uprobes: Kill dup_mmap()->uprobe_mmap(), simplify uprobe_mmap/munmap
[linux-2.6-block.git] / kernel / events / uprobes.c
CommitLineData
2b144498 1/*
7b2d81d4 2 * User-space Probes (UProbes)
2b144498
SD
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
35aa621b 18 * Copyright (C) IBM Corporation, 2008-2012
2b144498
SD
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
35aa621b 22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
2b144498
SD
23 */
24
25#include <linux/kernel.h>
26#include <linux/highmem.h>
27#include <linux/pagemap.h> /* read_mapping_page */
28#include <linux/slab.h>
29#include <linux/sched.h>
30#include <linux/rmap.h> /* anon_vma_prepare */
31#include <linux/mmu_notifier.h> /* set_pte_at_notify */
32#include <linux/swap.h> /* try_to_free_swap */
0326f5a9
SD
33#include <linux/ptrace.h> /* user_enable_single_step */
34#include <linux/kdebug.h> /* notifier mechanism */
194f8dcb 35#include "../../mm/internal.h" /* munlock_vma_page */
7b2d81d4 36
2b144498
SD
37#include <linux/uprobes.h>
38
d4b3b638
SD
39#define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
40#define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
41
2b144498 42static struct rb_root uprobes_tree = RB_ROOT;
7b2d81d4 43
2b144498
SD
44static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
45
46#define UPROBES_HASH_SZ 13
7b2d81d4 47
c5784de2
PZ
48/*
49 * We need separate register/unregister and mmap/munmap lock hashes because
50 * of mmap_sem nesting.
51 *
52 * uprobe_register() needs to install probes on (potentially) all processes
53 * and thus needs to acquire multiple mmap_sems (consequtively, not
54 * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
55 * for the particular process doing the mmap.
56 *
57 * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
58 * because of lock order against i_mmap_mutex. This means there's a hole in
59 * the register vma iteration where a mmap() can happen.
60 *
61 * Thus uprobe_register() can race with uprobe_mmap() and we can try and
62 * install a probe where one is already installed.
63 */
64
2b144498
SD
65/* serialize (un)register */
66static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
7b2d81d4
IM
67
68#define uprobes_hash(v) (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498
SD
69
70/* serialize uprobe->pending_list */
71static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
7b2d81d4 72#define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498
SD
73
74/*
7b2d81d4 75 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
2b144498
SD
76 * events active at this time. Probably a fine grained per inode count is
77 * better?
78 */
79static atomic_t uprobe_events = ATOMIC_INIT(0);
80
3ff54efd
SD
81struct uprobe {
82 struct rb_node rb_node; /* node in the rb tree */
83 atomic_t ref;
84 struct rw_semaphore consumer_rwsem;
85 struct list_head pending_list;
86 struct uprobe_consumer *consumers;
87 struct inode *inode; /* Also hold a ref to inode */
88 loff_t offset;
89 int flags;
90 struct arch_uprobe arch;
91};
92
2b144498
SD
93/*
94 * valid_vma: Verify if the specified vma is an executable vma
95 * Relax restrictions while unregistering: vm_flags might have
96 * changed after breakpoint was inserted.
97 * - is_register: indicates if we are in register context.
98 * - Return 1 if the specified virtual address is in an
99 * executable vma.
100 */
101static bool valid_vma(struct vm_area_struct *vma, bool is_register)
102{
103 if (!vma->vm_file)
104 return false;
105
106 if (!is_register)
107 return true;
108
ea131377
ON
109 if ((vma->vm_flags & (VM_HUGETLB|VM_READ|VM_WRITE|VM_EXEC|VM_SHARED))
110 == (VM_READ|VM_EXEC))
2b144498
SD
111 return true;
112
113 return false;
114}
115
57683f72 116static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
2b144498 117{
57683f72 118 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
2b144498
SD
119}
120
cb113b47
ON
121static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
122{
123 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
124}
125
2b144498
SD
126/**
127 * __replace_page - replace page in vma by new page.
128 * based on replace_page in mm/ksm.c
129 *
130 * @vma: vma that holds the pte pointing to page
c517ee74 131 * @addr: address the old @page is mapped at
2b144498
SD
132 * @page: the cowed page we are replacing by kpage
133 * @kpage: the modified page we replace page by
134 *
135 * Returns 0 on success, -EFAULT on failure.
136 */
c517ee74
ON
137static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
138 struct page *page, struct page *kpage)
2b144498
SD
139{
140 struct mm_struct *mm = vma->vm_mm;
5323ce71
ON
141 spinlock_t *ptl;
142 pte_t *ptep;
9f92448c 143 int err;
2b144498 144
194f8dcb 145 /* For try_to_free_swap() and munlock_vma_page() below */
9f92448c
ON
146 lock_page(page);
147
148 err = -EAGAIN;
5323ce71 149 ptep = page_check_address(page, mm, addr, &ptl, 0);
2b144498 150 if (!ptep)
9f92448c 151 goto unlock;
2b144498
SD
152
153 get_page(kpage);
154 page_add_new_anon_rmap(kpage, vma, addr);
155
7396fa81
SD
156 if (!PageAnon(page)) {
157 dec_mm_counter(mm, MM_FILEPAGES);
158 inc_mm_counter(mm, MM_ANONPAGES);
159 }
160
2b144498
SD
161 flush_cache_page(vma, addr, pte_pfn(*ptep));
162 ptep_clear_flush(vma, addr, ptep);
163 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
164
165 page_remove_rmap(page);
166 if (!page_mapped(page))
167 try_to_free_swap(page);
2b144498 168 pte_unmap_unlock(ptep, ptl);
2b144498 169
194f8dcb
ON
170 if (vma->vm_flags & VM_LOCKED)
171 munlock_vma_page(page);
172 put_page(page);
173
9f92448c
ON
174 err = 0;
175 unlock:
176 unlock_page(page);
177 return err;
2b144498
SD
178}
179
180/**
5cb4ac3a 181 * is_swbp_insn - check if instruction is breakpoint instruction.
2b144498 182 * @insn: instruction to be checked.
5cb4ac3a 183 * Default implementation of is_swbp_insn
2b144498
SD
184 * Returns true if @insn is a breakpoint instruction.
185 */
5cb4ac3a 186bool __weak is_swbp_insn(uprobe_opcode_t *insn)
2b144498 187{
5cb4ac3a 188 return *insn == UPROBE_SWBP_INSN;
2b144498
SD
189}
190
191/*
192 * NOTE:
193 * Expect the breakpoint instruction to be the smallest size instruction for
194 * the architecture. If an arch has variable length instruction and the
195 * breakpoint instruction is not of the smallest length instruction
196 * supported by that architecture then we need to modify read_opcode /
197 * write_opcode accordingly. This would never be a problem for archs that
198 * have fixed length instructions.
199 */
200
201/*
202 * write_opcode - write the opcode at a given virtual address.
e3343e6a 203 * @auprobe: arch breakpointing information.
2b144498 204 * @mm: the probed process address space.
2b144498
SD
205 * @vaddr: the virtual address to store the opcode.
206 * @opcode: opcode to be written at @vaddr.
207 *
208 * Called with mm->mmap_sem held (for read and with a reference to
209 * mm).
210 *
211 * For mm @mm, write the opcode at @vaddr.
212 * Return 0 (success) or a negative errno.
213 */
e3343e6a 214static int write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
2b144498
SD
215 unsigned long vaddr, uprobe_opcode_t opcode)
216{
217 struct page *old_page, *new_page;
2b144498
SD
218 void *vaddr_old, *vaddr_new;
219 struct vm_area_struct *vma;
2b144498 220 int ret;
f403072c 221
5323ce71 222retry:
2b144498
SD
223 /* Read the page with vaddr into memory */
224 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma);
225 if (ret <= 0)
226 return ret;
7b2d81d4 227
2b144498
SD
228 ret = -ENOMEM;
229 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
230 if (!new_page)
9f92448c 231 goto put_old;
2b144498
SD
232
233 __SetPageUptodate(new_page);
234
2b144498
SD
235 /* copy the page now that we've got it stable */
236 vaddr_old = kmap_atomic(old_page);
237 vaddr_new = kmap_atomic(new_page);
238
239 memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
d9c4a30e 240 memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
2b144498
SD
241
242 kunmap_atomic(vaddr_new);
243 kunmap_atomic(vaddr_old);
244
245 ret = anon_vma_prepare(vma);
246 if (ret)
9f92448c 247 goto put_new;
2b144498 248
c517ee74 249 ret = __replace_page(vma, vaddr, old_page, new_page);
2b144498 250
9f92448c 251put_new:
2b144498 252 page_cache_release(new_page);
9f92448c 253put_old:
7b2d81d4
IM
254 put_page(old_page);
255
5323ce71
ON
256 if (unlikely(ret == -EAGAIN))
257 goto retry;
2b144498
SD
258 return ret;
259}
260
261/**
262 * read_opcode - read the opcode at a given virtual address.
263 * @mm: the probed process address space.
264 * @vaddr: the virtual address to read the opcode.
265 * @opcode: location to store the read opcode.
266 *
267 * Called with mm->mmap_sem held (for read and with a reference to
268 * mm.
269 *
270 * For mm @mm, read the opcode at @vaddr and store it in @opcode.
271 * Return 0 (success) or a negative errno.
272 */
7b2d81d4 273static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode)
2b144498
SD
274{
275 struct page *page;
276 void *vaddr_new;
277 int ret;
278
a3d7bb47 279 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
2b144498
SD
280 if (ret <= 0)
281 return ret;
282
2b144498
SD
283 vaddr_new = kmap_atomic(page);
284 vaddr &= ~PAGE_MASK;
5cb4ac3a 285 memcpy(opcode, vaddr_new + vaddr, UPROBE_SWBP_INSN_SIZE);
2b144498 286 kunmap_atomic(vaddr_new);
7b2d81d4
IM
287
288 put_page(page);
289
2b144498
SD
290 return 0;
291}
292
5cb4ac3a 293static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
2b144498
SD
294{
295 uprobe_opcode_t opcode;
7b2d81d4 296 int result;
2b144498 297
c00b2750
ON
298 if (current->mm == mm) {
299 pagefault_disable();
300 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
301 sizeof(opcode));
302 pagefault_enable();
303
304 if (likely(result == 0))
305 goto out;
306 }
307
7b2d81d4 308 result = read_opcode(mm, vaddr, &opcode);
2b144498
SD
309 if (result)
310 return result;
c00b2750 311out:
5cb4ac3a 312 if (is_swbp_insn(&opcode))
2b144498
SD
313 return 1;
314
315 return 0;
316}
317
318/**
5cb4ac3a 319 * set_swbp - store breakpoint at a given address.
e3343e6a 320 * @auprobe: arch specific probepoint information.
2b144498 321 * @mm: the probed process address space.
2b144498
SD
322 * @vaddr: the virtual address to insert the opcode.
323 *
324 * For mm @mm, store the breakpoint instruction at @vaddr.
325 * Return 0 (success) or a negative errno.
326 */
5cb4ac3a 327int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 328{
7b2d81d4 329 int result;
c5784de2
PZ
330 /*
331 * See the comment near uprobes_hash().
332 */
5cb4ac3a 333 result = is_swbp_at_addr(mm, vaddr);
2b144498
SD
334 if (result == 1)
335 return -EEXIST;
336
337 if (result)
338 return result;
339
5cb4ac3a 340 return write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
2b144498
SD
341}
342
343/**
344 * set_orig_insn - Restore the original instruction.
345 * @mm: the probed process address space.
e3343e6a 346 * @auprobe: arch specific probepoint information.
2b144498
SD
347 * @vaddr: the virtual address to insert the opcode.
348 * @verify: if true, verify existance of breakpoint instruction.
349 *
350 * For mm @mm, restore the original opcode (opcode) at @vaddr.
351 * Return 0 (success) or a negative errno.
352 */
7b2d81d4 353int __weak
e3343e6a 354set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr, bool verify)
2b144498
SD
355{
356 if (verify) {
7b2d81d4 357 int result;
2b144498 358
5cb4ac3a 359 result = is_swbp_at_addr(mm, vaddr);
2b144498
SD
360 if (!result)
361 return -EINVAL;
362
363 if (result != 1)
364 return result;
365 }
e3343e6a 366 return write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
2b144498
SD
367}
368
369static int match_uprobe(struct uprobe *l, struct uprobe *r)
370{
371 if (l->inode < r->inode)
372 return -1;
7b2d81d4 373
2b144498
SD
374 if (l->inode > r->inode)
375 return 1;
2b144498 376
7b2d81d4
IM
377 if (l->offset < r->offset)
378 return -1;
379
380 if (l->offset > r->offset)
381 return 1;
2b144498
SD
382
383 return 0;
384}
385
386static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
387{
388 struct uprobe u = { .inode = inode, .offset = offset };
389 struct rb_node *n = uprobes_tree.rb_node;
390 struct uprobe *uprobe;
391 int match;
392
393 while (n) {
394 uprobe = rb_entry(n, struct uprobe, rb_node);
395 match = match_uprobe(&u, uprobe);
396 if (!match) {
397 atomic_inc(&uprobe->ref);
398 return uprobe;
399 }
7b2d81d4 400
2b144498
SD
401 if (match < 0)
402 n = n->rb_left;
403 else
404 n = n->rb_right;
405 }
406 return NULL;
407}
408
409/*
410 * Find a uprobe corresponding to a given inode:offset
411 * Acquires uprobes_treelock
412 */
413static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
414{
415 struct uprobe *uprobe;
416 unsigned long flags;
417
418 spin_lock_irqsave(&uprobes_treelock, flags);
419 uprobe = __find_uprobe(inode, offset);
420 spin_unlock_irqrestore(&uprobes_treelock, flags);
7b2d81d4 421
2b144498
SD
422 return uprobe;
423}
424
425static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
426{
427 struct rb_node **p = &uprobes_tree.rb_node;
428 struct rb_node *parent = NULL;
429 struct uprobe *u;
430 int match;
431
432 while (*p) {
433 parent = *p;
434 u = rb_entry(parent, struct uprobe, rb_node);
435 match = match_uprobe(uprobe, u);
436 if (!match) {
437 atomic_inc(&u->ref);
438 return u;
439 }
440
441 if (match < 0)
442 p = &parent->rb_left;
443 else
444 p = &parent->rb_right;
445
446 }
7b2d81d4 447
2b144498
SD
448 u = NULL;
449 rb_link_node(&uprobe->rb_node, parent, p);
450 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
451 /* get access + creation ref */
452 atomic_set(&uprobe->ref, 2);
7b2d81d4 453
2b144498
SD
454 return u;
455}
456
457/*
7b2d81d4 458 * Acquire uprobes_treelock.
2b144498
SD
459 * Matching uprobe already exists in rbtree;
460 * increment (access refcount) and return the matching uprobe.
461 *
462 * No matching uprobe; insert the uprobe in rb_tree;
463 * get a double refcount (access + creation) and return NULL.
464 */
465static struct uprobe *insert_uprobe(struct uprobe *uprobe)
466{
467 unsigned long flags;
468 struct uprobe *u;
469
470 spin_lock_irqsave(&uprobes_treelock, flags);
471 u = __insert_uprobe(uprobe);
472 spin_unlock_irqrestore(&uprobes_treelock, flags);
7b2d81d4 473
0326f5a9
SD
474 /* For now assume that the instruction need not be single-stepped */
475 uprobe->flags |= UPROBE_SKIP_SSTEP;
476
2b144498
SD
477 return u;
478}
479
480static void put_uprobe(struct uprobe *uprobe)
481{
482 if (atomic_dec_and_test(&uprobe->ref))
483 kfree(uprobe);
484}
485
486static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
487{
488 struct uprobe *uprobe, *cur_uprobe;
489
490 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
491 if (!uprobe)
492 return NULL;
493
494 uprobe->inode = igrab(inode);
495 uprobe->offset = offset;
496 init_rwsem(&uprobe->consumer_rwsem);
2b144498
SD
497
498 /* add to uprobes_tree, sorted on inode:offset */
499 cur_uprobe = insert_uprobe(uprobe);
500
501 /* a uprobe exists for this inode:offset combination */
502 if (cur_uprobe) {
503 kfree(uprobe);
504 uprobe = cur_uprobe;
505 iput(inode);
7b2d81d4 506 } else {
2b144498 507 atomic_inc(&uprobe_events);
7b2d81d4
IM
508 }
509
2b144498
SD
510 return uprobe;
511}
512
0326f5a9
SD
513static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
514{
515 struct uprobe_consumer *uc;
516
517 if (!(uprobe->flags & UPROBE_RUN_HANDLER))
518 return;
519
520 down_read(&uprobe->consumer_rwsem);
521 for (uc = uprobe->consumers; uc; uc = uc->next) {
522 if (!uc->filter || uc->filter(uc, current))
523 uc->handler(uc, regs);
524 }
525 up_read(&uprobe->consumer_rwsem);
526}
527
2b144498 528/* Returns the previous consumer */
7b2d81d4 529static struct uprobe_consumer *
e3343e6a 530consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
531{
532 down_write(&uprobe->consumer_rwsem);
e3343e6a
SD
533 uc->next = uprobe->consumers;
534 uprobe->consumers = uc;
2b144498 535 up_write(&uprobe->consumer_rwsem);
7b2d81d4 536
e3343e6a 537 return uc->next;
2b144498
SD
538}
539
540/*
e3343e6a
SD
541 * For uprobe @uprobe, delete the consumer @uc.
542 * Return true if the @uc is deleted successfully
2b144498
SD
543 * or return false.
544 */
e3343e6a 545static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
546{
547 struct uprobe_consumer **con;
548 bool ret = false;
549
550 down_write(&uprobe->consumer_rwsem);
551 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
e3343e6a
SD
552 if (*con == uc) {
553 *con = uc->next;
2b144498
SD
554 ret = true;
555 break;
556 }
557 }
558 up_write(&uprobe->consumer_rwsem);
7b2d81d4 559
2b144498
SD
560 return ret;
561}
562
e3343e6a 563static int
d436615e 564__copy_insn(struct address_space *mapping, struct file *filp, char *insn,
593609a5 565 unsigned long nbytes, loff_t offset)
2b144498 566{
2b144498
SD
567 struct page *page;
568 void *vaddr;
593609a5
ON
569 unsigned long off;
570 pgoff_t idx;
2b144498
SD
571
572 if (!filp)
573 return -EINVAL;
574
cc359d18
ON
575 if (!mapping->a_ops->readpage)
576 return -EIO;
577
593609a5
ON
578 idx = offset >> PAGE_CACHE_SHIFT;
579 off = offset & ~PAGE_MASK;
2b144498
SD
580
581 /*
582 * Ensure that the page that has the original instruction is
583 * populated and in page-cache.
584 */
585 page = read_mapping_page(mapping, idx, filp);
586 if (IS_ERR(page))
587 return PTR_ERR(page);
588
589 vaddr = kmap_atomic(page);
593609a5 590 memcpy(insn, vaddr + off, nbytes);
2b144498
SD
591 kunmap_atomic(vaddr);
592 page_cache_release(page);
7b2d81d4 593
2b144498
SD
594 return 0;
595}
596
d436615e 597static int copy_insn(struct uprobe *uprobe, struct file *filp)
2b144498
SD
598{
599 struct address_space *mapping;
2b144498 600 unsigned long nbytes;
7b2d81d4 601 int bytes;
2b144498 602
d436615e 603 nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
2b144498
SD
604 mapping = uprobe->inode->i_mapping;
605
606 /* Instruction at end of binary; copy only available bytes */
607 if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
608 bytes = uprobe->inode->i_size - uprobe->offset;
609 else
610 bytes = MAX_UINSN_BYTES;
611
612 /* Instruction at the page-boundary; copy bytes in second page */
613 if (nbytes < bytes) {
fc36f595
ON
614 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
615 bytes - nbytes, uprobe->offset + nbytes);
616 if (err)
617 return err;
2b144498
SD
618 bytes = nbytes;
619 }
d436615e 620 return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
2b144498
SD
621}
622
682968e0
SD
623/*
624 * How mm->uprobes_state.count gets updated
625 * uprobe_mmap() increments the count if
626 * - it successfully adds a breakpoint.
627 * - it cannot add a breakpoint, but sees that there is a underlying
628 * breakpoint (via a is_swbp_at_addr()).
629 *
630 * uprobe_munmap() decrements the count if
631 * - it sees a underlying breakpoint, (via is_swbp_at_addr)
632 * (Subsequent uprobe_unregister wouldnt find the breakpoint
633 * unless a uprobe_mmap kicks in, since the old vma would be
634 * dropped just after uprobe_munmap.)
635 *
636 * uprobe_register increments the count if:
637 * - it successfully adds a breakpoint.
638 *
639 * uprobe_unregister decrements the count if:
640 * - it sees a underlying breakpoint and removes successfully.
641 * (via is_swbp_at_addr)
642 * (Subsequent uprobe_munmap wouldnt find the breakpoint
643 * since there is no underlying breakpoint after the
644 * breakpoint removal.)
645 */
e3343e6a
SD
646static int
647install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
816c03fb 648 struct vm_area_struct *vma, unsigned long vaddr)
2b144498 649{
2b144498
SD
650 int ret;
651
652 /*
653 * If probe is being deleted, unregister thread could be done with
654 * the vma-rmap-walk through. Adding a probe now can be fatal since
655 * nobody will be able to cleanup. Also we could be from fork or
656 * mremap path, where the probe might have already been inserted.
657 * Hence behave as if probe already existed.
658 */
659 if (!uprobe->consumers)
660 return -EEXIST;
661
900771a4 662 if (!(uprobe->flags & UPROBE_COPY_INSN)) {
d436615e 663 ret = copy_insn(uprobe, vma->vm_file);
2b144498
SD
664 if (ret)
665 return ret;
666
5cb4ac3a 667 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
c1914a09 668 return -ENOTSUPP;
2b144498 669
816c03fb 670 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
2b144498
SD
671 if (ret)
672 return ret;
673
d9c4a30e
ON
674 /* write_opcode() assumes we don't cross page boundary */
675 BUG_ON((uprobe->offset & ~PAGE_MASK) +
676 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
677
900771a4 678 uprobe->flags |= UPROBE_COPY_INSN;
2b144498 679 }
682968e0 680
816c03fb 681 ret = set_swbp(&uprobe->arch, mm, vaddr);
2b144498
SD
682
683 return ret;
684}
685
e3343e6a 686static void
816c03fb 687remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 688{
647c42df 689 set_orig_insn(&uprobe->arch, mm, vaddr, true);
2b144498
SD
690}
691
0326f5a9 692/*
778b032d
ON
693 * There could be threads that have already hit the breakpoint. They
694 * will recheck the current insn and restart if find_uprobe() fails.
695 * See find_active_uprobe().
0326f5a9 696 */
2b144498
SD
697static void delete_uprobe(struct uprobe *uprobe)
698{
699 unsigned long flags;
700
701 spin_lock_irqsave(&uprobes_treelock, flags);
702 rb_erase(&uprobe->rb_node, &uprobes_tree);
703 spin_unlock_irqrestore(&uprobes_treelock, flags);
704 iput(uprobe->inode);
705 put_uprobe(uprobe);
706 atomic_dec(&uprobe_events);
707}
708
26872090
ON
709struct map_info {
710 struct map_info *next;
711 struct mm_struct *mm;
816c03fb 712 unsigned long vaddr;
26872090
ON
713};
714
715static inline struct map_info *free_map_info(struct map_info *info)
2b144498 716{
26872090
ON
717 struct map_info *next = info->next;
718 kfree(info);
719 return next;
720}
721
722static struct map_info *
723build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
724{
725 unsigned long pgoff = offset >> PAGE_SHIFT;
2b144498
SD
726 struct prio_tree_iter iter;
727 struct vm_area_struct *vma;
26872090
ON
728 struct map_info *curr = NULL;
729 struct map_info *prev = NULL;
730 struct map_info *info;
731 int more = 0;
2b144498 732
26872090
ON
733 again:
734 mutex_lock(&mapping->i_mmap_mutex);
2b144498
SD
735 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
736 if (!valid_vma(vma, is_register))
737 continue;
738
7a5bfb66
ON
739 if (!prev && !more) {
740 /*
741 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
742 * reclaim. This is optimistic, no harm done if it fails.
743 */
744 prev = kmalloc(sizeof(struct map_info),
745 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
746 if (prev)
747 prev->next = NULL;
748 }
26872090
ON
749 if (!prev) {
750 more++;
751 continue;
2b144498 752 }
2b144498 753
26872090
ON
754 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
755 continue;
7b2d81d4 756
26872090
ON
757 info = prev;
758 prev = prev->next;
759 info->next = curr;
760 curr = info;
2b144498 761
26872090 762 info->mm = vma->vm_mm;
57683f72 763 info->vaddr = offset_to_vaddr(vma, offset);
26872090 764 }
2b144498
SD
765 mutex_unlock(&mapping->i_mmap_mutex);
766
26872090
ON
767 if (!more)
768 goto out;
769
770 prev = curr;
771 while (curr) {
772 mmput(curr->mm);
773 curr = curr->next;
774 }
7b2d81d4 775
26872090
ON
776 do {
777 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
778 if (!info) {
779 curr = ERR_PTR(-ENOMEM);
780 goto out;
781 }
782 info->next = prev;
783 prev = info;
784 } while (--more);
785
786 goto again;
787 out:
788 while (prev)
789 prev = free_map_info(prev);
790 return curr;
2b144498
SD
791}
792
793static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
794{
26872090
ON
795 struct map_info *info;
796 int err = 0;
2b144498 797
26872090
ON
798 info = build_map_info(uprobe->inode->i_mapping,
799 uprobe->offset, is_register);
800 if (IS_ERR(info))
801 return PTR_ERR(info);
7b2d81d4 802
26872090
ON
803 while (info) {
804 struct mm_struct *mm = info->mm;
805 struct vm_area_struct *vma;
7b2d81d4 806
26872090
ON
807 if (err)
808 goto free;
7b2d81d4 809
77fc4af1 810 down_write(&mm->mmap_sem);
f4d6dfe5
ON
811 vma = find_vma(mm, info->vaddr);
812 if (!vma || !valid_vma(vma, is_register) ||
813 vma->vm_file->f_mapping->host != uprobe->inode)
26872090
ON
814 goto unlock;
815
f4d6dfe5
ON
816 if (vma->vm_start > info->vaddr ||
817 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
26872090 818 goto unlock;
2b144498 819
2b144498 820 if (is_register) {
26872090 821 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
c5784de2
PZ
822 /*
823 * We can race against uprobe_mmap(), see the
824 * comment near uprobe_hash().
825 */
26872090
ON
826 if (err == -EEXIST)
827 err = 0;
828 } else {
829 remove_breakpoint(uprobe, mm, info->vaddr);
2b144498 830 }
26872090
ON
831 unlock:
832 up_write(&mm->mmap_sem);
833 free:
834 mmput(mm);
835 info = free_map_info(info);
2b144498 836 }
7b2d81d4 837
26872090 838 return err;
2b144498
SD
839}
840
7b2d81d4 841static int __uprobe_register(struct uprobe *uprobe)
2b144498
SD
842{
843 return register_for_each_vma(uprobe, true);
844}
845
7b2d81d4 846static void __uprobe_unregister(struct uprobe *uprobe)
2b144498
SD
847{
848 if (!register_for_each_vma(uprobe, false))
849 delete_uprobe(uprobe);
850
851 /* TODO : cant unregister? schedule a worker thread */
852}
853
854/*
7b2d81d4 855 * uprobe_register - register a probe
2b144498
SD
856 * @inode: the file in which the probe has to be placed.
857 * @offset: offset from the start of the file.
e3343e6a 858 * @uc: information on howto handle the probe..
2b144498 859 *
7b2d81d4 860 * Apart from the access refcount, uprobe_register() takes a creation
2b144498
SD
861 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
862 * inserted into the rbtree (i.e first consumer for a @inode:@offset
7b2d81d4 863 * tuple). Creation refcount stops uprobe_unregister from freeing the
2b144498 864 * @uprobe even before the register operation is complete. Creation
e3343e6a 865 * refcount is released when the last @uc for the @uprobe
2b144498
SD
866 * unregisters.
867 *
868 * Return errno if it cannot successully install probes
869 * else return 0 (success)
870 */
e3343e6a 871int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498
SD
872{
873 struct uprobe *uprobe;
7b2d81d4 874 int ret;
2b144498 875
e3343e6a 876 if (!inode || !uc || uc->next)
7b2d81d4 877 return -EINVAL;
2b144498
SD
878
879 if (offset > i_size_read(inode))
7b2d81d4 880 return -EINVAL;
2b144498
SD
881
882 ret = 0;
883 mutex_lock(uprobes_hash(inode));
884 uprobe = alloc_uprobe(inode, offset);
7b2d81d4 885
e3343e6a 886 if (uprobe && !consumer_add(uprobe, uc)) {
7b2d81d4 887 ret = __uprobe_register(uprobe);
2b144498
SD
888 if (ret) {
889 uprobe->consumers = NULL;
7b2d81d4
IM
890 __uprobe_unregister(uprobe);
891 } else {
900771a4 892 uprobe->flags |= UPROBE_RUN_HANDLER;
7b2d81d4 893 }
2b144498
SD
894 }
895
896 mutex_unlock(uprobes_hash(inode));
897 put_uprobe(uprobe);
898
899 return ret;
900}
901
902/*
7b2d81d4 903 * uprobe_unregister - unregister a already registered probe.
2b144498
SD
904 * @inode: the file in which the probe has to be removed.
905 * @offset: offset from the start of the file.
e3343e6a 906 * @uc: identify which probe if multiple probes are colocated.
2b144498 907 */
e3343e6a 908void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498 909{
7b2d81d4 910 struct uprobe *uprobe;
2b144498 911
e3343e6a 912 if (!inode || !uc)
2b144498
SD
913 return;
914
915 uprobe = find_uprobe(inode, offset);
916 if (!uprobe)
917 return;
918
919 mutex_lock(uprobes_hash(inode));
2b144498 920
e3343e6a 921 if (consumer_del(uprobe, uc)) {
7b2d81d4
IM
922 if (!uprobe->consumers) {
923 __uprobe_unregister(uprobe);
900771a4 924 uprobe->flags &= ~UPROBE_RUN_HANDLER;
7b2d81d4 925 }
2b144498
SD
926 }
927
2b144498
SD
928 mutex_unlock(uprobes_hash(inode));
929 if (uprobe)
930 put_uprobe(uprobe);
931}
932
891c3970
ON
933static struct rb_node *
934find_node_in_range(struct inode *inode, loff_t min, loff_t max)
2b144498 935{
2b144498 936 struct rb_node *n = uprobes_tree.rb_node;
2b144498
SD
937
938 while (n) {
891c3970 939 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
2b144498 940
891c3970 941 if (inode < u->inode) {
2b144498 942 n = n->rb_left;
891c3970 943 } else if (inode > u->inode) {
2b144498 944 n = n->rb_right;
891c3970
ON
945 } else {
946 if (max < u->offset)
947 n = n->rb_left;
948 else if (min > u->offset)
949 n = n->rb_right;
950 else
951 break;
952 }
2b144498 953 }
7b2d81d4 954
891c3970 955 return n;
2b144498
SD
956}
957
958/*
891c3970 959 * For a given range in vma, build a list of probes that need to be inserted.
2b144498 960 */
891c3970
ON
961static void build_probe_list(struct inode *inode,
962 struct vm_area_struct *vma,
963 unsigned long start, unsigned long end,
964 struct list_head *head)
2b144498 965{
891c3970 966 loff_t min, max;
2b144498 967 unsigned long flags;
891c3970
ON
968 struct rb_node *n, *t;
969 struct uprobe *u;
7b2d81d4 970
891c3970 971 INIT_LIST_HEAD(head);
cb113b47 972 min = vaddr_to_offset(vma, start);
891c3970 973 max = min + (end - start) - 1;
2b144498 974
891c3970
ON
975 spin_lock_irqsave(&uprobes_treelock, flags);
976 n = find_node_in_range(inode, min, max);
977 if (n) {
978 for (t = n; t; t = rb_prev(t)) {
979 u = rb_entry(t, struct uprobe, rb_node);
980 if (u->inode != inode || u->offset < min)
981 break;
982 list_add(&u->pending_list, head);
983 atomic_inc(&u->ref);
984 }
985 for (t = n; (t = rb_next(t)); ) {
986 u = rb_entry(t, struct uprobe, rb_node);
987 if (u->inode != inode || u->offset > max)
988 break;
989 list_add(&u->pending_list, head);
990 atomic_inc(&u->ref);
991 }
2b144498
SD
992 }
993 spin_unlock_irqrestore(&uprobes_treelock, flags);
994}
995
996/*
997 * Called from mmap_region.
998 * called with mm->mmap_sem acquired.
999 *
1000 * Return -ve no if we fail to insert probes and we cannot
1001 * bail-out.
7b2d81d4
IM
1002 * Return 0 otherwise. i.e:
1003 *
2b144498
SD
1004 * - successful insertion of probes
1005 * - (or) no possible probes to be inserted.
1006 * - (or) insertion of probes failed but we can bail-out.
1007 */
7b2d81d4 1008int uprobe_mmap(struct vm_area_struct *vma)
2b144498
SD
1009{
1010 struct list_head tmp_list;
665605a2 1011 struct uprobe *uprobe, *u;
2b144498 1012 struct inode *inode;
f1a45d02 1013 int ret;
2b144498
SD
1014
1015 if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
7b2d81d4 1016 return 0;
2b144498
SD
1017
1018 inode = vma->vm_file->f_mapping->host;
1019 if (!inode)
7b2d81d4 1020 return 0;
2b144498 1021
2b144498 1022 mutex_lock(uprobes_mmap_hash(inode));
891c3970 1023 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
7b2d81d4
IM
1024
1025 ret = 0;
665605a2 1026 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
2b144498 1027 if (!ret) {
57683f72 1028 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
682968e0 1029
682968e0 1030 ret = install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
c5784de2
PZ
1031 /*
1032 * We can race against uprobe_register(), see the
1033 * comment near uprobe_hash().
1034 */
f1a45d02 1035 if (ret == -EEXIST)
682968e0 1036 ret = 0;
2b144498
SD
1037 }
1038 put_uprobe(uprobe);
1039 }
2b144498
SD
1040 mutex_unlock(uprobes_mmap_hash(inode));
1041
1042 return ret;
1043}
1044
682968e0
SD
1045/*
1046 * Called in context of a munmap of a vma.
1047 */
cbc91f71 1048void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
682968e0 1049{
682968e0
SD
1050 if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1051 return;
1052
2fd611a9
ON
1053 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1054 return;
1055
f1a45d02 1056 /* TODO: unmapping uprobe(s) will need more work */
682968e0
SD
1057}
1058
d4b3b638
SD
1059/* Slot allocation for XOL */
1060static int xol_add_vma(struct xol_area *area)
1061{
1062 struct mm_struct *mm;
1063 int ret;
1064
1065 area->page = alloc_page(GFP_HIGHUSER);
1066 if (!area->page)
1067 return -ENOMEM;
1068
1069 ret = -EALREADY;
1070 mm = current->mm;
1071
1072 down_write(&mm->mmap_sem);
1073 if (mm->uprobes_state.xol_area)
1074 goto fail;
1075
1076 ret = -ENOMEM;
1077
1078 /* Try to map as high as possible, this is only a hint. */
1079 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1080 if (area->vaddr & ~PAGE_MASK) {
1081 ret = area->vaddr;
1082 goto fail;
1083 }
1084
1085 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1086 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1087 if (ret)
1088 goto fail;
1089
1090 smp_wmb(); /* pairs with get_xol_area() */
1091 mm->uprobes_state.xol_area = area;
1092 ret = 0;
1093
1094fail:
1095 up_write(&mm->mmap_sem);
1096 if (ret)
1097 __free_page(area->page);
1098
1099 return ret;
1100}
1101
1102static struct xol_area *get_xol_area(struct mm_struct *mm)
1103{
1104 struct xol_area *area;
1105
1106 area = mm->uprobes_state.xol_area;
1107 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1108
1109 return area;
1110}
1111
1112/*
1113 * xol_alloc_area - Allocate process's xol_area.
1114 * This area will be used for storing instructions for execution out of
1115 * line.
1116 *
1117 * Returns the allocated area or NULL.
1118 */
1119static struct xol_area *xol_alloc_area(void)
1120{
1121 struct xol_area *area;
1122
1123 area = kzalloc(sizeof(*area), GFP_KERNEL);
1124 if (unlikely(!area))
1125 return NULL;
1126
1127 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1128
1129 if (!area->bitmap)
1130 goto fail;
1131
1132 init_waitqueue_head(&area->wq);
1133 if (!xol_add_vma(area))
1134 return area;
1135
1136fail:
1137 kfree(area->bitmap);
1138 kfree(area);
1139
1140 return get_xol_area(current->mm);
1141}
1142
1143/*
1144 * uprobe_clear_state - Free the area allocated for slots.
1145 */
1146void uprobe_clear_state(struct mm_struct *mm)
1147{
1148 struct xol_area *area = mm->uprobes_state.xol_area;
1149
1150 if (!area)
1151 return;
1152
1153 put_page(area->page);
1154 kfree(area->bitmap);
1155 kfree(area);
1156}
1157
1158/*
1159 * uprobe_reset_state - Free the area allocated for slots.
1160 */
1161void uprobe_reset_state(struct mm_struct *mm)
1162{
1163 mm->uprobes_state.xol_area = NULL;
1164}
1165
1166/*
1167 * - search for a free slot.
1168 */
1169static unsigned long xol_take_insn_slot(struct xol_area *area)
1170{
1171 unsigned long slot_addr;
1172 int slot_nr;
1173
1174 do {
1175 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1176 if (slot_nr < UINSNS_PER_PAGE) {
1177 if (!test_and_set_bit(slot_nr, area->bitmap))
1178 break;
1179
1180 slot_nr = UINSNS_PER_PAGE;
1181 continue;
1182 }
1183 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1184 } while (slot_nr >= UINSNS_PER_PAGE);
1185
1186 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1187 atomic_inc(&area->slot_count);
1188
1189 return slot_addr;
1190}
1191
1192/*
1193 * xol_get_insn_slot - If was not allocated a slot, then
1194 * allocate a slot.
1195 * Returns the allocated slot address or 0.
1196 */
1197static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1198{
1199 struct xol_area *area;
1200 unsigned long offset;
1201 void *vaddr;
1202
1203 area = get_xol_area(current->mm);
1204 if (!area) {
1205 area = xol_alloc_area();
1206 if (!area)
1207 return 0;
1208 }
1209 current->utask->xol_vaddr = xol_take_insn_slot(area);
1210
1211 /*
1212 * Initialize the slot if xol_vaddr points to valid
1213 * instruction slot.
1214 */
1215 if (unlikely(!current->utask->xol_vaddr))
1216 return 0;
1217
1218 current->utask->vaddr = slot_addr;
1219 offset = current->utask->xol_vaddr & ~PAGE_MASK;
1220 vaddr = kmap_atomic(area->page);
1221 memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1222 kunmap_atomic(vaddr);
1223
1224 return current->utask->xol_vaddr;
1225}
1226
1227/*
1228 * xol_free_insn_slot - If slot was earlier allocated by
1229 * @xol_get_insn_slot(), make the slot available for
1230 * subsequent requests.
1231 */
1232static void xol_free_insn_slot(struct task_struct *tsk)
1233{
1234 struct xol_area *area;
1235 unsigned long vma_end;
1236 unsigned long slot_addr;
1237
1238 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1239 return;
1240
1241 slot_addr = tsk->utask->xol_vaddr;
1242
1243 if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1244 return;
1245
1246 area = tsk->mm->uprobes_state.xol_area;
1247 vma_end = area->vaddr + PAGE_SIZE;
1248 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1249 unsigned long offset;
1250 int slot_nr;
1251
1252 offset = slot_addr - area->vaddr;
1253 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1254 if (slot_nr >= UINSNS_PER_PAGE)
1255 return;
1256
1257 clear_bit(slot_nr, area->bitmap);
1258 atomic_dec(&area->slot_count);
1259 if (waitqueue_active(&area->wq))
1260 wake_up(&area->wq);
1261
1262 tsk->utask->xol_vaddr = 0;
1263 }
1264}
1265
0326f5a9
SD
1266/**
1267 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1268 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1269 * instruction.
1270 * Return the address of the breakpoint instruction.
1271 */
1272unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1273{
1274 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1275}
1276
1277/*
1278 * Called with no locks held.
1279 * Called in context of a exiting or a exec-ing thread.
1280 */
1281void uprobe_free_utask(struct task_struct *t)
1282{
1283 struct uprobe_task *utask = t->utask;
1284
0326f5a9
SD
1285 if (!utask)
1286 return;
1287
1288 if (utask->active_uprobe)
1289 put_uprobe(utask->active_uprobe);
1290
d4b3b638 1291 xol_free_insn_slot(t);
0326f5a9
SD
1292 kfree(utask);
1293 t->utask = NULL;
1294}
1295
1296/*
1297 * Called in context of a new clone/fork from copy_process.
1298 */
1299void uprobe_copy_process(struct task_struct *t)
1300{
1301 t->utask = NULL;
0326f5a9
SD
1302}
1303
1304/*
1305 * Allocate a uprobe_task object for the task.
1306 * Called when the thread hits a breakpoint for the first time.
1307 *
1308 * Returns:
1309 * - pointer to new uprobe_task on success
1310 * - NULL otherwise
1311 */
1312static struct uprobe_task *add_utask(void)
1313{
1314 struct uprobe_task *utask;
1315
1316 utask = kzalloc(sizeof *utask, GFP_KERNEL);
1317 if (unlikely(!utask))
1318 return NULL;
1319
0326f5a9
SD
1320 current->utask = utask;
1321 return utask;
1322}
1323
1324/* Prepare to single-step probed instruction out of line. */
1325static int
1326pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1327{
d4b3b638
SD
1328 if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1329 return 0;
1330
0326f5a9
SD
1331 return -EFAULT;
1332}
1333
1334/*
1335 * If we are singlestepping, then ensure this thread is not connected to
1336 * non-fatal signals until completion of singlestep. When xol insn itself
1337 * triggers the signal, restart the original insn even if the task is
1338 * already SIGKILL'ed (since coredump should report the correct ip). This
1339 * is even more important if the task has a handler for SIGSEGV/etc, The
1340 * _same_ instruction should be repeated again after return from the signal
1341 * handler, and SSTEP can never finish in this case.
1342 */
1343bool uprobe_deny_signal(void)
1344{
1345 struct task_struct *t = current;
1346 struct uprobe_task *utask = t->utask;
1347
1348 if (likely(!utask || !utask->active_uprobe))
1349 return false;
1350
1351 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1352
1353 if (signal_pending(t)) {
1354 spin_lock_irq(&t->sighand->siglock);
1355 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1356 spin_unlock_irq(&t->sighand->siglock);
1357
1358 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1359 utask->state = UTASK_SSTEP_TRAPPED;
1360 set_tsk_thread_flag(t, TIF_UPROBE);
1361 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1362 }
1363 }
1364
1365 return true;
1366}
1367
1368/*
1369 * Avoid singlestepping the original instruction if the original instruction
1370 * is a NOP or can be emulated.
1371 */
1372static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1373{
1374 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1375 return true;
1376
1377 uprobe->flags &= ~UPROBE_SKIP_SSTEP;
1378 return false;
1379}
1380
d790d346 1381static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
0326f5a9 1382{
3a9ea052
ON
1383 struct mm_struct *mm = current->mm;
1384 struct uprobe *uprobe = NULL;
0326f5a9 1385 struct vm_area_struct *vma;
0326f5a9 1386
0326f5a9
SD
1387 down_read(&mm->mmap_sem);
1388 vma = find_vma(mm, bp_vaddr);
3a9ea052
ON
1389 if (vma && vma->vm_start <= bp_vaddr) {
1390 if (valid_vma(vma, false)) {
cb113b47
ON
1391 struct inode *inode = vma->vm_file->f_mapping->host;
1392 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
0326f5a9 1393
3a9ea052
ON
1394 uprobe = find_uprobe(inode, offset);
1395 }
d790d346
ON
1396
1397 if (!uprobe)
1398 *is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1399 } else {
1400 *is_swbp = -EFAULT;
0326f5a9 1401 }
0326f5a9
SD
1402 up_read(&mm->mmap_sem);
1403
3a9ea052
ON
1404 return uprobe;
1405}
1406
1407/*
1408 * Run handler and ask thread to singlestep.
1409 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1410 */
1411static void handle_swbp(struct pt_regs *regs)
1412{
1413 struct uprobe_task *utask;
1414 struct uprobe *uprobe;
1415 unsigned long bp_vaddr;
56bb4cf6 1416 int uninitialized_var(is_swbp);
3a9ea052
ON
1417
1418 bp_vaddr = uprobe_get_swbp_addr(regs);
d790d346 1419 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
3a9ea052 1420
0326f5a9 1421 if (!uprobe) {
56bb4cf6
ON
1422 if (is_swbp > 0) {
1423 /* No matching uprobe; signal SIGTRAP. */
1424 send_sig(SIGTRAP, current, 0);
1425 } else {
1426 /*
1427 * Either we raced with uprobe_unregister() or we can't
1428 * access this memory. The latter is only possible if
1429 * another thread plays with our ->mm. In both cases
1430 * we can simply restart. If this vma was unmapped we
1431 * can pretend this insn was not executed yet and get
1432 * the (correct) SIGSEGV after restart.
1433 */
1434 instruction_pointer_set(regs, bp_vaddr);
1435 }
0326f5a9
SD
1436 return;
1437 }
1438
1439 utask = current->utask;
1440 if (!utask) {
1441 utask = add_utask();
1442 /* Cannot allocate; re-execute the instruction. */
1443 if (!utask)
1444 goto cleanup_ret;
1445 }
1446 utask->active_uprobe = uprobe;
1447 handler_chain(uprobe, regs);
1448 if (uprobe->flags & UPROBE_SKIP_SSTEP && can_skip_sstep(uprobe, regs))
1449 goto cleanup_ret;
1450
1451 utask->state = UTASK_SSTEP;
1452 if (!pre_ssout(uprobe, regs, bp_vaddr)) {
1453 user_enable_single_step(current);
1454 return;
1455 }
1456
1457cleanup_ret:
1458 if (utask) {
1459 utask->active_uprobe = NULL;
1460 utask->state = UTASK_RUNNING;
1461 }
8bd87445 1462 if (!(uprobe->flags & UPROBE_SKIP_SSTEP))
0326f5a9 1463
8bd87445
SAS
1464 /*
1465 * cannot singlestep; cannot skip instruction;
1466 * re-execute the instruction.
1467 */
1468 instruction_pointer_set(regs, bp_vaddr);
0326f5a9 1469
8bd87445 1470 put_uprobe(uprobe);
0326f5a9
SD
1471}
1472
1473/*
1474 * Perform required fix-ups and disable singlestep.
1475 * Allow pending signals to take effect.
1476 */
1477static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1478{
1479 struct uprobe *uprobe;
1480
1481 uprobe = utask->active_uprobe;
1482 if (utask->state == UTASK_SSTEP_ACK)
1483 arch_uprobe_post_xol(&uprobe->arch, regs);
1484 else if (utask->state == UTASK_SSTEP_TRAPPED)
1485 arch_uprobe_abort_xol(&uprobe->arch, regs);
1486 else
1487 WARN_ON_ONCE(1);
1488
1489 put_uprobe(uprobe);
1490 utask->active_uprobe = NULL;
1491 utask->state = UTASK_RUNNING;
1492 user_disable_single_step(current);
d4b3b638 1493 xol_free_insn_slot(current);
0326f5a9
SD
1494
1495 spin_lock_irq(&current->sighand->siglock);
1496 recalc_sigpending(); /* see uprobe_deny_signal() */
1497 spin_unlock_irq(&current->sighand->siglock);
1498}
1499
1500/*
1501 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag. (and on
1502 * subsequent probe hits on the thread sets the state to UTASK_BP_HIT) and
1503 * allows the thread to return from interrupt.
1504 *
1505 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag and
1506 * also sets the state to UTASK_SSTEP_ACK and allows the thread to return from
1507 * interrupt.
1508 *
1509 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1510 * uprobe_notify_resume().
1511 */
1512void uprobe_notify_resume(struct pt_regs *regs)
1513{
1514 struct uprobe_task *utask;
1515
1516 utask = current->utask;
1517 if (!utask || utask->state == UTASK_BP_HIT)
1518 handle_swbp(regs);
1519 else
1520 handle_singlestep(utask, regs);
1521}
1522
1523/*
1524 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1525 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1526 */
1527int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1528{
1529 struct uprobe_task *utask;
1530
647c42df 1531 if (!current->mm)
0326f5a9
SD
1532 return 0;
1533
1534 utask = current->utask;
1535 if (utask)
1536 utask->state = UTASK_BP_HIT;
1537
1538 set_thread_flag(TIF_UPROBE);
0326f5a9
SD
1539
1540 return 1;
1541}
1542
1543/*
1544 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1545 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1546 */
1547int uprobe_post_sstep_notifier(struct pt_regs *regs)
1548{
1549 struct uprobe_task *utask = current->utask;
1550
1551 if (!current->mm || !utask || !utask->active_uprobe)
1552 /* task is currently not uprobed */
1553 return 0;
1554
1555 utask->state = UTASK_SSTEP_ACK;
1556 set_thread_flag(TIF_UPROBE);
1557 return 1;
1558}
1559
1560static struct notifier_block uprobe_exception_nb = {
1561 .notifier_call = arch_uprobe_exception_notify,
1562 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
1563};
1564
2b144498
SD
1565static int __init init_uprobes(void)
1566{
1567 int i;
1568
1569 for (i = 0; i < UPROBES_HASH_SZ; i++) {
1570 mutex_init(&uprobes_mutex[i]);
1571 mutex_init(&uprobes_mmap_mutex[i]);
1572 }
0326f5a9
SD
1573
1574 return register_die_notifier(&uprobe_exception_nb);
2b144498 1575}
0326f5a9 1576module_init(init_uprobes);
2b144498
SD
1577
1578static void __exit exit_uprobes(void)
1579{
1580}
2b144498 1581module_exit(exit_uprobes);