uprobes: Kill uprobe->copy_mutex
[linux-2.6-block.git] / kernel / events / uprobes.c
CommitLineData
2b144498 1/*
7b2d81d4 2 * User-space Probes (UProbes)
2b144498
SD
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
35aa621b 18 * Copyright (C) IBM Corporation, 2008-2012
2b144498
SD
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
35aa621b 22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
2b144498
SD
23 */
24
25#include <linux/kernel.h>
26#include <linux/highmem.h>
27#include <linux/pagemap.h> /* read_mapping_page */
28#include <linux/slab.h>
29#include <linux/sched.h>
30#include <linux/rmap.h> /* anon_vma_prepare */
31#include <linux/mmu_notifier.h> /* set_pte_at_notify */
32#include <linux/swap.h> /* try_to_free_swap */
0326f5a9
SD
33#include <linux/ptrace.h> /* user_enable_single_step */
34#include <linux/kdebug.h> /* notifier mechanism */
194f8dcb 35#include "../../mm/internal.h" /* munlock_vma_page */
32cdba1e 36#include <linux/percpu-rwsem.h>
7b2d81d4 37
2b144498
SD
38#include <linux/uprobes.h>
39
d4b3b638
SD
40#define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
41#define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
42
2b144498 43static struct rb_root uprobes_tree = RB_ROOT;
7b2d81d4 44
2b144498
SD
45static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
46
47#define UPROBES_HASH_SZ 13
7b2d81d4 48
c5784de2
PZ
49/*
50 * We need separate register/unregister and mmap/munmap lock hashes because
51 * of mmap_sem nesting.
52 *
53 * uprobe_register() needs to install probes on (potentially) all processes
54 * and thus needs to acquire multiple mmap_sems (consequtively, not
55 * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
56 * for the particular process doing the mmap.
57 *
58 * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
59 * because of lock order against i_mmap_mutex. This means there's a hole in
60 * the register vma iteration where a mmap() can happen.
61 *
62 * Thus uprobe_register() can race with uprobe_mmap() and we can try and
63 * install a probe where one is already installed.
64 */
65
2b144498
SD
66/* serialize (un)register */
67static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
7b2d81d4
IM
68
69#define uprobes_hash(v) (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498
SD
70
71/* serialize uprobe->pending_list */
72static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
7b2d81d4 73#define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498 74
32cdba1e
ON
75static struct percpu_rw_semaphore dup_mmap_sem;
76
2b144498 77/*
7b2d81d4 78 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
2b144498
SD
79 * events active at this time. Probably a fine grained per inode count is
80 * better?
81 */
82static atomic_t uprobe_events = ATOMIC_INIT(0);
83
cb9a19fe 84/* Have a copy of original instruction */
71434f2f 85#define UPROBE_COPY_INSN 0
cb9a19fe 86/* Can skip singlestep */
bb929284 87#define UPROBE_SKIP_SSTEP 1
cb9a19fe 88
3ff54efd
SD
89struct uprobe {
90 struct rb_node rb_node; /* node in the rb tree */
91 atomic_t ref;
e591c8d7 92 struct rw_semaphore register_rwsem;
3ff54efd
SD
93 struct rw_semaphore consumer_rwsem;
94 struct list_head pending_list;
95 struct uprobe_consumer *consumers;
96 struct inode *inode; /* Also hold a ref to inode */
97 loff_t offset;
71434f2f 98 unsigned long flags;
3ff54efd
SD
99 struct arch_uprobe arch;
100};
101
2b144498
SD
102/*
103 * valid_vma: Verify if the specified vma is an executable vma
104 * Relax restrictions while unregistering: vm_flags might have
105 * changed after breakpoint was inserted.
106 * - is_register: indicates if we are in register context.
107 * - Return 1 if the specified virtual address is in an
108 * executable vma.
109 */
110static bool valid_vma(struct vm_area_struct *vma, bool is_register)
111{
e40cfce6 112 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED;
2b144498 113
e40cfce6
ON
114 if (is_register)
115 flags |= VM_WRITE;
2b144498 116
e40cfce6 117 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
2b144498
SD
118}
119
57683f72 120static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
2b144498 121{
57683f72 122 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
2b144498
SD
123}
124
cb113b47
ON
125static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
126{
127 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
128}
129
2b144498
SD
130/**
131 * __replace_page - replace page in vma by new page.
132 * based on replace_page in mm/ksm.c
133 *
134 * @vma: vma that holds the pte pointing to page
c517ee74 135 * @addr: address the old @page is mapped at
2b144498
SD
136 * @page: the cowed page we are replacing by kpage
137 * @kpage: the modified page we replace page by
138 *
139 * Returns 0 on success, -EFAULT on failure.
140 */
c517ee74
ON
141static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
142 struct page *page, struct page *kpage)
2b144498
SD
143{
144 struct mm_struct *mm = vma->vm_mm;
5323ce71
ON
145 spinlock_t *ptl;
146 pte_t *ptep;
9f92448c 147 int err;
6bdb913f
HE
148 /* For mmu_notifiers */
149 const unsigned long mmun_start = addr;
150 const unsigned long mmun_end = addr + PAGE_SIZE;
2b144498 151
194f8dcb 152 /* For try_to_free_swap() and munlock_vma_page() below */
9f92448c
ON
153 lock_page(page);
154
6bdb913f 155 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
9f92448c 156 err = -EAGAIN;
5323ce71 157 ptep = page_check_address(page, mm, addr, &ptl, 0);
2b144498 158 if (!ptep)
9f92448c 159 goto unlock;
2b144498
SD
160
161 get_page(kpage);
162 page_add_new_anon_rmap(kpage, vma, addr);
163
7396fa81
SD
164 if (!PageAnon(page)) {
165 dec_mm_counter(mm, MM_FILEPAGES);
166 inc_mm_counter(mm, MM_ANONPAGES);
167 }
168
2b144498
SD
169 flush_cache_page(vma, addr, pte_pfn(*ptep));
170 ptep_clear_flush(vma, addr, ptep);
171 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
172
173 page_remove_rmap(page);
174 if (!page_mapped(page))
175 try_to_free_swap(page);
2b144498 176 pte_unmap_unlock(ptep, ptl);
2b144498 177
194f8dcb
ON
178 if (vma->vm_flags & VM_LOCKED)
179 munlock_vma_page(page);
180 put_page(page);
181
9f92448c
ON
182 err = 0;
183 unlock:
6bdb913f 184 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
9f92448c
ON
185 unlock_page(page);
186 return err;
2b144498
SD
187}
188
189/**
5cb4ac3a 190 * is_swbp_insn - check if instruction is breakpoint instruction.
2b144498 191 * @insn: instruction to be checked.
5cb4ac3a 192 * Default implementation of is_swbp_insn
2b144498
SD
193 * Returns true if @insn is a breakpoint instruction.
194 */
5cb4ac3a 195bool __weak is_swbp_insn(uprobe_opcode_t *insn)
2b144498 196{
5cb4ac3a 197 return *insn == UPROBE_SWBP_INSN;
2b144498
SD
198}
199
cceb55aa
ON
200static void copy_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *opcode)
201{
202 void *kaddr = kmap_atomic(page);
203 memcpy(opcode, kaddr + (vaddr & ~PAGE_MASK), UPROBE_SWBP_INSN_SIZE);
204 kunmap_atomic(kaddr);
205}
206
ed6f6a50
ON
207static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
208{
209 uprobe_opcode_t old_opcode;
210 bool is_swbp;
211
212 copy_opcode(page, vaddr, &old_opcode);
213 is_swbp = is_swbp_insn(&old_opcode);
214
215 if (is_swbp_insn(new_opcode)) {
216 if (is_swbp) /* register: already installed? */
217 return 0;
218 } else {
219 if (!is_swbp) /* unregister: was it changed by us? */
076a365b 220 return 0;
ed6f6a50
ON
221 }
222
223 return 1;
224}
225
2b144498
SD
226/*
227 * NOTE:
228 * Expect the breakpoint instruction to be the smallest size instruction for
229 * the architecture. If an arch has variable length instruction and the
230 * breakpoint instruction is not of the smallest length instruction
cceb55aa 231 * supported by that architecture then we need to modify is_swbp_at_addr and
2b144498
SD
232 * write_opcode accordingly. This would never be a problem for archs that
233 * have fixed length instructions.
234 */
235
236/*
237 * write_opcode - write the opcode at a given virtual address.
238 * @mm: the probed process address space.
2b144498
SD
239 * @vaddr: the virtual address to store the opcode.
240 * @opcode: opcode to be written at @vaddr.
241 *
242 * Called with mm->mmap_sem held (for read and with a reference to
243 * mm).
244 *
245 * For mm @mm, write the opcode at @vaddr.
246 * Return 0 (success) or a negative errno.
247 */
cceb55aa
ON
248static int write_opcode(struct mm_struct *mm, unsigned long vaddr,
249 uprobe_opcode_t opcode)
2b144498
SD
250{
251 struct page *old_page, *new_page;
2b144498
SD
252 void *vaddr_old, *vaddr_new;
253 struct vm_area_struct *vma;
2b144498 254 int ret;
f403072c 255
5323ce71 256retry:
2b144498 257 /* Read the page with vaddr into memory */
75ed82ea 258 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
2b144498
SD
259 if (ret <= 0)
260 return ret;
7b2d81d4 261
ed6f6a50
ON
262 ret = verify_opcode(old_page, vaddr, &opcode);
263 if (ret <= 0)
264 goto put_old;
265
2b144498
SD
266 ret = -ENOMEM;
267 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
268 if (!new_page)
9f92448c 269 goto put_old;
2b144498
SD
270
271 __SetPageUptodate(new_page);
272
2b144498
SD
273 /* copy the page now that we've got it stable */
274 vaddr_old = kmap_atomic(old_page);
275 vaddr_new = kmap_atomic(new_page);
276
277 memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
d9c4a30e 278 memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
2b144498
SD
279
280 kunmap_atomic(vaddr_new);
281 kunmap_atomic(vaddr_old);
282
283 ret = anon_vma_prepare(vma);
284 if (ret)
9f92448c 285 goto put_new;
2b144498 286
c517ee74 287 ret = __replace_page(vma, vaddr, old_page, new_page);
2b144498 288
9f92448c 289put_new:
2b144498 290 page_cache_release(new_page);
9f92448c 291put_old:
7b2d81d4
IM
292 put_page(old_page);
293
5323ce71
ON
294 if (unlikely(ret == -EAGAIN))
295 goto retry;
2b144498
SD
296 return ret;
297}
298
2b144498 299/**
5cb4ac3a 300 * set_swbp - store breakpoint at a given address.
e3343e6a 301 * @auprobe: arch specific probepoint information.
2b144498 302 * @mm: the probed process address space.
2b144498
SD
303 * @vaddr: the virtual address to insert the opcode.
304 *
305 * For mm @mm, store the breakpoint instruction at @vaddr.
306 * Return 0 (success) or a negative errno.
307 */
5cb4ac3a 308int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 309{
cceb55aa 310 return write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
2b144498
SD
311}
312
313/**
314 * set_orig_insn - Restore the original instruction.
315 * @mm: the probed process address space.
e3343e6a 316 * @auprobe: arch specific probepoint information.
2b144498 317 * @vaddr: the virtual address to insert the opcode.
2b144498
SD
318 *
319 * For mm @mm, restore the original opcode (opcode) at @vaddr.
320 * Return 0 (success) or a negative errno.
321 */
7b2d81d4 322int __weak
ded86e7c 323set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 324{
cceb55aa 325 return write_opcode(mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
2b144498
SD
326}
327
328static int match_uprobe(struct uprobe *l, struct uprobe *r)
329{
330 if (l->inode < r->inode)
331 return -1;
7b2d81d4 332
2b144498
SD
333 if (l->inode > r->inode)
334 return 1;
2b144498 335
7b2d81d4
IM
336 if (l->offset < r->offset)
337 return -1;
338
339 if (l->offset > r->offset)
340 return 1;
2b144498
SD
341
342 return 0;
343}
344
345static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
346{
347 struct uprobe u = { .inode = inode, .offset = offset };
348 struct rb_node *n = uprobes_tree.rb_node;
349 struct uprobe *uprobe;
350 int match;
351
352 while (n) {
353 uprobe = rb_entry(n, struct uprobe, rb_node);
354 match = match_uprobe(&u, uprobe);
355 if (!match) {
356 atomic_inc(&uprobe->ref);
357 return uprobe;
358 }
7b2d81d4 359
2b144498
SD
360 if (match < 0)
361 n = n->rb_left;
362 else
363 n = n->rb_right;
364 }
365 return NULL;
366}
367
368/*
369 * Find a uprobe corresponding to a given inode:offset
370 * Acquires uprobes_treelock
371 */
372static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
373{
374 struct uprobe *uprobe;
2b144498 375
6f47caa0 376 spin_lock(&uprobes_treelock);
2b144498 377 uprobe = __find_uprobe(inode, offset);
6f47caa0 378 spin_unlock(&uprobes_treelock);
7b2d81d4 379
2b144498
SD
380 return uprobe;
381}
382
383static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
384{
385 struct rb_node **p = &uprobes_tree.rb_node;
386 struct rb_node *parent = NULL;
387 struct uprobe *u;
388 int match;
389
390 while (*p) {
391 parent = *p;
392 u = rb_entry(parent, struct uprobe, rb_node);
393 match = match_uprobe(uprobe, u);
394 if (!match) {
395 atomic_inc(&u->ref);
396 return u;
397 }
398
399 if (match < 0)
400 p = &parent->rb_left;
401 else
402 p = &parent->rb_right;
403
404 }
7b2d81d4 405
2b144498
SD
406 u = NULL;
407 rb_link_node(&uprobe->rb_node, parent, p);
408 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
409 /* get access + creation ref */
410 atomic_set(&uprobe->ref, 2);
7b2d81d4 411
2b144498
SD
412 return u;
413}
414
415/*
7b2d81d4 416 * Acquire uprobes_treelock.
2b144498
SD
417 * Matching uprobe already exists in rbtree;
418 * increment (access refcount) and return the matching uprobe.
419 *
420 * No matching uprobe; insert the uprobe in rb_tree;
421 * get a double refcount (access + creation) and return NULL.
422 */
423static struct uprobe *insert_uprobe(struct uprobe *uprobe)
424{
2b144498
SD
425 struct uprobe *u;
426
6f47caa0 427 spin_lock(&uprobes_treelock);
2b144498 428 u = __insert_uprobe(uprobe);
6f47caa0 429 spin_unlock(&uprobes_treelock);
7b2d81d4 430
2b144498
SD
431 return u;
432}
433
434static void put_uprobe(struct uprobe *uprobe)
435{
436 if (atomic_dec_and_test(&uprobe->ref))
437 kfree(uprobe);
438}
439
440static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
441{
442 struct uprobe *uprobe, *cur_uprobe;
443
444 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
445 if (!uprobe)
446 return NULL;
447
448 uprobe->inode = igrab(inode);
449 uprobe->offset = offset;
e591c8d7 450 init_rwsem(&uprobe->register_rwsem);
2b144498 451 init_rwsem(&uprobe->consumer_rwsem);
bbc33d05
ON
452 /* For now assume that the instruction need not be single-stepped */
453 __set_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
2b144498
SD
454
455 /* add to uprobes_tree, sorted on inode:offset */
456 cur_uprobe = insert_uprobe(uprobe);
457
458 /* a uprobe exists for this inode:offset combination */
459 if (cur_uprobe) {
460 kfree(uprobe);
461 uprobe = cur_uprobe;
462 iput(inode);
7b2d81d4 463 } else {
2b144498 464 atomic_inc(&uprobe_events);
7b2d81d4
IM
465 }
466
2b144498
SD
467 return uprobe;
468}
469
0326f5a9
SD
470static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
471{
472 struct uprobe_consumer *uc;
473
e591c8d7 474 down_read(&uprobe->register_rwsem);
fe20d71f
ON
475 for (uc = uprobe->consumers; uc; uc = uc->next)
476 uc->handler(uc, regs);
e591c8d7 477 up_read(&uprobe->register_rwsem);
0326f5a9
SD
478}
479
9a98e03c 480static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
481{
482 down_write(&uprobe->consumer_rwsem);
e3343e6a
SD
483 uc->next = uprobe->consumers;
484 uprobe->consumers = uc;
2b144498 485 up_write(&uprobe->consumer_rwsem);
2b144498
SD
486}
487
488/*
e3343e6a
SD
489 * For uprobe @uprobe, delete the consumer @uc.
490 * Return true if the @uc is deleted successfully
2b144498
SD
491 * or return false.
492 */
e3343e6a 493static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
494{
495 struct uprobe_consumer **con;
496 bool ret = false;
497
498 down_write(&uprobe->consumer_rwsem);
499 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
e3343e6a
SD
500 if (*con == uc) {
501 *con = uc->next;
2b144498
SD
502 ret = true;
503 break;
504 }
505 }
506 up_write(&uprobe->consumer_rwsem);
7b2d81d4 507
2b144498
SD
508 return ret;
509}
510
e3343e6a 511static int
d436615e 512__copy_insn(struct address_space *mapping, struct file *filp, char *insn,
593609a5 513 unsigned long nbytes, loff_t offset)
2b144498 514{
2b144498
SD
515 struct page *page;
516 void *vaddr;
593609a5
ON
517 unsigned long off;
518 pgoff_t idx;
2b144498
SD
519
520 if (!filp)
521 return -EINVAL;
522
cc359d18
ON
523 if (!mapping->a_ops->readpage)
524 return -EIO;
525
593609a5
ON
526 idx = offset >> PAGE_CACHE_SHIFT;
527 off = offset & ~PAGE_MASK;
2b144498
SD
528
529 /*
530 * Ensure that the page that has the original instruction is
531 * populated and in page-cache.
532 */
533 page = read_mapping_page(mapping, idx, filp);
534 if (IS_ERR(page))
535 return PTR_ERR(page);
536
537 vaddr = kmap_atomic(page);
593609a5 538 memcpy(insn, vaddr + off, nbytes);
2b144498
SD
539 kunmap_atomic(vaddr);
540 page_cache_release(page);
7b2d81d4 541
2b144498
SD
542 return 0;
543}
544
d436615e 545static int copy_insn(struct uprobe *uprobe, struct file *filp)
2b144498
SD
546{
547 struct address_space *mapping;
2b144498 548 unsigned long nbytes;
7b2d81d4 549 int bytes;
2b144498 550
d436615e 551 nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
2b144498
SD
552 mapping = uprobe->inode->i_mapping;
553
554 /* Instruction at end of binary; copy only available bytes */
555 if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
556 bytes = uprobe->inode->i_size - uprobe->offset;
557 else
558 bytes = MAX_UINSN_BYTES;
559
560 /* Instruction at the page-boundary; copy bytes in second page */
561 if (nbytes < bytes) {
fc36f595
ON
562 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
563 bytes - nbytes, uprobe->offset + nbytes);
564 if (err)
565 return err;
2b144498
SD
566 bytes = nbytes;
567 }
d436615e 568 return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
2b144498
SD
569}
570
cb9a19fe
ON
571static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
572 struct mm_struct *mm, unsigned long vaddr)
573{
574 int ret = 0;
575
71434f2f 576 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
cb9a19fe
ON
577 return ret;
578
d4d3ccc6
ON
579 /* TODO: move this into _register, until then we abuse this sem. */
580 down_write(&uprobe->consumer_rwsem);
71434f2f 581 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
4710f05f
ON
582 goto out;
583
cb9a19fe
ON
584 ret = copy_insn(uprobe, file);
585 if (ret)
586 goto out;
587
588 ret = -ENOTSUPP;
589 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
590 goto out;
591
592 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
593 if (ret)
594 goto out;
595
596 /* write_opcode() assumes we don't cross page boundary */
597 BUG_ON((uprobe->offset & ~PAGE_MASK) +
598 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
599
600 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
71434f2f 601 set_bit(UPROBE_COPY_INSN, &uprobe->flags);
cb9a19fe
ON
602
603 out:
d4d3ccc6 604 up_write(&uprobe->consumer_rwsem);
4710f05f 605
cb9a19fe
ON
606 return ret;
607}
608
63633cbf
ON
609static bool filter_chain(struct uprobe *uprobe)
610{
1ff6fee5
ON
611 struct uprobe_consumer *uc;
612 bool ret = false;
613
614 down_read(&uprobe->consumer_rwsem);
615 for (uc = uprobe->consumers; uc; uc = uc->next) {
616 /* TODO: ret = uc->filter(...) */
617 ret = true;
618 if (ret)
619 break;
620 }
621 up_read(&uprobe->consumer_rwsem);
622
623 return ret;
63633cbf
ON
624}
625
e3343e6a
SD
626static int
627install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
816c03fb 628 struct vm_area_struct *vma, unsigned long vaddr)
2b144498 629{
f8ac4ec9 630 bool first_uprobe;
2b144498
SD
631 int ret;
632
633 /*
634 * If probe is being deleted, unregister thread could be done with
635 * the vma-rmap-walk through. Adding a probe now can be fatal since
63633cbf
ON
636 * nobody will be able to cleanup. But in this case filter_chain()
637 * must return false, all consumers have gone away.
2b144498 638 */
63633cbf 639 if (!filter_chain(uprobe))
78f74116 640 return 0;
2b144498 641
cb9a19fe
ON
642 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
643 if (ret)
644 return ret;
682968e0 645
f8ac4ec9
ON
646 /*
647 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
648 * the task can hit this breakpoint right after __replace_page().
649 */
650 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
651 if (first_uprobe)
652 set_bit(MMF_HAS_UPROBES, &mm->flags);
653
816c03fb 654 ret = set_swbp(&uprobe->arch, mm, vaddr);
9f68f672
ON
655 if (!ret)
656 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
657 else if (first_uprobe)
f8ac4ec9 658 clear_bit(MMF_HAS_UPROBES, &mm->flags);
2b144498
SD
659
660 return ret;
661}
662
076a365b 663static int
816c03fb 664remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 665{
9f68f672 666 if (!test_bit(MMF_HAS_UPROBES, &mm->flags))
076a365b 667 return 0;
9f68f672 668
63633cbf
ON
669 if (filter_chain(uprobe))
670 return 0;
671
9f68f672 672 set_bit(MMF_RECALC_UPROBES, &mm->flags);
076a365b 673 return set_orig_insn(&uprobe->arch, mm, vaddr);
2b144498
SD
674}
675
0326f5a9 676/*
778b032d
ON
677 * There could be threads that have already hit the breakpoint. They
678 * will recheck the current insn and restart if find_uprobe() fails.
679 * See find_active_uprobe().
0326f5a9 680 */
2b144498
SD
681static void delete_uprobe(struct uprobe *uprobe)
682{
6f47caa0 683 spin_lock(&uprobes_treelock);
2b144498 684 rb_erase(&uprobe->rb_node, &uprobes_tree);
6f47caa0 685 spin_unlock(&uprobes_treelock);
2b144498
SD
686 iput(uprobe->inode);
687 put_uprobe(uprobe);
688 atomic_dec(&uprobe_events);
689}
690
26872090
ON
691struct map_info {
692 struct map_info *next;
693 struct mm_struct *mm;
816c03fb 694 unsigned long vaddr;
26872090
ON
695};
696
697static inline struct map_info *free_map_info(struct map_info *info)
2b144498 698{
26872090
ON
699 struct map_info *next = info->next;
700 kfree(info);
701 return next;
702}
703
704static struct map_info *
705build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
706{
707 unsigned long pgoff = offset >> PAGE_SHIFT;
2b144498 708 struct vm_area_struct *vma;
26872090
ON
709 struct map_info *curr = NULL;
710 struct map_info *prev = NULL;
711 struct map_info *info;
712 int more = 0;
2b144498 713
26872090
ON
714 again:
715 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 716 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
2b144498
SD
717 if (!valid_vma(vma, is_register))
718 continue;
719
7a5bfb66
ON
720 if (!prev && !more) {
721 /*
722 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
723 * reclaim. This is optimistic, no harm done if it fails.
724 */
725 prev = kmalloc(sizeof(struct map_info),
726 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
727 if (prev)
728 prev->next = NULL;
729 }
26872090
ON
730 if (!prev) {
731 more++;
732 continue;
2b144498 733 }
2b144498 734
26872090
ON
735 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
736 continue;
7b2d81d4 737
26872090
ON
738 info = prev;
739 prev = prev->next;
740 info->next = curr;
741 curr = info;
2b144498 742
26872090 743 info->mm = vma->vm_mm;
57683f72 744 info->vaddr = offset_to_vaddr(vma, offset);
26872090 745 }
2b144498
SD
746 mutex_unlock(&mapping->i_mmap_mutex);
747
26872090
ON
748 if (!more)
749 goto out;
750
751 prev = curr;
752 while (curr) {
753 mmput(curr->mm);
754 curr = curr->next;
755 }
7b2d81d4 756
26872090
ON
757 do {
758 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
759 if (!info) {
760 curr = ERR_PTR(-ENOMEM);
761 goto out;
762 }
763 info->next = prev;
764 prev = info;
765 } while (--more);
766
767 goto again;
768 out:
769 while (prev)
770 prev = free_map_info(prev);
771 return curr;
2b144498
SD
772}
773
774static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
775{
26872090
ON
776 struct map_info *info;
777 int err = 0;
2b144498 778
32cdba1e 779 percpu_down_write(&dup_mmap_sem);
26872090
ON
780 info = build_map_info(uprobe->inode->i_mapping,
781 uprobe->offset, is_register);
32cdba1e
ON
782 if (IS_ERR(info)) {
783 err = PTR_ERR(info);
784 goto out;
785 }
7b2d81d4 786
26872090
ON
787 while (info) {
788 struct mm_struct *mm = info->mm;
789 struct vm_area_struct *vma;
7b2d81d4 790
076a365b 791 if (err && is_register)
26872090 792 goto free;
7b2d81d4 793
77fc4af1 794 down_write(&mm->mmap_sem);
f4d6dfe5
ON
795 vma = find_vma(mm, info->vaddr);
796 if (!vma || !valid_vma(vma, is_register) ||
797 vma->vm_file->f_mapping->host != uprobe->inode)
26872090
ON
798 goto unlock;
799
f4d6dfe5
ON
800 if (vma->vm_start > info->vaddr ||
801 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
26872090 802 goto unlock;
2b144498 803
78f74116 804 if (is_register)
26872090 805 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
78f74116 806 else
076a365b 807 err |= remove_breakpoint(uprobe, mm, info->vaddr);
78f74116 808
26872090
ON
809 unlock:
810 up_write(&mm->mmap_sem);
811 free:
812 mmput(mm);
813 info = free_map_info(info);
2b144498 814 }
32cdba1e
ON
815 out:
816 percpu_up_write(&dup_mmap_sem);
26872090 817 return err;
2b144498
SD
818}
819
9a98e03c 820static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498 821{
9a98e03c 822 consumer_add(uprobe, uc);
bb929284 823 return register_for_each_vma(uprobe, true);
2b144498
SD
824}
825
04aab9b2 826static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498 827{
04aab9b2
ON
828 int err;
829
830 if (!consumer_del(uprobe, uc)) /* WARN? */
831 return;
2b144498 832
04aab9b2 833 err = register_for_each_vma(uprobe, false);
bb929284
ON
834 /* TODO : cant unregister? schedule a worker thread */
835 if (!uprobe->consumers && !err)
836 delete_uprobe(uprobe);
2b144498
SD
837}
838
839/*
7b2d81d4 840 * uprobe_register - register a probe
2b144498
SD
841 * @inode: the file in which the probe has to be placed.
842 * @offset: offset from the start of the file.
e3343e6a 843 * @uc: information on howto handle the probe..
2b144498 844 *
7b2d81d4 845 * Apart from the access refcount, uprobe_register() takes a creation
2b144498
SD
846 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
847 * inserted into the rbtree (i.e first consumer for a @inode:@offset
7b2d81d4 848 * tuple). Creation refcount stops uprobe_unregister from freeing the
2b144498 849 * @uprobe even before the register operation is complete. Creation
e3343e6a 850 * refcount is released when the last @uc for the @uprobe
2b144498
SD
851 * unregisters.
852 *
853 * Return errno if it cannot successully install probes
854 * else return 0 (success)
855 */
e3343e6a 856int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498
SD
857{
858 struct uprobe *uprobe;
7b2d81d4 859 int ret;
2b144498 860
f0744af7 861 /* Racy, just to catch the obvious mistakes */
2b144498 862 if (offset > i_size_read(inode))
7b2d81d4 863 return -EINVAL;
2b144498 864
9a98e03c 865 ret = -ENOMEM;
2b144498
SD
866 mutex_lock(uprobes_hash(inode));
867 uprobe = alloc_uprobe(inode, offset);
9a98e03c 868 if (uprobe) {
e591c8d7 869 down_write(&uprobe->register_rwsem);
9a98e03c
ON
870 ret = __uprobe_register(uprobe, uc);
871 if (ret)
04aab9b2 872 __uprobe_unregister(uprobe, uc);
e591c8d7 873 up_write(&uprobe->register_rwsem);
2b144498 874 }
2b144498 875 mutex_unlock(uprobes_hash(inode));
6d1d8dfa
SAS
876 if (uprobe)
877 put_uprobe(uprobe);
2b144498
SD
878
879 return ret;
880}
881
882/*
7b2d81d4 883 * uprobe_unregister - unregister a already registered probe.
2b144498
SD
884 * @inode: the file in which the probe has to be removed.
885 * @offset: offset from the start of the file.
e3343e6a 886 * @uc: identify which probe if multiple probes are colocated.
2b144498 887 */
e3343e6a 888void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498 889{
7b2d81d4 890 struct uprobe *uprobe;
2b144498 891
2b144498
SD
892 uprobe = find_uprobe(inode, offset);
893 if (!uprobe)
894 return;
895
896 mutex_lock(uprobes_hash(inode));
e591c8d7 897 down_write(&uprobe->register_rwsem);
04aab9b2 898 __uprobe_unregister(uprobe, uc);
e591c8d7 899 up_write(&uprobe->register_rwsem);
2b144498 900 mutex_unlock(uprobes_hash(inode));
c91368c4 901 put_uprobe(uprobe);
2b144498
SD
902}
903
891c3970
ON
904static struct rb_node *
905find_node_in_range(struct inode *inode, loff_t min, loff_t max)
2b144498 906{
2b144498 907 struct rb_node *n = uprobes_tree.rb_node;
2b144498
SD
908
909 while (n) {
891c3970 910 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
2b144498 911
891c3970 912 if (inode < u->inode) {
2b144498 913 n = n->rb_left;
891c3970 914 } else if (inode > u->inode) {
2b144498 915 n = n->rb_right;
891c3970
ON
916 } else {
917 if (max < u->offset)
918 n = n->rb_left;
919 else if (min > u->offset)
920 n = n->rb_right;
921 else
922 break;
923 }
2b144498 924 }
7b2d81d4 925
891c3970 926 return n;
2b144498
SD
927}
928
929/*
891c3970 930 * For a given range in vma, build a list of probes that need to be inserted.
2b144498 931 */
891c3970
ON
932static void build_probe_list(struct inode *inode,
933 struct vm_area_struct *vma,
934 unsigned long start, unsigned long end,
935 struct list_head *head)
2b144498 936{
891c3970 937 loff_t min, max;
891c3970
ON
938 struct rb_node *n, *t;
939 struct uprobe *u;
7b2d81d4 940
891c3970 941 INIT_LIST_HEAD(head);
cb113b47 942 min = vaddr_to_offset(vma, start);
891c3970 943 max = min + (end - start) - 1;
2b144498 944
6f47caa0 945 spin_lock(&uprobes_treelock);
891c3970
ON
946 n = find_node_in_range(inode, min, max);
947 if (n) {
948 for (t = n; t; t = rb_prev(t)) {
949 u = rb_entry(t, struct uprobe, rb_node);
950 if (u->inode != inode || u->offset < min)
951 break;
952 list_add(&u->pending_list, head);
953 atomic_inc(&u->ref);
954 }
955 for (t = n; (t = rb_next(t)); ) {
956 u = rb_entry(t, struct uprobe, rb_node);
957 if (u->inode != inode || u->offset > max)
958 break;
959 list_add(&u->pending_list, head);
960 atomic_inc(&u->ref);
961 }
2b144498 962 }
6f47caa0 963 spin_unlock(&uprobes_treelock);
2b144498
SD
964}
965
966/*
5e5be71a 967 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
2b144498 968 *
5e5be71a
ON
969 * Currently we ignore all errors and always return 0, the callers
970 * can't handle the failure anyway.
2b144498 971 */
7b2d81d4 972int uprobe_mmap(struct vm_area_struct *vma)
2b144498
SD
973{
974 struct list_head tmp_list;
665605a2 975 struct uprobe *uprobe, *u;
2b144498 976 struct inode *inode;
2b144498
SD
977
978 if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
7b2d81d4 979 return 0;
2b144498
SD
980
981 inode = vma->vm_file->f_mapping->host;
982 if (!inode)
7b2d81d4 983 return 0;
2b144498 984
2b144498 985 mutex_lock(uprobes_mmap_hash(inode));
891c3970 986 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
7b2d81d4 987
665605a2 988 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
5e5be71a 989 if (!fatal_signal_pending(current)) {
57683f72 990 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
5e5be71a 991 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
2b144498
SD
992 }
993 put_uprobe(uprobe);
994 }
2b144498
SD
995 mutex_unlock(uprobes_mmap_hash(inode));
996
5e5be71a 997 return 0;
2b144498
SD
998}
999
9f68f672
ON
1000static bool
1001vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1002{
1003 loff_t min, max;
1004 struct inode *inode;
1005 struct rb_node *n;
1006
1007 inode = vma->vm_file->f_mapping->host;
1008
1009 min = vaddr_to_offset(vma, start);
1010 max = min + (end - start) - 1;
1011
1012 spin_lock(&uprobes_treelock);
1013 n = find_node_in_range(inode, min, max);
1014 spin_unlock(&uprobes_treelock);
1015
1016 return !!n;
1017}
1018
682968e0
SD
1019/*
1020 * Called in context of a munmap of a vma.
1021 */
cbc91f71 1022void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
682968e0 1023{
682968e0
SD
1024 if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1025 return;
1026
2fd611a9
ON
1027 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1028 return;
1029
9f68f672
ON
1030 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1031 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
f8ac4ec9
ON
1032 return;
1033
9f68f672
ON
1034 if (vma_has_uprobes(vma, start, end))
1035 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
682968e0
SD
1036}
1037
d4b3b638
SD
1038/* Slot allocation for XOL */
1039static int xol_add_vma(struct xol_area *area)
1040{
1041 struct mm_struct *mm;
1042 int ret;
1043
1044 area->page = alloc_page(GFP_HIGHUSER);
1045 if (!area->page)
1046 return -ENOMEM;
1047
1048 ret = -EALREADY;
1049 mm = current->mm;
1050
1051 down_write(&mm->mmap_sem);
1052 if (mm->uprobes_state.xol_area)
1053 goto fail;
1054
1055 ret = -ENOMEM;
1056
1057 /* Try to map as high as possible, this is only a hint. */
1058 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1059 if (area->vaddr & ~PAGE_MASK) {
1060 ret = area->vaddr;
1061 goto fail;
1062 }
1063
1064 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1065 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1066 if (ret)
1067 goto fail;
1068
1069 smp_wmb(); /* pairs with get_xol_area() */
1070 mm->uprobes_state.xol_area = area;
1071 ret = 0;
1072
1073fail:
1074 up_write(&mm->mmap_sem);
1075 if (ret)
1076 __free_page(area->page);
1077
1078 return ret;
1079}
1080
1081static struct xol_area *get_xol_area(struct mm_struct *mm)
1082{
1083 struct xol_area *area;
1084
1085 area = mm->uprobes_state.xol_area;
1086 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1087
1088 return area;
1089}
1090
1091/*
1092 * xol_alloc_area - Allocate process's xol_area.
1093 * This area will be used for storing instructions for execution out of
1094 * line.
1095 *
1096 * Returns the allocated area or NULL.
1097 */
1098static struct xol_area *xol_alloc_area(void)
1099{
1100 struct xol_area *area;
1101
1102 area = kzalloc(sizeof(*area), GFP_KERNEL);
1103 if (unlikely(!area))
1104 return NULL;
1105
1106 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1107
1108 if (!area->bitmap)
1109 goto fail;
1110
1111 init_waitqueue_head(&area->wq);
1112 if (!xol_add_vma(area))
1113 return area;
1114
1115fail:
1116 kfree(area->bitmap);
1117 kfree(area);
1118
1119 return get_xol_area(current->mm);
1120}
1121
1122/*
1123 * uprobe_clear_state - Free the area allocated for slots.
1124 */
1125void uprobe_clear_state(struct mm_struct *mm)
1126{
1127 struct xol_area *area = mm->uprobes_state.xol_area;
1128
1129 if (!area)
1130 return;
1131
1132 put_page(area->page);
1133 kfree(area->bitmap);
1134 kfree(area);
1135}
1136
32cdba1e
ON
1137void uprobe_start_dup_mmap(void)
1138{
1139 percpu_down_read(&dup_mmap_sem);
1140}
1141
1142void uprobe_end_dup_mmap(void)
1143{
1144 percpu_up_read(&dup_mmap_sem);
1145}
1146
f8ac4ec9
ON
1147void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1148{
61559a81
ON
1149 newmm->uprobes_state.xol_area = NULL;
1150
9f68f672 1151 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
f8ac4ec9 1152 set_bit(MMF_HAS_UPROBES, &newmm->flags);
9f68f672
ON
1153 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1154 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1155 }
f8ac4ec9
ON
1156}
1157
d4b3b638
SD
1158/*
1159 * - search for a free slot.
1160 */
1161static unsigned long xol_take_insn_slot(struct xol_area *area)
1162{
1163 unsigned long slot_addr;
1164 int slot_nr;
1165
1166 do {
1167 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1168 if (slot_nr < UINSNS_PER_PAGE) {
1169 if (!test_and_set_bit(slot_nr, area->bitmap))
1170 break;
1171
1172 slot_nr = UINSNS_PER_PAGE;
1173 continue;
1174 }
1175 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1176 } while (slot_nr >= UINSNS_PER_PAGE);
1177
1178 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1179 atomic_inc(&area->slot_count);
1180
1181 return slot_addr;
1182}
1183
1184/*
1185 * xol_get_insn_slot - If was not allocated a slot, then
1186 * allocate a slot.
1187 * Returns the allocated slot address or 0.
1188 */
1189static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1190{
1191 struct xol_area *area;
1192 unsigned long offset;
1193 void *vaddr;
1194
1195 area = get_xol_area(current->mm);
1196 if (!area) {
1197 area = xol_alloc_area();
1198 if (!area)
1199 return 0;
1200 }
1201 current->utask->xol_vaddr = xol_take_insn_slot(area);
1202
1203 /*
1204 * Initialize the slot if xol_vaddr points to valid
1205 * instruction slot.
1206 */
1207 if (unlikely(!current->utask->xol_vaddr))
1208 return 0;
1209
1210 current->utask->vaddr = slot_addr;
1211 offset = current->utask->xol_vaddr & ~PAGE_MASK;
1212 vaddr = kmap_atomic(area->page);
1213 memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1214 kunmap_atomic(vaddr);
65b6ecc0
RV
1215 /*
1216 * We probably need flush_icache_user_range() but it needs vma.
1217 * This should work on supported architectures too.
1218 */
1219 flush_dcache_page(area->page);
d4b3b638
SD
1220
1221 return current->utask->xol_vaddr;
1222}
1223
1224/*
1225 * xol_free_insn_slot - If slot was earlier allocated by
1226 * @xol_get_insn_slot(), make the slot available for
1227 * subsequent requests.
1228 */
1229static void xol_free_insn_slot(struct task_struct *tsk)
1230{
1231 struct xol_area *area;
1232 unsigned long vma_end;
1233 unsigned long slot_addr;
1234
1235 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1236 return;
1237
1238 slot_addr = tsk->utask->xol_vaddr;
1239
1240 if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1241 return;
1242
1243 area = tsk->mm->uprobes_state.xol_area;
1244 vma_end = area->vaddr + PAGE_SIZE;
1245 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1246 unsigned long offset;
1247 int slot_nr;
1248
1249 offset = slot_addr - area->vaddr;
1250 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1251 if (slot_nr >= UINSNS_PER_PAGE)
1252 return;
1253
1254 clear_bit(slot_nr, area->bitmap);
1255 atomic_dec(&area->slot_count);
1256 if (waitqueue_active(&area->wq))
1257 wake_up(&area->wq);
1258
1259 tsk->utask->xol_vaddr = 0;
1260 }
1261}
1262
0326f5a9
SD
1263/**
1264 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1265 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1266 * instruction.
1267 * Return the address of the breakpoint instruction.
1268 */
1269unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1270{
1271 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1272}
1273
1274/*
1275 * Called with no locks held.
1276 * Called in context of a exiting or a exec-ing thread.
1277 */
1278void uprobe_free_utask(struct task_struct *t)
1279{
1280 struct uprobe_task *utask = t->utask;
1281
0326f5a9
SD
1282 if (!utask)
1283 return;
1284
1285 if (utask->active_uprobe)
1286 put_uprobe(utask->active_uprobe);
1287
d4b3b638 1288 xol_free_insn_slot(t);
0326f5a9
SD
1289 kfree(utask);
1290 t->utask = NULL;
1291}
1292
1293/*
1294 * Called in context of a new clone/fork from copy_process.
1295 */
1296void uprobe_copy_process(struct task_struct *t)
1297{
1298 t->utask = NULL;
0326f5a9
SD
1299}
1300
1301/*
1302 * Allocate a uprobe_task object for the task.
1303 * Called when the thread hits a breakpoint for the first time.
1304 *
1305 * Returns:
1306 * - pointer to new uprobe_task on success
1307 * - NULL otherwise
1308 */
1309static struct uprobe_task *add_utask(void)
1310{
1311 struct uprobe_task *utask;
1312
1313 utask = kzalloc(sizeof *utask, GFP_KERNEL);
1314 if (unlikely(!utask))
1315 return NULL;
1316
0326f5a9
SD
1317 current->utask = utask;
1318 return utask;
1319}
1320
1321/* Prepare to single-step probed instruction out of line. */
1322static int
1323pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1324{
d4b3b638
SD
1325 if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1326 return 0;
1327
0326f5a9
SD
1328 return -EFAULT;
1329}
1330
1331/*
1332 * If we are singlestepping, then ensure this thread is not connected to
1333 * non-fatal signals until completion of singlestep. When xol insn itself
1334 * triggers the signal, restart the original insn even if the task is
1335 * already SIGKILL'ed (since coredump should report the correct ip). This
1336 * is even more important if the task has a handler for SIGSEGV/etc, The
1337 * _same_ instruction should be repeated again after return from the signal
1338 * handler, and SSTEP can never finish in this case.
1339 */
1340bool uprobe_deny_signal(void)
1341{
1342 struct task_struct *t = current;
1343 struct uprobe_task *utask = t->utask;
1344
1345 if (likely(!utask || !utask->active_uprobe))
1346 return false;
1347
1348 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1349
1350 if (signal_pending(t)) {
1351 spin_lock_irq(&t->sighand->siglock);
1352 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1353 spin_unlock_irq(&t->sighand->siglock);
1354
1355 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1356 utask->state = UTASK_SSTEP_TRAPPED;
1357 set_tsk_thread_flag(t, TIF_UPROBE);
1358 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1359 }
1360 }
1361
1362 return true;
1363}
1364
1365/*
1366 * Avoid singlestepping the original instruction if the original instruction
1367 * is a NOP or can be emulated.
1368 */
1369static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1370{
71434f2f 1371 if (test_bit(UPROBE_SKIP_SSTEP, &uprobe->flags)) {
0578a970
ON
1372 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1373 return true;
71434f2f 1374 clear_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
0578a970 1375 }
0326f5a9
SD
1376 return false;
1377}
1378
499a4f3e
ON
1379static void mmf_recalc_uprobes(struct mm_struct *mm)
1380{
1381 struct vm_area_struct *vma;
1382
1383 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1384 if (!valid_vma(vma, false))
1385 continue;
1386 /*
1387 * This is not strictly accurate, we can race with
1388 * uprobe_unregister() and see the already removed
1389 * uprobe if delete_uprobe() was not yet called.
63633cbf 1390 * Or this uprobe can be filtered out.
499a4f3e
ON
1391 */
1392 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1393 return;
1394 }
1395
1396 clear_bit(MMF_HAS_UPROBES, &mm->flags);
1397}
1398
ec75fba9
ON
1399static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
1400{
1401 struct page *page;
1402 uprobe_opcode_t opcode;
1403 int result;
1404
1405 pagefault_disable();
1406 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1407 sizeof(opcode));
1408 pagefault_enable();
1409
1410 if (likely(result == 0))
1411 goto out;
1412
1413 result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1414 if (result < 0)
1415 return result;
1416
1417 copy_opcode(page, vaddr, &opcode);
1418 put_page(page);
1419 out:
1420 return is_swbp_insn(&opcode);
1421}
1422
d790d346 1423static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
0326f5a9 1424{
3a9ea052
ON
1425 struct mm_struct *mm = current->mm;
1426 struct uprobe *uprobe = NULL;
0326f5a9 1427 struct vm_area_struct *vma;
0326f5a9 1428
0326f5a9
SD
1429 down_read(&mm->mmap_sem);
1430 vma = find_vma(mm, bp_vaddr);
3a9ea052
ON
1431 if (vma && vma->vm_start <= bp_vaddr) {
1432 if (valid_vma(vma, false)) {
cb113b47
ON
1433 struct inode *inode = vma->vm_file->f_mapping->host;
1434 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
0326f5a9 1435
3a9ea052
ON
1436 uprobe = find_uprobe(inode, offset);
1437 }
d790d346
ON
1438
1439 if (!uprobe)
1440 *is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1441 } else {
1442 *is_swbp = -EFAULT;
0326f5a9 1443 }
499a4f3e
ON
1444
1445 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1446 mmf_recalc_uprobes(mm);
0326f5a9
SD
1447 up_read(&mm->mmap_sem);
1448
3a9ea052
ON
1449 return uprobe;
1450}
1451
1452/*
1453 * Run handler and ask thread to singlestep.
1454 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1455 */
1456static void handle_swbp(struct pt_regs *regs)
1457{
1458 struct uprobe_task *utask;
1459 struct uprobe *uprobe;
1460 unsigned long bp_vaddr;
56bb4cf6 1461 int uninitialized_var(is_swbp);
3a9ea052
ON
1462
1463 bp_vaddr = uprobe_get_swbp_addr(regs);
d790d346 1464 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
3a9ea052 1465
0326f5a9 1466 if (!uprobe) {
56bb4cf6
ON
1467 if (is_swbp > 0) {
1468 /* No matching uprobe; signal SIGTRAP. */
1469 send_sig(SIGTRAP, current, 0);
1470 } else {
1471 /*
1472 * Either we raced with uprobe_unregister() or we can't
1473 * access this memory. The latter is only possible if
1474 * another thread plays with our ->mm. In both cases
1475 * we can simply restart. If this vma was unmapped we
1476 * can pretend this insn was not executed yet and get
1477 * the (correct) SIGSEGV after restart.
1478 */
1479 instruction_pointer_set(regs, bp_vaddr);
1480 }
0326f5a9
SD
1481 return;
1482 }
142b18dd
ON
1483 /*
1484 * TODO: move copy_insn/etc into _register and remove this hack.
1485 * After we hit the bp, _unregister + _register can install the
1486 * new and not-yet-analyzed uprobe at the same address, restart.
1487 */
1488 smp_rmb(); /* pairs with wmb() in install_breakpoint() */
71434f2f 1489 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
142b18dd 1490 goto restart;
0326f5a9
SD
1491
1492 utask = current->utask;
1493 if (!utask) {
1494 utask = add_utask();
1495 /* Cannot allocate; re-execute the instruction. */
1496 if (!utask)
0578a970 1497 goto restart;
0326f5a9 1498 }
746a9e6b 1499
0326f5a9 1500 handler_chain(uprobe, regs);
0578a970
ON
1501 if (can_skip_sstep(uprobe, regs))
1502 goto out;
0326f5a9 1503
0326f5a9 1504 if (!pre_ssout(uprobe, regs, bp_vaddr)) {
746a9e6b
ON
1505 utask->active_uprobe = uprobe;
1506 utask->state = UTASK_SSTEP;
0326f5a9
SD
1507 return;
1508 }
1509
0578a970
ON
1510restart:
1511 /*
1512 * cannot singlestep; cannot skip instruction;
1513 * re-execute the instruction.
1514 */
1515 instruction_pointer_set(regs, bp_vaddr);
1516out:
8bd87445 1517 put_uprobe(uprobe);
0326f5a9
SD
1518}
1519
1520/*
1521 * Perform required fix-ups and disable singlestep.
1522 * Allow pending signals to take effect.
1523 */
1524static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1525{
1526 struct uprobe *uprobe;
1527
1528 uprobe = utask->active_uprobe;
1529 if (utask->state == UTASK_SSTEP_ACK)
1530 arch_uprobe_post_xol(&uprobe->arch, regs);
1531 else if (utask->state == UTASK_SSTEP_TRAPPED)
1532 arch_uprobe_abort_xol(&uprobe->arch, regs);
1533 else
1534 WARN_ON_ONCE(1);
1535
1536 put_uprobe(uprobe);
1537 utask->active_uprobe = NULL;
1538 utask->state = UTASK_RUNNING;
d4b3b638 1539 xol_free_insn_slot(current);
0326f5a9
SD
1540
1541 spin_lock_irq(&current->sighand->siglock);
1542 recalc_sigpending(); /* see uprobe_deny_signal() */
1543 spin_unlock_irq(&current->sighand->siglock);
1544}
1545
1546/*
1b08e907
ON
1547 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1548 * allows the thread to return from interrupt. After that handle_swbp()
1549 * sets utask->active_uprobe.
0326f5a9 1550 *
1b08e907
ON
1551 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1552 * and allows the thread to return from interrupt.
0326f5a9
SD
1553 *
1554 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1555 * uprobe_notify_resume().
1556 */
1557void uprobe_notify_resume(struct pt_regs *regs)
1558{
1559 struct uprobe_task *utask;
1560
db023ea5
ON
1561 clear_thread_flag(TIF_UPROBE);
1562
0326f5a9 1563 utask = current->utask;
1b08e907 1564 if (utask && utask->active_uprobe)
0326f5a9 1565 handle_singlestep(utask, regs);
1b08e907
ON
1566 else
1567 handle_swbp(regs);
0326f5a9
SD
1568}
1569
1570/*
1571 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1572 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1573 */
1574int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1575{
f8ac4ec9 1576 if (!current->mm || !test_bit(MMF_HAS_UPROBES, &current->mm->flags))
0326f5a9
SD
1577 return 0;
1578
0326f5a9 1579 set_thread_flag(TIF_UPROBE);
0326f5a9
SD
1580 return 1;
1581}
1582
1583/*
1584 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1585 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1586 */
1587int uprobe_post_sstep_notifier(struct pt_regs *regs)
1588{
1589 struct uprobe_task *utask = current->utask;
1590
1591 if (!current->mm || !utask || !utask->active_uprobe)
1592 /* task is currently not uprobed */
1593 return 0;
1594
1595 utask->state = UTASK_SSTEP_ACK;
1596 set_thread_flag(TIF_UPROBE);
1597 return 1;
1598}
1599
1600static struct notifier_block uprobe_exception_nb = {
1601 .notifier_call = arch_uprobe_exception_notify,
1602 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
1603};
1604
2b144498
SD
1605static int __init init_uprobes(void)
1606{
1607 int i;
1608
1609 for (i = 0; i < UPROBES_HASH_SZ; i++) {
1610 mutex_init(&uprobes_mutex[i]);
1611 mutex_init(&uprobes_mmap_mutex[i]);
1612 }
0326f5a9 1613
32cdba1e
ON
1614 if (percpu_init_rwsem(&dup_mmap_sem))
1615 return -ENOMEM;
1616
0326f5a9 1617 return register_die_notifier(&uprobe_exception_nb);
2b144498 1618}
0326f5a9 1619module_init(init_uprobes);
2b144498
SD
1620
1621static void __exit exit_uprobes(void)
1622{
1623}
2b144498 1624module_exit(exit_uprobes);