tracepoints: Migrate to use SYSCALL_WORK flag
[linux-block.git] / kernel / fork.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8/*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
b3e58382 15#include <linux/anon_inodes.h>
1da177e4 16#include <linux/slab.h>
4eb5aaa3 17#include <linux/sched/autogroup.h>
6e84f315 18#include <linux/sched/mm.h>
f7ccbae4 19#include <linux/sched/coredump.h>
8703e8a4 20#include <linux/sched/user.h>
6a3827d7 21#include <linux/sched/numa_balancing.h>
03441a34 22#include <linux/sched/stat.h>
29930025 23#include <linux/sched/task.h>
68db0cf1 24#include <linux/sched/task_stack.h>
32ef5517 25#include <linux/sched/cputime.h>
b3e58382 26#include <linux/seq_file.h>
037741a6 27#include <linux/rtmutex.h>
1da177e4
LT
28#include <linux/init.h>
29#include <linux/unistd.h>
1da177e4
LT
30#include <linux/module.h>
31#include <linux/vmalloc.h>
32#include <linux/completion.h>
1da177e4
LT
33#include <linux/personality.h>
34#include <linux/mempolicy.h>
35#include <linux/sem.h>
36#include <linux/file.h>
9f3acc31 37#include <linux/fdtable.h>
da9cbc87 38#include <linux/iocontext.h>
1da177e4
LT
39#include <linux/key.h>
40#include <linux/binfmts.h>
41#include <linux/mman.h>
cddb8a5c 42#include <linux/mmu_notifier.h>
1da177e4 43#include <linux/fs.h>
615d6e87
DB
44#include <linux/mm.h>
45#include <linux/vmacache.h>
ab516013 46#include <linux/nsproxy.h>
c59ede7b 47#include <linux/capability.h>
1da177e4 48#include <linux/cpu.h>
b4f48b63 49#include <linux/cgroup.h>
1da177e4 50#include <linux/security.h>
a1e78772 51#include <linux/hugetlb.h>
e2cfabdf 52#include <linux/seccomp.h>
1da177e4
LT
53#include <linux/swap.h>
54#include <linux/syscalls.h>
55#include <linux/jiffies.h>
56#include <linux/futex.h>
8141c7f3 57#include <linux/compat.h>
207205a2 58#include <linux/kthread.h>
7c3ab738 59#include <linux/task_io_accounting_ops.h>
ab2af1f5 60#include <linux/rcupdate.h>
1da177e4
LT
61#include <linux/ptrace.h>
62#include <linux/mount.h>
63#include <linux/audit.h>
78fb7466 64#include <linux/memcontrol.h>
f201ae23 65#include <linux/ftrace.h>
5e2bf014 66#include <linux/proc_fs.h>
1da177e4
LT
67#include <linux/profile.h>
68#include <linux/rmap.h>
f8af4da3 69#include <linux/ksm.h>
1da177e4 70#include <linux/acct.h>
893e26e6 71#include <linux/userfaultfd_k.h>
8f0ab514 72#include <linux/tsacct_kern.h>
9f46080c 73#include <linux/cn_proc.h>
ba96a0c8 74#include <linux/freezer.h>
ca74e92b 75#include <linux/delayacct.h>
ad4ecbcb 76#include <linux/taskstats_kern.h>
0a425405 77#include <linux/random.h>
522ed776 78#include <linux/tty.h>
fd0928df 79#include <linux/blkdev.h>
5ad4e53b 80#include <linux/fs_struct.h>
7c9f8861 81#include <linux/magic.h>
cdd6c482 82#include <linux/perf_event.h>
42c4ab41 83#include <linux/posix-timers.h>
8e7cac79 84#include <linux/user-return-notifier.h>
3d5992d2 85#include <linux/oom.h>
ba76149f 86#include <linux/khugepaged.h>
d80e731e 87#include <linux/signalfd.h>
0326f5a9 88#include <linux/uprobes.h>
a27bb332 89#include <linux/aio.h>
52f5684c 90#include <linux/compiler.h>
16db3d3f 91#include <linux/sysctl.h>
5c9a8750 92#include <linux/kcov.h>
d83a7cb3 93#include <linux/livepatch.h>
48ac3c18 94#include <linux/thread_info.h>
afaef01c 95#include <linux/stackleak.h>
eafb149e 96#include <linux/kasan.h>
d08b9f0c 97#include <linux/scs.h>
0f212204 98#include <linux/io_uring.h>
1da177e4 99
1da177e4 100#include <asm/pgalloc.h>
7c0f6ba6 101#include <linux/uaccess.h>
1da177e4
LT
102#include <asm/mmu_context.h>
103#include <asm/cacheflush.h>
104#include <asm/tlbflush.h>
105
ad8d75ff
SR
106#include <trace/events/sched.h>
107
43d2b113
KH
108#define CREATE_TRACE_POINTS
109#include <trace/events/task.h>
110
ac1b398d
HS
111/*
112 * Minimum number of threads to boot the kernel
113 */
114#define MIN_THREADS 20
115
116/*
117 * Maximum number of threads
118 */
119#define MAX_THREADS FUTEX_TID_MASK
120
1da177e4
LT
121/*
122 * Protected counters by write_lock_irq(&tasklist_lock)
123 */
124unsigned long total_forks; /* Handle normal Linux uptimes. */
fb0a685c 125int nr_threads; /* The idle threads do not count.. */
1da177e4 126
8856ae4d 127static int max_threads; /* tunable limit on nr_threads */
1da177e4 128
8495f7e6
SPP
129#define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
130
131static const char * const resident_page_types[] = {
132 NAMED_ARRAY_INDEX(MM_FILEPAGES),
133 NAMED_ARRAY_INDEX(MM_ANONPAGES),
134 NAMED_ARRAY_INDEX(MM_SWAPENTS),
135 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
136};
137
1da177e4
LT
138DEFINE_PER_CPU(unsigned long, process_counts) = 0;
139
c59923a1 140__cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
db1466b3
PM
141
142#ifdef CONFIG_PROVE_RCU
143int lockdep_tasklist_lock_is_held(void)
144{
145 return lockdep_is_held(&tasklist_lock);
146}
147EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
148#endif /* #ifdef CONFIG_PROVE_RCU */
1da177e4
LT
149
150int nr_processes(void)
151{
152 int cpu;
153 int total = 0;
154
1d510750 155 for_each_possible_cpu(cpu)
1da177e4
LT
156 total += per_cpu(process_counts, cpu);
157
158 return total;
159}
160
f19b9f74
AM
161void __weak arch_release_task_struct(struct task_struct *tsk)
162{
163}
164
f5e10287 165#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
e18b890b 166static struct kmem_cache *task_struct_cachep;
41101809
TG
167
168static inline struct task_struct *alloc_task_struct_node(int node)
169{
170 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
171}
172
41101809
TG
173static inline void free_task_struct(struct task_struct *tsk)
174{
41101809
TG
175 kmem_cache_free(task_struct_cachep, tsk);
176}
1da177e4
LT
177#endif
178
b235beea 179#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
41101809 180
0d15d74a
TG
181/*
182 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
183 * kmemcache based allocator.
184 */
ba14a194 185# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
ac496bf4
AL
186
187#ifdef CONFIG_VMAP_STACK
188/*
189 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
190 * flush. Try to minimize the number of calls by caching stacks.
191 */
192#define NR_CACHED_STACKS 2
193static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
19659c59
HR
194
195static int free_vm_stack_cache(unsigned int cpu)
196{
197 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
198 int i;
199
200 for (i = 0; i < NR_CACHED_STACKS; i++) {
201 struct vm_struct *vm_stack = cached_vm_stacks[i];
202
203 if (!vm_stack)
204 continue;
205
206 vfree(vm_stack->addr);
207 cached_vm_stacks[i] = NULL;
208 }
209
210 return 0;
211}
ac496bf4
AL
212#endif
213
ba14a194 214static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
b69c49b7 215{
ba14a194 216#ifdef CONFIG_VMAP_STACK
ac496bf4
AL
217 void *stack;
218 int i;
219
ac496bf4 220 for (i = 0; i < NR_CACHED_STACKS; i++) {
112166f8
CL
221 struct vm_struct *s;
222
223 s = this_cpu_xchg(cached_stacks[i], NULL);
ac496bf4
AL
224
225 if (!s)
226 continue;
ac496bf4 227
eafb149e
DA
228 /* Clear the KASAN shadow of the stack. */
229 kasan_unpoison_shadow(s->addr, THREAD_SIZE);
230
ca182551
KK
231 /* Clear stale pointers from reused stack. */
232 memset(s->addr, 0, THREAD_SIZE);
e01e8063 233
ac496bf4 234 tsk->stack_vm_area = s;
ba4a4574 235 tsk->stack = s->addr;
ac496bf4
AL
236 return s->addr;
237 }
ac496bf4 238
9b6f7e16
RG
239 /*
240 * Allocated stacks are cached and later reused by new threads,
241 * so memcg accounting is performed manually on assigning/releasing
242 * stacks to tasks. Drop __GFP_ACCOUNT.
243 */
48ac3c18 244 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
ac496bf4 245 VMALLOC_START, VMALLOC_END,
9b6f7e16 246 THREADINFO_GFP & ~__GFP_ACCOUNT,
ac496bf4
AL
247 PAGE_KERNEL,
248 0, node, __builtin_return_address(0));
ba14a194
AL
249
250 /*
251 * We can't call find_vm_area() in interrupt context, and
252 * free_thread_stack() can be called in interrupt context,
253 * so cache the vm_struct.
254 */
5eed6f1d 255 if (stack) {
ba14a194 256 tsk->stack_vm_area = find_vm_area(stack);
5eed6f1d
RR
257 tsk->stack = stack;
258 }
ba14a194
AL
259 return stack;
260#else
4949148a
VD
261 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
262 THREAD_SIZE_ORDER);
b6a84016 263
1bf4580e 264 if (likely(page)) {
8dcc1d34 265 tsk->stack = kasan_reset_tag(page_address(page));
1bf4580e
AA
266 return tsk->stack;
267 }
268 return NULL;
ba14a194 269#endif
b69c49b7
FT
270}
271
ba14a194 272static inline void free_thread_stack(struct task_struct *tsk)
b69c49b7 273{
ac496bf4 274#ifdef CONFIG_VMAP_STACK
9b6f7e16
RG
275 struct vm_struct *vm = task_stack_vm_area(tsk);
276
277 if (vm) {
ac496bf4
AL
278 int i;
279
991e7673 280 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
f4b00eab 281 memcg_kmem_uncharge_page(vm->pages[i], 0);
9b6f7e16 282
ac496bf4 283 for (i = 0; i < NR_CACHED_STACKS; i++) {
112166f8
CL
284 if (this_cpu_cmpxchg(cached_stacks[i],
285 NULL, tsk->stack_vm_area) != NULL)
ac496bf4
AL
286 continue;
287
ac496bf4
AL
288 return;
289 }
ac496bf4 290
0f110a9b 291 vfree_atomic(tsk->stack);
ac496bf4
AL
292 return;
293 }
294#endif
295
296 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
b69c49b7 297}
0d15d74a 298# else
b235beea 299static struct kmem_cache *thread_stack_cache;
0d15d74a 300
9521d399 301static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
0d15d74a
TG
302 int node)
303{
5eed6f1d
RR
304 unsigned long *stack;
305 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
8dcc1d34 306 stack = kasan_reset_tag(stack);
5eed6f1d
RR
307 tsk->stack = stack;
308 return stack;
0d15d74a
TG
309}
310
ba14a194 311static void free_thread_stack(struct task_struct *tsk)
0d15d74a 312{
ba14a194 313 kmem_cache_free(thread_stack_cache, tsk->stack);
0d15d74a
TG
314}
315
b235beea 316void thread_stack_cache_init(void)
0d15d74a 317{
f9d29946
DW
318 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
319 THREAD_SIZE, THREAD_SIZE, 0, 0,
320 THREAD_SIZE, NULL);
b235beea 321 BUG_ON(thread_stack_cache == NULL);
0d15d74a
TG
322}
323# endif
b69c49b7
FT
324#endif
325
1da177e4 326/* SLAB cache for signal_struct structures (tsk->signal) */
e18b890b 327static struct kmem_cache *signal_cachep;
1da177e4
LT
328
329/* SLAB cache for sighand_struct structures (tsk->sighand) */
e18b890b 330struct kmem_cache *sighand_cachep;
1da177e4
LT
331
332/* SLAB cache for files_struct structures (tsk->files) */
e18b890b 333struct kmem_cache *files_cachep;
1da177e4
LT
334
335/* SLAB cache for fs_struct structures (tsk->fs) */
e18b890b 336struct kmem_cache *fs_cachep;
1da177e4
LT
337
338/* SLAB cache for vm_area_struct structures */
3928d4f5 339static struct kmem_cache *vm_area_cachep;
1da177e4
LT
340
341/* SLAB cache for mm_struct structures (tsk->mm) */
e18b890b 342static struct kmem_cache *mm_cachep;
1da177e4 343
490fc053 344struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
3928d4f5 345{
a670468f 346 struct vm_area_struct *vma;
490fc053 347
a670468f 348 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
027232da
KS
349 if (vma)
350 vma_init(vma, mm);
490fc053 351 return vma;
3928d4f5
LT
352}
353
354struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
355{
95faf699
LT
356 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
357
358 if (new) {
cda099b3
QC
359 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
360 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
361 /*
362 * orig->shared.rb may be modified concurrently, but the clone
363 * will be reinitialized.
364 */
365 *new = data_race(*orig);
95faf699 366 INIT_LIST_HEAD(&new->anon_vma_chain);
e39a4b33 367 new->vm_next = new->vm_prev = NULL;
95faf699
LT
368 }
369 return new;
3928d4f5
LT
370}
371
372void vm_area_free(struct vm_area_struct *vma)
373{
374 kmem_cache_free(vm_area_cachep, vma);
375}
376
ba14a194 377static void account_kernel_stack(struct task_struct *tsk, int account)
c6a7f572 378{
ba14a194
AL
379 void *stack = task_stack_page(tsk);
380 struct vm_struct *vm = task_stack_vm_area(tsk);
381
ba14a194 382
991e7673
SB
383 /* All stack pages are in the same node. */
384 if (vm)
385 mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB,
386 account * (THREAD_SIZE / 1024));
387 else
388 mod_lruvec_slab_state(stack, NR_KERNEL_STACK_KB,
389 account * (THREAD_SIZE / 1024));
c6a7f572
KM
390}
391
9b6f7e16
RG
392static int memcg_charge_kernel_stack(struct task_struct *tsk)
393{
394#ifdef CONFIG_VMAP_STACK
395 struct vm_struct *vm = task_stack_vm_area(tsk);
396 int ret;
397
991e7673
SB
398 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
399
9b6f7e16
RG
400 if (vm) {
401 int i;
402
991e7673
SB
403 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
404
9b6f7e16
RG
405 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
406 /*
f4b00eab 407 * If memcg_kmem_charge_page() fails, page->mem_cgroup
991e7673
SB
408 * pointer is NULL, and memcg_kmem_uncharge_page() in
409 * free_thread_stack() will ignore this page.
9b6f7e16 410 */
f4b00eab
RG
411 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
412 0);
9b6f7e16
RG
413 if (ret)
414 return ret;
9b6f7e16
RG
415 }
416 }
417#endif
418 return 0;
419}
420
68f24b08 421static void release_task_stack(struct task_struct *tsk)
1da177e4 422{
405c0759
AL
423 if (WARN_ON(tsk->state != TASK_DEAD))
424 return; /* Better to leak the stack than to free prematurely */
425
ba14a194 426 account_kernel_stack(tsk, -1);
ba14a194 427 free_thread_stack(tsk);
68f24b08
AL
428 tsk->stack = NULL;
429#ifdef CONFIG_VMAP_STACK
430 tsk->stack_vm_area = NULL;
431#endif
432}
433
434#ifdef CONFIG_THREAD_INFO_IN_TASK
435void put_task_stack(struct task_struct *tsk)
436{
f0b89d39 437 if (refcount_dec_and_test(&tsk->stack_refcount))
68f24b08
AL
438 release_task_stack(tsk);
439}
440#endif
441
442void free_task(struct task_struct *tsk)
443{
d08b9f0c
ST
444 scs_release(tsk);
445
68f24b08
AL
446#ifndef CONFIG_THREAD_INFO_IN_TASK
447 /*
448 * The task is finally done with both the stack and thread_info,
449 * so free both.
450 */
451 release_task_stack(tsk);
452#else
453 /*
454 * If the task had a separate stack allocation, it should be gone
455 * by now.
456 */
f0b89d39 457 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
68f24b08 458#endif
23f78d4a 459 rt_mutex_debug_task_free(tsk);
fb52607a 460 ftrace_graph_exit_task(tsk);
f19b9f74 461 arch_release_task_struct(tsk);
1da5c46f
ON
462 if (tsk->flags & PF_KTHREAD)
463 free_kthread_struct(tsk);
1da177e4
LT
464 free_task_struct(tsk);
465}
466EXPORT_SYMBOL(free_task);
467
d70f2a14
AM
468#ifdef CONFIG_MMU
469static __latent_entropy int dup_mmap(struct mm_struct *mm,
470 struct mm_struct *oldmm)
471{
472 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
473 struct rb_node **rb_link, *rb_parent;
474 int retval;
475 unsigned long charge;
476 LIST_HEAD(uf);
477
478 uprobe_start_dup_mmap();
d8ed45c5 479 if (mmap_write_lock_killable(oldmm)) {
d70f2a14
AM
480 retval = -EINTR;
481 goto fail_uprobe_end;
482 }
483 flush_cache_dup_mm(oldmm);
484 uprobe_dup_mmap(oldmm, mm);
485 /*
486 * Not linked in yet - no deadlock potential:
487 */
aaa2cc56 488 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
d70f2a14
AM
489
490 /* No ordering required: file already has been exposed. */
491 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
492
493 mm->total_vm = oldmm->total_vm;
494 mm->data_vm = oldmm->data_vm;
495 mm->exec_vm = oldmm->exec_vm;
496 mm->stack_vm = oldmm->stack_vm;
497
498 rb_link = &mm->mm_rb.rb_node;
499 rb_parent = NULL;
500 pprev = &mm->mmap;
501 retval = ksm_fork(mm, oldmm);
502 if (retval)
503 goto out;
504 retval = khugepaged_fork(mm, oldmm);
505 if (retval)
506 goto out;
507
508 prev = NULL;
509 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
510 struct file *file;
511
512 if (mpnt->vm_flags & VM_DONTCOPY) {
513 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
514 continue;
515 }
516 charge = 0;
655c79bb
TH
517 /*
518 * Don't duplicate many vmas if we've been oom-killed (for
519 * example)
520 */
521 if (fatal_signal_pending(current)) {
522 retval = -EINTR;
523 goto out;
524 }
d70f2a14
AM
525 if (mpnt->vm_flags & VM_ACCOUNT) {
526 unsigned long len = vma_pages(mpnt);
527
528 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
529 goto fail_nomem;
530 charge = len;
531 }
3928d4f5 532 tmp = vm_area_dup(mpnt);
d70f2a14
AM
533 if (!tmp)
534 goto fail_nomem;
d70f2a14
AM
535 retval = vma_dup_policy(mpnt, tmp);
536 if (retval)
537 goto fail_nomem_policy;
538 tmp->vm_mm = mm;
539 retval = dup_userfaultfd(tmp, &uf);
540 if (retval)
541 goto fail_nomem_anon_vma_fork;
542 if (tmp->vm_flags & VM_WIPEONFORK) {
93949bb2
LX
543 /*
544 * VM_WIPEONFORK gets a clean slate in the child.
545 * Don't prepare anon_vma until fault since we don't
546 * copy page for current vma.
547 */
d70f2a14 548 tmp->anon_vma = NULL;
d70f2a14
AM
549 } else if (anon_vma_fork(tmp, mpnt))
550 goto fail_nomem_anon_vma_fork;
551 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
d70f2a14
AM
552 file = tmp->vm_file;
553 if (file) {
554 struct inode *inode = file_inode(file);
555 struct address_space *mapping = file->f_mapping;
556
557 get_file(file);
558 if (tmp->vm_flags & VM_DENYWRITE)
73eb7f9a 559 put_write_access(inode);
d70f2a14
AM
560 i_mmap_lock_write(mapping);
561 if (tmp->vm_flags & VM_SHARED)
cf508b58 562 mapping_allow_writable(mapping);
d70f2a14
AM
563 flush_dcache_mmap_lock(mapping);
564 /* insert tmp into the share list, just after mpnt */
565 vma_interval_tree_insert_after(tmp, mpnt,
566 &mapping->i_mmap);
567 flush_dcache_mmap_unlock(mapping);
568 i_mmap_unlock_write(mapping);
569 }
570
571 /*
572 * Clear hugetlb-related page reserves for children. This only
573 * affects MAP_PRIVATE mappings. Faults generated by the child
574 * are not guaranteed to succeed, even if read-only
575 */
576 if (is_vm_hugetlb_page(tmp))
577 reset_vma_resv_huge_pages(tmp);
578
579 /*
580 * Link in the new vma and copy the page table entries.
581 */
582 *pprev = tmp;
583 pprev = &tmp->vm_next;
584 tmp->vm_prev = prev;
585 prev = tmp;
586
587 __vma_link_rb(mm, tmp, rb_link, rb_parent);
588 rb_link = &tmp->vm_rb.rb_right;
589 rb_parent = &tmp->vm_rb;
590
591 mm->map_count++;
592 if (!(tmp->vm_flags & VM_WIPEONFORK))
c78f4636 593 retval = copy_page_range(tmp, mpnt);
d70f2a14
AM
594
595 if (tmp->vm_ops && tmp->vm_ops->open)
596 tmp->vm_ops->open(tmp);
597
598 if (retval)
599 goto out;
600 }
601 /* a new mm has just been created */
1ed0cc5a 602 retval = arch_dup_mmap(oldmm, mm);
d70f2a14 603out:
d8ed45c5 604 mmap_write_unlock(mm);
d70f2a14 605 flush_tlb_mm(oldmm);
d8ed45c5 606 mmap_write_unlock(oldmm);
d70f2a14
AM
607 dup_userfaultfd_complete(&uf);
608fail_uprobe_end:
609 uprobe_end_dup_mmap();
610 return retval;
611fail_nomem_anon_vma_fork:
612 mpol_put(vma_policy(tmp));
613fail_nomem_policy:
3928d4f5 614 vm_area_free(tmp);
d70f2a14
AM
615fail_nomem:
616 retval = -ENOMEM;
617 vm_unacct_memory(charge);
618 goto out;
619}
620
621static inline int mm_alloc_pgd(struct mm_struct *mm)
622{
623 mm->pgd = pgd_alloc(mm);
624 if (unlikely(!mm->pgd))
625 return -ENOMEM;
626 return 0;
627}
628
629static inline void mm_free_pgd(struct mm_struct *mm)
630{
631 pgd_free(mm, mm->pgd);
632}
633#else
634static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
635{
d8ed45c5 636 mmap_write_lock(oldmm);
d70f2a14 637 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
d8ed45c5 638 mmap_write_unlock(oldmm);
d70f2a14
AM
639 return 0;
640}
641#define mm_alloc_pgd(mm) (0)
642#define mm_free_pgd(mm)
643#endif /* CONFIG_MMU */
644
645static void check_mm(struct mm_struct *mm)
646{
647 int i;
648
8495f7e6
SPP
649 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
650 "Please make sure 'struct resident_page_types[]' is updated as well");
651
d70f2a14
AM
652 for (i = 0; i < NR_MM_COUNTERS; i++) {
653 long x = atomic_long_read(&mm->rss_stat.count[i]);
654
655 if (unlikely(x))
8495f7e6
SPP
656 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
657 mm, resident_page_types[i], x);
d70f2a14
AM
658 }
659
660 if (mm_pgtables_bytes(mm))
661 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
662 mm_pgtables_bytes(mm));
663
664#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
665 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
666#endif
667}
668
669#define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
670#define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
671
672/*
673 * Called when the last reference to the mm
674 * is dropped: either by a lazy thread or by
675 * mmput. Free the page directory and the mm.
676 */
d34bc48f 677void __mmdrop(struct mm_struct *mm)
d70f2a14
AM
678{
679 BUG_ON(mm == &init_mm);
3eda69c9
MR
680 WARN_ON_ONCE(mm == current->mm);
681 WARN_ON_ONCE(mm == current->active_mm);
d70f2a14
AM
682 mm_free_pgd(mm);
683 destroy_context(mm);
984cfe4e 684 mmu_notifier_subscriptions_destroy(mm);
d70f2a14
AM
685 check_mm(mm);
686 put_user_ns(mm->user_ns);
687 free_mm(mm);
688}
d34bc48f 689EXPORT_SYMBOL_GPL(__mmdrop);
d70f2a14
AM
690
691static void mmdrop_async_fn(struct work_struct *work)
692{
693 struct mm_struct *mm;
694
695 mm = container_of(work, struct mm_struct, async_put_work);
696 __mmdrop(mm);
697}
698
699static void mmdrop_async(struct mm_struct *mm)
700{
701 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
702 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
703 schedule_work(&mm->async_put_work);
704 }
705}
706
ea6d290c
ON
707static inline void free_signal_struct(struct signal_struct *sig)
708{
97101eb4 709 taskstats_tgid_free(sig);
1c5354de 710 sched_autogroup_exit(sig);
7283094e
MH
711 /*
712 * __mmdrop is not safe to call from softirq context on x86 due to
713 * pgd_dtor so postpone it to the async context
714 */
26db62f1 715 if (sig->oom_mm)
7283094e 716 mmdrop_async(sig->oom_mm);
ea6d290c
ON
717 kmem_cache_free(signal_cachep, sig);
718}
719
720static inline void put_signal_struct(struct signal_struct *sig)
721{
60d4de3f 722 if (refcount_dec_and_test(&sig->sigcnt))
ea6d290c
ON
723 free_signal_struct(sig);
724}
725
158d9ebd 726void __put_task_struct(struct task_struct *tsk)
1da177e4 727{
270f722d 728 WARN_ON(!tsk->exit_state);
ec1d2819 729 WARN_ON(refcount_read(&tsk->usage));
1da177e4
LT
730 WARN_ON(tsk == current);
731
0f212204 732 io_uring_free(tsk);
2e91fa7f 733 cgroup_free(tsk);
16d51a59 734 task_numa_free(tsk, true);
1a2a4d06 735 security_task_free(tsk);
e0e81739 736 exit_creds(tsk);
35df17c5 737 delayacct_tsk_free(tsk);
ea6d290c 738 put_signal_struct(tsk->signal);
1da177e4
LT
739
740 if (!profile_handoff_task(tsk))
741 free_task(tsk);
742}
77c100c8 743EXPORT_SYMBOL_GPL(__put_task_struct);
1da177e4 744
6c0a9fa6 745void __init __weak arch_task_cache_init(void) { }
61c4628b 746
ff691f6e
HS
747/*
748 * set_max_threads
749 */
16db3d3f 750static void set_max_threads(unsigned int max_threads_suggested)
ff691f6e 751{
ac1b398d 752 u64 threads;
ca79b0c2 753 unsigned long nr_pages = totalram_pages();
ff691f6e
HS
754
755 /*
ac1b398d
HS
756 * The number of threads shall be limited such that the thread
757 * structures may only consume a small part of the available memory.
ff691f6e 758 */
3d6357de 759 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
ac1b398d
HS
760 threads = MAX_THREADS;
761 else
3d6357de 762 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
ac1b398d
HS
763 (u64) THREAD_SIZE * 8UL);
764
16db3d3f
HS
765 if (threads > max_threads_suggested)
766 threads = max_threads_suggested;
767
ac1b398d 768 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
ff691f6e
HS
769}
770
5aaeb5c0
IM
771#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
772/* Initialized by the architecture: */
773int arch_task_struct_size __read_mostly;
774#endif
0c8c0f03 775
4189ff23 776#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
5905429a
KC
777static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
778{
779 /* Fetch thread_struct whitelist for the architecture. */
780 arch_thread_struct_whitelist(offset, size);
781
782 /*
783 * Handle zero-sized whitelist or empty thread_struct, otherwise
784 * adjust offset to position of thread_struct in task_struct.
785 */
786 if (unlikely(*size == 0))
787 *offset = 0;
788 else
789 *offset += offsetof(struct task_struct, thread);
790}
4189ff23 791#endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
5905429a 792
ff691f6e 793void __init fork_init(void)
1da177e4 794{
25f9c081 795 int i;
f5e10287 796#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1da177e4 797#ifndef ARCH_MIN_TASKALIGN
e274795e 798#define ARCH_MIN_TASKALIGN 0
1da177e4 799#endif
95cb64c1 800 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
5905429a 801 unsigned long useroffset, usersize;
e274795e 802
1da177e4 803 /* create a slab on which task_structs can be allocated */
5905429a
KC
804 task_struct_whitelist(&useroffset, &usersize);
805 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
e274795e 806 arch_task_struct_size, align,
5905429a
KC
807 SLAB_PANIC|SLAB_ACCOUNT,
808 useroffset, usersize, NULL);
1da177e4
LT
809#endif
810
61c4628b
SS
811 /* do the arch specific task caches init */
812 arch_task_cache_init();
813
16db3d3f 814 set_max_threads(MAX_THREADS);
1da177e4
LT
815
816 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
817 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
818 init_task.signal->rlim[RLIMIT_SIGPENDING] =
819 init_task.signal->rlim[RLIMIT_NPROC];
b376c3e1 820
25f9c081
EB
821 for (i = 0; i < UCOUNT_COUNTS; i++) {
822 init_user_ns.ucount_max[i] = max_threads/2;
823 }
19659c59
HR
824
825#ifdef CONFIG_VMAP_STACK
826 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
827 NULL, free_vm_stack_cache);
828#endif
b09be676 829
d08b9f0c
ST
830 scs_init();
831
b09be676 832 lockdep_init_task(&init_task);
aad42dd4 833 uprobes_init();
1da177e4
LT
834}
835
52f5684c 836int __weak arch_dup_task_struct(struct task_struct *dst,
61c4628b
SS
837 struct task_struct *src)
838{
839 *dst = *src;
840 return 0;
841}
842
d4311ff1
AT
843void set_task_stack_end_magic(struct task_struct *tsk)
844{
845 unsigned long *stackend;
846
847 stackend = end_of_stack(tsk);
848 *stackend = STACK_END_MAGIC; /* for overflow detection */
849}
850
725fc629 851static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1da177e4
LT
852{
853 struct task_struct *tsk;
b235beea 854 unsigned long *stack;
0f4991e8 855 struct vm_struct *stack_vm_area __maybe_unused;
3e26c149 856 int err;
1da177e4 857
725fc629
AK
858 if (node == NUMA_NO_NODE)
859 node = tsk_fork_get_node(orig);
504f52b5 860 tsk = alloc_task_struct_node(node);
1da177e4
LT
861 if (!tsk)
862 return NULL;
863
b235beea
LT
864 stack = alloc_thread_stack_node(tsk, node);
865 if (!stack)
f19b9f74 866 goto free_tsk;
1da177e4 867
9b6f7e16
RG
868 if (memcg_charge_kernel_stack(tsk))
869 goto free_stack;
870
ba14a194
AL
871 stack_vm_area = task_stack_vm_area(tsk);
872
fb0a685c 873 err = arch_dup_task_struct(tsk, orig);
ba14a194
AL
874
875 /*
876 * arch_dup_task_struct() clobbers the stack-related fields. Make
877 * sure they're properly initialized before using any stack-related
878 * functions again.
879 */
880 tsk->stack = stack;
881#ifdef CONFIG_VMAP_STACK
882 tsk->stack_vm_area = stack_vm_area;
883#endif
68f24b08 884#ifdef CONFIG_THREAD_INFO_IN_TASK
f0b89d39 885 refcount_set(&tsk->stack_refcount, 1);
68f24b08 886#endif
ba14a194 887
164c33c6 888 if (err)
b235beea 889 goto free_stack;
164c33c6 890
d08b9f0c
ST
891 err = scs_prepare(tsk, node);
892 if (err)
893 goto free_stack;
894
dbd95212
KC
895#ifdef CONFIG_SECCOMP
896 /*
897 * We must handle setting up seccomp filters once we're under
898 * the sighand lock in case orig has changed between now and
899 * then. Until then, filter must be NULL to avoid messing up
900 * the usage counts on the error path calling free_task.
901 */
902 tsk->seccomp.filter = NULL;
903#endif
87bec58a
AM
904
905 setup_thread_stack(tsk, orig);
8e7cac79 906 clear_user_return_notifier(tsk);
f26f9aff 907 clear_tsk_need_resched(tsk);
d4311ff1 908 set_task_stack_end_magic(tsk);
1da177e4 909
050e9baa 910#ifdef CONFIG_STACKPROTECTOR
7cd815bc 911 tsk->stack_canary = get_random_canary();
0a425405 912#endif
3bd37062
SAS
913 if (orig->cpus_ptr == &orig->cpus_mask)
914 tsk->cpus_ptr = &tsk->cpus_mask;
0a425405 915
fb0a685c 916 /*
0ff7b2cf
EB
917 * One for the user space visible state that goes away when reaped.
918 * One for the scheduler.
fb0a685c 919 */
0ff7b2cf
EB
920 refcount_set(&tsk->rcu_users, 2);
921 /* One for the rcu users */
922 refcount_set(&tsk->usage, 1);
6c5c9341 923#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 924 tsk->btrace_seq = 0;
6c5c9341 925#endif
a0aa7f68 926 tsk->splice_pipe = NULL;
5640f768 927 tsk->task_frag.page = NULL;
093e5840 928 tsk->wake_q.next = NULL;
c6a7f572 929
ba14a194 930 account_kernel_stack(tsk, 1);
c6a7f572 931
5c9a8750
DV
932 kcov_task_init(tsk);
933
e41d5818
DV
934#ifdef CONFIG_FAULT_INJECTION
935 tsk->fail_nth = 0;
936#endif
937
2c323017
JB
938#ifdef CONFIG_BLK_CGROUP
939 tsk->throttle_queue = NULL;
940 tsk->use_memdelay = 0;
941#endif
942
d46eb14b
SB
943#ifdef CONFIG_MEMCG
944 tsk->active_memcg = NULL;
945#endif
1da177e4 946 return tsk;
61c4628b 947
b235beea 948free_stack:
ba14a194 949 free_thread_stack(tsk);
f19b9f74 950free_tsk:
61c4628b
SS
951 free_task_struct(tsk);
952 return NULL;
1da177e4
LT
953}
954
23ff4440 955__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1da177e4 956
4cb0e11b
HK
957static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
958
959static int __init coredump_filter_setup(char *s)
960{
961 default_dump_filter =
962 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
963 MMF_DUMP_FILTER_MASK;
964 return 1;
965}
966
967__setup("coredump_filter=", coredump_filter_setup);
968
1da177e4
LT
969#include <linux/init_task.h>
970
858f0993
AD
971static void mm_init_aio(struct mm_struct *mm)
972{
973#ifdef CONFIG_AIO
974 spin_lock_init(&mm->ioctx_lock);
db446a08 975 mm->ioctx_table = NULL;
858f0993
AD
976#endif
977}
978
c3f3ce04
AA
979static __always_inline void mm_clear_owner(struct mm_struct *mm,
980 struct task_struct *p)
981{
982#ifdef CONFIG_MEMCG
983 if (mm->owner == p)
984 WRITE_ONCE(mm->owner, NULL);
985#endif
986}
987
33144e84
VD
988static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
989{
990#ifdef CONFIG_MEMCG
991 mm->owner = p;
992#endif
993}
994
355627f5
EB
995static void mm_init_uprobes_state(struct mm_struct *mm)
996{
997#ifdef CONFIG_UPROBES
998 mm->uprobes_state.xol_area = NULL;
999#endif
1000}
1001
bfedb589
EB
1002static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1003 struct user_namespace *user_ns)
1da177e4 1004{
41f727fd
VD
1005 mm->mmap = NULL;
1006 mm->mm_rb = RB_ROOT;
1007 mm->vmacache_seqnum = 0;
1da177e4
LT
1008 atomic_set(&mm->mm_users, 1);
1009 atomic_set(&mm->mm_count, 1);
d8ed45c5 1010 mmap_init_lock(mm);
1da177e4 1011 INIT_LIST_HEAD(&mm->mmlist);
999d9fc1 1012 mm->core_state = NULL;
af5b0f6a 1013 mm_pgtables_bytes_init(mm);
41f727fd
VD
1014 mm->map_count = 0;
1015 mm->locked_vm = 0;
008cfe44 1016 atomic_set(&mm->has_pinned, 0);
70f8a3ca 1017 atomic64_set(&mm->pinned_vm, 0);
d559db08 1018 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1da177e4 1019 spin_lock_init(&mm->page_table_lock);
88aa7cc6 1020 spin_lock_init(&mm->arg_lock);
41f727fd 1021 mm_init_cpumask(mm);
858f0993 1022 mm_init_aio(mm);
cf475ad2 1023 mm_init_owner(mm, p);
2b7e8665 1024 RCU_INIT_POINTER(mm->exe_file, NULL);
984cfe4e 1025 mmu_notifier_subscriptions_init(mm);
16af97dc 1026 init_tlb_flush_pending(mm);
41f727fd
VD
1027#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1028 mm->pmd_huge_pte = NULL;
1029#endif
355627f5 1030 mm_init_uprobes_state(mm);
1da177e4 1031
a0715cc2
AT
1032 if (current->mm) {
1033 mm->flags = current->mm->flags & MMF_INIT_MASK;
1034 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1035 } else {
1036 mm->flags = default_dump_filter;
1da177e4 1037 mm->def_flags = 0;
a0715cc2
AT
1038 }
1039
41f727fd
VD
1040 if (mm_alloc_pgd(mm))
1041 goto fail_nopgd;
1042
1043 if (init_new_context(p, mm))
1044 goto fail_nocontext;
78fb7466 1045
bfedb589 1046 mm->user_ns = get_user_ns(user_ns);
41f727fd
VD
1047 return mm;
1048
1049fail_nocontext:
1050 mm_free_pgd(mm);
1051fail_nopgd:
1da177e4
LT
1052 free_mm(mm);
1053 return NULL;
1054}
1055
1056/*
1057 * Allocate and initialize an mm_struct.
1058 */
fb0a685c 1059struct mm_struct *mm_alloc(void)
1da177e4 1060{
fb0a685c 1061 struct mm_struct *mm;
1da177e4
LT
1062
1063 mm = allocate_mm();
de03c72c
KM
1064 if (!mm)
1065 return NULL;
1066
1067 memset(mm, 0, sizeof(*mm));
bfedb589 1068 return mm_init(mm, current, current_user_ns());
1da177e4
LT
1069}
1070
ec8d7c14
MH
1071static inline void __mmput(struct mm_struct *mm)
1072{
1073 VM_BUG_ON(atomic_read(&mm->mm_users));
1074
1075 uprobe_clear_state(mm);
1076 exit_aio(mm);
1077 ksm_exit(mm);
1078 khugepaged_exit(mm); /* must run before exit_mmap */
1079 exit_mmap(mm);
6fcb52a5 1080 mm_put_huge_zero_page(mm);
ec8d7c14
MH
1081 set_mm_exe_file(mm, NULL);
1082 if (!list_empty(&mm->mmlist)) {
1083 spin_lock(&mmlist_lock);
1084 list_del(&mm->mmlist);
1085 spin_unlock(&mmlist_lock);
1086 }
1087 if (mm->binfmt)
1088 module_put(mm->binfmt->module);
1089 mmdrop(mm);
1090}
1091
1da177e4
LT
1092/*
1093 * Decrement the use count and release all resources for an mm.
1094 */
1095void mmput(struct mm_struct *mm)
1096{
0ae26f1b
AM
1097 might_sleep();
1098
ec8d7c14
MH
1099 if (atomic_dec_and_test(&mm->mm_users))
1100 __mmput(mm);
1101}
1102EXPORT_SYMBOL_GPL(mmput);
1103
a1b2289c
SY
1104#ifdef CONFIG_MMU
1105static void mmput_async_fn(struct work_struct *work)
1106{
1107 struct mm_struct *mm = container_of(work, struct mm_struct,
1108 async_put_work);
1109
1110 __mmput(mm);
1111}
1112
1113void mmput_async(struct mm_struct *mm)
1114{
1115 if (atomic_dec_and_test(&mm->mm_users)) {
1116 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1117 schedule_work(&mm->async_put_work);
1118 }
1119}
1120#endif
1121
90f31d0e
KK
1122/**
1123 * set_mm_exe_file - change a reference to the mm's executable file
1124 *
1125 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1126 *
6e399cd1
DB
1127 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1128 * invocations: in mmput() nobody alive left, in execve task is single
1129 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1130 * mm->exe_file, but does so without using set_mm_exe_file() in order
1131 * to do avoid the need for any locks.
90f31d0e 1132 */
38646013
JS
1133void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1134{
6e399cd1
DB
1135 struct file *old_exe_file;
1136
1137 /*
1138 * It is safe to dereference the exe_file without RCU as
1139 * this function is only called if nobody else can access
1140 * this mm -- see comment above for justification.
1141 */
1142 old_exe_file = rcu_dereference_raw(mm->exe_file);
90f31d0e 1143
38646013
JS
1144 if (new_exe_file)
1145 get_file(new_exe_file);
90f31d0e
KK
1146 rcu_assign_pointer(mm->exe_file, new_exe_file);
1147 if (old_exe_file)
1148 fput(old_exe_file);
38646013
JS
1149}
1150
90f31d0e
KK
1151/**
1152 * get_mm_exe_file - acquire a reference to the mm's executable file
1153 *
1154 * Returns %NULL if mm has no associated executable file.
1155 * User must release file via fput().
1156 */
38646013
JS
1157struct file *get_mm_exe_file(struct mm_struct *mm)
1158{
1159 struct file *exe_file;
1160
90f31d0e
KK
1161 rcu_read_lock();
1162 exe_file = rcu_dereference(mm->exe_file);
1163 if (exe_file && !get_file_rcu(exe_file))
1164 exe_file = NULL;
1165 rcu_read_unlock();
38646013
JS
1166 return exe_file;
1167}
11163348 1168EXPORT_SYMBOL(get_mm_exe_file);
38646013 1169
cd81a917
MG
1170/**
1171 * get_task_exe_file - acquire a reference to the task's executable file
1172 *
1173 * Returns %NULL if task's mm (if any) has no associated executable file or
1174 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1175 * User must release file via fput().
1176 */
1177struct file *get_task_exe_file(struct task_struct *task)
1178{
1179 struct file *exe_file = NULL;
1180 struct mm_struct *mm;
1181
1182 task_lock(task);
1183 mm = task->mm;
1184 if (mm) {
1185 if (!(task->flags & PF_KTHREAD))
1186 exe_file = get_mm_exe_file(mm);
1187 }
1188 task_unlock(task);
1189 return exe_file;
1190}
1191EXPORT_SYMBOL(get_task_exe_file);
38646013 1192
1da177e4
LT
1193/**
1194 * get_task_mm - acquire a reference to the task's mm
1195 *
246bb0b1 1196 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1da177e4
LT
1197 * this kernel workthread has transiently adopted a user mm with use_mm,
1198 * to do its AIO) is not set and if so returns a reference to it, after
1199 * bumping up the use count. User must release the mm via mmput()
1200 * after use. Typically used by /proc and ptrace.
1201 */
1202struct mm_struct *get_task_mm(struct task_struct *task)
1203{
1204 struct mm_struct *mm;
1205
1206 task_lock(task);
1207 mm = task->mm;
1208 if (mm) {
246bb0b1 1209 if (task->flags & PF_KTHREAD)
1da177e4
LT
1210 mm = NULL;
1211 else
3fce371b 1212 mmget(mm);
1da177e4
LT
1213 }
1214 task_unlock(task);
1215 return mm;
1216}
1217EXPORT_SYMBOL_GPL(get_task_mm);
1218
8cdb878d
CY
1219struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1220{
1221 struct mm_struct *mm;
1222 int err;
1223
3e74fabd 1224 err = mutex_lock_killable(&task->signal->exec_update_mutex);
8cdb878d
CY
1225 if (err)
1226 return ERR_PTR(err);
1227
1228 mm = get_task_mm(task);
1229 if (mm && mm != current->mm &&
1230 !ptrace_may_access(task, mode)) {
1231 mmput(mm);
1232 mm = ERR_PTR(-EACCES);
1233 }
3e74fabd 1234 mutex_unlock(&task->signal->exec_update_mutex);
8cdb878d
CY
1235
1236 return mm;
1237}
1238
57b59c4a 1239static void complete_vfork_done(struct task_struct *tsk)
c415c3b4 1240{
d68b46fe 1241 struct completion *vfork;
c415c3b4 1242
d68b46fe
ON
1243 task_lock(tsk);
1244 vfork = tsk->vfork_done;
1245 if (likely(vfork)) {
1246 tsk->vfork_done = NULL;
1247 complete(vfork);
1248 }
1249 task_unlock(tsk);
1250}
1251
1252static int wait_for_vfork_done(struct task_struct *child,
1253 struct completion *vfork)
1254{
1255 int killed;
1256
1257 freezer_do_not_count();
76f969e8 1258 cgroup_enter_frozen();
d68b46fe 1259 killed = wait_for_completion_killable(vfork);
76f969e8 1260 cgroup_leave_frozen(false);
d68b46fe
ON
1261 freezer_count();
1262
1263 if (killed) {
1264 task_lock(child);
1265 child->vfork_done = NULL;
1266 task_unlock(child);
1267 }
1268
1269 put_task_struct(child);
1270 return killed;
c415c3b4
ON
1271}
1272
1da177e4
LT
1273/* Please note the differences between mmput and mm_release.
1274 * mmput is called whenever we stop holding onto a mm_struct,
1275 * error success whatever.
1276 *
1277 * mm_release is called after a mm_struct has been removed
1278 * from the current process.
1279 *
1280 * This difference is important for error handling, when we
1281 * only half set up a mm_struct for a new process and need to restore
1282 * the old one. Because we mmput the new mm_struct before
1283 * restoring the old one. . .
1284 * Eric Biederman 10 January 1998
1285 */
4610ba7a 1286static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1da177e4 1287{
0326f5a9
SD
1288 uprobe_free_utask(tsk);
1289
1da177e4
LT
1290 /* Get rid of any cached register state */
1291 deactivate_mm(tsk, mm);
1292
fec1d011 1293 /*
735f2770
MH
1294 * Signal userspace if we're not exiting with a core dump
1295 * because we want to leave the value intact for debugging
1296 * purposes.
fec1d011 1297 */
9c8a8228 1298 if (tsk->clear_child_tid) {
735f2770 1299 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
9c8a8228
ED
1300 atomic_read(&mm->mm_users) > 1) {
1301 /*
1302 * We don't check the error code - if userspace has
1303 * not set up a proper pointer then tough luck.
1304 */
1305 put_user(0, tsk->clear_child_tid);
2de0db99
DB
1306 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1307 1, NULL, NULL, 0, 0);
9c8a8228 1308 }
1da177e4 1309 tsk->clear_child_tid = NULL;
1da177e4 1310 }
f7505d64
KK
1311
1312 /*
1313 * All done, finally we can wake up parent and return this mm to him.
1314 * Also kthread_stop() uses this completion for synchronization.
1315 */
1316 if (tsk->vfork_done)
1317 complete_vfork_done(tsk);
1da177e4
LT
1318}
1319
4610ba7a
TG
1320void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1321{
150d7158 1322 futex_exit_release(tsk);
4610ba7a
TG
1323 mm_release(tsk, mm);
1324}
1325
1326void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1327{
150d7158 1328 futex_exec_release(tsk);
4610ba7a
TG
1329 mm_release(tsk, mm);
1330}
1331
13585fa0
NA
1332/**
1333 * dup_mm() - duplicates an existing mm structure
1334 * @tsk: the task_struct with which the new mm will be associated.
1335 * @oldmm: the mm to duplicate.
1336 *
1337 * Allocates a new mm structure and duplicates the provided @oldmm structure
1338 * content into it.
1339 *
1340 * Return: the duplicated mm or NULL on failure.
a0a7ec30 1341 */
13585fa0
NA
1342static struct mm_struct *dup_mm(struct task_struct *tsk,
1343 struct mm_struct *oldmm)
a0a7ec30 1344{
13585fa0 1345 struct mm_struct *mm;
a0a7ec30
JD
1346 int err;
1347
a0a7ec30
JD
1348 mm = allocate_mm();
1349 if (!mm)
1350 goto fail_nomem;
1351
1352 memcpy(mm, oldmm, sizeof(*mm));
1353
bfedb589 1354 if (!mm_init(mm, tsk, mm->user_ns))
a0a7ec30
JD
1355 goto fail_nomem;
1356
a0a7ec30
JD
1357 err = dup_mmap(mm, oldmm);
1358 if (err)
1359 goto free_pt;
1360
1361 mm->hiwater_rss = get_mm_rss(mm);
1362 mm->hiwater_vm = mm->total_vm;
1363
801460d0
HS
1364 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1365 goto free_pt;
1366
a0a7ec30
JD
1367 return mm;
1368
1369free_pt:
801460d0
HS
1370 /* don't put binfmt in mmput, we haven't got module yet */
1371 mm->binfmt = NULL;
c3f3ce04 1372 mm_init_owner(mm, NULL);
a0a7ec30
JD
1373 mmput(mm);
1374
1375fail_nomem:
1376 return NULL;
a0a7ec30
JD
1377}
1378
fb0a685c 1379static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1da177e4 1380{
fb0a685c 1381 struct mm_struct *mm, *oldmm;
1da177e4
LT
1382 int retval;
1383
1384 tsk->min_flt = tsk->maj_flt = 0;
1385 tsk->nvcsw = tsk->nivcsw = 0;
17406b82
MSB
1386#ifdef CONFIG_DETECT_HUNG_TASK
1387 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
a2e51445 1388 tsk->last_switch_time = 0;
17406b82 1389#endif
1da177e4
LT
1390
1391 tsk->mm = NULL;
1392 tsk->active_mm = NULL;
1393
1394 /*
1395 * Are we cloning a kernel thread?
1396 *
1397 * We need to steal a active VM for that..
1398 */
1399 oldmm = current->mm;
1400 if (!oldmm)
1401 return 0;
1402
615d6e87
DB
1403 /* initialize the new vmacache entries */
1404 vmacache_flush(tsk);
1405
1da177e4 1406 if (clone_flags & CLONE_VM) {
3fce371b 1407 mmget(oldmm);
1da177e4 1408 mm = oldmm;
1da177e4
LT
1409 goto good_mm;
1410 }
1411
1412 retval = -ENOMEM;
13585fa0 1413 mm = dup_mm(tsk, current->mm);
1da177e4
LT
1414 if (!mm)
1415 goto fail_nomem;
1416
1da177e4
LT
1417good_mm:
1418 tsk->mm = mm;
1419 tsk->active_mm = mm;
1420 return 0;
1421
1da177e4
LT
1422fail_nomem:
1423 return retval;
1da177e4
LT
1424}
1425
a39bc516 1426static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1da177e4 1427{
498052bb 1428 struct fs_struct *fs = current->fs;
1da177e4 1429 if (clone_flags & CLONE_FS) {
498052bb 1430 /* tsk->fs is already what we want */
2a4419b5 1431 spin_lock(&fs->lock);
498052bb 1432 if (fs->in_exec) {
2a4419b5 1433 spin_unlock(&fs->lock);
498052bb
AV
1434 return -EAGAIN;
1435 }
1436 fs->users++;
2a4419b5 1437 spin_unlock(&fs->lock);
1da177e4
LT
1438 return 0;
1439 }
498052bb 1440 tsk->fs = copy_fs_struct(fs);
1da177e4
LT
1441 if (!tsk->fs)
1442 return -ENOMEM;
1443 return 0;
1444}
1445
fb0a685c 1446static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
a016f338
JD
1447{
1448 struct files_struct *oldf, *newf;
1449 int error = 0;
1450
1451 /*
1452 * A background process may not have any files ...
1453 */
1454 oldf = current->files;
1455 if (!oldf)
1456 goto out;
1457
1458 if (clone_flags & CLONE_FILES) {
1459 atomic_inc(&oldf->count);
1460 goto out;
1461 }
1462
60997c3d 1463 newf = dup_fd(oldf, NR_OPEN_MAX, &error);
a016f338
JD
1464 if (!newf)
1465 goto out;
1466
1467 tsk->files = newf;
1468 error = 0;
1469out:
1470 return error;
1471}
1472
fadad878 1473static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
fd0928df
JA
1474{
1475#ifdef CONFIG_BLOCK
1476 struct io_context *ioc = current->io_context;
6e736be7 1477 struct io_context *new_ioc;
fd0928df
JA
1478
1479 if (!ioc)
1480 return 0;
fadad878
JA
1481 /*
1482 * Share io context with parent, if CLONE_IO is set
1483 */
1484 if (clone_flags & CLONE_IO) {
3d48749d
TH
1485 ioc_task_link(ioc);
1486 tsk->io_context = ioc;
fadad878 1487 } else if (ioprio_valid(ioc->ioprio)) {
6e736be7
TH
1488 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1489 if (unlikely(!new_ioc))
fd0928df
JA
1490 return -ENOMEM;
1491
6e736be7 1492 new_ioc->ioprio = ioc->ioprio;
11a3122f 1493 put_io_context(new_ioc);
fd0928df
JA
1494 }
1495#endif
1496 return 0;
1497}
1498
a39bc516 1499static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1da177e4
LT
1500{
1501 struct sighand_struct *sig;
1502
60348802 1503 if (clone_flags & CLONE_SIGHAND) {
d036bda7 1504 refcount_inc(&current->sighand->count);
1da177e4
LT
1505 return 0;
1506 }
1507 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
0c282b06 1508 RCU_INIT_POINTER(tsk->sighand, sig);
1da177e4
LT
1509 if (!sig)
1510 return -ENOMEM;
9d7fb042 1511
d036bda7 1512 refcount_set(&sig->count, 1);
06e62a46 1513 spin_lock_irq(&current->sighand->siglock);
1da177e4 1514 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
06e62a46 1515 spin_unlock_irq(&current->sighand->siglock);
b612e5df
CB
1516
1517 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1518 if (clone_flags & CLONE_CLEAR_SIGHAND)
1519 flush_signal_handlers(tsk, 0);
1520
1da177e4
LT
1521 return 0;
1522}
1523
a7e5328a 1524void __cleanup_sighand(struct sighand_struct *sighand)
c81addc9 1525{
d036bda7 1526 if (refcount_dec_and_test(&sighand->count)) {
d80e731e 1527 signalfd_cleanup(sighand);
392809b2 1528 /*
5f0d5a3a 1529 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
392809b2
ON
1530 * without an RCU grace period, see __lock_task_sighand().
1531 */
c81addc9 1532 kmem_cache_free(sighand_cachep, sighand);
d80e731e 1533 }
c81addc9
ON
1534}
1535
f06febc9
FM
1536/*
1537 * Initialize POSIX timer handling for a thread group.
1538 */
1539static void posix_cpu_timers_init_group(struct signal_struct *sig)
1540{
2b69942f 1541 struct posix_cputimers *pct = &sig->posix_cputimers;
78d7d407
JS
1542 unsigned long cpu_limit;
1543
316c1608 1544 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
3a245c0f 1545 posix_cputimers_group_init(pct, cpu_limit);
f06febc9
FM
1546}
1547
a39bc516 1548static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1da177e4
LT
1549{
1550 struct signal_struct *sig;
1da177e4 1551
4ab6c083 1552 if (clone_flags & CLONE_THREAD)
490dea45 1553 return 0;
490dea45 1554
a56704ef 1555 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1da177e4
LT
1556 tsk->signal = sig;
1557 if (!sig)
1558 return -ENOMEM;
1559
b3ac022c 1560 sig->nr_threads = 1;
1da177e4 1561 atomic_set(&sig->live, 1);
60d4de3f 1562 refcount_set(&sig->sigcnt, 1);
0c740d0a
ON
1563
1564 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1565 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1566 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1567
1da177e4 1568 init_waitqueue_head(&sig->wait_chldexit);
db51aecc 1569 sig->curr_target = tsk;
1da177e4 1570 init_sigpending(&sig->shared_pending);
c3ad2c3b 1571 INIT_HLIST_HEAD(&sig->multiprocess);
e78c3496 1572 seqlock_init(&sig->stats_lock);
9d7fb042 1573 prev_cputime_init(&sig->prev_cputime);
1da177e4 1574
baa73d9e 1575#ifdef CONFIG_POSIX_TIMERS
b18b6a9c 1576 INIT_LIST_HEAD(&sig->posix_timers);
c9cb2e3d 1577 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1da177e4 1578 sig->real_timer.function = it_real_fn;
baa73d9e 1579#endif
1da177e4 1580
1da177e4
LT
1581 task_lock(current->group_leader);
1582 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1583 task_unlock(current->group_leader);
1584
6279a751
ON
1585 posix_cpu_timers_init_group(sig);
1586
522ed776 1587 tty_audit_fork(sig);
5091faa4 1588 sched_autogroup_fork(sig);
522ed776 1589
a63d83f4 1590 sig->oom_score_adj = current->signal->oom_score_adj;
dabb16f6 1591 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
28b83c51 1592
9b1bf12d 1593 mutex_init(&sig->cred_guard_mutex);
eea96732 1594 mutex_init(&sig->exec_update_mutex);
9b1bf12d 1595
1da177e4
LT
1596 return 0;
1597}
1598
dbd95212
KC
1599static void copy_seccomp(struct task_struct *p)
1600{
1601#ifdef CONFIG_SECCOMP
1602 /*
1603 * Must be called with sighand->lock held, which is common to
1604 * all threads in the group. Holding cred_guard_mutex is not
1605 * needed because this new task is not yet running and cannot
1606 * be racing exec.
1607 */
69f6a34b 1608 assert_spin_locked(&current->sighand->siglock);
dbd95212
KC
1609
1610 /* Ref-count the new filter user, and assign it. */
1611 get_seccomp_filter(current);
1612 p->seccomp = current->seccomp;
1613
1614 /*
1615 * Explicitly enable no_new_privs here in case it got set
1616 * between the task_struct being duplicated and holding the
1617 * sighand lock. The seccomp state and nnp must be in sync.
1618 */
1619 if (task_no_new_privs(current))
1620 task_set_no_new_privs(p);
1621
1622 /*
1623 * If the parent gained a seccomp mode after copying thread
1624 * flags and between before we held the sighand lock, we have
1625 * to manually enable the seccomp thread flag here.
1626 */
1627 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
23d67a54 1628 set_task_syscall_work(p, SECCOMP);
dbd95212
KC
1629#endif
1630}
1631
17da2bd9 1632SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1da177e4
LT
1633{
1634 current->clear_child_tid = tidptr;
1635
b488893a 1636 return task_pid_vnr(current);
1da177e4
LT
1637}
1638
a39bc516 1639static void rt_mutex_init_task(struct task_struct *p)
23f78d4a 1640{
1d615482 1641 raw_spin_lock_init(&p->pi_lock);
e29e175b 1642#ifdef CONFIG_RT_MUTEXES
a23ba907 1643 p->pi_waiters = RB_ROOT_CACHED;
e96a7705 1644 p->pi_top_task = NULL;
23f78d4a 1645 p->pi_blocked_on = NULL;
23f78d4a
IM
1646#endif
1647}
1648
2c470475
EB
1649static inline void init_task_pid_links(struct task_struct *task)
1650{
1651 enum pid_type type;
1652
1653 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1654 INIT_HLIST_NODE(&task->pid_links[type]);
1655 }
1656}
1657
81907739
ON
1658static inline void
1659init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1660{
2c470475
EB
1661 if (type == PIDTYPE_PID)
1662 task->thread_pid = pid;
1663 else
1664 task->signal->pids[type] = pid;
81907739
ON
1665}
1666
6bfbaa51
IM
1667static inline void rcu_copy_process(struct task_struct *p)
1668{
1669#ifdef CONFIG_PREEMPT_RCU
1670 p->rcu_read_lock_nesting = 0;
1671 p->rcu_read_unlock_special.s = 0;
1672 p->rcu_blocked_node = NULL;
1673 INIT_LIST_HEAD(&p->rcu_node_entry);
1674#endif /* #ifdef CONFIG_PREEMPT_RCU */
1675#ifdef CONFIG_TASKS_RCU
1676 p->rcu_tasks_holdout = false;
1677 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1678 p->rcu_tasks_idle_cpu = -1;
1679#endif /* #ifdef CONFIG_TASKS_RCU */
d5f177d3
PM
1680#ifdef CONFIG_TASKS_TRACE_RCU
1681 p->trc_reader_nesting = 0;
276c4104 1682 p->trc_reader_special.s = 0;
d5f177d3
PM
1683 INIT_LIST_HEAD(&p->trc_holdout_list);
1684#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
6bfbaa51
IM
1685}
1686
3695eae5
CB
1687struct pid *pidfd_pid(const struct file *file)
1688{
1689 if (file->f_op == &pidfd_fops)
1690 return file->private_data;
1691
1692 return ERR_PTR(-EBADF);
1693}
1694
b3e58382
CB
1695static int pidfd_release(struct inode *inode, struct file *file)
1696{
1697 struct pid *pid = file->private_data;
1698
1699 file->private_data = NULL;
1700 put_pid(pid);
1701 return 0;
1702}
1703
1704#ifdef CONFIG_PROC_FS
15d42eb2
CK
1705/**
1706 * pidfd_show_fdinfo - print information about a pidfd
1707 * @m: proc fdinfo file
1708 * @f: file referencing a pidfd
1709 *
1710 * Pid:
1711 * This function will print the pid that a given pidfd refers to in the
1712 * pid namespace of the procfs instance.
1713 * If the pid namespace of the process is not a descendant of the pid
1714 * namespace of the procfs instance 0 will be shown as its pid. This is
1715 * similar to calling getppid() on a process whose parent is outside of
1716 * its pid namespace.
1717 *
1718 * NSpid:
1719 * If pid namespaces are supported then this function will also print
1720 * the pid of a given pidfd refers to for all descendant pid namespaces
1721 * starting from the current pid namespace of the instance, i.e. the
1722 * Pid field and the first entry in the NSpid field will be identical.
1723 * If the pid namespace of the process is not a descendant of the pid
1724 * namespace of the procfs instance 0 will be shown as its first NSpid
1725 * entry and no others will be shown.
1726 * Note that this differs from the Pid and NSpid fields in
1727 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1728 * the pid namespace of the procfs instance. The difference becomes
1729 * obvious when sending around a pidfd between pid namespaces from a
1730 * different branch of the tree, i.e. where no ancestoral relation is
1731 * present between the pid namespaces:
1732 * - create two new pid namespaces ns1 and ns2 in the initial pid
1733 * namespace (also take care to create new mount namespaces in the
1734 * new pid namespace and mount procfs)
1735 * - create a process with a pidfd in ns1
1736 * - send pidfd from ns1 to ns2
1737 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1738 * have exactly one entry, which is 0
1739 */
b3e58382
CB
1740static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1741{
b3e58382 1742 struct pid *pid = f->private_data;
3d6d8da4
CB
1743 struct pid_namespace *ns;
1744 pid_t nr = -1;
15d42eb2 1745
3d6d8da4 1746 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
9d78edea 1747 ns = proc_pid_ns(file_inode(m->file)->i_sb);
3d6d8da4
CB
1748 nr = pid_nr_ns(pid, ns);
1749 }
1750
1751 seq_put_decimal_ll(m, "Pid:\t", nr);
b3e58382 1752
15d42eb2 1753#ifdef CONFIG_PID_NS
3d6d8da4
CB
1754 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1755 if (nr > 0) {
15d42eb2 1756 int i;
b3e58382 1757
15d42eb2
CK
1758 /* If nr is non-zero it means that 'pid' is valid and that
1759 * ns, i.e. the pid namespace associated with the procfs
1760 * instance, is in the pid namespace hierarchy of pid.
1761 * Start at one below the already printed level.
1762 */
1763 for (i = ns->level + 1; i <= pid->level; i++)
3d6d8da4 1764 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
15d42eb2
CK
1765 }
1766#endif
b3e58382
CB
1767 seq_putc(m, '\n');
1768}
1769#endif
1770
b53b0b9d
JFG
1771/*
1772 * Poll support for process exit notification.
1773 */
9e77716a 1774static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
b53b0b9d 1775{
b53b0b9d 1776 struct pid *pid = file->private_data;
9e77716a 1777 __poll_t poll_flags = 0;
b53b0b9d
JFG
1778
1779 poll_wait(file, &pid->wait_pidfd, pts);
1780
b53b0b9d
JFG
1781 /*
1782 * Inform pollers only when the whole thread group exits.
1783 * If the thread group leader exits before all other threads in the
1784 * group, then poll(2) should block, similar to the wait(2) family.
1785 */
38fd525a 1786 if (thread_group_exited(pid))
9e77716a 1787 poll_flags = EPOLLIN | EPOLLRDNORM;
b53b0b9d
JFG
1788
1789 return poll_flags;
1790}
1791
b3e58382
CB
1792const struct file_operations pidfd_fops = {
1793 .release = pidfd_release,
b53b0b9d 1794 .poll = pidfd_poll,
b3e58382
CB
1795#ifdef CONFIG_PROC_FS
1796 .show_fdinfo = pidfd_show_fdinfo,
1797#endif
1798};
1799
c3f3ce04
AA
1800static void __delayed_free_task(struct rcu_head *rhp)
1801{
1802 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1803
1804 free_task(tsk);
1805}
1806
1807static __always_inline void delayed_free_task(struct task_struct *tsk)
1808{
1809 if (IS_ENABLED(CONFIG_MEMCG))
1810 call_rcu(&tsk->rcu, __delayed_free_task);
1811 else
1812 free_task(tsk);
1813}
1814
67197a4f
SB
1815static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1816{
1817 /* Skip if kernel thread */
1818 if (!tsk->mm)
1819 return;
1820
1821 /* Skip if spawning a thread or using vfork */
1822 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1823 return;
1824
1825 /* We need to synchronize with __set_oom_adj */
1826 mutex_lock(&oom_adj_mutex);
1827 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1828 /* Update the values in case they were changed after copy_signal */
1829 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1830 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1831 mutex_unlock(&oom_adj_mutex);
1832}
1833
1da177e4
LT
1834/*
1835 * This creates a new process as a copy of the old one,
1836 * but does not actually start it yet.
1837 *
1838 * It copies the registers, and all the appropriate
1839 * parts of the process environment (as per the clone
1840 * flags). The actual kick-off is left to the caller.
1841 */
0766f788 1842static __latent_entropy struct task_struct *copy_process(
09a05394 1843 struct pid *pid,
3033f14a 1844 int trace,
7f192e3c
CB
1845 int node,
1846 struct kernel_clone_args *args)
1da177e4 1847{
b3e58382 1848 int pidfd = -1, retval;
a24efe62 1849 struct task_struct *p;
c3ad2c3b 1850 struct multiprocess_signals delayed;
6fd2fe49 1851 struct file *pidfile = NULL;
7f192e3c 1852 u64 clone_flags = args->flags;
769071ac 1853 struct nsproxy *nsp = current->nsproxy;
1da177e4 1854
667b6094
MPS
1855 /*
1856 * Don't allow sharing the root directory with processes in a different
1857 * namespace
1858 */
1da177e4
LT
1859 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1860 return ERR_PTR(-EINVAL);
1861
e66eded8
EB
1862 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1863 return ERR_PTR(-EINVAL);
1864
1da177e4
LT
1865 /*
1866 * Thread groups must share signals as well, and detached threads
1867 * can only be started up within the thread group.
1868 */
1869 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1870 return ERR_PTR(-EINVAL);
1871
1872 /*
1873 * Shared signal handlers imply shared VM. By way of the above,
1874 * thread groups also imply shared VM. Blocking this case allows
1875 * for various simplifications in other code.
1876 */
1877 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1878 return ERR_PTR(-EINVAL);
1879
123be07b
SB
1880 /*
1881 * Siblings of global init remain as zombies on exit since they are
1882 * not reaped by their parent (swapper). To solve this and to avoid
1883 * multi-rooted process trees, prevent global and container-inits
1884 * from creating siblings.
1885 */
1886 if ((clone_flags & CLONE_PARENT) &&
1887 current->signal->flags & SIGNAL_UNKILLABLE)
1888 return ERR_PTR(-EINVAL);
1889
8382fcac 1890 /*
40a0d32d 1891 * If the new process will be in a different pid or user namespace
faf00da5 1892 * do not allow it to share a thread group with the forking task.
8382fcac 1893 */
faf00da5 1894 if (clone_flags & CLONE_THREAD) {
40a0d32d 1895 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
769071ac
AV
1896 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1897 return ERR_PTR(-EINVAL);
1898 }
1899
1900 /*
1901 * If the new process will be in a different time namespace
1902 * do not allow it to share VM or a thread group with the forking task.
1903 */
1904 if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1905 if (nsp->time_ns != nsp->time_ns_for_children)
40a0d32d
ON
1906 return ERR_PTR(-EINVAL);
1907 }
8382fcac 1908
b3e58382 1909 if (clone_flags & CLONE_PIDFD) {
b3e58382 1910 /*
b3e58382
CB
1911 * - CLONE_DETACHED is blocked so that we can potentially
1912 * reuse it later for CLONE_PIDFD.
1913 * - CLONE_THREAD is blocked until someone really needs it.
1914 */
7f192e3c 1915 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
b3e58382 1916 return ERR_PTR(-EINVAL);
b3e58382
CB
1917 }
1918
c3ad2c3b
EB
1919 /*
1920 * Force any signals received before this point to be delivered
1921 * before the fork happens. Collect up signals sent to multiple
1922 * processes that happen during the fork and delay them so that
1923 * they appear to happen after the fork.
1924 */
1925 sigemptyset(&delayed.signal);
1926 INIT_HLIST_NODE(&delayed.node);
1927
1928 spin_lock_irq(&current->sighand->siglock);
1929 if (!(clone_flags & CLONE_THREAD))
1930 hlist_add_head(&delayed.node, &current->signal->multiprocess);
1931 recalc_sigpending();
1932 spin_unlock_irq(&current->sighand->siglock);
1933 retval = -ERESTARTNOINTR;
1934 if (signal_pending(current))
1935 goto fork_out;
1936
1da177e4 1937 retval = -ENOMEM;
725fc629 1938 p = dup_task_struct(current, node);
1da177e4
LT
1939 if (!p)
1940 goto fork_out;
1941
4d6501dc
VN
1942 /*
1943 * This _must_ happen before we call free_task(), i.e. before we jump
1944 * to any of the bad_fork_* labels. This is to avoid freeing
1945 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1946 * kernel threads (PF_KTHREAD).
1947 */
7f192e3c 1948 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
4d6501dc
VN
1949 /*
1950 * Clear TID on mm_release()?
1951 */
7f192e3c 1952 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
4d6501dc 1953
f7e8b616
SR
1954 ftrace_graph_init_task(p);
1955
bea493a0
PZ
1956 rt_mutex_init_task(p);
1957
a21ee605 1958 lockdep_assert_irqs_enabled();
d12c1a37 1959#ifdef CONFIG_PROVE_LOCKING
de30a2b3
IM
1960 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1961#endif
1da177e4 1962 retval = -EAGAIN;
3b11a1de 1963 if (atomic_read(&p->real_cred->user->processes) >=
78d7d407 1964 task_rlimit(p, RLIMIT_NPROC)) {
b57922b6
EP
1965 if (p->real_cred->user != INIT_USER &&
1966 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1da177e4
LT
1967 goto bad_fork_free;
1968 }
72fa5997 1969 current->flags &= ~PF_NPROC_EXCEEDED;
1da177e4 1970
f1752eec
DH
1971 retval = copy_creds(p, clone_flags);
1972 if (retval < 0)
1973 goto bad_fork_free;
1da177e4
LT
1974
1975 /*
1976 * If multiple threads are within copy_process(), then this check
1977 * triggers too late. This doesn't hurt, the check is only there
1978 * to stop root fork bombs.
1979 */
04ec93fe 1980 retval = -EAGAIN;
c17d1a3a 1981 if (data_race(nr_threads >= max_threads))
1da177e4
LT
1982 goto bad_fork_cleanup_count;
1983
ca74e92b 1984 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
c1de45ca 1985 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
514ddb44 1986 p->flags |= PF_FORKNOEXEC;
1da177e4
LT
1987 INIT_LIST_HEAD(&p->children);
1988 INIT_LIST_HEAD(&p->sibling);
f41d911f 1989 rcu_copy_process(p);
1da177e4
LT
1990 p->vfork_done = NULL;
1991 spin_lock_init(&p->alloc_lock);
1da177e4 1992
1da177e4
LT
1993 init_sigpending(&p->pending);
1994
64861634 1995 p->utime = p->stime = p->gtime = 0;
40565b5a 1996#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
64861634 1997 p->utimescaled = p->stimescaled = 0;
40565b5a 1998#endif
9d7fb042
PZ
1999 prev_cputime_init(&p->prev_cputime);
2000
6a61671b 2001#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6
FW
2002 seqcount_init(&p->vtime.seqcount);
2003 p->vtime.starttime = 0;
2004 p->vtime.state = VTIME_INACTIVE;
6a61671b
FW
2005#endif
2006
0f212204
JA
2007#ifdef CONFIG_IO_URING
2008 p->io_uring = NULL;
2009#endif
2010
a3a2e76c
KH
2011#if defined(SPLIT_RSS_COUNTING)
2012 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2013#endif
172ba844 2014
6976675d
AV
2015 p->default_timer_slack_ns = current->timer_slack_ns;
2016
eb414681
JW
2017#ifdef CONFIG_PSI
2018 p->psi_flags = 0;
2019#endif
2020
5995477a 2021 task_io_accounting_init(&p->ioac);
1da177e4
LT
2022 acct_clear_integrals(p);
2023
3a245c0f 2024 posix_cputimers_init(&p->posix_cputimers);
1da177e4 2025
1da177e4 2026 p->io_context = NULL;
c0b0ae8a 2027 audit_set_context(p, NULL);
b4f48b63 2028 cgroup_fork(p);
1da177e4 2029#ifdef CONFIG_NUMA
846a16bf 2030 p->mempolicy = mpol_dup(p->mempolicy);
fb0a685c
DRO
2031 if (IS_ERR(p->mempolicy)) {
2032 retval = PTR_ERR(p->mempolicy);
2033 p->mempolicy = NULL;
e8604cb4 2034 goto bad_fork_cleanup_threadgroup_lock;
fb0a685c 2035 }
1da177e4 2036#endif
778d3b0f
MH
2037#ifdef CONFIG_CPUSETS
2038 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2039 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
b7505861 2040 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
778d3b0f 2041#endif
de30a2b3 2042#ifdef CONFIG_TRACE_IRQFLAGS
0584df9c
ME
2043 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2044 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2045 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2046 p->softirqs_enabled = 1;
2047 p->softirq_context = 0;
de30a2b3 2048#endif
8bcbde54
DH
2049
2050 p->pagefault_disabled = 0;
2051
fbb9ce95 2052#ifdef CONFIG_LOCKDEP
b09be676 2053 lockdep_init_task(p);
fbb9ce95 2054#endif
1da177e4 2055
408894ee
IM
2056#ifdef CONFIG_DEBUG_MUTEXES
2057 p->blocked_on = NULL; /* not blocked yet */
2058#endif
cafe5635
KO
2059#ifdef CONFIG_BCACHE
2060 p->sequential_io = 0;
2061 p->sequential_io_avg = 0;
2062#endif
0f481406 2063
3c90e6e9 2064 /* Perform scheduler related setup. Assign this task to a CPU. */
aab03e05
DF
2065 retval = sched_fork(clone_flags, p);
2066 if (retval)
2067 goto bad_fork_cleanup_policy;
6ab423e0 2068
cdd6c482 2069 retval = perf_event_init_task(p);
6ab423e0
PZ
2070 if (retval)
2071 goto bad_fork_cleanup_policy;
fb0a685c
DRO
2072 retval = audit_alloc(p);
2073 if (retval)
6c72e350 2074 goto bad_fork_cleanup_perf;
1da177e4 2075 /* copy all the process information */
ab602f79 2076 shm_init_task(p);
e4e55b47 2077 retval = security_task_alloc(p, clone_flags);
fb0a685c 2078 if (retval)
1da177e4 2079 goto bad_fork_cleanup_audit;
e4e55b47
TH
2080 retval = copy_semundo(clone_flags, p);
2081 if (retval)
2082 goto bad_fork_cleanup_security;
fb0a685c
DRO
2083 retval = copy_files(clone_flags, p);
2084 if (retval)
1da177e4 2085 goto bad_fork_cleanup_semundo;
fb0a685c
DRO
2086 retval = copy_fs(clone_flags, p);
2087 if (retval)
1da177e4 2088 goto bad_fork_cleanup_files;
fb0a685c
DRO
2089 retval = copy_sighand(clone_flags, p);
2090 if (retval)
1da177e4 2091 goto bad_fork_cleanup_fs;
fb0a685c
DRO
2092 retval = copy_signal(clone_flags, p);
2093 if (retval)
1da177e4 2094 goto bad_fork_cleanup_sighand;
fb0a685c
DRO
2095 retval = copy_mm(clone_flags, p);
2096 if (retval)
1da177e4 2097 goto bad_fork_cleanup_signal;
fb0a685c
DRO
2098 retval = copy_namespaces(clone_flags, p);
2099 if (retval)
d84f4f99 2100 goto bad_fork_cleanup_mm;
fb0a685c
DRO
2101 retval = copy_io(clone_flags, p);
2102 if (retval)
fd0928df 2103 goto bad_fork_cleanup_namespaces;
714acdbd 2104 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
1da177e4 2105 if (retval)
fd0928df 2106 goto bad_fork_cleanup_io;
1da177e4 2107
afaef01c
AP
2108 stackleak_task_init(p);
2109
425fb2b4 2110 if (pid != &init_struct_pid) {
49cb2fc4
AR
2111 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2112 args->set_tid_size);
35f71bc0
MH
2113 if (IS_ERR(pid)) {
2114 retval = PTR_ERR(pid);
0740aa5f 2115 goto bad_fork_cleanup_thread;
35f71bc0 2116 }
425fb2b4
PE
2117 }
2118
b3e58382
CB
2119 /*
2120 * This has to happen after we've potentially unshared the file
2121 * descriptor table (so that the pidfd doesn't leak into the child
2122 * if the fd table isn't shared).
2123 */
2124 if (clone_flags & CLONE_PIDFD) {
6fd2fe49 2125 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
b3e58382
CB
2126 if (retval < 0)
2127 goto bad_fork_free_pid;
2128
2129 pidfd = retval;
6fd2fe49
AV
2130
2131 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2132 O_RDWR | O_CLOEXEC);
2133 if (IS_ERR(pidfile)) {
2134 put_unused_fd(pidfd);
28dd29c0 2135 retval = PTR_ERR(pidfile);
6fd2fe49
AV
2136 goto bad_fork_free_pid;
2137 }
2138 get_pid(pid); /* held by pidfile now */
2139
7f192e3c 2140 retval = put_user(pidfd, args->pidfd);
b3e58382
CB
2141 if (retval)
2142 goto bad_fork_put_pidfd;
2143 }
2144
73c10101
JA
2145#ifdef CONFIG_BLOCK
2146 p->plug = NULL;
2147#endif
ba31c1a4
TG
2148 futex_init_task(p);
2149
f9a3879a
GM
2150 /*
2151 * sigaltstack should be cleared when sharing the same VM
2152 */
2153 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2a742138 2154 sas_ss_reset(p);
f9a3879a 2155
1da177e4 2156 /*
6580807d
ON
2157 * Syscall tracing and stepping should be turned off in the
2158 * child regardless of CLONE_PTRACE.
1da177e4 2159 */
6580807d 2160 user_disable_single_step(p);
1da177e4 2161 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
ed75e8d5
LV
2162#ifdef TIF_SYSCALL_EMU
2163 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2164#endif
e02c9b0d 2165 clear_tsk_latency_tracing(p);
1da177e4 2166
1da177e4 2167 /* ok, now we should be set up.. */
18c830df
ON
2168 p->pid = pid_nr(pid);
2169 if (clone_flags & CLONE_THREAD) {
5f8aadd8 2170 p->exit_signal = -1;
18c830df
ON
2171 p->group_leader = current->group_leader;
2172 p->tgid = current->tgid;
2173 } else {
2174 if (clone_flags & CLONE_PARENT)
2175 p->exit_signal = current->group_leader->exit_signal;
2176 else
7f192e3c 2177 p->exit_signal = args->exit_signal;
18c830df
ON
2178 p->group_leader = p;
2179 p->tgid = p->pid;
2180 }
5f8aadd8 2181
9d823e8f
WF
2182 p->nr_dirtied = 0;
2183 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
83712358 2184 p->dirty_paused_when = 0;
9d823e8f 2185
bb8cbbfe 2186 p->pdeath_signal = 0;
47e65328 2187 INIT_LIST_HEAD(&p->thread_group);
158e1645 2188 p->task_works = NULL;
1da177e4 2189
7e47682e
AS
2190 /*
2191 * Ensure that the cgroup subsystem policies allow the new process to be
7b7b8a2c 2192 * forked. It should be noted that the new process's css_set can be changed
7e47682e
AS
2193 * between here and cgroup_post_fork() if an organisation operation is in
2194 * progress.
2195 */
ef2c41cf 2196 retval = cgroup_can_fork(p, args);
7e47682e 2197 if (retval)
5a5cf5cb 2198 goto bad_fork_put_pidfd;
7e47682e 2199
7b558513
DH
2200 /*
2201 * From this point on we must avoid any synchronous user-space
2202 * communication until we take the tasklist-lock. In particular, we do
2203 * not want user-space to be able to predict the process start-time by
2204 * stalling fork(2) after we recorded the start_time but before it is
2205 * visible to the system.
2206 */
2207
2208 p->start_time = ktime_get_ns();
cf25e24d 2209 p->start_boottime = ktime_get_boottime_ns();
7b558513 2210
18c830df
ON
2211 /*
2212 * Make it visible to the rest of the system, but dont wake it up yet.
2213 * Need tasklist lock for parent etc handling!
2214 */
1da177e4
LT
2215 write_lock_irq(&tasklist_lock);
2216
1da177e4 2217 /* CLONE_PARENT re-uses the old parent */
2d5516cb 2218 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1da177e4 2219 p->real_parent = current->real_parent;
2d5516cb
ON
2220 p->parent_exec_id = current->parent_exec_id;
2221 } else {
1da177e4 2222 p->real_parent = current;
2d5516cb
ON
2223 p->parent_exec_id = current->self_exec_id;
2224 }
1da177e4 2225
d83a7cb3
JP
2226 klp_copy_process(p);
2227
3f17da69 2228 spin_lock(&current->sighand->siglock);
4a2c7a78 2229
dbd95212
KC
2230 /*
2231 * Copy seccomp details explicitly here, in case they were changed
2232 * before holding sighand lock.
2233 */
2234 copy_seccomp(p);
2235
d7822b1e
MD
2236 rseq_fork(p, clone_flags);
2237
4ca1d3ee 2238 /* Don't start children in a dying pid namespace */
e8cfbc24 2239 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
3fd37226
KT
2240 retval = -ENOMEM;
2241 goto bad_fork_cancel_cgroup;
2242 }
4a2c7a78 2243
7673bf55
EB
2244 /* Let kill terminate clone/fork in the middle */
2245 if (fatal_signal_pending(current)) {
2246 retval = -EINTR;
2247 goto bad_fork_cancel_cgroup;
2248 }
2249
6fd2fe49
AV
2250 /* past the last point of failure */
2251 if (pidfile)
2252 fd_install(pidfd, pidfile);
4a2c7a78 2253
2c470475 2254 init_task_pid_links(p);
73b9ebfe 2255 if (likely(p->pid)) {
4b9d33e6 2256 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
73b9ebfe 2257
81907739 2258 init_task_pid(p, PIDTYPE_PID, pid);
73b9ebfe 2259 if (thread_group_leader(p)) {
6883f81a 2260 init_task_pid(p, PIDTYPE_TGID, pid);
81907739
ON
2261 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2262 init_task_pid(p, PIDTYPE_SID, task_session(current));
2263
1c4042c2 2264 if (is_child_reaper(pid)) {
17cf22c3 2265 ns_of_pid(pid)->child_reaper = p;
1c4042c2
EB
2266 p->signal->flags |= SIGNAL_UNKILLABLE;
2267 }
c3ad2c3b 2268 p->signal->shared_pending.signal = delayed.signal;
9c9f4ded 2269 p->signal->tty = tty_kref_get(current->signal->tty);
749860ce
PT
2270 /*
2271 * Inherit has_child_subreaper flag under the same
2272 * tasklist_lock with adding child to the process tree
2273 * for propagate_has_child_subreaper optimization.
2274 */
2275 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2276 p->real_parent->signal->is_child_subreaper;
9cd80bbb 2277 list_add_tail(&p->sibling, &p->real_parent->children);
5e85d4ab 2278 list_add_tail_rcu(&p->tasks, &init_task.tasks);
6883f81a 2279 attach_pid(p, PIDTYPE_TGID);
81907739
ON
2280 attach_pid(p, PIDTYPE_PGID);
2281 attach_pid(p, PIDTYPE_SID);
909ea964 2282 __this_cpu_inc(process_counts);
80628ca0
ON
2283 } else {
2284 current->signal->nr_threads++;
2285 atomic_inc(&current->signal->live);
60d4de3f 2286 refcount_inc(&current->signal->sigcnt);
924de3b8 2287 task_join_group_stop(p);
80628ca0
ON
2288 list_add_tail_rcu(&p->thread_group,
2289 &p->group_leader->thread_group);
0c740d0a
ON
2290 list_add_tail_rcu(&p->thread_node,
2291 &p->signal->thread_head);
73b9ebfe 2292 }
81907739 2293 attach_pid(p, PIDTYPE_PID);
73b9ebfe 2294 nr_threads++;
1da177e4 2295 }
1da177e4 2296 total_forks++;
c3ad2c3b 2297 hlist_del_init(&delayed.node);
3f17da69 2298 spin_unlock(&current->sighand->siglock);
4af4206b 2299 syscall_tracepoint_update(p);
1da177e4 2300 write_unlock_irq(&tasklist_lock);
4af4206b 2301
c13cf856 2302 proc_fork_connector(p);
13685c4a 2303 sched_post_fork(p);
ef2c41cf 2304 cgroup_post_fork(p, args);
cdd6c482 2305 perf_event_fork(p);
43d2b113
KH
2306
2307 trace_task_newtask(p, clone_flags);
3ab67966 2308 uprobe_copy_process(p, clone_flags);
43d2b113 2309
67197a4f
SB
2310 copy_oom_score_adj(clone_flags, p);
2311
1da177e4
LT
2312 return p;
2313
7e47682e 2314bad_fork_cancel_cgroup:
3fd37226
KT
2315 spin_unlock(&current->sighand->siglock);
2316 write_unlock_irq(&tasklist_lock);
ef2c41cf 2317 cgroup_cancel_fork(p, args);
b3e58382 2318bad_fork_put_pidfd:
6fd2fe49
AV
2319 if (clone_flags & CLONE_PIDFD) {
2320 fput(pidfile);
2321 put_unused_fd(pidfd);
2322 }
425fb2b4
PE
2323bad_fork_free_pid:
2324 if (pid != &init_struct_pid)
2325 free_pid(pid);
0740aa5f
JS
2326bad_fork_cleanup_thread:
2327 exit_thread(p);
fd0928df 2328bad_fork_cleanup_io:
b69f2292
LR
2329 if (p->io_context)
2330 exit_io_context(p);
ab516013 2331bad_fork_cleanup_namespaces:
444f378b 2332 exit_task_namespaces(p);
1da177e4 2333bad_fork_cleanup_mm:
c3f3ce04
AA
2334 if (p->mm) {
2335 mm_clear_owner(p->mm, p);
1da177e4 2336 mmput(p->mm);
c3f3ce04 2337 }
1da177e4 2338bad_fork_cleanup_signal:
4ab6c083 2339 if (!(clone_flags & CLONE_THREAD))
1c5354de 2340 free_signal_struct(p->signal);
1da177e4 2341bad_fork_cleanup_sighand:
a7e5328a 2342 __cleanup_sighand(p->sighand);
1da177e4
LT
2343bad_fork_cleanup_fs:
2344 exit_fs(p); /* blocking */
2345bad_fork_cleanup_files:
2346 exit_files(p); /* blocking */
2347bad_fork_cleanup_semundo:
2348 exit_sem(p);
e4e55b47
TH
2349bad_fork_cleanup_security:
2350 security_task_free(p);
1da177e4
LT
2351bad_fork_cleanup_audit:
2352 audit_free(p);
6c72e350 2353bad_fork_cleanup_perf:
cdd6c482 2354 perf_event_free_task(p);
6c72e350 2355bad_fork_cleanup_policy:
b09be676 2356 lockdep_free_task(p);
1da177e4 2357#ifdef CONFIG_NUMA
f0be3d32 2358 mpol_put(p->mempolicy);
e8604cb4 2359bad_fork_cleanup_threadgroup_lock:
1da177e4 2360#endif
35df17c5 2361 delayacct_tsk_free(p);
1da177e4 2362bad_fork_cleanup_count:
d84f4f99 2363 atomic_dec(&p->cred->user->processes);
e0e81739 2364 exit_creds(p);
1da177e4 2365bad_fork_free:
405c0759 2366 p->state = TASK_DEAD;
68f24b08 2367 put_task_stack(p);
c3f3ce04 2368 delayed_free_task(p);
fe7d37d1 2369fork_out:
c3ad2c3b
EB
2370 spin_lock_irq(&current->sighand->siglock);
2371 hlist_del_init(&delayed.node);
2372 spin_unlock_irq(&current->sighand->siglock);
fe7d37d1 2373 return ERR_PTR(retval);
1da177e4
LT
2374}
2375
2c470475 2376static inline void init_idle_pids(struct task_struct *idle)
f106eee1
ON
2377{
2378 enum pid_type type;
2379
2380 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2c470475
EB
2381 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2382 init_task_pid(idle, type, &init_struct_pid);
f106eee1
ON
2383 }
2384}
2385
0db0628d 2386struct task_struct *fork_idle(int cpu)
1da177e4 2387{
36c8b586 2388 struct task_struct *task;
7f192e3c
CB
2389 struct kernel_clone_args args = {
2390 .flags = CLONE_VM,
2391 };
2392
2393 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
f106eee1 2394 if (!IS_ERR(task)) {
2c470475 2395 init_idle_pids(task);
753ca4f3 2396 init_idle(task, cpu);
f106eee1 2397 }
73b9ebfe 2398
1da177e4
LT
2399 return task;
2400}
2401
13585fa0
NA
2402struct mm_struct *copy_init_mm(void)
2403{
2404 return dup_mm(NULL, &init_mm);
2405}
2406
1da177e4
LT
2407/*
2408 * Ok, this is the main fork-routine.
2409 *
2410 * It copies the process, and if successful kick-starts
2411 * it and waits for it to finish using the VM if required.
a0eb9abd
ES
2412 *
2413 * args->exit_signal is expected to be checked for sanity by the caller.
1da177e4 2414 */
cad6967a 2415pid_t kernel_clone(struct kernel_clone_args *args)
1da177e4 2416{
7f192e3c 2417 u64 clone_flags = args->flags;
9f5325aa
MPS
2418 struct completion vfork;
2419 struct pid *pid;
1da177e4
LT
2420 struct task_struct *p;
2421 int trace = 0;
cad6967a 2422 pid_t nr;
1da177e4 2423
3af8588c
CB
2424 /*
2425 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2426 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2427 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2428 * field in struct clone_args and it still doesn't make sense to have
2429 * them both point at the same memory location. Performing this check
2430 * here has the advantage that we don't need to have a separate helper
2431 * to check for legacy clone().
2432 */
2433 if ((args->flags & CLONE_PIDFD) &&
2434 (args->flags & CLONE_PARENT_SETTID) &&
2435 (args->pidfd == args->parent_tid))
2436 return -EINVAL;
2437
09a05394 2438 /*
4b9d33e6
TH
2439 * Determine whether and which event to report to ptracer. When
2440 * called from kernel_thread or CLONE_UNTRACED is explicitly
2441 * requested, no event is reported; otherwise, report if the event
2442 * for the type of forking is enabled.
09a05394 2443 */
e80d6661 2444 if (!(clone_flags & CLONE_UNTRACED)) {
4b9d33e6
TH
2445 if (clone_flags & CLONE_VFORK)
2446 trace = PTRACE_EVENT_VFORK;
7f192e3c 2447 else if (args->exit_signal != SIGCHLD)
4b9d33e6
TH
2448 trace = PTRACE_EVENT_CLONE;
2449 else
2450 trace = PTRACE_EVENT_FORK;
2451
2452 if (likely(!ptrace_event_enabled(current, trace)))
2453 trace = 0;
2454 }
1da177e4 2455
7f192e3c 2456 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
38addce8 2457 add_latent_entropy();
9f5325aa
MPS
2458
2459 if (IS_ERR(p))
2460 return PTR_ERR(p);
2461
1da177e4
LT
2462 /*
2463 * Do this prior waking up the new thread - the thread pointer
2464 * might get invalid after that point, if the thread exits quickly.
2465 */
9f5325aa 2466 trace_sched_process_fork(current, p);
0a16b607 2467
9f5325aa
MPS
2468 pid = get_task_pid(p, PIDTYPE_PID);
2469 nr = pid_vnr(pid);
30e49c26 2470
9f5325aa 2471 if (clone_flags & CLONE_PARENT_SETTID)
7f192e3c 2472 put_user(nr, args->parent_tid);
a6f5e063 2473
9f5325aa
MPS
2474 if (clone_flags & CLONE_VFORK) {
2475 p->vfork_done = &vfork;
2476 init_completion(&vfork);
2477 get_task_struct(p);
2478 }
1da177e4 2479
9f5325aa 2480 wake_up_new_task(p);
09a05394 2481
9f5325aa
MPS
2482 /* forking complete and child started to run, tell ptracer */
2483 if (unlikely(trace))
2484 ptrace_event_pid(trace, pid);
4e52365f 2485
9f5325aa
MPS
2486 if (clone_flags & CLONE_VFORK) {
2487 if (!wait_for_vfork_done(p, &vfork))
2488 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1da177e4 2489 }
9f5325aa
MPS
2490
2491 put_pid(pid);
92476d7f 2492 return nr;
1da177e4
LT
2493}
2494
2aa3a7f8
AV
2495/*
2496 * Create a kernel thread.
2497 */
2498pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2499{
7f192e3c 2500 struct kernel_clone_args args = {
3f2c788a
CB
2501 .flags = ((lower_32_bits(flags) | CLONE_VM |
2502 CLONE_UNTRACED) & ~CSIGNAL),
2503 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
7f192e3c
CB
2504 .stack = (unsigned long)fn,
2505 .stack_size = (unsigned long)arg,
2506 };
2507
cad6967a 2508 return kernel_clone(&args);
2aa3a7f8 2509}
2aa3a7f8 2510
d2125043
AV
2511#ifdef __ARCH_WANT_SYS_FORK
2512SYSCALL_DEFINE0(fork)
2513{
2514#ifdef CONFIG_MMU
7f192e3c
CB
2515 struct kernel_clone_args args = {
2516 .exit_signal = SIGCHLD,
2517 };
2518
cad6967a 2519 return kernel_clone(&args);
d2125043
AV
2520#else
2521 /* can not support in nommu mode */
5d59e182 2522 return -EINVAL;
d2125043
AV
2523#endif
2524}
2525#endif
2526
2527#ifdef __ARCH_WANT_SYS_VFORK
2528SYSCALL_DEFINE0(vfork)
2529{
7f192e3c
CB
2530 struct kernel_clone_args args = {
2531 .flags = CLONE_VFORK | CLONE_VM,
2532 .exit_signal = SIGCHLD,
2533 };
2534
cad6967a 2535 return kernel_clone(&args);
d2125043
AV
2536}
2537#endif
2538
2539#ifdef __ARCH_WANT_SYS_CLONE
2540#ifdef CONFIG_CLONE_BACKWARDS
2541SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2542 int __user *, parent_tidptr,
3033f14a 2543 unsigned long, tls,
d2125043
AV
2544 int __user *, child_tidptr)
2545#elif defined(CONFIG_CLONE_BACKWARDS2)
2546SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2547 int __user *, parent_tidptr,
2548 int __user *, child_tidptr,
3033f14a 2549 unsigned long, tls)
dfa9771a
MS
2550#elif defined(CONFIG_CLONE_BACKWARDS3)
2551SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2552 int, stack_size,
2553 int __user *, parent_tidptr,
2554 int __user *, child_tidptr,
3033f14a 2555 unsigned long, tls)
d2125043
AV
2556#else
2557SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2558 int __user *, parent_tidptr,
2559 int __user *, child_tidptr,
3033f14a 2560 unsigned long, tls)
d2125043
AV
2561#endif
2562{
7f192e3c 2563 struct kernel_clone_args args = {
3f2c788a 2564 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
7f192e3c
CB
2565 .pidfd = parent_tidptr,
2566 .child_tid = child_tidptr,
2567 .parent_tid = parent_tidptr,
3f2c788a 2568 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
7f192e3c
CB
2569 .stack = newsp,
2570 .tls = tls,
2571 };
2572
cad6967a 2573 return kernel_clone(&args);
7f192e3c 2574}
d68dbb0c 2575#endif
7f192e3c 2576
d68dbb0c 2577#ifdef __ARCH_WANT_SYS_CLONE3
dd499f7a 2578
7f192e3c
CB
2579noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2580 struct clone_args __user *uargs,
f14c234b 2581 size_t usize)
7f192e3c 2582{
f14c234b 2583 int err;
7f192e3c 2584 struct clone_args args;
49cb2fc4 2585 pid_t *kset_tid = kargs->set_tid;
7f192e3c 2586
a966dcfe
ES
2587 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2588 CLONE_ARGS_SIZE_VER0);
2589 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2590 CLONE_ARGS_SIZE_VER1);
2591 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2592 CLONE_ARGS_SIZE_VER2);
2593 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2594
f14c234b 2595 if (unlikely(usize > PAGE_SIZE))
7f192e3c 2596 return -E2BIG;
f14c234b 2597 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
7f192e3c
CB
2598 return -EINVAL;
2599
f14c234b
AS
2600 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2601 if (err)
2602 return err;
7f192e3c 2603
49cb2fc4
AR
2604 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2605 return -EINVAL;
2606
2607 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2608 return -EINVAL;
2609
2610 if (unlikely(args.set_tid && args.set_tid_size == 0))
2611 return -EINVAL;
2612
a0eb9abd
ES
2613 /*
2614 * Verify that higher 32bits of exit_signal are unset and that
2615 * it is a valid signal
2616 */
2617 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2618 !valid_signal(args.exit_signal)))
2619 return -EINVAL;
2620
62173872
ES
2621 if ((args.flags & CLONE_INTO_CGROUP) &&
2622 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
ef2c41cf
CB
2623 return -EINVAL;
2624
7f192e3c
CB
2625 *kargs = (struct kernel_clone_args){
2626 .flags = args.flags,
2627 .pidfd = u64_to_user_ptr(args.pidfd),
2628 .child_tid = u64_to_user_ptr(args.child_tid),
2629 .parent_tid = u64_to_user_ptr(args.parent_tid),
2630 .exit_signal = args.exit_signal,
2631 .stack = args.stack,
2632 .stack_size = args.stack_size,
2633 .tls = args.tls,
49cb2fc4 2634 .set_tid_size = args.set_tid_size,
ef2c41cf 2635 .cgroup = args.cgroup,
7f192e3c
CB
2636 };
2637
49cb2fc4
AR
2638 if (args.set_tid &&
2639 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2640 (kargs->set_tid_size * sizeof(pid_t))))
2641 return -EFAULT;
2642
2643 kargs->set_tid = kset_tid;
2644
7f192e3c
CB
2645 return 0;
2646}
2647
fa729c4d
CB
2648/**
2649 * clone3_stack_valid - check and prepare stack
2650 * @kargs: kernel clone args
2651 *
2652 * Verify that the stack arguments userspace gave us are sane.
2653 * In addition, set the stack direction for userspace since it's easy for us to
2654 * determine.
2655 */
2656static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2657{
2658 if (kargs->stack == 0) {
2659 if (kargs->stack_size > 0)
2660 return false;
2661 } else {
2662 if (kargs->stack_size == 0)
2663 return false;
2664
2665 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2666 return false;
2667
2668#if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2669 kargs->stack += kargs->stack_size;
2670#endif
2671 }
2672
2673 return true;
2674}
2675
2676static bool clone3_args_valid(struct kernel_clone_args *kargs)
7f192e3c 2677{
b612e5df 2678 /* Verify that no unknown flags are passed along. */
ef2c41cf
CB
2679 if (kargs->flags &
2680 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
7f192e3c
CB
2681 return false;
2682
2683 /*
2684 * - make the CLONE_DETACHED bit reuseable for clone3
2685 * - make the CSIGNAL bits reuseable for clone3
2686 */
2687 if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2688 return false;
2689
b612e5df
CB
2690 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2691 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2692 return false;
2693
7f192e3c
CB
2694 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2695 kargs->exit_signal)
2696 return false;
2697
fa729c4d
CB
2698 if (!clone3_stack_valid(kargs))
2699 return false;
2700
7f192e3c
CB
2701 return true;
2702}
2703
501bd016
CB
2704/**
2705 * clone3 - create a new process with specific properties
2706 * @uargs: argument structure
2707 * @size: size of @uargs
2708 *
2709 * clone3() is the extensible successor to clone()/clone2().
2710 * It takes a struct as argument that is versioned by its size.
2711 *
2712 * Return: On success, a positive PID for the child process.
2713 * On error, a negative errno number.
2714 */
7f192e3c
CB
2715SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2716{
2717 int err;
2718
2719 struct kernel_clone_args kargs;
49cb2fc4
AR
2720 pid_t set_tid[MAX_PID_NS_LEVEL];
2721
2722 kargs.set_tid = set_tid;
7f192e3c
CB
2723
2724 err = copy_clone_args_from_user(&kargs, uargs, size);
2725 if (err)
2726 return err;
2727
2728 if (!clone3_args_valid(&kargs))
2729 return -EINVAL;
2730
cad6967a 2731 return kernel_clone(&kargs);
d2125043
AV
2732}
2733#endif
2734
0f1b92cb
ON
2735void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2736{
2737 struct task_struct *leader, *parent, *child;
2738 int res;
2739
2740 read_lock(&tasklist_lock);
2741 leader = top = top->group_leader;
2742down:
2743 for_each_thread(leader, parent) {
2744 list_for_each_entry(child, &parent->children, sibling) {
2745 res = visitor(child, data);
2746 if (res) {
2747 if (res < 0)
2748 goto out;
2749 leader = child;
2750 goto down;
2751 }
2752up:
2753 ;
2754 }
2755 }
2756
2757 if (leader != top) {
2758 child = leader;
2759 parent = child->real_parent;
2760 leader = parent->group_leader;
2761 goto up;
2762 }
2763out:
2764 read_unlock(&tasklist_lock);
2765}
2766
5fd63b30
RT
2767#ifndef ARCH_MIN_MMSTRUCT_ALIGN
2768#define ARCH_MIN_MMSTRUCT_ALIGN 0
2769#endif
2770
51cc5068 2771static void sighand_ctor(void *data)
aa1757f9
ON
2772{
2773 struct sighand_struct *sighand = data;
2774
a35afb83 2775 spin_lock_init(&sighand->siglock);
b8fceee1 2776 init_waitqueue_head(&sighand->signalfd_wqh);
aa1757f9
ON
2777}
2778
1da177e4
LT
2779void __init proc_caches_init(void)
2780{
c1a2f7f0
RR
2781 unsigned int mm_size;
2782
1da177e4
LT
2783 sighand_cachep = kmem_cache_create("sighand_cache",
2784 sizeof(struct sighand_struct), 0,
5f0d5a3a 2785 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
75f296d9 2786 SLAB_ACCOUNT, sighand_ctor);
1da177e4
LT
2787 signal_cachep = kmem_cache_create("signal_cache",
2788 sizeof(struct signal_struct), 0,
75f296d9 2789 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 2790 NULL);
20c2df83 2791 files_cachep = kmem_cache_create("files_cache",
1da177e4 2792 sizeof(struct files_struct), 0,
75f296d9 2793 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 2794 NULL);
20c2df83 2795 fs_cachep = kmem_cache_create("fs_cache",
1da177e4 2796 sizeof(struct fs_struct), 0,
75f296d9 2797 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 2798 NULL);
c1a2f7f0 2799
6345d24d 2800 /*
c1a2f7f0
RR
2801 * The mm_cpumask is located at the end of mm_struct, and is
2802 * dynamically sized based on the maximum CPU number this system
2803 * can have, taking hotplug into account (nr_cpu_ids).
6345d24d 2804 */
c1a2f7f0
RR
2805 mm_size = sizeof(struct mm_struct) + cpumask_size();
2806
07dcd7fe 2807 mm_cachep = kmem_cache_create_usercopy("mm_struct",
c1a2f7f0 2808 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
75f296d9 2809 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
07dcd7fe
DW
2810 offsetof(struct mm_struct, saved_auxv),
2811 sizeof_field(struct mm_struct, saved_auxv),
5d097056
VD
2812 NULL);
2813 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
8feae131 2814 mmap_init();
66577193 2815 nsproxy_cache_init();
1da177e4 2816}
cf2e340f 2817
cf2e340f 2818/*
9bfb23fc 2819 * Check constraints on flags passed to the unshare system call.
cf2e340f 2820 */
9bfb23fc 2821static int check_unshare_flags(unsigned long unshare_flags)
cf2e340f 2822{
9bfb23fc
ON
2823 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2824 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
50804fe3 2825 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
769071ac
AV
2826 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2827 CLONE_NEWTIME))
9bfb23fc 2828 return -EINVAL;
cf2e340f 2829 /*
12c641ab
EB
2830 * Not implemented, but pretend it works if there is nothing
2831 * to unshare. Note that unsharing the address space or the
2832 * signal handlers also need to unshare the signal queues (aka
2833 * CLONE_THREAD).
cf2e340f 2834 */
9bfb23fc 2835 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
12c641ab
EB
2836 if (!thread_group_empty(current))
2837 return -EINVAL;
2838 }
2839 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
d036bda7 2840 if (refcount_read(&current->sighand->count) > 1)
12c641ab
EB
2841 return -EINVAL;
2842 }
2843 if (unshare_flags & CLONE_VM) {
2844 if (!current_is_single_threaded())
9bfb23fc
ON
2845 return -EINVAL;
2846 }
cf2e340f
JD
2847
2848 return 0;
2849}
2850
2851/*
99d1419d 2852 * Unshare the filesystem structure if it is being shared
cf2e340f
JD
2853 */
2854static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2855{
2856 struct fs_struct *fs = current->fs;
2857
498052bb
AV
2858 if (!(unshare_flags & CLONE_FS) || !fs)
2859 return 0;
2860
2861 /* don't need lock here; in the worst case we'll do useless copy */
2862 if (fs->users == 1)
2863 return 0;
2864
2865 *new_fsp = copy_fs_struct(fs);
2866 if (!*new_fsp)
2867 return -ENOMEM;
cf2e340f
JD
2868
2869 return 0;
2870}
2871
cf2e340f 2872/*
a016f338 2873 * Unshare file descriptor table if it is being shared
cf2e340f 2874 */
60997c3d
CB
2875int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
2876 struct files_struct **new_fdp)
cf2e340f
JD
2877{
2878 struct files_struct *fd = current->files;
a016f338 2879 int error = 0;
cf2e340f
JD
2880
2881 if ((unshare_flags & CLONE_FILES) &&
a016f338 2882 (fd && atomic_read(&fd->count) > 1)) {
60997c3d 2883 *new_fdp = dup_fd(fd, max_fds, &error);
a016f338
JD
2884 if (!*new_fdp)
2885 return error;
2886 }
cf2e340f
JD
2887
2888 return 0;
2889}
2890
cf2e340f
JD
2891/*
2892 * unshare allows a process to 'unshare' part of the process
2893 * context which was originally shared using clone. copy_*
cad6967a 2894 * functions used by kernel_clone() cannot be used here directly
cf2e340f
JD
2895 * because they modify an inactive task_struct that is being
2896 * constructed. Here we are modifying the current, active,
2897 * task_struct.
2898 */
9b32105e 2899int ksys_unshare(unsigned long unshare_flags)
cf2e340f 2900{
cf2e340f 2901 struct fs_struct *fs, *new_fs = NULL;
cf2e340f 2902 struct files_struct *fd, *new_fd = NULL;
b2e0d987 2903 struct cred *new_cred = NULL;
cf7b708c 2904 struct nsproxy *new_nsproxy = NULL;
9edff4ab 2905 int do_sysvsem = 0;
9bfb23fc 2906 int err;
cf2e340f 2907
b2e0d987 2908 /*
faf00da5
EB
2909 * If unsharing a user namespace must also unshare the thread group
2910 * and unshare the filesystem root and working directories.
b2e0d987
EB
2911 */
2912 if (unshare_flags & CLONE_NEWUSER)
e66eded8 2913 unshare_flags |= CLONE_THREAD | CLONE_FS;
50804fe3
EB
2914 /*
2915 * If unsharing vm, must also unshare signal handlers.
2916 */
2917 if (unshare_flags & CLONE_VM)
2918 unshare_flags |= CLONE_SIGHAND;
12c641ab
EB
2919 /*
2920 * If unsharing a signal handlers, must also unshare the signal queues.
2921 */
2922 if (unshare_flags & CLONE_SIGHAND)
2923 unshare_flags |= CLONE_THREAD;
9bfb23fc
ON
2924 /*
2925 * If unsharing namespace, must also unshare filesystem information.
2926 */
2927 if (unshare_flags & CLONE_NEWNS)
2928 unshare_flags |= CLONE_FS;
50804fe3
EB
2929
2930 err = check_unshare_flags(unshare_flags);
2931 if (err)
2932 goto bad_unshare_out;
6013f67f
MS
2933 /*
2934 * CLONE_NEWIPC must also detach from the undolist: after switching
2935 * to a new ipc namespace, the semaphore arrays from the old
2936 * namespace are unreachable.
2937 */
2938 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
9edff4ab 2939 do_sysvsem = 1;
fb0a685c
DRO
2940 err = unshare_fs(unshare_flags, &new_fs);
2941 if (err)
9bfb23fc 2942 goto bad_unshare_out;
60997c3d 2943 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
fb0a685c 2944 if (err)
9bfb23fc 2945 goto bad_unshare_cleanup_fs;
b2e0d987 2946 err = unshare_userns(unshare_flags, &new_cred);
fb0a685c 2947 if (err)
9edff4ab 2948 goto bad_unshare_cleanup_fd;
b2e0d987
EB
2949 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2950 new_cred, new_fs);
2951 if (err)
2952 goto bad_unshare_cleanup_cred;
c0b2fc31 2953
b2e0d987 2954 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
9edff4ab
MS
2955 if (do_sysvsem) {
2956 /*
2957 * CLONE_SYSVSEM is equivalent to sys_exit().
2958 */
2959 exit_sem(current);
2960 }
ab602f79
JM
2961 if (unshare_flags & CLONE_NEWIPC) {
2962 /* Orphan segments in old ns (see sem above). */
2963 exit_shm(current);
2964 shm_init_task(current);
2965 }
ab516013 2966
6f977e6b 2967 if (new_nsproxy)
cf7b708c 2968 switch_task_namespaces(current, new_nsproxy);
cf2e340f 2969
cf7b708c
PE
2970 task_lock(current);
2971
cf2e340f
JD
2972 if (new_fs) {
2973 fs = current->fs;
2a4419b5 2974 spin_lock(&fs->lock);
cf2e340f 2975 current->fs = new_fs;
498052bb
AV
2976 if (--fs->users)
2977 new_fs = NULL;
2978 else
2979 new_fs = fs;
2a4419b5 2980 spin_unlock(&fs->lock);
cf2e340f
JD
2981 }
2982
cf2e340f
JD
2983 if (new_fd) {
2984 fd = current->files;
2985 current->files = new_fd;
2986 new_fd = fd;
2987 }
2988
2989 task_unlock(current);
b2e0d987
EB
2990
2991 if (new_cred) {
2992 /* Install the new user namespace */
2993 commit_creds(new_cred);
2994 new_cred = NULL;
2995 }
cf2e340f
JD
2996 }
2997
e4222673
HB
2998 perf_event_namespaces(current);
2999
b2e0d987
EB
3000bad_unshare_cleanup_cred:
3001 if (new_cred)
3002 put_cred(new_cred);
cf2e340f
JD
3003bad_unshare_cleanup_fd:
3004 if (new_fd)
3005 put_files_struct(new_fd);
3006
cf2e340f
JD
3007bad_unshare_cleanup_fs:
3008 if (new_fs)
498052bb 3009 free_fs_struct(new_fs);
cf2e340f 3010
cf2e340f
JD
3011bad_unshare_out:
3012 return err;
3013}
3b125388 3014
9b32105e
DB
3015SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3016{
3017 return ksys_unshare(unshare_flags);
3018}
3019
3b125388
AV
3020/*
3021 * Helper to unshare the files of the current task.
3022 * We don't want to expose copy_files internals to
3023 * the exec layer of the kernel.
3024 */
3025
3026int unshare_files(struct files_struct **displaced)
3027{
3028 struct task_struct *task = current;
50704516 3029 struct files_struct *copy = NULL;
3b125388
AV
3030 int error;
3031
60997c3d 3032 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3b125388
AV
3033 if (error || !copy) {
3034 *displaced = NULL;
3035 return error;
3036 }
3037 *displaced = task->files;
3038 task_lock(task);
3039 task->files = copy;
3040 task_unlock(task);
3041 return 0;
3042}
16db3d3f
HS
3043
3044int sysctl_max_threads(struct ctl_table *table, int write,
b0daa2c7 3045 void *buffer, size_t *lenp, loff_t *ppos)
16db3d3f
HS
3046{
3047 struct ctl_table t;
3048 int ret;
3049 int threads = max_threads;
b0f53dbc 3050 int min = 1;
16db3d3f
HS
3051 int max = MAX_THREADS;
3052
3053 t = *table;
3054 t.data = &threads;
3055 t.extra1 = &min;
3056 t.extra2 = &max;
3057
3058 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3059 if (ret || !write)
3060 return ret;
3061
b0f53dbc 3062 max_threads = threads;
16db3d3f
HS
3063
3064 return 0;
3065}