uprobes: Introduce uprobe->register_rwsem
[linux-2.6-block.git] / kernel / events / uprobes.c
CommitLineData
2b144498 1/*
7b2d81d4 2 * User-space Probes (UProbes)
2b144498
SD
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
35aa621b 18 * Copyright (C) IBM Corporation, 2008-2012
2b144498
SD
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
35aa621b 22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
2b144498
SD
23 */
24
25#include <linux/kernel.h>
26#include <linux/highmem.h>
27#include <linux/pagemap.h> /* read_mapping_page */
28#include <linux/slab.h>
29#include <linux/sched.h>
30#include <linux/rmap.h> /* anon_vma_prepare */
31#include <linux/mmu_notifier.h> /* set_pte_at_notify */
32#include <linux/swap.h> /* try_to_free_swap */
0326f5a9
SD
33#include <linux/ptrace.h> /* user_enable_single_step */
34#include <linux/kdebug.h> /* notifier mechanism */
194f8dcb 35#include "../../mm/internal.h" /* munlock_vma_page */
32cdba1e 36#include <linux/percpu-rwsem.h>
7b2d81d4 37
2b144498
SD
38#include <linux/uprobes.h>
39
d4b3b638
SD
40#define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
41#define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
42
2b144498 43static struct rb_root uprobes_tree = RB_ROOT;
7b2d81d4 44
2b144498
SD
45static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
46
47#define UPROBES_HASH_SZ 13
7b2d81d4 48
c5784de2
PZ
49/*
50 * We need separate register/unregister and mmap/munmap lock hashes because
51 * of mmap_sem nesting.
52 *
53 * uprobe_register() needs to install probes on (potentially) all processes
54 * and thus needs to acquire multiple mmap_sems (consequtively, not
55 * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
56 * for the particular process doing the mmap.
57 *
58 * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
59 * because of lock order against i_mmap_mutex. This means there's a hole in
60 * the register vma iteration where a mmap() can happen.
61 *
62 * Thus uprobe_register() can race with uprobe_mmap() and we can try and
63 * install a probe where one is already installed.
64 */
65
2b144498
SD
66/* serialize (un)register */
67static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
7b2d81d4
IM
68
69#define uprobes_hash(v) (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498
SD
70
71/* serialize uprobe->pending_list */
72static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
7b2d81d4 73#define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498 74
32cdba1e
ON
75static struct percpu_rw_semaphore dup_mmap_sem;
76
2b144498 77/*
7b2d81d4 78 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
2b144498
SD
79 * events active at this time. Probably a fine grained per inode count is
80 * better?
81 */
82static atomic_t uprobe_events = ATOMIC_INIT(0);
83
cb9a19fe 84/* Have a copy of original instruction */
71434f2f 85#define UPROBE_COPY_INSN 0
cb9a19fe 86/* Dont run handlers when first register/ last unregister in progress*/
71434f2f 87#define UPROBE_RUN_HANDLER 1
cb9a19fe 88/* Can skip singlestep */
71434f2f 89#define UPROBE_SKIP_SSTEP 2
cb9a19fe 90
3ff54efd
SD
91struct uprobe {
92 struct rb_node rb_node; /* node in the rb tree */
93 atomic_t ref;
e591c8d7 94 struct rw_semaphore register_rwsem;
3ff54efd 95 struct rw_semaphore consumer_rwsem;
4710f05f 96 struct mutex copy_mutex; /* TODO: kill me and UPROBE_COPY_INSN */
3ff54efd
SD
97 struct list_head pending_list;
98 struct uprobe_consumer *consumers;
99 struct inode *inode; /* Also hold a ref to inode */
100 loff_t offset;
71434f2f 101 unsigned long flags;
3ff54efd
SD
102 struct arch_uprobe arch;
103};
104
2b144498
SD
105/*
106 * valid_vma: Verify if the specified vma is an executable vma
107 * Relax restrictions while unregistering: vm_flags might have
108 * changed after breakpoint was inserted.
109 * - is_register: indicates if we are in register context.
110 * - Return 1 if the specified virtual address is in an
111 * executable vma.
112 */
113static bool valid_vma(struct vm_area_struct *vma, bool is_register)
114{
e40cfce6 115 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED;
2b144498 116
e40cfce6
ON
117 if (is_register)
118 flags |= VM_WRITE;
2b144498 119
e40cfce6 120 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
2b144498
SD
121}
122
57683f72 123static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
2b144498 124{
57683f72 125 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
2b144498
SD
126}
127
cb113b47
ON
128static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
129{
130 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
131}
132
2b144498
SD
133/**
134 * __replace_page - replace page in vma by new page.
135 * based on replace_page in mm/ksm.c
136 *
137 * @vma: vma that holds the pte pointing to page
c517ee74 138 * @addr: address the old @page is mapped at
2b144498
SD
139 * @page: the cowed page we are replacing by kpage
140 * @kpage: the modified page we replace page by
141 *
142 * Returns 0 on success, -EFAULT on failure.
143 */
c517ee74
ON
144static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
145 struct page *page, struct page *kpage)
2b144498
SD
146{
147 struct mm_struct *mm = vma->vm_mm;
5323ce71
ON
148 spinlock_t *ptl;
149 pte_t *ptep;
9f92448c 150 int err;
6bdb913f
HE
151 /* For mmu_notifiers */
152 const unsigned long mmun_start = addr;
153 const unsigned long mmun_end = addr + PAGE_SIZE;
2b144498 154
194f8dcb 155 /* For try_to_free_swap() and munlock_vma_page() below */
9f92448c
ON
156 lock_page(page);
157
6bdb913f 158 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
9f92448c 159 err = -EAGAIN;
5323ce71 160 ptep = page_check_address(page, mm, addr, &ptl, 0);
2b144498 161 if (!ptep)
9f92448c 162 goto unlock;
2b144498
SD
163
164 get_page(kpage);
165 page_add_new_anon_rmap(kpage, vma, addr);
166
7396fa81
SD
167 if (!PageAnon(page)) {
168 dec_mm_counter(mm, MM_FILEPAGES);
169 inc_mm_counter(mm, MM_ANONPAGES);
170 }
171
2b144498
SD
172 flush_cache_page(vma, addr, pte_pfn(*ptep));
173 ptep_clear_flush(vma, addr, ptep);
174 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
175
176 page_remove_rmap(page);
177 if (!page_mapped(page))
178 try_to_free_swap(page);
2b144498 179 pte_unmap_unlock(ptep, ptl);
2b144498 180
194f8dcb
ON
181 if (vma->vm_flags & VM_LOCKED)
182 munlock_vma_page(page);
183 put_page(page);
184
9f92448c
ON
185 err = 0;
186 unlock:
6bdb913f 187 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
9f92448c
ON
188 unlock_page(page);
189 return err;
2b144498
SD
190}
191
192/**
5cb4ac3a 193 * is_swbp_insn - check if instruction is breakpoint instruction.
2b144498 194 * @insn: instruction to be checked.
5cb4ac3a 195 * Default implementation of is_swbp_insn
2b144498
SD
196 * Returns true if @insn is a breakpoint instruction.
197 */
5cb4ac3a 198bool __weak is_swbp_insn(uprobe_opcode_t *insn)
2b144498 199{
5cb4ac3a 200 return *insn == UPROBE_SWBP_INSN;
2b144498
SD
201}
202
cceb55aa
ON
203static void copy_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *opcode)
204{
205 void *kaddr = kmap_atomic(page);
206 memcpy(opcode, kaddr + (vaddr & ~PAGE_MASK), UPROBE_SWBP_INSN_SIZE);
207 kunmap_atomic(kaddr);
208}
209
ed6f6a50
ON
210static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
211{
212 uprobe_opcode_t old_opcode;
213 bool is_swbp;
214
215 copy_opcode(page, vaddr, &old_opcode);
216 is_swbp = is_swbp_insn(&old_opcode);
217
218 if (is_swbp_insn(new_opcode)) {
219 if (is_swbp) /* register: already installed? */
220 return 0;
221 } else {
222 if (!is_swbp) /* unregister: was it changed by us? */
076a365b 223 return 0;
ed6f6a50
ON
224 }
225
226 return 1;
227}
228
2b144498
SD
229/*
230 * NOTE:
231 * Expect the breakpoint instruction to be the smallest size instruction for
232 * the architecture. If an arch has variable length instruction and the
233 * breakpoint instruction is not of the smallest length instruction
cceb55aa 234 * supported by that architecture then we need to modify is_swbp_at_addr and
2b144498
SD
235 * write_opcode accordingly. This would never be a problem for archs that
236 * have fixed length instructions.
237 */
238
239/*
240 * write_opcode - write the opcode at a given virtual address.
241 * @mm: the probed process address space.
2b144498
SD
242 * @vaddr: the virtual address to store the opcode.
243 * @opcode: opcode to be written at @vaddr.
244 *
245 * Called with mm->mmap_sem held (for read and with a reference to
246 * mm).
247 *
248 * For mm @mm, write the opcode at @vaddr.
249 * Return 0 (success) or a negative errno.
250 */
cceb55aa
ON
251static int write_opcode(struct mm_struct *mm, unsigned long vaddr,
252 uprobe_opcode_t opcode)
2b144498
SD
253{
254 struct page *old_page, *new_page;
2b144498
SD
255 void *vaddr_old, *vaddr_new;
256 struct vm_area_struct *vma;
2b144498 257 int ret;
f403072c 258
5323ce71 259retry:
2b144498 260 /* Read the page with vaddr into memory */
75ed82ea 261 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
2b144498
SD
262 if (ret <= 0)
263 return ret;
7b2d81d4 264
ed6f6a50
ON
265 ret = verify_opcode(old_page, vaddr, &opcode);
266 if (ret <= 0)
267 goto put_old;
268
2b144498
SD
269 ret = -ENOMEM;
270 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
271 if (!new_page)
9f92448c 272 goto put_old;
2b144498
SD
273
274 __SetPageUptodate(new_page);
275
2b144498
SD
276 /* copy the page now that we've got it stable */
277 vaddr_old = kmap_atomic(old_page);
278 vaddr_new = kmap_atomic(new_page);
279
280 memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
d9c4a30e 281 memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
2b144498
SD
282
283 kunmap_atomic(vaddr_new);
284 kunmap_atomic(vaddr_old);
285
286 ret = anon_vma_prepare(vma);
287 if (ret)
9f92448c 288 goto put_new;
2b144498 289
c517ee74 290 ret = __replace_page(vma, vaddr, old_page, new_page);
2b144498 291
9f92448c 292put_new:
2b144498 293 page_cache_release(new_page);
9f92448c 294put_old:
7b2d81d4
IM
295 put_page(old_page);
296
5323ce71
ON
297 if (unlikely(ret == -EAGAIN))
298 goto retry;
2b144498
SD
299 return ret;
300}
301
2b144498 302/**
5cb4ac3a 303 * set_swbp - store breakpoint at a given address.
e3343e6a 304 * @auprobe: arch specific probepoint information.
2b144498 305 * @mm: the probed process address space.
2b144498
SD
306 * @vaddr: the virtual address to insert the opcode.
307 *
308 * For mm @mm, store the breakpoint instruction at @vaddr.
309 * Return 0 (success) or a negative errno.
310 */
5cb4ac3a 311int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 312{
cceb55aa 313 return write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
2b144498
SD
314}
315
316/**
317 * set_orig_insn - Restore the original instruction.
318 * @mm: the probed process address space.
e3343e6a 319 * @auprobe: arch specific probepoint information.
2b144498 320 * @vaddr: the virtual address to insert the opcode.
2b144498
SD
321 *
322 * For mm @mm, restore the original opcode (opcode) at @vaddr.
323 * Return 0 (success) or a negative errno.
324 */
7b2d81d4 325int __weak
ded86e7c 326set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 327{
cceb55aa 328 return write_opcode(mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
2b144498
SD
329}
330
331static int match_uprobe(struct uprobe *l, struct uprobe *r)
332{
333 if (l->inode < r->inode)
334 return -1;
7b2d81d4 335
2b144498
SD
336 if (l->inode > r->inode)
337 return 1;
2b144498 338
7b2d81d4
IM
339 if (l->offset < r->offset)
340 return -1;
341
342 if (l->offset > r->offset)
343 return 1;
2b144498
SD
344
345 return 0;
346}
347
348static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
349{
350 struct uprobe u = { .inode = inode, .offset = offset };
351 struct rb_node *n = uprobes_tree.rb_node;
352 struct uprobe *uprobe;
353 int match;
354
355 while (n) {
356 uprobe = rb_entry(n, struct uprobe, rb_node);
357 match = match_uprobe(&u, uprobe);
358 if (!match) {
359 atomic_inc(&uprobe->ref);
360 return uprobe;
361 }
7b2d81d4 362
2b144498
SD
363 if (match < 0)
364 n = n->rb_left;
365 else
366 n = n->rb_right;
367 }
368 return NULL;
369}
370
371/*
372 * Find a uprobe corresponding to a given inode:offset
373 * Acquires uprobes_treelock
374 */
375static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
376{
377 struct uprobe *uprobe;
2b144498 378
6f47caa0 379 spin_lock(&uprobes_treelock);
2b144498 380 uprobe = __find_uprobe(inode, offset);
6f47caa0 381 spin_unlock(&uprobes_treelock);
7b2d81d4 382
2b144498
SD
383 return uprobe;
384}
385
386static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
387{
388 struct rb_node **p = &uprobes_tree.rb_node;
389 struct rb_node *parent = NULL;
390 struct uprobe *u;
391 int match;
392
393 while (*p) {
394 parent = *p;
395 u = rb_entry(parent, struct uprobe, rb_node);
396 match = match_uprobe(uprobe, u);
397 if (!match) {
398 atomic_inc(&u->ref);
399 return u;
400 }
401
402 if (match < 0)
403 p = &parent->rb_left;
404 else
405 p = &parent->rb_right;
406
407 }
7b2d81d4 408
2b144498
SD
409 u = NULL;
410 rb_link_node(&uprobe->rb_node, parent, p);
411 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
412 /* get access + creation ref */
413 atomic_set(&uprobe->ref, 2);
7b2d81d4 414
2b144498
SD
415 return u;
416}
417
418/*
7b2d81d4 419 * Acquire uprobes_treelock.
2b144498
SD
420 * Matching uprobe already exists in rbtree;
421 * increment (access refcount) and return the matching uprobe.
422 *
423 * No matching uprobe; insert the uprobe in rb_tree;
424 * get a double refcount (access + creation) and return NULL.
425 */
426static struct uprobe *insert_uprobe(struct uprobe *uprobe)
427{
2b144498
SD
428 struct uprobe *u;
429
6f47caa0 430 spin_lock(&uprobes_treelock);
2b144498 431 u = __insert_uprobe(uprobe);
6f47caa0 432 spin_unlock(&uprobes_treelock);
7b2d81d4 433
2b144498
SD
434 return u;
435}
436
437static void put_uprobe(struct uprobe *uprobe)
438{
439 if (atomic_dec_and_test(&uprobe->ref))
440 kfree(uprobe);
441}
442
443static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
444{
445 struct uprobe *uprobe, *cur_uprobe;
446
447 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
448 if (!uprobe)
449 return NULL;
450
451 uprobe->inode = igrab(inode);
452 uprobe->offset = offset;
e591c8d7 453 init_rwsem(&uprobe->register_rwsem);
2b144498 454 init_rwsem(&uprobe->consumer_rwsem);
4710f05f 455 mutex_init(&uprobe->copy_mutex);
bbc33d05
ON
456 /* For now assume that the instruction need not be single-stepped */
457 __set_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
2b144498
SD
458
459 /* add to uprobes_tree, sorted on inode:offset */
460 cur_uprobe = insert_uprobe(uprobe);
461
462 /* a uprobe exists for this inode:offset combination */
463 if (cur_uprobe) {
464 kfree(uprobe);
465 uprobe = cur_uprobe;
466 iput(inode);
7b2d81d4 467 } else {
2b144498 468 atomic_inc(&uprobe_events);
7b2d81d4
IM
469 }
470
2b144498
SD
471 return uprobe;
472}
473
0326f5a9
SD
474static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
475{
476 struct uprobe_consumer *uc;
477
71434f2f 478 if (!test_bit(UPROBE_RUN_HANDLER, &uprobe->flags))
0326f5a9
SD
479 return;
480
e591c8d7 481 down_read(&uprobe->register_rwsem);
fe20d71f
ON
482 for (uc = uprobe->consumers; uc; uc = uc->next)
483 uc->handler(uc, regs);
e591c8d7 484 up_read(&uprobe->register_rwsem);
0326f5a9
SD
485}
486
9a98e03c 487static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
488{
489 down_write(&uprobe->consumer_rwsem);
e3343e6a
SD
490 uc->next = uprobe->consumers;
491 uprobe->consumers = uc;
2b144498 492 up_write(&uprobe->consumer_rwsem);
2b144498
SD
493}
494
495/*
e3343e6a
SD
496 * For uprobe @uprobe, delete the consumer @uc.
497 * Return true if the @uc is deleted successfully
2b144498
SD
498 * or return false.
499 */
e3343e6a 500static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
501{
502 struct uprobe_consumer **con;
503 bool ret = false;
504
505 down_write(&uprobe->consumer_rwsem);
506 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
e3343e6a
SD
507 if (*con == uc) {
508 *con = uc->next;
2b144498
SD
509 ret = true;
510 break;
511 }
512 }
513 up_write(&uprobe->consumer_rwsem);
7b2d81d4 514
2b144498
SD
515 return ret;
516}
517
e3343e6a 518static int
d436615e 519__copy_insn(struct address_space *mapping, struct file *filp, char *insn,
593609a5 520 unsigned long nbytes, loff_t offset)
2b144498 521{
2b144498
SD
522 struct page *page;
523 void *vaddr;
593609a5
ON
524 unsigned long off;
525 pgoff_t idx;
2b144498
SD
526
527 if (!filp)
528 return -EINVAL;
529
cc359d18
ON
530 if (!mapping->a_ops->readpage)
531 return -EIO;
532
593609a5
ON
533 idx = offset >> PAGE_CACHE_SHIFT;
534 off = offset & ~PAGE_MASK;
2b144498
SD
535
536 /*
537 * Ensure that the page that has the original instruction is
538 * populated and in page-cache.
539 */
540 page = read_mapping_page(mapping, idx, filp);
541 if (IS_ERR(page))
542 return PTR_ERR(page);
543
544 vaddr = kmap_atomic(page);
593609a5 545 memcpy(insn, vaddr + off, nbytes);
2b144498
SD
546 kunmap_atomic(vaddr);
547 page_cache_release(page);
7b2d81d4 548
2b144498
SD
549 return 0;
550}
551
d436615e 552static int copy_insn(struct uprobe *uprobe, struct file *filp)
2b144498
SD
553{
554 struct address_space *mapping;
2b144498 555 unsigned long nbytes;
7b2d81d4 556 int bytes;
2b144498 557
d436615e 558 nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
2b144498
SD
559 mapping = uprobe->inode->i_mapping;
560
561 /* Instruction at end of binary; copy only available bytes */
562 if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
563 bytes = uprobe->inode->i_size - uprobe->offset;
564 else
565 bytes = MAX_UINSN_BYTES;
566
567 /* Instruction at the page-boundary; copy bytes in second page */
568 if (nbytes < bytes) {
fc36f595
ON
569 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
570 bytes - nbytes, uprobe->offset + nbytes);
571 if (err)
572 return err;
2b144498
SD
573 bytes = nbytes;
574 }
d436615e 575 return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
2b144498
SD
576}
577
cb9a19fe
ON
578static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
579 struct mm_struct *mm, unsigned long vaddr)
580{
581 int ret = 0;
582
71434f2f 583 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
cb9a19fe
ON
584 return ret;
585
4710f05f 586 mutex_lock(&uprobe->copy_mutex);
71434f2f 587 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
4710f05f
ON
588 goto out;
589
cb9a19fe
ON
590 ret = copy_insn(uprobe, file);
591 if (ret)
592 goto out;
593
594 ret = -ENOTSUPP;
595 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
596 goto out;
597
598 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
599 if (ret)
600 goto out;
601
602 /* write_opcode() assumes we don't cross page boundary */
603 BUG_ON((uprobe->offset & ~PAGE_MASK) +
604 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
605
606 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
71434f2f 607 set_bit(UPROBE_COPY_INSN, &uprobe->flags);
cb9a19fe
ON
608
609 out:
4710f05f
ON
610 mutex_unlock(&uprobe->copy_mutex);
611
cb9a19fe
ON
612 return ret;
613}
614
63633cbf
ON
615static bool filter_chain(struct uprobe *uprobe)
616{
617 /*
618 * TODO:
619 * for_each_consumer(uc)
620 * if (uc->filter(...))
621 * return true;
622 * return false;
623 */
624 return uprobe->consumers != NULL;
625}
626
e3343e6a
SD
627static int
628install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
816c03fb 629 struct vm_area_struct *vma, unsigned long vaddr)
2b144498 630{
f8ac4ec9 631 bool first_uprobe;
2b144498
SD
632 int ret;
633
634 /*
635 * If probe is being deleted, unregister thread could be done with
636 * the vma-rmap-walk through. Adding a probe now can be fatal since
63633cbf
ON
637 * nobody will be able to cleanup. But in this case filter_chain()
638 * must return false, all consumers have gone away.
2b144498 639 */
63633cbf 640 if (!filter_chain(uprobe))
78f74116 641 return 0;
2b144498 642
cb9a19fe
ON
643 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
644 if (ret)
645 return ret;
682968e0 646
f8ac4ec9
ON
647 /*
648 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
649 * the task can hit this breakpoint right after __replace_page().
650 */
651 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
652 if (first_uprobe)
653 set_bit(MMF_HAS_UPROBES, &mm->flags);
654
816c03fb 655 ret = set_swbp(&uprobe->arch, mm, vaddr);
9f68f672
ON
656 if (!ret)
657 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
658 else if (first_uprobe)
f8ac4ec9 659 clear_bit(MMF_HAS_UPROBES, &mm->flags);
2b144498
SD
660
661 return ret;
662}
663
076a365b 664static int
816c03fb 665remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 666{
9f68f672 667 if (!test_bit(MMF_HAS_UPROBES, &mm->flags))
076a365b 668 return 0;
9f68f672 669
63633cbf
ON
670 if (filter_chain(uprobe))
671 return 0;
672
9f68f672 673 set_bit(MMF_RECALC_UPROBES, &mm->flags);
076a365b 674 return set_orig_insn(&uprobe->arch, mm, vaddr);
2b144498
SD
675}
676
0326f5a9 677/*
778b032d
ON
678 * There could be threads that have already hit the breakpoint. They
679 * will recheck the current insn and restart if find_uprobe() fails.
680 * See find_active_uprobe().
0326f5a9 681 */
2b144498
SD
682static void delete_uprobe(struct uprobe *uprobe)
683{
6f47caa0 684 spin_lock(&uprobes_treelock);
2b144498 685 rb_erase(&uprobe->rb_node, &uprobes_tree);
6f47caa0 686 spin_unlock(&uprobes_treelock);
2b144498
SD
687 iput(uprobe->inode);
688 put_uprobe(uprobe);
689 atomic_dec(&uprobe_events);
690}
691
26872090
ON
692struct map_info {
693 struct map_info *next;
694 struct mm_struct *mm;
816c03fb 695 unsigned long vaddr;
26872090
ON
696};
697
698static inline struct map_info *free_map_info(struct map_info *info)
2b144498 699{
26872090
ON
700 struct map_info *next = info->next;
701 kfree(info);
702 return next;
703}
704
705static struct map_info *
706build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
707{
708 unsigned long pgoff = offset >> PAGE_SHIFT;
2b144498 709 struct vm_area_struct *vma;
26872090
ON
710 struct map_info *curr = NULL;
711 struct map_info *prev = NULL;
712 struct map_info *info;
713 int more = 0;
2b144498 714
26872090
ON
715 again:
716 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 717 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
2b144498
SD
718 if (!valid_vma(vma, is_register))
719 continue;
720
7a5bfb66
ON
721 if (!prev && !more) {
722 /*
723 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
724 * reclaim. This is optimistic, no harm done if it fails.
725 */
726 prev = kmalloc(sizeof(struct map_info),
727 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
728 if (prev)
729 prev->next = NULL;
730 }
26872090
ON
731 if (!prev) {
732 more++;
733 continue;
2b144498 734 }
2b144498 735
26872090
ON
736 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
737 continue;
7b2d81d4 738
26872090
ON
739 info = prev;
740 prev = prev->next;
741 info->next = curr;
742 curr = info;
2b144498 743
26872090 744 info->mm = vma->vm_mm;
57683f72 745 info->vaddr = offset_to_vaddr(vma, offset);
26872090 746 }
2b144498
SD
747 mutex_unlock(&mapping->i_mmap_mutex);
748
26872090
ON
749 if (!more)
750 goto out;
751
752 prev = curr;
753 while (curr) {
754 mmput(curr->mm);
755 curr = curr->next;
756 }
7b2d81d4 757
26872090
ON
758 do {
759 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
760 if (!info) {
761 curr = ERR_PTR(-ENOMEM);
762 goto out;
763 }
764 info->next = prev;
765 prev = info;
766 } while (--more);
767
768 goto again;
769 out:
770 while (prev)
771 prev = free_map_info(prev);
772 return curr;
2b144498
SD
773}
774
775static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
776{
26872090
ON
777 struct map_info *info;
778 int err = 0;
2b144498 779
32cdba1e 780 percpu_down_write(&dup_mmap_sem);
26872090
ON
781 info = build_map_info(uprobe->inode->i_mapping,
782 uprobe->offset, is_register);
32cdba1e
ON
783 if (IS_ERR(info)) {
784 err = PTR_ERR(info);
785 goto out;
786 }
7b2d81d4 787
26872090
ON
788 while (info) {
789 struct mm_struct *mm = info->mm;
790 struct vm_area_struct *vma;
7b2d81d4 791
076a365b 792 if (err && is_register)
26872090 793 goto free;
7b2d81d4 794
77fc4af1 795 down_write(&mm->mmap_sem);
f4d6dfe5
ON
796 vma = find_vma(mm, info->vaddr);
797 if (!vma || !valid_vma(vma, is_register) ||
798 vma->vm_file->f_mapping->host != uprobe->inode)
26872090
ON
799 goto unlock;
800
f4d6dfe5
ON
801 if (vma->vm_start > info->vaddr ||
802 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
26872090 803 goto unlock;
2b144498 804
78f74116 805 if (is_register)
26872090 806 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
78f74116 807 else
076a365b 808 err |= remove_breakpoint(uprobe, mm, info->vaddr);
78f74116 809
26872090
ON
810 unlock:
811 up_write(&mm->mmap_sem);
812 free:
813 mmput(mm);
814 info = free_map_info(info);
2b144498 815 }
32cdba1e
ON
816 out:
817 percpu_up_write(&dup_mmap_sem);
26872090 818 return err;
2b144498
SD
819}
820
9a98e03c 821static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498 822{
9a98e03c
ON
823 int err;
824
825 consumer_add(uprobe, uc);
826 err = register_for_each_vma(uprobe, true);
827 if (!err) /* TODO: pointless unless the first consumer */
828 set_bit(UPROBE_RUN_HANDLER, &uprobe->flags);
829 return err;
2b144498
SD
830}
831
04aab9b2 832static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498 833{
04aab9b2
ON
834 int err;
835
836 if (!consumer_del(uprobe, uc)) /* WARN? */
837 return;
2b144498 838
04aab9b2
ON
839 err = register_for_each_vma(uprobe, false);
840 if (!uprobe->consumers) {
841 clear_bit(UPROBE_RUN_HANDLER, &uprobe->flags);
842 /* TODO : cant unregister? schedule a worker thread */
843 if (!err)
844 delete_uprobe(uprobe);
845 }
2b144498
SD
846}
847
848/*
7b2d81d4 849 * uprobe_register - register a probe
2b144498
SD
850 * @inode: the file in which the probe has to be placed.
851 * @offset: offset from the start of the file.
e3343e6a 852 * @uc: information on howto handle the probe..
2b144498 853 *
7b2d81d4 854 * Apart from the access refcount, uprobe_register() takes a creation
2b144498
SD
855 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
856 * inserted into the rbtree (i.e first consumer for a @inode:@offset
7b2d81d4 857 * tuple). Creation refcount stops uprobe_unregister from freeing the
2b144498 858 * @uprobe even before the register operation is complete. Creation
e3343e6a 859 * refcount is released when the last @uc for the @uprobe
2b144498
SD
860 * unregisters.
861 *
862 * Return errno if it cannot successully install probes
863 * else return 0 (success)
864 */
e3343e6a 865int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498
SD
866{
867 struct uprobe *uprobe;
7b2d81d4 868 int ret;
2b144498 869
f0744af7 870 /* Racy, just to catch the obvious mistakes */
2b144498 871 if (offset > i_size_read(inode))
7b2d81d4 872 return -EINVAL;
2b144498 873
9a98e03c 874 ret = -ENOMEM;
2b144498
SD
875 mutex_lock(uprobes_hash(inode));
876 uprobe = alloc_uprobe(inode, offset);
9a98e03c 877 if (uprobe) {
e591c8d7 878 down_write(&uprobe->register_rwsem);
9a98e03c
ON
879 ret = __uprobe_register(uprobe, uc);
880 if (ret)
04aab9b2 881 __uprobe_unregister(uprobe, uc);
e591c8d7 882 up_write(&uprobe->register_rwsem);
2b144498 883 }
2b144498 884 mutex_unlock(uprobes_hash(inode));
6d1d8dfa
SAS
885 if (uprobe)
886 put_uprobe(uprobe);
2b144498
SD
887
888 return ret;
889}
890
891/*
7b2d81d4 892 * uprobe_unregister - unregister a already registered probe.
2b144498
SD
893 * @inode: the file in which the probe has to be removed.
894 * @offset: offset from the start of the file.
e3343e6a 895 * @uc: identify which probe if multiple probes are colocated.
2b144498 896 */
e3343e6a 897void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498 898{
7b2d81d4 899 struct uprobe *uprobe;
2b144498 900
2b144498
SD
901 uprobe = find_uprobe(inode, offset);
902 if (!uprobe)
903 return;
904
905 mutex_lock(uprobes_hash(inode));
e591c8d7 906 down_write(&uprobe->register_rwsem);
04aab9b2 907 __uprobe_unregister(uprobe, uc);
e591c8d7 908 up_write(&uprobe->register_rwsem);
2b144498 909 mutex_unlock(uprobes_hash(inode));
c91368c4 910 put_uprobe(uprobe);
2b144498
SD
911}
912
891c3970
ON
913static struct rb_node *
914find_node_in_range(struct inode *inode, loff_t min, loff_t max)
2b144498 915{
2b144498 916 struct rb_node *n = uprobes_tree.rb_node;
2b144498
SD
917
918 while (n) {
891c3970 919 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
2b144498 920
891c3970 921 if (inode < u->inode) {
2b144498 922 n = n->rb_left;
891c3970 923 } else if (inode > u->inode) {
2b144498 924 n = n->rb_right;
891c3970
ON
925 } else {
926 if (max < u->offset)
927 n = n->rb_left;
928 else if (min > u->offset)
929 n = n->rb_right;
930 else
931 break;
932 }
2b144498 933 }
7b2d81d4 934
891c3970 935 return n;
2b144498
SD
936}
937
938/*
891c3970 939 * For a given range in vma, build a list of probes that need to be inserted.
2b144498 940 */
891c3970
ON
941static void build_probe_list(struct inode *inode,
942 struct vm_area_struct *vma,
943 unsigned long start, unsigned long end,
944 struct list_head *head)
2b144498 945{
891c3970 946 loff_t min, max;
891c3970
ON
947 struct rb_node *n, *t;
948 struct uprobe *u;
7b2d81d4 949
891c3970 950 INIT_LIST_HEAD(head);
cb113b47 951 min = vaddr_to_offset(vma, start);
891c3970 952 max = min + (end - start) - 1;
2b144498 953
6f47caa0 954 spin_lock(&uprobes_treelock);
891c3970
ON
955 n = find_node_in_range(inode, min, max);
956 if (n) {
957 for (t = n; t; t = rb_prev(t)) {
958 u = rb_entry(t, struct uprobe, rb_node);
959 if (u->inode != inode || u->offset < min)
960 break;
961 list_add(&u->pending_list, head);
962 atomic_inc(&u->ref);
963 }
964 for (t = n; (t = rb_next(t)); ) {
965 u = rb_entry(t, struct uprobe, rb_node);
966 if (u->inode != inode || u->offset > max)
967 break;
968 list_add(&u->pending_list, head);
969 atomic_inc(&u->ref);
970 }
2b144498 971 }
6f47caa0 972 spin_unlock(&uprobes_treelock);
2b144498
SD
973}
974
975/*
5e5be71a 976 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
2b144498 977 *
5e5be71a
ON
978 * Currently we ignore all errors and always return 0, the callers
979 * can't handle the failure anyway.
2b144498 980 */
7b2d81d4 981int uprobe_mmap(struct vm_area_struct *vma)
2b144498
SD
982{
983 struct list_head tmp_list;
665605a2 984 struct uprobe *uprobe, *u;
2b144498 985 struct inode *inode;
2b144498
SD
986
987 if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
7b2d81d4 988 return 0;
2b144498
SD
989
990 inode = vma->vm_file->f_mapping->host;
991 if (!inode)
7b2d81d4 992 return 0;
2b144498 993
2b144498 994 mutex_lock(uprobes_mmap_hash(inode));
891c3970 995 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
7b2d81d4 996
665605a2 997 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
5e5be71a 998 if (!fatal_signal_pending(current)) {
57683f72 999 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
5e5be71a 1000 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
2b144498
SD
1001 }
1002 put_uprobe(uprobe);
1003 }
2b144498
SD
1004 mutex_unlock(uprobes_mmap_hash(inode));
1005
5e5be71a 1006 return 0;
2b144498
SD
1007}
1008
9f68f672
ON
1009static bool
1010vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1011{
1012 loff_t min, max;
1013 struct inode *inode;
1014 struct rb_node *n;
1015
1016 inode = vma->vm_file->f_mapping->host;
1017
1018 min = vaddr_to_offset(vma, start);
1019 max = min + (end - start) - 1;
1020
1021 spin_lock(&uprobes_treelock);
1022 n = find_node_in_range(inode, min, max);
1023 spin_unlock(&uprobes_treelock);
1024
1025 return !!n;
1026}
1027
682968e0
SD
1028/*
1029 * Called in context of a munmap of a vma.
1030 */
cbc91f71 1031void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
682968e0 1032{
682968e0
SD
1033 if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1034 return;
1035
2fd611a9
ON
1036 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1037 return;
1038
9f68f672
ON
1039 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1040 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
f8ac4ec9
ON
1041 return;
1042
9f68f672
ON
1043 if (vma_has_uprobes(vma, start, end))
1044 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
682968e0
SD
1045}
1046
d4b3b638
SD
1047/* Slot allocation for XOL */
1048static int xol_add_vma(struct xol_area *area)
1049{
1050 struct mm_struct *mm;
1051 int ret;
1052
1053 area->page = alloc_page(GFP_HIGHUSER);
1054 if (!area->page)
1055 return -ENOMEM;
1056
1057 ret = -EALREADY;
1058 mm = current->mm;
1059
1060 down_write(&mm->mmap_sem);
1061 if (mm->uprobes_state.xol_area)
1062 goto fail;
1063
1064 ret = -ENOMEM;
1065
1066 /* Try to map as high as possible, this is only a hint. */
1067 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1068 if (area->vaddr & ~PAGE_MASK) {
1069 ret = area->vaddr;
1070 goto fail;
1071 }
1072
1073 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1074 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1075 if (ret)
1076 goto fail;
1077
1078 smp_wmb(); /* pairs with get_xol_area() */
1079 mm->uprobes_state.xol_area = area;
1080 ret = 0;
1081
1082fail:
1083 up_write(&mm->mmap_sem);
1084 if (ret)
1085 __free_page(area->page);
1086
1087 return ret;
1088}
1089
1090static struct xol_area *get_xol_area(struct mm_struct *mm)
1091{
1092 struct xol_area *area;
1093
1094 area = mm->uprobes_state.xol_area;
1095 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1096
1097 return area;
1098}
1099
1100/*
1101 * xol_alloc_area - Allocate process's xol_area.
1102 * This area will be used for storing instructions for execution out of
1103 * line.
1104 *
1105 * Returns the allocated area or NULL.
1106 */
1107static struct xol_area *xol_alloc_area(void)
1108{
1109 struct xol_area *area;
1110
1111 area = kzalloc(sizeof(*area), GFP_KERNEL);
1112 if (unlikely(!area))
1113 return NULL;
1114
1115 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1116
1117 if (!area->bitmap)
1118 goto fail;
1119
1120 init_waitqueue_head(&area->wq);
1121 if (!xol_add_vma(area))
1122 return area;
1123
1124fail:
1125 kfree(area->bitmap);
1126 kfree(area);
1127
1128 return get_xol_area(current->mm);
1129}
1130
1131/*
1132 * uprobe_clear_state - Free the area allocated for slots.
1133 */
1134void uprobe_clear_state(struct mm_struct *mm)
1135{
1136 struct xol_area *area = mm->uprobes_state.xol_area;
1137
1138 if (!area)
1139 return;
1140
1141 put_page(area->page);
1142 kfree(area->bitmap);
1143 kfree(area);
1144}
1145
32cdba1e
ON
1146void uprobe_start_dup_mmap(void)
1147{
1148 percpu_down_read(&dup_mmap_sem);
1149}
1150
1151void uprobe_end_dup_mmap(void)
1152{
1153 percpu_up_read(&dup_mmap_sem);
1154}
1155
f8ac4ec9
ON
1156void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1157{
61559a81
ON
1158 newmm->uprobes_state.xol_area = NULL;
1159
9f68f672 1160 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
f8ac4ec9 1161 set_bit(MMF_HAS_UPROBES, &newmm->flags);
9f68f672
ON
1162 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1163 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1164 }
f8ac4ec9
ON
1165}
1166
d4b3b638
SD
1167/*
1168 * - search for a free slot.
1169 */
1170static unsigned long xol_take_insn_slot(struct xol_area *area)
1171{
1172 unsigned long slot_addr;
1173 int slot_nr;
1174
1175 do {
1176 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1177 if (slot_nr < UINSNS_PER_PAGE) {
1178 if (!test_and_set_bit(slot_nr, area->bitmap))
1179 break;
1180
1181 slot_nr = UINSNS_PER_PAGE;
1182 continue;
1183 }
1184 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1185 } while (slot_nr >= UINSNS_PER_PAGE);
1186
1187 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1188 atomic_inc(&area->slot_count);
1189
1190 return slot_addr;
1191}
1192
1193/*
1194 * xol_get_insn_slot - If was not allocated a slot, then
1195 * allocate a slot.
1196 * Returns the allocated slot address or 0.
1197 */
1198static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1199{
1200 struct xol_area *area;
1201 unsigned long offset;
1202 void *vaddr;
1203
1204 area = get_xol_area(current->mm);
1205 if (!area) {
1206 area = xol_alloc_area();
1207 if (!area)
1208 return 0;
1209 }
1210 current->utask->xol_vaddr = xol_take_insn_slot(area);
1211
1212 /*
1213 * Initialize the slot if xol_vaddr points to valid
1214 * instruction slot.
1215 */
1216 if (unlikely(!current->utask->xol_vaddr))
1217 return 0;
1218
1219 current->utask->vaddr = slot_addr;
1220 offset = current->utask->xol_vaddr & ~PAGE_MASK;
1221 vaddr = kmap_atomic(area->page);
1222 memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1223 kunmap_atomic(vaddr);
65b6ecc0
RV
1224 /*
1225 * We probably need flush_icache_user_range() but it needs vma.
1226 * This should work on supported architectures too.
1227 */
1228 flush_dcache_page(area->page);
d4b3b638
SD
1229
1230 return current->utask->xol_vaddr;
1231}
1232
1233/*
1234 * xol_free_insn_slot - If slot was earlier allocated by
1235 * @xol_get_insn_slot(), make the slot available for
1236 * subsequent requests.
1237 */
1238static void xol_free_insn_slot(struct task_struct *tsk)
1239{
1240 struct xol_area *area;
1241 unsigned long vma_end;
1242 unsigned long slot_addr;
1243
1244 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1245 return;
1246
1247 slot_addr = tsk->utask->xol_vaddr;
1248
1249 if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1250 return;
1251
1252 area = tsk->mm->uprobes_state.xol_area;
1253 vma_end = area->vaddr + PAGE_SIZE;
1254 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1255 unsigned long offset;
1256 int slot_nr;
1257
1258 offset = slot_addr - area->vaddr;
1259 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1260 if (slot_nr >= UINSNS_PER_PAGE)
1261 return;
1262
1263 clear_bit(slot_nr, area->bitmap);
1264 atomic_dec(&area->slot_count);
1265 if (waitqueue_active(&area->wq))
1266 wake_up(&area->wq);
1267
1268 tsk->utask->xol_vaddr = 0;
1269 }
1270}
1271
0326f5a9
SD
1272/**
1273 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1274 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1275 * instruction.
1276 * Return the address of the breakpoint instruction.
1277 */
1278unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1279{
1280 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1281}
1282
1283/*
1284 * Called with no locks held.
1285 * Called in context of a exiting or a exec-ing thread.
1286 */
1287void uprobe_free_utask(struct task_struct *t)
1288{
1289 struct uprobe_task *utask = t->utask;
1290
0326f5a9
SD
1291 if (!utask)
1292 return;
1293
1294 if (utask->active_uprobe)
1295 put_uprobe(utask->active_uprobe);
1296
d4b3b638 1297 xol_free_insn_slot(t);
0326f5a9
SD
1298 kfree(utask);
1299 t->utask = NULL;
1300}
1301
1302/*
1303 * Called in context of a new clone/fork from copy_process.
1304 */
1305void uprobe_copy_process(struct task_struct *t)
1306{
1307 t->utask = NULL;
0326f5a9
SD
1308}
1309
1310/*
1311 * Allocate a uprobe_task object for the task.
1312 * Called when the thread hits a breakpoint for the first time.
1313 *
1314 * Returns:
1315 * - pointer to new uprobe_task on success
1316 * - NULL otherwise
1317 */
1318static struct uprobe_task *add_utask(void)
1319{
1320 struct uprobe_task *utask;
1321
1322 utask = kzalloc(sizeof *utask, GFP_KERNEL);
1323 if (unlikely(!utask))
1324 return NULL;
1325
0326f5a9
SD
1326 current->utask = utask;
1327 return utask;
1328}
1329
1330/* Prepare to single-step probed instruction out of line. */
1331static int
1332pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1333{
d4b3b638
SD
1334 if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1335 return 0;
1336
0326f5a9
SD
1337 return -EFAULT;
1338}
1339
1340/*
1341 * If we are singlestepping, then ensure this thread is not connected to
1342 * non-fatal signals until completion of singlestep. When xol insn itself
1343 * triggers the signal, restart the original insn even if the task is
1344 * already SIGKILL'ed (since coredump should report the correct ip). This
1345 * is even more important if the task has a handler for SIGSEGV/etc, The
1346 * _same_ instruction should be repeated again after return from the signal
1347 * handler, and SSTEP can never finish in this case.
1348 */
1349bool uprobe_deny_signal(void)
1350{
1351 struct task_struct *t = current;
1352 struct uprobe_task *utask = t->utask;
1353
1354 if (likely(!utask || !utask->active_uprobe))
1355 return false;
1356
1357 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1358
1359 if (signal_pending(t)) {
1360 spin_lock_irq(&t->sighand->siglock);
1361 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1362 spin_unlock_irq(&t->sighand->siglock);
1363
1364 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1365 utask->state = UTASK_SSTEP_TRAPPED;
1366 set_tsk_thread_flag(t, TIF_UPROBE);
1367 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1368 }
1369 }
1370
1371 return true;
1372}
1373
1374/*
1375 * Avoid singlestepping the original instruction if the original instruction
1376 * is a NOP or can be emulated.
1377 */
1378static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1379{
71434f2f 1380 if (test_bit(UPROBE_SKIP_SSTEP, &uprobe->flags)) {
0578a970
ON
1381 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1382 return true;
71434f2f 1383 clear_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
0578a970 1384 }
0326f5a9
SD
1385 return false;
1386}
1387
499a4f3e
ON
1388static void mmf_recalc_uprobes(struct mm_struct *mm)
1389{
1390 struct vm_area_struct *vma;
1391
1392 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1393 if (!valid_vma(vma, false))
1394 continue;
1395 /*
1396 * This is not strictly accurate, we can race with
1397 * uprobe_unregister() and see the already removed
1398 * uprobe if delete_uprobe() was not yet called.
63633cbf 1399 * Or this uprobe can be filtered out.
499a4f3e
ON
1400 */
1401 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1402 return;
1403 }
1404
1405 clear_bit(MMF_HAS_UPROBES, &mm->flags);
1406}
1407
ec75fba9
ON
1408static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
1409{
1410 struct page *page;
1411 uprobe_opcode_t opcode;
1412 int result;
1413
1414 pagefault_disable();
1415 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1416 sizeof(opcode));
1417 pagefault_enable();
1418
1419 if (likely(result == 0))
1420 goto out;
1421
1422 result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1423 if (result < 0)
1424 return result;
1425
1426 copy_opcode(page, vaddr, &opcode);
1427 put_page(page);
1428 out:
1429 return is_swbp_insn(&opcode);
1430}
1431
d790d346 1432static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
0326f5a9 1433{
3a9ea052
ON
1434 struct mm_struct *mm = current->mm;
1435 struct uprobe *uprobe = NULL;
0326f5a9 1436 struct vm_area_struct *vma;
0326f5a9 1437
0326f5a9
SD
1438 down_read(&mm->mmap_sem);
1439 vma = find_vma(mm, bp_vaddr);
3a9ea052
ON
1440 if (vma && vma->vm_start <= bp_vaddr) {
1441 if (valid_vma(vma, false)) {
cb113b47
ON
1442 struct inode *inode = vma->vm_file->f_mapping->host;
1443 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
0326f5a9 1444
3a9ea052
ON
1445 uprobe = find_uprobe(inode, offset);
1446 }
d790d346
ON
1447
1448 if (!uprobe)
1449 *is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1450 } else {
1451 *is_swbp = -EFAULT;
0326f5a9 1452 }
499a4f3e
ON
1453
1454 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1455 mmf_recalc_uprobes(mm);
0326f5a9
SD
1456 up_read(&mm->mmap_sem);
1457
3a9ea052
ON
1458 return uprobe;
1459}
1460
1461/*
1462 * Run handler and ask thread to singlestep.
1463 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1464 */
1465static void handle_swbp(struct pt_regs *regs)
1466{
1467 struct uprobe_task *utask;
1468 struct uprobe *uprobe;
1469 unsigned long bp_vaddr;
56bb4cf6 1470 int uninitialized_var(is_swbp);
3a9ea052
ON
1471
1472 bp_vaddr = uprobe_get_swbp_addr(regs);
d790d346 1473 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
3a9ea052 1474
0326f5a9 1475 if (!uprobe) {
56bb4cf6
ON
1476 if (is_swbp > 0) {
1477 /* No matching uprobe; signal SIGTRAP. */
1478 send_sig(SIGTRAP, current, 0);
1479 } else {
1480 /*
1481 * Either we raced with uprobe_unregister() or we can't
1482 * access this memory. The latter is only possible if
1483 * another thread plays with our ->mm. In both cases
1484 * we can simply restart. If this vma was unmapped we
1485 * can pretend this insn was not executed yet and get
1486 * the (correct) SIGSEGV after restart.
1487 */
1488 instruction_pointer_set(regs, bp_vaddr);
1489 }
0326f5a9
SD
1490 return;
1491 }
142b18dd
ON
1492 /*
1493 * TODO: move copy_insn/etc into _register and remove this hack.
1494 * After we hit the bp, _unregister + _register can install the
1495 * new and not-yet-analyzed uprobe at the same address, restart.
1496 */
1497 smp_rmb(); /* pairs with wmb() in install_breakpoint() */
71434f2f 1498 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
142b18dd 1499 goto restart;
0326f5a9
SD
1500
1501 utask = current->utask;
1502 if (!utask) {
1503 utask = add_utask();
1504 /* Cannot allocate; re-execute the instruction. */
1505 if (!utask)
0578a970 1506 goto restart;
0326f5a9 1507 }
746a9e6b 1508
0326f5a9 1509 handler_chain(uprobe, regs);
0578a970
ON
1510 if (can_skip_sstep(uprobe, regs))
1511 goto out;
0326f5a9 1512
0326f5a9 1513 if (!pre_ssout(uprobe, regs, bp_vaddr)) {
746a9e6b
ON
1514 utask->active_uprobe = uprobe;
1515 utask->state = UTASK_SSTEP;
0326f5a9
SD
1516 return;
1517 }
1518
0578a970
ON
1519restart:
1520 /*
1521 * cannot singlestep; cannot skip instruction;
1522 * re-execute the instruction.
1523 */
1524 instruction_pointer_set(regs, bp_vaddr);
1525out:
8bd87445 1526 put_uprobe(uprobe);
0326f5a9
SD
1527}
1528
1529/*
1530 * Perform required fix-ups and disable singlestep.
1531 * Allow pending signals to take effect.
1532 */
1533static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1534{
1535 struct uprobe *uprobe;
1536
1537 uprobe = utask->active_uprobe;
1538 if (utask->state == UTASK_SSTEP_ACK)
1539 arch_uprobe_post_xol(&uprobe->arch, regs);
1540 else if (utask->state == UTASK_SSTEP_TRAPPED)
1541 arch_uprobe_abort_xol(&uprobe->arch, regs);
1542 else
1543 WARN_ON_ONCE(1);
1544
1545 put_uprobe(uprobe);
1546 utask->active_uprobe = NULL;
1547 utask->state = UTASK_RUNNING;
d4b3b638 1548 xol_free_insn_slot(current);
0326f5a9
SD
1549
1550 spin_lock_irq(&current->sighand->siglock);
1551 recalc_sigpending(); /* see uprobe_deny_signal() */
1552 spin_unlock_irq(&current->sighand->siglock);
1553}
1554
1555/*
1b08e907
ON
1556 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1557 * allows the thread to return from interrupt. After that handle_swbp()
1558 * sets utask->active_uprobe.
0326f5a9 1559 *
1b08e907
ON
1560 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1561 * and allows the thread to return from interrupt.
0326f5a9
SD
1562 *
1563 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1564 * uprobe_notify_resume().
1565 */
1566void uprobe_notify_resume(struct pt_regs *regs)
1567{
1568 struct uprobe_task *utask;
1569
db023ea5
ON
1570 clear_thread_flag(TIF_UPROBE);
1571
0326f5a9 1572 utask = current->utask;
1b08e907 1573 if (utask && utask->active_uprobe)
0326f5a9 1574 handle_singlestep(utask, regs);
1b08e907
ON
1575 else
1576 handle_swbp(regs);
0326f5a9
SD
1577}
1578
1579/*
1580 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1581 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1582 */
1583int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1584{
f8ac4ec9 1585 if (!current->mm || !test_bit(MMF_HAS_UPROBES, &current->mm->flags))
0326f5a9
SD
1586 return 0;
1587
0326f5a9 1588 set_thread_flag(TIF_UPROBE);
0326f5a9
SD
1589 return 1;
1590}
1591
1592/*
1593 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1594 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1595 */
1596int uprobe_post_sstep_notifier(struct pt_regs *regs)
1597{
1598 struct uprobe_task *utask = current->utask;
1599
1600 if (!current->mm || !utask || !utask->active_uprobe)
1601 /* task is currently not uprobed */
1602 return 0;
1603
1604 utask->state = UTASK_SSTEP_ACK;
1605 set_thread_flag(TIF_UPROBE);
1606 return 1;
1607}
1608
1609static struct notifier_block uprobe_exception_nb = {
1610 .notifier_call = arch_uprobe_exception_notify,
1611 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
1612};
1613
2b144498
SD
1614static int __init init_uprobes(void)
1615{
1616 int i;
1617
1618 for (i = 0; i < UPROBES_HASH_SZ; i++) {
1619 mutex_init(&uprobes_mutex[i]);
1620 mutex_init(&uprobes_mmap_mutex[i]);
1621 }
0326f5a9 1622
32cdba1e
ON
1623 if (percpu_init_rwsem(&dup_mmap_sem))
1624 return -ENOMEM;
1625
0326f5a9 1626 return register_die_notifier(&uprobe_exception_nb);
2b144498 1627}
0326f5a9 1628module_init(init_uprobes);
2b144498
SD
1629
1630static void __exit exit_uprobes(void)
1631{
1632}
2b144498 1633module_exit(exit_uprobes);