Merge tag 'for-linus-iommufd' of git://git.kernel.org/pub/scm/linux/kernel/git/jgg...
[linux-2.6-block.git] / kernel / fork.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8/*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
b3e58382 15#include <linux/anon_inodes.h>
1da177e4 16#include <linux/slab.h>
4eb5aaa3 17#include <linux/sched/autogroup.h>
6e84f315 18#include <linux/sched/mm.h>
f7ccbae4 19#include <linux/sched/coredump.h>
8703e8a4 20#include <linux/sched/user.h>
6a3827d7 21#include <linux/sched/numa_balancing.h>
03441a34 22#include <linux/sched/stat.h>
29930025 23#include <linux/sched/task.h>
68db0cf1 24#include <linux/sched/task_stack.h>
32ef5517 25#include <linux/sched/cputime.h>
b3e58382 26#include <linux/seq_file.h>
037741a6 27#include <linux/rtmutex.h>
1da177e4
LT
28#include <linux/init.h>
29#include <linux/unistd.h>
1da177e4
LT
30#include <linux/module.h>
31#include <linux/vmalloc.h>
32#include <linux/completion.h>
1da177e4
LT
33#include <linux/personality.h>
34#include <linux/mempolicy.h>
35#include <linux/sem.h>
36#include <linux/file.h>
9f3acc31 37#include <linux/fdtable.h>
da9cbc87 38#include <linux/iocontext.h>
1da177e4 39#include <linux/key.h>
50b5e49c 40#include <linux/kmsan.h>
1da177e4
LT
41#include <linux/binfmts.h>
42#include <linux/mman.h>
cddb8a5c 43#include <linux/mmu_notifier.h>
1da177e4 44#include <linux/fs.h>
615d6e87 45#include <linux/mm.h>
17fca131 46#include <linux/mm_inline.h>
ab516013 47#include <linux/nsproxy.h>
c59ede7b 48#include <linux/capability.h>
1da177e4 49#include <linux/cpu.h>
b4f48b63 50#include <linux/cgroup.h>
1da177e4 51#include <linux/security.h>
a1e78772 52#include <linux/hugetlb.h>
e2cfabdf 53#include <linux/seccomp.h>
1da177e4
LT
54#include <linux/swap.h>
55#include <linux/syscalls.h>
56#include <linux/jiffies.h>
57#include <linux/futex.h>
8141c7f3 58#include <linux/compat.h>
207205a2 59#include <linux/kthread.h>
7c3ab738 60#include <linux/task_io_accounting_ops.h>
ab2af1f5 61#include <linux/rcupdate.h>
1da177e4
LT
62#include <linux/ptrace.h>
63#include <linux/mount.h>
64#include <linux/audit.h>
78fb7466 65#include <linux/memcontrol.h>
f201ae23 66#include <linux/ftrace.h>
5e2bf014 67#include <linux/proc_fs.h>
1da177e4
LT
68#include <linux/profile.h>
69#include <linux/rmap.h>
f8af4da3 70#include <linux/ksm.h>
1da177e4 71#include <linux/acct.h>
893e26e6 72#include <linux/userfaultfd_k.h>
8f0ab514 73#include <linux/tsacct_kern.h>
9f46080c 74#include <linux/cn_proc.h>
ba96a0c8 75#include <linux/freezer.h>
ca74e92b 76#include <linux/delayacct.h>
ad4ecbcb 77#include <linux/taskstats_kern.h>
522ed776 78#include <linux/tty.h>
5ad4e53b 79#include <linux/fs_struct.h>
7c9f8861 80#include <linux/magic.h>
cdd6c482 81#include <linux/perf_event.h>
42c4ab41 82#include <linux/posix-timers.h>
8e7cac79 83#include <linux/user-return-notifier.h>
3d5992d2 84#include <linux/oom.h>
ba76149f 85#include <linux/khugepaged.h>
d80e731e 86#include <linux/signalfd.h>
0326f5a9 87#include <linux/uprobes.h>
a27bb332 88#include <linux/aio.h>
52f5684c 89#include <linux/compiler.h>
16db3d3f 90#include <linux/sysctl.h>
5c9a8750 91#include <linux/kcov.h>
d83a7cb3 92#include <linux/livepatch.h>
48ac3c18 93#include <linux/thread_info.h>
afaef01c 94#include <linux/stackleak.h>
eafb149e 95#include <linux/kasan.h>
d08b9f0c 96#include <linux/scs.h>
0f212204 97#include <linux/io_uring.h>
a10787e6 98#include <linux/bpf.h>
b3883a9a 99#include <linux/stackprotector.h>
1da177e4 100
1da177e4 101#include <asm/pgalloc.h>
7c0f6ba6 102#include <linux/uaccess.h>
1da177e4
LT
103#include <asm/mmu_context.h>
104#include <asm/cacheflush.h>
105#include <asm/tlbflush.h>
106
ad8d75ff
SR
107#include <trace/events/sched.h>
108
43d2b113
KH
109#define CREATE_TRACE_POINTS
110#include <trace/events/task.h>
111
ac1b398d
HS
112/*
113 * Minimum number of threads to boot the kernel
114 */
115#define MIN_THREADS 20
116
117/*
118 * Maximum number of threads
119 */
120#define MAX_THREADS FUTEX_TID_MASK
121
1da177e4
LT
122/*
123 * Protected counters by write_lock_irq(&tasklist_lock)
124 */
125unsigned long total_forks; /* Handle normal Linux uptimes. */
fb0a685c 126int nr_threads; /* The idle threads do not count.. */
1da177e4 127
8856ae4d 128static int max_threads; /* tunable limit on nr_threads */
1da177e4 129
8495f7e6
SPP
130#define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
131
132static const char * const resident_page_types[] = {
133 NAMED_ARRAY_INDEX(MM_FILEPAGES),
134 NAMED_ARRAY_INDEX(MM_ANONPAGES),
135 NAMED_ARRAY_INDEX(MM_SWAPENTS),
136 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
137};
138
1da177e4
LT
139DEFINE_PER_CPU(unsigned long, process_counts) = 0;
140
c59923a1 141__cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
db1466b3
PM
142
143#ifdef CONFIG_PROVE_RCU
144int lockdep_tasklist_lock_is_held(void)
145{
146 return lockdep_is_held(&tasklist_lock);
147}
148EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
149#endif /* #ifdef CONFIG_PROVE_RCU */
1da177e4
LT
150
151int nr_processes(void)
152{
153 int cpu;
154 int total = 0;
155
1d510750 156 for_each_possible_cpu(cpu)
1da177e4
LT
157 total += per_cpu(process_counts, cpu);
158
159 return total;
160}
161
f19b9f74
AM
162void __weak arch_release_task_struct(struct task_struct *tsk)
163{
164}
165
f5e10287 166#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
e18b890b 167static struct kmem_cache *task_struct_cachep;
41101809
TG
168
169static inline struct task_struct *alloc_task_struct_node(int node)
170{
171 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
172}
173
41101809
TG
174static inline void free_task_struct(struct task_struct *tsk)
175{
41101809
TG
176 kmem_cache_free(task_struct_cachep, tsk);
177}
1da177e4
LT
178#endif
179
b235beea 180#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
41101809 181
0d15d74a
TG
182/*
183 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
184 * kmemcache based allocator.
185 */
ba14a194 186# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
ac496bf4 187
be9a2277 188# ifdef CONFIG_VMAP_STACK
ac496bf4
AL
189/*
190 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
191 * flush. Try to minimize the number of calls by caching stacks.
192 */
193#define NR_CACHED_STACKS 2
194static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
19659c59 195
e540bf31
SAS
196struct vm_stack {
197 struct rcu_head rcu;
198 struct vm_struct *stack_vm_area;
199};
200
201static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
202{
203 unsigned int i;
204
205 for (i = 0; i < NR_CACHED_STACKS; i++) {
206 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
207 continue;
208 return true;
209 }
210 return false;
211}
212
213static void thread_stack_free_rcu(struct rcu_head *rh)
214{
215 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
216
217 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
218 return;
219
220 vfree(vm_stack);
221}
222
223static void thread_stack_delayed_free(struct task_struct *tsk)
224{
225 struct vm_stack *vm_stack = tsk->stack;
226
227 vm_stack->stack_vm_area = tsk->stack_vm_area;
228 call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
229}
230
19659c59
HR
231static int free_vm_stack_cache(unsigned int cpu)
232{
233 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
234 int i;
235
236 for (i = 0; i < NR_CACHED_STACKS; i++) {
237 struct vm_struct *vm_stack = cached_vm_stacks[i];
238
239 if (!vm_stack)
240 continue;
241
242 vfree(vm_stack->addr);
243 cached_vm_stacks[i] = NULL;
244 }
245
246 return 0;
247}
ac496bf4 248
1a03d3f1 249static int memcg_charge_kernel_stack(struct vm_struct *vm)
b69c49b7 250{
f1c1a9ee
SAS
251 int i;
252 int ret;
253
254 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
255 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
256
257 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
258 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
259 if (ret)
260 goto err;
261 }
262 return 0;
263err:
264 /*
265 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is
266 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will
267 * ignore this page.
268 */
269 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
270 memcg_kmem_uncharge_page(vm->pages[i], 0);
271 return ret;
272}
273
7865aba3 274static int alloc_thread_stack_node(struct task_struct *tsk, int node)
b69c49b7 275{
1a03d3f1 276 struct vm_struct *vm;
ac496bf4
AL
277 void *stack;
278 int i;
279
ac496bf4 280 for (i = 0; i < NR_CACHED_STACKS; i++) {
112166f8
CL
281 struct vm_struct *s;
282
283 s = this_cpu_xchg(cached_stacks[i], NULL);
ac496bf4
AL
284
285 if (!s)
286 continue;
ac496bf4 287
51fb34de 288 /* Reset stack metadata. */
cebd0eb2 289 kasan_unpoison_range(s->addr, THREAD_SIZE);
eafb149e 290
51fb34de
AK
291 stack = kasan_reset_tag(s->addr);
292
ca182551 293 /* Clear stale pointers from reused stack. */
51fb34de 294 memset(stack, 0, THREAD_SIZE);
e01e8063 295
1a03d3f1 296 if (memcg_charge_kernel_stack(s)) {
f1c1a9ee
SAS
297 vfree(s->addr);
298 return -ENOMEM;
299 }
300
ac496bf4 301 tsk->stack_vm_area = s;
51fb34de 302 tsk->stack = stack;
7865aba3 303 return 0;
ac496bf4 304 }
ac496bf4 305
9b6f7e16
RG
306 /*
307 * Allocated stacks are cached and later reused by new threads,
308 * so memcg accounting is performed manually on assigning/releasing
309 * stacks to tasks. Drop __GFP_ACCOUNT.
310 */
48ac3c18 311 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
ac496bf4 312 VMALLOC_START, VMALLOC_END,
9b6f7e16 313 THREADINFO_GFP & ~__GFP_ACCOUNT,
ac496bf4
AL
314 PAGE_KERNEL,
315 0, node, __builtin_return_address(0));
7865aba3
SAS
316 if (!stack)
317 return -ENOMEM;
ba14a194 318
1a03d3f1
SAS
319 vm = find_vm_area(stack);
320 if (memcg_charge_kernel_stack(vm)) {
f1c1a9ee
SAS
321 vfree(stack);
322 return -ENOMEM;
323 }
ba14a194
AL
324 /*
325 * We can't call find_vm_area() in interrupt context, and
326 * free_thread_stack() can be called in interrupt context,
327 * so cache the vm_struct.
328 */
1a03d3f1 329 tsk->stack_vm_area = vm;
51fb34de 330 stack = kasan_reset_tag(stack);
7865aba3
SAS
331 tsk->stack = stack;
332 return 0;
b69c49b7
FT
333}
334
be9a2277 335static void free_thread_stack(struct task_struct *tsk)
b69c49b7 336{
e540bf31
SAS
337 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
338 thread_stack_delayed_free(tsk);
9b6f7e16 339
be9a2277
SAS
340 tsk->stack = NULL;
341 tsk->stack_vm_area = NULL;
342}
ac496bf4 343
be9a2277 344# else /* !CONFIG_VMAP_STACK */
ac496bf4 345
e540bf31
SAS
346static void thread_stack_free_rcu(struct rcu_head *rh)
347{
348 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
349}
350
351static void thread_stack_delayed_free(struct task_struct *tsk)
352{
353 struct rcu_head *rh = tsk->stack;
354
355 call_rcu(rh, thread_stack_free_rcu);
356}
357
7865aba3 358static int alloc_thread_stack_node(struct task_struct *tsk, int node)
be9a2277 359{
4949148a
VD
360 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
361 THREAD_SIZE_ORDER);
b6a84016 362
1bf4580e 363 if (likely(page)) {
8dcc1d34 364 tsk->stack = kasan_reset_tag(page_address(page));
7865aba3 365 return 0;
1bf4580e 366 }
7865aba3 367 return -ENOMEM;
b69c49b7
FT
368}
369
be9a2277 370static void free_thread_stack(struct task_struct *tsk)
b69c49b7 371{
e540bf31 372 thread_stack_delayed_free(tsk);
be9a2277 373 tsk->stack = NULL;
b69c49b7 374}
ac496bf4 375
be9a2277
SAS
376# endif /* CONFIG_VMAP_STACK */
377# else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
9b6f7e16 378
b235beea 379static struct kmem_cache *thread_stack_cache;
ac496bf4 380
e540bf31
SAS
381static void thread_stack_free_rcu(struct rcu_head *rh)
382{
383 kmem_cache_free(thread_stack_cache, rh);
384}
ac496bf4 385
e540bf31
SAS
386static void thread_stack_delayed_free(struct task_struct *tsk)
387{
388 struct rcu_head *rh = tsk->stack;
ac496bf4 389
e540bf31 390 call_rcu(rh, thread_stack_free_rcu);
b69c49b7 391}
0d15d74a 392
7865aba3 393static int alloc_thread_stack_node(struct task_struct *tsk, int node)
0d15d74a 394{
5eed6f1d
RR
395 unsigned long *stack;
396 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
8dcc1d34 397 stack = kasan_reset_tag(stack);
5eed6f1d 398 tsk->stack = stack;
7865aba3 399 return stack ? 0 : -ENOMEM;
0d15d74a
TG
400}
401
ba14a194 402static void free_thread_stack(struct task_struct *tsk)
0d15d74a 403{
e540bf31 404 thread_stack_delayed_free(tsk);
be9a2277 405 tsk->stack = NULL;
0d15d74a
TG
406}
407
b235beea 408void thread_stack_cache_init(void)
0d15d74a 409{
f9d29946
DW
410 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
411 THREAD_SIZE, THREAD_SIZE, 0, 0,
412 THREAD_SIZE, NULL);
b235beea 413 BUG_ON(thread_stack_cache == NULL);
0d15d74a 414}
be9a2277
SAS
415
416# endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
2bb0529c
SAS
417#else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
418
7865aba3 419static int alloc_thread_stack_node(struct task_struct *tsk, int node)
2bb0529c
SAS
420{
421 unsigned long *stack;
422
423 stack = arch_alloc_thread_stack_node(tsk, node);
424 tsk->stack = stack;
7865aba3 425 return stack ? 0 : -ENOMEM;
2bb0529c
SAS
426}
427
428static void free_thread_stack(struct task_struct *tsk)
429{
430 arch_free_thread_stack(tsk);
431 tsk->stack = NULL;
432}
433
be9a2277 434#endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
b69c49b7 435
1da177e4 436/* SLAB cache for signal_struct structures (tsk->signal) */
e18b890b 437static struct kmem_cache *signal_cachep;
1da177e4
LT
438
439/* SLAB cache for sighand_struct structures (tsk->sighand) */
e18b890b 440struct kmem_cache *sighand_cachep;
1da177e4
LT
441
442/* SLAB cache for files_struct structures (tsk->files) */
e18b890b 443struct kmem_cache *files_cachep;
1da177e4
LT
444
445/* SLAB cache for fs_struct structures (tsk->fs) */
e18b890b 446struct kmem_cache *fs_cachep;
1da177e4
LT
447
448/* SLAB cache for vm_area_struct structures */
3928d4f5 449static struct kmem_cache *vm_area_cachep;
1da177e4
LT
450
451/* SLAB cache for mm_struct structures (tsk->mm) */
e18b890b 452static struct kmem_cache *mm_cachep;
1da177e4 453
490fc053 454struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
3928d4f5 455{
a670468f 456 struct vm_area_struct *vma;
490fc053 457
a670468f 458 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
027232da
KS
459 if (vma)
460 vma_init(vma, mm);
490fc053 461 return vma;
3928d4f5
LT
462}
463
464struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
465{
95faf699
LT
466 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
467
468 if (new) {
cda099b3
QC
469 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
470 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
471 /*
472 * orig->shared.rb may be modified concurrently, but the clone
473 * will be reinitialized.
474 */
475 *new = data_race(*orig);
95faf699 476 INIT_LIST_HEAD(&new->anon_vma_chain);
5c26f6ac 477 dup_anon_vma_name(orig, new);
95faf699
LT
478 }
479 return new;
3928d4f5
LT
480}
481
482void vm_area_free(struct vm_area_struct *vma)
483{
5c26f6ac 484 free_anon_vma_name(vma);
3928d4f5
LT
485 kmem_cache_free(vm_area_cachep, vma);
486}
487
ba14a194 488static void account_kernel_stack(struct task_struct *tsk, int account)
c6a7f572 489{
0ce055f8
SAS
490 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
491 struct vm_struct *vm = task_stack_vm_area(tsk);
27faca83 492 int i;
ba14a194 493
27faca83
MS
494 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
495 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
496 account * (PAGE_SIZE / 1024));
497 } else {
0ce055f8
SAS
498 void *stack = task_stack_page(tsk);
499
27faca83 500 /* All stack pages are in the same node. */
da3ceeff 501 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
991e7673 502 account * (THREAD_SIZE / 1024));
27faca83 503 }
c6a7f572
KM
504}
505
1a03d3f1 506void exit_task_stack_account(struct task_struct *tsk)
9b6f7e16 507{
1a03d3f1 508 account_kernel_stack(tsk, -1);
991e7673 509
1a03d3f1
SAS
510 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
511 struct vm_struct *vm;
9b6f7e16
RG
512 int i;
513
1a03d3f1
SAS
514 vm = task_stack_vm_area(tsk);
515 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
516 memcg_kmem_uncharge_page(vm->pages[i], 0);
9b6f7e16 517 }
9b6f7e16
RG
518}
519
68f24b08 520static void release_task_stack(struct task_struct *tsk)
1da177e4 521{
2f064a59 522 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
405c0759
AL
523 return; /* Better to leak the stack than to free prematurely */
524
ba14a194 525 free_thread_stack(tsk);
68f24b08
AL
526}
527
528#ifdef CONFIG_THREAD_INFO_IN_TASK
529void put_task_stack(struct task_struct *tsk)
530{
f0b89d39 531 if (refcount_dec_and_test(&tsk->stack_refcount))
68f24b08
AL
532 release_task_stack(tsk);
533}
534#endif
535
536void free_task(struct task_struct *tsk)
537{
a1140cb2
KI
538#ifdef CONFIG_SECCOMP
539 WARN_ON_ONCE(tsk->seccomp.filter);
540#endif
b90ca8ba 541 release_user_cpus_ptr(tsk);
d08b9f0c
ST
542 scs_release(tsk);
543
68f24b08
AL
544#ifndef CONFIG_THREAD_INFO_IN_TASK
545 /*
546 * The task is finally done with both the stack and thread_info,
547 * so free both.
548 */
549 release_task_stack(tsk);
550#else
551 /*
552 * If the task had a separate stack allocation, it should be gone
553 * by now.
554 */
f0b89d39 555 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
68f24b08 556#endif
23f78d4a 557 rt_mutex_debug_task_free(tsk);
fb52607a 558 ftrace_graph_exit_task(tsk);
f19b9f74 559 arch_release_task_struct(tsk);
1da5c46f
ON
560 if (tsk->flags & PF_KTHREAD)
561 free_kthread_struct(tsk);
1da177e4
LT
562 free_task_struct(tsk);
563}
564EXPORT_SYMBOL(free_task);
565
fe69d560
DH
566static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
567{
568 struct file *exe_file;
569
570 exe_file = get_mm_exe_file(oldmm);
571 RCU_INIT_POINTER(mm->exe_file, exe_file);
572 /*
573 * We depend on the oldmm having properly denied write access to the
574 * exe_file already.
575 */
576 if (exe_file && deny_write_access(exe_file))
577 pr_warn_once("deny_write_access() failed in %s\n", __func__);
578}
579
d70f2a14
AM
580#ifdef CONFIG_MMU
581static __latent_entropy int dup_mmap(struct mm_struct *mm,
582 struct mm_struct *oldmm)
583{
763ecb03 584 struct vm_area_struct *mpnt, *tmp;
d70f2a14 585 int retval;
c9dbe82c 586 unsigned long charge = 0;
d70f2a14 587 LIST_HEAD(uf);
c9dbe82c 588 MA_STATE(old_mas, &oldmm->mm_mt, 0, 0);
d4af56c5 589 MA_STATE(mas, &mm->mm_mt, 0, 0);
d70f2a14
AM
590
591 uprobe_start_dup_mmap();
d8ed45c5 592 if (mmap_write_lock_killable(oldmm)) {
d70f2a14
AM
593 retval = -EINTR;
594 goto fail_uprobe_end;
595 }
596 flush_cache_dup_mm(oldmm);
597 uprobe_dup_mmap(oldmm, mm);
598 /*
599 * Not linked in yet - no deadlock potential:
600 */
aaa2cc56 601 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
d70f2a14
AM
602
603 /* No ordering required: file already has been exposed. */
fe69d560 604 dup_mm_exe_file(mm, oldmm);
d70f2a14
AM
605
606 mm->total_vm = oldmm->total_vm;
607 mm->data_vm = oldmm->data_vm;
608 mm->exec_vm = oldmm->exec_vm;
609 mm->stack_vm = oldmm->stack_vm;
610
d70f2a14
AM
611 retval = ksm_fork(mm, oldmm);
612 if (retval)
613 goto out;
d2081b2b 614 khugepaged_fork(mm, oldmm);
d70f2a14 615
c9dbe82c
LH
616 retval = mas_expected_entries(&mas, oldmm->map_count);
617 if (retval)
618 goto out;
619
620 mas_for_each(&old_mas, mpnt, ULONG_MAX) {
d70f2a14
AM
621 struct file *file;
622
623 if (mpnt->vm_flags & VM_DONTCOPY) {
624 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
625 continue;
626 }
627 charge = 0;
655c79bb
TH
628 /*
629 * Don't duplicate many vmas if we've been oom-killed (for
630 * example)
631 */
632 if (fatal_signal_pending(current)) {
633 retval = -EINTR;
d4af56c5 634 goto loop_out;
655c79bb 635 }
d70f2a14
AM
636 if (mpnt->vm_flags & VM_ACCOUNT) {
637 unsigned long len = vma_pages(mpnt);
638
639 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
640 goto fail_nomem;
641 charge = len;
642 }
3928d4f5 643 tmp = vm_area_dup(mpnt);
d70f2a14
AM
644 if (!tmp)
645 goto fail_nomem;
d70f2a14
AM
646 retval = vma_dup_policy(mpnt, tmp);
647 if (retval)
648 goto fail_nomem_policy;
649 tmp->vm_mm = mm;
650 retval = dup_userfaultfd(tmp, &uf);
651 if (retval)
652 goto fail_nomem_anon_vma_fork;
653 if (tmp->vm_flags & VM_WIPEONFORK) {
93949bb2
LX
654 /*
655 * VM_WIPEONFORK gets a clean slate in the child.
656 * Don't prepare anon_vma until fault since we don't
657 * copy page for current vma.
658 */
d70f2a14 659 tmp->anon_vma = NULL;
d70f2a14
AM
660 } else if (anon_vma_fork(tmp, mpnt))
661 goto fail_nomem_anon_vma_fork;
662 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
d70f2a14
AM
663 file = tmp->vm_file;
664 if (file) {
d70f2a14
AM
665 struct address_space *mapping = file->f_mapping;
666
667 get_file(file);
d70f2a14
AM
668 i_mmap_lock_write(mapping);
669 if (tmp->vm_flags & VM_SHARED)
cf508b58 670 mapping_allow_writable(mapping);
d70f2a14
AM
671 flush_dcache_mmap_lock(mapping);
672 /* insert tmp into the share list, just after mpnt */
673 vma_interval_tree_insert_after(tmp, mpnt,
674 &mapping->i_mmap);
675 flush_dcache_mmap_unlock(mapping);
676 i_mmap_unlock_write(mapping);
677 }
678
679 /*
8d9bfb26 680 * Copy/update hugetlb private vma information.
d70f2a14
AM
681 */
682 if (is_vm_hugetlb_page(tmp))
8d9bfb26 683 hugetlb_dup_vma_private(tmp);
d70f2a14 684
d4af56c5
LH
685 /* Link the vma into the MT */
686 mas.index = tmp->vm_start;
687 mas.last = tmp->vm_end - 1;
688 mas_store(&mas, tmp);
c9dbe82c
LH
689 if (mas_is_err(&mas))
690 goto fail_nomem_mas_store;
d70f2a14
AM
691
692 mm->map_count++;
693 if (!(tmp->vm_flags & VM_WIPEONFORK))
c78f4636 694 retval = copy_page_range(tmp, mpnt);
d70f2a14
AM
695
696 if (tmp->vm_ops && tmp->vm_ops->open)
697 tmp->vm_ops->open(tmp);
698
699 if (retval)
d4af56c5 700 goto loop_out;
d70f2a14
AM
701 }
702 /* a new mm has just been created */
1ed0cc5a 703 retval = arch_dup_mmap(oldmm, mm);
d4af56c5
LH
704loop_out:
705 mas_destroy(&mas);
d70f2a14 706out:
d8ed45c5 707 mmap_write_unlock(mm);
d70f2a14 708 flush_tlb_mm(oldmm);
d8ed45c5 709 mmap_write_unlock(oldmm);
d70f2a14
AM
710 dup_userfaultfd_complete(&uf);
711fail_uprobe_end:
712 uprobe_end_dup_mmap();
713 return retval;
c9dbe82c
LH
714
715fail_nomem_mas_store:
716 unlink_anon_vmas(tmp);
d70f2a14
AM
717fail_nomem_anon_vma_fork:
718 mpol_put(vma_policy(tmp));
719fail_nomem_policy:
3928d4f5 720 vm_area_free(tmp);
d70f2a14
AM
721fail_nomem:
722 retval = -ENOMEM;
723 vm_unacct_memory(charge);
d4af56c5 724 goto loop_out;
d70f2a14
AM
725}
726
727static inline int mm_alloc_pgd(struct mm_struct *mm)
728{
729 mm->pgd = pgd_alloc(mm);
730 if (unlikely(!mm->pgd))
731 return -ENOMEM;
732 return 0;
733}
734
735static inline void mm_free_pgd(struct mm_struct *mm)
736{
737 pgd_free(mm, mm->pgd);
738}
739#else
740static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
741{
d8ed45c5 742 mmap_write_lock(oldmm);
fe69d560 743 dup_mm_exe_file(mm, oldmm);
d8ed45c5 744 mmap_write_unlock(oldmm);
d70f2a14
AM
745 return 0;
746}
747#define mm_alloc_pgd(mm) (0)
748#define mm_free_pgd(mm)
749#endif /* CONFIG_MMU */
750
751static void check_mm(struct mm_struct *mm)
752{
753 int i;
754
8495f7e6
SPP
755 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
756 "Please make sure 'struct resident_page_types[]' is updated as well");
757
d70f2a14 758 for (i = 0; i < NR_MM_COUNTERS; i++) {
f1a79412 759 long x = percpu_counter_sum(&mm->rss_stat[i]);
d70f2a14 760
f689054a
SB
761 if (likely(!x))
762 continue;
763
764 /* Making sure this is not due to race with CPU offlining. */
765 x = percpu_counter_sum_all(&mm->rss_stat[i]);
d70f2a14 766 if (unlikely(x))
8495f7e6
SPP
767 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
768 mm, resident_page_types[i], x);
d70f2a14
AM
769 }
770
771 if (mm_pgtables_bytes(mm))
772 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
773 mm_pgtables_bytes(mm));
774
775#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
776 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
777#endif
778}
779
780#define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
781#define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
782
783/*
784 * Called when the last reference to the mm
785 * is dropped: either by a lazy thread or by
786 * mmput. Free the page directory and the mm.
787 */
d34bc48f 788void __mmdrop(struct mm_struct *mm)
d70f2a14 789{
f1a79412
SB
790 int i;
791
d70f2a14 792 BUG_ON(mm == &init_mm);
3eda69c9
MR
793 WARN_ON_ONCE(mm == current->mm);
794 WARN_ON_ONCE(mm == current->active_mm);
d70f2a14
AM
795 mm_free_pgd(mm);
796 destroy_context(mm);
984cfe4e 797 mmu_notifier_subscriptions_destroy(mm);
d70f2a14
AM
798 check_mm(mm);
799 put_user_ns(mm->user_ns);
2667ed10 800 mm_pasid_drop(mm);
f1a79412
SB
801
802 for (i = 0; i < NR_MM_COUNTERS; i++)
803 percpu_counter_destroy(&mm->rss_stat[i]);
d70f2a14
AM
804 free_mm(mm);
805}
d34bc48f 806EXPORT_SYMBOL_GPL(__mmdrop);
d70f2a14
AM
807
808static void mmdrop_async_fn(struct work_struct *work)
809{
810 struct mm_struct *mm;
811
812 mm = container_of(work, struct mm_struct, async_put_work);
813 __mmdrop(mm);
814}
815
816static void mmdrop_async(struct mm_struct *mm)
817{
818 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
819 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
820 schedule_work(&mm->async_put_work);
821 }
822}
823
ea6d290c
ON
824static inline void free_signal_struct(struct signal_struct *sig)
825{
97101eb4 826 taskstats_tgid_free(sig);
1c5354de 827 sched_autogroup_exit(sig);
7283094e
MH
828 /*
829 * __mmdrop is not safe to call from softirq context on x86 due to
830 * pgd_dtor so postpone it to the async context
831 */
26db62f1 832 if (sig->oom_mm)
7283094e 833 mmdrop_async(sig->oom_mm);
ea6d290c
ON
834 kmem_cache_free(signal_cachep, sig);
835}
836
837static inline void put_signal_struct(struct signal_struct *sig)
838{
60d4de3f 839 if (refcount_dec_and_test(&sig->sigcnt))
ea6d290c
ON
840 free_signal_struct(sig);
841}
842
158d9ebd 843void __put_task_struct(struct task_struct *tsk)
1da177e4 844{
270f722d 845 WARN_ON(!tsk->exit_state);
ec1d2819 846 WARN_ON(refcount_read(&tsk->usage));
1da177e4
LT
847 WARN_ON(tsk == current);
848
0f212204 849 io_uring_free(tsk);
2e91fa7f 850 cgroup_free(tsk);
16d51a59 851 task_numa_free(tsk, true);
1a2a4d06 852 security_task_free(tsk);
a10787e6 853 bpf_task_storage_free(tsk);
e0e81739 854 exit_creds(tsk);
35df17c5 855 delayacct_tsk_free(tsk);
ea6d290c 856 put_signal_struct(tsk->signal);
6e33cad0 857 sched_core_free(tsk);
2873cd31 858 free_task(tsk);
1da177e4 859}
77c100c8 860EXPORT_SYMBOL_GPL(__put_task_struct);
1da177e4 861
6c0a9fa6 862void __init __weak arch_task_cache_init(void) { }
61c4628b 863
ff691f6e
HS
864/*
865 * set_max_threads
866 */
16db3d3f 867static void set_max_threads(unsigned int max_threads_suggested)
ff691f6e 868{
ac1b398d 869 u64 threads;
ca79b0c2 870 unsigned long nr_pages = totalram_pages();
ff691f6e
HS
871
872 /*
ac1b398d
HS
873 * The number of threads shall be limited such that the thread
874 * structures may only consume a small part of the available memory.
ff691f6e 875 */
3d6357de 876 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
ac1b398d
HS
877 threads = MAX_THREADS;
878 else
3d6357de 879 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
ac1b398d
HS
880 (u64) THREAD_SIZE * 8UL);
881
16db3d3f
HS
882 if (threads > max_threads_suggested)
883 threads = max_threads_suggested;
884
ac1b398d 885 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
ff691f6e
HS
886}
887
5aaeb5c0
IM
888#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
889/* Initialized by the architecture: */
890int arch_task_struct_size __read_mostly;
891#endif
0c8c0f03 892
4189ff23 893#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
5905429a
KC
894static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
895{
896 /* Fetch thread_struct whitelist for the architecture. */
897 arch_thread_struct_whitelist(offset, size);
898
899 /*
900 * Handle zero-sized whitelist or empty thread_struct, otherwise
901 * adjust offset to position of thread_struct in task_struct.
902 */
903 if (unlikely(*size == 0))
904 *offset = 0;
905 else
906 *offset += offsetof(struct task_struct, thread);
907}
4189ff23 908#endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
5905429a 909
ff691f6e 910void __init fork_init(void)
1da177e4 911{
25f9c081 912 int i;
f5e10287 913#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1da177e4 914#ifndef ARCH_MIN_TASKALIGN
e274795e 915#define ARCH_MIN_TASKALIGN 0
1da177e4 916#endif
95cb64c1 917 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
5905429a 918 unsigned long useroffset, usersize;
e274795e 919
1da177e4 920 /* create a slab on which task_structs can be allocated */
5905429a
KC
921 task_struct_whitelist(&useroffset, &usersize);
922 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
e274795e 923 arch_task_struct_size, align,
5905429a
KC
924 SLAB_PANIC|SLAB_ACCOUNT,
925 useroffset, usersize, NULL);
1da177e4
LT
926#endif
927
61c4628b
SS
928 /* do the arch specific task caches init */
929 arch_task_cache_init();
930
16db3d3f 931 set_max_threads(MAX_THREADS);
1da177e4
LT
932
933 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
934 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
935 init_task.signal->rlim[RLIMIT_SIGPENDING] =
936 init_task.signal->rlim[RLIMIT_NPROC];
b376c3e1 937
de399236 938 for (i = 0; i < UCOUNT_COUNTS; i++)
25f9c081 939 init_user_ns.ucount_max[i] = max_threads/2;
19659c59 940
de399236
AG
941 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY);
942 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY);
943 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
944 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY);
21d1c5e3 945
19659c59
HR
946#ifdef CONFIG_VMAP_STACK
947 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
948 NULL, free_vm_stack_cache);
949#endif
b09be676 950
d08b9f0c
ST
951 scs_init();
952
b09be676 953 lockdep_init_task(&init_task);
aad42dd4 954 uprobes_init();
1da177e4
LT
955}
956
52f5684c 957int __weak arch_dup_task_struct(struct task_struct *dst,
61c4628b
SS
958 struct task_struct *src)
959{
960 *dst = *src;
961 return 0;
962}
963
d4311ff1
AT
964void set_task_stack_end_magic(struct task_struct *tsk)
965{
966 unsigned long *stackend;
967
968 stackend = end_of_stack(tsk);
969 *stackend = STACK_END_MAGIC; /* for overflow detection */
970}
971
725fc629 972static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1da177e4
LT
973{
974 struct task_struct *tsk;
3e26c149 975 int err;
1da177e4 976
725fc629
AK
977 if (node == NUMA_NO_NODE)
978 node = tsk_fork_get_node(orig);
504f52b5 979 tsk = alloc_task_struct_node(node);
1da177e4
LT
980 if (!tsk)
981 return NULL;
982
546c42b2
SAS
983 err = arch_dup_task_struct(tsk, orig);
984 if (err)
f19b9f74 985 goto free_tsk;
1da177e4 986
7865aba3
SAS
987 err = alloc_thread_stack_node(tsk, node);
988 if (err)
f19b9f74 989 goto free_tsk;
ba14a194 990
68f24b08 991#ifdef CONFIG_THREAD_INFO_IN_TASK
f0b89d39 992 refcount_set(&tsk->stack_refcount, 1);
68f24b08 993#endif
1a03d3f1 994 account_kernel_stack(tsk, 1);
164c33c6 995
d08b9f0c
ST
996 err = scs_prepare(tsk, node);
997 if (err)
998 goto free_stack;
999
dbd95212
KC
1000#ifdef CONFIG_SECCOMP
1001 /*
1002 * We must handle setting up seccomp filters once we're under
1003 * the sighand lock in case orig has changed between now and
1004 * then. Until then, filter must be NULL to avoid messing up
1005 * the usage counts on the error path calling free_task.
1006 */
1007 tsk->seccomp.filter = NULL;
1008#endif
87bec58a
AM
1009
1010 setup_thread_stack(tsk, orig);
8e7cac79 1011 clear_user_return_notifier(tsk);
f26f9aff 1012 clear_tsk_need_resched(tsk);
d4311ff1 1013 set_task_stack_end_magic(tsk);
1446e1df 1014 clear_syscall_work_syscall_user_dispatch(tsk);
1da177e4 1015
050e9baa 1016#ifdef CONFIG_STACKPROTECTOR
7cd815bc 1017 tsk->stack_canary = get_random_canary();
0a425405 1018#endif
3bd37062
SAS
1019 if (orig->cpus_ptr == &orig->cpus_mask)
1020 tsk->cpus_ptr = &tsk->cpus_mask;
b90ca8ba 1021 dup_user_cpus_ptr(tsk, orig, node);
0a425405 1022
fb0a685c 1023 /*
0ff7b2cf
EB
1024 * One for the user space visible state that goes away when reaped.
1025 * One for the scheduler.
fb0a685c 1026 */
0ff7b2cf
EB
1027 refcount_set(&tsk->rcu_users, 2);
1028 /* One for the rcu users */
1029 refcount_set(&tsk->usage, 1);
6c5c9341 1030#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 1031 tsk->btrace_seq = 0;
6c5c9341 1032#endif
a0aa7f68 1033 tsk->splice_pipe = NULL;
5640f768 1034 tsk->task_frag.page = NULL;
093e5840 1035 tsk->wake_q.next = NULL;
e32cf5df 1036 tsk->worker_private = NULL;
c6a7f572 1037
5c9a8750 1038 kcov_task_init(tsk);
50b5e49c 1039 kmsan_task_create(tsk);
5fbda3ec 1040 kmap_local_fork(tsk);
5c9a8750 1041
e41d5818
DV
1042#ifdef CONFIG_FAULT_INJECTION
1043 tsk->fail_nth = 0;
1044#endif
1045
2c323017
JB
1046#ifdef CONFIG_BLK_CGROUP
1047 tsk->throttle_queue = NULL;
1048 tsk->use_memdelay = 0;
1049#endif
1050
a3d29e82
PZ
1051#ifdef CONFIG_IOMMU_SVA
1052 tsk->pasid_activated = 0;
1053#endif
1054
d46eb14b
SB
1055#ifdef CONFIG_MEMCG
1056 tsk->active_memcg = NULL;
1057#endif
b041b525
TL
1058
1059#ifdef CONFIG_CPU_SUP_INTEL
1060 tsk->reported_split_lock = 0;
1061#endif
1062
1da177e4 1063 return tsk;
61c4628b 1064
b235beea 1065free_stack:
1a03d3f1 1066 exit_task_stack_account(tsk);
ba14a194 1067 free_thread_stack(tsk);
f19b9f74 1068free_tsk:
61c4628b
SS
1069 free_task_struct(tsk);
1070 return NULL;
1da177e4
LT
1071}
1072
23ff4440 1073__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1da177e4 1074
4cb0e11b
HK
1075static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1076
1077static int __init coredump_filter_setup(char *s)
1078{
1079 default_dump_filter =
1080 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1081 MMF_DUMP_FILTER_MASK;
1082 return 1;
1083}
1084
1085__setup("coredump_filter=", coredump_filter_setup);
1086
1da177e4
LT
1087#include <linux/init_task.h>
1088
858f0993
AD
1089static void mm_init_aio(struct mm_struct *mm)
1090{
1091#ifdef CONFIG_AIO
1092 spin_lock_init(&mm->ioctx_lock);
db446a08 1093 mm->ioctx_table = NULL;
858f0993
AD
1094#endif
1095}
1096
c3f3ce04
AA
1097static __always_inline void mm_clear_owner(struct mm_struct *mm,
1098 struct task_struct *p)
1099{
1100#ifdef CONFIG_MEMCG
1101 if (mm->owner == p)
1102 WRITE_ONCE(mm->owner, NULL);
1103#endif
1104}
1105
33144e84
VD
1106static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1107{
1108#ifdef CONFIG_MEMCG
1109 mm->owner = p;
1110#endif
1111}
1112
355627f5
EB
1113static void mm_init_uprobes_state(struct mm_struct *mm)
1114{
1115#ifdef CONFIG_UPROBES
1116 mm->uprobes_state.xol_area = NULL;
1117#endif
1118}
1119
bfedb589
EB
1120static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1121 struct user_namespace *user_ns)
1da177e4 1122{
f1a79412
SB
1123 int i;
1124
d4af56c5
LH
1125 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1126 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1da177e4
LT
1127 atomic_set(&mm->mm_users, 1);
1128 atomic_set(&mm->mm_count, 1);
57efa1fe 1129 seqcount_init(&mm->write_protect_seq);
d8ed45c5 1130 mmap_init_lock(mm);
1da177e4 1131 INIT_LIST_HEAD(&mm->mmlist);
af5b0f6a 1132 mm_pgtables_bytes_init(mm);
41f727fd
VD
1133 mm->map_count = 0;
1134 mm->locked_vm = 0;
70f8a3ca 1135 atomic64_set(&mm->pinned_vm, 0);
d559db08 1136 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1da177e4 1137 spin_lock_init(&mm->page_table_lock);
88aa7cc6 1138 spin_lock_init(&mm->arg_lock);
41f727fd 1139 mm_init_cpumask(mm);
858f0993 1140 mm_init_aio(mm);
cf475ad2 1141 mm_init_owner(mm, p);
a6cbd440 1142 mm_pasid_init(mm);
2b7e8665 1143 RCU_INIT_POINTER(mm->exe_file, NULL);
984cfe4e 1144 mmu_notifier_subscriptions_init(mm);
16af97dc 1145 init_tlb_flush_pending(mm);
41f727fd
VD
1146#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1147 mm->pmd_huge_pte = NULL;
1148#endif
355627f5 1149 mm_init_uprobes_state(mm);
13db8c50 1150 hugetlb_count_init(mm);
1da177e4 1151
a0715cc2
AT
1152 if (current->mm) {
1153 mm->flags = current->mm->flags & MMF_INIT_MASK;
1154 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1155 } else {
1156 mm->flags = default_dump_filter;
1da177e4 1157 mm->def_flags = 0;
a0715cc2
AT
1158 }
1159
41f727fd
VD
1160 if (mm_alloc_pgd(mm))
1161 goto fail_nopgd;
1162
1163 if (init_new_context(p, mm))
1164 goto fail_nocontext;
78fb7466 1165
f1a79412
SB
1166 for (i = 0; i < NR_MM_COUNTERS; i++)
1167 if (percpu_counter_init(&mm->rss_stat[i], 0, GFP_KERNEL_ACCOUNT))
1168 goto fail_pcpu;
1169
bfedb589 1170 mm->user_ns = get_user_ns(user_ns);
bd74fdae 1171 lru_gen_init_mm(mm);
41f727fd
VD
1172 return mm;
1173
f1a79412
SB
1174fail_pcpu:
1175 while (i > 0)
1176 percpu_counter_destroy(&mm->rss_stat[--i]);
41f727fd
VD
1177fail_nocontext:
1178 mm_free_pgd(mm);
1179fail_nopgd:
1da177e4
LT
1180 free_mm(mm);
1181 return NULL;
1182}
1183
1184/*
1185 * Allocate and initialize an mm_struct.
1186 */
fb0a685c 1187struct mm_struct *mm_alloc(void)
1da177e4 1188{
fb0a685c 1189 struct mm_struct *mm;
1da177e4
LT
1190
1191 mm = allocate_mm();
de03c72c
KM
1192 if (!mm)
1193 return NULL;
1194
1195 memset(mm, 0, sizeof(*mm));
bfedb589 1196 return mm_init(mm, current, current_user_ns());
1da177e4
LT
1197}
1198
ec8d7c14
MH
1199static inline void __mmput(struct mm_struct *mm)
1200{
1201 VM_BUG_ON(atomic_read(&mm->mm_users));
1202
1203 uprobe_clear_state(mm);
1204 exit_aio(mm);
1205 ksm_exit(mm);
1206 khugepaged_exit(mm); /* must run before exit_mmap */
1207 exit_mmap(mm);
6fcb52a5 1208 mm_put_huge_zero_page(mm);
ec8d7c14
MH
1209 set_mm_exe_file(mm, NULL);
1210 if (!list_empty(&mm->mmlist)) {
1211 spin_lock(&mmlist_lock);
1212 list_del(&mm->mmlist);
1213 spin_unlock(&mmlist_lock);
1214 }
1215 if (mm->binfmt)
1216 module_put(mm->binfmt->module);
bd74fdae 1217 lru_gen_del_mm(mm);
ec8d7c14
MH
1218 mmdrop(mm);
1219}
1220
1da177e4
LT
1221/*
1222 * Decrement the use count and release all resources for an mm.
1223 */
1224void mmput(struct mm_struct *mm)
1225{
0ae26f1b
AM
1226 might_sleep();
1227
ec8d7c14
MH
1228 if (atomic_dec_and_test(&mm->mm_users))
1229 __mmput(mm);
1230}
1231EXPORT_SYMBOL_GPL(mmput);
1232
a1b2289c
SY
1233#ifdef CONFIG_MMU
1234static void mmput_async_fn(struct work_struct *work)
1235{
1236 struct mm_struct *mm = container_of(work, struct mm_struct,
1237 async_put_work);
1238
1239 __mmput(mm);
1240}
1241
1242void mmput_async(struct mm_struct *mm)
1243{
1244 if (atomic_dec_and_test(&mm->mm_users)) {
1245 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1246 schedule_work(&mm->async_put_work);
1247 }
1248}
85eaeb50 1249EXPORT_SYMBOL_GPL(mmput_async);
a1b2289c
SY
1250#endif
1251
90f31d0e
KK
1252/**
1253 * set_mm_exe_file - change a reference to the mm's executable file
1254 *
1255 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1256 *
6e399cd1
DB
1257 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1258 * invocations: in mmput() nobody alive left, in execve task is single
35d7bdc8 1259 * threaded.
fe69d560
DH
1260 *
1261 * Can only fail if new_exe_file != NULL.
90f31d0e 1262 */
fe69d560 1263int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
38646013 1264{
6e399cd1
DB
1265 struct file *old_exe_file;
1266
1267 /*
1268 * It is safe to dereference the exe_file without RCU as
1269 * this function is only called if nobody else can access
1270 * this mm -- see comment above for justification.
1271 */
1272 old_exe_file = rcu_dereference_raw(mm->exe_file);
90f31d0e 1273
fe69d560
DH
1274 if (new_exe_file) {
1275 /*
1276 * We expect the caller (i.e., sys_execve) to already denied
1277 * write access, so this is unlikely to fail.
1278 */
1279 if (unlikely(deny_write_access(new_exe_file)))
1280 return -EACCES;
38646013 1281 get_file(new_exe_file);
fe69d560 1282 }
90f31d0e 1283 rcu_assign_pointer(mm->exe_file, new_exe_file);
fe69d560
DH
1284 if (old_exe_file) {
1285 allow_write_access(old_exe_file);
90f31d0e 1286 fput(old_exe_file);
fe69d560
DH
1287 }
1288 return 0;
38646013
JS
1289}
1290
35d7bdc8
DH
1291/**
1292 * replace_mm_exe_file - replace a reference to the mm's executable file
1293 *
1294 * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
1295 * dealing with concurrent invocation and without grabbing the mmap lock in
1296 * write mode.
1297 *
1298 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1299 */
1300int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1301{
1302 struct vm_area_struct *vma;
1303 struct file *old_exe_file;
1304 int ret = 0;
1305
1306 /* Forbid mm->exe_file change if old file still mapped. */
1307 old_exe_file = get_mm_exe_file(mm);
1308 if (old_exe_file) {
fa5e5876 1309 VMA_ITERATOR(vmi, mm, 0);
35d7bdc8 1310 mmap_read_lock(mm);
fa5e5876 1311 for_each_vma(vmi, vma) {
35d7bdc8
DH
1312 if (!vma->vm_file)
1313 continue;
1314 if (path_equal(&vma->vm_file->f_path,
fa5e5876 1315 &old_exe_file->f_path)) {
35d7bdc8 1316 ret = -EBUSY;
fa5e5876
MWO
1317 break;
1318 }
35d7bdc8
DH
1319 }
1320 mmap_read_unlock(mm);
1321 fput(old_exe_file);
1322 if (ret)
1323 return ret;
1324 }
1325
1326 /* set the new file, lockless */
fe69d560
DH
1327 ret = deny_write_access(new_exe_file);
1328 if (ret)
1329 return -EACCES;
35d7bdc8 1330 get_file(new_exe_file);
fe69d560 1331
35d7bdc8 1332 old_exe_file = xchg(&mm->exe_file, new_exe_file);
fe69d560
DH
1333 if (old_exe_file) {
1334 /*
1335 * Don't race with dup_mmap() getting the file and disallowing
1336 * write access while someone might open the file writable.
1337 */
1338 mmap_read_lock(mm);
1339 allow_write_access(old_exe_file);
35d7bdc8 1340 fput(old_exe_file);
fe69d560
DH
1341 mmap_read_unlock(mm);
1342 }
35d7bdc8 1343 return 0;
38646013
JS
1344}
1345
90f31d0e
KK
1346/**
1347 * get_mm_exe_file - acquire a reference to the mm's executable file
1348 *
1349 * Returns %NULL if mm has no associated executable file.
1350 * User must release file via fput().
1351 */
38646013
JS
1352struct file *get_mm_exe_file(struct mm_struct *mm)
1353{
1354 struct file *exe_file;
1355
90f31d0e
KK
1356 rcu_read_lock();
1357 exe_file = rcu_dereference(mm->exe_file);
1358 if (exe_file && !get_file_rcu(exe_file))
1359 exe_file = NULL;
1360 rcu_read_unlock();
38646013
JS
1361 return exe_file;
1362}
1363
cd81a917
MG
1364/**
1365 * get_task_exe_file - acquire a reference to the task's executable file
1366 *
1367 * Returns %NULL if task's mm (if any) has no associated executable file or
1368 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1369 * User must release file via fput().
1370 */
1371struct file *get_task_exe_file(struct task_struct *task)
1372{
1373 struct file *exe_file = NULL;
1374 struct mm_struct *mm;
1375
1376 task_lock(task);
1377 mm = task->mm;
1378 if (mm) {
1379 if (!(task->flags & PF_KTHREAD))
1380 exe_file = get_mm_exe_file(mm);
1381 }
1382 task_unlock(task);
1383 return exe_file;
1384}
38646013 1385
1da177e4
LT
1386/**
1387 * get_task_mm - acquire a reference to the task's mm
1388 *
246bb0b1 1389 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1da177e4
LT
1390 * this kernel workthread has transiently adopted a user mm with use_mm,
1391 * to do its AIO) is not set and if so returns a reference to it, after
1392 * bumping up the use count. User must release the mm via mmput()
1393 * after use. Typically used by /proc and ptrace.
1394 */
1395struct mm_struct *get_task_mm(struct task_struct *task)
1396{
1397 struct mm_struct *mm;
1398
1399 task_lock(task);
1400 mm = task->mm;
1401 if (mm) {
246bb0b1 1402 if (task->flags & PF_KTHREAD)
1da177e4
LT
1403 mm = NULL;
1404 else
3fce371b 1405 mmget(mm);
1da177e4
LT
1406 }
1407 task_unlock(task);
1408 return mm;
1409}
1410EXPORT_SYMBOL_GPL(get_task_mm);
1411
8cdb878d
CY
1412struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1413{
1414 struct mm_struct *mm;
1415 int err;
1416
f7cfd871 1417 err = down_read_killable(&task->signal->exec_update_lock);
8cdb878d
CY
1418 if (err)
1419 return ERR_PTR(err);
1420
1421 mm = get_task_mm(task);
1422 if (mm && mm != current->mm &&
1423 !ptrace_may_access(task, mode)) {
1424 mmput(mm);
1425 mm = ERR_PTR(-EACCES);
1426 }
f7cfd871 1427 up_read(&task->signal->exec_update_lock);
8cdb878d
CY
1428
1429 return mm;
1430}
1431
57b59c4a 1432static void complete_vfork_done(struct task_struct *tsk)
c415c3b4 1433{
d68b46fe 1434 struct completion *vfork;
c415c3b4 1435
d68b46fe
ON
1436 task_lock(tsk);
1437 vfork = tsk->vfork_done;
1438 if (likely(vfork)) {
1439 tsk->vfork_done = NULL;
1440 complete(vfork);
1441 }
1442 task_unlock(tsk);
1443}
1444
1445static int wait_for_vfork_done(struct task_struct *child,
1446 struct completion *vfork)
1447{
f5d39b02 1448 unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
d68b46fe
ON
1449 int killed;
1450
76f969e8 1451 cgroup_enter_frozen();
f5d39b02 1452 killed = wait_for_completion_state(vfork, state);
76f969e8 1453 cgroup_leave_frozen(false);
d68b46fe
ON
1454
1455 if (killed) {
1456 task_lock(child);
1457 child->vfork_done = NULL;
1458 task_unlock(child);
1459 }
1460
1461 put_task_struct(child);
1462 return killed;
c415c3b4
ON
1463}
1464
1da177e4
LT
1465/* Please note the differences between mmput and mm_release.
1466 * mmput is called whenever we stop holding onto a mm_struct,
1467 * error success whatever.
1468 *
1469 * mm_release is called after a mm_struct has been removed
1470 * from the current process.
1471 *
1472 * This difference is important for error handling, when we
1473 * only half set up a mm_struct for a new process and need to restore
1474 * the old one. Because we mmput the new mm_struct before
1475 * restoring the old one. . .
1476 * Eric Biederman 10 January 1998
1477 */
4610ba7a 1478static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1da177e4 1479{
0326f5a9
SD
1480 uprobe_free_utask(tsk);
1481
1da177e4
LT
1482 /* Get rid of any cached register state */
1483 deactivate_mm(tsk, mm);
1484
fec1d011 1485 /*
735f2770
MH
1486 * Signal userspace if we're not exiting with a core dump
1487 * because we want to leave the value intact for debugging
1488 * purposes.
fec1d011 1489 */
9c8a8228 1490 if (tsk->clear_child_tid) {
92307383 1491 if (atomic_read(&mm->mm_users) > 1) {
9c8a8228
ED
1492 /*
1493 * We don't check the error code - if userspace has
1494 * not set up a proper pointer then tough luck.
1495 */
1496 put_user(0, tsk->clear_child_tid);
2de0db99
DB
1497 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1498 1, NULL, NULL, 0, 0);
9c8a8228 1499 }
1da177e4 1500 tsk->clear_child_tid = NULL;
1da177e4 1501 }
f7505d64
KK
1502
1503 /*
1504 * All done, finally we can wake up parent and return this mm to him.
1505 * Also kthread_stop() uses this completion for synchronization.
1506 */
1507 if (tsk->vfork_done)
1508 complete_vfork_done(tsk);
1da177e4
LT
1509}
1510
4610ba7a
TG
1511void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1512{
150d7158 1513 futex_exit_release(tsk);
4610ba7a
TG
1514 mm_release(tsk, mm);
1515}
1516
1517void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1518{
150d7158 1519 futex_exec_release(tsk);
4610ba7a
TG
1520 mm_release(tsk, mm);
1521}
1522
13585fa0
NA
1523/**
1524 * dup_mm() - duplicates an existing mm structure
1525 * @tsk: the task_struct with which the new mm will be associated.
1526 * @oldmm: the mm to duplicate.
1527 *
1528 * Allocates a new mm structure and duplicates the provided @oldmm structure
1529 * content into it.
1530 *
1531 * Return: the duplicated mm or NULL on failure.
a0a7ec30 1532 */
13585fa0
NA
1533static struct mm_struct *dup_mm(struct task_struct *tsk,
1534 struct mm_struct *oldmm)
a0a7ec30 1535{
13585fa0 1536 struct mm_struct *mm;
a0a7ec30
JD
1537 int err;
1538
a0a7ec30
JD
1539 mm = allocate_mm();
1540 if (!mm)
1541 goto fail_nomem;
1542
1543 memcpy(mm, oldmm, sizeof(*mm));
1544
bfedb589 1545 if (!mm_init(mm, tsk, mm->user_ns))
a0a7ec30
JD
1546 goto fail_nomem;
1547
a0a7ec30
JD
1548 err = dup_mmap(mm, oldmm);
1549 if (err)
1550 goto free_pt;
1551
1552 mm->hiwater_rss = get_mm_rss(mm);
1553 mm->hiwater_vm = mm->total_vm;
1554
801460d0
HS
1555 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1556 goto free_pt;
1557
a0a7ec30
JD
1558 return mm;
1559
1560free_pt:
801460d0
HS
1561 /* don't put binfmt in mmput, we haven't got module yet */
1562 mm->binfmt = NULL;
c3f3ce04 1563 mm_init_owner(mm, NULL);
a0a7ec30
JD
1564 mmput(mm);
1565
1566fail_nomem:
1567 return NULL;
a0a7ec30
JD
1568}
1569
fb0a685c 1570static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1da177e4 1571{
fb0a685c 1572 struct mm_struct *mm, *oldmm;
1da177e4
LT
1573
1574 tsk->min_flt = tsk->maj_flt = 0;
1575 tsk->nvcsw = tsk->nivcsw = 0;
17406b82
MSB
1576#ifdef CONFIG_DETECT_HUNG_TASK
1577 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
a2e51445 1578 tsk->last_switch_time = 0;
17406b82 1579#endif
1da177e4
LT
1580
1581 tsk->mm = NULL;
1582 tsk->active_mm = NULL;
1583
1584 /*
1585 * Are we cloning a kernel thread?
1586 *
1587 * We need to steal a active VM for that..
1588 */
1589 oldmm = current->mm;
1590 if (!oldmm)
1591 return 0;
1592
1593 if (clone_flags & CLONE_VM) {
3fce371b 1594 mmget(oldmm);
1da177e4 1595 mm = oldmm;
a6895399
REB
1596 } else {
1597 mm = dup_mm(tsk, current->mm);
1598 if (!mm)
1599 return -ENOMEM;
1da177e4
LT
1600 }
1601
1da177e4
LT
1602 tsk->mm = mm;
1603 tsk->active_mm = mm;
1604 return 0;
1da177e4
LT
1605}
1606
a39bc516 1607static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1da177e4 1608{
498052bb 1609 struct fs_struct *fs = current->fs;
1da177e4 1610 if (clone_flags & CLONE_FS) {
498052bb 1611 /* tsk->fs is already what we want */
2a4419b5 1612 spin_lock(&fs->lock);
498052bb 1613 if (fs->in_exec) {
2a4419b5 1614 spin_unlock(&fs->lock);
498052bb
AV
1615 return -EAGAIN;
1616 }
1617 fs->users++;
2a4419b5 1618 spin_unlock(&fs->lock);
1da177e4
LT
1619 return 0;
1620 }
498052bb 1621 tsk->fs = copy_fs_struct(fs);
1da177e4
LT
1622 if (!tsk->fs)
1623 return -ENOMEM;
1624 return 0;
1625}
1626
fb0a685c 1627static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
a016f338
JD
1628{
1629 struct files_struct *oldf, *newf;
1630 int error = 0;
1631
1632 /*
1633 * A background process may not have any files ...
1634 */
1635 oldf = current->files;
1636 if (!oldf)
1637 goto out;
1638
1639 if (clone_flags & CLONE_FILES) {
1640 atomic_inc(&oldf->count);
1641 goto out;
1642 }
1643
60997c3d 1644 newf = dup_fd(oldf, NR_OPEN_MAX, &error);
a016f338
JD
1645 if (!newf)
1646 goto out;
1647
1648 tsk->files = newf;
1649 error = 0;
1650out:
1651 return error;
1652}
1653
a39bc516 1654static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1da177e4
LT
1655{
1656 struct sighand_struct *sig;
1657
60348802 1658 if (clone_flags & CLONE_SIGHAND) {
d036bda7 1659 refcount_inc(&current->sighand->count);
1da177e4
LT
1660 return 0;
1661 }
1662 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
0c282b06 1663 RCU_INIT_POINTER(tsk->sighand, sig);
1da177e4
LT
1664 if (!sig)
1665 return -ENOMEM;
9d7fb042 1666
d036bda7 1667 refcount_set(&sig->count, 1);
06e62a46 1668 spin_lock_irq(&current->sighand->siglock);
1da177e4 1669 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
06e62a46 1670 spin_unlock_irq(&current->sighand->siglock);
b612e5df
CB
1671
1672 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1673 if (clone_flags & CLONE_CLEAR_SIGHAND)
1674 flush_signal_handlers(tsk, 0);
1675
1da177e4
LT
1676 return 0;
1677}
1678
a7e5328a 1679void __cleanup_sighand(struct sighand_struct *sighand)
c81addc9 1680{
d036bda7 1681 if (refcount_dec_and_test(&sighand->count)) {
d80e731e 1682 signalfd_cleanup(sighand);
392809b2 1683 /*
5f0d5a3a 1684 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
392809b2
ON
1685 * without an RCU grace period, see __lock_task_sighand().
1686 */
c81addc9 1687 kmem_cache_free(sighand_cachep, sighand);
d80e731e 1688 }
c81addc9
ON
1689}
1690
f06febc9
FM
1691/*
1692 * Initialize POSIX timer handling for a thread group.
1693 */
1694static void posix_cpu_timers_init_group(struct signal_struct *sig)
1695{
2b69942f 1696 struct posix_cputimers *pct = &sig->posix_cputimers;
78d7d407
JS
1697 unsigned long cpu_limit;
1698
316c1608 1699 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
3a245c0f 1700 posix_cputimers_group_init(pct, cpu_limit);
f06febc9
FM
1701}
1702
a39bc516 1703static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1da177e4
LT
1704{
1705 struct signal_struct *sig;
1da177e4 1706
4ab6c083 1707 if (clone_flags & CLONE_THREAD)
490dea45 1708 return 0;
490dea45 1709
a56704ef 1710 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1da177e4
LT
1711 tsk->signal = sig;
1712 if (!sig)
1713 return -ENOMEM;
1714
b3ac022c 1715 sig->nr_threads = 1;
d80f7d7b 1716 sig->quick_threads = 1;
1da177e4 1717 atomic_set(&sig->live, 1);
60d4de3f 1718 refcount_set(&sig->sigcnt, 1);
0c740d0a
ON
1719
1720 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1721 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1722 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1723
1da177e4 1724 init_waitqueue_head(&sig->wait_chldexit);
db51aecc 1725 sig->curr_target = tsk;
1da177e4 1726 init_sigpending(&sig->shared_pending);
c3ad2c3b 1727 INIT_HLIST_HEAD(&sig->multiprocess);
e78c3496 1728 seqlock_init(&sig->stats_lock);
9d7fb042 1729 prev_cputime_init(&sig->prev_cputime);
1da177e4 1730
baa73d9e 1731#ifdef CONFIG_POSIX_TIMERS
b18b6a9c 1732 INIT_LIST_HEAD(&sig->posix_timers);
c9cb2e3d 1733 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1da177e4 1734 sig->real_timer.function = it_real_fn;
baa73d9e 1735#endif
1da177e4 1736
1da177e4
LT
1737 task_lock(current->group_leader);
1738 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1739 task_unlock(current->group_leader);
1740
6279a751
ON
1741 posix_cpu_timers_init_group(sig);
1742
522ed776 1743 tty_audit_fork(sig);
5091faa4 1744 sched_autogroup_fork(sig);
522ed776 1745
a63d83f4 1746 sig->oom_score_adj = current->signal->oom_score_adj;
dabb16f6 1747 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
28b83c51 1748
9b1bf12d 1749 mutex_init(&sig->cred_guard_mutex);
f7cfd871 1750 init_rwsem(&sig->exec_update_lock);
9b1bf12d 1751
1da177e4
LT
1752 return 0;
1753}
1754
dbd95212
KC
1755static void copy_seccomp(struct task_struct *p)
1756{
1757#ifdef CONFIG_SECCOMP
1758 /*
1759 * Must be called with sighand->lock held, which is common to
1760 * all threads in the group. Holding cred_guard_mutex is not
1761 * needed because this new task is not yet running and cannot
1762 * be racing exec.
1763 */
69f6a34b 1764 assert_spin_locked(&current->sighand->siglock);
dbd95212
KC
1765
1766 /* Ref-count the new filter user, and assign it. */
1767 get_seccomp_filter(current);
1768 p->seccomp = current->seccomp;
1769
1770 /*
1771 * Explicitly enable no_new_privs here in case it got set
1772 * between the task_struct being duplicated and holding the
1773 * sighand lock. The seccomp state and nnp must be in sync.
1774 */
1775 if (task_no_new_privs(current))
1776 task_set_no_new_privs(p);
1777
1778 /*
1779 * If the parent gained a seccomp mode after copying thread
1780 * flags and between before we held the sighand lock, we have
1781 * to manually enable the seccomp thread flag here.
1782 */
1783 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
23d67a54 1784 set_task_syscall_work(p, SECCOMP);
dbd95212
KC
1785#endif
1786}
1787
17da2bd9 1788SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1da177e4
LT
1789{
1790 current->clear_child_tid = tidptr;
1791
b488893a 1792 return task_pid_vnr(current);
1da177e4
LT
1793}
1794
a39bc516 1795static void rt_mutex_init_task(struct task_struct *p)
23f78d4a 1796{
1d615482 1797 raw_spin_lock_init(&p->pi_lock);
e29e175b 1798#ifdef CONFIG_RT_MUTEXES
a23ba907 1799 p->pi_waiters = RB_ROOT_CACHED;
e96a7705 1800 p->pi_top_task = NULL;
23f78d4a 1801 p->pi_blocked_on = NULL;
23f78d4a
IM
1802#endif
1803}
1804
2c470475
EB
1805static inline void init_task_pid_links(struct task_struct *task)
1806{
1807 enum pid_type type;
1808
96e1e984 1809 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
2c470475 1810 INIT_HLIST_NODE(&task->pid_links[type]);
2c470475
EB
1811}
1812
81907739
ON
1813static inline void
1814init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1815{
2c470475
EB
1816 if (type == PIDTYPE_PID)
1817 task->thread_pid = pid;
1818 else
1819 task->signal->pids[type] = pid;
81907739
ON
1820}
1821
6bfbaa51
IM
1822static inline void rcu_copy_process(struct task_struct *p)
1823{
1824#ifdef CONFIG_PREEMPT_RCU
1825 p->rcu_read_lock_nesting = 0;
1826 p->rcu_read_unlock_special.s = 0;
1827 p->rcu_blocked_node = NULL;
1828 INIT_LIST_HEAD(&p->rcu_node_entry);
1829#endif /* #ifdef CONFIG_PREEMPT_RCU */
1830#ifdef CONFIG_TASKS_RCU
1831 p->rcu_tasks_holdout = false;
1832 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1833 p->rcu_tasks_idle_cpu = -1;
1834#endif /* #ifdef CONFIG_TASKS_RCU */
d5f177d3
PM
1835#ifdef CONFIG_TASKS_TRACE_RCU
1836 p->trc_reader_nesting = 0;
276c4104 1837 p->trc_reader_special.s = 0;
d5f177d3 1838 INIT_LIST_HEAD(&p->trc_holdout_list);
434c9eef 1839 INIT_LIST_HEAD(&p->trc_blkd_node);
d5f177d3 1840#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
6bfbaa51
IM
1841}
1842
3695eae5
CB
1843struct pid *pidfd_pid(const struct file *file)
1844{
1845 if (file->f_op == &pidfd_fops)
1846 return file->private_data;
1847
1848 return ERR_PTR(-EBADF);
1849}
1850
b3e58382
CB
1851static int pidfd_release(struct inode *inode, struct file *file)
1852{
1853 struct pid *pid = file->private_data;
1854
1855 file->private_data = NULL;
1856 put_pid(pid);
1857 return 0;
1858}
1859
1860#ifdef CONFIG_PROC_FS
15d42eb2
CK
1861/**
1862 * pidfd_show_fdinfo - print information about a pidfd
1863 * @m: proc fdinfo file
1864 * @f: file referencing a pidfd
1865 *
1866 * Pid:
1867 * This function will print the pid that a given pidfd refers to in the
1868 * pid namespace of the procfs instance.
1869 * If the pid namespace of the process is not a descendant of the pid
1870 * namespace of the procfs instance 0 will be shown as its pid. This is
1871 * similar to calling getppid() on a process whose parent is outside of
1872 * its pid namespace.
1873 *
1874 * NSpid:
1875 * If pid namespaces are supported then this function will also print
1876 * the pid of a given pidfd refers to for all descendant pid namespaces
1877 * starting from the current pid namespace of the instance, i.e. the
1878 * Pid field and the first entry in the NSpid field will be identical.
1879 * If the pid namespace of the process is not a descendant of the pid
1880 * namespace of the procfs instance 0 will be shown as its first NSpid
1881 * entry and no others will be shown.
1882 * Note that this differs from the Pid and NSpid fields in
1883 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1884 * the pid namespace of the procfs instance. The difference becomes
1885 * obvious when sending around a pidfd between pid namespaces from a
a8ca6b13 1886 * different branch of the tree, i.e. where no ancestral relation is
15d42eb2
CK
1887 * present between the pid namespaces:
1888 * - create two new pid namespaces ns1 and ns2 in the initial pid
1889 * namespace (also take care to create new mount namespaces in the
1890 * new pid namespace and mount procfs)
1891 * - create a process with a pidfd in ns1
1892 * - send pidfd from ns1 to ns2
1893 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1894 * have exactly one entry, which is 0
1895 */
b3e58382
CB
1896static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1897{
b3e58382 1898 struct pid *pid = f->private_data;
3d6d8da4
CB
1899 struct pid_namespace *ns;
1900 pid_t nr = -1;
15d42eb2 1901
3d6d8da4 1902 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
9d78edea 1903 ns = proc_pid_ns(file_inode(m->file)->i_sb);
3d6d8da4
CB
1904 nr = pid_nr_ns(pid, ns);
1905 }
1906
1907 seq_put_decimal_ll(m, "Pid:\t", nr);
b3e58382 1908
15d42eb2 1909#ifdef CONFIG_PID_NS
3d6d8da4
CB
1910 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1911 if (nr > 0) {
15d42eb2 1912 int i;
b3e58382 1913
15d42eb2
CK
1914 /* If nr is non-zero it means that 'pid' is valid and that
1915 * ns, i.e. the pid namespace associated with the procfs
1916 * instance, is in the pid namespace hierarchy of pid.
1917 * Start at one below the already printed level.
1918 */
1919 for (i = ns->level + 1; i <= pid->level; i++)
3d6d8da4 1920 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
15d42eb2
CK
1921 }
1922#endif
b3e58382
CB
1923 seq_putc(m, '\n');
1924}
1925#endif
1926
b53b0b9d
JFG
1927/*
1928 * Poll support for process exit notification.
1929 */
9e77716a 1930static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
b53b0b9d 1931{
b53b0b9d 1932 struct pid *pid = file->private_data;
9e77716a 1933 __poll_t poll_flags = 0;
b53b0b9d
JFG
1934
1935 poll_wait(file, &pid->wait_pidfd, pts);
1936
b53b0b9d
JFG
1937 /*
1938 * Inform pollers only when the whole thread group exits.
1939 * If the thread group leader exits before all other threads in the
1940 * group, then poll(2) should block, similar to the wait(2) family.
1941 */
38fd525a 1942 if (thread_group_exited(pid))
9e77716a 1943 poll_flags = EPOLLIN | EPOLLRDNORM;
b53b0b9d
JFG
1944
1945 return poll_flags;
1946}
1947
b3e58382
CB
1948const struct file_operations pidfd_fops = {
1949 .release = pidfd_release,
b53b0b9d 1950 .poll = pidfd_poll,
b3e58382
CB
1951#ifdef CONFIG_PROC_FS
1952 .show_fdinfo = pidfd_show_fdinfo,
1953#endif
1954};
1955
c3f3ce04
AA
1956static void __delayed_free_task(struct rcu_head *rhp)
1957{
1958 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1959
1960 free_task(tsk);
1961}
1962
1963static __always_inline void delayed_free_task(struct task_struct *tsk)
1964{
1965 if (IS_ENABLED(CONFIG_MEMCG))
1966 call_rcu(&tsk->rcu, __delayed_free_task);
1967 else
1968 free_task(tsk);
1969}
1970
67197a4f
SB
1971static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1972{
1973 /* Skip if kernel thread */
1974 if (!tsk->mm)
1975 return;
1976
1977 /* Skip if spawning a thread or using vfork */
1978 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1979 return;
1980
1981 /* We need to synchronize with __set_oom_adj */
1982 mutex_lock(&oom_adj_mutex);
1983 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1984 /* Update the values in case they were changed after copy_signal */
1985 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1986 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1987 mutex_unlock(&oom_adj_mutex);
1988}
1989
79257534
DBO
1990#ifdef CONFIG_RV
1991static void rv_task_fork(struct task_struct *p)
1992{
1993 int i;
1994
1995 for (i = 0; i < RV_PER_TASK_MONITORS; i++)
1996 p->rv[i].da_mon.monitoring = false;
1997}
1998#else
1999#define rv_task_fork(p) do {} while (0)
2000#endif
2001
1da177e4
LT
2002/*
2003 * This creates a new process as a copy of the old one,
2004 * but does not actually start it yet.
2005 *
2006 * It copies the registers, and all the appropriate
2007 * parts of the process environment (as per the clone
2008 * flags). The actual kick-off is left to the caller.
2009 */
0766f788 2010static __latent_entropy struct task_struct *copy_process(
09a05394 2011 struct pid *pid,
3033f14a 2012 int trace,
7f192e3c
CB
2013 int node,
2014 struct kernel_clone_args *args)
1da177e4 2015{
b3e58382 2016 int pidfd = -1, retval;
a24efe62 2017 struct task_struct *p;
c3ad2c3b 2018 struct multiprocess_signals delayed;
6fd2fe49 2019 struct file *pidfile = NULL;
c5febea0 2020 const u64 clone_flags = args->flags;
769071ac 2021 struct nsproxy *nsp = current->nsproxy;
1da177e4 2022
667b6094
MPS
2023 /*
2024 * Don't allow sharing the root directory with processes in a different
2025 * namespace
2026 */
1da177e4
LT
2027 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2028 return ERR_PTR(-EINVAL);
2029
e66eded8
EB
2030 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2031 return ERR_PTR(-EINVAL);
2032
1da177e4
LT
2033 /*
2034 * Thread groups must share signals as well, and detached threads
2035 * can only be started up within the thread group.
2036 */
2037 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2038 return ERR_PTR(-EINVAL);
2039
2040 /*
2041 * Shared signal handlers imply shared VM. By way of the above,
2042 * thread groups also imply shared VM. Blocking this case allows
2043 * for various simplifications in other code.
2044 */
2045 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2046 return ERR_PTR(-EINVAL);
2047
123be07b
SB
2048 /*
2049 * Siblings of global init remain as zombies on exit since they are
2050 * not reaped by their parent (swapper). To solve this and to avoid
2051 * multi-rooted process trees, prevent global and container-inits
2052 * from creating siblings.
2053 */
2054 if ((clone_flags & CLONE_PARENT) &&
2055 current->signal->flags & SIGNAL_UNKILLABLE)
2056 return ERR_PTR(-EINVAL);
2057
8382fcac 2058 /*
40a0d32d 2059 * If the new process will be in a different pid or user namespace
faf00da5 2060 * do not allow it to share a thread group with the forking task.
8382fcac 2061 */
faf00da5 2062 if (clone_flags & CLONE_THREAD) {
40a0d32d 2063 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
769071ac
AV
2064 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2065 return ERR_PTR(-EINVAL);
2066 }
2067
b3e58382 2068 if (clone_flags & CLONE_PIDFD) {
b3e58382 2069 /*
b3e58382
CB
2070 * - CLONE_DETACHED is blocked so that we can potentially
2071 * reuse it later for CLONE_PIDFD.
2072 * - CLONE_THREAD is blocked until someone really needs it.
2073 */
7f192e3c 2074 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
b3e58382 2075 return ERR_PTR(-EINVAL);
b3e58382
CB
2076 }
2077
c3ad2c3b
EB
2078 /*
2079 * Force any signals received before this point to be delivered
2080 * before the fork happens. Collect up signals sent to multiple
2081 * processes that happen during the fork and delay them so that
2082 * they appear to happen after the fork.
2083 */
2084 sigemptyset(&delayed.signal);
2085 INIT_HLIST_NODE(&delayed.node);
2086
2087 spin_lock_irq(&current->sighand->siglock);
2088 if (!(clone_flags & CLONE_THREAD))
2089 hlist_add_head(&delayed.node, &current->signal->multiprocess);
2090 recalc_sigpending();
2091 spin_unlock_irq(&current->sighand->siglock);
2092 retval = -ERESTARTNOINTR;
66ae0d1e 2093 if (task_sigpending(current))
c3ad2c3b
EB
2094 goto fork_out;
2095
1da177e4 2096 retval = -ENOMEM;
725fc629 2097 p = dup_task_struct(current, node);
1da177e4
LT
2098 if (!p)
2099 goto fork_out;
753550eb
EB
2100 p->flags &= ~PF_KTHREAD;
2101 if (args->kthread)
2102 p->flags |= PF_KTHREAD;
b16b3855
JA
2103 if (args->io_thread) {
2104 /*
2105 * Mark us an IO worker, and block any signal that isn't
2106 * fatal or STOP
2107 */
cc440e87 2108 p->flags |= PF_IO_WORKER;
b16b3855
JA
2109 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2110 }
1da177e4 2111
7f192e3c 2112 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
4d6501dc
VN
2113 /*
2114 * Clear TID on mm_release()?
2115 */
7f192e3c 2116 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
4d6501dc 2117
f7e8b616
SR
2118 ftrace_graph_init_task(p);
2119
bea493a0
PZ
2120 rt_mutex_init_task(p);
2121
a21ee605 2122 lockdep_assert_irqs_enabled();
d12c1a37 2123#ifdef CONFIG_PROVE_LOCKING
de30a2b3
IM
2124 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2125#endif
8f2f9c4d
EB
2126 retval = copy_creds(p, clone_flags);
2127 if (retval < 0)
2128 goto bad_fork_free;
2129
1da177e4 2130 retval = -EAGAIN;
de399236 2131 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
b57922b6
EP
2132 if (p->real_cred->user != INIT_USER &&
2133 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
8f2f9c4d 2134 goto bad_fork_cleanup_count;
1da177e4 2135 }
72fa5997 2136 current->flags &= ~PF_NPROC_EXCEEDED;
1da177e4 2137
1da177e4
LT
2138 /*
2139 * If multiple threads are within copy_process(), then this check
2140 * triggers too late. This doesn't hurt, the check is only there
2141 * to stop root fork bombs.
2142 */
04ec93fe 2143 retval = -EAGAIN;
c17d1a3a 2144 if (data_race(nr_threads >= max_threads))
1da177e4
LT
2145 goto bad_fork_cleanup_count;
2146
ca74e92b 2147 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
a8ea6fc9 2148 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
514ddb44 2149 p->flags |= PF_FORKNOEXEC;
1da177e4
LT
2150 INIT_LIST_HEAD(&p->children);
2151 INIT_LIST_HEAD(&p->sibling);
f41d911f 2152 rcu_copy_process(p);
1da177e4
LT
2153 p->vfork_done = NULL;
2154 spin_lock_init(&p->alloc_lock);
1da177e4 2155
1da177e4
LT
2156 init_sigpending(&p->pending);
2157
64861634 2158 p->utime = p->stime = p->gtime = 0;
40565b5a 2159#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
64861634 2160 p->utimescaled = p->stimescaled = 0;
40565b5a 2161#endif
9d7fb042
PZ
2162 prev_cputime_init(&p->prev_cputime);
2163
6a61671b 2164#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6
FW
2165 seqcount_init(&p->vtime.seqcount);
2166 p->vtime.starttime = 0;
2167 p->vtime.state = VTIME_INACTIVE;
6a61671b
FW
2168#endif
2169
0f212204
JA
2170#ifdef CONFIG_IO_URING
2171 p->io_uring = NULL;
2172#endif
2173
a3a2e76c
KH
2174#if defined(SPLIT_RSS_COUNTING)
2175 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2176#endif
172ba844 2177
6976675d
AV
2178 p->default_timer_slack_ns = current->timer_slack_ns;
2179
eb414681
JW
2180#ifdef CONFIG_PSI
2181 p->psi_flags = 0;
2182#endif
2183
5995477a 2184 task_io_accounting_init(&p->ioac);
1da177e4
LT
2185 acct_clear_integrals(p);
2186
3a245c0f 2187 posix_cputimers_init(&p->posix_cputimers);
1da177e4 2188
1da177e4 2189 p->io_context = NULL;
c0b0ae8a 2190 audit_set_context(p, NULL);
b4f48b63 2191 cgroup_fork(p);
343f4c49 2192 if (args->kthread) {
40966e31 2193 if (!set_kthread_struct(p))
ff8288ff 2194 goto bad_fork_cleanup_delayacct;
40966e31 2195 }
1da177e4 2196#ifdef CONFIG_NUMA
846a16bf 2197 p->mempolicy = mpol_dup(p->mempolicy);
fb0a685c
DRO
2198 if (IS_ERR(p->mempolicy)) {
2199 retval = PTR_ERR(p->mempolicy);
2200 p->mempolicy = NULL;
ff8288ff 2201 goto bad_fork_cleanup_delayacct;
fb0a685c 2202 }
1da177e4 2203#endif
778d3b0f
MH
2204#ifdef CONFIG_CPUSETS
2205 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2206 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
b7505861 2207 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
778d3b0f 2208#endif
de30a2b3 2209#ifdef CONFIG_TRACE_IRQFLAGS
0584df9c
ME
2210 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2211 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2212 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2213 p->softirqs_enabled = 1;
2214 p->softirq_context = 0;
de30a2b3 2215#endif
8bcbde54
DH
2216
2217 p->pagefault_disabled = 0;
2218
fbb9ce95 2219#ifdef CONFIG_LOCKDEP
b09be676 2220 lockdep_init_task(p);
fbb9ce95 2221#endif
1da177e4 2222
408894ee
IM
2223#ifdef CONFIG_DEBUG_MUTEXES
2224 p->blocked_on = NULL; /* not blocked yet */
2225#endif
cafe5635
KO
2226#ifdef CONFIG_BCACHE
2227 p->sequential_io = 0;
2228 p->sequential_io_avg = 0;
2229#endif
a10787e6
SL
2230#ifdef CONFIG_BPF_SYSCALL
2231 RCU_INIT_POINTER(p->bpf_storage, NULL);
c7603cfa 2232 p->bpf_ctx = NULL;
a10787e6 2233#endif
0f481406 2234
3c90e6e9 2235 /* Perform scheduler related setup. Assign this task to a CPU. */
aab03e05
DF
2236 retval = sched_fork(clone_flags, p);
2237 if (retval)
2238 goto bad_fork_cleanup_policy;
6ab423e0 2239
2b26f0aa 2240 retval = perf_event_init_task(p, clone_flags);
6ab423e0
PZ
2241 if (retval)
2242 goto bad_fork_cleanup_policy;
fb0a685c
DRO
2243 retval = audit_alloc(p);
2244 if (retval)
6c72e350 2245 goto bad_fork_cleanup_perf;
1da177e4 2246 /* copy all the process information */
ab602f79 2247 shm_init_task(p);
e4e55b47 2248 retval = security_task_alloc(p, clone_flags);
fb0a685c 2249 if (retval)
1da177e4 2250 goto bad_fork_cleanup_audit;
e4e55b47
TH
2251 retval = copy_semundo(clone_flags, p);
2252 if (retval)
2253 goto bad_fork_cleanup_security;
fb0a685c
DRO
2254 retval = copy_files(clone_flags, p);
2255 if (retval)
1da177e4 2256 goto bad_fork_cleanup_semundo;
fb0a685c
DRO
2257 retval = copy_fs(clone_flags, p);
2258 if (retval)
1da177e4 2259 goto bad_fork_cleanup_files;
fb0a685c
DRO
2260 retval = copy_sighand(clone_flags, p);
2261 if (retval)
1da177e4 2262 goto bad_fork_cleanup_fs;
fb0a685c
DRO
2263 retval = copy_signal(clone_flags, p);
2264 if (retval)
1da177e4 2265 goto bad_fork_cleanup_sighand;
fb0a685c
DRO
2266 retval = copy_mm(clone_flags, p);
2267 if (retval)
1da177e4 2268 goto bad_fork_cleanup_signal;
fb0a685c
DRO
2269 retval = copy_namespaces(clone_flags, p);
2270 if (retval)
d84f4f99 2271 goto bad_fork_cleanup_mm;
fb0a685c
DRO
2272 retval = copy_io(clone_flags, p);
2273 if (retval)
fd0928df 2274 goto bad_fork_cleanup_namespaces;
c5febea0 2275 retval = copy_thread(p, args);
1da177e4 2276 if (retval)
fd0928df 2277 goto bad_fork_cleanup_io;
1da177e4 2278
afaef01c
AP
2279 stackleak_task_init(p);
2280
425fb2b4 2281 if (pid != &init_struct_pid) {
49cb2fc4
AR
2282 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2283 args->set_tid_size);
35f71bc0
MH
2284 if (IS_ERR(pid)) {
2285 retval = PTR_ERR(pid);
0740aa5f 2286 goto bad_fork_cleanup_thread;
35f71bc0 2287 }
425fb2b4
PE
2288 }
2289
b3e58382
CB
2290 /*
2291 * This has to happen after we've potentially unshared the file
2292 * descriptor table (so that the pidfd doesn't leak into the child
2293 * if the fd table isn't shared).
2294 */
2295 if (clone_flags & CLONE_PIDFD) {
6fd2fe49 2296 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
b3e58382
CB
2297 if (retval < 0)
2298 goto bad_fork_free_pid;
2299
2300 pidfd = retval;
6fd2fe49
AV
2301
2302 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2303 O_RDWR | O_CLOEXEC);
2304 if (IS_ERR(pidfile)) {
2305 put_unused_fd(pidfd);
28dd29c0 2306 retval = PTR_ERR(pidfile);
6fd2fe49
AV
2307 goto bad_fork_free_pid;
2308 }
2309 get_pid(pid); /* held by pidfile now */
2310
7f192e3c 2311 retval = put_user(pidfd, args->pidfd);
b3e58382
CB
2312 if (retval)
2313 goto bad_fork_put_pidfd;
2314 }
2315
73c10101
JA
2316#ifdef CONFIG_BLOCK
2317 p->plug = NULL;
2318#endif
ba31c1a4
TG
2319 futex_init_task(p);
2320
f9a3879a
GM
2321 /*
2322 * sigaltstack should be cleared when sharing the same VM
2323 */
2324 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2a742138 2325 sas_ss_reset(p);
f9a3879a 2326
1da177e4 2327 /*
6580807d
ON
2328 * Syscall tracing and stepping should be turned off in the
2329 * child regardless of CLONE_PTRACE.
1da177e4 2330 */
6580807d 2331 user_disable_single_step(p);
64c19ba2 2332 clear_task_syscall_work(p, SYSCALL_TRACE);
64eb35f7
GKB
2333#if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2334 clear_task_syscall_work(p, SYSCALL_EMU);
ed75e8d5 2335#endif
e02c9b0d 2336 clear_tsk_latency_tracing(p);
1da177e4 2337
1da177e4 2338 /* ok, now we should be set up.. */
18c830df
ON
2339 p->pid = pid_nr(pid);
2340 if (clone_flags & CLONE_THREAD) {
18c830df
ON
2341 p->group_leader = current->group_leader;
2342 p->tgid = current->tgid;
2343 } else {
18c830df
ON
2344 p->group_leader = p;
2345 p->tgid = p->pid;
2346 }
5f8aadd8 2347
9d823e8f
WF
2348 p->nr_dirtied = 0;
2349 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
83712358 2350 p->dirty_paused_when = 0;
9d823e8f 2351
bb8cbbfe 2352 p->pdeath_signal = 0;
47e65328 2353 INIT_LIST_HEAD(&p->thread_group);
158e1645 2354 p->task_works = NULL;
ca7752ca 2355 clear_posix_cputimers_work(p);
1da177e4 2356
d741bf41
PZ
2357#ifdef CONFIG_KRETPROBES
2358 p->kretprobe_instances.first = NULL;
2359#endif
54ecbe6f
MH
2360#ifdef CONFIG_RETHOOK
2361 p->rethooks.first = NULL;
2362#endif
d741bf41 2363
7e47682e
AS
2364 /*
2365 * Ensure that the cgroup subsystem policies allow the new process to be
7b7b8a2c 2366 * forked. It should be noted that the new process's css_set can be changed
7e47682e
AS
2367 * between here and cgroup_post_fork() if an organisation operation is in
2368 * progress.
2369 */
ef2c41cf 2370 retval = cgroup_can_fork(p, args);
7e47682e 2371 if (retval)
5a5cf5cb 2372 goto bad_fork_put_pidfd;
7e47682e 2373
b1e82065
PZ
2374 /*
2375 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2376 * the new task on the correct runqueue. All this *before* the task
2377 * becomes visible.
2378 *
2379 * This isn't part of ->can_fork() because while the re-cloning is
2380 * cgroup specific, it unconditionally needs to place the task on a
2381 * runqueue.
2382 */
2383 sched_cgroup_fork(p, args);
2384
7b558513
DH
2385 /*
2386 * From this point on we must avoid any synchronous user-space
2387 * communication until we take the tasklist-lock. In particular, we do
2388 * not want user-space to be able to predict the process start-time by
2389 * stalling fork(2) after we recorded the start_time but before it is
2390 * visible to the system.
2391 */
2392
2393 p->start_time = ktime_get_ns();
cf25e24d 2394 p->start_boottime = ktime_get_boottime_ns();
7b558513 2395
18c830df
ON
2396 /*
2397 * Make it visible to the rest of the system, but dont wake it up yet.
2398 * Need tasklist lock for parent etc handling!
2399 */
1da177e4
LT
2400 write_lock_irq(&tasklist_lock);
2401
1da177e4 2402 /* CLONE_PARENT re-uses the old parent */
2d5516cb 2403 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1da177e4 2404 p->real_parent = current->real_parent;
2d5516cb 2405 p->parent_exec_id = current->parent_exec_id;
b4e00444
EW
2406 if (clone_flags & CLONE_THREAD)
2407 p->exit_signal = -1;
2408 else
2409 p->exit_signal = current->group_leader->exit_signal;
2d5516cb 2410 } else {
1da177e4 2411 p->real_parent = current;
2d5516cb 2412 p->parent_exec_id = current->self_exec_id;
b4e00444 2413 p->exit_signal = args->exit_signal;
2d5516cb 2414 }
1da177e4 2415
d83a7cb3
JP
2416 klp_copy_process(p);
2417
85dd3f61
PZ
2418 sched_core_fork(p);
2419
3f17da69 2420 spin_lock(&current->sighand->siglock);
4a2c7a78 2421
79257534
DBO
2422 rv_task_fork(p);
2423
d7822b1e
MD
2424 rseq_fork(p, clone_flags);
2425
4ca1d3ee 2426 /* Don't start children in a dying pid namespace */
e8cfbc24 2427 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
3fd37226
KT
2428 retval = -ENOMEM;
2429 goto bad_fork_cancel_cgroup;
2430 }
4a2c7a78 2431
7673bf55
EB
2432 /* Let kill terminate clone/fork in the middle */
2433 if (fatal_signal_pending(current)) {
2434 retval = -EINTR;
2435 goto bad_fork_cancel_cgroup;
2436 }
2437
a1140cb2
KI
2438 /* No more failure paths after this point. */
2439
2440 /*
2441 * Copy seccomp details explicitly here, in case they were changed
2442 * before holding sighand lock.
2443 */
2444 copy_seccomp(p);
2445
2c470475 2446 init_task_pid_links(p);
73b9ebfe 2447 if (likely(p->pid)) {
4b9d33e6 2448 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
73b9ebfe 2449
81907739 2450 init_task_pid(p, PIDTYPE_PID, pid);
73b9ebfe 2451 if (thread_group_leader(p)) {
6883f81a 2452 init_task_pid(p, PIDTYPE_TGID, pid);
81907739
ON
2453 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2454 init_task_pid(p, PIDTYPE_SID, task_session(current));
2455
1c4042c2 2456 if (is_child_reaper(pid)) {
17cf22c3 2457 ns_of_pid(pid)->child_reaper = p;
1c4042c2
EB
2458 p->signal->flags |= SIGNAL_UNKILLABLE;
2459 }
c3ad2c3b 2460 p->signal->shared_pending.signal = delayed.signal;
9c9f4ded 2461 p->signal->tty = tty_kref_get(current->signal->tty);
749860ce
PT
2462 /*
2463 * Inherit has_child_subreaper flag under the same
2464 * tasklist_lock with adding child to the process tree
2465 * for propagate_has_child_subreaper optimization.
2466 */
2467 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2468 p->real_parent->signal->is_child_subreaper;
9cd80bbb 2469 list_add_tail(&p->sibling, &p->real_parent->children);
5e85d4ab 2470 list_add_tail_rcu(&p->tasks, &init_task.tasks);
6883f81a 2471 attach_pid(p, PIDTYPE_TGID);
81907739
ON
2472 attach_pid(p, PIDTYPE_PGID);
2473 attach_pid(p, PIDTYPE_SID);
909ea964 2474 __this_cpu_inc(process_counts);
80628ca0
ON
2475 } else {
2476 current->signal->nr_threads++;
d80f7d7b 2477 current->signal->quick_threads++;
80628ca0 2478 atomic_inc(&current->signal->live);
60d4de3f 2479 refcount_inc(&current->signal->sigcnt);
924de3b8 2480 task_join_group_stop(p);
80628ca0
ON
2481 list_add_tail_rcu(&p->thread_group,
2482 &p->group_leader->thread_group);
0c740d0a
ON
2483 list_add_tail_rcu(&p->thread_node,
2484 &p->signal->thread_head);
73b9ebfe 2485 }
81907739 2486 attach_pid(p, PIDTYPE_PID);
73b9ebfe 2487 nr_threads++;
1da177e4 2488 }
1da177e4 2489 total_forks++;
c3ad2c3b 2490 hlist_del_init(&delayed.node);
3f17da69 2491 spin_unlock(&current->sighand->siglock);
4af4206b 2492 syscall_tracepoint_update(p);
1da177e4 2493 write_unlock_irq(&tasklist_lock);
4af4206b 2494
ddc204b5
WL
2495 if (pidfile)
2496 fd_install(pidfd, pidfile);
2497
c13cf856 2498 proc_fork_connector(p);
b1e82065 2499 sched_post_fork(p);
ef2c41cf 2500 cgroup_post_fork(p, args);
cdd6c482 2501 perf_event_fork(p);
43d2b113
KH
2502
2503 trace_task_newtask(p, clone_flags);
3ab67966 2504 uprobe_copy_process(p, clone_flags);
43d2b113 2505
67197a4f
SB
2506 copy_oom_score_adj(clone_flags, p);
2507
1da177e4
LT
2508 return p;
2509
7e47682e 2510bad_fork_cancel_cgroup:
85dd3f61 2511 sched_core_free(p);
3fd37226
KT
2512 spin_unlock(&current->sighand->siglock);
2513 write_unlock_irq(&tasklist_lock);
ef2c41cf 2514 cgroup_cancel_fork(p, args);
b3e58382 2515bad_fork_put_pidfd:
6fd2fe49
AV
2516 if (clone_flags & CLONE_PIDFD) {
2517 fput(pidfile);
2518 put_unused_fd(pidfd);
2519 }
425fb2b4
PE
2520bad_fork_free_pid:
2521 if (pid != &init_struct_pid)
2522 free_pid(pid);
0740aa5f
JS
2523bad_fork_cleanup_thread:
2524 exit_thread(p);
fd0928df 2525bad_fork_cleanup_io:
b69f2292
LR
2526 if (p->io_context)
2527 exit_io_context(p);
ab516013 2528bad_fork_cleanup_namespaces:
444f378b 2529 exit_task_namespaces(p);
1da177e4 2530bad_fork_cleanup_mm:
c3f3ce04
AA
2531 if (p->mm) {
2532 mm_clear_owner(p->mm, p);
1da177e4 2533 mmput(p->mm);
c3f3ce04 2534 }
1da177e4 2535bad_fork_cleanup_signal:
4ab6c083 2536 if (!(clone_flags & CLONE_THREAD))
1c5354de 2537 free_signal_struct(p->signal);
1da177e4 2538bad_fork_cleanup_sighand:
a7e5328a 2539 __cleanup_sighand(p->sighand);
1da177e4
LT
2540bad_fork_cleanup_fs:
2541 exit_fs(p); /* blocking */
2542bad_fork_cleanup_files:
2543 exit_files(p); /* blocking */
2544bad_fork_cleanup_semundo:
2545 exit_sem(p);
e4e55b47
TH
2546bad_fork_cleanup_security:
2547 security_task_free(p);
1da177e4
LT
2548bad_fork_cleanup_audit:
2549 audit_free(p);
6c72e350 2550bad_fork_cleanup_perf:
cdd6c482 2551 perf_event_free_task(p);
6c72e350 2552bad_fork_cleanup_policy:
b09be676 2553 lockdep_free_task(p);
1da177e4 2554#ifdef CONFIG_NUMA
f0be3d32 2555 mpol_put(p->mempolicy);
1da177e4 2556#endif
ff8288ff 2557bad_fork_cleanup_delayacct:
35df17c5 2558 delayacct_tsk_free(p);
1da177e4 2559bad_fork_cleanup_count:
21d1c5e3 2560 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
e0e81739 2561 exit_creds(p);
1da177e4 2562bad_fork_free:
2f064a59 2563 WRITE_ONCE(p->__state, TASK_DEAD);
1a03d3f1 2564 exit_task_stack_account(p);
68f24b08 2565 put_task_stack(p);
c3f3ce04 2566 delayed_free_task(p);
fe7d37d1 2567fork_out:
c3ad2c3b
EB
2568 spin_lock_irq(&current->sighand->siglock);
2569 hlist_del_init(&delayed.node);
2570 spin_unlock_irq(&current->sighand->siglock);
fe7d37d1 2571 return ERR_PTR(retval);
1da177e4
LT
2572}
2573
2c470475 2574static inline void init_idle_pids(struct task_struct *idle)
f106eee1
ON
2575{
2576 enum pid_type type;
2577
2578 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2c470475
EB
2579 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2580 init_task_pid(idle, type, &init_struct_pid);
f106eee1
ON
2581 }
2582}
2583
36cb0e1c
EB
2584static int idle_dummy(void *dummy)
2585{
2586 /* This function is never called */
2587 return 0;
2588}
2589
f1a0a376 2590struct task_struct * __init fork_idle(int cpu)
1da177e4 2591{
36c8b586 2592 struct task_struct *task;
7f192e3c 2593 struct kernel_clone_args args = {
343f4c49 2594 .flags = CLONE_VM,
5bd2e97c
EB
2595 .fn = &idle_dummy,
2596 .fn_arg = NULL,
343f4c49 2597 .kthread = 1,
36cb0e1c 2598 .idle = 1,
7f192e3c
CB
2599 };
2600
2601 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
f106eee1 2602 if (!IS_ERR(task)) {
2c470475 2603 init_idle_pids(task);
753ca4f3 2604 init_idle(task, cpu);
f106eee1 2605 }
73b9ebfe 2606
1da177e4
LT
2607 return task;
2608}
2609
13585fa0
NA
2610struct mm_struct *copy_init_mm(void)
2611{
2612 return dup_mm(NULL, &init_mm);
2613}
2614
cc440e87
JA
2615/*
2616 * This is like kernel_clone(), but shaved down and tailored to just
2617 * creating io_uring workers. It returns a created task, or an error pointer.
2618 * The returned task is inactive, and the caller must fire it up through
2619 * wake_up_new_task(p). All signals are blocked in the created task.
2620 */
2621struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2622{
2623 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2624 CLONE_IO;
2625 struct kernel_clone_args args = {
2626 .flags = ((lower_32_bits(flags) | CLONE_VM |
2627 CLONE_UNTRACED) & ~CSIGNAL),
2628 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
5bd2e97c
EB
2629 .fn = fn,
2630 .fn_arg = arg,
cc440e87
JA
2631 .io_thread = 1,
2632 };
cc440e87 2633
b16b3855 2634 return copy_process(NULL, 0, node, &args);
cc440e87
JA
2635}
2636
1da177e4
LT
2637/*
2638 * Ok, this is the main fork-routine.
2639 *
2640 * It copies the process, and if successful kick-starts
2641 * it and waits for it to finish using the VM if required.
a0eb9abd
ES
2642 *
2643 * args->exit_signal is expected to be checked for sanity by the caller.
1da177e4 2644 */
cad6967a 2645pid_t kernel_clone(struct kernel_clone_args *args)
1da177e4 2646{
7f192e3c 2647 u64 clone_flags = args->flags;
9f5325aa
MPS
2648 struct completion vfork;
2649 struct pid *pid;
1da177e4
LT
2650 struct task_struct *p;
2651 int trace = 0;
cad6967a 2652 pid_t nr;
1da177e4 2653
3af8588c
CB
2654 /*
2655 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2656 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2657 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2658 * field in struct clone_args and it still doesn't make sense to have
2659 * them both point at the same memory location. Performing this check
2660 * here has the advantage that we don't need to have a separate helper
2661 * to check for legacy clone().
2662 */
2663 if ((args->flags & CLONE_PIDFD) &&
2664 (args->flags & CLONE_PARENT_SETTID) &&
2665 (args->pidfd == args->parent_tid))
2666 return -EINVAL;
2667
09a05394 2668 /*
4b9d33e6
TH
2669 * Determine whether and which event to report to ptracer. When
2670 * called from kernel_thread or CLONE_UNTRACED is explicitly
2671 * requested, no event is reported; otherwise, report if the event
2672 * for the type of forking is enabled.
09a05394 2673 */
e80d6661 2674 if (!(clone_flags & CLONE_UNTRACED)) {
4b9d33e6
TH
2675 if (clone_flags & CLONE_VFORK)
2676 trace = PTRACE_EVENT_VFORK;
7f192e3c 2677 else if (args->exit_signal != SIGCHLD)
4b9d33e6
TH
2678 trace = PTRACE_EVENT_CLONE;
2679 else
2680 trace = PTRACE_EVENT_FORK;
2681
2682 if (likely(!ptrace_event_enabled(current, trace)))
2683 trace = 0;
2684 }
1da177e4 2685
7f192e3c 2686 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
38addce8 2687 add_latent_entropy();
9f5325aa
MPS
2688
2689 if (IS_ERR(p))
2690 return PTR_ERR(p);
2691
1da177e4
LT
2692 /*
2693 * Do this prior waking up the new thread - the thread pointer
2694 * might get invalid after that point, if the thread exits quickly.
2695 */
9f5325aa 2696 trace_sched_process_fork(current, p);
0a16b607 2697
9f5325aa
MPS
2698 pid = get_task_pid(p, PIDTYPE_PID);
2699 nr = pid_vnr(pid);
30e49c26 2700
9f5325aa 2701 if (clone_flags & CLONE_PARENT_SETTID)
7f192e3c 2702 put_user(nr, args->parent_tid);
a6f5e063 2703
9f5325aa
MPS
2704 if (clone_flags & CLONE_VFORK) {
2705 p->vfork_done = &vfork;
2706 init_completion(&vfork);
2707 get_task_struct(p);
2708 }
1da177e4 2709
bd74fdae
YZ
2710 if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
2711 /* lock the task to synchronize with memcg migration */
2712 task_lock(p);
2713 lru_gen_add_mm(p->mm);
2714 task_unlock(p);
2715 }
2716
9f5325aa 2717 wake_up_new_task(p);
09a05394 2718
9f5325aa
MPS
2719 /* forking complete and child started to run, tell ptracer */
2720 if (unlikely(trace))
2721 ptrace_event_pid(trace, pid);
4e52365f 2722
9f5325aa
MPS
2723 if (clone_flags & CLONE_VFORK) {
2724 if (!wait_for_vfork_done(p, &vfork))
2725 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1da177e4 2726 }
9f5325aa
MPS
2727
2728 put_pid(pid);
92476d7f 2729 return nr;
1da177e4
LT
2730}
2731
2aa3a7f8
AV
2732/*
2733 * Create a kernel thread.
2734 */
2735pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2736{
7f192e3c 2737 struct kernel_clone_args args = {
3f2c788a
CB
2738 .flags = ((lower_32_bits(flags) | CLONE_VM |
2739 CLONE_UNTRACED) & ~CSIGNAL),
2740 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
5bd2e97c
EB
2741 .fn = fn,
2742 .fn_arg = arg,
343f4c49
EB
2743 .kthread = 1,
2744 };
2745
2746 return kernel_clone(&args);
2747}
2748
2749/*
2750 * Create a user mode thread.
2751 */
2752pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2aa3a7f8 2753{
7f192e3c 2754 struct kernel_clone_args args = {
3f2c788a
CB
2755 .flags = ((lower_32_bits(flags) | CLONE_VM |
2756 CLONE_UNTRACED) & ~CSIGNAL),
2757 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
5bd2e97c
EB
2758 .fn = fn,
2759 .fn_arg = arg,
7f192e3c
CB
2760 };
2761
cad6967a 2762 return kernel_clone(&args);
2aa3a7f8 2763}
2aa3a7f8 2764
d2125043
AV
2765#ifdef __ARCH_WANT_SYS_FORK
2766SYSCALL_DEFINE0(fork)
2767{
2768#ifdef CONFIG_MMU
7f192e3c
CB
2769 struct kernel_clone_args args = {
2770 .exit_signal = SIGCHLD,
2771 };
2772
cad6967a 2773 return kernel_clone(&args);
d2125043
AV
2774#else
2775 /* can not support in nommu mode */
5d59e182 2776 return -EINVAL;
d2125043
AV
2777#endif
2778}
2779#endif
2780
2781#ifdef __ARCH_WANT_SYS_VFORK
2782SYSCALL_DEFINE0(vfork)
2783{
7f192e3c
CB
2784 struct kernel_clone_args args = {
2785 .flags = CLONE_VFORK | CLONE_VM,
2786 .exit_signal = SIGCHLD,
2787 };
2788
cad6967a 2789 return kernel_clone(&args);
d2125043
AV
2790}
2791#endif
2792
2793#ifdef __ARCH_WANT_SYS_CLONE
2794#ifdef CONFIG_CLONE_BACKWARDS
2795SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2796 int __user *, parent_tidptr,
3033f14a 2797 unsigned long, tls,
d2125043
AV
2798 int __user *, child_tidptr)
2799#elif defined(CONFIG_CLONE_BACKWARDS2)
2800SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2801 int __user *, parent_tidptr,
2802 int __user *, child_tidptr,
3033f14a 2803 unsigned long, tls)
dfa9771a
MS
2804#elif defined(CONFIG_CLONE_BACKWARDS3)
2805SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2806 int, stack_size,
2807 int __user *, parent_tidptr,
2808 int __user *, child_tidptr,
3033f14a 2809 unsigned long, tls)
d2125043
AV
2810#else
2811SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2812 int __user *, parent_tidptr,
2813 int __user *, child_tidptr,
3033f14a 2814 unsigned long, tls)
d2125043
AV
2815#endif
2816{
7f192e3c 2817 struct kernel_clone_args args = {
3f2c788a 2818 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
7f192e3c
CB
2819 .pidfd = parent_tidptr,
2820 .child_tid = child_tidptr,
2821 .parent_tid = parent_tidptr,
3f2c788a 2822 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
7f192e3c
CB
2823 .stack = newsp,
2824 .tls = tls,
2825 };
2826
cad6967a 2827 return kernel_clone(&args);
7f192e3c 2828}
d68dbb0c 2829#endif
7f192e3c 2830
d68dbb0c 2831#ifdef __ARCH_WANT_SYS_CLONE3
dd499f7a 2832
7f192e3c
CB
2833noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2834 struct clone_args __user *uargs,
f14c234b 2835 size_t usize)
7f192e3c 2836{
f14c234b 2837 int err;
7f192e3c 2838 struct clone_args args;
49cb2fc4 2839 pid_t *kset_tid = kargs->set_tid;
7f192e3c 2840
a966dcfe
ES
2841 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2842 CLONE_ARGS_SIZE_VER0);
2843 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2844 CLONE_ARGS_SIZE_VER1);
2845 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2846 CLONE_ARGS_SIZE_VER2);
2847 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2848
f14c234b 2849 if (unlikely(usize > PAGE_SIZE))
7f192e3c 2850 return -E2BIG;
f14c234b 2851 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
7f192e3c
CB
2852 return -EINVAL;
2853
f14c234b
AS
2854 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2855 if (err)
2856 return err;
7f192e3c 2857
49cb2fc4
AR
2858 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2859 return -EINVAL;
2860
2861 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2862 return -EINVAL;
2863
2864 if (unlikely(args.set_tid && args.set_tid_size == 0))
2865 return -EINVAL;
2866
a0eb9abd
ES
2867 /*
2868 * Verify that higher 32bits of exit_signal are unset and that
2869 * it is a valid signal
2870 */
2871 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2872 !valid_signal(args.exit_signal)))
2873 return -EINVAL;
2874
62173872
ES
2875 if ((args.flags & CLONE_INTO_CGROUP) &&
2876 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
ef2c41cf
CB
2877 return -EINVAL;
2878
7f192e3c
CB
2879 *kargs = (struct kernel_clone_args){
2880 .flags = args.flags,
2881 .pidfd = u64_to_user_ptr(args.pidfd),
2882 .child_tid = u64_to_user_ptr(args.child_tid),
2883 .parent_tid = u64_to_user_ptr(args.parent_tid),
2884 .exit_signal = args.exit_signal,
2885 .stack = args.stack,
2886 .stack_size = args.stack_size,
2887 .tls = args.tls,
49cb2fc4 2888 .set_tid_size = args.set_tid_size,
ef2c41cf 2889 .cgroup = args.cgroup,
7f192e3c
CB
2890 };
2891
49cb2fc4
AR
2892 if (args.set_tid &&
2893 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2894 (kargs->set_tid_size * sizeof(pid_t))))
2895 return -EFAULT;
2896
2897 kargs->set_tid = kset_tid;
2898
7f192e3c
CB
2899 return 0;
2900}
2901
fa729c4d
CB
2902/**
2903 * clone3_stack_valid - check and prepare stack
2904 * @kargs: kernel clone args
2905 *
2906 * Verify that the stack arguments userspace gave us are sane.
2907 * In addition, set the stack direction for userspace since it's easy for us to
2908 * determine.
2909 */
2910static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2911{
2912 if (kargs->stack == 0) {
2913 if (kargs->stack_size > 0)
2914 return false;
2915 } else {
2916 if (kargs->stack_size == 0)
2917 return false;
2918
2919 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2920 return false;
2921
2922#if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2923 kargs->stack += kargs->stack_size;
2924#endif
2925 }
2926
2927 return true;
2928}
2929
2930static bool clone3_args_valid(struct kernel_clone_args *kargs)
7f192e3c 2931{
b612e5df 2932 /* Verify that no unknown flags are passed along. */
ef2c41cf
CB
2933 if (kargs->flags &
2934 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
7f192e3c
CB
2935 return false;
2936
2937 /*
a8ca6b13
XC
2938 * - make the CLONE_DETACHED bit reusable for clone3
2939 * - make the CSIGNAL bits reusable for clone3
7f192e3c
CB
2940 */
2941 if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2942 return false;
2943
b612e5df
CB
2944 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2945 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2946 return false;
2947
7f192e3c
CB
2948 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2949 kargs->exit_signal)
2950 return false;
2951
fa729c4d
CB
2952 if (!clone3_stack_valid(kargs))
2953 return false;
2954
7f192e3c
CB
2955 return true;
2956}
2957
501bd016
CB
2958/**
2959 * clone3 - create a new process with specific properties
2960 * @uargs: argument structure
2961 * @size: size of @uargs
2962 *
2963 * clone3() is the extensible successor to clone()/clone2().
2964 * It takes a struct as argument that is versioned by its size.
2965 *
2966 * Return: On success, a positive PID for the child process.
2967 * On error, a negative errno number.
2968 */
7f192e3c
CB
2969SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2970{
2971 int err;
2972
2973 struct kernel_clone_args kargs;
49cb2fc4
AR
2974 pid_t set_tid[MAX_PID_NS_LEVEL];
2975
2976 kargs.set_tid = set_tid;
7f192e3c
CB
2977
2978 err = copy_clone_args_from_user(&kargs, uargs, size);
2979 if (err)
2980 return err;
2981
2982 if (!clone3_args_valid(&kargs))
2983 return -EINVAL;
2984
cad6967a 2985 return kernel_clone(&kargs);
d2125043
AV
2986}
2987#endif
2988
0f1b92cb
ON
2989void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2990{
2991 struct task_struct *leader, *parent, *child;
2992 int res;
2993
2994 read_lock(&tasklist_lock);
2995 leader = top = top->group_leader;
2996down:
2997 for_each_thread(leader, parent) {
2998 list_for_each_entry(child, &parent->children, sibling) {
2999 res = visitor(child, data);
3000 if (res) {
3001 if (res < 0)
3002 goto out;
3003 leader = child;
3004 goto down;
3005 }
3006up:
3007 ;
3008 }
3009 }
3010
3011 if (leader != top) {
3012 child = leader;
3013 parent = child->real_parent;
3014 leader = parent->group_leader;
3015 goto up;
3016 }
3017out:
3018 read_unlock(&tasklist_lock);
3019}
3020
5fd63b30
RT
3021#ifndef ARCH_MIN_MMSTRUCT_ALIGN
3022#define ARCH_MIN_MMSTRUCT_ALIGN 0
3023#endif
3024
51cc5068 3025static void sighand_ctor(void *data)
aa1757f9
ON
3026{
3027 struct sighand_struct *sighand = data;
3028
a35afb83 3029 spin_lock_init(&sighand->siglock);
b8fceee1 3030 init_waitqueue_head(&sighand->signalfd_wqh);
aa1757f9
ON
3031}
3032
1da177e4
LT
3033void __init proc_caches_init(void)
3034{
c1a2f7f0
RR
3035 unsigned int mm_size;
3036
1da177e4
LT
3037 sighand_cachep = kmem_cache_create("sighand_cache",
3038 sizeof(struct sighand_struct), 0,
5f0d5a3a 3039 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
75f296d9 3040 SLAB_ACCOUNT, sighand_ctor);
1da177e4
LT
3041 signal_cachep = kmem_cache_create("signal_cache",
3042 sizeof(struct signal_struct), 0,
75f296d9 3043 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 3044 NULL);
20c2df83 3045 files_cachep = kmem_cache_create("files_cache",
1da177e4 3046 sizeof(struct files_struct), 0,
75f296d9 3047 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 3048 NULL);
20c2df83 3049 fs_cachep = kmem_cache_create("fs_cache",
1da177e4 3050 sizeof(struct fs_struct), 0,
75f296d9 3051 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 3052 NULL);
c1a2f7f0 3053
6345d24d 3054 /*
c1a2f7f0
RR
3055 * The mm_cpumask is located at the end of mm_struct, and is
3056 * dynamically sized based on the maximum CPU number this system
3057 * can have, taking hotplug into account (nr_cpu_ids).
6345d24d 3058 */
c1a2f7f0
RR
3059 mm_size = sizeof(struct mm_struct) + cpumask_size();
3060
07dcd7fe 3061 mm_cachep = kmem_cache_create_usercopy("mm_struct",
c1a2f7f0 3062 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
75f296d9 3063 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
07dcd7fe
DW
3064 offsetof(struct mm_struct, saved_auxv),
3065 sizeof_field(struct mm_struct, saved_auxv),
5d097056
VD
3066 NULL);
3067 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
8feae131 3068 mmap_init();
66577193 3069 nsproxy_cache_init();
1da177e4 3070}
cf2e340f 3071
cf2e340f 3072/*
9bfb23fc 3073 * Check constraints on flags passed to the unshare system call.
cf2e340f 3074 */
9bfb23fc 3075static int check_unshare_flags(unsigned long unshare_flags)
cf2e340f 3076{
9bfb23fc
ON
3077 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3078 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
50804fe3 3079 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
769071ac
AV
3080 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3081 CLONE_NEWTIME))
9bfb23fc 3082 return -EINVAL;
cf2e340f 3083 /*
12c641ab
EB
3084 * Not implemented, but pretend it works if there is nothing
3085 * to unshare. Note that unsharing the address space or the
3086 * signal handlers also need to unshare the signal queues (aka
3087 * CLONE_THREAD).
cf2e340f 3088 */
9bfb23fc 3089 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
12c641ab
EB
3090 if (!thread_group_empty(current))
3091 return -EINVAL;
3092 }
3093 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
d036bda7 3094 if (refcount_read(&current->sighand->count) > 1)
12c641ab
EB
3095 return -EINVAL;
3096 }
3097 if (unshare_flags & CLONE_VM) {
3098 if (!current_is_single_threaded())
9bfb23fc
ON
3099 return -EINVAL;
3100 }
cf2e340f
JD
3101
3102 return 0;
3103}
3104
3105/*
99d1419d 3106 * Unshare the filesystem structure if it is being shared
cf2e340f
JD
3107 */
3108static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3109{
3110 struct fs_struct *fs = current->fs;
3111
498052bb
AV
3112 if (!(unshare_flags & CLONE_FS) || !fs)
3113 return 0;
3114
3115 /* don't need lock here; in the worst case we'll do useless copy */
3116 if (fs->users == 1)
3117 return 0;
3118
3119 *new_fsp = copy_fs_struct(fs);
3120 if (!*new_fsp)
3121 return -ENOMEM;
cf2e340f
JD
3122
3123 return 0;
3124}
3125
cf2e340f 3126/*
a016f338 3127 * Unshare file descriptor table if it is being shared
cf2e340f 3128 */
60997c3d
CB
3129int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3130 struct files_struct **new_fdp)
cf2e340f
JD
3131{
3132 struct files_struct *fd = current->files;
a016f338 3133 int error = 0;
cf2e340f
JD
3134
3135 if ((unshare_flags & CLONE_FILES) &&
a016f338 3136 (fd && atomic_read(&fd->count) > 1)) {
60997c3d 3137 *new_fdp = dup_fd(fd, max_fds, &error);
a016f338
JD
3138 if (!*new_fdp)
3139 return error;
3140 }
cf2e340f
JD
3141
3142 return 0;
3143}
3144
cf2e340f
JD
3145/*
3146 * unshare allows a process to 'unshare' part of the process
3147 * context which was originally shared using clone. copy_*
cad6967a 3148 * functions used by kernel_clone() cannot be used here directly
cf2e340f
JD
3149 * because they modify an inactive task_struct that is being
3150 * constructed. Here we are modifying the current, active,
3151 * task_struct.
3152 */
9b32105e 3153int ksys_unshare(unsigned long unshare_flags)
cf2e340f 3154{
cf2e340f 3155 struct fs_struct *fs, *new_fs = NULL;
ba1f70dd 3156 struct files_struct *new_fd = NULL;
b2e0d987 3157 struct cred *new_cred = NULL;
cf7b708c 3158 struct nsproxy *new_nsproxy = NULL;
9edff4ab 3159 int do_sysvsem = 0;
9bfb23fc 3160 int err;
cf2e340f 3161
b2e0d987 3162 /*
faf00da5
EB
3163 * If unsharing a user namespace must also unshare the thread group
3164 * and unshare the filesystem root and working directories.
b2e0d987
EB
3165 */
3166 if (unshare_flags & CLONE_NEWUSER)
e66eded8 3167 unshare_flags |= CLONE_THREAD | CLONE_FS;
50804fe3
EB
3168 /*
3169 * If unsharing vm, must also unshare signal handlers.
3170 */
3171 if (unshare_flags & CLONE_VM)
3172 unshare_flags |= CLONE_SIGHAND;
12c641ab
EB
3173 /*
3174 * If unsharing a signal handlers, must also unshare the signal queues.
3175 */
3176 if (unshare_flags & CLONE_SIGHAND)
3177 unshare_flags |= CLONE_THREAD;
9bfb23fc
ON
3178 /*
3179 * If unsharing namespace, must also unshare filesystem information.
3180 */
3181 if (unshare_flags & CLONE_NEWNS)
3182 unshare_flags |= CLONE_FS;
50804fe3
EB
3183
3184 err = check_unshare_flags(unshare_flags);
3185 if (err)
3186 goto bad_unshare_out;
6013f67f
MS
3187 /*
3188 * CLONE_NEWIPC must also detach from the undolist: after switching
3189 * to a new ipc namespace, the semaphore arrays from the old
3190 * namespace are unreachable.
3191 */
3192 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
9edff4ab 3193 do_sysvsem = 1;
fb0a685c
DRO
3194 err = unshare_fs(unshare_flags, &new_fs);
3195 if (err)
9bfb23fc 3196 goto bad_unshare_out;
60997c3d 3197 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
fb0a685c 3198 if (err)
9bfb23fc 3199 goto bad_unshare_cleanup_fs;
b2e0d987 3200 err = unshare_userns(unshare_flags, &new_cred);
fb0a685c 3201 if (err)
9edff4ab 3202 goto bad_unshare_cleanup_fd;
b2e0d987
EB
3203 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3204 new_cred, new_fs);
3205 if (err)
3206 goto bad_unshare_cleanup_cred;
c0b2fc31 3207
905ae01c
AG
3208 if (new_cred) {
3209 err = set_cred_ucounts(new_cred);
3210 if (err)
3211 goto bad_unshare_cleanup_cred;
3212 }
3213
b2e0d987 3214 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
9edff4ab
MS
3215 if (do_sysvsem) {
3216 /*
3217 * CLONE_SYSVSEM is equivalent to sys_exit().
3218 */
3219 exit_sem(current);
3220 }
ab602f79
JM
3221 if (unshare_flags & CLONE_NEWIPC) {
3222 /* Orphan segments in old ns (see sem above). */
3223 exit_shm(current);
3224 shm_init_task(current);
3225 }
ab516013 3226
6f977e6b 3227 if (new_nsproxy)
cf7b708c 3228 switch_task_namespaces(current, new_nsproxy);
cf2e340f 3229
cf7b708c
PE
3230 task_lock(current);
3231
cf2e340f
JD
3232 if (new_fs) {
3233 fs = current->fs;
2a4419b5 3234 spin_lock(&fs->lock);
cf2e340f 3235 current->fs = new_fs;
498052bb
AV
3236 if (--fs->users)
3237 new_fs = NULL;
3238 else
3239 new_fs = fs;
2a4419b5 3240 spin_unlock(&fs->lock);
cf2e340f
JD
3241 }
3242
ba1f70dd
RX
3243 if (new_fd)
3244 swap(current->files, new_fd);
cf2e340f
JD
3245
3246 task_unlock(current);
b2e0d987
EB
3247
3248 if (new_cred) {
3249 /* Install the new user namespace */
3250 commit_creds(new_cred);
3251 new_cred = NULL;
3252 }
cf2e340f
JD
3253 }
3254
e4222673
HB
3255 perf_event_namespaces(current);
3256
b2e0d987
EB
3257bad_unshare_cleanup_cred:
3258 if (new_cred)
3259 put_cred(new_cred);
cf2e340f
JD
3260bad_unshare_cleanup_fd:
3261 if (new_fd)
3262 put_files_struct(new_fd);
3263
cf2e340f
JD
3264bad_unshare_cleanup_fs:
3265 if (new_fs)
498052bb 3266 free_fs_struct(new_fs);
cf2e340f 3267
cf2e340f
JD
3268bad_unshare_out:
3269 return err;
3270}
3b125388 3271
9b32105e
DB
3272SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3273{
3274 return ksys_unshare(unshare_flags);
3275}
3276
3b125388
AV
3277/*
3278 * Helper to unshare the files of the current task.
3279 * We don't want to expose copy_files internals to
3280 * the exec layer of the kernel.
3281 */
3282
1f702603 3283int unshare_files(void)
3b125388
AV
3284{
3285 struct task_struct *task = current;
1f702603 3286 struct files_struct *old, *copy = NULL;
3b125388
AV
3287 int error;
3288
60997c3d 3289 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
1f702603 3290 if (error || !copy)
3b125388 3291 return error;
1f702603
EB
3292
3293 old = task->files;
3b125388
AV
3294 task_lock(task);
3295 task->files = copy;
3296 task_unlock(task);
1f702603 3297 put_files_struct(old);
3b125388
AV
3298 return 0;
3299}
16db3d3f
HS
3300
3301int sysctl_max_threads(struct ctl_table *table, int write,
b0daa2c7 3302 void *buffer, size_t *lenp, loff_t *ppos)
16db3d3f
HS
3303{
3304 struct ctl_table t;
3305 int ret;
3306 int threads = max_threads;
b0f53dbc 3307 int min = 1;
16db3d3f
HS
3308 int max = MAX_THREADS;
3309
3310 t = *table;
3311 t.data = &threads;
3312 t.extra1 = &min;
3313 t.extra2 = &max;
3314
3315 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3316 if (ret || !write)
3317 return ret;
3318
b0f53dbc 3319 max_threads = threads;
16db3d3f
HS
3320
3321 return 0;
3322}