uprobes: __copy_insn() should ensure a_ops->readpage != NULL
[linux-block.git] / kernel / events / uprobes.c
CommitLineData
2b144498 1/*
7b2d81d4 2 * User-space Probes (UProbes)
2b144498
SD
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
35aa621b 18 * Copyright (C) IBM Corporation, 2008-2012
2b144498
SD
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
35aa621b 22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
2b144498
SD
23 */
24
25#include <linux/kernel.h>
26#include <linux/highmem.h>
27#include <linux/pagemap.h> /* read_mapping_page */
28#include <linux/slab.h>
29#include <linux/sched.h>
30#include <linux/rmap.h> /* anon_vma_prepare */
31#include <linux/mmu_notifier.h> /* set_pte_at_notify */
32#include <linux/swap.h> /* try_to_free_swap */
0326f5a9
SD
33#include <linux/ptrace.h> /* user_enable_single_step */
34#include <linux/kdebug.h> /* notifier mechanism */
7b2d81d4 35
2b144498
SD
36#include <linux/uprobes.h>
37
d4b3b638
SD
38#define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
39#define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
40
2b144498 41static struct rb_root uprobes_tree = RB_ROOT;
7b2d81d4 42
2b144498
SD
43static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
44
45#define UPROBES_HASH_SZ 13
7b2d81d4 46
2b144498
SD
47/* serialize (un)register */
48static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
7b2d81d4
IM
49
50#define uprobes_hash(v) (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498
SD
51
52/* serialize uprobe->pending_list */
53static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
7b2d81d4 54#define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498
SD
55
56/*
7b2d81d4 57 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
2b144498
SD
58 * events active at this time. Probably a fine grained per inode count is
59 * better?
60 */
61static atomic_t uprobe_events = ATOMIC_INIT(0);
62
63/*
64 * Maintain a temporary per vma info that can be used to search if a vma
65 * has already been handled. This structure is introduced since extending
66 * vm_area_struct wasnt recommended.
67 */
68struct vma_info {
7b2d81d4
IM
69 struct list_head probe_list;
70 struct mm_struct *mm;
71 loff_t vaddr;
2b144498
SD
72};
73
3ff54efd
SD
74struct uprobe {
75 struct rb_node rb_node; /* node in the rb tree */
76 atomic_t ref;
77 struct rw_semaphore consumer_rwsem;
78 struct list_head pending_list;
79 struct uprobe_consumer *consumers;
80 struct inode *inode; /* Also hold a ref to inode */
81 loff_t offset;
82 int flags;
83 struct arch_uprobe arch;
84};
85
2b144498
SD
86/*
87 * valid_vma: Verify if the specified vma is an executable vma
88 * Relax restrictions while unregistering: vm_flags might have
89 * changed after breakpoint was inserted.
90 * - is_register: indicates if we are in register context.
91 * - Return 1 if the specified virtual address is in an
92 * executable vma.
93 */
94static bool valid_vma(struct vm_area_struct *vma, bool is_register)
95{
96 if (!vma->vm_file)
97 return false;
98
99 if (!is_register)
100 return true;
101
ea131377
ON
102 if ((vma->vm_flags & (VM_HUGETLB|VM_READ|VM_WRITE|VM_EXEC|VM_SHARED))
103 == (VM_READ|VM_EXEC))
2b144498
SD
104 return true;
105
106 return false;
107}
108
109static loff_t vma_address(struct vm_area_struct *vma, loff_t offset)
110{
111 loff_t vaddr;
112
113 vaddr = vma->vm_start + offset;
114 vaddr -= vma->vm_pgoff << PAGE_SHIFT;
7b2d81d4 115
2b144498
SD
116 return vaddr;
117}
118
119/**
120 * __replace_page - replace page in vma by new page.
121 * based on replace_page in mm/ksm.c
122 *
123 * @vma: vma that holds the pte pointing to page
124 * @page: the cowed page we are replacing by kpage
125 * @kpage: the modified page we replace page by
126 *
127 * Returns 0 on success, -EFAULT on failure.
128 */
7b2d81d4 129static int __replace_page(struct vm_area_struct *vma, struct page *page, struct page *kpage)
2b144498
SD
130{
131 struct mm_struct *mm = vma->vm_mm;
132 pgd_t *pgd;
133 pud_t *pud;
134 pmd_t *pmd;
135 pte_t *ptep;
136 spinlock_t *ptl;
137 unsigned long addr;
138 int err = -EFAULT;
139
140 addr = page_address_in_vma(page, vma);
141 if (addr == -EFAULT)
142 goto out;
143
144 pgd = pgd_offset(mm, addr);
145 if (!pgd_present(*pgd))
146 goto out;
147
148 pud = pud_offset(pgd, addr);
149 if (!pud_present(*pud))
150 goto out;
151
152 pmd = pmd_offset(pud, addr);
153 if (!pmd_present(*pmd))
154 goto out;
155
156 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
157 if (!ptep)
158 goto out;
159
160 get_page(kpage);
161 page_add_new_anon_rmap(kpage, vma, addr);
162
7396fa81
SD
163 if (!PageAnon(page)) {
164 dec_mm_counter(mm, MM_FILEPAGES);
165 inc_mm_counter(mm, MM_ANONPAGES);
166 }
167
2b144498
SD
168 flush_cache_page(vma, addr, pte_pfn(*ptep));
169 ptep_clear_flush(vma, addr, ptep);
170 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
171
172 page_remove_rmap(page);
173 if (!page_mapped(page))
174 try_to_free_swap(page);
175 put_page(page);
176 pte_unmap_unlock(ptep, ptl);
177 err = 0;
178
179out:
180 return err;
181}
182
183/**
5cb4ac3a 184 * is_swbp_insn - check if instruction is breakpoint instruction.
2b144498 185 * @insn: instruction to be checked.
5cb4ac3a 186 * Default implementation of is_swbp_insn
2b144498
SD
187 * Returns true if @insn is a breakpoint instruction.
188 */
5cb4ac3a 189bool __weak is_swbp_insn(uprobe_opcode_t *insn)
2b144498 190{
5cb4ac3a 191 return *insn == UPROBE_SWBP_INSN;
2b144498
SD
192}
193
194/*
195 * NOTE:
196 * Expect the breakpoint instruction to be the smallest size instruction for
197 * the architecture. If an arch has variable length instruction and the
198 * breakpoint instruction is not of the smallest length instruction
199 * supported by that architecture then we need to modify read_opcode /
200 * write_opcode accordingly. This would never be a problem for archs that
201 * have fixed length instructions.
202 */
203
204/*
205 * write_opcode - write the opcode at a given virtual address.
e3343e6a 206 * @auprobe: arch breakpointing information.
2b144498 207 * @mm: the probed process address space.
2b144498
SD
208 * @vaddr: the virtual address to store the opcode.
209 * @opcode: opcode to be written at @vaddr.
210 *
211 * Called with mm->mmap_sem held (for read and with a reference to
212 * mm).
213 *
214 * For mm @mm, write the opcode at @vaddr.
215 * Return 0 (success) or a negative errno.
216 */
e3343e6a 217static int write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
2b144498
SD
218 unsigned long vaddr, uprobe_opcode_t opcode)
219{
220 struct page *old_page, *new_page;
221 struct address_space *mapping;
222 void *vaddr_old, *vaddr_new;
223 struct vm_area_struct *vma;
3ff54efd 224 struct uprobe *uprobe;
2b144498
SD
225 loff_t addr;
226 int ret;
227
228 /* Read the page with vaddr into memory */
229 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma);
230 if (ret <= 0)
231 return ret;
7b2d81d4 232
2b144498
SD
233 ret = -EINVAL;
234
235 /*
236 * We are interested in text pages only. Our pages of interest
237 * should be mapped for read and execute only. We desist from
238 * adding probes in write mapped pages since the breakpoints
239 * might end up in the file copy.
240 */
5cb4ac3a 241 if (!valid_vma(vma, is_swbp_insn(&opcode)))
2b144498
SD
242 goto put_out;
243
3ff54efd 244 uprobe = container_of(auprobe, struct uprobe, arch);
2b144498
SD
245 mapping = uprobe->inode->i_mapping;
246 if (mapping != vma->vm_file->f_mapping)
247 goto put_out;
248
249 addr = vma_address(vma, uprobe->offset);
250 if (vaddr != (unsigned long)addr)
251 goto put_out;
252
253 ret = -ENOMEM;
254 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
255 if (!new_page)
256 goto put_out;
257
258 __SetPageUptodate(new_page);
259
260 /*
261 * lock page will serialize against do_wp_page()'s
262 * PageAnon() handling
263 */
264 lock_page(old_page);
265 /* copy the page now that we've got it stable */
266 vaddr_old = kmap_atomic(old_page);
267 vaddr_new = kmap_atomic(new_page);
268
269 memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
7b2d81d4 270
2b144498
SD
271 /* poke the new insn in, ASSUMES we don't cross page boundary */
272 vaddr &= ~PAGE_MASK;
5cb4ac3a
SD
273 BUG_ON(vaddr + UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
274 memcpy(vaddr_new + vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2b144498
SD
275
276 kunmap_atomic(vaddr_new);
277 kunmap_atomic(vaddr_old);
278
279 ret = anon_vma_prepare(vma);
280 if (ret)
281 goto unlock_out;
282
283 lock_page(new_page);
284 ret = __replace_page(vma, old_page, new_page);
285 unlock_page(new_page);
286
287unlock_out:
288 unlock_page(old_page);
289 page_cache_release(new_page);
290
291put_out:
7b2d81d4
IM
292 put_page(old_page);
293
2b144498
SD
294 return ret;
295}
296
297/**
298 * read_opcode - read the opcode at a given virtual address.
299 * @mm: the probed process address space.
300 * @vaddr: the virtual address to read the opcode.
301 * @opcode: location to store the read opcode.
302 *
303 * Called with mm->mmap_sem held (for read and with a reference to
304 * mm.
305 *
306 * For mm @mm, read the opcode at @vaddr and store it in @opcode.
307 * Return 0 (success) or a negative errno.
308 */
7b2d81d4 309static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode)
2b144498
SD
310{
311 struct page *page;
312 void *vaddr_new;
313 int ret;
314
a3d7bb47 315 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
2b144498
SD
316 if (ret <= 0)
317 return ret;
318
319 lock_page(page);
320 vaddr_new = kmap_atomic(page);
321 vaddr &= ~PAGE_MASK;
5cb4ac3a 322 memcpy(opcode, vaddr_new + vaddr, UPROBE_SWBP_INSN_SIZE);
2b144498
SD
323 kunmap_atomic(vaddr_new);
324 unlock_page(page);
7b2d81d4
IM
325
326 put_page(page);
327
2b144498
SD
328 return 0;
329}
330
5cb4ac3a 331static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
2b144498
SD
332{
333 uprobe_opcode_t opcode;
7b2d81d4 334 int result;
2b144498 335
c00b2750
ON
336 if (current->mm == mm) {
337 pagefault_disable();
338 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
339 sizeof(opcode));
340 pagefault_enable();
341
342 if (likely(result == 0))
343 goto out;
344 }
345
7b2d81d4 346 result = read_opcode(mm, vaddr, &opcode);
2b144498
SD
347 if (result)
348 return result;
c00b2750 349out:
5cb4ac3a 350 if (is_swbp_insn(&opcode))
2b144498
SD
351 return 1;
352
353 return 0;
354}
355
356/**
5cb4ac3a 357 * set_swbp - store breakpoint at a given address.
e3343e6a 358 * @auprobe: arch specific probepoint information.
2b144498 359 * @mm: the probed process address space.
2b144498
SD
360 * @vaddr: the virtual address to insert the opcode.
361 *
362 * For mm @mm, store the breakpoint instruction at @vaddr.
363 * Return 0 (success) or a negative errno.
364 */
5cb4ac3a 365int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 366{
7b2d81d4 367 int result;
2b144498 368
5cb4ac3a 369 result = is_swbp_at_addr(mm, vaddr);
2b144498
SD
370 if (result == 1)
371 return -EEXIST;
372
373 if (result)
374 return result;
375
5cb4ac3a 376 return write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
2b144498
SD
377}
378
379/**
380 * set_orig_insn - Restore the original instruction.
381 * @mm: the probed process address space.
e3343e6a 382 * @auprobe: arch specific probepoint information.
2b144498
SD
383 * @vaddr: the virtual address to insert the opcode.
384 * @verify: if true, verify existance of breakpoint instruction.
385 *
386 * For mm @mm, restore the original opcode (opcode) at @vaddr.
387 * Return 0 (success) or a negative errno.
388 */
7b2d81d4 389int __weak
e3343e6a 390set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr, bool verify)
2b144498
SD
391{
392 if (verify) {
7b2d81d4 393 int result;
2b144498 394
5cb4ac3a 395 result = is_swbp_at_addr(mm, vaddr);
2b144498
SD
396 if (!result)
397 return -EINVAL;
398
399 if (result != 1)
400 return result;
401 }
e3343e6a 402 return write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
2b144498
SD
403}
404
405static int match_uprobe(struct uprobe *l, struct uprobe *r)
406{
407 if (l->inode < r->inode)
408 return -1;
7b2d81d4 409
2b144498
SD
410 if (l->inode > r->inode)
411 return 1;
2b144498 412
7b2d81d4
IM
413 if (l->offset < r->offset)
414 return -1;
415
416 if (l->offset > r->offset)
417 return 1;
2b144498
SD
418
419 return 0;
420}
421
422static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
423{
424 struct uprobe u = { .inode = inode, .offset = offset };
425 struct rb_node *n = uprobes_tree.rb_node;
426 struct uprobe *uprobe;
427 int match;
428
429 while (n) {
430 uprobe = rb_entry(n, struct uprobe, rb_node);
431 match = match_uprobe(&u, uprobe);
432 if (!match) {
433 atomic_inc(&uprobe->ref);
434 return uprobe;
435 }
7b2d81d4 436
2b144498
SD
437 if (match < 0)
438 n = n->rb_left;
439 else
440 n = n->rb_right;
441 }
442 return NULL;
443}
444
445/*
446 * Find a uprobe corresponding to a given inode:offset
447 * Acquires uprobes_treelock
448 */
449static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
450{
451 struct uprobe *uprobe;
452 unsigned long flags;
453
454 spin_lock_irqsave(&uprobes_treelock, flags);
455 uprobe = __find_uprobe(inode, offset);
456 spin_unlock_irqrestore(&uprobes_treelock, flags);
7b2d81d4 457
2b144498
SD
458 return uprobe;
459}
460
461static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
462{
463 struct rb_node **p = &uprobes_tree.rb_node;
464 struct rb_node *parent = NULL;
465 struct uprobe *u;
466 int match;
467
468 while (*p) {
469 parent = *p;
470 u = rb_entry(parent, struct uprobe, rb_node);
471 match = match_uprobe(uprobe, u);
472 if (!match) {
473 atomic_inc(&u->ref);
474 return u;
475 }
476
477 if (match < 0)
478 p = &parent->rb_left;
479 else
480 p = &parent->rb_right;
481
482 }
7b2d81d4 483
2b144498
SD
484 u = NULL;
485 rb_link_node(&uprobe->rb_node, parent, p);
486 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
487 /* get access + creation ref */
488 atomic_set(&uprobe->ref, 2);
7b2d81d4 489
2b144498
SD
490 return u;
491}
492
493/*
7b2d81d4 494 * Acquire uprobes_treelock.
2b144498
SD
495 * Matching uprobe already exists in rbtree;
496 * increment (access refcount) and return the matching uprobe.
497 *
498 * No matching uprobe; insert the uprobe in rb_tree;
499 * get a double refcount (access + creation) and return NULL.
500 */
501static struct uprobe *insert_uprobe(struct uprobe *uprobe)
502{
503 unsigned long flags;
504 struct uprobe *u;
505
506 spin_lock_irqsave(&uprobes_treelock, flags);
507 u = __insert_uprobe(uprobe);
508 spin_unlock_irqrestore(&uprobes_treelock, flags);
7b2d81d4 509
0326f5a9
SD
510 /* For now assume that the instruction need not be single-stepped */
511 uprobe->flags |= UPROBE_SKIP_SSTEP;
512
2b144498
SD
513 return u;
514}
515
516static void put_uprobe(struct uprobe *uprobe)
517{
518 if (atomic_dec_and_test(&uprobe->ref))
519 kfree(uprobe);
520}
521
522static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
523{
524 struct uprobe *uprobe, *cur_uprobe;
525
526 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
527 if (!uprobe)
528 return NULL;
529
530 uprobe->inode = igrab(inode);
531 uprobe->offset = offset;
532 init_rwsem(&uprobe->consumer_rwsem);
533 INIT_LIST_HEAD(&uprobe->pending_list);
534
535 /* add to uprobes_tree, sorted on inode:offset */
536 cur_uprobe = insert_uprobe(uprobe);
537
538 /* a uprobe exists for this inode:offset combination */
539 if (cur_uprobe) {
540 kfree(uprobe);
541 uprobe = cur_uprobe;
542 iput(inode);
7b2d81d4 543 } else {
2b144498 544 atomic_inc(&uprobe_events);
7b2d81d4
IM
545 }
546
2b144498
SD
547 return uprobe;
548}
549
0326f5a9
SD
550static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
551{
552 struct uprobe_consumer *uc;
553
554 if (!(uprobe->flags & UPROBE_RUN_HANDLER))
555 return;
556
557 down_read(&uprobe->consumer_rwsem);
558 for (uc = uprobe->consumers; uc; uc = uc->next) {
559 if (!uc->filter || uc->filter(uc, current))
560 uc->handler(uc, regs);
561 }
562 up_read(&uprobe->consumer_rwsem);
563}
564
2b144498 565/* Returns the previous consumer */
7b2d81d4 566static struct uprobe_consumer *
e3343e6a 567consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
568{
569 down_write(&uprobe->consumer_rwsem);
e3343e6a
SD
570 uc->next = uprobe->consumers;
571 uprobe->consumers = uc;
2b144498 572 up_write(&uprobe->consumer_rwsem);
7b2d81d4 573
e3343e6a 574 return uc->next;
2b144498
SD
575}
576
577/*
e3343e6a
SD
578 * For uprobe @uprobe, delete the consumer @uc.
579 * Return true if the @uc is deleted successfully
2b144498
SD
580 * or return false.
581 */
e3343e6a 582static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
583{
584 struct uprobe_consumer **con;
585 bool ret = false;
586
587 down_write(&uprobe->consumer_rwsem);
588 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
e3343e6a
SD
589 if (*con == uc) {
590 *con = uc->next;
2b144498
SD
591 ret = true;
592 break;
593 }
594 }
595 up_write(&uprobe->consumer_rwsem);
7b2d81d4 596
2b144498
SD
597 return ret;
598}
599
e3343e6a
SD
600static int
601__copy_insn(struct address_space *mapping, struct vm_area_struct *vma, char *insn,
2b144498
SD
602 unsigned long nbytes, unsigned long offset)
603{
604 struct file *filp = vma->vm_file;
605 struct page *page;
606 void *vaddr;
607 unsigned long off1;
608 unsigned long idx;
609
610 if (!filp)
611 return -EINVAL;
612
cc359d18
ON
613 if (!mapping->a_ops->readpage)
614 return -EIO;
615
2b144498
SD
616 idx = (unsigned long)(offset >> PAGE_CACHE_SHIFT);
617 off1 = offset &= ~PAGE_MASK;
618
619 /*
620 * Ensure that the page that has the original instruction is
621 * populated and in page-cache.
622 */
623 page = read_mapping_page(mapping, idx, filp);
624 if (IS_ERR(page))
625 return PTR_ERR(page);
626
627 vaddr = kmap_atomic(page);
628 memcpy(insn, vaddr + off1, nbytes);
629 kunmap_atomic(vaddr);
630 page_cache_release(page);
7b2d81d4 631
2b144498
SD
632 return 0;
633}
634
e3343e6a
SD
635static int
636copy_insn(struct uprobe *uprobe, struct vm_area_struct *vma, unsigned long addr)
2b144498
SD
637{
638 struct address_space *mapping;
2b144498 639 unsigned long nbytes;
7b2d81d4 640 int bytes;
2b144498
SD
641
642 addr &= ~PAGE_MASK;
643 nbytes = PAGE_SIZE - addr;
644 mapping = uprobe->inode->i_mapping;
645
646 /* Instruction at end of binary; copy only available bytes */
647 if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
648 bytes = uprobe->inode->i_size - uprobe->offset;
649 else
650 bytes = MAX_UINSN_BYTES;
651
652 /* Instruction at the page-boundary; copy bytes in second page */
653 if (nbytes < bytes) {
3ff54efd 654 if (__copy_insn(mapping, vma, uprobe->arch.insn + nbytes,
2b144498
SD
655 bytes - nbytes, uprobe->offset + nbytes))
656 return -ENOMEM;
657
658 bytes = nbytes;
659 }
3ff54efd 660 return __copy_insn(mapping, vma, uprobe->arch.insn, bytes, uprobe->offset);
2b144498
SD
661}
662
682968e0
SD
663/*
664 * How mm->uprobes_state.count gets updated
665 * uprobe_mmap() increments the count if
666 * - it successfully adds a breakpoint.
667 * - it cannot add a breakpoint, but sees that there is a underlying
668 * breakpoint (via a is_swbp_at_addr()).
669 *
670 * uprobe_munmap() decrements the count if
671 * - it sees a underlying breakpoint, (via is_swbp_at_addr)
672 * (Subsequent uprobe_unregister wouldnt find the breakpoint
673 * unless a uprobe_mmap kicks in, since the old vma would be
674 * dropped just after uprobe_munmap.)
675 *
676 * uprobe_register increments the count if:
677 * - it successfully adds a breakpoint.
678 *
679 * uprobe_unregister decrements the count if:
680 * - it sees a underlying breakpoint and removes successfully.
681 * (via is_swbp_at_addr)
682 * (Subsequent uprobe_munmap wouldnt find the breakpoint
683 * since there is no underlying breakpoint after the
684 * breakpoint removal.)
685 */
e3343e6a
SD
686static int
687install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
688 struct vm_area_struct *vma, loff_t vaddr)
2b144498
SD
689{
690 unsigned long addr;
691 int ret;
692
693 /*
694 * If probe is being deleted, unregister thread could be done with
695 * the vma-rmap-walk through. Adding a probe now can be fatal since
696 * nobody will be able to cleanup. Also we could be from fork or
697 * mremap path, where the probe might have already been inserted.
698 * Hence behave as if probe already existed.
699 */
700 if (!uprobe->consumers)
701 return -EEXIST;
702
703 addr = (unsigned long)vaddr;
7b2d81d4 704
900771a4 705 if (!(uprobe->flags & UPROBE_COPY_INSN)) {
2b144498
SD
706 ret = copy_insn(uprobe, vma, addr);
707 if (ret)
708 return ret;
709
5cb4ac3a 710 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
2b144498
SD
711 return -EEXIST;
712
7eb9ba5e 713 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, addr);
2b144498
SD
714 if (ret)
715 return ret;
716
900771a4 717 uprobe->flags |= UPROBE_COPY_INSN;
2b144498 718 }
682968e0
SD
719
720 /*
721 * Ideally, should be updating the probe count after the breakpoint
722 * has been successfully inserted. However a thread could hit the
723 * breakpoint we just inserted even before the probe count is
724 * incremented. If this is the first breakpoint placed, breakpoint
725 * notifier might ignore uprobes and pass the trap to the thread.
726 * Hence increment before and decrement on failure.
727 */
728 atomic_inc(&mm->uprobes_state.count);
5cb4ac3a 729 ret = set_swbp(&uprobe->arch, mm, addr);
682968e0
SD
730 if (ret)
731 atomic_dec(&mm->uprobes_state.count);
2b144498
SD
732
733 return ret;
734}
735
e3343e6a
SD
736static void
737remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, loff_t vaddr)
2b144498 738{
682968e0
SD
739 if (!set_orig_insn(&uprobe->arch, mm, (unsigned long)vaddr, true))
740 atomic_dec(&mm->uprobes_state.count);
2b144498
SD
741}
742
0326f5a9 743/*
778b032d
ON
744 * There could be threads that have already hit the breakpoint. They
745 * will recheck the current insn and restart if find_uprobe() fails.
746 * See find_active_uprobe().
0326f5a9 747 */
2b144498
SD
748static void delete_uprobe(struct uprobe *uprobe)
749{
750 unsigned long flags;
751
752 spin_lock_irqsave(&uprobes_treelock, flags);
753 rb_erase(&uprobe->rb_node, &uprobes_tree);
754 spin_unlock_irqrestore(&uprobes_treelock, flags);
755 iput(uprobe->inode);
756 put_uprobe(uprobe);
757 atomic_dec(&uprobe_events);
758}
759
e3343e6a
SD
760static struct vma_info *
761__find_next_vma_info(struct address_space *mapping, struct list_head *head,
762 struct vma_info *vi, loff_t offset, bool is_register)
2b144498
SD
763{
764 struct prio_tree_iter iter;
765 struct vm_area_struct *vma;
766 struct vma_info *tmpvi;
7b2d81d4 767 unsigned long pgoff;
2b144498 768 int existing_vma;
7b2d81d4
IM
769 loff_t vaddr;
770
771 pgoff = offset >> PAGE_SHIFT;
2b144498
SD
772
773 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
774 if (!valid_vma(vma, is_register))
775 continue;
776
777 existing_vma = 0;
778 vaddr = vma_address(vma, offset);
7b2d81d4 779
2b144498
SD
780 list_for_each_entry(tmpvi, head, probe_list) {
781 if (tmpvi->mm == vma->vm_mm && tmpvi->vaddr == vaddr) {
782 existing_vma = 1;
783 break;
784 }
785 }
786
787 /*
788 * Another vma needs a probe to be installed. However skip
789 * installing the probe if the vma is about to be unlinked.
790 */
7b2d81d4 791 if (!existing_vma && atomic_inc_not_zero(&vma->vm_mm->mm_users)) {
2b144498
SD
792 vi->mm = vma->vm_mm;
793 vi->vaddr = vaddr;
794 list_add(&vi->probe_list, head);
7b2d81d4 795
2b144498
SD
796 return vi;
797 }
798 }
7b2d81d4 799
2b144498
SD
800 return NULL;
801}
802
803/*
804 * Iterate in the rmap prio tree and find a vma where a probe has not
805 * yet been inserted.
806 */
7b2d81d4 807static struct vma_info *
e3343e6a
SD
808find_next_vma_info(struct address_space *mapping, struct list_head *head,
809 loff_t offset, bool is_register)
2b144498
SD
810{
811 struct vma_info *vi, *retvi;
7b2d81d4 812
2b144498
SD
813 vi = kzalloc(sizeof(struct vma_info), GFP_KERNEL);
814 if (!vi)
815 return ERR_PTR(-ENOMEM);
816
817 mutex_lock(&mapping->i_mmap_mutex);
e3343e6a 818 retvi = __find_next_vma_info(mapping, head, vi, offset, is_register);
2b144498
SD
819 mutex_unlock(&mapping->i_mmap_mutex);
820
821 if (!retvi)
822 kfree(vi);
7b2d81d4 823
2b144498
SD
824 return retvi;
825}
826
827static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
828{
829 struct list_head try_list;
830 struct vm_area_struct *vma;
831 struct address_space *mapping;
832 struct vma_info *vi, *tmpvi;
833 struct mm_struct *mm;
834 loff_t vaddr;
7b2d81d4 835 int ret;
2b144498
SD
836
837 mapping = uprobe->inode->i_mapping;
838 INIT_LIST_HEAD(&try_list);
7b2d81d4
IM
839
840 ret = 0;
841
842 for (;;) {
e3343e6a 843 vi = find_next_vma_info(mapping, &try_list, uprobe->offset, is_register);
7b2d81d4
IM
844 if (!vi)
845 break;
846
2b144498
SD
847 if (IS_ERR(vi)) {
848 ret = PTR_ERR(vi);
849 break;
850 }
7b2d81d4 851
2b144498 852 mm = vi->mm;
77fc4af1 853 down_write(&mm->mmap_sem);
2b144498
SD
854 vma = find_vma(mm, (unsigned long)vi->vaddr);
855 if (!vma || !valid_vma(vma, is_register)) {
856 list_del(&vi->probe_list);
857 kfree(vi);
77fc4af1 858 up_write(&mm->mmap_sem);
2b144498
SD
859 mmput(mm);
860 continue;
861 }
862 vaddr = vma_address(vma, uprobe->offset);
863 if (vma->vm_file->f_mapping->host != uprobe->inode ||
864 vaddr != vi->vaddr) {
865 list_del(&vi->probe_list);
866 kfree(vi);
77fc4af1 867 up_write(&mm->mmap_sem);
2b144498
SD
868 mmput(mm);
869 continue;
870 }
871
872 if (is_register)
e3343e6a 873 ret = install_breakpoint(uprobe, mm, vma, vi->vaddr);
2b144498 874 else
e3343e6a 875 remove_breakpoint(uprobe, mm, vi->vaddr);
2b144498 876
77fc4af1 877 up_write(&mm->mmap_sem);
2b144498
SD
878 mmput(mm);
879 if (is_register) {
880 if (ret && ret == -EEXIST)
881 ret = 0;
882 if (ret)
883 break;
884 }
885 }
7b2d81d4 886
2b144498
SD
887 list_for_each_entry_safe(vi, tmpvi, &try_list, probe_list) {
888 list_del(&vi->probe_list);
889 kfree(vi);
890 }
7b2d81d4 891
2b144498
SD
892 return ret;
893}
894
7b2d81d4 895static int __uprobe_register(struct uprobe *uprobe)
2b144498
SD
896{
897 return register_for_each_vma(uprobe, true);
898}
899
7b2d81d4 900static void __uprobe_unregister(struct uprobe *uprobe)
2b144498
SD
901{
902 if (!register_for_each_vma(uprobe, false))
903 delete_uprobe(uprobe);
904
905 /* TODO : cant unregister? schedule a worker thread */
906}
907
908/*
7b2d81d4 909 * uprobe_register - register a probe
2b144498
SD
910 * @inode: the file in which the probe has to be placed.
911 * @offset: offset from the start of the file.
e3343e6a 912 * @uc: information on howto handle the probe..
2b144498 913 *
7b2d81d4 914 * Apart from the access refcount, uprobe_register() takes a creation
2b144498
SD
915 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
916 * inserted into the rbtree (i.e first consumer for a @inode:@offset
7b2d81d4 917 * tuple). Creation refcount stops uprobe_unregister from freeing the
2b144498 918 * @uprobe even before the register operation is complete. Creation
e3343e6a 919 * refcount is released when the last @uc for the @uprobe
2b144498
SD
920 * unregisters.
921 *
922 * Return errno if it cannot successully install probes
923 * else return 0 (success)
924 */
e3343e6a 925int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498
SD
926{
927 struct uprobe *uprobe;
7b2d81d4 928 int ret;
2b144498 929
e3343e6a 930 if (!inode || !uc || uc->next)
7b2d81d4 931 return -EINVAL;
2b144498
SD
932
933 if (offset > i_size_read(inode))
7b2d81d4 934 return -EINVAL;
2b144498
SD
935
936 ret = 0;
937 mutex_lock(uprobes_hash(inode));
938 uprobe = alloc_uprobe(inode, offset);
7b2d81d4 939
e3343e6a 940 if (uprobe && !consumer_add(uprobe, uc)) {
7b2d81d4 941 ret = __uprobe_register(uprobe);
2b144498
SD
942 if (ret) {
943 uprobe->consumers = NULL;
7b2d81d4
IM
944 __uprobe_unregister(uprobe);
945 } else {
900771a4 946 uprobe->flags |= UPROBE_RUN_HANDLER;
7b2d81d4 947 }
2b144498
SD
948 }
949
950 mutex_unlock(uprobes_hash(inode));
951 put_uprobe(uprobe);
952
953 return ret;
954}
955
956/*
7b2d81d4 957 * uprobe_unregister - unregister a already registered probe.
2b144498
SD
958 * @inode: the file in which the probe has to be removed.
959 * @offset: offset from the start of the file.
e3343e6a 960 * @uc: identify which probe if multiple probes are colocated.
2b144498 961 */
e3343e6a 962void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498 963{
7b2d81d4 964 struct uprobe *uprobe;
2b144498 965
e3343e6a 966 if (!inode || !uc)
2b144498
SD
967 return;
968
969 uprobe = find_uprobe(inode, offset);
970 if (!uprobe)
971 return;
972
973 mutex_lock(uprobes_hash(inode));
2b144498 974
e3343e6a 975 if (consumer_del(uprobe, uc)) {
7b2d81d4
IM
976 if (!uprobe->consumers) {
977 __uprobe_unregister(uprobe);
900771a4 978 uprobe->flags &= ~UPROBE_RUN_HANDLER;
7b2d81d4 979 }
2b144498
SD
980 }
981
2b144498
SD
982 mutex_unlock(uprobes_hash(inode));
983 if (uprobe)
984 put_uprobe(uprobe);
985}
986
987/*
988 * Of all the nodes that correspond to the given inode, return the node
989 * with the least offset.
990 */
991static struct rb_node *find_least_offset_node(struct inode *inode)
992{
993 struct uprobe u = { .inode = inode, .offset = 0};
994 struct rb_node *n = uprobes_tree.rb_node;
995 struct rb_node *close_node = NULL;
996 struct uprobe *uprobe;
997 int match;
998
999 while (n) {
1000 uprobe = rb_entry(n, struct uprobe, rb_node);
1001 match = match_uprobe(&u, uprobe);
7b2d81d4 1002
2b144498
SD
1003 if (uprobe->inode == inode)
1004 close_node = n;
1005
1006 if (!match)
1007 return close_node;
1008
1009 if (match < 0)
1010 n = n->rb_left;
1011 else
1012 n = n->rb_right;
1013 }
7b2d81d4 1014
2b144498
SD
1015 return close_node;
1016}
1017
1018/*
1019 * For a given inode, build a list of probes that need to be inserted.
1020 */
1021static void build_probe_list(struct inode *inode, struct list_head *head)
1022{
1023 struct uprobe *uprobe;
2b144498 1024 unsigned long flags;
7b2d81d4 1025 struct rb_node *n;
2b144498
SD
1026
1027 spin_lock_irqsave(&uprobes_treelock, flags);
7b2d81d4 1028
2b144498 1029 n = find_least_offset_node(inode);
7b2d81d4 1030
2b144498
SD
1031 for (; n; n = rb_next(n)) {
1032 uprobe = rb_entry(n, struct uprobe, rb_node);
1033 if (uprobe->inode != inode)
1034 break;
1035
1036 list_add(&uprobe->pending_list, head);
1037 atomic_inc(&uprobe->ref);
1038 }
7b2d81d4 1039
2b144498
SD
1040 spin_unlock_irqrestore(&uprobes_treelock, flags);
1041}
1042
1043/*
1044 * Called from mmap_region.
1045 * called with mm->mmap_sem acquired.
1046 *
1047 * Return -ve no if we fail to insert probes and we cannot
1048 * bail-out.
7b2d81d4
IM
1049 * Return 0 otherwise. i.e:
1050 *
2b144498
SD
1051 * - successful insertion of probes
1052 * - (or) no possible probes to be inserted.
1053 * - (or) insertion of probes failed but we can bail-out.
1054 */
7b2d81d4 1055int uprobe_mmap(struct vm_area_struct *vma)
2b144498
SD
1056{
1057 struct list_head tmp_list;
1058 struct uprobe *uprobe, *u;
1059 struct inode *inode;
682968e0 1060 int ret, count;
2b144498
SD
1061
1062 if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
7b2d81d4 1063 return 0;
2b144498
SD
1064
1065 inode = vma->vm_file->f_mapping->host;
1066 if (!inode)
7b2d81d4 1067 return 0;
2b144498
SD
1068
1069 INIT_LIST_HEAD(&tmp_list);
1070 mutex_lock(uprobes_mmap_hash(inode));
1071 build_probe_list(inode, &tmp_list);
7b2d81d4
IM
1072
1073 ret = 0;
682968e0 1074 count = 0;
7b2d81d4 1075
2b144498
SD
1076 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1077 loff_t vaddr;
1078
1079 list_del(&uprobe->pending_list);
1080 if (!ret) {
1081 vaddr = vma_address(vma, uprobe->offset);
682968e0
SD
1082
1083 if (vaddr < vma->vm_start || vaddr >= vma->vm_end) {
1084 put_uprobe(uprobe);
1085 continue;
2b144498 1086 }
682968e0
SD
1087
1088 ret = install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1089
1090 /* Ignore double add: */
1091 if (ret == -EEXIST) {
1092 ret = 0;
1093
1094 if (!is_swbp_at_addr(vma->vm_mm, vaddr))
1095 continue;
1096
1097 /*
1098 * Unable to insert a breakpoint, but
1099 * breakpoint lies underneath. Increment the
1100 * probe count.
1101 */
1102 atomic_inc(&vma->vm_mm->uprobes_state.count);
1103 }
1104
1105 if (!ret)
1106 count++;
2b144498
SD
1107 }
1108 put_uprobe(uprobe);
1109 }
1110
1111 mutex_unlock(uprobes_mmap_hash(inode));
1112
682968e0
SD
1113 if (ret)
1114 atomic_sub(count, &vma->vm_mm->uprobes_state.count);
1115
2b144498
SD
1116 return ret;
1117}
1118
682968e0
SD
1119/*
1120 * Called in context of a munmap of a vma.
1121 */
cbc91f71 1122void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
682968e0
SD
1123{
1124 struct list_head tmp_list;
1125 struct uprobe *uprobe, *u;
1126 struct inode *inode;
1127
1128 if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1129 return;
1130
1131 if (!atomic_read(&vma->vm_mm->uprobes_state.count))
1132 return;
1133
1134 inode = vma->vm_file->f_mapping->host;
1135 if (!inode)
1136 return;
1137
1138 INIT_LIST_HEAD(&tmp_list);
1139 mutex_lock(uprobes_mmap_hash(inode));
1140 build_probe_list(inode, &tmp_list);
1141
1142 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1143 loff_t vaddr;
1144
1145 list_del(&uprobe->pending_list);
1146 vaddr = vma_address(vma, uprobe->offset);
1147
cbc91f71 1148 if (vaddr >= start && vaddr < end) {
682968e0
SD
1149 /*
1150 * An unregister could have removed the probe before
1151 * unmap. So check before we decrement the count.
1152 */
1153 if (is_swbp_at_addr(vma->vm_mm, vaddr) == 1)
1154 atomic_dec(&vma->vm_mm->uprobes_state.count);
1155 }
1156 put_uprobe(uprobe);
1157 }
1158 mutex_unlock(uprobes_mmap_hash(inode));
1159}
1160
d4b3b638
SD
1161/* Slot allocation for XOL */
1162static int xol_add_vma(struct xol_area *area)
1163{
1164 struct mm_struct *mm;
1165 int ret;
1166
1167 area->page = alloc_page(GFP_HIGHUSER);
1168 if (!area->page)
1169 return -ENOMEM;
1170
1171 ret = -EALREADY;
1172 mm = current->mm;
1173
1174 down_write(&mm->mmap_sem);
1175 if (mm->uprobes_state.xol_area)
1176 goto fail;
1177
1178 ret = -ENOMEM;
1179
1180 /* Try to map as high as possible, this is only a hint. */
1181 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1182 if (area->vaddr & ~PAGE_MASK) {
1183 ret = area->vaddr;
1184 goto fail;
1185 }
1186
1187 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1188 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1189 if (ret)
1190 goto fail;
1191
1192 smp_wmb(); /* pairs with get_xol_area() */
1193 mm->uprobes_state.xol_area = area;
1194 ret = 0;
1195
1196fail:
1197 up_write(&mm->mmap_sem);
1198 if (ret)
1199 __free_page(area->page);
1200
1201 return ret;
1202}
1203
1204static struct xol_area *get_xol_area(struct mm_struct *mm)
1205{
1206 struct xol_area *area;
1207
1208 area = mm->uprobes_state.xol_area;
1209 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1210
1211 return area;
1212}
1213
1214/*
1215 * xol_alloc_area - Allocate process's xol_area.
1216 * This area will be used for storing instructions for execution out of
1217 * line.
1218 *
1219 * Returns the allocated area or NULL.
1220 */
1221static struct xol_area *xol_alloc_area(void)
1222{
1223 struct xol_area *area;
1224
1225 area = kzalloc(sizeof(*area), GFP_KERNEL);
1226 if (unlikely(!area))
1227 return NULL;
1228
1229 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1230
1231 if (!area->bitmap)
1232 goto fail;
1233
1234 init_waitqueue_head(&area->wq);
1235 if (!xol_add_vma(area))
1236 return area;
1237
1238fail:
1239 kfree(area->bitmap);
1240 kfree(area);
1241
1242 return get_xol_area(current->mm);
1243}
1244
1245/*
1246 * uprobe_clear_state - Free the area allocated for slots.
1247 */
1248void uprobe_clear_state(struct mm_struct *mm)
1249{
1250 struct xol_area *area = mm->uprobes_state.xol_area;
1251
1252 if (!area)
1253 return;
1254
1255 put_page(area->page);
1256 kfree(area->bitmap);
1257 kfree(area);
1258}
1259
1260/*
1261 * uprobe_reset_state - Free the area allocated for slots.
1262 */
1263void uprobe_reset_state(struct mm_struct *mm)
1264{
1265 mm->uprobes_state.xol_area = NULL;
682968e0 1266 atomic_set(&mm->uprobes_state.count, 0);
d4b3b638
SD
1267}
1268
1269/*
1270 * - search for a free slot.
1271 */
1272static unsigned long xol_take_insn_slot(struct xol_area *area)
1273{
1274 unsigned long slot_addr;
1275 int slot_nr;
1276
1277 do {
1278 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1279 if (slot_nr < UINSNS_PER_PAGE) {
1280 if (!test_and_set_bit(slot_nr, area->bitmap))
1281 break;
1282
1283 slot_nr = UINSNS_PER_PAGE;
1284 continue;
1285 }
1286 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1287 } while (slot_nr >= UINSNS_PER_PAGE);
1288
1289 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1290 atomic_inc(&area->slot_count);
1291
1292 return slot_addr;
1293}
1294
1295/*
1296 * xol_get_insn_slot - If was not allocated a slot, then
1297 * allocate a slot.
1298 * Returns the allocated slot address or 0.
1299 */
1300static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1301{
1302 struct xol_area *area;
1303 unsigned long offset;
1304 void *vaddr;
1305
1306 area = get_xol_area(current->mm);
1307 if (!area) {
1308 area = xol_alloc_area();
1309 if (!area)
1310 return 0;
1311 }
1312 current->utask->xol_vaddr = xol_take_insn_slot(area);
1313
1314 /*
1315 * Initialize the slot if xol_vaddr points to valid
1316 * instruction slot.
1317 */
1318 if (unlikely(!current->utask->xol_vaddr))
1319 return 0;
1320
1321 current->utask->vaddr = slot_addr;
1322 offset = current->utask->xol_vaddr & ~PAGE_MASK;
1323 vaddr = kmap_atomic(area->page);
1324 memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1325 kunmap_atomic(vaddr);
1326
1327 return current->utask->xol_vaddr;
1328}
1329
1330/*
1331 * xol_free_insn_slot - If slot was earlier allocated by
1332 * @xol_get_insn_slot(), make the slot available for
1333 * subsequent requests.
1334 */
1335static void xol_free_insn_slot(struct task_struct *tsk)
1336{
1337 struct xol_area *area;
1338 unsigned long vma_end;
1339 unsigned long slot_addr;
1340
1341 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1342 return;
1343
1344 slot_addr = tsk->utask->xol_vaddr;
1345
1346 if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1347 return;
1348
1349 area = tsk->mm->uprobes_state.xol_area;
1350 vma_end = area->vaddr + PAGE_SIZE;
1351 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1352 unsigned long offset;
1353 int slot_nr;
1354
1355 offset = slot_addr - area->vaddr;
1356 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1357 if (slot_nr >= UINSNS_PER_PAGE)
1358 return;
1359
1360 clear_bit(slot_nr, area->bitmap);
1361 atomic_dec(&area->slot_count);
1362 if (waitqueue_active(&area->wq))
1363 wake_up(&area->wq);
1364
1365 tsk->utask->xol_vaddr = 0;
1366 }
1367}
1368
0326f5a9
SD
1369/**
1370 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1371 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1372 * instruction.
1373 * Return the address of the breakpoint instruction.
1374 */
1375unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1376{
1377 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1378}
1379
1380/*
1381 * Called with no locks held.
1382 * Called in context of a exiting or a exec-ing thread.
1383 */
1384void uprobe_free_utask(struct task_struct *t)
1385{
1386 struct uprobe_task *utask = t->utask;
1387
0326f5a9
SD
1388 if (!utask)
1389 return;
1390
1391 if (utask->active_uprobe)
1392 put_uprobe(utask->active_uprobe);
1393
d4b3b638 1394 xol_free_insn_slot(t);
0326f5a9
SD
1395 kfree(utask);
1396 t->utask = NULL;
1397}
1398
1399/*
1400 * Called in context of a new clone/fork from copy_process.
1401 */
1402void uprobe_copy_process(struct task_struct *t)
1403{
1404 t->utask = NULL;
0326f5a9
SD
1405}
1406
1407/*
1408 * Allocate a uprobe_task object for the task.
1409 * Called when the thread hits a breakpoint for the first time.
1410 *
1411 * Returns:
1412 * - pointer to new uprobe_task on success
1413 * - NULL otherwise
1414 */
1415static struct uprobe_task *add_utask(void)
1416{
1417 struct uprobe_task *utask;
1418
1419 utask = kzalloc(sizeof *utask, GFP_KERNEL);
1420 if (unlikely(!utask))
1421 return NULL;
1422
1423 utask->active_uprobe = NULL;
1424 current->utask = utask;
1425 return utask;
1426}
1427
1428/* Prepare to single-step probed instruction out of line. */
1429static int
1430pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1431{
d4b3b638
SD
1432 if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1433 return 0;
1434
0326f5a9
SD
1435 return -EFAULT;
1436}
1437
1438/*
1439 * If we are singlestepping, then ensure this thread is not connected to
1440 * non-fatal signals until completion of singlestep. When xol insn itself
1441 * triggers the signal, restart the original insn even if the task is
1442 * already SIGKILL'ed (since coredump should report the correct ip). This
1443 * is even more important if the task has a handler for SIGSEGV/etc, The
1444 * _same_ instruction should be repeated again after return from the signal
1445 * handler, and SSTEP can never finish in this case.
1446 */
1447bool uprobe_deny_signal(void)
1448{
1449 struct task_struct *t = current;
1450 struct uprobe_task *utask = t->utask;
1451
1452 if (likely(!utask || !utask->active_uprobe))
1453 return false;
1454
1455 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1456
1457 if (signal_pending(t)) {
1458 spin_lock_irq(&t->sighand->siglock);
1459 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1460 spin_unlock_irq(&t->sighand->siglock);
1461
1462 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1463 utask->state = UTASK_SSTEP_TRAPPED;
1464 set_tsk_thread_flag(t, TIF_UPROBE);
1465 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1466 }
1467 }
1468
1469 return true;
1470}
1471
1472/*
1473 * Avoid singlestepping the original instruction if the original instruction
1474 * is a NOP or can be emulated.
1475 */
1476static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1477{
1478 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1479 return true;
1480
1481 uprobe->flags &= ~UPROBE_SKIP_SSTEP;
1482 return false;
1483}
1484
d790d346 1485static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
0326f5a9 1486{
3a9ea052
ON
1487 struct mm_struct *mm = current->mm;
1488 struct uprobe *uprobe = NULL;
0326f5a9 1489 struct vm_area_struct *vma;
0326f5a9 1490
0326f5a9
SD
1491 down_read(&mm->mmap_sem);
1492 vma = find_vma(mm, bp_vaddr);
3a9ea052
ON
1493 if (vma && vma->vm_start <= bp_vaddr) {
1494 if (valid_vma(vma, false)) {
1495 struct inode *inode;
1496 loff_t offset;
0326f5a9 1497
3a9ea052
ON
1498 inode = vma->vm_file->f_mapping->host;
1499 offset = bp_vaddr - vma->vm_start;
1500 offset += (vma->vm_pgoff << PAGE_SHIFT);
1501 uprobe = find_uprobe(inode, offset);
1502 }
d790d346
ON
1503
1504 if (!uprobe)
1505 *is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1506 } else {
1507 *is_swbp = -EFAULT;
0326f5a9 1508 }
0326f5a9
SD
1509 up_read(&mm->mmap_sem);
1510
3a9ea052
ON
1511 return uprobe;
1512}
1513
1514/*
1515 * Run handler and ask thread to singlestep.
1516 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1517 */
1518static void handle_swbp(struct pt_regs *regs)
1519{
1520 struct uprobe_task *utask;
1521 struct uprobe *uprobe;
1522 unsigned long bp_vaddr;
56bb4cf6 1523 int uninitialized_var(is_swbp);
3a9ea052
ON
1524
1525 bp_vaddr = uprobe_get_swbp_addr(regs);
d790d346 1526 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
3a9ea052 1527
0326f5a9 1528 if (!uprobe) {
56bb4cf6
ON
1529 if (is_swbp > 0) {
1530 /* No matching uprobe; signal SIGTRAP. */
1531 send_sig(SIGTRAP, current, 0);
1532 } else {
1533 /*
1534 * Either we raced with uprobe_unregister() or we can't
1535 * access this memory. The latter is only possible if
1536 * another thread plays with our ->mm. In both cases
1537 * we can simply restart. If this vma was unmapped we
1538 * can pretend this insn was not executed yet and get
1539 * the (correct) SIGSEGV after restart.
1540 */
1541 instruction_pointer_set(regs, bp_vaddr);
1542 }
0326f5a9
SD
1543 return;
1544 }
1545
1546 utask = current->utask;
1547 if (!utask) {
1548 utask = add_utask();
1549 /* Cannot allocate; re-execute the instruction. */
1550 if (!utask)
1551 goto cleanup_ret;
1552 }
1553 utask->active_uprobe = uprobe;
1554 handler_chain(uprobe, regs);
1555 if (uprobe->flags & UPROBE_SKIP_SSTEP && can_skip_sstep(uprobe, regs))
1556 goto cleanup_ret;
1557
1558 utask->state = UTASK_SSTEP;
1559 if (!pre_ssout(uprobe, regs, bp_vaddr)) {
1560 user_enable_single_step(current);
1561 return;
1562 }
1563
1564cleanup_ret:
1565 if (utask) {
1566 utask->active_uprobe = NULL;
1567 utask->state = UTASK_RUNNING;
1568 }
1569 if (uprobe) {
1570 if (!(uprobe->flags & UPROBE_SKIP_SSTEP))
1571
1572 /*
1573 * cannot singlestep; cannot skip instruction;
1574 * re-execute the instruction.
1575 */
1576 instruction_pointer_set(regs, bp_vaddr);
1577
1578 put_uprobe(uprobe);
1579 }
1580}
1581
1582/*
1583 * Perform required fix-ups and disable singlestep.
1584 * Allow pending signals to take effect.
1585 */
1586static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1587{
1588 struct uprobe *uprobe;
1589
1590 uprobe = utask->active_uprobe;
1591 if (utask->state == UTASK_SSTEP_ACK)
1592 arch_uprobe_post_xol(&uprobe->arch, regs);
1593 else if (utask->state == UTASK_SSTEP_TRAPPED)
1594 arch_uprobe_abort_xol(&uprobe->arch, regs);
1595 else
1596 WARN_ON_ONCE(1);
1597
1598 put_uprobe(uprobe);
1599 utask->active_uprobe = NULL;
1600 utask->state = UTASK_RUNNING;
1601 user_disable_single_step(current);
d4b3b638 1602 xol_free_insn_slot(current);
0326f5a9
SD
1603
1604 spin_lock_irq(&current->sighand->siglock);
1605 recalc_sigpending(); /* see uprobe_deny_signal() */
1606 spin_unlock_irq(&current->sighand->siglock);
1607}
1608
1609/*
1610 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag. (and on
1611 * subsequent probe hits on the thread sets the state to UTASK_BP_HIT) and
1612 * allows the thread to return from interrupt.
1613 *
1614 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag and
1615 * also sets the state to UTASK_SSTEP_ACK and allows the thread to return from
1616 * interrupt.
1617 *
1618 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1619 * uprobe_notify_resume().
1620 */
1621void uprobe_notify_resume(struct pt_regs *regs)
1622{
1623 struct uprobe_task *utask;
1624
1625 utask = current->utask;
1626 if (!utask || utask->state == UTASK_BP_HIT)
1627 handle_swbp(regs);
1628 else
1629 handle_singlestep(utask, regs);
1630}
1631
1632/*
1633 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1634 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1635 */
1636int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1637{
1638 struct uprobe_task *utask;
1639
682968e0
SD
1640 if (!current->mm || !atomic_read(&current->mm->uprobes_state.count))
1641 /* task is currently not uprobed */
0326f5a9
SD
1642 return 0;
1643
1644 utask = current->utask;
1645 if (utask)
1646 utask->state = UTASK_BP_HIT;
1647
1648 set_thread_flag(TIF_UPROBE);
0326f5a9
SD
1649
1650 return 1;
1651}
1652
1653/*
1654 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1655 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1656 */
1657int uprobe_post_sstep_notifier(struct pt_regs *regs)
1658{
1659 struct uprobe_task *utask = current->utask;
1660
1661 if (!current->mm || !utask || !utask->active_uprobe)
1662 /* task is currently not uprobed */
1663 return 0;
1664
1665 utask->state = UTASK_SSTEP_ACK;
1666 set_thread_flag(TIF_UPROBE);
1667 return 1;
1668}
1669
1670static struct notifier_block uprobe_exception_nb = {
1671 .notifier_call = arch_uprobe_exception_notify,
1672 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
1673};
1674
2b144498
SD
1675static int __init init_uprobes(void)
1676{
1677 int i;
1678
1679 for (i = 0; i < UPROBES_HASH_SZ; i++) {
1680 mutex_init(&uprobes_mutex[i]);
1681 mutex_init(&uprobes_mmap_mutex[i]);
1682 }
0326f5a9
SD
1683
1684 return register_die_notifier(&uprobe_exception_nb);
2b144498 1685}
0326f5a9 1686module_init(init_uprobes);
2b144498
SD
1687
1688static void __exit exit_uprobes(void)
1689{
1690}
2b144498 1691module_exit(exit_uprobes);