf, NR_OPEN_MAX, &error);
a016f338
JD
1813 if (!newf)
1814 goto out;
1815
1816 tsk->files = newf;
1817 error = 0;
1818out:
1819 return error;
1820}
1821
a39bc516 1822static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1da177e4
LT
1823{
1824 struct sighand_struct *sig;
1825
60348802 1826 if (clone_flags & CLONE_SIGHAND) {
d036bda7 1827 refcount_inc(&current->sighand->count);
1da177e4
LT
1828 return 0;
1829 }
1830 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
0c282b06 1831 RCU_INIT_POINTER(tsk->sighand, sig);
1da177e4
LT
1832 if (!sig)
1833 return -ENOMEM;
9d7fb042 1834
d036bda7 1835 refcount_set(&sig->count, 1);
06e62a46 1836 spin_lock_irq(&current->sighand->siglock);
1da177e4 1837 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
06e62a46 1838 spin_unlock_irq(&current->sighand->siglock);
b612e5df
CB
1839
1840 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1841 if (clone_flags & CLONE_CLEAR_SIGHAND)
1842 flush_signal_handlers(tsk, 0);
1843
1da177e4
LT
1844 return 0;
1845}
1846
a7e5328a 1847void __cleanup_sighand(struct sighand_struct *sighand)
c81addc9 1848{
d036bda7 1849 if (refcount_dec_and_test(&sighand->count)) {
d80e731e 1850 signalfd_cleanup(sighand);
392809b2 1851 /*
5f0d5a3a 1852 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
392809b2
ON
1853 * without an RCU grace period, see __lock_task_sighand().
1854 */
c81addc9 1855 kmem_cache_free(sighand_cachep, sighand);
d80e731e 1856 }
c81addc9
ON
1857}
1858
f06febc9
FM
1859/*
1860 * Initialize POSIX timer handling for a thread group.
1861 */
1862static void posix_cpu_timers_init_group(struct signal_struct *sig)
1863{
2b69942f 1864 struct posix_cputimers *pct = &sig->posix_cputimers;
78d7d407
JS
1865 unsigned long cpu_limit;
1866
316c1608 1867 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
3a245c0f 1868 posix_cputimers_group_init(pct, cpu_limit);
f06febc9
FM
1869}
1870
a39bc516 1871static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1da177e4
LT
1872{
1873 struct signal_struct *sig;
1da177e4 1874
4ab6c083 1875 if (clone_flags & CLONE_THREAD)
490dea45 1876 return 0;
490dea45 1877
a56704ef 1878 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1da177e4
LT
1879 tsk->signal = sig;
1880 if (!sig)
1881 return -ENOMEM;
1882
b3ac022c 1883 sig->nr_threads = 1;
d80f7d7b 1884 sig->quick_threads = 1;
1da177e4 1885 atomic_set(&sig->live, 1);
60d4de3f 1886 refcount_set(&sig->sigcnt, 1);
0c740d0a
ON
1887
1888 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1889 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1890 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1891
1da177e4 1892 init_waitqueue_head(&sig->wait_chldexit);
db51aecc 1893 sig->curr_target = tsk;
1da177e4 1894 init_sigpending(&sig->shared_pending);
c3ad2c3b 1895 INIT_HLIST_HEAD(&sig->multiprocess);
e78c3496 1896 seqlock_init(&sig->stats_lock);
9d7fb042 1897 prev_cputime_init(&sig->prev_cputime);
1da177e4 1898
baa73d9e 1899#ifdef CONFIG_POSIX_TIMERS
b18b6a9c 1900 INIT_LIST_HEAD(&sig->posix_timers);
c9cb2e3d 1901 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1da177e4 1902 sig->real_timer.function = it_real_fn;
baa73d9e 1903#endif
1da177e4 1904
1da177e4
LT
1905 task_lock(current->group_leader);
1906 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1907 task_unlock(current->group_leader);
1908
6279a751
ON
1909 posix_cpu_timers_init_group(sig);
1910
522ed776 1911 tty_audit_fork(sig);
5091faa4 1912 sched_autogroup_fork(sig);
522ed776 1913
a63d83f4 1914 sig->oom_score_adj = current->signal->oom_score_adj;
dabb16f6 1915 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
28b83c51 1916
9b1bf12d 1917 mutex_init(&sig->cred_guard_mutex);
f7cfd871 1918 init_rwsem(&sig->exec_update_lock);
9b1bf12d 1919
1da177e4
LT
1920 return 0;
1921}
1922
dbd95212
KC
1923static void copy_seccomp(struct task_struct *p)
1924{
1925#ifdef CONFIG_SECCOMP
1926 /*
1927 * Must be called with sighand->lock held, which is common to
1928 * all threads in the group. Holding cred_guard_mutex is not
1929 * needed because this new task is not yet running and cannot
1930 * be racing exec.
1931 */
69f6a34b 1932 assert_spin_locked(&current->sighand->siglock);
dbd95212
KC
1933
1934 /* Ref-count the new filter user, and assign it. */
1935 get_seccomp_filter(current);
1936 p->seccomp = current->seccomp;
1937
1938 /*
1939 * Explicitly enable no_new_privs here in case it got set
1940 * between the task_struct being duplicated and holding the
1941 * sighand lock. The seccomp state and nnp must be in sync.
1942 */
1943 if (task_no_new_privs(current))
1944 task_set_no_new_privs(p);
1945
1946 /*
1947 * If the parent gained a seccomp mode after copying thread
1948 * flags and between before we held the sighand lock, we have
1949 * to manually enable the seccomp thread flag here.
1950 */
1951 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
23d67a54 1952 set_task_syscall_work(p, SECCOMP);
dbd95212
KC
1953#endif
1954}
1955
17da2bd9 1956SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1da177e4
LT
1957{
1958 current->clear_child_tid = tidptr;
1959
b488893a 1960 return task_pid_vnr(current);
1da177e4
LT
1961}
1962
a39bc516 1963static void rt_mutex_init_task(struct task_struct *p)
23f78d4a 1964{
1d615482 1965 raw_spin_lock_init(&p->pi_lock);
e29e175b 1966#ifdef CONFIG_RT_MUTEXES
a23ba907 1967 p->pi_waiters = RB_ROOT_CACHED;
e96a7705 1968 p->pi_top_task = NULL;
23f78d4a 1969 p->pi_blocked_on = NULL;
23f78d4a
IM
1970#endif
1971}
1972
2c470475
EB
1973static inline void init_task_pid_links(struct task_struct *task)
1974{
1975 enum pid_type type;
1976
96e1e984 1977 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
2c470475 1978 INIT_HLIST_NODE(&task->pid_links[type]);
2c470475
EB
1979}
1980
81907739
ON
1981static inline void
1982init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1983{
2c470475
EB
1984 if (type == PIDTYPE_PID)
1985 task->thread_pid = pid;
1986 else
1987 task->signal->pids[type] = pid;
81907739
ON
1988}
1989
6bfbaa51
IM
1990static inline void rcu_copy_process(struct task_struct *p)
1991{
1992#ifdef CONFIG_PREEMPT_RCU
1993 p->rcu_read_lock_nesting = 0;
1994 p->rcu_read_unlock_special.s = 0;
1995 p->rcu_blocked_node = NULL;
1996 INIT_LIST_HEAD(&p->rcu_node_entry);
1997#endif /* #ifdef CONFIG_PREEMPT_RCU */
1998#ifdef CONFIG_TASKS_RCU
1999 p->rcu_tasks_holdout = false;
2000 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
2001 p->rcu_tasks_idle_cpu = -1;
2002#endif /* #ifdef CONFIG_TASKS_RCU */
d5f177d3
PM
2003#ifdef CONFIG_TASKS_TRACE_RCU
2004 p->trc_reader_nesting = 0;
276c4104 2005 p->trc_reader_special.s = 0;
d5f177d3 2006 INIT_LIST_HEAD(&p->trc_holdout_list);
434c9eef 2007 INIT_LIST_HEAD(&p->trc_blkd_node);
d5f177d3 2008#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
6bfbaa51
IM
2009}
2010
3695eae5
CB
2011struct pid *pidfd_pid(const struct file *file)
2012{
2013 if (file->f_op == &pidfd_fops)
2014 return file->private_data;
2015
2016 return ERR_PTR(-EBADF);
2017}
2018
b3e58382
CB
2019static int pidfd_release(struct inode *inode, struct file *file)
2020{
2021 struct pid *pid = file->private_data;
2022
2023 file->private_data = NULL;
2024 put_pid(pid);
2025 return 0;
2026}
2027
2028#ifdef CONFIG_PROC_FS
15d42eb2
CK
2029/**
2030 * pidfd_show_fdinfo - print information about a pidfd
2031 * @m: proc fdinfo file
2032 * @f: file referencing a pidfd
2033 *
2034 * Pid:
2035 * This function will print the pid that a given pidfd refers to in the
2036 * pid namespace of the procfs instance.
2037 * If the pid namespace of the process is not a descendant of the pid
2038 * namespace of the procfs instance 0 will be shown as its pid. This is
2039 * similar to calling getppid() on a process whose parent is outside of
2040 * its pid namespace.
2041 *
2042 * NSpid:
2043 * If pid namespaces are supported then this function will also print
2044 * the pid of a given pidfd refers to for all descendant pid namespaces
2045 * starting from the current pid namespace of the instance, i.e. the
2046 * Pid field and the first entry in the NSpid field will be identical.
2047 * If the pid namespace of the process is not a descendant of the pid
2048 * namespace of the procfs instance 0 will be shown as its first NSpid
2049 * entry and no others will be shown.
2050 * Note that this differs from the Pid and NSpid fields in
2051 * /proc/<pid>/status where Pid and NSpid are always shown relative to
2052 * the pid namespace of the procfs instance. The difference becomes
2053 * obvious when sending around a pidfd between pid namespaces from a
a8ca6b13 2054 * different branch of the tree, i.e. where no ancestral relation is
15d42eb2
CK
2055 * present between the pid namespaces:
2056 * - create two new pid namespaces ns1 and ns2 in the initial pid
2057 * namespace (also take care to create new mount namespaces in the
2058 * new pid namespace and mount procfs)
2059 * - create a process with a pidfd in ns1
2060 * - send pidfd from ns1 to ns2
2061 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
2062 * have exactly one entry, which is 0
2063 */
b3e58382
CB
2064static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
2065{
b3e58382 2066 struct pid *pid = f->private_data;
3d6d8da4
CB
2067 struct pid_namespace *ns;
2068 pid_t nr = -1;
15d42eb2 2069
3d6d8da4 2070 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
9d78edea 2071 ns = proc_pid_ns(file_inode(m->file)->i_sb);
3d6d8da4
CB
2072 nr = pid_nr_ns(pid, ns);
2073 }
2074
2075 seq_put_decimal_ll(m, "Pid:\t", nr);
b3e58382 2076
15d42eb2 2077#ifdef CONFIG_PID_NS
3d6d8da4
CB
2078 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
2079 if (nr > 0) {
15d42eb2 2080 int i;
b3e58382 2081
15d42eb2
CK
2082 /* If nr is non-zero it means that 'pid' is valid and that
2083 * ns, i.e. the pid namespace associated with the procfs
2084 * instance, is in the pid namespace hierarchy of pid.
2085 * Start at one below the already printed level.
2086 */
2087 for (i = ns->level + 1; i <= pid->level; i++)
3d6d8da4 2088 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
15d42eb2
CK
2089 }
2090#endif
b3e58382
CB
2091 seq_putc(m, '\n');
2092}
2093#endif
2094
b53b0b9d
JFG
2095/*
2096 * Poll support for process exit notification.
2097 */
9e77716a 2098static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
b53b0b9d 2099{
b53b0b9d 2100 struct pid *pid = file->private_data;
9e77716a 2101 __poll_t poll_flags = 0;
b53b0b9d
JFG
2102
2103 poll_wait(file, &pid->wait_pidfd, pts);
2104
b53b0b9d
JFG
2105 /*
2106 * Inform pollers only when the whole thread group exits.
2107 * If the thread group leader exits before all other threads in the
2108 * group, then poll(2) should block, similar to the wait(2) family.
2109 */
38fd525a 2110 if (thread_group_exited(pid))
9e77716a 2111 poll_flags = EPOLLIN | EPOLLRDNORM;
b53b0b9d
JFG
2112
2113 return poll_flags;
2114}
2115
b3e58382
CB
2116const struct file_operations pidfd_fops = {
2117 .release = pidfd_release,
b53b0b9d 2118 .poll = pidfd_poll,
b3e58382
CB
2119#ifdef CONFIG_PROC_FS
2120 .show_fdinfo = pidfd_show_fdinfo,
2121#endif
2122};
2123
6ae930d9
CB
2124/**
2125 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2126 * @pid: the struct pid for which to create a pidfd
2127 * @flags: flags of the new @pidfd
ff0712ea 2128 * @ret: Where to return the file for the pidfd.
6ae930d9
CB
2129 *
2130 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2131 * caller's file descriptor table. The pidfd is reserved but not installed yet.
ff0712ea 2132 *
6ae930d9
CB
2133 * The helper doesn't perform checks on @pid which makes it useful for pidfds
2134 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2135 * pidfd file are prepared.
2136 *
2137 * If this function returns successfully the caller is responsible to either
2138 * call fd_install() passing the returned pidfd and pidfd file as arguments in
2139 * order to install the pidfd into its file descriptor table or they must use
2140 * put_unused_fd() and fput() on the returned pidfd and pidfd file
2141 * respectively.
2142 *
2143 * This function is useful when a pidfd must already be reserved but there
2144 * might still be points of failure afterwards and the caller wants to ensure
2145 * that no pidfd is leaked into its file descriptor table.
2146 *
2147 * Return: On success, a reserved pidfd is returned from the function and a new
2148 * pidfd file is returned in the last argument to the function. On
2149 * error, a negative error code is returned from the function and the
2150 * last argument remains unchanged.
2151 */
2152static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2153{
2154 int pidfd;
2155 struct file *pidfd_file;
2156
2157 if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC))
2158 return -EINVAL;
2159
2160 pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2161 if (pidfd < 0)
2162 return pidfd;
2163
2164 pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2165 flags | O_RDWR | O_CLOEXEC);
2166 if (IS_ERR(pidfd_file)) {
2167 put_unused_fd(pidfd);
2168 return PTR_ERR(pidfd_file);
2169 }
2170 get_pid(pid); /* held by pidfd_file now */
2171 *ret = pidfd_file;
2172 return pidfd;
2173}
2174
2175/**
2176 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2177 * @pid: the struct pid for which to create a pidfd
2178 * @flags: flags of the new @pidfd
ff0712ea 2179 * @ret: Where to return the pidfd.
6ae930d9
CB
2180 *
2181 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2182 * caller's file descriptor table. The pidfd is reserved but not installed yet.
2183 *
2184 * The helper verifies that @pid is used as a thread group leader.
2185 *
2186 * If this function returns successfully the caller is responsible to either
2187 * call fd_install() passing the returned pidfd and pidfd file as arguments in
2188 * order to install the pidfd into its file descriptor table or they must use
2189 * put_unused_fd() and fput() on the returned pidfd and pidfd file
2190 * respectively.
2191 *
2192 * This function is useful when a pidfd must already be reserved but there
2193 * might still be points of failure afterwards and the caller wants to ensure
2194 * that no pidfd is leaked into its file descriptor table.
2195 *
2196 * Return: On success, a reserved pidfd is returned from the function and a new
2197 * pidfd file is returned in the last argument to the function. On
2198 * error, a negative error code is returned from the function and the
2199 * last argument remains unchanged.
2200 */
2201int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2202{
2203 if (!pid || !pid_has_task(pid, PIDTYPE_TGID))
2204 return -EINVAL;
2205
2206 return __pidfd_prepare(pid, flags, ret);
2207}
2208
c3f3ce04
AA
2209static void __delayed_free_task(struct rcu_head *rhp)
2210{
2211 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2212
2213 free_task(tsk);
2214}
2215
2216static __always_inline void delayed_free_task(struct task_struct *tsk)
2217{
2218 if (IS_ENABLED(CONFIG_MEMCG))
2219 call_rcu(&tsk->rcu, __delayed_free_task);
2220 else
2221 free_task(tsk);
2222}
2223
67197a4f
SB
2224static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2225{
2226 /* Skip if kernel thread */
2227 if (!tsk->mm)
2228 return;
2229
2230 /* Skip if spawning a thread or using vfork */
2231 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2232 return;
2233
2234 /* We need to synchronize with __set_oom_adj */
2235 mutex_lock(&oom_adj_mutex);
2236 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2237 /* Update the values in case they were changed after copy_signal */
2238 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2239 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2240 mutex_unlock(&oom_adj_mutex);
2241}
2242
79257534
DBO
2243#ifdef CONFIG_RV
2244static void rv_task_fork(struct task_struct *p)
2245{
2246 int i;
2247
2248 for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2249 p->rv[i].da_mon.monitoring = false;
2250}
2251#else
2252#define rv_task_fork(p) do {} while (0)
2253#endif
2254
1da177e4
LT
2255/*
2256 * This creates a new process as a copy of the old one,
2257 * but does not actually start it yet.
2258 *
2259 * It copies the registers, and all the appropriate
2260 * parts of the process environment (as per the clone
2261 * flags). The actual kick-off is left to the caller.
2262 */
89c8e98d 2263__latent_entropy struct task_struct *copy_process(
09a05394 2264 struct pid *pid,
3033f14a 2265 int trace,
7f192e3c
CB
2266 int node,
2267 struct kernel_clone_args *args)
1da177e4 2268{
b3e58382 2269 int pidfd = -1, retval;
a24efe62 2270 struct task_struct *p;
c3ad2c3b 2271 struct multiprocess_signals delayed;
6fd2fe49 2272 struct file *pidfile = NULL;
c5febea0 2273 const u64 clone_flags = args->flags;
769071ac 2274 struct nsproxy *nsp = current->nsproxy;
1da177e4 2275
667b6094
MPS
2276 /*
2277 * Don't allow sharing the root directory with processes in a different
2278 * namespace
2279 */
1da177e4
LT
2280 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2281 return ERR_PTR(-EINVAL);
2282
e66eded8
EB
2283 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2284 return ERR_PTR(-EINVAL);
2285
1da177e4
LT
2286 /*
2287 * Thread groups must share signals as well, and detached threads
2288 * can only be started up within the thread group.
2289 */
2290 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2291 return ERR_PTR(-EINVAL);
2292
2293 /*
2294 * Shared signal handlers imply shared VM. By way of the above,
2295 * thread groups also imply shared VM. Blocking this case allows
2296 * for various simplifications in other code.
2297 */
2298 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2299 return ERR_PTR(-EINVAL);
2300
123be07b
SB
2301 /*
2302 * Siblings of global init remain as zombies on exit since they are
2303 * not reaped by their parent (swapper). To solve this and to avoid
2304 * multi-rooted process trees, prevent global and container-inits
2305 * from creating siblings.
2306 */
2307 if ((clone_flags & CLONE_PARENT) &&
2308 current->signal->flags & SIGNAL_UNKILLABLE)
2309 return ERR_PTR(-EINVAL);
2310
8382fcac 2311 /*
40a0d32d 2312 * If the new process will be in a different pid or user namespace
faf00da5 2313 * do not allow it to share a thread group with the forking task.
8382fcac 2314 */
faf00da5 2315 if (clone_flags & CLONE_THREAD) {
40a0d32d 2316 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
769071ac
AV
2317 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2318 return ERR_PTR(-EINVAL);
2319 }
2320
b3e58382 2321 if (clone_flags & CLONE_PIDFD) {
b3e58382 2322 /*
b3e58382
CB
2323 * - CLONE_DETACHED is blocked so that we can potentially
2324 * reuse it later for CLONE_PIDFD.
2325 * - CLONE_THREAD is blocked until someone really needs it.
2326 */
7f192e3c 2327 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
b3e58382 2328 return ERR_PTR(-EINVAL);
b3e58382
CB
2329 }
2330
c3ad2c3b
EB
2331 /*
2332 * Force any signals received before this point to be delivered
2333 * before the fork happens. Collect up signals sent to multiple
2334 * processes that happen during the fork and delay them so that
2335 * they appear to happen after the fork.
2336 */
2337 sigemptyset(&delayed.signal);
2338 INIT_HLIST_NODE(&delayed.node);
2339
2340 spin_lock_irq(&current->sighand->siglock);
2341 if (!(clone_flags & CLONE_THREAD))
2342 hlist_add_head(&delayed.node, &current->signal->multiprocess);
2343 recalc_sigpending();
2344 spin_unlock_irq(&current->sighand->siglock);
2345 retval = -ERESTARTNOINTR;
66ae0d1e 2346 if (task_sigpending(current))
c3ad2c3b
EB
2347 goto fork_out;
2348
1da177e4 2349 retval = -ENOMEM;
725fc629 2350 p = dup_task_struct(current, node);
1da177e4
LT
2351 if (!p)
2352 goto fork_out;
753550eb
EB
2353 p->flags &= ~PF_KTHREAD;
2354 if (args->kthread)
2355 p->flags |= PF_KTHREAD;
f9010dbd 2356 if (args->user_worker) {
b16b3855 2357 /*
f9010dbd 2358 * Mark us a user worker, and block any signal that isn't
b16b3855
JA
2359 * fatal or STOP
2360 */
f9010dbd 2361 p->flags |= PF_USER_WORKER;
b16b3855
JA
2362 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2363 }
f9010dbd
MC
2364 if (args->io_thread)
2365 p->flags |= PF_IO_WORKER;
1da177e4 2366
cf587db2
MC
2367 if (args->name)
2368 strscpy_pad(p->comm, args->name, sizeof(p->comm));
2369
7f192e3c 2370 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
4d6501dc
VN
2371 /*
2372 * Clear TID on mm_release()?
2373 */
7f192e3c 2374 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
4d6501dc 2375
f7e8b616
SR
2376 ftrace_graph_init_task(p);
2377
bea493a0
PZ
2378 rt_mutex_init_task(p);
2379
a21ee605 2380 lockdep_assert_irqs_enabled();
d12c1a37 2381#ifdef CONFIG_PROVE_LOCKING
de30a2b3
IM
2382 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2383#endif
8f2f9c4d
EB
2384 retval = copy_creds(p, clone_flags);
2385 if (retval < 0)
2386 goto bad_fork_free;
2387
1da177e4 2388 retval = -EAGAIN;
de399236 2389 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
b57922b6
EP
2390 if (p->real_cred->user != INIT_USER &&
2391 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
8f2f9c4d 2392 goto bad_fork_cleanup_count;
1da177e4 2393 }
72fa5997 2394 current->flags &= ~PF_NPROC_EXCEEDED;
1da177e4 2395
1da177e4
LT
2396 /*
2397 * If multiple threads are within copy_process(), then this check
2398 * triggers too late. This doesn't hurt, the check is only there
2399 * to stop root fork bombs.
2400 */
04ec93fe 2401 retval = -EAGAIN;
c17d1a3a 2402 if (data_race(nr_threads >= max_threads))
1da177e4
LT
2403 goto bad_fork_cleanup_count;
2404
ca74e92b 2405 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
a8ea6fc9 2406 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
514ddb44 2407 p->flags |= PF_FORKNOEXEC;
1da177e4
LT
2408 INIT_LIST_HEAD(&p->children);
2409 INIT_LIST_HEAD(&p->sibling);
f41d911f 2410 rcu_copy_process(p);
1da177e4
LT
2411 p->vfork_done = NULL;
2412 spin_lock_init(&p->alloc_lock);
1da177e4 2413
1da177e4
LT
2414 init_sigpending(&p->pending);
2415
64861634 2416 p->utime = p->stime = p->gtime = 0;
40565b5a 2417#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
64861634 2418 p->utimescaled = p->stimescaled = 0;
40565b5a 2419#endif
9d7fb042
PZ
2420 prev_cputime_init(&p->prev_cputime);
2421
6a61671b 2422#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6
FW
2423 seqcount_init(&p->vtime.seqcount);
2424 p->vtime.starttime = 0;
2425 p->vtime.state = VTIME_INACTIVE;
6a61671b
FW
2426#endif
2427
0f212204
JA
2428#ifdef CONFIG_IO_URING
2429 p->io_uring = NULL;
2430#endif
2431
6976675d
AV
2432 p->default_timer_slack_ns = current->timer_slack_ns;
2433
eb414681
JW
2434#ifdef CONFIG_PSI
2435 p->psi_flags = 0;
2436#endif
2437
5995477a 2438 task_io_accounting_init(&p->ioac);
1da177e4
LT
2439 acct_clear_integrals(p);
2440
3a245c0f 2441 posix_cputimers_init(&p->posix_cputimers);
1da177e4 2442
1da177e4 2443 p->io_context = NULL;
c0b0ae8a 2444 audit_set_context(p, NULL);
b4f48b63 2445 cgroup_fork(p);
343f4c49 2446 if (args->kthread) {
40966e31 2447 if (!set_kthread_struct(p))
ff8288ff 2448 goto bad_fork_cleanup_delayacct;
40966e31 2449 }
1da177e4 2450#ifdef CONFIG_NUMA
846a16bf 2451 p->mempolicy = mpol_dup(p->mempolicy);
fb0a685c
DRO
2452 if (IS_ERR(p->mempolicy)) {
2453 retval = PTR_ERR(p->mempolicy);
2454 p->mempolicy = NULL;
ff8288ff 2455 goto bad_fork_cleanup_delayacct;
fb0a685c 2456 }
1da177e4 2457#endif
778d3b0f
MH
2458#ifdef CONFIG_CPUSETS
2459 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2460 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
b7505861 2461 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
778d3b0f 2462#endif
de30a2b3 2463#ifdef CONFIG_TRACE_IRQFLAGS
0584df9c
ME
2464 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2465 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2466 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2467 p->softirqs_enabled = 1;
2468 p->softirq_context = 0;
de30a2b3 2469#endif
8bcbde54
DH
2470
2471 p->pagefault_disabled = 0;
2472
fbb9ce95 2473#ifdef CONFIG_LOCKDEP
b09be676 2474 lockdep_init_task(p);
fbb9ce95 2475#endif
1da177e4 2476
408894ee
IM
2477#ifdef CONFIG_DEBUG_MUTEXES
2478 p->blocked_on = NULL; /* not blocked yet */
2479#endif
cafe5635
KO
2480#ifdef CONFIG_BCACHE
2481 p->sequential_io = 0;
2482 p->sequential_io_avg = 0;
2483#endif
a10787e6
SL
2484#ifdef CONFIG_BPF_SYSCALL
2485 RCU_INIT_POINTER(p->bpf_storage, NULL);
c7603cfa 2486 p->bpf_ctx = NULL;
a10787e6 2487#endif
0f481406 2488
3c90e6e9 2489 /* Perform scheduler related setup. Assign this task to a CPU. */
aab03e05
DF
2490 retval = sched_fork(clone_flags, p);
2491 if (retval)
2492 goto bad_fork_cleanup_policy;
6ab423e0 2493
2b26f0aa 2494 retval = perf_event_init_task(p, clone_flags);
6ab423e0
PZ
2495 if (retval)
2496 goto bad_fork_cleanup_policy;
fb0a685c
DRO
2497 retval = audit_alloc(p);
2498 if (retval)
6c72e350 2499 goto bad_fork_cleanup_perf;
1da177e4 2500 /* copy all the process information */
ab602f79 2501 shm_init_task(p);
e4e55b47 2502 retval = security_task_alloc(p, clone_flags);
fb0a685c 2503 if (retval)
1da177e4 2504 goto bad_fork_cleanup_audit;
e4e55b47
TH
2505 retval = copy_semundo(clone_flags, p);
2506 if (retval)
2507 goto bad_fork_cleanup_security;
11f3f500 2508 retval = copy_files(clone_flags, p, args->no_files);
fb0a685c 2509 if (retval)
1da177e4 2510 goto bad_fork_cleanup_semundo;
fb0a685c
DRO
2511 retval = copy_fs(clone_flags, p);
2512 if (retval)
1da177e4 2513 goto bad_fork_cleanup_files;
fb0a685c
DRO
2514 retval = copy_sighand(clone_flags, p);
2515 if (retval)
1da177e4 2516 goto bad_fork_cleanup_fs;
fb0a685c
DRO
2517 retval = copy_signal(clone_flags, p);
2518 if (retval)
1da177e4 2519 goto bad_fork_cleanup_sighand;
fb0a685c
DRO
2520 retval = copy_mm(clone_flags, p);
2521 if (retval)
1da177e4 2522 goto bad_fork_cleanup_signal;
fb0a685c
DRO
2523 retval = copy_namespaces(clone_flags, p);
2524 if (retval)
d84f4f99 2525 goto bad_fork_cleanup_mm;
fb0a685c
DRO
2526 retval = copy_io(clone_flags, p);
2527 if (retval)
fd0928df 2528 goto bad_fork_cleanup_namespaces;
c5febea0 2529 retval = copy_thread(p, args);
1da177e4 2530 if (retval)
fd0928df 2531 goto bad_fork_cleanup_io;
1da177e4 2532
afaef01c
AP
2533 stackleak_task_init(p);
2534
425fb2b4 2535 if (pid != &init_struct_pid) {
49cb2fc4
AR
2536 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2537 args->set_tid_size);
35f71bc0
MH
2538 if (IS_ERR(pid)) {
2539 retval = PTR_ERR(pid);
0740aa5f 2540 goto bad_fork_cleanup_thread;
35f71bc0 2541 }
425fb2b4
PE
2542 }
2543
b3e58382
CB
2544 /*
2545 * This has to happen after we've potentially unshared the file
2546 * descriptor table (so that the pidfd doesn't leak into the child
2547 * if the fd table isn't shared).
2548 */
2549 if (clone_flags & CLONE_PIDFD) {
ca7707f5
CB
2550 /* Note that no task has been attached to @pid yet. */
2551 retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile);
b3e58382
CB
2552 if (retval < 0)
2553 goto bad_fork_free_pid;
b3e58382 2554 pidfd = retval;
6fd2fe49 2555
7f192e3c 2556 retval = put_user(pidfd, args->pidfd);
b3e58382
CB
2557 if (retval)
2558 goto bad_fork_put_pidfd;
2559 }
2560
73c10101
JA
2561#ifdef CONFIG_BLOCK
2562 p->plug = NULL;
2563#endif
ba31c1a4
TG
2564 futex_init_task(p);
2565
f9a3879a
GM
2566 /*
2567 * sigaltstack should be cleared when sharing the same VM
2568 */
2569 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2a742138 2570 sas_ss_reset(p);
f9a3879a 2571
1da177e4 2572 /*
6580807d
ON
2573 * Syscall tracing and stepping should be turned off in the
2574 * child regardless of CLONE_PTRACE.
1da177e4 2575 */
6580807d 2576 user_disable_single_step(p);
64c19ba2 2577 clear_task_syscall_work(p, SYSCALL_TRACE);
64eb35f7
GKB
2578#if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2579 clear_task_syscall_work(p, SYSCALL_EMU);
ed75e8d5 2580#endif
e02c9b0d 2581 clear_tsk_latency_tracing(p);
1da177e4 2582
1da177e4 2583 /* ok, now we should be set up.. */
18c830df
ON
2584 p->pid = pid_nr(pid);
2585 if (clone_flags & CLONE_THREAD) {
18c830df
ON
2586 p->group_leader = current->group_leader;
2587 p->tgid = current->tgid;
2588 } else {
18c830df
ON
2589 p->group_leader = p;
2590 p->tgid = p->pid;
2591 }
5f8aadd8 2592
9d823e8f
WF
2593 p->nr_dirtied = 0;
2594 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
83712358 2595 p->dirty_paused_when = 0;
9d823e8f 2596
bb8cbbfe 2597 p->pdeath_signal = 0;
158e1645 2598 p->task_works = NULL;
ca7752ca 2599 clear_posix_cputimers_work(p);
1da177e4 2600
d741bf41
PZ
2601#ifdef CONFIG_KRETPROBES
2602 p->kretprobe_instances.first = NULL;
2603#endif
54ecbe6f
MH
2604#ifdef CONFIG_RETHOOK
2605 p->rethooks.first = NULL;
2606#endif
d741bf41 2607
7e47682e
AS
2608 /*
2609 * Ensure that the cgroup subsystem policies allow the new process to be
7b7b8a2c 2610 * forked. It should be noted that the new process's css_set can be changed
7e47682e
AS
2611 * between here and cgroup_post_fork() if an organisation operation is in
2612 * progress.
2613 */
ef2c41cf 2614 retval = cgroup_can_fork(p, args);
7e47682e 2615 if (retval)
5a5cf5cb 2616 goto bad_fork_put_pidfd;
7e47682e 2617
b1e82065
PZ
2618 /*
2619 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2620 * the new task on the correct runqueue. All this *before* the task
2621 * becomes visible.
2622 *
2623 * This isn't part of ->can_fork() because while the re-cloning is
2624 * cgroup specific, it unconditionally needs to place the task on a
2625 * runqueue.
2626 */
2627 sched_cgroup_fork(p, args);
2628
7b558513
DH
2629 /*
2630 * From this point on we must avoid any synchronous user-space
2631 * communication until we take the tasklist-lock. In particular, we do
2632 * not want user-space to be able to predict the process start-time by
2633 * stalling fork(2) after we recorded the start_time but before it is
2634 * visible to the system.
2635 */
2636
2637 p->start_time = ktime_get_ns();
cf25e24d 2638 p->start_boottime = ktime_get_boottime_ns();
7b558513 2639
18c830df
ON
2640 /*
2641 * Make it visible to the rest of the system, but dont wake it up yet.
2642 * Need tasklist lock for parent etc handling!
2643 */
1da177e4
LT
2644 write_lock_irq(&tasklist_lock);
2645
1da177e4 2646 /* CLONE_PARENT re-uses the old parent */
2d5516cb 2647 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1da177e4 2648 p->real_parent = current->real_parent;
2d5516cb 2649 p->parent_exec_id = current->parent_exec_id;
b4e00444
EW
2650 if (clone_flags & CLONE_THREAD)
2651 p->exit_signal = -1;
2652 else
2653 p->exit_signal = current->group_leader->exit_signal;
2d5516cb 2654 } else {
1da177e4 2655 p->real_parent = current;
2d5516cb 2656 p->parent_exec_id = current->self_exec_id;
b4e00444 2657 p->exit_signal = args->exit_signal;
2d5516cb 2658 }
1da177e4 2659
d83a7cb3
JP
2660 klp_copy_process(p);
2661
85dd3f61
PZ
2662 sched_core_fork(p);
2663
3f17da69 2664 spin_lock(&current->sighand->siglock);
4a2c7a78 2665
79257534
DBO
2666 rv_task_fork(p);
2667
d7822b1e
MD
2668 rseq_fork(p, clone_flags);
2669
4ca1d3ee 2670 /* Don't start children in a dying pid namespace */
e8cfbc24 2671 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
3fd37226
KT
2672 retval = -ENOMEM;
2673 goto bad_fork_cancel_cgroup;
2674 }
4a2c7a78 2675
7673bf55
EB
2676 /* Let kill terminate clone/fork in the middle */
2677 if (fatal_signal_pending(current)) {
2678 retval = -EINTR;
2679 goto bad_fork_cancel_cgroup;
2680 }
2681
a1140cb2
KI
2682 /* No more failure paths after this point. */
2683
2684 /*
2685 * Copy seccomp details explicitly here, in case they were changed
2686 * before holding sighand lock.
2687 */
2688 copy_seccomp(p);
2689
2c470475 2690 init_task_pid_links(p);
73b9ebfe 2691 if (likely(p->pid)) {
4b9d33e6 2692 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
73b9ebfe 2693
81907739 2694 init_task_pid(p, PIDTYPE_PID, pid);
73b9ebfe 2695 if (thread_group_leader(p)) {
6883f81a 2696 init_task_pid(p, PIDTYPE_TGID, pid);
81907739
ON
2697 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2698 init_task_pid(p, PIDTYPE_SID, task_session(current));
2699
1c4042c2 2700 if (is_child_reaper(pid)) {
17cf22c3 2701 ns_of_pid(pid)->child_reaper = p;
1c4042c2
EB
2702 p->signal->flags |= SIGNAL_UNKILLABLE;
2703 }
c3ad2c3b 2704 p->signal->shared_pending.signal = delayed.signal;
9c9f4ded 2705 p->signal->tty = tty_kref_get(current->signal->tty);
749860ce
PT
2706 /*
2707 * Inherit has_child_subreaper flag under the same
2708 * tasklist_lock with adding child to the process tree
2709 * for propagate_has_child_subreaper optimization.
2710 */
2711 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2712 p->real_parent->signal->is_child_subreaper;
9cd80bbb 2713 list_add_tail(&p->sibling, &p->real_parent->children);
5e85d4ab 2714 list_add_tail_rcu(&p->tasks, &init_task.tasks);
6883f81a 2715 attach_pid(p, PIDTYPE_TGID);
81907739
ON
2716 attach_pid(p, PIDTYPE_PGID);
2717 attach_pid(p, PIDTYPE_SID);
909ea964 2718 __this_cpu_inc(process_counts);
80628ca0
ON
2719 } else {
2720 current->signal->nr_threads++;
d80f7d7b 2721 current->signal->quick_threads++;
80628ca0 2722 atomic_inc(&current->signal->live);
60d4de3f 2723 refcount_inc(&current->signal->sigcnt);
924de3b8 2724 task_join_group_stop(p);
0c740d0a
ON
2725 list_add_tail_rcu(&p->thread_node,
2726 &p->signal->thread_head);
73b9ebfe 2727 }
81907739 2728 attach_pid(p, PIDTYPE_PID);
73b9ebfe 2729 nr_threads++;
1da177e4 2730 }
1da177e4 2731 total_forks++;
c3ad2c3b 2732 hlist_del_init(&delayed.node);
3f17da69 2733 spin_unlock(&current->sighand->siglock);
4af4206b 2734 syscall_tracepoint_update(p);
1da177e4 2735 write_unlock_irq(&tasklist_lock);
4af4206b 2736
ddc204b5
WL
2737 if (pidfile)
2738 fd_install(pidfd, pidfile);
2739
c13cf856 2740 proc_fork_connector(p);
b1e82065 2741 sched_post_fork(p);
ef2c41cf 2742 cgroup_post_fork(p, args);
cdd6c482 2743 perf_event_fork(p);
43d2b113
KH
2744
2745 trace_task_newtask(p, clone_flags);
3ab67966 2746 uprobe_copy_process(p, clone_flags);
fd593511 2747 user_events_fork(p, clone_flags);
43d2b113 2748
67197a4f
SB
2749 copy_oom_score_adj(clone_flags, p);
2750
1da177e4
LT
2751 return p;
2752
7e47682e 2753bad_fork_cancel_cgroup:
85dd3f61 2754 sched_core_free(p);
3fd37226
KT
2755 spin_unlock(&current->sighand->siglock);
2756 write_unlock_irq(&tasklist_lock);
ef2c41cf 2757 cgroup_cancel_fork(p, args);
b3e58382 2758bad_fork_put_pidfd:
6fd2fe49
AV
2759 if (clone_flags & CLONE_PIDFD) {
2760 fput(pidfile);
2761 put_unused_fd(pidfd);
2762 }
425fb2b4
PE
2763bad_fork_free_pid:
2764 if (pid != &init_struct_pid)
2765 free_pid(pid);
0740aa5f
JS
2766bad_fork_cleanup_thread:
2767 exit_thread(p);
fd0928df 2768bad_fork_cleanup_io:
b69f2292
LR
2769 if (p->io_context)
2770 exit_io_context(p);
ab516013 2771bad_fork_cleanup_namespaces:
444f378b 2772 exit_task_namespaces(p);
1da177e4 2773bad_fork_cleanup_mm:
c3f3ce04
AA
2774 if (p->mm) {
2775 mm_clear_owner(p->mm, p);
1da177e4 2776 mmput(p->mm);
c3f3ce04 2777 }
1da177e4 2778bad_fork_cleanup_signal:
4ab6c083 2779 if (!(clone_flags & CLONE_THREAD))
1c5354de 2780 free_signal_struct(p->signal);
1da177e4 2781bad_fork_cleanup_sighand:
a7e5328a 2782 __cleanup_sighand(p->sighand);
1da177e4
LT
2783bad_fork_cleanup_fs:
2784 exit_fs(p); /* blocking */
2785bad_fork_cleanup_files:
2786 exit_files(p); /* blocking */
2787bad_fork_cleanup_semundo:
2788 exit_sem(p);
e4e55b47
TH
2789bad_fork_cleanup_security:
2790 security_task_free(p);
1da177e4
LT
2791bad_fork_cleanup_audit:
2792 audit_free(p);
6c72e350 2793bad_fork_cleanup_perf:
cdd6c482 2794 perf_event_free_task(p);
6c72e350 2795bad_fork_cleanup_policy:
b09be676 2796 lockdep_free_task(p);
1da177e4 2797#ifdef CONFIG_NUMA
f0be3d32 2798 mpol_put(p->mempolicy);
1da177e4 2799#endif
ff8288ff 2800bad_fork_cleanup_delayacct:
35df17c5 2801 delayacct_tsk_free(p);
1da177e4 2802bad_fork_cleanup_count:
21d1c5e3 2803 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
e0e81739 2804 exit_creds(p);
1da177e4 2805bad_fork_free:
2f064a59 2806 WRITE_ONCE(p->__state, TASK_DEAD);
1a03d3f1 2807 exit_task_stack_account(p);
68f24b08 2808 put_task_stack(p);
c3f3ce04 2809 delayed_free_task(p);
fe7d37d1 2810fork_out:
c3ad2c3b
EB
2811 spin_lock_irq(&current->sighand->siglock);
2812 hlist_del_init(&delayed.node);
2813 spin_unlock_irq(&current->sighand->siglock);
fe7d37d1 2814 return ERR_PTR(retval);
1da177e4
LT
2815}
2816
2c470475 2817static inline void init_idle_pids(struct task_struct *idle)
f106eee1
ON
2818{
2819 enum pid_type type;
2820
2821 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2c470475
EB
2822 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2823 init_task_pid(idle, type, &init_struct_pid);
f106eee1
ON
2824 }
2825}
2826
36cb0e1c
EB
2827static int idle_dummy(void *dummy)
2828{
2829 /* This function is never called */
2830 return 0;
2831}
2832
f1a0a376 2833struct task_struct * __init fork_idle(int cpu)
1da177e4 2834{
36c8b586 2835 struct task_struct *task;
7f192e3c 2836 struct kernel_clone_args args = {
343f4c49 2837 .flags = CLONE_VM,
5bd2e97c
EB
2838 .fn = &idle_dummy,
2839 .fn_arg = NULL,
343f4c49 2840 .kthread = 1,
36cb0e1c 2841 .idle = 1,
7f192e3c
CB
2842 };
2843
2844 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
f106eee1 2845 if (!IS_ERR(task)) {
2c470475 2846 init_idle_pids(task);
753ca4f3 2847 init_idle(task, cpu);
f106eee1 2848 }
73b9ebfe 2849
1da177e4
LT
2850 return task;
2851}
2852
cc440e87
JA
2853/*
2854 * This is like kernel_clone(), but shaved down and tailored to just
2855 * creating io_uring workers. It returns a created task, or an error pointer.
2856 * The returned task is inactive, and the caller must fire it up through
2857 * wake_up_new_task(p). All signals are blocked in the created task.
2858 */
2859struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2860{
2861 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2862 CLONE_IO;
2863 struct kernel_clone_args args = {
2864 .flags = ((lower_32_bits(flags) | CLONE_VM |
2865 CLONE_UNTRACED) & ~CSIGNAL),
2866 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
5bd2e97c
EB
2867 .fn = fn,
2868 .fn_arg = arg,
cc440e87 2869 .io_thread = 1,
54e6842d 2870 .user_worker = 1,
cc440e87 2871 };
cc440e87 2872
b16b3855 2873 return copy_process(NULL, 0, node, &args);
cc440e87
JA
2874}
2875
1da177e4
LT
2876/*
2877 * Ok, this is the main fork-routine.
2878 *
2879 * It copies the process, and if successful kick-starts
2880 * it and waits for it to finish using the VM if required.
a0eb9abd
ES
2881 *
2882 * args->exit_signal is expected to be checked for sanity by the caller.
1da177e4 2883 */
cad6967a 2884pid_t kernel_clone(struct kernel_clone_args *args)
1da177e4 2885{
7f192e3c 2886 u64 clone_flags = args->flags;
9f5325aa
MPS
2887 struct completion vfork;
2888 struct pid *pid;
1da177e4
LT
2889 struct task_struct *p;
2890 int trace = 0;
cad6967a 2891 pid_t nr;
1da177e4 2892
3af8588c
CB
2893 /*
2894 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2895 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2896 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2897 * field in struct clone_args and it still doesn't make sense to have
2898 * them both point at the same memory location. Performing this check
2899 * here has the advantage that we don't need to have a separate helper
2900 * to check for legacy clone().
2901 */
2902 if ((args->flags & CLONE_PIDFD) &&
2903 (args->flags & CLONE_PARENT_SETTID) &&
2904 (args->pidfd == args->parent_tid))
2905 return -EINVAL;
2906
09a05394 2907 /*
4b9d33e6
TH
2908 * Determine whether and which event to report to ptracer. When
2909 * called from kernel_thread or CLONE_UNTRACED is explicitly
2910 * requested, no event is reported; otherwise, report if the event
2911 * for the type of forking is enabled.
09a05394 2912 */
e80d6661 2913 if (!(clone_flags & CLONE_UNTRACED)) {
4b9d33e6
TH
2914 if (clone_flags & CLONE_VFORK)
2915 trace = PTRACE_EVENT_VFORK;
7f192e3c 2916 else if (args->exit_signal != SIGCHLD)
4b9d33e6
TH
2917 trace = PTRACE_EVENT_CLONE;
2918 else
2919 trace = PTRACE_EVENT_FORK;
2920
2921 if (likely(!ptrace_event_enabled(current, trace)))
2922 trace = 0;
2923 }
1da177e4 2924
7f192e3c 2925 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
38addce8 2926 add_latent_entropy();
9f5325aa
MPS
2927
2928 if (IS_ERR(p))
2929 return PTR_ERR(p);
2930
1da177e4
LT
2931 /*
2932 * Do this prior waking up the new thread - the thread pointer
2933 * might get invalid after that point, if the thread exits quickly.
2934 */
9f5325aa 2935 trace_sched_process_fork(current, p);
0a16b607 2936
9f5325aa
MPS
2937 pid = get_task_pid(p, PIDTYPE_PID);
2938 nr = pid_vnr(pid);
30e49c26 2939
9f5325aa 2940 if (clone_flags & CLONE_PARENT_SETTID)
7f192e3c 2941 put_user(nr, args->parent_tid);
a6f5e063 2942
9f5325aa
MPS
2943 if (clone_flags & CLONE_VFORK) {
2944 p->vfork_done = &vfork;
2945 init_completion(&vfork);
2946 get_task_struct(p);
2947 }
1da177e4 2948
61dd3f24 2949 if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
bd74fdae
YZ
2950 /* lock the task to synchronize with memcg migration */
2951 task_lock(p);
2952 lru_gen_add_mm(p->mm);
2953 task_unlock(p);
2954 }
2955
9f5325aa 2956 wake_up_new_task(p);
09a05394 2957
9f5325aa
MPS
2958 /* forking complete and child started to run, tell ptracer */
2959 if (unlikely(trace))
2960 ptrace_event_pid(trace, pid);
4e52365f 2961
9f5325aa
MPS
2962 if (clone_flags & CLONE_VFORK) {
2963 if (!wait_for_vfork_done(p, &vfork))
2964 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1da177e4 2965 }
9f5325aa
MPS
2966
2967 put_pid(pid);
92476d7f 2968 return nr;
1da177e4
LT
2969}
2970
2aa3a7f8
AV
2971/*
2972 * Create a kernel thread.
2973 */
cf587db2
MC
2974pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2975 unsigned long flags)
2aa3a7f8 2976{
7f192e3c 2977 struct kernel_clone_args args = {
3f2c788a
CB
2978 .flags = ((lower_32_bits(flags) | CLONE_VM |
2979 CLONE_UNTRACED) & ~CSIGNAL),
2980 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
5bd2e97c
EB
2981 .fn = fn,
2982 .fn_arg = arg,
cf587db2 2983 .name = name,
343f4c49
EB
2984 .kthread = 1,
2985 };
2986
2987 return kernel_clone(&args);
2988}
2989
2990/*
2991 * Create a user mode thread.
2992 */
2993pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2aa3a7f8 2994{
7f192e3c 2995 struct kernel_clone_args args = {
3f2c788a
CB
2996 .flags = ((lower_32_bits(flags) | CLONE_VM |
2997 CLONE_UNTRACED) & ~CSIGNAL),
2998 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
5bd2e97c
EB
2999 .fn = fn,
3000 .fn_arg = arg,
7f192e3c
CB
3001 };
3002
cad6967a 3003 return kernel_clone(&args);
2aa3a7f8 3004}
2aa3a7f8 3005
d2125043
AV
3006#ifdef __ARCH_WANT_SYS_FORK
3007SYSCALL_DEFINE0(fork)
3008{
3009#ifdef CONFIG_MMU
7f192e3c
CB
3010 struct kernel_clone_args args = {
3011 .exit_signal = SIGCHLD,
3012 };
3013
cad6967a 3014 return kernel_clone(&args);
d2125043
AV
3015#else
3016 /* can not support in nommu mode */
5d59e182 3017 return -EINVAL;
d2125043
AV
3018#endif
3019}
3020#endif
3021
3022#ifdef __ARCH_WANT_SYS_VFORK
3023SYSCALL_DEFINE0(vfork)
3024{
7f192e3c
CB
3025 struct kernel_clone_args args = {
3026 .flags = CLONE_VFORK | CLONE_VM,
3027 .exit_signal = SIGCHLD,
3028 };
3029
cad6967a 3030 return kernel_clone(&args);
d2125043
AV
3031}
3032#endif
3033
3034#ifdef __ARCH_WANT_SYS_CLONE
3035#ifdef CONFIG_CLONE_BACKWARDS
3036SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3037 int __user *, parent_tidptr,
3033f14a 3038 unsigned long, tls,
d2125043
AV
3039 int __user *, child_tidptr)
3040#elif defined(CONFIG_CLONE_BACKWARDS2)
3041SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
3042 int __user *, parent_tidptr,
3043 int __user *, child_tidptr,
3033f14a 3044 unsigned long, tls)
dfa9771a
MS
3045#elif defined(CONFIG_CLONE_BACKWARDS3)
3046SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
3047 int, stack_size,
3048 int __user *, parent_tidptr,
3049 int __user *, child_tidptr,
3033f14a 3050 unsigned long, tls)
d2125043
AV
3051#else
3052SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3053 int __user *, parent_tidptr,
3054 int __user *, child_tidptr,
3033f14a 3055 unsigned long, tls)
d2125043
AV
3056#endif
3057{
7f192e3c 3058 struct kernel_clone_args args = {
3f2c788a 3059 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
7f192e3c
CB
3060 .pidfd = parent_tidptr,
3061 .child_tid = child_tidptr,
3062 .parent_tid = parent_tidptr,
3f2c788a 3063 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
7f192e3c
CB
3064 .stack = newsp,
3065 .tls = tls,
3066 };
3067
cad6967a 3068 return kernel_clone(&args);
7f192e3c 3069}
d68dbb0c 3070#endif
7f192e3c 3071
d68dbb0c 3072#ifdef __ARCH_WANT_SYS_CLONE3
dd499f7a 3073
7f192e3c
CB
3074noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
3075 struct clone_args __user *uargs,
f14c234b 3076 size_t usize)
7f192e3c 3077{
f14c234b 3078 int err;
7f192e3c 3079 struct clone_args args;
49cb2fc4 3080 pid_t *kset_tid = kargs->set_tid;
7f192e3c 3081
a966dcfe
ES
3082 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
3083 CLONE_ARGS_SIZE_VER0);
3084 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
3085 CLONE_ARGS_SIZE_VER1);
3086 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
3087 CLONE_ARGS_SIZE_VER2);
3088 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
3089
f14c234b 3090 if (unlikely(usize > PAGE_SIZE))
7f192e3c 3091 return -E2BIG;
f14c234b 3092 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
7f192e3c
CB
3093 return -EINVAL;
3094
f14c234b
AS
3095 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
3096 if (err)
3097 return err;
7f192e3c 3098
49cb2fc4
AR
3099 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
3100 return -EINVAL;
3101
3102 if (unlikely(!args.set_tid && args.set_tid_size > 0))
3103 return -EINVAL;
3104
3105 if (unlikely(args.set_tid && args.set_tid_size == 0))
3106 return -EINVAL;
3107
a0eb9abd
ES
3108 /*
3109 * Verify that higher 32bits of exit_signal are unset and that
3110 * it is a valid signal
3111 */
3112 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
3113 !valid_signal(args.exit_signal)))
3114 return -EINVAL;
3115
62173872
ES
3116 if ((args.flags & CLONE_INTO_CGROUP) &&
3117 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
ef2c41cf
CB
3118 return -EINVAL;
3119
7f192e3c
CB
3120 *kargs = (struct kernel_clone_args){
3121 .flags = args.flags,
3122 .pidfd = u64_to_user_ptr(args.pidfd),
3123 .child_tid = u64_to_user_ptr(args.child_tid),
3124 .parent_tid = u64_to_user_ptr(args.parent_tid),
3125 .exit_signal = args.exit_signal,
3126 .stack = args.stack,
3127 .stack_size = args.stack_size,
3128 .tls = args.tls,
49cb2fc4 3129 .set_tid_size = args.set_tid_size,
ef2c41cf 3130 .cgroup = args.cgroup,
7f192e3c
CB
3131 };
3132
49cb2fc4
AR
3133 if (args.set_tid &&
3134 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3135 (kargs->set_tid_size * sizeof(pid_t))))
3136 return -EFAULT;
3137
3138 kargs->set_tid = kset_tid;
3139
7f192e3c
CB
3140 return 0;
3141}
3142
fa729c4d
CB
3143/**
3144 * clone3_stack_valid - check and prepare stack
3145 * @kargs: kernel clone args
3146 *
3147 * Verify that the stack arguments userspace gave us are sane.
3148 * In addition, set the stack direction for userspace since it's easy for us to
3149 * determine.
3150 */
3151static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3152{
3153 if (kargs->stack == 0) {
3154 if (kargs->stack_size > 0)
3155 return false;
3156 } else {
3157 if (kargs->stack_size == 0)
3158 return false;
3159
3160 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3161 return false;
3162
cf8e8658 3163#if !defined(CONFIG_STACK_GROWSUP)
fa729c4d
CB
3164 kargs->stack += kargs->stack_size;
3165#endif
3166 }
3167
3168 return true;
3169}
3170
3171static bool clone3_args_valid(struct kernel_clone_args *kargs)
7f192e3c 3172{
b612e5df 3173 /* Verify that no unknown flags are passed along. */
ef2c41cf
CB
3174 if (kargs->flags &
3175 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
7f192e3c
CB
3176 return false;
3177
3178 /*
a8ca6b13
XC
3179 * - make the CLONE_DETACHED bit reusable for clone3
3180 * - make the CSIGNAL bits reusable for clone3
7f192e3c 3181 */
a402f1e3 3182 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
7f192e3c
CB
3183 return false;
3184
b612e5df
CB
3185 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3186 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3187 return false;
3188
7f192e3c
CB
3189 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3190 kargs->exit_signal)
3191 return false;
3192
fa729c4d
CB
3193 if (!clone3_stack_valid(kargs))
3194 return false;
3195
7f192e3c
CB
3196 return true;
3197}
3198
501bd016 3199/**
ff0712ea 3200 * sys_clone3 - create a new process with specific properties
501bd016
CB
3201 * @uargs: argument structure
3202 * @size: size of @uargs
3203 *
3204 * clone3() is the extensible successor to clone()/clone2().
3205 * It takes a struct as argument that is versioned by its size.
3206 *
3207 * Return: On success, a positive PID for the child process.
3208 * On error, a negative errno number.
3209 */
7f192e3c
CB
3210SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3211{
3212 int err;
3213
3214 struct kernel_clone_args kargs;
49cb2fc4
AR
3215 pid_t set_tid[MAX_PID_NS_LEVEL];
3216
3217 kargs.set_tid = set_tid;
7f192e3c
CB
3218
3219 err = copy_clone_args_from_user(&kargs, uargs, size);
3220 if (err)
3221 return err;
3222
3223 if (!clone3_args_valid(&kargs))
3224 return -EINVAL;
3225
cad6967a 3226 return kernel_clone(&kargs);
d2125043
AV
3227}
3228#endif
3229
0f1b92cb
ON
3230void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3231{
3232 struct task_struct *leader, *parent, *child;
3233 int res;
3234
3235 read_lock(&tasklist_lock);
3236 leader = top = top->group_leader;
3237down:
3238 for_each_thread(leader, parent) {
3239 list_for_each_entry(child, &parent->children, sibling) {
3240 res = visitor(child, data);
3241 if (res) {
3242 if (res < 0)
3243 goto out;
3244 leader = child;
3245 goto down;
3246 }
3247up:
3248 ;
3249 }
3250 }
3251
3252 if (leader != top) {
3253 child = leader;
3254 parent = child->real_parent;
3255 leader = parent->group_leader;
3256 goto up;
3257 }
3258out:
3259 read_unlock(&tasklist_lock);
3260}
3261
5fd63b30
RT
3262#ifndef ARCH_MIN_MMSTRUCT_ALIGN
3263#define ARCH_MIN_MMSTRUCT_ALIGN 0
3264#endif
3265
51cc5068 3266static void sighand_ctor(void *data)
aa1757f9
ON
3267{
3268 struct sighand_struct *sighand = data;
3269
a35afb83 3270 spin_lock_init(&sighand->siglock);
b8fceee1 3271 init_waitqueue_head(&sighand->signalfd_wqh);
aa1757f9
ON
3272}
3273
af806027 3274void __init mm_cache_init(void)
1da177e4 3275{
c1a2f7f0
RR
3276 unsigned int mm_size;
3277
af806027
PZ
3278 /*
3279 * The mm_cpumask is located at the end of mm_struct, and is
3280 * dynamically sized based on the maximum CPU number this system
3281 * can have, taking hotplug into account (nr_cpu_ids).
3282 */
af7f588d 3283 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
af806027
PZ
3284
3285 mm_cachep = kmem_cache_create_usercopy("mm_struct",
3286 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3287 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3288 offsetof(struct mm_struct, saved_auxv),
3289 sizeof_field(struct mm_struct, saved_auxv),
3290 NULL);
3291}
3292
3293void __init proc_caches_init(void)
3294{
1da177e4
LT
3295 sighand_cachep = kmem_cache_create("sighand_cache",
3296 sizeof(struct sighand_struct), 0,
5f0d5a3a 3297 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
75f296d9 3298 SLAB_ACCOUNT, sighand_ctor);
1da177e4
LT
3299 signal_cachep = kmem_cache_create("signal_cache",
3300 sizeof(struct signal_struct), 0,
75f296d9 3301 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 3302 NULL);
20c2df83 3303 files_cachep = kmem_cache_create("files_cache",
1da177e4 3304 sizeof(struct files_struct), 0,
75f296d9 3305 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 3306 NULL);
20c2df83 3307 fs_cachep = kmem_cache_create("fs_cache",
1da177e4 3308 sizeof(struct fs_struct), 0,
75f296d9 3309 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 3310 NULL);
c1a2f7f0 3311
5d097056 3312 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
c7f8f31c
SB
3313#ifdef CONFIG_PER_VMA_LOCK
3314 vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3315#endif
8feae131 3316 mmap_init();
66577193 3317 nsproxy_cache_init();
1da177e4 3318}
cf2e340f 3319
cf2e340f 3320/*
9bfb23fc 3321 * Check constraints on flags passed to the unshare system call.
cf2e340f 3322 */
9bfb23fc 3323static int check_unshare_flags(unsigned long unshare_flags)
cf2e340f 3324{
9bfb23fc
ON
3325 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3326 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
50804fe3 3327 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
769071ac
AV
3328 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3329 CLONE_NEWTIME))
9bfb23fc 3330 return -EINVAL;
cf2e340f 3331 /*
12c641ab
EB
3332 * Not implemented, but pretend it works if there is nothing
3333 * to unshare. Note that unsharing the address space or the
3334 * signal handlers also need to unshare the signal queues (aka
3335 * CLONE_THREAD).
cf2e340f 3336 */
9bfb23fc 3337 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
12c641ab
EB
3338 if (!thread_group_empty(current))
3339 return -EINVAL;
3340 }
3341 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
d036bda7 3342 if (refcount_read(&current->sighand->count) > 1)
12c641ab
EB
3343 return -EINVAL;
3344 }
3345 if (unshare_flags & CLONE_VM) {
3346 if (!current_is_single_threaded())
9bfb23fc
ON
3347 return -EINVAL;
3348 }
cf2e340f
JD
3349
3350 return 0;
3351}
3352
3353/*
99d1419d 3354 * Unshare the filesystem structure if it is being shared
cf2e340f
JD
3355 */
3356static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3357{
3358 struct fs_struct *fs = current->fs;
3359
498052bb
AV
3360 if (!(unshare_flags & CLONE_FS) || !fs)
3361 return 0;
3362
3363 /* don't need lock here; in the worst case we'll do useless copy */
3364 if (fs->users == 1)
3365 return 0;
3366
3367 *new_fsp = copy_fs_struct(fs);
3368 if (!*new_fsp)
3369 return -ENOMEM;
cf2e340f
JD
3370
3371 return 0;
3372}
3373
cf2e340f 3374/*
a016f338 3375 * Unshare file descriptor table if it is being shared
cf2e340f 3376 */
60997c3d
CB
3377int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3378 struct files_struct **new_fdp)
cf2e340f
JD
3379{
3380 struct files_struct *fd = current->files;
a016f338 3381 int error = 0;
cf2e340f
JD
3382
3383 if ((unshare_flags & CLONE_FILES) &&
a016f338 3384 (fd && atomic_read(&fd->count) > 1)) {
60997c3d 3385 *new_fdp = dup_fd(fd, max_fds, &error);
a016f338
JD
3386 if (!*new_fdp)
3387 return error;
3388 }
cf2e340f
JD
3389
3390 return 0;
3391}
3392
cf2e340f
JD
3393/*
3394 * unshare allows a process to 'unshare' part of the process
3395 * context which was originally shared using clone. copy_*
cad6967a 3396 * functions used by kernel_clone() cannot be used here directly
cf2e340f
JD
3397 * because they modify an inactive task_struct that is being
3398 * constructed. Here we are modifying the current, active,
3399 * task_struct.
3400 */
9b32105e 3401int ksys_unshare(unsigned long unshare_flags)
cf2e340f 3402{
cf2e340f 3403 struct fs_struct *fs, *new_fs = NULL;
ba1f70dd 3404 struct files_struct *new_fd = NULL;
b2e0d987 3405 struct cred *new_cred = NULL;
cf7b708c 3406 struct nsproxy *new_nsproxy = NULL;
9edff4ab 3407 int do_sysvsem = 0;
9bfb23fc 3408 int err;
cf2e340f 3409
b2e0d987 3410 /*
faf00da5
EB
3411 * If unsharing a user namespace must also unshare the thread group
3412 * and unshare the filesystem root and working directories.
b2e0d987
EB
3413 */
3414 if (unshare_flags & CLONE_NEWUSER)
e66eded8 3415 unshare_flags |= CLONE_THREAD | CLONE_FS;
50804fe3
EB
3416 /*
3417 * If unsharing vm, must also unshare signal handlers.
3418 */
3419 if (unshare_flags & CLONE_VM)
3420 unshare_flags |= CLONE_SIGHAND;
12c641ab
EB
3421 /*
3422 * If unsharing a signal handlers, must also unshare the signal queues.
3423 */
3424 if (unshare_flags & CLONE_SIGHAND)
3425 unshare_flags |= CLONE_THREAD;
9bfb23fc
ON
3426 /*
3427 * If unsharing namespace, must also unshare filesystem information.
3428 */
3429 if (unshare_flags & CLONE_NEWNS)
3430 unshare_flags |= CLONE_FS;
50804fe3
EB
3431
3432 err = check_unshare_flags(unshare_flags);
3433 if (err)
3434 goto bad_unshare_out;
6013f67f
MS
3435 /*
3436 * CLONE_NEWIPC must also detach from the undolist: after switching
3437 * to a new ipc namespace, the semaphore arrays from the old
3438 * namespace are unreachable.
3439 */
3440 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
9edff4ab 3441 do_sysvsem = 1;
fb0a685c
DRO
3442 err = unshare_fs(unshare_flags, &new_fs);
3443 if (err)
9bfb23fc 3444 goto bad_unshare_out;
60997c3d 3445 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
fb0a685c 3446 if (err)
9bfb23fc 3447 goto bad_unshare_cleanup_fs;
b2e0d987 3448 err = unshare_userns(unshare_flags, &new_cred);
fb0a685c 3449 if (err)
9edff4ab 3450 goto bad_unshare_cleanup_fd;
b2e0d987
EB
3451 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3452 new_cred, new_fs);
3453 if (err)
3454 goto bad_unshare_cleanup_cred;
c0b2fc31 3455
905ae01c
AG
3456 if (new_cred) {
3457 err = set_cred_ucounts(new_cred);
3458 if (err)
3459 goto bad_unshare_cleanup_cred;
3460 }
3461
b2e0d987 3462 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
9edff4ab
MS
3463 if (do_sysvsem) {
3464 /*
3465 * CLONE_SYSVSEM is equivalent to sys_exit().
3466 */
3467 exit_sem(current);
3468 }
ab602f79
JM
3469 if (unshare_flags & CLONE_NEWIPC) {
3470 /* Orphan segments in old ns (see sem above). */
3471 exit_shm(current);
3472 shm_init_task(current);
3473 }
ab516013 3474
6f977e6b 3475 if (new_nsproxy)
cf7b708c 3476 switch_task_namespaces(current, new_nsproxy);
cf2e340f 3477
cf7b708c
PE
3478 task_lock(current);
3479
cf2e340f
JD
3480 if (new_fs) {
3481 fs = current->fs;
2a4419b5 3482 spin_lock(&fs->lock);
cf2e340f 3483 current->fs = new_fs;
498052bb
AV
3484 if (--fs->users)
3485 new_fs = NULL;
3486 else
3487 new_fs = fs;
2a4419b5 3488 spin_unlock(&fs->lock);
cf2e340f
JD
3489 }
3490
ba1f70dd
RX
3491 if (new_fd)
3492 swap(current->files, new_fd);
cf2e340f
JD
3493
3494 task_unlock(current);
b2e0d987
EB
3495
3496 if (new_cred) {
3497 /* Install the new user namespace */
3498 commit_creds(new_cred);
3499 new_cred = NULL;
3500 }
cf2e340f
JD
3501 }
3502
e4222673
HB
3503 perf_event_namespaces(current);
3504
b2e0d987
EB
3505bad_unshare_cleanup_cred:
3506 if (new_cred)
3507 put_cred(new_cred);
cf2e340f
JD
3508bad_unshare_cleanup_fd:
3509 if (new_fd)
3510 put_files_struct(new_fd);
3511
cf2e340f
JD
3512bad_unshare_cleanup_fs:
3513 if (new_fs)
498052bb 3514 free_fs_struct(new_fs);
cf2e340f 3515
cf2e340f
JD
3516bad_unshare_out:
3517 return err;
3518}
3b125388 3519
9b32105e
DB
3520SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3521{
3522 return ksys_unshare(unshare_flags);
3523}
3524
3b125388
AV
3525/*
3526 * Helper to unshare the files of the current task.
3527 * We don't want to expose copy_files internals to
3528 * the exec layer of the kernel.
3529 */
3530
1f702603 3531int unshare_files(void)
3b125388
AV
3532{
3533 struct task_struct *task = current;
1f702603 3534 struct files_struct *old, *copy = NULL;
3b125388
AV
3535 int error;
3536
60997c3d 3537 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
1f702603 3538 if (error || !copy)
3b125388 3539 return error;
1f702603
EB
3540
3541 old = task->files;
3b125388
AV
3542 task_lock(task);
3543 task->files = copy;
3544 task_unlock(task);
1f702603 3545 put_files_struct(old);
3b125388
AV
3546 return 0;
3547}
16db3d3f
HS
3548
3549int sysctl_max_threads(struct ctl_table *table, int write,
b0daa2c7 3550 void *buffer, size_t *lenp, loff_t *ppos)
16db3d3f
HS
3551{
3552 struct ctl_table t;
3553 int ret;
3554 int threads = max_threads;
b0f53dbc 3555 int min = 1;
16db3d3f
HS
3556 int max = MAX_THREADS;
3557
3558 t = *table;
3559 t.data = &threads;
3560 t.extra1 = &min;
3561 t.extra2 = &max;
3562
3563 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3564 if (ret || !write)
3565 return ret;
3566
b0f53dbc 3567 max_threads = threads;
16db3d3f
HS
3568
3569 return 0;
3570}