uprobes: Kill uprobe_consumer->filter()
[linux-block.git] / kernel / events / uprobes.c
CommitLineData
2b144498 1/*
7b2d81d4 2 * User-space Probes (UProbes)
2b144498
SD
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
35aa621b 18 * Copyright (C) IBM Corporation, 2008-2012
2b144498
SD
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
35aa621b 22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
2b144498
SD
23 */
24
25#include <linux/kernel.h>
26#include <linux/highmem.h>
27#include <linux/pagemap.h> /* read_mapping_page */
28#include <linux/slab.h>
29#include <linux/sched.h>
30#include <linux/rmap.h> /* anon_vma_prepare */
31#include <linux/mmu_notifier.h> /* set_pte_at_notify */
32#include <linux/swap.h> /* try_to_free_swap */
0326f5a9
SD
33#include <linux/ptrace.h> /* user_enable_single_step */
34#include <linux/kdebug.h> /* notifier mechanism */
194f8dcb 35#include "../../mm/internal.h" /* munlock_vma_page */
32cdba1e 36#include <linux/percpu-rwsem.h>
7b2d81d4 37
2b144498
SD
38#include <linux/uprobes.h>
39
d4b3b638
SD
40#define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
41#define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
42
2b144498 43static struct rb_root uprobes_tree = RB_ROOT;
7b2d81d4 44
2b144498
SD
45static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
46
47#define UPROBES_HASH_SZ 13
7b2d81d4 48
c5784de2
PZ
49/*
50 * We need separate register/unregister and mmap/munmap lock hashes because
51 * of mmap_sem nesting.
52 *
53 * uprobe_register() needs to install probes on (potentially) all processes
54 * and thus needs to acquire multiple mmap_sems (consequtively, not
55 * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
56 * for the particular process doing the mmap.
57 *
58 * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
59 * because of lock order against i_mmap_mutex. This means there's a hole in
60 * the register vma iteration where a mmap() can happen.
61 *
62 * Thus uprobe_register() can race with uprobe_mmap() and we can try and
63 * install a probe where one is already installed.
64 */
65
2b144498
SD
66/* serialize (un)register */
67static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
7b2d81d4
IM
68
69#define uprobes_hash(v) (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498
SD
70
71/* serialize uprobe->pending_list */
72static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
7b2d81d4 73#define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498 74
32cdba1e
ON
75static struct percpu_rw_semaphore dup_mmap_sem;
76
2b144498 77/*
7b2d81d4 78 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
2b144498
SD
79 * events active at this time. Probably a fine grained per inode count is
80 * better?
81 */
82static atomic_t uprobe_events = ATOMIC_INIT(0);
83
cb9a19fe 84/* Have a copy of original instruction */
71434f2f 85#define UPROBE_COPY_INSN 0
cb9a19fe 86/* Dont run handlers when first register/ last unregister in progress*/
71434f2f 87#define UPROBE_RUN_HANDLER 1
cb9a19fe 88/* Can skip singlestep */
71434f2f 89#define UPROBE_SKIP_SSTEP 2
cb9a19fe 90
3ff54efd
SD
91struct uprobe {
92 struct rb_node rb_node; /* node in the rb tree */
93 atomic_t ref;
94 struct rw_semaphore consumer_rwsem;
4710f05f 95 struct mutex copy_mutex; /* TODO: kill me and UPROBE_COPY_INSN */
3ff54efd
SD
96 struct list_head pending_list;
97 struct uprobe_consumer *consumers;
98 struct inode *inode; /* Also hold a ref to inode */
99 loff_t offset;
71434f2f 100 unsigned long flags;
3ff54efd
SD
101 struct arch_uprobe arch;
102};
103
2b144498
SD
104/*
105 * valid_vma: Verify if the specified vma is an executable vma
106 * Relax restrictions while unregistering: vm_flags might have
107 * changed after breakpoint was inserted.
108 * - is_register: indicates if we are in register context.
109 * - Return 1 if the specified virtual address is in an
110 * executable vma.
111 */
112static bool valid_vma(struct vm_area_struct *vma, bool is_register)
113{
e40cfce6 114 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED;
2b144498 115
e40cfce6
ON
116 if (is_register)
117 flags |= VM_WRITE;
2b144498 118
e40cfce6 119 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
2b144498
SD
120}
121
57683f72 122static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
2b144498 123{
57683f72 124 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
2b144498
SD
125}
126
cb113b47
ON
127static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
128{
129 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
130}
131
2b144498
SD
132/**
133 * __replace_page - replace page in vma by new page.
134 * based on replace_page in mm/ksm.c
135 *
136 * @vma: vma that holds the pte pointing to page
c517ee74 137 * @addr: address the old @page is mapped at
2b144498
SD
138 * @page: the cowed page we are replacing by kpage
139 * @kpage: the modified page we replace page by
140 *
141 * Returns 0 on success, -EFAULT on failure.
142 */
c517ee74
ON
143static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
144 struct page *page, struct page *kpage)
2b144498
SD
145{
146 struct mm_struct *mm = vma->vm_mm;
5323ce71
ON
147 spinlock_t *ptl;
148 pte_t *ptep;
9f92448c 149 int err;
6bdb913f
HE
150 /* For mmu_notifiers */
151 const unsigned long mmun_start = addr;
152 const unsigned long mmun_end = addr + PAGE_SIZE;
2b144498 153
194f8dcb 154 /* For try_to_free_swap() and munlock_vma_page() below */
9f92448c
ON
155 lock_page(page);
156
6bdb913f 157 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
9f92448c 158 err = -EAGAIN;
5323ce71 159 ptep = page_check_address(page, mm, addr, &ptl, 0);
2b144498 160 if (!ptep)
9f92448c 161 goto unlock;
2b144498
SD
162
163 get_page(kpage);
164 page_add_new_anon_rmap(kpage, vma, addr);
165
7396fa81
SD
166 if (!PageAnon(page)) {
167 dec_mm_counter(mm, MM_FILEPAGES);
168 inc_mm_counter(mm, MM_ANONPAGES);
169 }
170
2b144498
SD
171 flush_cache_page(vma, addr, pte_pfn(*ptep));
172 ptep_clear_flush(vma, addr, ptep);
173 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
174
175 page_remove_rmap(page);
176 if (!page_mapped(page))
177 try_to_free_swap(page);
2b144498 178 pte_unmap_unlock(ptep, ptl);
2b144498 179
194f8dcb
ON
180 if (vma->vm_flags & VM_LOCKED)
181 munlock_vma_page(page);
182 put_page(page);
183
9f92448c
ON
184 err = 0;
185 unlock:
6bdb913f 186 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
9f92448c
ON
187 unlock_page(page);
188 return err;
2b144498
SD
189}
190
191/**
5cb4ac3a 192 * is_swbp_insn - check if instruction is breakpoint instruction.
2b144498 193 * @insn: instruction to be checked.
5cb4ac3a 194 * Default implementation of is_swbp_insn
2b144498
SD
195 * Returns true if @insn is a breakpoint instruction.
196 */
5cb4ac3a 197bool __weak is_swbp_insn(uprobe_opcode_t *insn)
2b144498 198{
5cb4ac3a 199 return *insn == UPROBE_SWBP_INSN;
2b144498
SD
200}
201
cceb55aa
ON
202static void copy_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *opcode)
203{
204 void *kaddr = kmap_atomic(page);
205 memcpy(opcode, kaddr + (vaddr & ~PAGE_MASK), UPROBE_SWBP_INSN_SIZE);
206 kunmap_atomic(kaddr);
207}
208
ed6f6a50
ON
209static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
210{
211 uprobe_opcode_t old_opcode;
212 bool is_swbp;
213
214 copy_opcode(page, vaddr, &old_opcode);
215 is_swbp = is_swbp_insn(&old_opcode);
216
217 if (is_swbp_insn(new_opcode)) {
218 if (is_swbp) /* register: already installed? */
219 return 0;
220 } else {
221 if (!is_swbp) /* unregister: was it changed by us? */
076a365b 222 return 0;
ed6f6a50
ON
223 }
224
225 return 1;
226}
227
2b144498
SD
228/*
229 * NOTE:
230 * Expect the breakpoint instruction to be the smallest size instruction for
231 * the architecture. If an arch has variable length instruction and the
232 * breakpoint instruction is not of the smallest length instruction
cceb55aa 233 * supported by that architecture then we need to modify is_swbp_at_addr and
2b144498
SD
234 * write_opcode accordingly. This would never be a problem for archs that
235 * have fixed length instructions.
236 */
237
238/*
239 * write_opcode - write the opcode at a given virtual address.
240 * @mm: the probed process address space.
2b144498
SD
241 * @vaddr: the virtual address to store the opcode.
242 * @opcode: opcode to be written at @vaddr.
243 *
244 * Called with mm->mmap_sem held (for read and with a reference to
245 * mm).
246 *
247 * For mm @mm, write the opcode at @vaddr.
248 * Return 0 (success) or a negative errno.
249 */
cceb55aa
ON
250static int write_opcode(struct mm_struct *mm, unsigned long vaddr,
251 uprobe_opcode_t opcode)
2b144498
SD
252{
253 struct page *old_page, *new_page;
2b144498
SD
254 void *vaddr_old, *vaddr_new;
255 struct vm_area_struct *vma;
2b144498 256 int ret;
f403072c 257
5323ce71 258retry:
2b144498 259 /* Read the page with vaddr into memory */
75ed82ea 260 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
2b144498
SD
261 if (ret <= 0)
262 return ret;
7b2d81d4 263
ed6f6a50
ON
264 ret = verify_opcode(old_page, vaddr, &opcode);
265 if (ret <= 0)
266 goto put_old;
267
2b144498
SD
268 ret = -ENOMEM;
269 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
270 if (!new_page)
9f92448c 271 goto put_old;
2b144498
SD
272
273 __SetPageUptodate(new_page);
274
2b144498
SD
275 /* copy the page now that we've got it stable */
276 vaddr_old = kmap_atomic(old_page);
277 vaddr_new = kmap_atomic(new_page);
278
279 memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
d9c4a30e 280 memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
2b144498
SD
281
282 kunmap_atomic(vaddr_new);
283 kunmap_atomic(vaddr_old);
284
285 ret = anon_vma_prepare(vma);
286 if (ret)
9f92448c 287 goto put_new;
2b144498 288
c517ee74 289 ret = __replace_page(vma, vaddr, old_page, new_page);
2b144498 290
9f92448c 291put_new:
2b144498 292 page_cache_release(new_page);
9f92448c 293put_old:
7b2d81d4
IM
294 put_page(old_page);
295
5323ce71
ON
296 if (unlikely(ret == -EAGAIN))
297 goto retry;
2b144498
SD
298 return ret;
299}
300
2b144498 301/**
5cb4ac3a 302 * set_swbp - store breakpoint at a given address.
e3343e6a 303 * @auprobe: arch specific probepoint information.
2b144498 304 * @mm: the probed process address space.
2b144498
SD
305 * @vaddr: the virtual address to insert the opcode.
306 *
307 * For mm @mm, store the breakpoint instruction at @vaddr.
308 * Return 0 (success) or a negative errno.
309 */
5cb4ac3a 310int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 311{
cceb55aa 312 return write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
2b144498
SD
313}
314
315/**
316 * set_orig_insn - Restore the original instruction.
317 * @mm: the probed process address space.
e3343e6a 318 * @auprobe: arch specific probepoint information.
2b144498 319 * @vaddr: the virtual address to insert the opcode.
2b144498
SD
320 *
321 * For mm @mm, restore the original opcode (opcode) at @vaddr.
322 * Return 0 (success) or a negative errno.
323 */
7b2d81d4 324int __weak
ded86e7c 325set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 326{
cceb55aa 327 return write_opcode(mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
2b144498
SD
328}
329
330static int match_uprobe(struct uprobe *l, struct uprobe *r)
331{
332 if (l->inode < r->inode)
333 return -1;
7b2d81d4 334
2b144498
SD
335 if (l->inode > r->inode)
336 return 1;
2b144498 337
7b2d81d4
IM
338 if (l->offset < r->offset)
339 return -1;
340
341 if (l->offset > r->offset)
342 return 1;
2b144498
SD
343
344 return 0;
345}
346
347static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
348{
349 struct uprobe u = { .inode = inode, .offset = offset };
350 struct rb_node *n = uprobes_tree.rb_node;
351 struct uprobe *uprobe;
352 int match;
353
354 while (n) {
355 uprobe = rb_entry(n, struct uprobe, rb_node);
356 match = match_uprobe(&u, uprobe);
357 if (!match) {
358 atomic_inc(&uprobe->ref);
359 return uprobe;
360 }
7b2d81d4 361
2b144498
SD
362 if (match < 0)
363 n = n->rb_left;
364 else
365 n = n->rb_right;
366 }
367 return NULL;
368}
369
370/*
371 * Find a uprobe corresponding to a given inode:offset
372 * Acquires uprobes_treelock
373 */
374static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
375{
376 struct uprobe *uprobe;
2b144498 377
6f47caa0 378 spin_lock(&uprobes_treelock);
2b144498 379 uprobe = __find_uprobe(inode, offset);
6f47caa0 380 spin_unlock(&uprobes_treelock);
7b2d81d4 381
2b144498
SD
382 return uprobe;
383}
384
385static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
386{
387 struct rb_node **p = &uprobes_tree.rb_node;
388 struct rb_node *parent = NULL;
389 struct uprobe *u;
390 int match;
391
392 while (*p) {
393 parent = *p;
394 u = rb_entry(parent, struct uprobe, rb_node);
395 match = match_uprobe(uprobe, u);
396 if (!match) {
397 atomic_inc(&u->ref);
398 return u;
399 }
400
401 if (match < 0)
402 p = &parent->rb_left;
403 else
404 p = &parent->rb_right;
405
406 }
7b2d81d4 407
2b144498
SD
408 u = NULL;
409 rb_link_node(&uprobe->rb_node, parent, p);
410 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
411 /* get access + creation ref */
412 atomic_set(&uprobe->ref, 2);
7b2d81d4 413
2b144498
SD
414 return u;
415}
416
417/*
7b2d81d4 418 * Acquire uprobes_treelock.
2b144498
SD
419 * Matching uprobe already exists in rbtree;
420 * increment (access refcount) and return the matching uprobe.
421 *
422 * No matching uprobe; insert the uprobe in rb_tree;
423 * get a double refcount (access + creation) and return NULL.
424 */
425static struct uprobe *insert_uprobe(struct uprobe *uprobe)
426{
2b144498
SD
427 struct uprobe *u;
428
6f47caa0 429 spin_lock(&uprobes_treelock);
2b144498 430 u = __insert_uprobe(uprobe);
6f47caa0 431 spin_unlock(&uprobes_treelock);
7b2d81d4 432
2b144498
SD
433 return u;
434}
435
436static void put_uprobe(struct uprobe *uprobe)
437{
438 if (atomic_dec_and_test(&uprobe->ref))
439 kfree(uprobe);
440}
441
442static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
443{
444 struct uprobe *uprobe, *cur_uprobe;
445
446 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
447 if (!uprobe)
448 return NULL;
449
450 uprobe->inode = igrab(inode);
451 uprobe->offset = offset;
452 init_rwsem(&uprobe->consumer_rwsem);
4710f05f 453 mutex_init(&uprobe->copy_mutex);
bbc33d05
ON
454 /* For now assume that the instruction need not be single-stepped */
455 __set_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
2b144498
SD
456
457 /* add to uprobes_tree, sorted on inode:offset */
458 cur_uprobe = insert_uprobe(uprobe);
459
460 /* a uprobe exists for this inode:offset combination */
461 if (cur_uprobe) {
462 kfree(uprobe);
463 uprobe = cur_uprobe;
464 iput(inode);
7b2d81d4 465 } else {
2b144498 466 atomic_inc(&uprobe_events);
7b2d81d4
IM
467 }
468
2b144498
SD
469 return uprobe;
470}
471
0326f5a9
SD
472static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
473{
474 struct uprobe_consumer *uc;
475
71434f2f 476 if (!test_bit(UPROBE_RUN_HANDLER, &uprobe->flags))
0326f5a9
SD
477 return;
478
479 down_read(&uprobe->consumer_rwsem);
fe20d71f
ON
480 for (uc = uprobe->consumers; uc; uc = uc->next)
481 uc->handler(uc, regs);
0326f5a9
SD
482 up_read(&uprobe->consumer_rwsem);
483}
484
2b144498 485/* Returns the previous consumer */
7b2d81d4 486static struct uprobe_consumer *
e3343e6a 487consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
488{
489 down_write(&uprobe->consumer_rwsem);
e3343e6a
SD
490 uc->next = uprobe->consumers;
491 uprobe->consumers = uc;
2b144498 492 up_write(&uprobe->consumer_rwsem);
7b2d81d4 493
e3343e6a 494 return uc->next;
2b144498
SD
495}
496
497/*
e3343e6a
SD
498 * For uprobe @uprobe, delete the consumer @uc.
499 * Return true if the @uc is deleted successfully
2b144498
SD
500 * or return false.
501 */
e3343e6a 502static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
503{
504 struct uprobe_consumer **con;
505 bool ret = false;
506
507 down_write(&uprobe->consumer_rwsem);
508 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
e3343e6a
SD
509 if (*con == uc) {
510 *con = uc->next;
2b144498
SD
511 ret = true;
512 break;
513 }
514 }
515 up_write(&uprobe->consumer_rwsem);
7b2d81d4 516
2b144498
SD
517 return ret;
518}
519
e3343e6a 520static int
d436615e 521__copy_insn(struct address_space *mapping, struct file *filp, char *insn,
593609a5 522 unsigned long nbytes, loff_t offset)
2b144498 523{
2b144498
SD
524 struct page *page;
525 void *vaddr;
593609a5
ON
526 unsigned long off;
527 pgoff_t idx;
2b144498
SD
528
529 if (!filp)
530 return -EINVAL;
531
cc359d18
ON
532 if (!mapping->a_ops->readpage)
533 return -EIO;
534
593609a5
ON
535 idx = offset >> PAGE_CACHE_SHIFT;
536 off = offset & ~PAGE_MASK;
2b144498
SD
537
538 /*
539 * Ensure that the page that has the original instruction is
540 * populated and in page-cache.
541 */
542 page = read_mapping_page(mapping, idx, filp);
543 if (IS_ERR(page))
544 return PTR_ERR(page);
545
546 vaddr = kmap_atomic(page);
593609a5 547 memcpy(insn, vaddr + off, nbytes);
2b144498
SD
548 kunmap_atomic(vaddr);
549 page_cache_release(page);
7b2d81d4 550
2b144498
SD
551 return 0;
552}
553
d436615e 554static int copy_insn(struct uprobe *uprobe, struct file *filp)
2b144498
SD
555{
556 struct address_space *mapping;
2b144498 557 unsigned long nbytes;
7b2d81d4 558 int bytes;
2b144498 559
d436615e 560 nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
2b144498
SD
561 mapping = uprobe->inode->i_mapping;
562
563 /* Instruction at end of binary; copy only available bytes */
564 if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
565 bytes = uprobe->inode->i_size - uprobe->offset;
566 else
567 bytes = MAX_UINSN_BYTES;
568
569 /* Instruction at the page-boundary; copy bytes in second page */
570 if (nbytes < bytes) {
fc36f595
ON
571 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
572 bytes - nbytes, uprobe->offset + nbytes);
573 if (err)
574 return err;
2b144498
SD
575 bytes = nbytes;
576 }
d436615e 577 return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
2b144498
SD
578}
579
cb9a19fe
ON
580static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
581 struct mm_struct *mm, unsigned long vaddr)
582{
583 int ret = 0;
584
71434f2f 585 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
cb9a19fe
ON
586 return ret;
587
4710f05f 588 mutex_lock(&uprobe->copy_mutex);
71434f2f 589 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
4710f05f
ON
590 goto out;
591
cb9a19fe
ON
592 ret = copy_insn(uprobe, file);
593 if (ret)
594 goto out;
595
596 ret = -ENOTSUPP;
597 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
598 goto out;
599
600 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
601 if (ret)
602 goto out;
603
604 /* write_opcode() assumes we don't cross page boundary */
605 BUG_ON((uprobe->offset & ~PAGE_MASK) +
606 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
607
608 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
71434f2f 609 set_bit(UPROBE_COPY_INSN, &uprobe->flags);
cb9a19fe
ON
610
611 out:
4710f05f
ON
612 mutex_unlock(&uprobe->copy_mutex);
613
cb9a19fe
ON
614 return ret;
615}
616
e3343e6a
SD
617static int
618install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
816c03fb 619 struct vm_area_struct *vma, unsigned long vaddr)
2b144498 620{
f8ac4ec9 621 bool first_uprobe;
2b144498
SD
622 int ret;
623
624 /*
625 * If probe is being deleted, unregister thread could be done with
626 * the vma-rmap-walk through. Adding a probe now can be fatal since
627 * nobody will be able to cleanup. Also we could be from fork or
628 * mremap path, where the probe might have already been inserted.
629 * Hence behave as if probe already existed.
630 */
631 if (!uprobe->consumers)
78f74116 632 return 0;
2b144498 633
cb9a19fe
ON
634 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
635 if (ret)
636 return ret;
682968e0 637
f8ac4ec9
ON
638 /*
639 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
640 * the task can hit this breakpoint right after __replace_page().
641 */
642 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
643 if (first_uprobe)
644 set_bit(MMF_HAS_UPROBES, &mm->flags);
645
816c03fb 646 ret = set_swbp(&uprobe->arch, mm, vaddr);
9f68f672
ON
647 if (!ret)
648 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
649 else if (first_uprobe)
f8ac4ec9 650 clear_bit(MMF_HAS_UPROBES, &mm->flags);
2b144498
SD
651
652 return ret;
653}
654
076a365b 655static int
816c03fb 656remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 657{
9f68f672
ON
658 /* can happen if uprobe_register() fails */
659 if (!test_bit(MMF_HAS_UPROBES, &mm->flags))
076a365b 660 return 0;
9f68f672
ON
661
662 set_bit(MMF_RECALC_UPROBES, &mm->flags);
076a365b 663 return set_orig_insn(&uprobe->arch, mm, vaddr);
2b144498
SD
664}
665
0326f5a9 666/*
778b032d
ON
667 * There could be threads that have already hit the breakpoint. They
668 * will recheck the current insn and restart if find_uprobe() fails.
669 * See find_active_uprobe().
0326f5a9 670 */
2b144498
SD
671static void delete_uprobe(struct uprobe *uprobe)
672{
6f47caa0 673 spin_lock(&uprobes_treelock);
2b144498 674 rb_erase(&uprobe->rb_node, &uprobes_tree);
6f47caa0 675 spin_unlock(&uprobes_treelock);
2b144498
SD
676 iput(uprobe->inode);
677 put_uprobe(uprobe);
678 atomic_dec(&uprobe_events);
679}
680
26872090
ON
681struct map_info {
682 struct map_info *next;
683 struct mm_struct *mm;
816c03fb 684 unsigned long vaddr;
26872090
ON
685};
686
687static inline struct map_info *free_map_info(struct map_info *info)
2b144498 688{
26872090
ON
689 struct map_info *next = info->next;
690 kfree(info);
691 return next;
692}
693
694static struct map_info *
695build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
696{
697 unsigned long pgoff = offset >> PAGE_SHIFT;
2b144498 698 struct vm_area_struct *vma;
26872090
ON
699 struct map_info *curr = NULL;
700 struct map_info *prev = NULL;
701 struct map_info *info;
702 int more = 0;
2b144498 703
26872090
ON
704 again:
705 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 706 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
2b144498
SD
707 if (!valid_vma(vma, is_register))
708 continue;
709
7a5bfb66
ON
710 if (!prev && !more) {
711 /*
712 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
713 * reclaim. This is optimistic, no harm done if it fails.
714 */
715 prev = kmalloc(sizeof(struct map_info),
716 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
717 if (prev)
718 prev->next = NULL;
719 }
26872090
ON
720 if (!prev) {
721 more++;
722 continue;
2b144498 723 }
2b144498 724
26872090
ON
725 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
726 continue;
7b2d81d4 727
26872090
ON
728 info = prev;
729 prev = prev->next;
730 info->next = curr;
731 curr = info;
2b144498 732
26872090 733 info->mm = vma->vm_mm;
57683f72 734 info->vaddr = offset_to_vaddr(vma, offset);
26872090 735 }
2b144498
SD
736 mutex_unlock(&mapping->i_mmap_mutex);
737
26872090
ON
738 if (!more)
739 goto out;
740
741 prev = curr;
742 while (curr) {
743 mmput(curr->mm);
744 curr = curr->next;
745 }
7b2d81d4 746
26872090
ON
747 do {
748 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
749 if (!info) {
750 curr = ERR_PTR(-ENOMEM);
751 goto out;
752 }
753 info->next = prev;
754 prev = info;
755 } while (--more);
756
757 goto again;
758 out:
759 while (prev)
760 prev = free_map_info(prev);
761 return curr;
2b144498
SD
762}
763
764static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
765{
26872090
ON
766 struct map_info *info;
767 int err = 0;
2b144498 768
32cdba1e 769 percpu_down_write(&dup_mmap_sem);
26872090
ON
770 info = build_map_info(uprobe->inode->i_mapping,
771 uprobe->offset, is_register);
32cdba1e
ON
772 if (IS_ERR(info)) {
773 err = PTR_ERR(info);
774 goto out;
775 }
7b2d81d4 776
26872090
ON
777 while (info) {
778 struct mm_struct *mm = info->mm;
779 struct vm_area_struct *vma;
7b2d81d4 780
076a365b 781 if (err && is_register)
26872090 782 goto free;
7b2d81d4 783
77fc4af1 784 down_write(&mm->mmap_sem);
f4d6dfe5
ON
785 vma = find_vma(mm, info->vaddr);
786 if (!vma || !valid_vma(vma, is_register) ||
787 vma->vm_file->f_mapping->host != uprobe->inode)
26872090
ON
788 goto unlock;
789
f4d6dfe5
ON
790 if (vma->vm_start > info->vaddr ||
791 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
26872090 792 goto unlock;
2b144498 793
78f74116 794 if (is_register)
26872090 795 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
78f74116 796 else
076a365b 797 err |= remove_breakpoint(uprobe, mm, info->vaddr);
78f74116 798
26872090
ON
799 unlock:
800 up_write(&mm->mmap_sem);
801 free:
802 mmput(mm);
803 info = free_map_info(info);
2b144498 804 }
32cdba1e
ON
805 out:
806 percpu_up_write(&dup_mmap_sem);
26872090 807 return err;
2b144498
SD
808}
809
7b2d81d4 810static int __uprobe_register(struct uprobe *uprobe)
2b144498
SD
811{
812 return register_for_each_vma(uprobe, true);
813}
814
7b2d81d4 815static void __uprobe_unregister(struct uprobe *uprobe)
2b144498
SD
816{
817 if (!register_for_each_vma(uprobe, false))
818 delete_uprobe(uprobe);
819
820 /* TODO : cant unregister? schedule a worker thread */
821}
822
823/*
7b2d81d4 824 * uprobe_register - register a probe
2b144498
SD
825 * @inode: the file in which the probe has to be placed.
826 * @offset: offset from the start of the file.
e3343e6a 827 * @uc: information on howto handle the probe..
2b144498 828 *
7b2d81d4 829 * Apart from the access refcount, uprobe_register() takes a creation
2b144498
SD
830 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
831 * inserted into the rbtree (i.e first consumer for a @inode:@offset
7b2d81d4 832 * tuple). Creation refcount stops uprobe_unregister from freeing the
2b144498 833 * @uprobe even before the register operation is complete. Creation
e3343e6a 834 * refcount is released when the last @uc for the @uprobe
2b144498
SD
835 * unregisters.
836 *
837 * Return errno if it cannot successully install probes
838 * else return 0 (success)
839 */
e3343e6a 840int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498
SD
841{
842 struct uprobe *uprobe;
7b2d81d4 843 int ret;
2b144498 844
f0744af7 845 /* Racy, just to catch the obvious mistakes */
2b144498 846 if (offset > i_size_read(inode))
7b2d81d4 847 return -EINVAL;
2b144498
SD
848
849 ret = 0;
850 mutex_lock(uprobes_hash(inode));
851 uprobe = alloc_uprobe(inode, offset);
7b2d81d4 852
a5f658b7
ON
853 if (!uprobe) {
854 ret = -ENOMEM;
855 } else if (!consumer_add(uprobe, uc)) {
7b2d81d4 856 ret = __uprobe_register(uprobe);
2b144498
SD
857 if (ret) {
858 uprobe->consumers = NULL;
7b2d81d4
IM
859 __uprobe_unregister(uprobe);
860 } else {
71434f2f 861 set_bit(UPROBE_RUN_HANDLER, &uprobe->flags);
7b2d81d4 862 }
2b144498
SD
863 }
864
865 mutex_unlock(uprobes_hash(inode));
6d1d8dfa
SAS
866 if (uprobe)
867 put_uprobe(uprobe);
2b144498
SD
868
869 return ret;
870}
871
872/*
7b2d81d4 873 * uprobe_unregister - unregister a already registered probe.
2b144498
SD
874 * @inode: the file in which the probe has to be removed.
875 * @offset: offset from the start of the file.
e3343e6a 876 * @uc: identify which probe if multiple probes are colocated.
2b144498 877 */
e3343e6a 878void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498 879{
7b2d81d4 880 struct uprobe *uprobe;
2b144498 881
2b144498
SD
882 uprobe = find_uprobe(inode, offset);
883 if (!uprobe)
884 return;
885
886 mutex_lock(uprobes_hash(inode));
2b144498 887
e3343e6a 888 if (consumer_del(uprobe, uc)) {
7b2d81d4
IM
889 if (!uprobe->consumers) {
890 __uprobe_unregister(uprobe);
71434f2f 891 clear_bit(UPROBE_RUN_HANDLER, &uprobe->flags);
7b2d81d4 892 }
2b144498
SD
893 }
894
2b144498 895 mutex_unlock(uprobes_hash(inode));
c91368c4 896 put_uprobe(uprobe);
2b144498
SD
897}
898
891c3970
ON
899static struct rb_node *
900find_node_in_range(struct inode *inode, loff_t min, loff_t max)
2b144498 901{
2b144498 902 struct rb_node *n = uprobes_tree.rb_node;
2b144498
SD
903
904 while (n) {
891c3970 905 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
2b144498 906
891c3970 907 if (inode < u->inode) {
2b144498 908 n = n->rb_left;
891c3970 909 } else if (inode > u->inode) {
2b144498 910 n = n->rb_right;
891c3970
ON
911 } else {
912 if (max < u->offset)
913 n = n->rb_left;
914 else if (min > u->offset)
915 n = n->rb_right;
916 else
917 break;
918 }
2b144498 919 }
7b2d81d4 920
891c3970 921 return n;
2b144498
SD
922}
923
924/*
891c3970 925 * For a given range in vma, build a list of probes that need to be inserted.
2b144498 926 */
891c3970
ON
927static void build_probe_list(struct inode *inode,
928 struct vm_area_struct *vma,
929 unsigned long start, unsigned long end,
930 struct list_head *head)
2b144498 931{
891c3970 932 loff_t min, max;
891c3970
ON
933 struct rb_node *n, *t;
934 struct uprobe *u;
7b2d81d4 935
891c3970 936 INIT_LIST_HEAD(head);
cb113b47 937 min = vaddr_to_offset(vma, start);
891c3970 938 max = min + (end - start) - 1;
2b144498 939
6f47caa0 940 spin_lock(&uprobes_treelock);
891c3970
ON
941 n = find_node_in_range(inode, min, max);
942 if (n) {
943 for (t = n; t; t = rb_prev(t)) {
944 u = rb_entry(t, struct uprobe, rb_node);
945 if (u->inode != inode || u->offset < min)
946 break;
947 list_add(&u->pending_list, head);
948 atomic_inc(&u->ref);
949 }
950 for (t = n; (t = rb_next(t)); ) {
951 u = rb_entry(t, struct uprobe, rb_node);
952 if (u->inode != inode || u->offset > max)
953 break;
954 list_add(&u->pending_list, head);
955 atomic_inc(&u->ref);
956 }
2b144498 957 }
6f47caa0 958 spin_unlock(&uprobes_treelock);
2b144498
SD
959}
960
961/*
5e5be71a 962 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
2b144498 963 *
5e5be71a
ON
964 * Currently we ignore all errors and always return 0, the callers
965 * can't handle the failure anyway.
2b144498 966 */
7b2d81d4 967int uprobe_mmap(struct vm_area_struct *vma)
2b144498
SD
968{
969 struct list_head tmp_list;
665605a2 970 struct uprobe *uprobe, *u;
2b144498 971 struct inode *inode;
2b144498
SD
972
973 if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
7b2d81d4 974 return 0;
2b144498
SD
975
976 inode = vma->vm_file->f_mapping->host;
977 if (!inode)
7b2d81d4 978 return 0;
2b144498 979
2b144498 980 mutex_lock(uprobes_mmap_hash(inode));
891c3970 981 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
7b2d81d4 982
665605a2 983 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
5e5be71a 984 if (!fatal_signal_pending(current)) {
57683f72 985 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
5e5be71a 986 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
2b144498
SD
987 }
988 put_uprobe(uprobe);
989 }
2b144498
SD
990 mutex_unlock(uprobes_mmap_hash(inode));
991
5e5be71a 992 return 0;
2b144498
SD
993}
994
9f68f672
ON
995static bool
996vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
997{
998 loff_t min, max;
999 struct inode *inode;
1000 struct rb_node *n;
1001
1002 inode = vma->vm_file->f_mapping->host;
1003
1004 min = vaddr_to_offset(vma, start);
1005 max = min + (end - start) - 1;
1006
1007 spin_lock(&uprobes_treelock);
1008 n = find_node_in_range(inode, min, max);
1009 spin_unlock(&uprobes_treelock);
1010
1011 return !!n;
1012}
1013
682968e0
SD
1014/*
1015 * Called in context of a munmap of a vma.
1016 */
cbc91f71 1017void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
682968e0 1018{
682968e0
SD
1019 if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1020 return;
1021
2fd611a9
ON
1022 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1023 return;
1024
9f68f672
ON
1025 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1026 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
f8ac4ec9
ON
1027 return;
1028
9f68f672
ON
1029 if (vma_has_uprobes(vma, start, end))
1030 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
682968e0
SD
1031}
1032
d4b3b638
SD
1033/* Slot allocation for XOL */
1034static int xol_add_vma(struct xol_area *area)
1035{
1036 struct mm_struct *mm;
1037 int ret;
1038
1039 area->page = alloc_page(GFP_HIGHUSER);
1040 if (!area->page)
1041 return -ENOMEM;
1042
1043 ret = -EALREADY;
1044 mm = current->mm;
1045
1046 down_write(&mm->mmap_sem);
1047 if (mm->uprobes_state.xol_area)
1048 goto fail;
1049
1050 ret = -ENOMEM;
1051
1052 /* Try to map as high as possible, this is only a hint. */
1053 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1054 if (area->vaddr & ~PAGE_MASK) {
1055 ret = area->vaddr;
1056 goto fail;
1057 }
1058
1059 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1060 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1061 if (ret)
1062 goto fail;
1063
1064 smp_wmb(); /* pairs with get_xol_area() */
1065 mm->uprobes_state.xol_area = area;
1066 ret = 0;
1067
1068fail:
1069 up_write(&mm->mmap_sem);
1070 if (ret)
1071 __free_page(area->page);
1072
1073 return ret;
1074}
1075
1076static struct xol_area *get_xol_area(struct mm_struct *mm)
1077{
1078 struct xol_area *area;
1079
1080 area = mm->uprobes_state.xol_area;
1081 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1082
1083 return area;
1084}
1085
1086/*
1087 * xol_alloc_area - Allocate process's xol_area.
1088 * This area will be used for storing instructions for execution out of
1089 * line.
1090 *
1091 * Returns the allocated area or NULL.
1092 */
1093static struct xol_area *xol_alloc_area(void)
1094{
1095 struct xol_area *area;
1096
1097 area = kzalloc(sizeof(*area), GFP_KERNEL);
1098 if (unlikely(!area))
1099 return NULL;
1100
1101 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1102
1103 if (!area->bitmap)
1104 goto fail;
1105
1106 init_waitqueue_head(&area->wq);
1107 if (!xol_add_vma(area))
1108 return area;
1109
1110fail:
1111 kfree(area->bitmap);
1112 kfree(area);
1113
1114 return get_xol_area(current->mm);
1115}
1116
1117/*
1118 * uprobe_clear_state - Free the area allocated for slots.
1119 */
1120void uprobe_clear_state(struct mm_struct *mm)
1121{
1122 struct xol_area *area = mm->uprobes_state.xol_area;
1123
1124 if (!area)
1125 return;
1126
1127 put_page(area->page);
1128 kfree(area->bitmap);
1129 kfree(area);
1130}
1131
32cdba1e
ON
1132void uprobe_start_dup_mmap(void)
1133{
1134 percpu_down_read(&dup_mmap_sem);
1135}
1136
1137void uprobe_end_dup_mmap(void)
1138{
1139 percpu_up_read(&dup_mmap_sem);
1140}
1141
f8ac4ec9
ON
1142void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1143{
61559a81
ON
1144 newmm->uprobes_state.xol_area = NULL;
1145
9f68f672 1146 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
f8ac4ec9 1147 set_bit(MMF_HAS_UPROBES, &newmm->flags);
9f68f672
ON
1148 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1149 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1150 }
f8ac4ec9
ON
1151}
1152
d4b3b638
SD
1153/*
1154 * - search for a free slot.
1155 */
1156static unsigned long xol_take_insn_slot(struct xol_area *area)
1157{
1158 unsigned long slot_addr;
1159 int slot_nr;
1160
1161 do {
1162 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1163 if (slot_nr < UINSNS_PER_PAGE) {
1164 if (!test_and_set_bit(slot_nr, area->bitmap))
1165 break;
1166
1167 slot_nr = UINSNS_PER_PAGE;
1168 continue;
1169 }
1170 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1171 } while (slot_nr >= UINSNS_PER_PAGE);
1172
1173 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1174 atomic_inc(&area->slot_count);
1175
1176 return slot_addr;
1177}
1178
1179/*
1180 * xol_get_insn_slot - If was not allocated a slot, then
1181 * allocate a slot.
1182 * Returns the allocated slot address or 0.
1183 */
1184static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1185{
1186 struct xol_area *area;
1187 unsigned long offset;
1188 void *vaddr;
1189
1190 area = get_xol_area(current->mm);
1191 if (!area) {
1192 area = xol_alloc_area();
1193 if (!area)
1194 return 0;
1195 }
1196 current->utask->xol_vaddr = xol_take_insn_slot(area);
1197
1198 /*
1199 * Initialize the slot if xol_vaddr points to valid
1200 * instruction slot.
1201 */
1202 if (unlikely(!current->utask->xol_vaddr))
1203 return 0;
1204
1205 current->utask->vaddr = slot_addr;
1206 offset = current->utask->xol_vaddr & ~PAGE_MASK;
1207 vaddr = kmap_atomic(area->page);
1208 memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1209 kunmap_atomic(vaddr);
65b6ecc0
RV
1210 /*
1211 * We probably need flush_icache_user_range() but it needs vma.
1212 * This should work on supported architectures too.
1213 */
1214 flush_dcache_page(area->page);
d4b3b638
SD
1215
1216 return current->utask->xol_vaddr;
1217}
1218
1219/*
1220 * xol_free_insn_slot - If slot was earlier allocated by
1221 * @xol_get_insn_slot(), make the slot available for
1222 * subsequent requests.
1223 */
1224static void xol_free_insn_slot(struct task_struct *tsk)
1225{
1226 struct xol_area *area;
1227 unsigned long vma_end;
1228 unsigned long slot_addr;
1229
1230 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1231 return;
1232
1233 slot_addr = tsk->utask->xol_vaddr;
1234
1235 if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1236 return;
1237
1238 area = tsk->mm->uprobes_state.xol_area;
1239 vma_end = area->vaddr + PAGE_SIZE;
1240 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1241 unsigned long offset;
1242 int slot_nr;
1243
1244 offset = slot_addr - area->vaddr;
1245 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1246 if (slot_nr >= UINSNS_PER_PAGE)
1247 return;
1248
1249 clear_bit(slot_nr, area->bitmap);
1250 atomic_dec(&area->slot_count);
1251 if (waitqueue_active(&area->wq))
1252 wake_up(&area->wq);
1253
1254 tsk->utask->xol_vaddr = 0;
1255 }
1256}
1257
0326f5a9
SD
1258/**
1259 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1260 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1261 * instruction.
1262 * Return the address of the breakpoint instruction.
1263 */
1264unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1265{
1266 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1267}
1268
1269/*
1270 * Called with no locks held.
1271 * Called in context of a exiting or a exec-ing thread.
1272 */
1273void uprobe_free_utask(struct task_struct *t)
1274{
1275 struct uprobe_task *utask = t->utask;
1276
0326f5a9
SD
1277 if (!utask)
1278 return;
1279
1280 if (utask->active_uprobe)
1281 put_uprobe(utask->active_uprobe);
1282
d4b3b638 1283 xol_free_insn_slot(t);
0326f5a9
SD
1284 kfree(utask);
1285 t->utask = NULL;
1286}
1287
1288/*
1289 * Called in context of a new clone/fork from copy_process.
1290 */
1291void uprobe_copy_process(struct task_struct *t)
1292{
1293 t->utask = NULL;
0326f5a9
SD
1294}
1295
1296/*
1297 * Allocate a uprobe_task object for the task.
1298 * Called when the thread hits a breakpoint for the first time.
1299 *
1300 * Returns:
1301 * - pointer to new uprobe_task on success
1302 * - NULL otherwise
1303 */
1304static struct uprobe_task *add_utask(void)
1305{
1306 struct uprobe_task *utask;
1307
1308 utask = kzalloc(sizeof *utask, GFP_KERNEL);
1309 if (unlikely(!utask))
1310 return NULL;
1311
0326f5a9
SD
1312 current->utask = utask;
1313 return utask;
1314}
1315
1316/* Prepare to single-step probed instruction out of line. */
1317static int
1318pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1319{
d4b3b638
SD
1320 if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1321 return 0;
1322
0326f5a9
SD
1323 return -EFAULT;
1324}
1325
1326/*
1327 * If we are singlestepping, then ensure this thread is not connected to
1328 * non-fatal signals until completion of singlestep. When xol insn itself
1329 * triggers the signal, restart the original insn even if the task is
1330 * already SIGKILL'ed (since coredump should report the correct ip). This
1331 * is even more important if the task has a handler for SIGSEGV/etc, The
1332 * _same_ instruction should be repeated again after return from the signal
1333 * handler, and SSTEP can never finish in this case.
1334 */
1335bool uprobe_deny_signal(void)
1336{
1337 struct task_struct *t = current;
1338 struct uprobe_task *utask = t->utask;
1339
1340 if (likely(!utask || !utask->active_uprobe))
1341 return false;
1342
1343 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1344
1345 if (signal_pending(t)) {
1346 spin_lock_irq(&t->sighand->siglock);
1347 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1348 spin_unlock_irq(&t->sighand->siglock);
1349
1350 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1351 utask->state = UTASK_SSTEP_TRAPPED;
1352 set_tsk_thread_flag(t, TIF_UPROBE);
1353 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1354 }
1355 }
1356
1357 return true;
1358}
1359
1360/*
1361 * Avoid singlestepping the original instruction if the original instruction
1362 * is a NOP or can be emulated.
1363 */
1364static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1365{
71434f2f 1366 if (test_bit(UPROBE_SKIP_SSTEP, &uprobe->flags)) {
0578a970
ON
1367 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1368 return true;
71434f2f 1369 clear_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
0578a970 1370 }
0326f5a9
SD
1371 return false;
1372}
1373
499a4f3e
ON
1374static void mmf_recalc_uprobes(struct mm_struct *mm)
1375{
1376 struct vm_area_struct *vma;
1377
1378 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1379 if (!valid_vma(vma, false))
1380 continue;
1381 /*
1382 * This is not strictly accurate, we can race with
1383 * uprobe_unregister() and see the already removed
1384 * uprobe if delete_uprobe() was not yet called.
1385 */
1386 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1387 return;
1388 }
1389
1390 clear_bit(MMF_HAS_UPROBES, &mm->flags);
1391}
1392
ec75fba9
ON
1393static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
1394{
1395 struct page *page;
1396 uprobe_opcode_t opcode;
1397 int result;
1398
1399 pagefault_disable();
1400 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1401 sizeof(opcode));
1402 pagefault_enable();
1403
1404 if (likely(result == 0))
1405 goto out;
1406
1407 result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1408 if (result < 0)
1409 return result;
1410
1411 copy_opcode(page, vaddr, &opcode);
1412 put_page(page);
1413 out:
1414 return is_swbp_insn(&opcode);
1415}
1416
d790d346 1417static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
0326f5a9 1418{
3a9ea052
ON
1419 struct mm_struct *mm = current->mm;
1420 struct uprobe *uprobe = NULL;
0326f5a9 1421 struct vm_area_struct *vma;
0326f5a9 1422
0326f5a9
SD
1423 down_read(&mm->mmap_sem);
1424 vma = find_vma(mm, bp_vaddr);
3a9ea052
ON
1425 if (vma && vma->vm_start <= bp_vaddr) {
1426 if (valid_vma(vma, false)) {
cb113b47
ON
1427 struct inode *inode = vma->vm_file->f_mapping->host;
1428 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
0326f5a9 1429
3a9ea052
ON
1430 uprobe = find_uprobe(inode, offset);
1431 }
d790d346
ON
1432
1433 if (!uprobe)
1434 *is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1435 } else {
1436 *is_swbp = -EFAULT;
0326f5a9 1437 }
499a4f3e
ON
1438
1439 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1440 mmf_recalc_uprobes(mm);
0326f5a9
SD
1441 up_read(&mm->mmap_sem);
1442
3a9ea052
ON
1443 return uprobe;
1444}
1445
1446/*
1447 * Run handler and ask thread to singlestep.
1448 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1449 */
1450static void handle_swbp(struct pt_regs *regs)
1451{
1452 struct uprobe_task *utask;
1453 struct uprobe *uprobe;
1454 unsigned long bp_vaddr;
56bb4cf6 1455 int uninitialized_var(is_swbp);
3a9ea052
ON
1456
1457 bp_vaddr = uprobe_get_swbp_addr(regs);
d790d346 1458 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
3a9ea052 1459
0326f5a9 1460 if (!uprobe) {
56bb4cf6
ON
1461 if (is_swbp > 0) {
1462 /* No matching uprobe; signal SIGTRAP. */
1463 send_sig(SIGTRAP, current, 0);
1464 } else {
1465 /*
1466 * Either we raced with uprobe_unregister() or we can't
1467 * access this memory. The latter is only possible if
1468 * another thread plays with our ->mm. In both cases
1469 * we can simply restart. If this vma was unmapped we
1470 * can pretend this insn was not executed yet and get
1471 * the (correct) SIGSEGV after restart.
1472 */
1473 instruction_pointer_set(regs, bp_vaddr);
1474 }
0326f5a9
SD
1475 return;
1476 }
142b18dd
ON
1477 /*
1478 * TODO: move copy_insn/etc into _register and remove this hack.
1479 * After we hit the bp, _unregister + _register can install the
1480 * new and not-yet-analyzed uprobe at the same address, restart.
1481 */
1482 smp_rmb(); /* pairs with wmb() in install_breakpoint() */
71434f2f 1483 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
142b18dd 1484 goto restart;
0326f5a9
SD
1485
1486 utask = current->utask;
1487 if (!utask) {
1488 utask = add_utask();
1489 /* Cannot allocate; re-execute the instruction. */
1490 if (!utask)
0578a970 1491 goto restart;
0326f5a9 1492 }
746a9e6b 1493
0326f5a9 1494 handler_chain(uprobe, regs);
0578a970
ON
1495 if (can_skip_sstep(uprobe, regs))
1496 goto out;
0326f5a9 1497
0326f5a9 1498 if (!pre_ssout(uprobe, regs, bp_vaddr)) {
746a9e6b
ON
1499 utask->active_uprobe = uprobe;
1500 utask->state = UTASK_SSTEP;
0326f5a9
SD
1501 return;
1502 }
1503
0578a970
ON
1504restart:
1505 /*
1506 * cannot singlestep; cannot skip instruction;
1507 * re-execute the instruction.
1508 */
1509 instruction_pointer_set(regs, bp_vaddr);
1510out:
8bd87445 1511 put_uprobe(uprobe);
0326f5a9
SD
1512}
1513
1514/*
1515 * Perform required fix-ups and disable singlestep.
1516 * Allow pending signals to take effect.
1517 */
1518static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1519{
1520 struct uprobe *uprobe;
1521
1522 uprobe = utask->active_uprobe;
1523 if (utask->state == UTASK_SSTEP_ACK)
1524 arch_uprobe_post_xol(&uprobe->arch, regs);
1525 else if (utask->state == UTASK_SSTEP_TRAPPED)
1526 arch_uprobe_abort_xol(&uprobe->arch, regs);
1527 else
1528 WARN_ON_ONCE(1);
1529
1530 put_uprobe(uprobe);
1531 utask->active_uprobe = NULL;
1532 utask->state = UTASK_RUNNING;
d4b3b638 1533 xol_free_insn_slot(current);
0326f5a9
SD
1534
1535 spin_lock_irq(&current->sighand->siglock);
1536 recalc_sigpending(); /* see uprobe_deny_signal() */
1537 spin_unlock_irq(&current->sighand->siglock);
1538}
1539
1540/*
1b08e907
ON
1541 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1542 * allows the thread to return from interrupt. After that handle_swbp()
1543 * sets utask->active_uprobe.
0326f5a9 1544 *
1b08e907
ON
1545 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1546 * and allows the thread to return from interrupt.
0326f5a9
SD
1547 *
1548 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1549 * uprobe_notify_resume().
1550 */
1551void uprobe_notify_resume(struct pt_regs *regs)
1552{
1553 struct uprobe_task *utask;
1554
db023ea5
ON
1555 clear_thread_flag(TIF_UPROBE);
1556
0326f5a9 1557 utask = current->utask;
1b08e907 1558 if (utask && utask->active_uprobe)
0326f5a9 1559 handle_singlestep(utask, regs);
1b08e907
ON
1560 else
1561 handle_swbp(regs);
0326f5a9
SD
1562}
1563
1564/*
1565 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1566 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1567 */
1568int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1569{
f8ac4ec9 1570 if (!current->mm || !test_bit(MMF_HAS_UPROBES, &current->mm->flags))
0326f5a9
SD
1571 return 0;
1572
0326f5a9 1573 set_thread_flag(TIF_UPROBE);
0326f5a9
SD
1574 return 1;
1575}
1576
1577/*
1578 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1579 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1580 */
1581int uprobe_post_sstep_notifier(struct pt_regs *regs)
1582{
1583 struct uprobe_task *utask = current->utask;
1584
1585 if (!current->mm || !utask || !utask->active_uprobe)
1586 /* task is currently not uprobed */
1587 return 0;
1588
1589 utask->state = UTASK_SSTEP_ACK;
1590 set_thread_flag(TIF_UPROBE);
1591 return 1;
1592}
1593
1594static struct notifier_block uprobe_exception_nb = {
1595 .notifier_call = arch_uprobe_exception_notify,
1596 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
1597};
1598
2b144498
SD
1599static int __init init_uprobes(void)
1600{
1601 int i;
1602
1603 for (i = 0; i < UPROBES_HASH_SZ; i++) {
1604 mutex_init(&uprobes_mutex[i]);
1605 mutex_init(&uprobes_mmap_mutex[i]);
1606 }
0326f5a9 1607
32cdba1e
ON
1608 if (percpu_init_rwsem(&dup_mmap_sem))
1609 return -ENOMEM;
1610
0326f5a9 1611 return register_die_notifier(&uprobe_exception_nb);
2b144498 1612}
0326f5a9 1613module_init(init_uprobes);
2b144498
SD
1614
1615static void __exit exit_uprobes(void)
1616{
1617}
2b144498 1618module_exit(exit_uprobes);