mm/page_alloc: fix potential deadlock on zonelist_update_seq seqlock
[linux-block.git] / kernel / fork.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8/*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
b3e58382 15#include <linux/anon_inodes.h>
1da177e4 16#include <linux/slab.h>
4eb5aaa3 17#include <linux/sched/autogroup.h>
6e84f315 18#include <linux/sched/mm.h>
f7ccbae4 19#include <linux/sched/coredump.h>
8703e8a4 20#include <linux/sched/user.h>
6a3827d7 21#include <linux/sched/numa_balancing.h>
03441a34 22#include <linux/sched/stat.h>
29930025 23#include <linux/sched/task.h>
68db0cf1 24#include <linux/sched/task_stack.h>
32ef5517 25#include <linux/sched/cputime.h>
b3e58382 26#include <linux/seq_file.h>
037741a6 27#include <linux/rtmutex.h>
1da177e4
LT
28#include <linux/init.h>
29#include <linux/unistd.h>
1da177e4
LT
30#include <linux/module.h>
31#include <linux/vmalloc.h>
32#include <linux/completion.h>
1da177e4
LT
33#include <linux/personality.h>
34#include <linux/mempolicy.h>
35#include <linux/sem.h>
36#include <linux/file.h>
9f3acc31 37#include <linux/fdtable.h>
da9cbc87 38#include <linux/iocontext.h>
1da177e4 39#include <linux/key.h>
50b5e49c 40#include <linux/kmsan.h>
1da177e4
LT
41#include <linux/binfmts.h>
42#include <linux/mman.h>
cddb8a5c 43#include <linux/mmu_notifier.h>
1da177e4 44#include <linux/fs.h>
615d6e87 45#include <linux/mm.h>
17fca131 46#include <linux/mm_inline.h>
ab516013 47#include <linux/nsproxy.h>
c59ede7b 48#include <linux/capability.h>
1da177e4 49#include <linux/cpu.h>
b4f48b63 50#include <linux/cgroup.h>
1da177e4 51#include <linux/security.h>
a1e78772 52#include <linux/hugetlb.h>
e2cfabdf 53#include <linux/seccomp.h>
1da177e4
LT
54#include <linux/swap.h>
55#include <linux/syscalls.h>
56#include <linux/jiffies.h>
57#include <linux/futex.h>
8141c7f3 58#include <linux/compat.h>
207205a2 59#include <linux/kthread.h>
7c3ab738 60#include <linux/task_io_accounting_ops.h>
ab2af1f5 61#include <linux/rcupdate.h>
1da177e4
LT
62#include <linux/ptrace.h>
63#include <linux/mount.h>
64#include <linux/audit.h>
78fb7466 65#include <linux/memcontrol.h>
f201ae23 66#include <linux/ftrace.h>
5e2bf014 67#include <linux/proc_fs.h>
1da177e4
LT
68#include <linux/profile.h>
69#include <linux/rmap.h>
f8af4da3 70#include <linux/ksm.h>
1da177e4 71#include <linux/acct.h>
893e26e6 72#include <linux/userfaultfd_k.h>
8f0ab514 73#include <linux/tsacct_kern.h>
9f46080c 74#include <linux/cn_proc.h>
ba96a0c8 75#include <linux/freezer.h>
ca74e92b 76#include <linux/delayacct.h>
ad4ecbcb 77#include <linux/taskstats_kern.h>
522ed776 78#include <linux/tty.h>
5ad4e53b 79#include <linux/fs_struct.h>
7c9f8861 80#include <linux/magic.h>
cdd6c482 81#include <linux/perf_event.h>
42c4ab41 82#include <linux/posix-timers.h>
8e7cac79 83#include <linux/user-return-notifier.h>
3d5992d2 84#include <linux/oom.h>
ba76149f 85#include <linux/khugepaged.h>
d80e731e 86#include <linux/signalfd.h>
0326f5a9 87#include <linux/uprobes.h>
a27bb332 88#include <linux/aio.h>
52f5684c 89#include <linux/compiler.h>
16db3d3f 90#include <linux/sysctl.h>
5c9a8750 91#include <linux/kcov.h>
d83a7cb3 92#include <linux/livepatch.h>
48ac3c18 93#include <linux/thread_info.h>
afaef01c 94#include <linux/stackleak.h>
eafb149e 95#include <linux/kasan.h>
d08b9f0c 96#include <linux/scs.h>
0f212204 97#include <linux/io_uring.h>
a10787e6 98#include <linux/bpf.h>
b3883a9a 99#include <linux/stackprotector.h>
1da177e4 100
1da177e4 101#include <asm/pgalloc.h>
7c0f6ba6 102#include <linux/uaccess.h>
1da177e4
LT
103#include <asm/mmu_context.h>
104#include <asm/cacheflush.h>
105#include <asm/tlbflush.h>
106
ad8d75ff
SR
107#include <trace/events/sched.h>
108
43d2b113
KH
109#define CREATE_TRACE_POINTS
110#include <trace/events/task.h>
111
ac1b398d
HS
112/*
113 * Minimum number of threads to boot the kernel
114 */
115#define MIN_THREADS 20
116
117/*
118 * Maximum number of threads
119 */
120#define MAX_THREADS FUTEX_TID_MASK
121
1da177e4
LT
122/*
123 * Protected counters by write_lock_irq(&tasklist_lock)
124 */
125unsigned long total_forks; /* Handle normal Linux uptimes. */
fb0a685c 126int nr_threads; /* The idle threads do not count.. */
1da177e4 127
8856ae4d 128static int max_threads; /* tunable limit on nr_threads */
1da177e4 129
8495f7e6
SPP
130#define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
131
132static const char * const resident_page_types[] = {
133 NAMED_ARRAY_INDEX(MM_FILEPAGES),
134 NAMED_ARRAY_INDEX(MM_ANONPAGES),
135 NAMED_ARRAY_INDEX(MM_SWAPENTS),
136 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
137};
138
1da177e4
LT
139DEFINE_PER_CPU(unsigned long, process_counts) = 0;
140
c59923a1 141__cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
db1466b3
PM
142
143#ifdef CONFIG_PROVE_RCU
144int lockdep_tasklist_lock_is_held(void)
145{
146 return lockdep_is_held(&tasklist_lock);
147}
148EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
149#endif /* #ifdef CONFIG_PROVE_RCU */
1da177e4
LT
150
151int nr_processes(void)
152{
153 int cpu;
154 int total = 0;
155
1d510750 156 for_each_possible_cpu(cpu)
1da177e4
LT
157 total += per_cpu(process_counts, cpu);
158
159 return total;
160}
161
f19b9f74
AM
162void __weak arch_release_task_struct(struct task_struct *tsk)
163{
164}
165
f5e10287 166#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
e18b890b 167static struct kmem_cache *task_struct_cachep;
41101809
TG
168
169static inline struct task_struct *alloc_task_struct_node(int node)
170{
171 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
172}
173
41101809
TG
174static inline void free_task_struct(struct task_struct *tsk)
175{
41101809
TG
176 kmem_cache_free(task_struct_cachep, tsk);
177}
1da177e4
LT
178#endif
179
b235beea 180#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
41101809 181
0d15d74a
TG
182/*
183 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
184 * kmemcache based allocator.
185 */
ba14a194 186# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
ac496bf4 187
be9a2277 188# ifdef CONFIG_VMAP_STACK
ac496bf4
AL
189/*
190 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
191 * flush. Try to minimize the number of calls by caching stacks.
192 */
193#define NR_CACHED_STACKS 2
194static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
19659c59 195
e540bf31
SAS
196struct vm_stack {
197 struct rcu_head rcu;
198 struct vm_struct *stack_vm_area;
199};
200
201static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
202{
203 unsigned int i;
204
205 for (i = 0; i < NR_CACHED_STACKS; i++) {
206 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
207 continue;
208 return true;
209 }
210 return false;
211}
212
213static void thread_stack_free_rcu(struct rcu_head *rh)
214{
215 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
216
217 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
218 return;
219
220 vfree(vm_stack);
221}
222
223static void thread_stack_delayed_free(struct task_struct *tsk)
224{
225 struct vm_stack *vm_stack = tsk->stack;
226
227 vm_stack->stack_vm_area = tsk->stack_vm_area;
228 call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
229}
230
19659c59
HR
231static int free_vm_stack_cache(unsigned int cpu)
232{
233 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
234 int i;
235
236 for (i = 0; i < NR_CACHED_STACKS; i++) {
237 struct vm_struct *vm_stack = cached_vm_stacks[i];
238
239 if (!vm_stack)
240 continue;
241
242 vfree(vm_stack->addr);
243 cached_vm_stacks[i] = NULL;
244 }
245
246 return 0;
247}
ac496bf4 248
1a03d3f1 249static int memcg_charge_kernel_stack(struct vm_struct *vm)
b69c49b7 250{
f1c1a9ee
SAS
251 int i;
252 int ret;
253
254 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
255 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
256
257 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
258 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
259 if (ret)
260 goto err;
261 }
262 return 0;
263err:
264 /*
265 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is
266 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will
267 * ignore this page.
268 */
269 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
270 memcg_kmem_uncharge_page(vm->pages[i], 0);
271 return ret;
272}
273
7865aba3 274static int alloc_thread_stack_node(struct task_struct *tsk, int node)
b69c49b7 275{
1a03d3f1 276 struct vm_struct *vm;
ac496bf4
AL
277 void *stack;
278 int i;
279
ac496bf4 280 for (i = 0; i < NR_CACHED_STACKS; i++) {
112166f8
CL
281 struct vm_struct *s;
282
283 s = this_cpu_xchg(cached_stacks[i], NULL);
ac496bf4
AL
284
285 if (!s)
286 continue;
ac496bf4 287
51fb34de 288 /* Reset stack metadata. */
cebd0eb2 289 kasan_unpoison_range(s->addr, THREAD_SIZE);
eafb149e 290
51fb34de
AK
291 stack = kasan_reset_tag(s->addr);
292
ca182551 293 /* Clear stale pointers from reused stack. */
51fb34de 294 memset(stack, 0, THREAD_SIZE);
e01e8063 295
1a03d3f1 296 if (memcg_charge_kernel_stack(s)) {
f1c1a9ee
SAS
297 vfree(s->addr);
298 return -ENOMEM;
299 }
300
ac496bf4 301 tsk->stack_vm_area = s;
51fb34de 302 tsk->stack = stack;
7865aba3 303 return 0;
ac496bf4 304 }
ac496bf4 305
9b6f7e16
RG
306 /*
307 * Allocated stacks are cached and later reused by new threads,
308 * so memcg accounting is performed manually on assigning/releasing
309 * stacks to tasks. Drop __GFP_ACCOUNT.
310 */
48ac3c18 311 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
ac496bf4 312 VMALLOC_START, VMALLOC_END,
9b6f7e16 313 THREADINFO_GFP & ~__GFP_ACCOUNT,
ac496bf4
AL
314 PAGE_KERNEL,
315 0, node, __builtin_return_address(0));
7865aba3
SAS
316 if (!stack)
317 return -ENOMEM;
ba14a194 318
1a03d3f1
SAS
319 vm = find_vm_area(stack);
320 if (memcg_charge_kernel_stack(vm)) {
f1c1a9ee
SAS
321 vfree(stack);
322 return -ENOMEM;
323 }
ba14a194
AL
324 /*
325 * We can't call find_vm_area() in interrupt context, and
326 * free_thread_stack() can be called in interrupt context,
327 * so cache the vm_struct.
328 */
1a03d3f1 329 tsk->stack_vm_area = vm;
51fb34de 330 stack = kasan_reset_tag(stack);
7865aba3
SAS
331 tsk->stack = stack;
332 return 0;
b69c49b7
FT
333}
334
be9a2277 335static void free_thread_stack(struct task_struct *tsk)
b69c49b7 336{
e540bf31
SAS
337 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
338 thread_stack_delayed_free(tsk);
9b6f7e16 339
be9a2277
SAS
340 tsk->stack = NULL;
341 tsk->stack_vm_area = NULL;
342}
ac496bf4 343
be9a2277 344# else /* !CONFIG_VMAP_STACK */
ac496bf4 345
e540bf31
SAS
346static void thread_stack_free_rcu(struct rcu_head *rh)
347{
348 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
349}
350
351static void thread_stack_delayed_free(struct task_struct *tsk)
352{
353 struct rcu_head *rh = tsk->stack;
354
355 call_rcu(rh, thread_stack_free_rcu);
356}
357
7865aba3 358static int alloc_thread_stack_node(struct task_struct *tsk, int node)
be9a2277 359{
4949148a
VD
360 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
361 THREAD_SIZE_ORDER);
b6a84016 362
1bf4580e 363 if (likely(page)) {
8dcc1d34 364 tsk->stack = kasan_reset_tag(page_address(page));
7865aba3 365 return 0;
1bf4580e 366 }
7865aba3 367 return -ENOMEM;
b69c49b7
FT
368}
369
be9a2277 370static void free_thread_stack(struct task_struct *tsk)
b69c49b7 371{
e540bf31 372 thread_stack_delayed_free(tsk);
be9a2277 373 tsk->stack = NULL;
b69c49b7 374}
ac496bf4 375
be9a2277
SAS
376# endif /* CONFIG_VMAP_STACK */
377# else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
9b6f7e16 378
b235beea 379static struct kmem_cache *thread_stack_cache;
ac496bf4 380
e540bf31
SAS
381static void thread_stack_free_rcu(struct rcu_head *rh)
382{
383 kmem_cache_free(thread_stack_cache, rh);
384}
ac496bf4 385
e540bf31
SAS
386static void thread_stack_delayed_free(struct task_struct *tsk)
387{
388 struct rcu_head *rh = tsk->stack;
ac496bf4 389
e540bf31 390 call_rcu(rh, thread_stack_free_rcu);
b69c49b7 391}
0d15d74a 392
7865aba3 393static int alloc_thread_stack_node(struct task_struct *tsk, int node)
0d15d74a 394{
5eed6f1d
RR
395 unsigned long *stack;
396 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
8dcc1d34 397 stack = kasan_reset_tag(stack);
5eed6f1d 398 tsk->stack = stack;
7865aba3 399 return stack ? 0 : -ENOMEM;
0d15d74a
TG
400}
401
ba14a194 402static void free_thread_stack(struct task_struct *tsk)
0d15d74a 403{
e540bf31 404 thread_stack_delayed_free(tsk);
be9a2277 405 tsk->stack = NULL;
0d15d74a
TG
406}
407
b235beea 408void thread_stack_cache_init(void)
0d15d74a 409{
f9d29946
DW
410 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
411 THREAD_SIZE, THREAD_SIZE, 0, 0,
412 THREAD_SIZE, NULL);
b235beea 413 BUG_ON(thread_stack_cache == NULL);
0d15d74a 414}
be9a2277
SAS
415
416# endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
2bb0529c
SAS
417#else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
418
7865aba3 419static int alloc_thread_stack_node(struct task_struct *tsk, int node)
2bb0529c
SAS
420{
421 unsigned long *stack;
422
423 stack = arch_alloc_thread_stack_node(tsk, node);
424 tsk->stack = stack;
7865aba3 425 return stack ? 0 : -ENOMEM;
2bb0529c
SAS
426}
427
428static void free_thread_stack(struct task_struct *tsk)
429{
430 arch_free_thread_stack(tsk);
431 tsk->stack = NULL;
432}
433
be9a2277 434#endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
b69c49b7 435
1da177e4 436/* SLAB cache for signal_struct structures (tsk->signal) */
e18b890b 437static struct kmem_cache *signal_cachep;
1da177e4
LT
438
439/* SLAB cache for sighand_struct structures (tsk->sighand) */
e18b890b 440struct kmem_cache *sighand_cachep;
1da177e4
LT
441
442/* SLAB cache for files_struct structures (tsk->files) */
e18b890b 443struct kmem_cache *files_cachep;
1da177e4
LT
444
445/* SLAB cache for fs_struct structures (tsk->fs) */
e18b890b 446struct kmem_cache *fs_cachep;
1da177e4
LT
447
448/* SLAB cache for vm_area_struct structures */
3928d4f5 449static struct kmem_cache *vm_area_cachep;
1da177e4
LT
450
451/* SLAB cache for mm_struct structures (tsk->mm) */
e18b890b 452static struct kmem_cache *mm_cachep;
1da177e4 453
490fc053 454struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
3928d4f5 455{
a670468f 456 struct vm_area_struct *vma;
490fc053 457
a670468f 458 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
027232da
KS
459 if (vma)
460 vma_init(vma, mm);
490fc053 461 return vma;
3928d4f5
LT
462}
463
464struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
465{
95faf699
LT
466 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
467
468 if (new) {
cda099b3
QC
469 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
470 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
471 /*
472 * orig->shared.rb may be modified concurrently, but the clone
473 * will be reinitialized.
474 */
06e78b61 475 data_race(memcpy(new, orig, sizeof(*new)));
95faf699 476 INIT_LIST_HEAD(&new->anon_vma_chain);
5c26f6ac 477 dup_anon_vma_name(orig, new);
95faf699
LT
478 }
479 return new;
3928d4f5
LT
480}
481
482void vm_area_free(struct vm_area_struct *vma)
483{
5c26f6ac 484 free_anon_vma_name(vma);
3928d4f5
LT
485 kmem_cache_free(vm_area_cachep, vma);
486}
487
ba14a194 488static void account_kernel_stack(struct task_struct *tsk, int account)
c6a7f572 489{
0ce055f8
SAS
490 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
491 struct vm_struct *vm = task_stack_vm_area(tsk);
27faca83 492 int i;
ba14a194 493
27faca83
MS
494 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
495 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
496 account * (PAGE_SIZE / 1024));
497 } else {
0ce055f8
SAS
498 void *stack = task_stack_page(tsk);
499
27faca83 500 /* All stack pages are in the same node. */
da3ceeff 501 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
991e7673 502 account * (THREAD_SIZE / 1024));
27faca83 503 }
c6a7f572
KM
504}
505
1a03d3f1 506void exit_task_stack_account(struct task_struct *tsk)
9b6f7e16 507{
1a03d3f1 508 account_kernel_stack(tsk, -1);
991e7673 509
1a03d3f1
SAS
510 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
511 struct vm_struct *vm;
9b6f7e16
RG
512 int i;
513
1a03d3f1
SAS
514 vm = task_stack_vm_area(tsk);
515 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
516 memcg_kmem_uncharge_page(vm->pages[i], 0);
9b6f7e16 517 }
9b6f7e16
RG
518}
519
68f24b08 520static void release_task_stack(struct task_struct *tsk)
1da177e4 521{
2f064a59 522 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
405c0759
AL
523 return; /* Better to leak the stack than to free prematurely */
524
ba14a194 525 free_thread_stack(tsk);
68f24b08
AL
526}
527
528#ifdef CONFIG_THREAD_INFO_IN_TASK
529void put_task_stack(struct task_struct *tsk)
530{
f0b89d39 531 if (refcount_dec_and_test(&tsk->stack_refcount))
68f24b08
AL
532 release_task_stack(tsk);
533}
534#endif
535
536void free_task(struct task_struct *tsk)
537{
a1140cb2
KI
538#ifdef CONFIG_SECCOMP
539 WARN_ON_ONCE(tsk->seccomp.filter);
540#endif
b90ca8ba 541 release_user_cpus_ptr(tsk);
d08b9f0c
ST
542 scs_release(tsk);
543
68f24b08
AL
544#ifndef CONFIG_THREAD_INFO_IN_TASK
545 /*
546 * The task is finally done with both the stack and thread_info,
547 * so free both.
548 */
549 release_task_stack(tsk);
550#else
551 /*
552 * If the task had a separate stack allocation, it should be gone
553 * by now.
554 */
f0b89d39 555 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
68f24b08 556#endif
23f78d4a 557 rt_mutex_debug_task_free(tsk);
fb52607a 558 ftrace_graph_exit_task(tsk);
f19b9f74 559 arch_release_task_struct(tsk);
1da5c46f
ON
560 if (tsk->flags & PF_KTHREAD)
561 free_kthread_struct(tsk);
1da177e4
LT
562 free_task_struct(tsk);
563}
564EXPORT_SYMBOL(free_task);
565
fe69d560
DH
566static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
567{
568 struct file *exe_file;
569
570 exe_file = get_mm_exe_file(oldmm);
571 RCU_INIT_POINTER(mm->exe_file, exe_file);
572 /*
573 * We depend on the oldmm having properly denied write access to the
574 * exe_file already.
575 */
576 if (exe_file && deny_write_access(exe_file))
577 pr_warn_once("deny_write_access() failed in %s\n", __func__);
578}
579
d70f2a14
AM
580#ifdef CONFIG_MMU
581static __latent_entropy int dup_mmap(struct mm_struct *mm,
582 struct mm_struct *oldmm)
583{
763ecb03 584 struct vm_area_struct *mpnt, *tmp;
d70f2a14 585 int retval;
c9dbe82c 586 unsigned long charge = 0;
d70f2a14 587 LIST_HEAD(uf);
3b9dbd5e
LH
588 VMA_ITERATOR(old_vmi, oldmm, 0);
589 VMA_ITERATOR(vmi, mm, 0);
d70f2a14
AM
590
591 uprobe_start_dup_mmap();
d8ed45c5 592 if (mmap_write_lock_killable(oldmm)) {
d70f2a14
AM
593 retval = -EINTR;
594 goto fail_uprobe_end;
595 }
596 flush_cache_dup_mm(oldmm);
597 uprobe_dup_mmap(oldmm, mm);
598 /*
599 * Not linked in yet - no deadlock potential:
600 */
aaa2cc56 601 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
d70f2a14
AM
602
603 /* No ordering required: file already has been exposed. */
fe69d560 604 dup_mm_exe_file(mm, oldmm);
d70f2a14
AM
605
606 mm->total_vm = oldmm->total_vm;
607 mm->data_vm = oldmm->data_vm;
608 mm->exec_vm = oldmm->exec_vm;
609 mm->stack_vm = oldmm->stack_vm;
610
d70f2a14
AM
611 retval = ksm_fork(mm, oldmm);
612 if (retval)
613 goto out;
d2081b2b 614 khugepaged_fork(mm, oldmm);
d70f2a14 615
3b9dbd5e 616 retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count);
c9dbe82c
LH
617 if (retval)
618 goto out;
619
3dd44325 620 mt_clear_in_rcu(vmi.mas.tree);
3b9dbd5e 621 for_each_vma(old_vmi, mpnt) {
d70f2a14
AM
622 struct file *file;
623
624 if (mpnt->vm_flags & VM_DONTCOPY) {
625 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
626 continue;
627 }
628 charge = 0;
655c79bb
TH
629 /*
630 * Don't duplicate many vmas if we've been oom-killed (for
631 * example)
632 */
633 if (fatal_signal_pending(current)) {
634 retval = -EINTR;
d4af56c5 635 goto loop_out;
655c79bb 636 }
d70f2a14
AM
637 if (mpnt->vm_flags & VM_ACCOUNT) {
638 unsigned long len = vma_pages(mpnt);
639
640 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
641 goto fail_nomem;
642 charge = len;
643 }
3928d4f5 644 tmp = vm_area_dup(mpnt);
d70f2a14
AM
645 if (!tmp)
646 goto fail_nomem;
d70f2a14
AM
647 retval = vma_dup_policy(mpnt, tmp);
648 if (retval)
649 goto fail_nomem_policy;
650 tmp->vm_mm = mm;
651 retval = dup_userfaultfd(tmp, &uf);
652 if (retval)
653 goto fail_nomem_anon_vma_fork;
654 if (tmp->vm_flags & VM_WIPEONFORK) {
93949bb2
LX
655 /*
656 * VM_WIPEONFORK gets a clean slate in the child.
657 * Don't prepare anon_vma until fault since we don't
658 * copy page for current vma.
659 */
d70f2a14 660 tmp->anon_vma = NULL;
d70f2a14
AM
661 } else if (anon_vma_fork(tmp, mpnt))
662 goto fail_nomem_anon_vma_fork;
e430a95a 663 vm_flags_clear(tmp, VM_LOCKED_MASK);
d70f2a14
AM
664 file = tmp->vm_file;
665 if (file) {
d70f2a14
AM
666 struct address_space *mapping = file->f_mapping;
667
668 get_file(file);
d70f2a14
AM
669 i_mmap_lock_write(mapping);
670 if (tmp->vm_flags & VM_SHARED)
cf508b58 671 mapping_allow_writable(mapping);
d70f2a14
AM
672 flush_dcache_mmap_lock(mapping);
673 /* insert tmp into the share list, just after mpnt */
674 vma_interval_tree_insert_after(tmp, mpnt,
675 &mapping->i_mmap);
676 flush_dcache_mmap_unlock(mapping);
677 i_mmap_unlock_write(mapping);
678 }
679
680 /*
8d9bfb26 681 * Copy/update hugetlb private vma information.
d70f2a14
AM
682 */
683 if (is_vm_hugetlb_page(tmp))
8d9bfb26 684 hugetlb_dup_vma_private(tmp);
d70f2a14 685
d4af56c5 686 /* Link the vma into the MT */
3b9dbd5e
LH
687 if (vma_iter_bulk_store(&vmi, tmp))
688 goto fail_nomem_vmi_store;
d70f2a14
AM
689
690 mm->map_count++;
691 if (!(tmp->vm_flags & VM_WIPEONFORK))
c78f4636 692 retval = copy_page_range(tmp, mpnt);
d70f2a14
AM
693
694 if (tmp->vm_ops && tmp->vm_ops->open)
695 tmp->vm_ops->open(tmp);
696
697 if (retval)
d4af56c5 698 goto loop_out;
d70f2a14
AM
699 }
700 /* a new mm has just been created */
1ed0cc5a 701 retval = arch_dup_mmap(oldmm, mm);
d4af56c5 702loop_out:
3b9dbd5e 703 vma_iter_free(&vmi);
3dd44325
LH
704 if (!retval)
705 mt_set_in_rcu(vmi.mas.tree);
d70f2a14 706out:
d8ed45c5 707 mmap_write_unlock(mm);
d70f2a14 708 flush_tlb_mm(oldmm);
d8ed45c5 709 mmap_write_unlock(oldmm);
d70f2a14
AM
710 dup_userfaultfd_complete(&uf);
711fail_uprobe_end:
712 uprobe_end_dup_mmap();
713 return retval;
c9dbe82c 714
3b9dbd5e 715fail_nomem_vmi_store:
c9dbe82c 716 unlink_anon_vmas(tmp);
d70f2a14
AM
717fail_nomem_anon_vma_fork:
718 mpol_put(vma_policy(tmp));
719fail_nomem_policy:
3928d4f5 720 vm_area_free(tmp);
d70f2a14
AM
721fail_nomem:
722 retval = -ENOMEM;
723 vm_unacct_memory(charge);
d4af56c5 724 goto loop_out;
d70f2a14
AM
725}
726
727static inline int mm_alloc_pgd(struct mm_struct *mm)
728{
729 mm->pgd = pgd_alloc(mm);
730 if (unlikely(!mm->pgd))
731 return -ENOMEM;
732 return 0;
733}
734
735static inline void mm_free_pgd(struct mm_struct *mm)
736{
737 pgd_free(mm, mm->pgd);
738}
739#else
740static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
741{
d8ed45c5 742 mmap_write_lock(oldmm);
fe69d560 743 dup_mm_exe_file(mm, oldmm);
d8ed45c5 744 mmap_write_unlock(oldmm);
d70f2a14
AM
745 return 0;
746}
747#define mm_alloc_pgd(mm) (0)
748#define mm_free_pgd(mm)
749#endif /* CONFIG_MMU */
750
751static void check_mm(struct mm_struct *mm)
752{
753 int i;
754
8495f7e6
SPP
755 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
756 "Please make sure 'struct resident_page_types[]' is updated as well");
757
d70f2a14 758 for (i = 0; i < NR_MM_COUNTERS; i++) {
f1a79412 759 long x = percpu_counter_sum(&mm->rss_stat[i]);
d70f2a14
AM
760
761 if (unlikely(x))
8495f7e6
SPP
762 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
763 mm, resident_page_types[i], x);
d70f2a14
AM
764 }
765
766 if (mm_pgtables_bytes(mm))
767 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
768 mm_pgtables_bytes(mm));
769
770#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
771 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
772#endif
773}
774
775#define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
776#define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
777
778/*
779 * Called when the last reference to the mm
780 * is dropped: either by a lazy thread or by
781 * mmput. Free the page directory and the mm.
782 */
d34bc48f 783void __mmdrop(struct mm_struct *mm)
d70f2a14 784{
f1a79412
SB
785 int i;
786
d70f2a14 787 BUG_ON(mm == &init_mm);
3eda69c9
MR
788 WARN_ON_ONCE(mm == current->mm);
789 WARN_ON_ONCE(mm == current->active_mm);
d70f2a14
AM
790 mm_free_pgd(mm);
791 destroy_context(mm);
984cfe4e 792 mmu_notifier_subscriptions_destroy(mm);
d70f2a14
AM
793 check_mm(mm);
794 put_user_ns(mm->user_ns);
2667ed10 795 mm_pasid_drop(mm);
f1a79412
SB
796
797 for (i = 0; i < NR_MM_COUNTERS; i++)
798 percpu_counter_destroy(&mm->rss_stat[i]);
d70f2a14
AM
799 free_mm(mm);
800}
d34bc48f 801EXPORT_SYMBOL_GPL(__mmdrop);
d70f2a14
AM
802
803static void mmdrop_async_fn(struct work_struct *work)
804{
805 struct mm_struct *mm;
806
807 mm = container_of(work, struct mm_struct, async_put_work);
808 __mmdrop(mm);
809}
810
811static void mmdrop_async(struct mm_struct *mm)
812{
813 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
814 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
815 schedule_work(&mm->async_put_work);
816 }
817}
818
ea6d290c
ON
819static inline void free_signal_struct(struct signal_struct *sig)
820{
97101eb4 821 taskstats_tgid_free(sig);
1c5354de 822 sched_autogroup_exit(sig);
7283094e
MH
823 /*
824 * __mmdrop is not safe to call from softirq context on x86 due to
825 * pgd_dtor so postpone it to the async context
826 */
26db62f1 827 if (sig->oom_mm)
7283094e 828 mmdrop_async(sig->oom_mm);
ea6d290c
ON
829 kmem_cache_free(signal_cachep, sig);
830}
831
832static inline void put_signal_struct(struct signal_struct *sig)
833{
60d4de3f 834 if (refcount_dec_and_test(&sig->sigcnt))
ea6d290c
ON
835 free_signal_struct(sig);
836}
837
158d9ebd 838void __put_task_struct(struct task_struct *tsk)
1da177e4 839{
270f722d 840 WARN_ON(!tsk->exit_state);
ec1d2819 841 WARN_ON(refcount_read(&tsk->usage));
1da177e4
LT
842 WARN_ON(tsk == current);
843
0f212204 844 io_uring_free(tsk);
2e91fa7f 845 cgroup_free(tsk);
16d51a59 846 task_numa_free(tsk, true);
1a2a4d06 847 security_task_free(tsk);
a10787e6 848 bpf_task_storage_free(tsk);
e0e81739 849 exit_creds(tsk);
35df17c5 850 delayacct_tsk_free(tsk);
ea6d290c 851 put_signal_struct(tsk->signal);
6e33cad0 852 sched_core_free(tsk);
2873cd31 853 free_task(tsk);
1da177e4 854}
77c100c8 855EXPORT_SYMBOL_GPL(__put_task_struct);
1da177e4 856
6c0a9fa6 857void __init __weak arch_task_cache_init(void) { }
61c4628b 858
ff691f6e
HS
859/*
860 * set_max_threads
861 */
16db3d3f 862static void set_max_threads(unsigned int max_threads_suggested)
ff691f6e 863{
ac1b398d 864 u64 threads;
ca79b0c2 865 unsigned long nr_pages = totalram_pages();
ff691f6e
HS
866
867 /*
ac1b398d
HS
868 * The number of threads shall be limited such that the thread
869 * structures may only consume a small part of the available memory.
ff691f6e 870 */
3d6357de 871 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
ac1b398d
HS
872 threads = MAX_THREADS;
873 else
3d6357de 874 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
ac1b398d
HS
875 (u64) THREAD_SIZE * 8UL);
876
16db3d3f
HS
877 if (threads > max_threads_suggested)
878 threads = max_threads_suggested;
879
ac1b398d 880 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
ff691f6e
HS
881}
882
5aaeb5c0
IM
883#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
884/* Initialized by the architecture: */
885int arch_task_struct_size __read_mostly;
886#endif
0c8c0f03 887
4189ff23 888#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
5905429a
KC
889static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
890{
891 /* Fetch thread_struct whitelist for the architecture. */
892 arch_thread_struct_whitelist(offset, size);
893
894 /*
895 * Handle zero-sized whitelist or empty thread_struct, otherwise
896 * adjust offset to position of thread_struct in task_struct.
897 */
898 if (unlikely(*size == 0))
899 *offset = 0;
900 else
901 *offset += offsetof(struct task_struct, thread);
902}
4189ff23 903#endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
5905429a 904
ff691f6e 905void __init fork_init(void)
1da177e4 906{
25f9c081 907 int i;
f5e10287 908#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1da177e4 909#ifndef ARCH_MIN_TASKALIGN
e274795e 910#define ARCH_MIN_TASKALIGN 0
1da177e4 911#endif
95cb64c1 912 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
5905429a 913 unsigned long useroffset, usersize;
e274795e 914
1da177e4 915 /* create a slab on which task_structs can be allocated */
5905429a
KC
916 task_struct_whitelist(&useroffset, &usersize);
917 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
e274795e 918 arch_task_struct_size, align,
5905429a
KC
919 SLAB_PANIC|SLAB_ACCOUNT,
920 useroffset, usersize, NULL);
1da177e4
LT
921#endif
922
61c4628b
SS
923 /* do the arch specific task caches init */
924 arch_task_cache_init();
925
16db3d3f 926 set_max_threads(MAX_THREADS);
1da177e4
LT
927
928 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
929 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
930 init_task.signal->rlim[RLIMIT_SIGPENDING] =
931 init_task.signal->rlim[RLIMIT_NPROC];
b376c3e1 932
de399236 933 for (i = 0; i < UCOUNT_COUNTS; i++)
25f9c081 934 init_user_ns.ucount_max[i] = max_threads/2;
19659c59 935
de399236
AG
936 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY);
937 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY);
938 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
939 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY);
21d1c5e3 940
19659c59
HR
941#ifdef CONFIG_VMAP_STACK
942 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
943 NULL, free_vm_stack_cache);
944#endif
b09be676 945
d08b9f0c
ST
946 scs_init();
947
b09be676 948 lockdep_init_task(&init_task);
aad42dd4 949 uprobes_init();
1da177e4
LT
950}
951
52f5684c 952int __weak arch_dup_task_struct(struct task_struct *dst,
61c4628b
SS
953 struct task_struct *src)
954{
955 *dst = *src;
956 return 0;
957}
958
d4311ff1
AT
959void set_task_stack_end_magic(struct task_struct *tsk)
960{
961 unsigned long *stackend;
962
963 stackend = end_of_stack(tsk);
964 *stackend = STACK_END_MAGIC; /* for overflow detection */
965}
966
725fc629 967static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1da177e4
LT
968{
969 struct task_struct *tsk;
3e26c149 970 int err;
1da177e4 971
725fc629
AK
972 if (node == NUMA_NO_NODE)
973 node = tsk_fork_get_node(orig);
504f52b5 974 tsk = alloc_task_struct_node(node);
1da177e4
LT
975 if (!tsk)
976 return NULL;
977
546c42b2
SAS
978 err = arch_dup_task_struct(tsk, orig);
979 if (err)
f19b9f74 980 goto free_tsk;
1da177e4 981
7865aba3
SAS
982 err = alloc_thread_stack_node(tsk, node);
983 if (err)
f19b9f74 984 goto free_tsk;
ba14a194 985
68f24b08 986#ifdef CONFIG_THREAD_INFO_IN_TASK
f0b89d39 987 refcount_set(&tsk->stack_refcount, 1);
68f24b08 988#endif
1a03d3f1 989 account_kernel_stack(tsk, 1);
164c33c6 990
d08b9f0c
ST
991 err = scs_prepare(tsk, node);
992 if (err)
993 goto free_stack;
994
dbd95212
KC
995#ifdef CONFIG_SECCOMP
996 /*
997 * We must handle setting up seccomp filters once we're under
998 * the sighand lock in case orig has changed between now and
999 * then. Until then, filter must be NULL to avoid messing up
1000 * the usage counts on the error path calling free_task.
1001 */
1002 tsk->seccomp.filter = NULL;
1003#endif
87bec58a
AM
1004
1005 setup_thread_stack(tsk, orig);
8e7cac79 1006 clear_user_return_notifier(tsk);
f26f9aff 1007 clear_tsk_need_resched(tsk);
d4311ff1 1008 set_task_stack_end_magic(tsk);
1446e1df 1009 clear_syscall_work_syscall_user_dispatch(tsk);
1da177e4 1010
050e9baa 1011#ifdef CONFIG_STACKPROTECTOR
7cd815bc 1012 tsk->stack_canary = get_random_canary();
0a425405 1013#endif
3bd37062
SAS
1014 if (orig->cpus_ptr == &orig->cpus_mask)
1015 tsk->cpus_ptr = &tsk->cpus_mask;
b90ca8ba 1016 dup_user_cpus_ptr(tsk, orig, node);
0a425405 1017
fb0a685c 1018 /*
0ff7b2cf
EB
1019 * One for the user space visible state that goes away when reaped.
1020 * One for the scheduler.
fb0a685c 1021 */
0ff7b2cf
EB
1022 refcount_set(&tsk->rcu_users, 2);
1023 /* One for the rcu users */
1024 refcount_set(&tsk->usage, 1);
6c5c9341 1025#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 1026 tsk->btrace_seq = 0;
6c5c9341 1027#endif
a0aa7f68 1028 tsk->splice_pipe = NULL;
5640f768 1029 tsk->task_frag.page = NULL;
093e5840 1030 tsk->wake_q.next = NULL;
e32cf5df 1031 tsk->worker_private = NULL;
c6a7f572 1032
5c9a8750 1033 kcov_task_init(tsk);
50b5e49c 1034 kmsan_task_create(tsk);
5fbda3ec 1035 kmap_local_fork(tsk);
5c9a8750 1036
e41d5818
DV
1037#ifdef CONFIG_FAULT_INJECTION
1038 tsk->fail_nth = 0;
1039#endif
1040
2c323017 1041#ifdef CONFIG_BLK_CGROUP
f05837ed 1042 tsk->throttle_disk = NULL;
2c323017
JB
1043 tsk->use_memdelay = 0;
1044#endif
1045
a3d29e82
PZ
1046#ifdef CONFIG_IOMMU_SVA
1047 tsk->pasid_activated = 0;
1048#endif
1049
d46eb14b
SB
1050#ifdef CONFIG_MEMCG
1051 tsk->active_memcg = NULL;
1052#endif
b041b525
TL
1053
1054#ifdef CONFIG_CPU_SUP_INTEL
1055 tsk->reported_split_lock = 0;
1056#endif
1057
af7f588d
MD
1058#ifdef CONFIG_SCHED_MM_CID
1059 tsk->mm_cid = -1;
1060 tsk->mm_cid_active = 0;
1061#endif
1da177e4 1062 return tsk;
61c4628b 1063
b235beea 1064free_stack:
1a03d3f1 1065 exit_task_stack_account(tsk);
ba14a194 1066 free_thread_stack(tsk);
f19b9f74 1067free_tsk:
61c4628b
SS
1068 free_task_struct(tsk);
1069 return NULL;
1da177e4
LT
1070}
1071
23ff4440 1072__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1da177e4 1073
4cb0e11b
HK
1074static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1075
1076static int __init coredump_filter_setup(char *s)
1077{
1078 default_dump_filter =
1079 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1080 MMF_DUMP_FILTER_MASK;
1081 return 1;
1082}
1083
1084__setup("coredump_filter=", coredump_filter_setup);
1085
1da177e4
LT
1086#include <linux/init_task.h>
1087
858f0993
AD
1088static void mm_init_aio(struct mm_struct *mm)
1089{
1090#ifdef CONFIG_AIO
1091 spin_lock_init(&mm->ioctx_lock);
db446a08 1092 mm->ioctx_table = NULL;
858f0993
AD
1093#endif
1094}
1095
c3f3ce04
AA
1096static __always_inline void mm_clear_owner(struct mm_struct *mm,
1097 struct task_struct *p)
1098{
1099#ifdef CONFIG_MEMCG
1100 if (mm->owner == p)
1101 WRITE_ONCE(mm->owner, NULL);
1102#endif
1103}
1104
33144e84
VD
1105static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1106{
1107#ifdef CONFIG_MEMCG
1108 mm->owner = p;
1109#endif
1110}
1111
355627f5
EB
1112static void mm_init_uprobes_state(struct mm_struct *mm)
1113{
1114#ifdef CONFIG_UPROBES
1115 mm->uprobes_state.xol_area = NULL;
1116#endif
1117}
1118
bfedb589
EB
1119static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1120 struct user_namespace *user_ns)
1da177e4 1121{
f1a79412
SB
1122 int i;
1123
d4af56c5
LH
1124 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1125 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1da177e4
LT
1126 atomic_set(&mm->mm_users, 1);
1127 atomic_set(&mm->mm_count, 1);
57efa1fe 1128 seqcount_init(&mm->write_protect_seq);
d8ed45c5 1129 mmap_init_lock(mm);
1da177e4 1130 INIT_LIST_HEAD(&mm->mmlist);
af5b0f6a 1131 mm_pgtables_bytes_init(mm);
41f727fd
VD
1132 mm->map_count = 0;
1133 mm->locked_vm = 0;
70f8a3ca 1134 atomic64_set(&mm->pinned_vm, 0);
d559db08 1135 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1da177e4 1136 spin_lock_init(&mm->page_table_lock);
88aa7cc6 1137 spin_lock_init(&mm->arg_lock);
41f727fd 1138 mm_init_cpumask(mm);
858f0993 1139 mm_init_aio(mm);
cf475ad2 1140 mm_init_owner(mm, p);
a6cbd440 1141 mm_pasid_init(mm);
2b7e8665 1142 RCU_INIT_POINTER(mm->exe_file, NULL);
984cfe4e 1143 mmu_notifier_subscriptions_init(mm);
16af97dc 1144 init_tlb_flush_pending(mm);
41f727fd
VD
1145#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1146 mm->pmd_huge_pte = NULL;
1147#endif
355627f5 1148 mm_init_uprobes_state(mm);
13db8c50 1149 hugetlb_count_init(mm);
1da177e4 1150
a0715cc2
AT
1151 if (current->mm) {
1152 mm->flags = current->mm->flags & MMF_INIT_MASK;
1153 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1154 } else {
1155 mm->flags = default_dump_filter;
1da177e4 1156 mm->def_flags = 0;
a0715cc2
AT
1157 }
1158
41f727fd
VD
1159 if (mm_alloc_pgd(mm))
1160 goto fail_nopgd;
1161
1162 if (init_new_context(p, mm))
1163 goto fail_nocontext;
78fb7466 1164
f1a79412
SB
1165 for (i = 0; i < NR_MM_COUNTERS; i++)
1166 if (percpu_counter_init(&mm->rss_stat[i], 0, GFP_KERNEL_ACCOUNT))
1167 goto fail_pcpu;
1168
bfedb589 1169 mm->user_ns = get_user_ns(user_ns);
bd74fdae 1170 lru_gen_init_mm(mm);
af7f588d 1171 mm_init_cid(mm);
41f727fd
VD
1172 return mm;
1173
f1a79412
SB
1174fail_pcpu:
1175 while (i > 0)
1176 percpu_counter_destroy(&mm->rss_stat[--i]);
41f727fd
VD
1177fail_nocontext:
1178 mm_free_pgd(mm);
1179fail_nopgd:
1da177e4
LT
1180 free_mm(mm);
1181 return NULL;
1182}
1183
1184/*
1185 * Allocate and initialize an mm_struct.
1186 */
fb0a685c 1187struct mm_struct *mm_alloc(void)
1da177e4 1188{
fb0a685c 1189 struct mm_struct *mm;
1da177e4
LT
1190
1191 mm = allocate_mm();
de03c72c
KM
1192 if (!mm)
1193 return NULL;
1194
1195 memset(mm, 0, sizeof(*mm));
bfedb589 1196 return mm_init(mm, current, current_user_ns());
1da177e4
LT
1197}
1198
ec8d7c14
MH
1199static inline void __mmput(struct mm_struct *mm)
1200{
1201 VM_BUG_ON(atomic_read(&mm->mm_users));
1202
1203 uprobe_clear_state(mm);
1204 exit_aio(mm);
1205 ksm_exit(mm);
1206 khugepaged_exit(mm); /* must run before exit_mmap */
1207 exit_mmap(mm);
6fcb52a5 1208 mm_put_huge_zero_page(mm);
ec8d7c14
MH
1209 set_mm_exe_file(mm, NULL);
1210 if (!list_empty(&mm->mmlist)) {
1211 spin_lock(&mmlist_lock);
1212 list_del(&mm->mmlist);
1213 spin_unlock(&mmlist_lock);
1214 }
1215 if (mm->binfmt)
1216 module_put(mm->binfmt->module);
bd74fdae 1217 lru_gen_del_mm(mm);
ec8d7c14
MH
1218 mmdrop(mm);
1219}
1220
1da177e4
LT
1221/*
1222 * Decrement the use count and release all resources for an mm.
1223 */
1224void mmput(struct mm_struct *mm)
1225{
0ae26f1b
AM
1226 might_sleep();
1227
ec8d7c14
MH
1228 if (atomic_dec_and_test(&mm->mm_users))
1229 __mmput(mm);
1230}
1231EXPORT_SYMBOL_GPL(mmput);
1232
a1b2289c
SY
1233#ifdef CONFIG_MMU
1234static void mmput_async_fn(struct work_struct *work)
1235{
1236 struct mm_struct *mm = container_of(work, struct mm_struct,
1237 async_put_work);
1238
1239 __mmput(mm);
1240}
1241
1242void mmput_async(struct mm_struct *mm)
1243{
1244 if (atomic_dec_and_test(&mm->mm_users)) {
1245 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1246 schedule_work(&mm->async_put_work);
1247 }
1248}
85eaeb50 1249EXPORT_SYMBOL_GPL(mmput_async);
a1b2289c
SY
1250#endif
1251
90f31d0e
KK
1252/**
1253 * set_mm_exe_file - change a reference to the mm's executable file
1254 *
1255 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1256 *
6e399cd1
DB
1257 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1258 * invocations: in mmput() nobody alive left, in execve task is single
35d7bdc8 1259 * threaded.
fe69d560
DH
1260 *
1261 * Can only fail if new_exe_file != NULL.
90f31d0e 1262 */
fe69d560 1263int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
38646013 1264{
6e399cd1
DB
1265 struct file *old_exe_file;
1266
1267 /*
1268 * It is safe to dereference the exe_file without RCU as
1269 * this function is only called if nobody else can access
1270 * this mm -- see comment above for justification.
1271 */
1272 old_exe_file = rcu_dereference_raw(mm->exe_file);
90f31d0e 1273
fe69d560
DH
1274 if (new_exe_file) {
1275 /*
1276 * We expect the caller (i.e., sys_execve) to already denied
1277 * write access, so this is unlikely to fail.
1278 */
1279 if (unlikely(deny_write_access(new_exe_file)))
1280 return -EACCES;
38646013 1281 get_file(new_exe_file);
fe69d560 1282 }
90f31d0e 1283 rcu_assign_pointer(mm->exe_file, new_exe_file);
fe69d560
DH
1284 if (old_exe_file) {
1285 allow_write_access(old_exe_file);
90f31d0e 1286 fput(old_exe_file);
fe69d560
DH
1287 }
1288 return 0;
38646013
JS
1289}
1290
35d7bdc8
DH
1291/**
1292 * replace_mm_exe_file - replace a reference to the mm's executable file
1293 *
1294 * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
1295 * dealing with concurrent invocation and without grabbing the mmap lock in
1296 * write mode.
1297 *
1298 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1299 */
1300int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1301{
1302 struct vm_area_struct *vma;
1303 struct file *old_exe_file;
1304 int ret = 0;
1305
1306 /* Forbid mm->exe_file change if old file still mapped. */
1307 old_exe_file = get_mm_exe_file(mm);
1308 if (old_exe_file) {
fa5e5876 1309 VMA_ITERATOR(vmi, mm, 0);
35d7bdc8 1310 mmap_read_lock(mm);
fa5e5876 1311 for_each_vma(vmi, vma) {
35d7bdc8
DH
1312 if (!vma->vm_file)
1313 continue;
1314 if (path_equal(&vma->vm_file->f_path,
fa5e5876 1315 &old_exe_file->f_path)) {
35d7bdc8 1316 ret = -EBUSY;
fa5e5876
MWO
1317 break;
1318 }
35d7bdc8
DH
1319 }
1320 mmap_read_unlock(mm);
1321 fput(old_exe_file);
1322 if (ret)
1323 return ret;
1324 }
1325
1326 /* set the new file, lockless */
fe69d560
DH
1327 ret = deny_write_access(new_exe_file);
1328 if (ret)
1329 return -EACCES;
35d7bdc8 1330 get_file(new_exe_file);
fe69d560 1331
35d7bdc8 1332 old_exe_file = xchg(&mm->exe_file, new_exe_file);
fe69d560
DH
1333 if (old_exe_file) {
1334 /*
1335 * Don't race with dup_mmap() getting the file and disallowing
1336 * write access while someone might open the file writable.
1337 */
1338 mmap_read_lock(mm);
1339 allow_write_access(old_exe_file);
35d7bdc8 1340 fput(old_exe_file);
fe69d560
DH
1341 mmap_read_unlock(mm);
1342 }
35d7bdc8 1343 return 0;
38646013
JS
1344}
1345
90f31d0e
KK
1346/**
1347 * get_mm_exe_file - acquire a reference to the mm's executable file
1348 *
1349 * Returns %NULL if mm has no associated executable file.
1350 * User must release file via fput().
1351 */
38646013
JS
1352struct file *get_mm_exe_file(struct mm_struct *mm)
1353{
1354 struct file *exe_file;
1355
90f31d0e
KK
1356 rcu_read_lock();
1357 exe_file = rcu_dereference(mm->exe_file);
1358 if (exe_file && !get_file_rcu(exe_file))
1359 exe_file = NULL;
1360 rcu_read_unlock();
38646013
JS
1361 return exe_file;
1362}
1363
cd81a917
MG
1364/**
1365 * get_task_exe_file - acquire a reference to the task's executable file
1366 *
1367 * Returns %NULL if task's mm (if any) has no associated executable file or
1368 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1369 * User must release file via fput().
1370 */
1371struct file *get_task_exe_file(struct task_struct *task)
1372{
1373 struct file *exe_file = NULL;
1374 struct mm_struct *mm;
1375
1376 task_lock(task);
1377 mm = task->mm;
1378 if (mm) {
1379 if (!(task->flags & PF_KTHREAD))
1380 exe_file = get_mm_exe_file(mm);
1381 }
1382 task_unlock(task);
1383 return exe_file;
1384}
38646013 1385
1da177e4
LT
1386/**
1387 * get_task_mm - acquire a reference to the task's mm
1388 *
246bb0b1 1389 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1da177e4
LT
1390 * this kernel workthread has transiently adopted a user mm with use_mm,
1391 * to do its AIO) is not set and if so returns a reference to it, after
1392 * bumping up the use count. User must release the mm via mmput()
1393 * after use. Typically used by /proc and ptrace.
1394 */
1395struct mm_struct *get_task_mm(struct task_struct *task)
1396{
1397 struct mm_struct *mm;
1398
1399 task_lock(task);
1400 mm = task->mm;
1401 if (mm) {
246bb0b1 1402 if (task->flags & PF_KTHREAD)
1da177e4
LT
1403 mm = NULL;
1404 else
3fce371b 1405 mmget(mm);
1da177e4
LT
1406 }
1407 task_unlock(task);
1408 return mm;
1409}
1410EXPORT_SYMBOL_GPL(get_task_mm);
1411
8cdb878d
CY
1412struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1413{
1414 struct mm_struct *mm;
1415 int err;
1416
f7cfd871 1417 err = down_read_killable(&task->signal->exec_update_lock);
8cdb878d
CY
1418 if (err)
1419 return ERR_PTR(err);
1420
1421 mm = get_task_mm(task);
1422 if (mm && mm != current->mm &&
1423 !ptrace_may_access(task, mode)) {
1424 mmput(mm);
1425 mm = ERR_PTR(-EACCES);
1426 }
f7cfd871 1427 up_read(&task->signal->exec_update_lock);
8cdb878d
CY
1428
1429 return mm;
1430}
1431
57b59c4a 1432static void complete_vfork_done(struct task_struct *tsk)
c415c3b4 1433{
d68b46fe 1434 struct completion *vfork;
c415c3b4 1435
d68b46fe
ON
1436 task_lock(tsk);
1437 vfork = tsk->vfork_done;
1438 if (likely(vfork)) {
1439 tsk->vfork_done = NULL;
1440 complete(vfork);
1441 }
1442 task_unlock(tsk);
1443}
1444
1445static int wait_for_vfork_done(struct task_struct *child,
1446 struct completion *vfork)
1447{
f5d39b02 1448 unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
d68b46fe
ON
1449 int killed;
1450
76f969e8 1451 cgroup_enter_frozen();
f5d39b02 1452 killed = wait_for_completion_state(vfork, state);
76f969e8 1453 cgroup_leave_frozen(false);
d68b46fe
ON
1454
1455 if (killed) {
1456 task_lock(child);
1457 child->vfork_done = NULL;
1458 task_unlock(child);
1459 }
1460
1461 put_task_struct(child);
1462 return killed;
c415c3b4
ON
1463}
1464
1da177e4
LT
1465/* Please note the differences between mmput and mm_release.
1466 * mmput is called whenever we stop holding onto a mm_struct,
1467 * error success whatever.
1468 *
1469 * mm_release is called after a mm_struct has been removed
1470 * from the current process.
1471 *
1472 * This difference is important for error handling, when we
1473 * only half set up a mm_struct for a new process and need to restore
1474 * the old one. Because we mmput the new mm_struct before
1475 * restoring the old one. . .
1476 * Eric Biederman 10 January 1998
1477 */
4610ba7a 1478static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1da177e4 1479{
0326f5a9
SD
1480 uprobe_free_utask(tsk);
1481
1da177e4
LT
1482 /* Get rid of any cached register state */
1483 deactivate_mm(tsk, mm);
1484
fec1d011 1485 /*
735f2770
MH
1486 * Signal userspace if we're not exiting with a core dump
1487 * because we want to leave the value intact for debugging
1488 * purposes.
fec1d011 1489 */
9c8a8228 1490 if (tsk->clear_child_tid) {
92307383 1491 if (atomic_read(&mm->mm_users) > 1) {
9c8a8228
ED
1492 /*
1493 * We don't check the error code - if userspace has
1494 * not set up a proper pointer then tough luck.
1495 */
1496 put_user(0, tsk->clear_child_tid);
2de0db99
DB
1497 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1498 1, NULL, NULL, 0, 0);
9c8a8228 1499 }
1da177e4 1500 tsk->clear_child_tid = NULL;
1da177e4 1501 }
f7505d64
KK
1502
1503 /*
1504 * All done, finally we can wake up parent and return this mm to him.
1505 * Also kthread_stop() uses this completion for synchronization.
1506 */
1507 if (tsk->vfork_done)
1508 complete_vfork_done(tsk);
1da177e4
LT
1509}
1510
4610ba7a
TG
1511void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1512{
150d7158 1513 futex_exit_release(tsk);
4610ba7a
TG
1514 mm_release(tsk, mm);
1515}
1516
1517void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1518{
150d7158 1519 futex_exec_release(tsk);
4610ba7a
TG
1520 mm_release(tsk, mm);
1521}
1522
13585fa0
NA
1523/**
1524 * dup_mm() - duplicates an existing mm structure
1525 * @tsk: the task_struct with which the new mm will be associated.
1526 * @oldmm: the mm to duplicate.
1527 *
1528 * Allocates a new mm structure and duplicates the provided @oldmm structure
1529 * content into it.
1530 *
1531 * Return: the duplicated mm or NULL on failure.
a0a7ec30 1532 */
13585fa0
NA
1533static struct mm_struct *dup_mm(struct task_struct *tsk,
1534 struct mm_struct *oldmm)
a0a7ec30 1535{
13585fa0 1536 struct mm_struct *mm;
a0a7ec30
JD
1537 int err;
1538
a0a7ec30
JD
1539 mm = allocate_mm();
1540 if (!mm)
1541 goto fail_nomem;
1542
1543 memcpy(mm, oldmm, sizeof(*mm));
1544
bfedb589 1545 if (!mm_init(mm, tsk, mm->user_ns))
a0a7ec30
JD
1546 goto fail_nomem;
1547
a0a7ec30
JD
1548 err = dup_mmap(mm, oldmm);
1549 if (err)
1550 goto free_pt;
1551
1552 mm->hiwater_rss = get_mm_rss(mm);
1553 mm->hiwater_vm = mm->total_vm;
1554
801460d0
HS
1555 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1556 goto free_pt;
1557
a0a7ec30
JD
1558 return mm;
1559
1560free_pt:
801460d0
HS
1561 /* don't put binfmt in mmput, we haven't got module yet */
1562 mm->binfmt = NULL;
c3f3ce04 1563 mm_init_owner(mm, NULL);
a0a7ec30
JD
1564 mmput(mm);
1565
1566fail_nomem:
1567 return NULL;
a0a7ec30
JD
1568}
1569
fb0a685c 1570static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1da177e4 1571{
fb0a685c 1572 struct mm_struct *mm, *oldmm;
1da177e4
LT
1573
1574 tsk->min_flt = tsk->maj_flt = 0;
1575 tsk->nvcsw = tsk->nivcsw = 0;
17406b82
MSB
1576#ifdef CONFIG_DETECT_HUNG_TASK
1577 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
a2e51445 1578 tsk->last_switch_time = 0;
17406b82 1579#endif
1da177e4
LT
1580
1581 tsk->mm = NULL;
1582 tsk->active_mm = NULL;
1583
1584 /*
1585 * Are we cloning a kernel thread?
1586 *
1587 * We need to steal a active VM for that..
1588 */
1589 oldmm = current->mm;
1590 if (!oldmm)
1591 return 0;
1592
1593 if (clone_flags & CLONE_VM) {
3fce371b 1594 mmget(oldmm);
1da177e4 1595 mm = oldmm;
a6895399
REB
1596 } else {
1597 mm = dup_mm(tsk, current->mm);
1598 if (!mm)
1599 return -ENOMEM;
1da177e4
LT
1600 }
1601
1da177e4
LT
1602 tsk->mm = mm;
1603 tsk->active_mm = mm;
af7f588d 1604 sched_mm_cid_fork(tsk);
1da177e4 1605 return 0;
1da177e4
LT
1606}
1607
a39bc516 1608static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1da177e4 1609{
498052bb 1610 struct fs_struct *fs = current->fs;
1da177e4 1611 if (clone_flags & CLONE_FS) {
498052bb 1612 /* tsk->fs is already what we want */
2a4419b5 1613 spin_lock(&fs->lock);
498052bb 1614 if (fs->in_exec) {
2a4419b5 1615 spin_unlock(&fs->lock);
498052bb
AV
1616 return -EAGAIN;
1617 }
1618 fs->users++;
2a4419b5 1619 spin_unlock(&fs->lock);
1da177e4
LT
1620 return 0;
1621 }
498052bb 1622 tsk->fs = copy_fs_struct(fs);
1da177e4
LT
1623 if (!tsk->fs)
1624 return -ENOMEM;
1625 return 0;
1626}
1627
fb0a685c 1628static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
a016f338
JD
1629{
1630 struct files_struct *oldf, *newf;
1631 int error = 0;
1632
1633 /*
1634 * A background process may not have any files ...
1635 */
1636 oldf = current->files;
1637 if (!oldf)
1638 goto out;
1639
1640 if (clone_flags & CLONE_FILES) {
1641 atomic_inc(&oldf->count);
1642 goto out;
1643 }
1644
60997c3d 1645 newf = dup_fd(oldf, NR_OPEN_MAX, &error);
a016f338
JD
1646 if (!newf)
1647 goto out;
1648
1649 tsk->files = newf;
1650 error = 0;
1651out:
1652 return error;
1653}
1654
a39bc516 1655static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1da177e4
LT
1656{
1657 struct sighand_struct *sig;
1658
60348802 1659 if (clone_flags & CLONE_SIGHAND) {
d036bda7 1660 refcount_inc(&current->sighand->count);
1da177e4
LT
1661 return 0;
1662 }
1663 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
0c282b06 1664 RCU_INIT_POINTER(tsk->sighand, sig);
1da177e4
LT
1665 if (!sig)
1666 return -ENOMEM;
9d7fb042 1667
d036bda7 1668 refcount_set(&sig->count, 1);
06e62a46 1669 spin_lock_irq(&current->sighand->siglock);
1da177e4 1670 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
06e62a46 1671 spin_unlock_irq(&current->sighand->siglock);
b612e5df
CB
1672
1673 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1674 if (clone_flags & CLONE_CLEAR_SIGHAND)
1675 flush_signal_handlers(tsk, 0);
1676
1da177e4
LT
1677 return 0;
1678}
1679
a7e5328a 1680void __cleanup_sighand(struct sighand_struct *sighand)
c81addc9 1681{
d036bda7 1682 if (refcount_dec_and_test(&sighand->count)) {
d80e731e 1683 signalfd_cleanup(sighand);
392809b2 1684 /*
5f0d5a3a 1685 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
392809b2
ON
1686 * without an RCU grace period, see __lock_task_sighand().
1687 */
c81addc9 1688 kmem_cache_free(sighand_cachep, sighand);
d80e731e 1689 }
c81addc9
ON
1690}
1691
f06febc9
FM
1692/*
1693 * Initialize POSIX timer handling for a thread group.
1694 */
1695static void posix_cpu_timers_init_group(struct signal_struct *sig)
1696{
2b69942f 1697 struct posix_cputimers *pct = &sig->posix_cputimers;
78d7d407
JS
1698 unsigned long cpu_limit;
1699
316c1608 1700 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
3a245c0f 1701 posix_cputimers_group_init(pct, cpu_limit);
f06febc9
FM
1702}
1703
a39bc516 1704static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1da177e4
LT
1705{
1706 struct signal_struct *sig;
1da177e4 1707
4ab6c083 1708 if (clone_flags & CLONE_THREAD)
490dea45 1709 return 0;
490dea45 1710
a56704ef 1711 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1da177e4
LT
1712 tsk->signal = sig;
1713 if (!sig)
1714 return -ENOMEM;
1715
b3ac022c 1716 sig->nr_threads = 1;
d80f7d7b 1717 sig->quick_threads = 1;
1da177e4 1718 atomic_set(&sig->live, 1);
60d4de3f 1719 refcount_set(&sig->sigcnt, 1);
0c740d0a
ON
1720
1721 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1722 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1723 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1724
1da177e4 1725 init_waitqueue_head(&sig->wait_chldexit);
db51aecc 1726 sig->curr_target = tsk;
1da177e4 1727 init_sigpending(&sig->shared_pending);
c3ad2c3b 1728 INIT_HLIST_HEAD(&sig->multiprocess);
e78c3496 1729 seqlock_init(&sig->stats_lock);
9d7fb042 1730 prev_cputime_init(&sig->prev_cputime);
1da177e4 1731
baa73d9e 1732#ifdef CONFIG_POSIX_TIMERS
b18b6a9c 1733 INIT_LIST_HEAD(&sig->posix_timers);
c9cb2e3d 1734 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1da177e4 1735 sig->real_timer.function = it_real_fn;
baa73d9e 1736#endif
1da177e4 1737
1da177e4
LT
1738 task_lock(current->group_leader);
1739 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1740 task_unlock(current->group_leader);
1741
6279a751
ON
1742 posix_cpu_timers_init_group(sig);
1743
522ed776 1744 tty_audit_fork(sig);
5091faa4 1745 sched_autogroup_fork(sig);
522ed776 1746
a63d83f4 1747 sig->oom_score_adj = current->signal->oom_score_adj;
dabb16f6 1748 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
28b83c51 1749
9b1bf12d 1750 mutex_init(&sig->cred_guard_mutex);
f7cfd871 1751 init_rwsem(&sig->exec_update_lock);
9b1bf12d 1752
1da177e4
LT
1753 return 0;
1754}
1755
dbd95212
KC
1756static void copy_seccomp(struct task_struct *p)
1757{
1758#ifdef CONFIG_SECCOMP
1759 /*
1760 * Must be called with sighand->lock held, which is common to
1761 * all threads in the group. Holding cred_guard_mutex is not
1762 * needed because this new task is not yet running and cannot
1763 * be racing exec.
1764 */
69f6a34b 1765 assert_spin_locked(&current->sighand->siglock);
dbd95212
KC
1766
1767 /* Ref-count the new filter user, and assign it. */
1768 get_seccomp_filter(current);
1769 p->seccomp = current->seccomp;
1770
1771 /*
1772 * Explicitly enable no_new_privs here in case it got set
1773 * between the task_struct being duplicated and holding the
1774 * sighand lock. The seccomp state and nnp must be in sync.
1775 */
1776 if (task_no_new_privs(current))
1777 task_set_no_new_privs(p);
1778
1779 /*
1780 * If the parent gained a seccomp mode after copying thread
1781 * flags and between before we held the sighand lock, we have
1782 * to manually enable the seccomp thread flag here.
1783 */
1784 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
23d67a54 1785 set_task_syscall_work(p, SECCOMP);
dbd95212
KC
1786#endif
1787}
1788
17da2bd9 1789SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1da177e4
LT
1790{
1791 current->clear_child_tid = tidptr;
1792
b488893a 1793 return task_pid_vnr(current);
1da177e4
LT
1794}
1795
a39bc516 1796static void rt_mutex_init_task(struct task_struct *p)
23f78d4a 1797{
1d615482 1798 raw_spin_lock_init(&p->pi_lock);
e29e175b 1799#ifdef CONFIG_RT_MUTEXES
a23ba907 1800 p->pi_waiters = RB_ROOT_CACHED;
e96a7705 1801 p->pi_top_task = NULL;
23f78d4a 1802 p->pi_blocked_on = NULL;
23f78d4a
IM
1803#endif
1804}
1805
2c470475
EB
1806static inline void init_task_pid_links(struct task_struct *task)
1807{
1808 enum pid_type type;
1809
96e1e984 1810 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
2c470475 1811 INIT_HLIST_NODE(&task->pid_links[type]);
2c470475
EB
1812}
1813
81907739
ON
1814static inline void
1815init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1816{
2c470475
EB
1817 if (type == PIDTYPE_PID)
1818 task->thread_pid = pid;
1819 else
1820 task->signal->pids[type] = pid;
81907739
ON
1821}
1822
6bfbaa51
IM
1823static inline void rcu_copy_process(struct task_struct *p)
1824{
1825#ifdef CONFIG_PREEMPT_RCU
1826 p->rcu_read_lock_nesting = 0;
1827 p->rcu_read_unlock_special.s = 0;
1828 p->rcu_blocked_node = NULL;
1829 INIT_LIST_HEAD(&p->rcu_node_entry);
1830#endif /* #ifdef CONFIG_PREEMPT_RCU */
1831#ifdef CONFIG_TASKS_RCU
1832 p->rcu_tasks_holdout = false;
1833 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1834 p->rcu_tasks_idle_cpu = -1;
1835#endif /* #ifdef CONFIG_TASKS_RCU */
d5f177d3
PM
1836#ifdef CONFIG_TASKS_TRACE_RCU
1837 p->trc_reader_nesting = 0;
276c4104 1838 p->trc_reader_special.s = 0;
d5f177d3 1839 INIT_LIST_HEAD(&p->trc_holdout_list);
434c9eef 1840 INIT_LIST_HEAD(&p->trc_blkd_node);
d5f177d3 1841#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
6bfbaa51
IM
1842}
1843
3695eae5
CB
1844struct pid *pidfd_pid(const struct file *file)
1845{
1846 if (file->f_op == &pidfd_fops)
1847 return file->private_data;
1848
1849 return ERR_PTR(-EBADF);
1850}
1851
b3e58382
CB
1852static int pidfd_release(struct inode *inode, struct file *file)
1853{
1854 struct pid *pid = file->private_data;
1855
1856 file->private_data = NULL;
1857 put_pid(pid);
1858 return 0;
1859}
1860
1861#ifdef CONFIG_PROC_FS
15d42eb2
CK
1862/**
1863 * pidfd_show_fdinfo - print information about a pidfd
1864 * @m: proc fdinfo file
1865 * @f: file referencing a pidfd
1866 *
1867 * Pid:
1868 * This function will print the pid that a given pidfd refers to in the
1869 * pid namespace of the procfs instance.
1870 * If the pid namespace of the process is not a descendant of the pid
1871 * namespace of the procfs instance 0 will be shown as its pid. This is
1872 * similar to calling getppid() on a process whose parent is outside of
1873 * its pid namespace.
1874 *
1875 * NSpid:
1876 * If pid namespaces are supported then this function will also print
1877 * the pid of a given pidfd refers to for all descendant pid namespaces
1878 * starting from the current pid namespace of the instance, i.e. the
1879 * Pid field and the first entry in the NSpid field will be identical.
1880 * If the pid namespace of the process is not a descendant of the pid
1881 * namespace of the procfs instance 0 will be shown as its first NSpid
1882 * entry and no others will be shown.
1883 * Note that this differs from the Pid and NSpid fields in
1884 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1885 * the pid namespace of the procfs instance. The difference becomes
1886 * obvious when sending around a pidfd between pid namespaces from a
a8ca6b13 1887 * different branch of the tree, i.e. where no ancestral relation is
15d42eb2
CK
1888 * present between the pid namespaces:
1889 * - create two new pid namespaces ns1 and ns2 in the initial pid
1890 * namespace (also take care to create new mount namespaces in the
1891 * new pid namespace and mount procfs)
1892 * - create a process with a pidfd in ns1
1893 * - send pidfd from ns1 to ns2
1894 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1895 * have exactly one entry, which is 0
1896 */
b3e58382
CB
1897static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1898{
b3e58382 1899 struct pid *pid = f->private_data;
3d6d8da4
CB
1900 struct pid_namespace *ns;
1901 pid_t nr = -1;
15d42eb2 1902
3d6d8da4 1903 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
9d78edea 1904 ns = proc_pid_ns(file_inode(m->file)->i_sb);
3d6d8da4
CB
1905 nr = pid_nr_ns(pid, ns);
1906 }
1907
1908 seq_put_decimal_ll(m, "Pid:\t", nr);
b3e58382 1909
15d42eb2 1910#ifdef CONFIG_PID_NS
3d6d8da4
CB
1911 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1912 if (nr > 0) {
15d42eb2 1913 int i;
b3e58382 1914
15d42eb2
CK
1915 /* If nr is non-zero it means that 'pid' is valid and that
1916 * ns, i.e. the pid namespace associated with the procfs
1917 * instance, is in the pid namespace hierarchy of pid.
1918 * Start at one below the already printed level.
1919 */
1920 for (i = ns->level + 1; i <= pid->level; i++)
3d6d8da4 1921 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
15d42eb2
CK
1922 }
1923#endif
b3e58382
CB
1924 seq_putc(m, '\n');
1925}
1926#endif
1927
b53b0b9d
JFG
1928/*
1929 * Poll support for process exit notification.
1930 */
9e77716a 1931static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
b53b0b9d 1932{
b53b0b9d 1933 struct pid *pid = file->private_data;
9e77716a 1934 __poll_t poll_flags = 0;
b53b0b9d
JFG
1935
1936 poll_wait(file, &pid->wait_pidfd, pts);
1937
b53b0b9d
JFG
1938 /*
1939 * Inform pollers only when the whole thread group exits.
1940 * If the thread group leader exits before all other threads in the
1941 * group, then poll(2) should block, similar to the wait(2) family.
1942 */
38fd525a 1943 if (thread_group_exited(pid))
9e77716a 1944 poll_flags = EPOLLIN | EPOLLRDNORM;
b53b0b9d
JFG
1945
1946 return poll_flags;
1947}
1948
b3e58382
CB
1949const struct file_operations pidfd_fops = {
1950 .release = pidfd_release,
b53b0b9d 1951 .poll = pidfd_poll,
b3e58382
CB
1952#ifdef CONFIG_PROC_FS
1953 .show_fdinfo = pidfd_show_fdinfo,
1954#endif
1955};
1956
c3f3ce04
AA
1957static void __delayed_free_task(struct rcu_head *rhp)
1958{
1959 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1960
1961 free_task(tsk);
1962}
1963
1964static __always_inline void delayed_free_task(struct task_struct *tsk)
1965{
1966 if (IS_ENABLED(CONFIG_MEMCG))
1967 call_rcu(&tsk->rcu, __delayed_free_task);
1968 else
1969 free_task(tsk);
1970}
1971
67197a4f
SB
1972static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1973{
1974 /* Skip if kernel thread */
1975 if (!tsk->mm)
1976 return;
1977
1978 /* Skip if spawning a thread or using vfork */
1979 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1980 return;
1981
1982 /* We need to synchronize with __set_oom_adj */
1983 mutex_lock(&oom_adj_mutex);
1984 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1985 /* Update the values in case they were changed after copy_signal */
1986 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1987 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1988 mutex_unlock(&oom_adj_mutex);
1989}
1990
79257534
DBO
1991#ifdef CONFIG_RV
1992static void rv_task_fork(struct task_struct *p)
1993{
1994 int i;
1995
1996 for (i = 0; i < RV_PER_TASK_MONITORS; i++)
1997 p->rv[i].da_mon.monitoring = false;
1998}
1999#else
2000#define rv_task_fork(p) do {} while (0)
2001#endif
2002
1da177e4
LT
2003/*
2004 * This creates a new process as a copy of the old one,
2005 * but does not actually start it yet.
2006 *
2007 * It copies the registers, and all the appropriate
2008 * parts of the process environment (as per the clone
2009 * flags). The actual kick-off is left to the caller.
2010 */
0766f788 2011static __latent_entropy struct task_struct *copy_process(
09a05394 2012 struct pid *pid,
3033f14a 2013 int trace,
7f192e3c
CB
2014 int node,
2015 struct kernel_clone_args *args)
1da177e4 2016{
b3e58382 2017 int pidfd = -1, retval;
a24efe62 2018 struct task_struct *p;
c3ad2c3b 2019 struct multiprocess_signals delayed;
6fd2fe49 2020 struct file *pidfile = NULL;
c5febea0 2021 const u64 clone_flags = args->flags;
769071ac 2022 struct nsproxy *nsp = current->nsproxy;
1da177e4 2023
667b6094
MPS
2024 /*
2025 * Don't allow sharing the root directory with processes in a different
2026 * namespace
2027 */
1da177e4
LT
2028 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2029 return ERR_PTR(-EINVAL);
2030
e66eded8
EB
2031 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2032 return ERR_PTR(-EINVAL);
2033
1da177e4
LT
2034 /*
2035 * Thread groups must share signals as well, and detached threads
2036 * can only be started up within the thread group.
2037 */
2038 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2039 return ERR_PTR(-EINVAL);
2040
2041 /*
2042 * Shared signal handlers imply shared VM. By way of the above,
2043 * thread groups also imply shared VM. Blocking this case allows
2044 * for various simplifications in other code.
2045 */
2046 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2047 return ERR_PTR(-EINVAL);
2048
123be07b
SB
2049 /*
2050 * Siblings of global init remain as zombies on exit since they are
2051 * not reaped by their parent (swapper). To solve this and to avoid
2052 * multi-rooted process trees, prevent global and container-inits
2053 * from creating siblings.
2054 */
2055 if ((clone_flags & CLONE_PARENT) &&
2056 current->signal->flags & SIGNAL_UNKILLABLE)
2057 return ERR_PTR(-EINVAL);
2058
8382fcac 2059 /*
40a0d32d 2060 * If the new process will be in a different pid or user namespace
faf00da5 2061 * do not allow it to share a thread group with the forking task.
8382fcac 2062 */
faf00da5 2063 if (clone_flags & CLONE_THREAD) {
40a0d32d 2064 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
769071ac
AV
2065 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2066 return ERR_PTR(-EINVAL);
2067 }
2068
b3e58382 2069 if (clone_flags & CLONE_PIDFD) {
b3e58382 2070 /*
b3e58382
CB
2071 * - CLONE_DETACHED is blocked so that we can potentially
2072 * reuse it later for CLONE_PIDFD.
2073 * - CLONE_THREAD is blocked until someone really needs it.
2074 */
7f192e3c 2075 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
b3e58382 2076 return ERR_PTR(-EINVAL);
b3e58382
CB
2077 }
2078
c3ad2c3b
EB
2079 /*
2080 * Force any signals received before this point to be delivered
2081 * before the fork happens. Collect up signals sent to multiple
2082 * processes that happen during the fork and delay them so that
2083 * they appear to happen after the fork.
2084 */
2085 sigemptyset(&delayed.signal);
2086 INIT_HLIST_NODE(&delayed.node);
2087
2088 spin_lock_irq(&current->sighand->siglock);
2089 if (!(clone_flags & CLONE_THREAD))
2090 hlist_add_head(&delayed.node, &current->signal->multiprocess);
2091 recalc_sigpending();
2092 spin_unlock_irq(&current->sighand->siglock);
2093 retval = -ERESTARTNOINTR;
66ae0d1e 2094 if (task_sigpending(current))
c3ad2c3b
EB
2095 goto fork_out;
2096
1da177e4 2097 retval = -ENOMEM;
725fc629 2098 p = dup_task_struct(current, node);
1da177e4
LT
2099 if (!p)
2100 goto fork_out;
753550eb
EB
2101 p->flags &= ~PF_KTHREAD;
2102 if (args->kthread)
2103 p->flags |= PF_KTHREAD;
b16b3855
JA
2104 if (args->io_thread) {
2105 /*
2106 * Mark us an IO worker, and block any signal that isn't
2107 * fatal or STOP
2108 */
cc440e87 2109 p->flags |= PF_IO_WORKER;
b16b3855
JA
2110 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2111 }
1da177e4 2112
7f192e3c 2113 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
4d6501dc
VN
2114 /*
2115 * Clear TID on mm_release()?
2116 */
7f192e3c 2117 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
4d6501dc 2118
f7e8b616
SR
2119 ftrace_graph_init_task(p);
2120
bea493a0
PZ
2121 rt_mutex_init_task(p);
2122
a21ee605 2123 lockdep_assert_irqs_enabled();
d12c1a37 2124#ifdef CONFIG_PROVE_LOCKING
de30a2b3
IM
2125 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2126#endif
8f2f9c4d
EB
2127 retval = copy_creds(p, clone_flags);
2128 if (retval < 0)
2129 goto bad_fork_free;
2130
1da177e4 2131 retval = -EAGAIN;
de399236 2132 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
b57922b6
EP
2133 if (p->real_cred->user != INIT_USER &&
2134 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
8f2f9c4d 2135 goto bad_fork_cleanup_count;
1da177e4 2136 }
72fa5997 2137 current->flags &= ~PF_NPROC_EXCEEDED;
1da177e4 2138
1da177e4
LT
2139 /*
2140 * If multiple threads are within copy_process(), then this check
2141 * triggers too late. This doesn't hurt, the check is only there
2142 * to stop root fork bombs.
2143 */
04ec93fe 2144 retval = -EAGAIN;
c17d1a3a 2145 if (data_race(nr_threads >= max_threads))
1da177e4
LT
2146 goto bad_fork_cleanup_count;
2147
ca74e92b 2148 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
a8ea6fc9 2149 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
514ddb44 2150 p->flags |= PF_FORKNOEXEC;
1da177e4
LT
2151 INIT_LIST_HEAD(&p->children);
2152 INIT_LIST_HEAD(&p->sibling);
f41d911f 2153 rcu_copy_process(p);
1da177e4
LT
2154 p->vfork_done = NULL;
2155 spin_lock_init(&p->alloc_lock);
1da177e4 2156
1da177e4
LT
2157 init_sigpending(&p->pending);
2158
64861634 2159 p->utime = p->stime = p->gtime = 0;
40565b5a 2160#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
64861634 2161 p->utimescaled = p->stimescaled = 0;
40565b5a 2162#endif
9d7fb042
PZ
2163 prev_cputime_init(&p->prev_cputime);
2164
6a61671b 2165#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6
FW
2166 seqcount_init(&p->vtime.seqcount);
2167 p->vtime.starttime = 0;
2168 p->vtime.state = VTIME_INACTIVE;
6a61671b
FW
2169#endif
2170
0f212204
JA
2171#ifdef CONFIG_IO_URING
2172 p->io_uring = NULL;
2173#endif
2174
a3a2e76c
KH
2175#if defined(SPLIT_RSS_COUNTING)
2176 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2177#endif
172ba844 2178
6976675d
AV
2179 p->default_timer_slack_ns = current->timer_slack_ns;
2180
eb414681
JW
2181#ifdef CONFIG_PSI
2182 p->psi_flags = 0;
2183#endif
2184
5995477a 2185 task_io_accounting_init(&p->ioac);
1da177e4
LT
2186 acct_clear_integrals(p);
2187
3a245c0f 2188 posix_cputimers_init(&p->posix_cputimers);
1da177e4 2189
1da177e4 2190 p->io_context = NULL;
c0b0ae8a 2191 audit_set_context(p, NULL);
b4f48b63 2192 cgroup_fork(p);
343f4c49 2193 if (args->kthread) {
40966e31 2194 if (!set_kthread_struct(p))
ff8288ff 2195 goto bad_fork_cleanup_delayacct;
40966e31 2196 }
1da177e4 2197#ifdef CONFIG_NUMA
846a16bf 2198 p->mempolicy = mpol_dup(p->mempolicy);
fb0a685c
DRO
2199 if (IS_ERR(p->mempolicy)) {
2200 retval = PTR_ERR(p->mempolicy);
2201 p->mempolicy = NULL;
ff8288ff 2202 goto bad_fork_cleanup_delayacct;
fb0a685c 2203 }
1da177e4 2204#endif
778d3b0f
MH
2205#ifdef CONFIG_CPUSETS
2206 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2207 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
b7505861 2208 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
778d3b0f 2209#endif
de30a2b3 2210#ifdef CONFIG_TRACE_IRQFLAGS
0584df9c
ME
2211 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2212 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2213 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2214 p->softirqs_enabled = 1;
2215 p->softirq_context = 0;
de30a2b3 2216#endif
8bcbde54
DH
2217
2218 p->pagefault_disabled = 0;
2219
fbb9ce95 2220#ifdef CONFIG_LOCKDEP
b09be676 2221 lockdep_init_task(p);
fbb9ce95 2222#endif
1da177e4 2223
408894ee
IM
2224#ifdef CONFIG_DEBUG_MUTEXES
2225 p->blocked_on = NULL; /* not blocked yet */
2226#endif
cafe5635
KO
2227#ifdef CONFIG_BCACHE
2228 p->sequential_io = 0;
2229 p->sequential_io_avg = 0;
2230#endif
a10787e6
SL
2231#ifdef CONFIG_BPF_SYSCALL
2232 RCU_INIT_POINTER(p->bpf_storage, NULL);
c7603cfa 2233 p->bpf_ctx = NULL;
a10787e6 2234#endif
0f481406 2235
3c90e6e9 2236 /* Perform scheduler related setup. Assign this task to a CPU. */
aab03e05
DF
2237 retval = sched_fork(clone_flags, p);
2238 if (retval)
2239 goto bad_fork_cleanup_policy;
6ab423e0 2240
2b26f0aa 2241 retval = perf_event_init_task(p, clone_flags);
6ab423e0
PZ
2242 if (retval)
2243 goto bad_fork_cleanup_policy;
fb0a685c
DRO
2244 retval = audit_alloc(p);
2245 if (retval)
6c72e350 2246 goto bad_fork_cleanup_perf;
1da177e4 2247 /* copy all the process information */
ab602f79 2248 shm_init_task(p);
e4e55b47 2249 retval = security_task_alloc(p, clone_flags);
fb0a685c 2250 if (retval)
1da177e4 2251 goto bad_fork_cleanup_audit;
e4e55b47
TH
2252 retval = copy_semundo(clone_flags, p);
2253 if (retval)
2254 goto bad_fork_cleanup_security;
fb0a685c
DRO
2255 retval = copy_files(clone_flags, p);
2256 if (retval)
1da177e4 2257 goto bad_fork_cleanup_semundo;
fb0a685c
DRO
2258 retval = copy_fs(clone_flags, p);
2259 if (retval)
1da177e4 2260 goto bad_fork_cleanup_files;
fb0a685c
DRO
2261 retval = copy_sighand(clone_flags, p);
2262 if (retval)
1da177e4 2263 goto bad_fork_cleanup_fs;
fb0a685c
DRO
2264 retval = copy_signal(clone_flags, p);
2265 if (retval)
1da177e4 2266 goto bad_fork_cleanup_sighand;
fb0a685c
DRO
2267 retval = copy_mm(clone_flags, p);
2268 if (retval)
1da177e4 2269 goto bad_fork_cleanup_signal;
fb0a685c
DRO
2270 retval = copy_namespaces(clone_flags, p);
2271 if (retval)
d84f4f99 2272 goto bad_fork_cleanup_mm;
fb0a685c
DRO
2273 retval = copy_io(clone_flags, p);
2274 if (retval)
fd0928df 2275 goto bad_fork_cleanup_namespaces;
c5febea0 2276 retval = copy_thread(p, args);
1da177e4 2277 if (retval)
fd0928df 2278 goto bad_fork_cleanup_io;
1da177e4 2279
afaef01c
AP
2280 stackleak_task_init(p);
2281
425fb2b4 2282 if (pid != &init_struct_pid) {
49cb2fc4
AR
2283 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2284 args->set_tid_size);
35f71bc0
MH
2285 if (IS_ERR(pid)) {
2286 retval = PTR_ERR(pid);
0740aa5f 2287 goto bad_fork_cleanup_thread;
35f71bc0 2288 }
425fb2b4
PE
2289 }
2290
b3e58382
CB
2291 /*
2292 * This has to happen after we've potentially unshared the file
2293 * descriptor table (so that the pidfd doesn't leak into the child
2294 * if the fd table isn't shared).
2295 */
2296 if (clone_flags & CLONE_PIDFD) {
6fd2fe49 2297 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
b3e58382
CB
2298 if (retval < 0)
2299 goto bad_fork_free_pid;
2300
2301 pidfd = retval;
6fd2fe49
AV
2302
2303 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2304 O_RDWR | O_CLOEXEC);
2305 if (IS_ERR(pidfile)) {
2306 put_unused_fd(pidfd);
28dd29c0 2307 retval = PTR_ERR(pidfile);
6fd2fe49
AV
2308 goto bad_fork_free_pid;
2309 }
2310 get_pid(pid); /* held by pidfile now */
2311
7f192e3c 2312 retval = put_user(pidfd, args->pidfd);
b3e58382
CB
2313 if (retval)
2314 goto bad_fork_put_pidfd;
2315 }
2316
73c10101
JA
2317#ifdef CONFIG_BLOCK
2318 p->plug = NULL;
2319#endif
ba31c1a4
TG
2320 futex_init_task(p);
2321
f9a3879a
GM
2322 /*
2323 * sigaltstack should be cleared when sharing the same VM
2324 */
2325 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2a742138 2326 sas_ss_reset(p);
f9a3879a 2327
1da177e4 2328 /*
6580807d
ON
2329 * Syscall tracing and stepping should be turned off in the
2330 * child regardless of CLONE_PTRACE.
1da177e4 2331 */
6580807d 2332 user_disable_single_step(p);
64c19ba2 2333 clear_task_syscall_work(p, SYSCALL_TRACE);
64eb35f7
GKB
2334#if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2335 clear_task_syscall_work(p, SYSCALL_EMU);
ed75e8d5 2336#endif
e02c9b0d 2337 clear_tsk_latency_tracing(p);
1da177e4 2338
1da177e4 2339 /* ok, now we should be set up.. */
18c830df
ON
2340 p->pid = pid_nr(pid);
2341 if (clone_flags & CLONE_THREAD) {
18c830df
ON
2342 p->group_leader = current->group_leader;
2343 p->tgid = current->tgid;
2344 } else {
18c830df
ON
2345 p->group_leader = p;
2346 p->tgid = p->pid;
2347 }
5f8aadd8 2348
9d823e8f
WF
2349 p->nr_dirtied = 0;
2350 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
83712358 2351 p->dirty_paused_when = 0;
9d823e8f 2352
bb8cbbfe 2353 p->pdeath_signal = 0;
47e65328 2354 INIT_LIST_HEAD(&p->thread_group);
158e1645 2355 p->task_works = NULL;
ca7752ca 2356 clear_posix_cputimers_work(p);
1da177e4 2357
d741bf41
PZ
2358#ifdef CONFIG_KRETPROBES
2359 p->kretprobe_instances.first = NULL;
2360#endif
54ecbe6f
MH
2361#ifdef CONFIG_RETHOOK
2362 p->rethooks.first = NULL;
2363#endif
d741bf41 2364
7e47682e
AS
2365 /*
2366 * Ensure that the cgroup subsystem policies allow the new process to be
7b7b8a2c 2367 * forked. It should be noted that the new process's css_set can be changed
7e47682e
AS
2368 * between here and cgroup_post_fork() if an organisation operation is in
2369 * progress.
2370 */
ef2c41cf 2371 retval = cgroup_can_fork(p, args);
7e47682e 2372 if (retval)
5a5cf5cb 2373 goto bad_fork_put_pidfd;
7e47682e 2374
b1e82065
PZ
2375 /*
2376 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2377 * the new task on the correct runqueue. All this *before* the task
2378 * becomes visible.
2379 *
2380 * This isn't part of ->can_fork() because while the re-cloning is
2381 * cgroup specific, it unconditionally needs to place the task on a
2382 * runqueue.
2383 */
2384 sched_cgroup_fork(p, args);
2385
7b558513
DH
2386 /*
2387 * From this point on we must avoid any synchronous user-space
2388 * communication until we take the tasklist-lock. In particular, we do
2389 * not want user-space to be able to predict the process start-time by
2390 * stalling fork(2) after we recorded the start_time but before it is
2391 * visible to the system.
2392 */
2393
2394 p->start_time = ktime_get_ns();
cf25e24d 2395 p->start_boottime = ktime_get_boottime_ns();
7b558513 2396
18c830df
ON
2397 /*
2398 * Make it visible to the rest of the system, but dont wake it up yet.
2399 * Need tasklist lock for parent etc handling!
2400 */
1da177e4
LT
2401 write_lock_irq(&tasklist_lock);
2402
1da177e4 2403 /* CLONE_PARENT re-uses the old parent */
2d5516cb 2404 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1da177e4 2405 p->real_parent = current->real_parent;
2d5516cb 2406 p->parent_exec_id = current->parent_exec_id;
b4e00444
EW
2407 if (clone_flags & CLONE_THREAD)
2408 p->exit_signal = -1;
2409 else
2410 p->exit_signal = current->group_leader->exit_signal;
2d5516cb 2411 } else {
1da177e4 2412 p->real_parent = current;
2d5516cb 2413 p->parent_exec_id = current->self_exec_id;
b4e00444 2414 p->exit_signal = args->exit_signal;
2d5516cb 2415 }
1da177e4 2416
d83a7cb3
JP
2417 klp_copy_process(p);
2418
85dd3f61
PZ
2419 sched_core_fork(p);
2420
3f17da69 2421 spin_lock(&current->sighand->siglock);
4a2c7a78 2422
79257534
DBO
2423 rv_task_fork(p);
2424
d7822b1e
MD
2425 rseq_fork(p, clone_flags);
2426
4ca1d3ee 2427 /* Don't start children in a dying pid namespace */
e8cfbc24 2428 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
3fd37226
KT
2429 retval = -ENOMEM;
2430 goto bad_fork_cancel_cgroup;
2431 }
4a2c7a78 2432
7673bf55
EB
2433 /* Let kill terminate clone/fork in the middle */
2434 if (fatal_signal_pending(current)) {
2435 retval = -EINTR;
2436 goto bad_fork_cancel_cgroup;
2437 }
2438
a1140cb2
KI
2439 /* No more failure paths after this point. */
2440
2441 /*
2442 * Copy seccomp details explicitly here, in case they were changed
2443 * before holding sighand lock.
2444 */
2445 copy_seccomp(p);
2446
2c470475 2447 init_task_pid_links(p);
73b9ebfe 2448 if (likely(p->pid)) {
4b9d33e6 2449 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
73b9ebfe 2450
81907739 2451 init_task_pid(p, PIDTYPE_PID, pid);
73b9ebfe 2452 if (thread_group_leader(p)) {
6883f81a 2453 init_task_pid(p, PIDTYPE_TGID, pid);
81907739
ON
2454 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2455 init_task_pid(p, PIDTYPE_SID, task_session(current));
2456
1c4042c2 2457 if (is_child_reaper(pid)) {
17cf22c3 2458 ns_of_pid(pid)->child_reaper = p;
1c4042c2
EB
2459 p->signal->flags |= SIGNAL_UNKILLABLE;
2460 }
c3ad2c3b 2461 p->signal->shared_pending.signal = delayed.signal;
9c9f4ded 2462 p->signal->tty = tty_kref_get(current->signal->tty);
749860ce
PT
2463 /*
2464 * Inherit has_child_subreaper flag under the same
2465 * tasklist_lock with adding child to the process tree
2466 * for propagate_has_child_subreaper optimization.
2467 */
2468 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2469 p->real_parent->signal->is_child_subreaper;
9cd80bbb 2470 list_add_tail(&p->sibling, &p->real_parent->children);
5e85d4ab 2471 list_add_tail_rcu(&p->tasks, &init_task.tasks);
6883f81a 2472 attach_pid(p, PIDTYPE_TGID);
81907739
ON
2473 attach_pid(p, PIDTYPE_PGID);
2474 attach_pid(p, PIDTYPE_SID);
909ea964 2475 __this_cpu_inc(process_counts);
80628ca0
ON
2476 } else {
2477 current->signal->nr_threads++;
d80f7d7b 2478 current->signal->quick_threads++;
80628ca0 2479 atomic_inc(&current->signal->live);
60d4de3f 2480 refcount_inc(&current->signal->sigcnt);
924de3b8 2481 task_join_group_stop(p);
80628ca0
ON
2482 list_add_tail_rcu(&p->thread_group,
2483 &p->group_leader->thread_group);
0c740d0a
ON
2484 list_add_tail_rcu(&p->thread_node,
2485 &p->signal->thread_head);
73b9ebfe 2486 }
81907739 2487 attach_pid(p, PIDTYPE_PID);
73b9ebfe 2488 nr_threads++;
1da177e4 2489 }
1da177e4 2490 total_forks++;
c3ad2c3b 2491 hlist_del_init(&delayed.node);
3f17da69 2492 spin_unlock(&current->sighand->siglock);
4af4206b 2493 syscall_tracepoint_update(p);
1da177e4 2494 write_unlock_irq(&tasklist_lock);
4af4206b 2495
ddc204b5
WL
2496 if (pidfile)
2497 fd_install(pidfd, pidfile);
2498
c13cf856 2499 proc_fork_connector(p);
b1e82065 2500 sched_post_fork(p);
ef2c41cf 2501 cgroup_post_fork(p, args);
cdd6c482 2502 perf_event_fork(p);
43d2b113
KH
2503
2504 trace_task_newtask(p, clone_flags);
3ab67966 2505 uprobe_copy_process(p, clone_flags);
43d2b113 2506
67197a4f
SB
2507 copy_oom_score_adj(clone_flags, p);
2508
1da177e4
LT
2509 return p;
2510
7e47682e 2511bad_fork_cancel_cgroup:
85dd3f61 2512 sched_core_free(p);
3fd37226
KT
2513 spin_unlock(&current->sighand->siglock);
2514 write_unlock_irq(&tasklist_lock);
ef2c41cf 2515 cgroup_cancel_fork(p, args);
b3e58382 2516bad_fork_put_pidfd:
6fd2fe49
AV
2517 if (clone_flags & CLONE_PIDFD) {
2518 fput(pidfile);
2519 put_unused_fd(pidfd);
2520 }
425fb2b4
PE
2521bad_fork_free_pid:
2522 if (pid != &init_struct_pid)
2523 free_pid(pid);
0740aa5f
JS
2524bad_fork_cleanup_thread:
2525 exit_thread(p);
fd0928df 2526bad_fork_cleanup_io:
b69f2292
LR
2527 if (p->io_context)
2528 exit_io_context(p);
ab516013 2529bad_fork_cleanup_namespaces:
444f378b 2530 exit_task_namespaces(p);
1da177e4 2531bad_fork_cleanup_mm:
c3f3ce04
AA
2532 if (p->mm) {
2533 mm_clear_owner(p->mm, p);
1da177e4 2534 mmput(p->mm);
c3f3ce04 2535 }
1da177e4 2536bad_fork_cleanup_signal:
4ab6c083 2537 if (!(clone_flags & CLONE_THREAD))
1c5354de 2538 free_signal_struct(p->signal);
1da177e4 2539bad_fork_cleanup_sighand:
a7e5328a 2540 __cleanup_sighand(p->sighand);
1da177e4
LT
2541bad_fork_cleanup_fs:
2542 exit_fs(p); /* blocking */
2543bad_fork_cleanup_files:
2544 exit_files(p); /* blocking */
2545bad_fork_cleanup_semundo:
2546 exit_sem(p);
e4e55b47
TH
2547bad_fork_cleanup_security:
2548 security_task_free(p);
1da177e4
LT
2549bad_fork_cleanup_audit:
2550 audit_free(p);
6c72e350 2551bad_fork_cleanup_perf:
cdd6c482 2552 perf_event_free_task(p);
6c72e350 2553bad_fork_cleanup_policy:
b09be676 2554 lockdep_free_task(p);
1da177e4 2555#ifdef CONFIG_NUMA
f0be3d32 2556 mpol_put(p->mempolicy);
1da177e4 2557#endif
ff8288ff 2558bad_fork_cleanup_delayacct:
35df17c5 2559 delayacct_tsk_free(p);
1da177e4 2560bad_fork_cleanup_count:
21d1c5e3 2561 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
e0e81739 2562 exit_creds(p);
1da177e4 2563bad_fork_free:
2f064a59 2564 WRITE_ONCE(p->__state, TASK_DEAD);
1a03d3f1 2565 exit_task_stack_account(p);
68f24b08 2566 put_task_stack(p);
c3f3ce04 2567 delayed_free_task(p);
fe7d37d1 2568fork_out:
c3ad2c3b
EB
2569 spin_lock_irq(&current->sighand->siglock);
2570 hlist_del_init(&delayed.node);
2571 spin_unlock_irq(&current->sighand->siglock);
fe7d37d1 2572 return ERR_PTR(retval);
1da177e4
LT
2573}
2574
2c470475 2575static inline void init_idle_pids(struct task_struct *idle)
f106eee1
ON
2576{
2577 enum pid_type type;
2578
2579 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2c470475
EB
2580 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2581 init_task_pid(idle, type, &init_struct_pid);
f106eee1
ON
2582 }
2583}
2584
36cb0e1c
EB
2585static int idle_dummy(void *dummy)
2586{
2587 /* This function is never called */
2588 return 0;
2589}
2590
f1a0a376 2591struct task_struct * __init fork_idle(int cpu)
1da177e4 2592{
36c8b586 2593 struct task_struct *task;
7f192e3c 2594 struct kernel_clone_args args = {
343f4c49 2595 .flags = CLONE_VM,
5bd2e97c
EB
2596 .fn = &idle_dummy,
2597 .fn_arg = NULL,
343f4c49 2598 .kthread = 1,
36cb0e1c 2599 .idle = 1,
7f192e3c
CB
2600 };
2601
2602 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
f106eee1 2603 if (!IS_ERR(task)) {
2c470475 2604 init_idle_pids(task);
753ca4f3 2605 init_idle(task, cpu);
f106eee1 2606 }
73b9ebfe 2607
1da177e4
LT
2608 return task;
2609}
2610
cc440e87
JA
2611/*
2612 * This is like kernel_clone(), but shaved down and tailored to just
2613 * creating io_uring workers. It returns a created task, or an error pointer.
2614 * The returned task is inactive, and the caller must fire it up through
2615 * wake_up_new_task(p). All signals are blocked in the created task.
2616 */
2617struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2618{
2619 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2620 CLONE_IO;
2621 struct kernel_clone_args args = {
2622 .flags = ((lower_32_bits(flags) | CLONE_VM |
2623 CLONE_UNTRACED) & ~CSIGNAL),
2624 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
5bd2e97c
EB
2625 .fn = fn,
2626 .fn_arg = arg,
cc440e87
JA
2627 .io_thread = 1,
2628 };
cc440e87 2629
b16b3855 2630 return copy_process(NULL, 0, node, &args);
cc440e87
JA
2631}
2632
1da177e4
LT
2633/*
2634 * Ok, this is the main fork-routine.
2635 *
2636 * It copies the process, and if successful kick-starts
2637 * it and waits for it to finish using the VM if required.
a0eb9abd
ES
2638 *
2639 * args->exit_signal is expected to be checked for sanity by the caller.
1da177e4 2640 */
cad6967a 2641pid_t kernel_clone(struct kernel_clone_args *args)
1da177e4 2642{
7f192e3c 2643 u64 clone_flags = args->flags;
9f5325aa
MPS
2644 struct completion vfork;
2645 struct pid *pid;
1da177e4
LT
2646 struct task_struct *p;
2647 int trace = 0;
cad6967a 2648 pid_t nr;
1da177e4 2649
3af8588c
CB
2650 /*
2651 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2652 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2653 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2654 * field in struct clone_args and it still doesn't make sense to have
2655 * them both point at the same memory location. Performing this check
2656 * here has the advantage that we don't need to have a separate helper
2657 * to check for legacy clone().
2658 */
2659 if ((args->flags & CLONE_PIDFD) &&
2660 (args->flags & CLONE_PARENT_SETTID) &&
2661 (args->pidfd == args->parent_tid))
2662 return -EINVAL;
2663
09a05394 2664 /*
4b9d33e6
TH
2665 * Determine whether and which event to report to ptracer. When
2666 * called from kernel_thread or CLONE_UNTRACED is explicitly
2667 * requested, no event is reported; otherwise, report if the event
2668 * for the type of forking is enabled.
09a05394 2669 */
e80d6661 2670 if (!(clone_flags & CLONE_UNTRACED)) {
4b9d33e6
TH
2671 if (clone_flags & CLONE_VFORK)
2672 trace = PTRACE_EVENT_VFORK;
7f192e3c 2673 else if (args->exit_signal != SIGCHLD)
4b9d33e6
TH
2674 trace = PTRACE_EVENT_CLONE;
2675 else
2676 trace = PTRACE_EVENT_FORK;
2677
2678 if (likely(!ptrace_event_enabled(current, trace)))
2679 trace = 0;
2680 }
1da177e4 2681
7f192e3c 2682 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
38addce8 2683 add_latent_entropy();
9f5325aa
MPS
2684
2685 if (IS_ERR(p))
2686 return PTR_ERR(p);
2687
1da177e4
LT
2688 /*
2689 * Do this prior waking up the new thread - the thread pointer
2690 * might get invalid after that point, if the thread exits quickly.
2691 */
9f5325aa 2692 trace_sched_process_fork(current, p);
0a16b607 2693
9f5325aa
MPS
2694 pid = get_task_pid(p, PIDTYPE_PID);
2695 nr = pid_vnr(pid);
30e49c26 2696
9f5325aa 2697 if (clone_flags & CLONE_PARENT_SETTID)
7f192e3c 2698 put_user(nr, args->parent_tid);
a6f5e063 2699
9f5325aa
MPS
2700 if (clone_flags & CLONE_VFORK) {
2701 p->vfork_done = &vfork;
2702 init_completion(&vfork);
2703 get_task_struct(p);
2704 }
1da177e4 2705
bd74fdae
YZ
2706 if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
2707 /* lock the task to synchronize with memcg migration */
2708 task_lock(p);
2709 lru_gen_add_mm(p->mm);
2710 task_unlock(p);
2711 }
2712
9f5325aa 2713 wake_up_new_task(p);
09a05394 2714
9f5325aa
MPS
2715 /* forking complete and child started to run, tell ptracer */
2716 if (unlikely(trace))
2717 ptrace_event_pid(trace, pid);
4e52365f 2718
9f5325aa
MPS
2719 if (clone_flags & CLONE_VFORK) {
2720 if (!wait_for_vfork_done(p, &vfork))
2721 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1da177e4 2722 }
9f5325aa
MPS
2723
2724 put_pid(pid);
92476d7f 2725 return nr;
1da177e4
LT
2726}
2727
2aa3a7f8
AV
2728/*
2729 * Create a kernel thread.
2730 */
2731pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2732{
7f192e3c 2733 struct kernel_clone_args args = {
3f2c788a
CB
2734 .flags = ((lower_32_bits(flags) | CLONE_VM |
2735 CLONE_UNTRACED) & ~CSIGNAL),
2736 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
5bd2e97c
EB
2737 .fn = fn,
2738 .fn_arg = arg,
343f4c49
EB
2739 .kthread = 1,
2740 };
2741
2742 return kernel_clone(&args);
2743}
2744
2745/*
2746 * Create a user mode thread.
2747 */
2748pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2aa3a7f8 2749{
7f192e3c 2750 struct kernel_clone_args args = {
3f2c788a
CB
2751 .flags = ((lower_32_bits(flags) | CLONE_VM |
2752 CLONE_UNTRACED) & ~CSIGNAL),
2753 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
5bd2e97c
EB
2754 .fn = fn,
2755 .fn_arg = arg,
7f192e3c
CB
2756 };
2757
cad6967a 2758 return kernel_clone(&args);
2aa3a7f8 2759}
2aa3a7f8 2760
d2125043
AV
2761#ifdef __ARCH_WANT_SYS_FORK
2762SYSCALL_DEFINE0(fork)
2763{
2764#ifdef CONFIG_MMU
7f192e3c
CB
2765 struct kernel_clone_args args = {
2766 .exit_signal = SIGCHLD,
2767 };
2768
cad6967a 2769 return kernel_clone(&args);
d2125043
AV
2770#else
2771 /* can not support in nommu mode */
5d59e182 2772 return -EINVAL;
d2125043
AV
2773#endif
2774}
2775#endif
2776
2777#ifdef __ARCH_WANT_SYS_VFORK
2778SYSCALL_DEFINE0(vfork)
2779{
7f192e3c
CB
2780 struct kernel_clone_args args = {
2781 .flags = CLONE_VFORK | CLONE_VM,
2782 .exit_signal = SIGCHLD,
2783 };
2784
cad6967a 2785 return kernel_clone(&args);
d2125043
AV
2786}
2787#endif
2788
2789#ifdef __ARCH_WANT_SYS_CLONE
2790#ifdef CONFIG_CLONE_BACKWARDS
2791SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2792 int __user *, parent_tidptr,
3033f14a 2793 unsigned long, tls,
d2125043
AV
2794 int __user *, child_tidptr)
2795#elif defined(CONFIG_CLONE_BACKWARDS2)
2796SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2797 int __user *, parent_tidptr,
2798 int __user *, child_tidptr,
3033f14a 2799 unsigned long, tls)
dfa9771a
MS
2800#elif defined(CONFIG_CLONE_BACKWARDS3)
2801SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2802 int, stack_size,
2803 int __user *, parent_tidptr,
2804 int __user *, child_tidptr,
3033f14a 2805 unsigned long, tls)
d2125043
AV
2806#else
2807SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2808 int __user *, parent_tidptr,
2809 int __user *, child_tidptr,
3033f14a 2810 unsigned long, tls)
d2125043
AV
2811#endif
2812{
7f192e3c 2813 struct kernel_clone_args args = {
3f2c788a 2814 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
7f192e3c
CB
2815 .pidfd = parent_tidptr,
2816 .child_tid = child_tidptr,
2817 .parent_tid = parent_tidptr,
3f2c788a 2818 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
7f192e3c
CB
2819 .stack = newsp,
2820 .tls = tls,
2821 };
2822
cad6967a 2823 return kernel_clone(&args);
7f192e3c 2824}
d68dbb0c 2825#endif
7f192e3c 2826
d68dbb0c 2827#ifdef __ARCH_WANT_SYS_CLONE3
dd499f7a 2828
7f192e3c
CB
2829noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2830 struct clone_args __user *uargs,
f14c234b 2831 size_t usize)
7f192e3c 2832{
f14c234b 2833 int err;
7f192e3c 2834 struct clone_args args;
49cb2fc4 2835 pid_t *kset_tid = kargs->set_tid;
7f192e3c 2836
a966dcfe
ES
2837 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2838 CLONE_ARGS_SIZE_VER0);
2839 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2840 CLONE_ARGS_SIZE_VER1);
2841 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2842 CLONE_ARGS_SIZE_VER2);
2843 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2844
f14c234b 2845 if (unlikely(usize > PAGE_SIZE))
7f192e3c 2846 return -E2BIG;
f14c234b 2847 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
7f192e3c
CB
2848 return -EINVAL;
2849
f14c234b
AS
2850 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2851 if (err)
2852 return err;
7f192e3c 2853
49cb2fc4
AR
2854 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2855 return -EINVAL;
2856
2857 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2858 return -EINVAL;
2859
2860 if (unlikely(args.set_tid && args.set_tid_size == 0))
2861 return -EINVAL;
2862
a0eb9abd
ES
2863 /*
2864 * Verify that higher 32bits of exit_signal are unset and that
2865 * it is a valid signal
2866 */
2867 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2868 !valid_signal(args.exit_signal)))
2869 return -EINVAL;
2870
62173872
ES
2871 if ((args.flags & CLONE_INTO_CGROUP) &&
2872 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
ef2c41cf
CB
2873 return -EINVAL;
2874
7f192e3c
CB
2875 *kargs = (struct kernel_clone_args){
2876 .flags = args.flags,
2877 .pidfd = u64_to_user_ptr(args.pidfd),
2878 .child_tid = u64_to_user_ptr(args.child_tid),
2879 .parent_tid = u64_to_user_ptr(args.parent_tid),
2880 .exit_signal = args.exit_signal,
2881 .stack = args.stack,
2882 .stack_size = args.stack_size,
2883 .tls = args.tls,
49cb2fc4 2884 .set_tid_size = args.set_tid_size,
ef2c41cf 2885 .cgroup = args.cgroup,
7f192e3c
CB
2886 };
2887
49cb2fc4
AR
2888 if (args.set_tid &&
2889 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2890 (kargs->set_tid_size * sizeof(pid_t))))
2891 return -EFAULT;
2892
2893 kargs->set_tid = kset_tid;
2894
7f192e3c
CB
2895 return 0;
2896}
2897
fa729c4d
CB
2898/**
2899 * clone3_stack_valid - check and prepare stack
2900 * @kargs: kernel clone args
2901 *
2902 * Verify that the stack arguments userspace gave us are sane.
2903 * In addition, set the stack direction for userspace since it's easy for us to
2904 * determine.
2905 */
2906static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2907{
2908 if (kargs->stack == 0) {
2909 if (kargs->stack_size > 0)
2910 return false;
2911 } else {
2912 if (kargs->stack_size == 0)
2913 return false;
2914
2915 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2916 return false;
2917
2918#if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2919 kargs->stack += kargs->stack_size;
2920#endif
2921 }
2922
2923 return true;
2924}
2925
2926static bool clone3_args_valid(struct kernel_clone_args *kargs)
7f192e3c 2927{
b612e5df 2928 /* Verify that no unknown flags are passed along. */
ef2c41cf
CB
2929 if (kargs->flags &
2930 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
7f192e3c
CB
2931 return false;
2932
2933 /*
a8ca6b13
XC
2934 * - make the CLONE_DETACHED bit reusable for clone3
2935 * - make the CSIGNAL bits reusable for clone3
7f192e3c 2936 */
a402f1e3 2937 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
7f192e3c
CB
2938 return false;
2939
b612e5df
CB
2940 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2941 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2942 return false;
2943
7f192e3c
CB
2944 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2945 kargs->exit_signal)
2946 return false;
2947
fa729c4d
CB
2948 if (!clone3_stack_valid(kargs))
2949 return false;
2950
7f192e3c
CB
2951 return true;
2952}
2953
501bd016
CB
2954/**
2955 * clone3 - create a new process with specific properties
2956 * @uargs: argument structure
2957 * @size: size of @uargs
2958 *
2959 * clone3() is the extensible successor to clone()/clone2().
2960 * It takes a struct as argument that is versioned by its size.
2961 *
2962 * Return: On success, a positive PID for the child process.
2963 * On error, a negative errno number.
2964 */
7f192e3c
CB
2965SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2966{
2967 int err;
2968
2969 struct kernel_clone_args kargs;
49cb2fc4
AR
2970 pid_t set_tid[MAX_PID_NS_LEVEL];
2971
2972 kargs.set_tid = set_tid;
7f192e3c
CB
2973
2974 err = copy_clone_args_from_user(&kargs, uargs, size);
2975 if (err)
2976 return err;
2977
2978 if (!clone3_args_valid(&kargs))
2979 return -EINVAL;
2980
cad6967a 2981 return kernel_clone(&kargs);
d2125043
AV
2982}
2983#endif
2984
0f1b92cb
ON
2985void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2986{
2987 struct task_struct *leader, *parent, *child;
2988 int res;
2989
2990 read_lock(&tasklist_lock);
2991 leader = top = top->group_leader;
2992down:
2993 for_each_thread(leader, parent) {
2994 list_for_each_entry(child, &parent->children, sibling) {
2995 res = visitor(child, data);
2996 if (res) {
2997 if (res < 0)
2998 goto out;
2999 leader = child;
3000 goto down;
3001 }
3002up:
3003 ;
3004 }
3005 }
3006
3007 if (leader != top) {
3008 child = leader;
3009 parent = child->real_parent;
3010 leader = parent->group_leader;
3011 goto up;
3012 }
3013out:
3014 read_unlock(&tasklist_lock);
3015}
3016
5fd63b30
RT
3017#ifndef ARCH_MIN_MMSTRUCT_ALIGN
3018#define ARCH_MIN_MMSTRUCT_ALIGN 0
3019#endif
3020
51cc5068 3021static void sighand_ctor(void *data)
aa1757f9
ON
3022{
3023 struct sighand_struct *sighand = data;
3024
a35afb83 3025 spin_lock_init(&sighand->siglock);
b8fceee1 3026 init_waitqueue_head(&sighand->signalfd_wqh);
aa1757f9
ON
3027}
3028
af806027 3029void __init mm_cache_init(void)
1da177e4 3030{
c1a2f7f0
RR
3031 unsigned int mm_size;
3032
af806027
PZ
3033 /*
3034 * The mm_cpumask is located at the end of mm_struct, and is
3035 * dynamically sized based on the maximum CPU number this system
3036 * can have, taking hotplug into account (nr_cpu_ids).
3037 */
af7f588d 3038 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
af806027
PZ
3039
3040 mm_cachep = kmem_cache_create_usercopy("mm_struct",
3041 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3042 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3043 offsetof(struct mm_struct, saved_auxv),
3044 sizeof_field(struct mm_struct, saved_auxv),
3045 NULL);
3046}
3047
3048void __init proc_caches_init(void)
3049{
1da177e4
LT
3050 sighand_cachep = kmem_cache_create("sighand_cache",
3051 sizeof(struct sighand_struct), 0,
5f0d5a3a 3052 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
75f296d9 3053 SLAB_ACCOUNT, sighand_ctor);
1da177e4
LT
3054 signal_cachep = kmem_cache_create("signal_cache",
3055 sizeof(struct signal_struct), 0,
75f296d9 3056 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 3057 NULL);
20c2df83 3058 files_cachep = kmem_cache_create("files_cache",
1da177e4 3059 sizeof(struct files_struct), 0,
75f296d9 3060 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 3061 NULL);
20c2df83 3062 fs_cachep = kmem_cache_create("fs_cache",
1da177e4 3063 sizeof(struct fs_struct), 0,
75f296d9 3064 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 3065 NULL);
c1a2f7f0 3066
5d097056 3067 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
8feae131 3068 mmap_init();
66577193 3069 nsproxy_cache_init();
1da177e4 3070}
cf2e340f 3071
cf2e340f 3072/*
9bfb23fc 3073 * Check constraints on flags passed to the unshare system call.
cf2e340f 3074 */
9bfb23fc 3075static int check_unshare_flags(unsigned long unshare_flags)
cf2e340f 3076{
9bfb23fc
ON
3077 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3078 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
50804fe3 3079 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
769071ac
AV
3080 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3081 CLONE_NEWTIME))
9bfb23fc 3082 return -EINVAL;
cf2e340f 3083 /*
12c641ab
EB
3084 * Not implemented, but pretend it works if there is nothing
3085 * to unshare. Note that unsharing the address space or the
3086 * signal handlers also need to unshare the signal queues (aka
3087 * CLONE_THREAD).
cf2e340f 3088 */
9bfb23fc 3089 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
12c641ab
EB
3090 if (!thread_group_empty(current))
3091 return -EINVAL;
3092 }
3093 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
d036bda7 3094 if (refcount_read(&current->sighand->count) > 1)
12c641ab
EB
3095 return -EINVAL;
3096 }
3097 if (unshare_flags & CLONE_VM) {
3098 if (!current_is_single_threaded())
9bfb23fc
ON
3099 return -EINVAL;
3100 }
cf2e340f
JD
3101
3102 return 0;
3103}
3104
3105/*
99d1419d 3106 * Unshare the filesystem structure if it is being shared
cf2e340f
JD
3107 */
3108static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3109{
3110 struct fs_struct *fs = current->fs;
3111
498052bb
AV
3112 if (!(unshare_flags & CLONE_FS) || !fs)
3113 return 0;
3114
3115 /* don't need lock here; in the worst case we'll do useless copy */
3116 if (fs->users == 1)
3117 return 0;
3118
3119 *new_fsp = copy_fs_struct(fs);
3120 if (!*new_fsp)
3121 return -ENOMEM;
cf2e340f
JD
3122
3123 return 0;
3124}
3125
cf2e340f 3126/*
a016f338 3127 * Unshare file descriptor table if it is being shared
cf2e340f 3128 */
60997c3d
CB
3129int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3130 struct files_struct **new_fdp)
cf2e340f
JD
3131{
3132 struct files_struct *fd = current->files;
a016f338 3133 int error = 0;
cf2e340f
JD
3134
3135 if ((unshare_flags & CLONE_FILES) &&
a016f338 3136 (fd && atomic_read(&fd->count) > 1)) {
60997c3d 3137 *new_fdp = dup_fd(fd, max_fds, &error);
a016f338
JD
3138 if (!*new_fdp)
3139 return error;
3140 }
cf2e340f
JD
3141
3142 return 0;
3143}
3144
cf2e340f
JD
3145/*
3146 * unshare allows a process to 'unshare' part of the process
3147 * context which was originally shared using clone. copy_*
cad6967a 3148 * functions used by kernel_clone() cannot be used here directly
cf2e340f
JD
3149 * because they modify an inactive task_struct that is being
3150 * constructed. Here we are modifying the current, active,
3151 * task_struct.
3152 */
9b32105e 3153int ksys_unshare(unsigned long unshare_flags)
cf2e340f 3154{
cf2e340f 3155 struct fs_struct *fs, *new_fs = NULL;
ba1f70dd 3156 struct files_struct *new_fd = NULL;
b2e0d987 3157 struct cred *new_cred = NULL;
cf7b708c 3158 struct nsproxy *new_nsproxy = NULL;
9edff4ab 3159 int do_sysvsem = 0;
9bfb23fc 3160 int err;
cf2e340f 3161
b2e0d987 3162 /*
faf00da5
EB
3163 * If unsharing a user namespace must also unshare the thread group
3164 * and unshare the filesystem root and working directories.
b2e0d987
EB
3165 */
3166 if (unshare_flags & CLONE_NEWUSER)
e66eded8 3167 unshare_flags |= CLONE_THREAD | CLONE_FS;
50804fe3
EB
3168 /*
3169 * If unsharing vm, must also unshare signal handlers.
3170 */
3171 if (unshare_flags & CLONE_VM)
3172 unshare_flags |= CLONE_SIGHAND;
12c641ab
EB
3173 /*
3174 * If unsharing a signal handlers, must also unshare the signal queues.
3175 */
3176 if (unshare_flags & CLONE_SIGHAND)
3177 unshare_flags |= CLONE_THREAD;
9bfb23fc
ON
3178 /*
3179 * If unsharing namespace, must also unshare filesystem information.
3180 */
3181 if (unshare_flags & CLONE_NEWNS)
3182 unshare_flags |= CLONE_FS;
50804fe3
EB
3183
3184 err = check_unshare_flags(unshare_flags);
3185 if (err)
3186 goto bad_unshare_out;
6013f67f
MS
3187 /*
3188 * CLONE_NEWIPC must also detach from the undolist: after switching
3189 * to a new ipc namespace, the semaphore arrays from the old
3190 * namespace are unreachable.
3191 */
3192 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
9edff4ab 3193 do_sysvsem = 1;
fb0a685c
DRO
3194 err = unshare_fs(unshare_flags, &new_fs);
3195 if (err)
9bfb23fc 3196 goto bad_unshare_out;
60997c3d 3197 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
fb0a685c 3198 if (err)
9bfb23fc 3199 goto bad_unshare_cleanup_fs;
b2e0d987 3200 err = unshare_userns(unshare_flags, &new_cred);
fb0a685c 3201 if (err)
9edff4ab 3202 goto bad_unshare_cleanup_fd;
b2e0d987
EB
3203 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3204 new_cred, new_fs);
3205 if (err)
3206 goto bad_unshare_cleanup_cred;
c0b2fc31 3207
905ae01c
AG
3208 if (new_cred) {
3209 err = set_cred_ucounts(new_cred);
3210 if (err)
3211 goto bad_unshare_cleanup_cred;
3212 }
3213
b2e0d987 3214 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
9edff4ab
MS
3215 if (do_sysvsem) {
3216 /*
3217 * CLONE_SYSVSEM is equivalent to sys_exit().
3218 */
3219 exit_sem(current);
3220 }
ab602f79
JM
3221 if (unshare_flags & CLONE_NEWIPC) {
3222 /* Orphan segments in old ns (see sem above). */
3223 exit_shm(current);
3224 shm_init_task(current);
3225 }
ab516013 3226
6f977e6b 3227 if (new_nsproxy)
cf7b708c 3228 switch_task_namespaces(current, new_nsproxy);
cf2e340f 3229
cf7b708c
PE
3230 task_lock(current);
3231
cf2e340f
JD
3232 if (new_fs) {
3233 fs = current->fs;
2a4419b5 3234 spin_lock(&fs->lock);
cf2e340f 3235 current->fs = new_fs;
498052bb
AV
3236 if (--fs->users)
3237 new_fs = NULL;
3238 else
3239 new_fs = fs;
2a4419b5 3240 spin_unlock(&fs->lock);
cf2e340f
JD
3241 }
3242
ba1f70dd
RX
3243 if (new_fd)
3244 swap(current->files, new_fd);
cf2e340f
JD
3245
3246 task_unlock(current);
b2e0d987
EB
3247
3248 if (new_cred) {
3249 /* Install the new user namespace */
3250 commit_creds(new_cred);
3251 new_cred = NULL;
3252 }
cf2e340f
JD
3253 }
3254
e4222673
HB
3255 perf_event_namespaces(current);
3256
b2e0d987
EB
3257bad_unshare_cleanup_cred:
3258 if (new_cred)
3259 put_cred(new_cred);
cf2e340f
JD
3260bad_unshare_cleanup_fd:
3261 if (new_fd)
3262 put_files_struct(new_fd);
3263
cf2e340f
JD
3264bad_unshare_cleanup_fs:
3265 if (new_fs)
498052bb 3266 free_fs_struct(new_fs);
cf2e340f 3267
cf2e340f
JD
3268bad_unshare_out:
3269 return err;
3270}
3b125388 3271
9b32105e
DB
3272SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3273{
3274 return ksys_unshare(unshare_flags);
3275}
3276
3b125388
AV
3277/*
3278 * Helper to unshare the files of the current task.
3279 * We don't want to expose copy_files internals to
3280 * the exec layer of the kernel.
3281 */
3282
1f702603 3283int unshare_files(void)
3b125388
AV
3284{
3285 struct task_struct *task = current;
1f702603 3286 struct files_struct *old, *copy = NULL;
3b125388
AV
3287 int error;
3288
60997c3d 3289 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
1f702603 3290 if (error || !copy)
3b125388 3291 return error;
1f702603
EB
3292
3293 old = task->files;
3b125388
AV
3294 task_lock(task);
3295 task->files = copy;
3296 task_unlock(task);
1f702603 3297 put_files_struct(old);
3b125388
AV
3298 return 0;
3299}
16db3d3f
HS
3300
3301int sysctl_max_threads(struct ctl_table *table, int write,
b0daa2c7 3302 void *buffer, size_t *lenp, loff_t *ppos)
16db3d3f
HS
3303{
3304 struct ctl_table t;
3305 int ret;
3306 int threads = max_threads;
b0f53dbc 3307 int min = 1;
16db3d3f
HS
3308 int max = MAX_THREADS;
3309
3310 t = *table;
3311 t.data = &threads;
3312 t.extra1 = &min;
3313 t.extra2 = &max;
3314
3315 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3316 if (ret || !write)
3317 return ret;
3318
b0f53dbc 3319 max_threads = threads;
16db3d3f
HS
3320
3321 return 0;
3322}