uprobes: Fix the wrong usage of current->utask in uprobe_copy_process()
[linux-block.git] / kernel / events / uprobes.c
CommitLineData
2b144498 1/*
7b2d81d4 2 * User-space Probes (UProbes)
2b144498
SD
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
35aa621b 18 * Copyright (C) IBM Corporation, 2008-2012
2b144498
SD
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
35aa621b 22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
2b144498
SD
23 */
24
25#include <linux/kernel.h>
26#include <linux/highmem.h>
27#include <linux/pagemap.h> /* read_mapping_page */
28#include <linux/slab.h>
29#include <linux/sched.h>
e8440c14 30#include <linux/export.h>
2b144498
SD
31#include <linux/rmap.h> /* anon_vma_prepare */
32#include <linux/mmu_notifier.h> /* set_pte_at_notify */
33#include <linux/swap.h> /* try_to_free_swap */
0326f5a9
SD
34#include <linux/ptrace.h> /* user_enable_single_step */
35#include <linux/kdebug.h> /* notifier mechanism */
194f8dcb 36#include "../../mm/internal.h" /* munlock_vma_page */
32cdba1e 37#include <linux/percpu-rwsem.h>
aa59c53f 38#include <linux/task_work.h>
7b2d81d4 39
2b144498
SD
40#include <linux/uprobes.h>
41
d4b3b638
SD
42#define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
43#define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
44
2b144498 45static struct rb_root uprobes_tree = RB_ROOT;
441f1eb7
ON
46/*
47 * allows us to skip the uprobe_mmap if there are no uprobe events active
48 * at this time. Probably a fine grained per inode count is better?
49 */
50#define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree)
7b2d81d4 51
2b144498
SD
52static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
53
54#define UPROBES_HASH_SZ 13
2b144498
SD
55/* serialize uprobe->pending_list */
56static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
7b2d81d4 57#define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498 58
32cdba1e
ON
59static struct percpu_rw_semaphore dup_mmap_sem;
60
cb9a19fe 61/* Have a copy of original instruction */
71434f2f 62#define UPROBE_COPY_INSN 0
cb9a19fe 63/* Can skip singlestep */
bb929284 64#define UPROBE_SKIP_SSTEP 1
cb9a19fe 65
3ff54efd
SD
66struct uprobe {
67 struct rb_node rb_node; /* node in the rb tree */
68 atomic_t ref;
e591c8d7 69 struct rw_semaphore register_rwsem;
3ff54efd
SD
70 struct rw_semaphore consumer_rwsem;
71 struct list_head pending_list;
72 struct uprobe_consumer *consumers;
73 struct inode *inode; /* Also hold a ref to inode */
74 loff_t offset;
71434f2f 75 unsigned long flags;
3ff54efd
SD
76 struct arch_uprobe arch;
77};
78
0dfd0eb8
AA
79struct return_instance {
80 struct uprobe *uprobe;
81 unsigned long func;
82 unsigned long orig_ret_vaddr; /* original return address */
83 bool chained; /* true, if instance is nested */
84
85 struct return_instance *next; /* keep as stack */
86};
87
2b144498
SD
88/*
89 * valid_vma: Verify if the specified vma is an executable vma
90 * Relax restrictions while unregistering: vm_flags might have
91 * changed after breakpoint was inserted.
92 * - is_register: indicates if we are in register context.
93 * - Return 1 if the specified virtual address is in an
94 * executable vma.
95 */
96static bool valid_vma(struct vm_area_struct *vma, bool is_register)
97{
e40cfce6 98 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED;
2b144498 99
e40cfce6
ON
100 if (is_register)
101 flags |= VM_WRITE;
2b144498 102
e40cfce6 103 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
2b144498
SD
104}
105
57683f72 106static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
2b144498 107{
57683f72 108 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
2b144498
SD
109}
110
cb113b47
ON
111static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
112{
113 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
114}
115
2b144498
SD
116/**
117 * __replace_page - replace page in vma by new page.
118 * based on replace_page in mm/ksm.c
119 *
120 * @vma: vma that holds the pte pointing to page
c517ee74 121 * @addr: address the old @page is mapped at
2b144498
SD
122 * @page: the cowed page we are replacing by kpage
123 * @kpage: the modified page we replace page by
124 *
125 * Returns 0 on success, -EFAULT on failure.
126 */
c517ee74
ON
127static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
128 struct page *page, struct page *kpage)
2b144498
SD
129{
130 struct mm_struct *mm = vma->vm_mm;
5323ce71
ON
131 spinlock_t *ptl;
132 pte_t *ptep;
9f92448c 133 int err;
6bdb913f
HE
134 /* For mmu_notifiers */
135 const unsigned long mmun_start = addr;
136 const unsigned long mmun_end = addr + PAGE_SIZE;
2b144498 137
194f8dcb 138 /* For try_to_free_swap() and munlock_vma_page() below */
9f92448c
ON
139 lock_page(page);
140
6bdb913f 141 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
9f92448c 142 err = -EAGAIN;
5323ce71 143 ptep = page_check_address(page, mm, addr, &ptl, 0);
2b144498 144 if (!ptep)
9f92448c 145 goto unlock;
2b144498
SD
146
147 get_page(kpage);
148 page_add_new_anon_rmap(kpage, vma, addr);
149
7396fa81
SD
150 if (!PageAnon(page)) {
151 dec_mm_counter(mm, MM_FILEPAGES);
152 inc_mm_counter(mm, MM_ANONPAGES);
153 }
154
2b144498
SD
155 flush_cache_page(vma, addr, pte_pfn(*ptep));
156 ptep_clear_flush(vma, addr, ptep);
157 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
158
159 page_remove_rmap(page);
160 if (!page_mapped(page))
161 try_to_free_swap(page);
2b144498 162 pte_unmap_unlock(ptep, ptl);
2b144498 163
194f8dcb
ON
164 if (vma->vm_flags & VM_LOCKED)
165 munlock_vma_page(page);
166 put_page(page);
167
9f92448c
ON
168 err = 0;
169 unlock:
6bdb913f 170 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
9f92448c
ON
171 unlock_page(page);
172 return err;
2b144498
SD
173}
174
175/**
5cb4ac3a 176 * is_swbp_insn - check if instruction is breakpoint instruction.
2b144498 177 * @insn: instruction to be checked.
5cb4ac3a 178 * Default implementation of is_swbp_insn
2b144498
SD
179 * Returns true if @insn is a breakpoint instruction.
180 */
5cb4ac3a 181bool __weak is_swbp_insn(uprobe_opcode_t *insn)
2b144498 182{
5cb4ac3a 183 return *insn == UPROBE_SWBP_INSN;
2b144498
SD
184}
185
0908ad6e
AM
186/**
187 * is_trap_insn - check if instruction is breakpoint instruction.
188 * @insn: instruction to be checked.
189 * Default implementation of is_trap_insn
190 * Returns true if @insn is a breakpoint instruction.
191 *
192 * This function is needed for the case where an architecture has multiple
193 * trap instructions (like powerpc).
194 */
195bool __weak is_trap_insn(uprobe_opcode_t *insn)
196{
197 return is_swbp_insn(insn);
198}
199
ab0d805c 200static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
cceb55aa
ON
201{
202 void *kaddr = kmap_atomic(page);
ab0d805c 203 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
cceb55aa
ON
204 kunmap_atomic(kaddr);
205}
206
5669ccee
ON
207static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
208{
209 void *kaddr = kmap_atomic(page);
210 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
211 kunmap_atomic(kaddr);
212}
213
ed6f6a50
ON
214static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
215{
216 uprobe_opcode_t old_opcode;
217 bool is_swbp;
218
0908ad6e
AM
219 /*
220 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
221 * We do not check if it is any other 'trap variant' which could
222 * be conditional trap instruction such as the one powerpc supports.
223 *
224 * The logic is that we do not care if the underlying instruction
225 * is a trap variant; uprobes always wins over any other (gdb)
226 * breakpoint.
227 */
ab0d805c 228 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
ed6f6a50
ON
229 is_swbp = is_swbp_insn(&old_opcode);
230
231 if (is_swbp_insn(new_opcode)) {
232 if (is_swbp) /* register: already installed? */
233 return 0;
234 } else {
235 if (!is_swbp) /* unregister: was it changed by us? */
076a365b 236 return 0;
ed6f6a50
ON
237 }
238
239 return 1;
240}
241
2b144498
SD
242/*
243 * NOTE:
244 * Expect the breakpoint instruction to be the smallest size instruction for
245 * the architecture. If an arch has variable length instruction and the
246 * breakpoint instruction is not of the smallest length instruction
0908ad6e 247 * supported by that architecture then we need to modify is_trap_at_addr and
f72d41fa
ON
248 * uprobe_write_opcode accordingly. This would never be a problem for archs
249 * that have fixed length instructions.
2b144498
SD
250 */
251
252/*
f72d41fa 253 * uprobe_write_opcode - write the opcode at a given virtual address.
2b144498 254 * @mm: the probed process address space.
2b144498
SD
255 * @vaddr: the virtual address to store the opcode.
256 * @opcode: opcode to be written at @vaddr.
257 *
258 * Called with mm->mmap_sem held (for read and with a reference to
259 * mm).
260 *
261 * For mm @mm, write the opcode at @vaddr.
262 * Return 0 (success) or a negative errno.
263 */
f72d41fa 264int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
cceb55aa 265 uprobe_opcode_t opcode)
2b144498
SD
266{
267 struct page *old_page, *new_page;
2b144498 268 struct vm_area_struct *vma;
2b144498 269 int ret;
f403072c 270
5323ce71 271retry:
2b144498 272 /* Read the page with vaddr into memory */
75ed82ea 273 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
2b144498
SD
274 if (ret <= 0)
275 return ret;
7b2d81d4 276
ed6f6a50
ON
277 ret = verify_opcode(old_page, vaddr, &opcode);
278 if (ret <= 0)
279 goto put_old;
280
2b144498
SD
281 ret = -ENOMEM;
282 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
283 if (!new_page)
9f92448c 284 goto put_old;
2b144498
SD
285
286 __SetPageUptodate(new_page);
287
3f47107c
ON
288 copy_highpage(new_page, old_page);
289 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2b144498
SD
290
291 ret = anon_vma_prepare(vma);
292 if (ret)
9f92448c 293 goto put_new;
2b144498 294
c517ee74 295 ret = __replace_page(vma, vaddr, old_page, new_page);
2b144498 296
9f92448c 297put_new:
2b144498 298 page_cache_release(new_page);
9f92448c 299put_old:
7b2d81d4
IM
300 put_page(old_page);
301
5323ce71
ON
302 if (unlikely(ret == -EAGAIN))
303 goto retry;
2b144498
SD
304 return ret;
305}
306
2b144498 307/**
5cb4ac3a 308 * set_swbp - store breakpoint at a given address.
e3343e6a 309 * @auprobe: arch specific probepoint information.
2b144498 310 * @mm: the probed process address space.
2b144498
SD
311 * @vaddr: the virtual address to insert the opcode.
312 *
313 * For mm @mm, store the breakpoint instruction at @vaddr.
314 * Return 0 (success) or a negative errno.
315 */
5cb4ac3a 316int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 317{
f72d41fa 318 return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
2b144498
SD
319}
320
321/**
322 * set_orig_insn - Restore the original instruction.
323 * @mm: the probed process address space.
e3343e6a 324 * @auprobe: arch specific probepoint information.
2b144498 325 * @vaddr: the virtual address to insert the opcode.
2b144498
SD
326 *
327 * For mm @mm, restore the original opcode (opcode) at @vaddr.
328 * Return 0 (success) or a negative errno.
329 */
7b2d81d4 330int __weak
ded86e7c 331set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 332{
f72d41fa 333 return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
2b144498
SD
334}
335
336static int match_uprobe(struct uprobe *l, struct uprobe *r)
337{
338 if (l->inode < r->inode)
339 return -1;
7b2d81d4 340
2b144498
SD
341 if (l->inode > r->inode)
342 return 1;
2b144498 343
7b2d81d4
IM
344 if (l->offset < r->offset)
345 return -1;
346
347 if (l->offset > r->offset)
348 return 1;
2b144498
SD
349
350 return 0;
351}
352
353static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
354{
355 struct uprobe u = { .inode = inode, .offset = offset };
356 struct rb_node *n = uprobes_tree.rb_node;
357 struct uprobe *uprobe;
358 int match;
359
360 while (n) {
361 uprobe = rb_entry(n, struct uprobe, rb_node);
362 match = match_uprobe(&u, uprobe);
363 if (!match) {
364 atomic_inc(&uprobe->ref);
365 return uprobe;
366 }
7b2d81d4 367
2b144498
SD
368 if (match < 0)
369 n = n->rb_left;
370 else
371 n = n->rb_right;
372 }
373 return NULL;
374}
375
376/*
377 * Find a uprobe corresponding to a given inode:offset
378 * Acquires uprobes_treelock
379 */
380static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
381{
382 struct uprobe *uprobe;
2b144498 383
6f47caa0 384 spin_lock(&uprobes_treelock);
2b144498 385 uprobe = __find_uprobe(inode, offset);
6f47caa0 386 spin_unlock(&uprobes_treelock);
7b2d81d4 387
2b144498
SD
388 return uprobe;
389}
390
391static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
392{
393 struct rb_node **p = &uprobes_tree.rb_node;
394 struct rb_node *parent = NULL;
395 struct uprobe *u;
396 int match;
397
398 while (*p) {
399 parent = *p;
400 u = rb_entry(parent, struct uprobe, rb_node);
401 match = match_uprobe(uprobe, u);
402 if (!match) {
403 atomic_inc(&u->ref);
404 return u;
405 }
406
407 if (match < 0)
408 p = &parent->rb_left;
409 else
410 p = &parent->rb_right;
411
412 }
7b2d81d4 413
2b144498
SD
414 u = NULL;
415 rb_link_node(&uprobe->rb_node, parent, p);
416 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
417 /* get access + creation ref */
418 atomic_set(&uprobe->ref, 2);
7b2d81d4 419
2b144498
SD
420 return u;
421}
422
423/*
7b2d81d4 424 * Acquire uprobes_treelock.
2b144498
SD
425 * Matching uprobe already exists in rbtree;
426 * increment (access refcount) and return the matching uprobe.
427 *
428 * No matching uprobe; insert the uprobe in rb_tree;
429 * get a double refcount (access + creation) and return NULL.
430 */
431static struct uprobe *insert_uprobe(struct uprobe *uprobe)
432{
2b144498
SD
433 struct uprobe *u;
434
6f47caa0 435 spin_lock(&uprobes_treelock);
2b144498 436 u = __insert_uprobe(uprobe);
6f47caa0 437 spin_unlock(&uprobes_treelock);
7b2d81d4 438
2b144498
SD
439 return u;
440}
441
442static void put_uprobe(struct uprobe *uprobe)
443{
444 if (atomic_dec_and_test(&uprobe->ref))
445 kfree(uprobe);
446}
447
448static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
449{
450 struct uprobe *uprobe, *cur_uprobe;
451
452 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
453 if (!uprobe)
454 return NULL;
455
456 uprobe->inode = igrab(inode);
457 uprobe->offset = offset;
e591c8d7 458 init_rwsem(&uprobe->register_rwsem);
2b144498 459 init_rwsem(&uprobe->consumer_rwsem);
bbc33d05
ON
460 /* For now assume that the instruction need not be single-stepped */
461 __set_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
2b144498
SD
462
463 /* add to uprobes_tree, sorted on inode:offset */
464 cur_uprobe = insert_uprobe(uprobe);
465
466 /* a uprobe exists for this inode:offset combination */
467 if (cur_uprobe) {
468 kfree(uprobe);
469 uprobe = cur_uprobe;
470 iput(inode);
7b2d81d4
IM
471 }
472
2b144498
SD
473 return uprobe;
474}
475
9a98e03c 476static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
477{
478 down_write(&uprobe->consumer_rwsem);
e3343e6a
SD
479 uc->next = uprobe->consumers;
480 uprobe->consumers = uc;
2b144498 481 up_write(&uprobe->consumer_rwsem);
2b144498
SD
482}
483
484/*
e3343e6a
SD
485 * For uprobe @uprobe, delete the consumer @uc.
486 * Return true if the @uc is deleted successfully
2b144498
SD
487 * or return false.
488 */
e3343e6a 489static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
490{
491 struct uprobe_consumer **con;
492 bool ret = false;
493
494 down_write(&uprobe->consumer_rwsem);
495 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
e3343e6a
SD
496 if (*con == uc) {
497 *con = uc->next;
2b144498
SD
498 ret = true;
499 break;
500 }
501 }
502 up_write(&uprobe->consumer_rwsem);
7b2d81d4 503
2b144498
SD
504 return ret;
505}
506
e3343e6a 507static int
d436615e 508__copy_insn(struct address_space *mapping, struct file *filp, char *insn,
593609a5 509 unsigned long nbytes, loff_t offset)
2b144498 510{
2b144498 511 struct page *page;
2b144498 512
cc359d18
ON
513 if (!mapping->a_ops->readpage)
514 return -EIO;
2b144498
SD
515 /*
516 * Ensure that the page that has the original instruction is
517 * populated and in page-cache.
518 */
2edb7b55 519 page = read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT, filp);
2b144498
SD
520 if (IS_ERR(page))
521 return PTR_ERR(page);
522
2edb7b55 523 copy_from_page(page, offset, insn, nbytes);
2b144498 524 page_cache_release(page);
7b2d81d4 525
2b144498
SD
526 return 0;
527}
528
d436615e 529static int copy_insn(struct uprobe *uprobe, struct file *filp)
2b144498
SD
530{
531 struct address_space *mapping;
2b144498 532 unsigned long nbytes;
7b2d81d4 533 int bytes;
2b144498 534
d436615e 535 nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
2b144498
SD
536 mapping = uprobe->inode->i_mapping;
537
538 /* Instruction at end of binary; copy only available bytes */
539 if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
540 bytes = uprobe->inode->i_size - uprobe->offset;
541 else
542 bytes = MAX_UINSN_BYTES;
543
544 /* Instruction at the page-boundary; copy bytes in second page */
545 if (nbytes < bytes) {
fc36f595
ON
546 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
547 bytes - nbytes, uprobe->offset + nbytes);
548 if (err)
549 return err;
2b144498
SD
550 bytes = nbytes;
551 }
d436615e 552 return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
2b144498
SD
553}
554
cb9a19fe
ON
555static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
556 struct mm_struct *mm, unsigned long vaddr)
557{
558 int ret = 0;
559
71434f2f 560 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
cb9a19fe
ON
561 return ret;
562
d4d3ccc6
ON
563 /* TODO: move this into _register, until then we abuse this sem. */
564 down_write(&uprobe->consumer_rwsem);
71434f2f 565 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
4710f05f
ON
566 goto out;
567
cb9a19fe
ON
568 ret = copy_insn(uprobe, file);
569 if (ret)
570 goto out;
571
572 ret = -ENOTSUPP;
0908ad6e 573 if (is_trap_insn((uprobe_opcode_t *)uprobe->arch.insn))
cb9a19fe
ON
574 goto out;
575
576 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
577 if (ret)
578 goto out;
579
f72d41fa 580 /* uprobe_write_opcode() assumes we don't cross page boundary */
cb9a19fe
ON
581 BUG_ON((uprobe->offset & ~PAGE_MASK) +
582 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
583
584 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
71434f2f 585 set_bit(UPROBE_COPY_INSN, &uprobe->flags);
cb9a19fe
ON
586
587 out:
d4d3ccc6 588 up_write(&uprobe->consumer_rwsem);
4710f05f 589
cb9a19fe
ON
590 return ret;
591}
592
8a7f2fa0
ON
593static inline bool consumer_filter(struct uprobe_consumer *uc,
594 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
806a98bd 595{
8a7f2fa0 596 return !uc->filter || uc->filter(uc, ctx, mm);
806a98bd
ON
597}
598
8a7f2fa0
ON
599static bool filter_chain(struct uprobe *uprobe,
600 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
63633cbf 601{
1ff6fee5
ON
602 struct uprobe_consumer *uc;
603 bool ret = false;
604
605 down_read(&uprobe->consumer_rwsem);
606 for (uc = uprobe->consumers; uc; uc = uc->next) {
8a7f2fa0 607 ret = consumer_filter(uc, ctx, mm);
1ff6fee5
ON
608 if (ret)
609 break;
610 }
611 up_read(&uprobe->consumer_rwsem);
612
613 return ret;
63633cbf
ON
614}
615
e3343e6a
SD
616static int
617install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
816c03fb 618 struct vm_area_struct *vma, unsigned long vaddr)
2b144498 619{
f8ac4ec9 620 bool first_uprobe;
2b144498
SD
621 int ret;
622
cb9a19fe
ON
623 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
624 if (ret)
625 return ret;
682968e0 626
f8ac4ec9
ON
627 /*
628 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
629 * the task can hit this breakpoint right after __replace_page().
630 */
631 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
632 if (first_uprobe)
633 set_bit(MMF_HAS_UPROBES, &mm->flags);
634
816c03fb 635 ret = set_swbp(&uprobe->arch, mm, vaddr);
9f68f672
ON
636 if (!ret)
637 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
638 else if (first_uprobe)
f8ac4ec9 639 clear_bit(MMF_HAS_UPROBES, &mm->flags);
2b144498
SD
640
641 return ret;
642}
643
076a365b 644static int
816c03fb 645remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 646{
9f68f672 647 set_bit(MMF_RECALC_UPROBES, &mm->flags);
076a365b 648 return set_orig_insn(&uprobe->arch, mm, vaddr);
2b144498
SD
649}
650
06b7bcd8
ON
651static inline bool uprobe_is_active(struct uprobe *uprobe)
652{
653 return !RB_EMPTY_NODE(&uprobe->rb_node);
654}
0326f5a9 655/*
778b032d
ON
656 * There could be threads that have already hit the breakpoint. They
657 * will recheck the current insn and restart if find_uprobe() fails.
658 * See find_active_uprobe().
0326f5a9 659 */
2b144498
SD
660static void delete_uprobe(struct uprobe *uprobe)
661{
06b7bcd8
ON
662 if (WARN_ON(!uprobe_is_active(uprobe)))
663 return;
664
6f47caa0 665 spin_lock(&uprobes_treelock);
2b144498 666 rb_erase(&uprobe->rb_node, &uprobes_tree);
6f47caa0 667 spin_unlock(&uprobes_treelock);
06b7bcd8 668 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
2b144498
SD
669 iput(uprobe->inode);
670 put_uprobe(uprobe);
2b144498
SD
671}
672
26872090
ON
673struct map_info {
674 struct map_info *next;
675 struct mm_struct *mm;
816c03fb 676 unsigned long vaddr;
26872090
ON
677};
678
679static inline struct map_info *free_map_info(struct map_info *info)
2b144498 680{
26872090
ON
681 struct map_info *next = info->next;
682 kfree(info);
683 return next;
684}
685
686static struct map_info *
687build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
688{
689 unsigned long pgoff = offset >> PAGE_SHIFT;
2b144498 690 struct vm_area_struct *vma;
26872090
ON
691 struct map_info *curr = NULL;
692 struct map_info *prev = NULL;
693 struct map_info *info;
694 int more = 0;
2b144498 695
26872090
ON
696 again:
697 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 698 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
2b144498
SD
699 if (!valid_vma(vma, is_register))
700 continue;
701
7a5bfb66
ON
702 if (!prev && !more) {
703 /*
704 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
705 * reclaim. This is optimistic, no harm done if it fails.
706 */
707 prev = kmalloc(sizeof(struct map_info),
708 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
709 if (prev)
710 prev->next = NULL;
711 }
26872090
ON
712 if (!prev) {
713 more++;
714 continue;
2b144498 715 }
2b144498 716
26872090
ON
717 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
718 continue;
7b2d81d4 719
26872090
ON
720 info = prev;
721 prev = prev->next;
722 info->next = curr;
723 curr = info;
2b144498 724
26872090 725 info->mm = vma->vm_mm;
57683f72 726 info->vaddr = offset_to_vaddr(vma, offset);
26872090 727 }
2b144498
SD
728 mutex_unlock(&mapping->i_mmap_mutex);
729
26872090
ON
730 if (!more)
731 goto out;
732
733 prev = curr;
734 while (curr) {
735 mmput(curr->mm);
736 curr = curr->next;
737 }
7b2d81d4 738
26872090
ON
739 do {
740 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
741 if (!info) {
742 curr = ERR_PTR(-ENOMEM);
743 goto out;
744 }
745 info->next = prev;
746 prev = info;
747 } while (--more);
748
749 goto again;
750 out:
751 while (prev)
752 prev = free_map_info(prev);
753 return curr;
2b144498
SD
754}
755
bdf8647c
ON
756static int
757register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
2b144498 758{
bdf8647c 759 bool is_register = !!new;
26872090
ON
760 struct map_info *info;
761 int err = 0;
2b144498 762
32cdba1e 763 percpu_down_write(&dup_mmap_sem);
26872090
ON
764 info = build_map_info(uprobe->inode->i_mapping,
765 uprobe->offset, is_register);
32cdba1e
ON
766 if (IS_ERR(info)) {
767 err = PTR_ERR(info);
768 goto out;
769 }
7b2d81d4 770
26872090
ON
771 while (info) {
772 struct mm_struct *mm = info->mm;
773 struct vm_area_struct *vma;
7b2d81d4 774
076a365b 775 if (err && is_register)
26872090 776 goto free;
7b2d81d4 777
77fc4af1 778 down_write(&mm->mmap_sem);
f4d6dfe5
ON
779 vma = find_vma(mm, info->vaddr);
780 if (!vma || !valid_vma(vma, is_register) ||
f281769e 781 file_inode(vma->vm_file) != uprobe->inode)
26872090
ON
782 goto unlock;
783
f4d6dfe5
ON
784 if (vma->vm_start > info->vaddr ||
785 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
26872090 786 goto unlock;
2b144498 787
806a98bd
ON
788 if (is_register) {
789 /* consult only the "caller", new consumer. */
bdf8647c 790 if (consumer_filter(new,
8a7f2fa0 791 UPROBE_FILTER_REGISTER, mm))
806a98bd
ON
792 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
793 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
8a7f2fa0
ON
794 if (!filter_chain(uprobe,
795 UPROBE_FILTER_UNREGISTER, mm))
806a98bd
ON
796 err |= remove_breakpoint(uprobe, mm, info->vaddr);
797 }
78f74116 798
26872090
ON
799 unlock:
800 up_write(&mm->mmap_sem);
801 free:
802 mmput(mm);
803 info = free_map_info(info);
2b144498 804 }
32cdba1e
ON
805 out:
806 percpu_up_write(&dup_mmap_sem);
26872090 807 return err;
2b144498
SD
808}
809
9a98e03c 810static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498 811{
9a98e03c 812 consumer_add(uprobe, uc);
bdf8647c 813 return register_for_each_vma(uprobe, uc);
2b144498
SD
814}
815
04aab9b2 816static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498 817{
04aab9b2
ON
818 int err;
819
820 if (!consumer_del(uprobe, uc)) /* WARN? */
821 return;
2b144498 822
bdf8647c 823 err = register_for_each_vma(uprobe, NULL);
bb929284
ON
824 /* TODO : cant unregister? schedule a worker thread */
825 if (!uprobe->consumers && !err)
826 delete_uprobe(uprobe);
2b144498
SD
827}
828
829/*
7b2d81d4 830 * uprobe_register - register a probe
2b144498
SD
831 * @inode: the file in which the probe has to be placed.
832 * @offset: offset from the start of the file.
e3343e6a 833 * @uc: information on howto handle the probe..
2b144498 834 *
7b2d81d4 835 * Apart from the access refcount, uprobe_register() takes a creation
2b144498
SD
836 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
837 * inserted into the rbtree (i.e first consumer for a @inode:@offset
7b2d81d4 838 * tuple). Creation refcount stops uprobe_unregister from freeing the
2b144498 839 * @uprobe even before the register operation is complete. Creation
e3343e6a 840 * refcount is released when the last @uc for the @uprobe
2b144498
SD
841 * unregisters.
842 *
843 * Return errno if it cannot successully install probes
844 * else return 0 (success)
845 */
e3343e6a 846int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498
SD
847{
848 struct uprobe *uprobe;
7b2d81d4 849 int ret;
2b144498 850
ea024870
AA
851 /* Uprobe must have at least one set consumer */
852 if (!uc->handler && !uc->ret_handler)
853 return -EINVAL;
854
f0744af7 855 /* Racy, just to catch the obvious mistakes */
2b144498 856 if (offset > i_size_read(inode))
7b2d81d4 857 return -EINVAL;
2b144498 858
66d06dff 859 retry:
2b144498 860 uprobe = alloc_uprobe(inode, offset);
66d06dff
ON
861 if (!uprobe)
862 return -ENOMEM;
863 /*
864 * We can race with uprobe_unregister()->delete_uprobe().
865 * Check uprobe_is_active() and retry if it is false.
866 */
867 down_write(&uprobe->register_rwsem);
868 ret = -EAGAIN;
869 if (likely(uprobe_is_active(uprobe))) {
9a98e03c
ON
870 ret = __uprobe_register(uprobe, uc);
871 if (ret)
04aab9b2 872 __uprobe_unregister(uprobe, uc);
2b144498 873 }
66d06dff
ON
874 up_write(&uprobe->register_rwsem);
875 put_uprobe(uprobe);
2b144498 876
66d06dff
ON
877 if (unlikely(ret == -EAGAIN))
878 goto retry;
2b144498
SD
879 return ret;
880}
e8440c14 881EXPORT_SYMBOL_GPL(uprobe_register);
2b144498 882
bdf8647c
ON
883/*
884 * uprobe_apply - unregister a already registered probe.
885 * @inode: the file in which the probe has to be removed.
886 * @offset: offset from the start of the file.
887 * @uc: consumer which wants to add more or remove some breakpoints
888 * @add: add or remove the breakpoints
889 */
890int uprobe_apply(struct inode *inode, loff_t offset,
891 struct uprobe_consumer *uc, bool add)
892{
893 struct uprobe *uprobe;
894 struct uprobe_consumer *con;
895 int ret = -ENOENT;
896
897 uprobe = find_uprobe(inode, offset);
898 if (!uprobe)
899 return ret;
900
901 down_write(&uprobe->register_rwsem);
902 for (con = uprobe->consumers; con && con != uc ; con = con->next)
903 ;
904 if (con)
905 ret = register_for_each_vma(uprobe, add ? uc : NULL);
906 up_write(&uprobe->register_rwsem);
907 put_uprobe(uprobe);
908
909 return ret;
910}
911
2b144498 912/*
7b2d81d4 913 * uprobe_unregister - unregister a already registered probe.
2b144498
SD
914 * @inode: the file in which the probe has to be removed.
915 * @offset: offset from the start of the file.
e3343e6a 916 * @uc: identify which probe if multiple probes are colocated.
2b144498 917 */
e3343e6a 918void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498 919{
7b2d81d4 920 struct uprobe *uprobe;
2b144498 921
2b144498
SD
922 uprobe = find_uprobe(inode, offset);
923 if (!uprobe)
924 return;
925
e591c8d7 926 down_write(&uprobe->register_rwsem);
04aab9b2 927 __uprobe_unregister(uprobe, uc);
e591c8d7 928 up_write(&uprobe->register_rwsem);
c91368c4 929 put_uprobe(uprobe);
2b144498 930}
e8440c14 931EXPORT_SYMBOL_GPL(uprobe_unregister);
2b144498 932
da1816b1
ON
933static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
934{
935 struct vm_area_struct *vma;
936 int err = 0;
937
938 down_read(&mm->mmap_sem);
939 for (vma = mm->mmap; vma; vma = vma->vm_next) {
940 unsigned long vaddr;
941 loff_t offset;
942
943 if (!valid_vma(vma, false) ||
f281769e 944 file_inode(vma->vm_file) != uprobe->inode)
da1816b1
ON
945 continue;
946
947 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
948 if (uprobe->offset < offset ||
949 uprobe->offset >= offset + vma->vm_end - vma->vm_start)
950 continue;
951
952 vaddr = offset_to_vaddr(vma, uprobe->offset);
953 err |= remove_breakpoint(uprobe, mm, vaddr);
954 }
955 up_read(&mm->mmap_sem);
956
957 return err;
958}
959
891c3970
ON
960static struct rb_node *
961find_node_in_range(struct inode *inode, loff_t min, loff_t max)
2b144498 962{
2b144498 963 struct rb_node *n = uprobes_tree.rb_node;
2b144498
SD
964
965 while (n) {
891c3970 966 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
2b144498 967
891c3970 968 if (inode < u->inode) {
2b144498 969 n = n->rb_left;
891c3970 970 } else if (inode > u->inode) {
2b144498 971 n = n->rb_right;
891c3970
ON
972 } else {
973 if (max < u->offset)
974 n = n->rb_left;
975 else if (min > u->offset)
976 n = n->rb_right;
977 else
978 break;
979 }
2b144498 980 }
7b2d81d4 981
891c3970 982 return n;
2b144498
SD
983}
984
985/*
891c3970 986 * For a given range in vma, build a list of probes that need to be inserted.
2b144498 987 */
891c3970
ON
988static void build_probe_list(struct inode *inode,
989 struct vm_area_struct *vma,
990 unsigned long start, unsigned long end,
991 struct list_head *head)
2b144498 992{
891c3970 993 loff_t min, max;
891c3970
ON
994 struct rb_node *n, *t;
995 struct uprobe *u;
7b2d81d4 996
891c3970 997 INIT_LIST_HEAD(head);
cb113b47 998 min = vaddr_to_offset(vma, start);
891c3970 999 max = min + (end - start) - 1;
2b144498 1000
6f47caa0 1001 spin_lock(&uprobes_treelock);
891c3970
ON
1002 n = find_node_in_range(inode, min, max);
1003 if (n) {
1004 for (t = n; t; t = rb_prev(t)) {
1005 u = rb_entry(t, struct uprobe, rb_node);
1006 if (u->inode != inode || u->offset < min)
1007 break;
1008 list_add(&u->pending_list, head);
1009 atomic_inc(&u->ref);
1010 }
1011 for (t = n; (t = rb_next(t)); ) {
1012 u = rb_entry(t, struct uprobe, rb_node);
1013 if (u->inode != inode || u->offset > max)
1014 break;
1015 list_add(&u->pending_list, head);
1016 atomic_inc(&u->ref);
1017 }
2b144498 1018 }
6f47caa0 1019 spin_unlock(&uprobes_treelock);
2b144498
SD
1020}
1021
1022/*
5e5be71a 1023 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
2b144498 1024 *
5e5be71a
ON
1025 * Currently we ignore all errors and always return 0, the callers
1026 * can't handle the failure anyway.
2b144498 1027 */
7b2d81d4 1028int uprobe_mmap(struct vm_area_struct *vma)
2b144498
SD
1029{
1030 struct list_head tmp_list;
665605a2 1031 struct uprobe *uprobe, *u;
2b144498 1032 struct inode *inode;
2b144498 1033
441f1eb7 1034 if (no_uprobe_events() || !valid_vma(vma, true))
7b2d81d4 1035 return 0;
2b144498 1036
f281769e 1037 inode = file_inode(vma->vm_file);
2b144498 1038 if (!inode)
7b2d81d4 1039 return 0;
2b144498 1040
2b144498 1041 mutex_lock(uprobes_mmap_hash(inode));
891c3970 1042 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
806a98bd
ON
1043 /*
1044 * We can race with uprobe_unregister(), this uprobe can be already
1045 * removed. But in this case filter_chain() must return false, all
1046 * consumers have gone away.
1047 */
665605a2 1048 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
806a98bd 1049 if (!fatal_signal_pending(current) &&
8a7f2fa0 1050 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
57683f72 1051 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
5e5be71a 1052 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
2b144498
SD
1053 }
1054 put_uprobe(uprobe);
1055 }
2b144498
SD
1056 mutex_unlock(uprobes_mmap_hash(inode));
1057
5e5be71a 1058 return 0;
2b144498
SD
1059}
1060
9f68f672
ON
1061static bool
1062vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1063{
1064 loff_t min, max;
1065 struct inode *inode;
1066 struct rb_node *n;
1067
f281769e 1068 inode = file_inode(vma->vm_file);
9f68f672
ON
1069
1070 min = vaddr_to_offset(vma, start);
1071 max = min + (end - start) - 1;
1072
1073 spin_lock(&uprobes_treelock);
1074 n = find_node_in_range(inode, min, max);
1075 spin_unlock(&uprobes_treelock);
1076
1077 return !!n;
1078}
1079
682968e0
SD
1080/*
1081 * Called in context of a munmap of a vma.
1082 */
cbc91f71 1083void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
682968e0 1084{
441f1eb7 1085 if (no_uprobe_events() || !valid_vma(vma, false))
682968e0
SD
1086 return;
1087
2fd611a9
ON
1088 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1089 return;
1090
9f68f672
ON
1091 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1092 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
f8ac4ec9
ON
1093 return;
1094
9f68f672
ON
1095 if (vma_has_uprobes(vma, start, end))
1096 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
682968e0
SD
1097}
1098
d4b3b638 1099/* Slot allocation for XOL */
6441ec8b 1100static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
d4b3b638 1101{
c8a82538 1102 int ret = -EALREADY;
d4b3b638
SD
1103
1104 down_write(&mm->mmap_sem);
1105 if (mm->uprobes_state.xol_area)
1106 goto fail;
1107
af0d95af
ON
1108 if (!area->vaddr) {
1109 /* Try to map as high as possible, this is only a hint. */
1110 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1111 PAGE_SIZE, 0, 0);
1112 if (area->vaddr & ~PAGE_MASK) {
1113 ret = area->vaddr;
1114 goto fail;
1115 }
d4b3b638
SD
1116 }
1117
1118 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1119 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1120 if (ret)
1121 goto fail;
1122
1123 smp_wmb(); /* pairs with get_xol_area() */
1124 mm->uprobes_state.xol_area = area;
c8a82538 1125 fail:
d4b3b638 1126 up_write(&mm->mmap_sem);
d4b3b638
SD
1127
1128 return ret;
1129}
1130
af0d95af 1131static struct xol_area *__create_xol_area(unsigned long vaddr)
d4b3b638 1132{
9b545df8 1133 struct mm_struct *mm = current->mm;
e78aebfd 1134 uprobe_opcode_t insn = UPROBE_SWBP_INSN;
6441ec8b 1135 struct xol_area *area;
9b545df8 1136
af0d95af 1137 area = kmalloc(sizeof(*area), GFP_KERNEL);
d4b3b638 1138 if (unlikely(!area))
c8a82538 1139 goto out;
d4b3b638
SD
1140
1141 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
d4b3b638 1142 if (!area->bitmap)
c8a82538
ON
1143 goto free_area;
1144
1145 area->page = alloc_page(GFP_HIGHUSER);
1146 if (!area->page)
1147 goto free_bitmap;
d4b3b638 1148
af0d95af 1149 area->vaddr = vaddr;
6441ec8b
ON
1150 init_waitqueue_head(&area->wq);
1151 /* Reserve the 1st slot for get_trampoline_vaddr() */
e78aebfd 1152 set_bit(0, area->bitmap);
e78aebfd 1153 atomic_set(&area->slot_count, 1);
6441ec8b 1154 copy_to_page(area->page, 0, &insn, UPROBE_SWBP_INSN_SIZE);
e78aebfd 1155
6441ec8b 1156 if (!xol_add_vma(mm, area))
d4b3b638
SD
1157 return area;
1158
c8a82538
ON
1159 __free_page(area->page);
1160 free_bitmap:
d4b3b638 1161 kfree(area->bitmap);
c8a82538 1162 free_area:
d4b3b638 1163 kfree(area);
c8a82538 1164 out:
6441ec8b
ON
1165 return NULL;
1166}
1167
1168/*
1169 * get_xol_area - Allocate process's xol_area if necessary.
1170 * This area will be used for storing instructions for execution out of line.
1171 *
1172 * Returns the allocated area or NULL.
1173 */
1174static struct xol_area *get_xol_area(void)
1175{
1176 struct mm_struct *mm = current->mm;
1177 struct xol_area *area;
1178
1179 if (!mm->uprobes_state.xol_area)
af0d95af 1180 __create_xol_area(0);
6441ec8b 1181
9b545df8 1182 area = mm->uprobes_state.xol_area;
6441ec8b 1183 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
9b545df8 1184 return area;
d4b3b638
SD
1185}
1186
1187/*
1188 * uprobe_clear_state - Free the area allocated for slots.
1189 */
1190void uprobe_clear_state(struct mm_struct *mm)
1191{
1192 struct xol_area *area = mm->uprobes_state.xol_area;
1193
1194 if (!area)
1195 return;
1196
1197 put_page(area->page);
1198 kfree(area->bitmap);
1199 kfree(area);
1200}
1201
32cdba1e
ON
1202void uprobe_start_dup_mmap(void)
1203{
1204 percpu_down_read(&dup_mmap_sem);
1205}
1206
1207void uprobe_end_dup_mmap(void)
1208{
1209 percpu_up_read(&dup_mmap_sem);
1210}
1211
f8ac4ec9
ON
1212void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1213{
61559a81
ON
1214 newmm->uprobes_state.xol_area = NULL;
1215
9f68f672 1216 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
f8ac4ec9 1217 set_bit(MMF_HAS_UPROBES, &newmm->flags);
9f68f672
ON
1218 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1219 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1220 }
f8ac4ec9
ON
1221}
1222
d4b3b638
SD
1223/*
1224 * - search for a free slot.
1225 */
1226static unsigned long xol_take_insn_slot(struct xol_area *area)
1227{
1228 unsigned long slot_addr;
1229 int slot_nr;
1230
1231 do {
1232 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1233 if (slot_nr < UINSNS_PER_PAGE) {
1234 if (!test_and_set_bit(slot_nr, area->bitmap))
1235 break;
1236
1237 slot_nr = UINSNS_PER_PAGE;
1238 continue;
1239 }
1240 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1241 } while (slot_nr >= UINSNS_PER_PAGE);
1242
1243 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1244 atomic_inc(&area->slot_count);
1245
1246 return slot_addr;
1247}
1248
1249/*
a6cb3f6d 1250 * xol_get_insn_slot - allocate a slot for xol.
d4b3b638
SD
1251 * Returns the allocated slot address or 0.
1252 */
a6cb3f6d 1253static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
d4b3b638
SD
1254{
1255 struct xol_area *area;
a6cb3f6d 1256 unsigned long xol_vaddr;
d4b3b638 1257
9b545df8
ON
1258 area = get_xol_area();
1259 if (!area)
1260 return 0;
d4b3b638 1261
a6cb3f6d
ON
1262 xol_vaddr = xol_take_insn_slot(area);
1263 if (unlikely(!xol_vaddr))
d4b3b638
SD
1264 return 0;
1265
a6cb3f6d 1266 /* Initialize the slot */
8a8de66c
ON
1267 copy_to_page(area->page, xol_vaddr,
1268 uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
65b6ecc0
RV
1269 /*
1270 * We probably need flush_icache_user_range() but it needs vma.
1271 * This should work on supported architectures too.
1272 */
1273 flush_dcache_page(area->page);
d4b3b638 1274
a6cb3f6d 1275 return xol_vaddr;
d4b3b638
SD
1276}
1277
1278/*
1279 * xol_free_insn_slot - If slot was earlier allocated by
1280 * @xol_get_insn_slot(), make the slot available for
1281 * subsequent requests.
1282 */
1283static void xol_free_insn_slot(struct task_struct *tsk)
1284{
1285 struct xol_area *area;
1286 unsigned long vma_end;
1287 unsigned long slot_addr;
1288
1289 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1290 return;
1291
1292 slot_addr = tsk->utask->xol_vaddr;
af4355e9 1293 if (unlikely(!slot_addr))
d4b3b638
SD
1294 return;
1295
1296 area = tsk->mm->uprobes_state.xol_area;
1297 vma_end = area->vaddr + PAGE_SIZE;
1298 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1299 unsigned long offset;
1300 int slot_nr;
1301
1302 offset = slot_addr - area->vaddr;
1303 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1304 if (slot_nr >= UINSNS_PER_PAGE)
1305 return;
1306
1307 clear_bit(slot_nr, area->bitmap);
1308 atomic_dec(&area->slot_count);
1309 if (waitqueue_active(&area->wq))
1310 wake_up(&area->wq);
1311
1312 tsk->utask->xol_vaddr = 0;
1313 }
1314}
1315
0326f5a9
SD
1316/**
1317 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1318 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1319 * instruction.
1320 * Return the address of the breakpoint instruction.
1321 */
1322unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1323{
1324 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1325}
1326
1327/*
1328 * Called with no locks held.
1329 * Called in context of a exiting or a exec-ing thread.
1330 */
1331void uprobe_free_utask(struct task_struct *t)
1332{
1333 struct uprobe_task *utask = t->utask;
0dfd0eb8 1334 struct return_instance *ri, *tmp;
0326f5a9 1335
0326f5a9
SD
1336 if (!utask)
1337 return;
1338
1339 if (utask->active_uprobe)
1340 put_uprobe(utask->active_uprobe);
1341
0dfd0eb8
AA
1342 ri = utask->return_instances;
1343 while (ri) {
1344 tmp = ri;
1345 ri = ri->next;
1346
1347 put_uprobe(tmp->uprobe);
1348 kfree(tmp);
1349 }
1350
d4b3b638 1351 xol_free_insn_slot(t);
0326f5a9
SD
1352 kfree(utask);
1353 t->utask = NULL;
1354}
1355
0326f5a9 1356/*
5a2df662
ON
1357 * Allocate a uprobe_task object for the task if if necessary.
1358 * Called when the thread hits a breakpoint.
0326f5a9
SD
1359 *
1360 * Returns:
1361 * - pointer to new uprobe_task on success
1362 * - NULL otherwise
1363 */
5a2df662 1364static struct uprobe_task *get_utask(void)
0326f5a9 1365{
5a2df662
ON
1366 if (!current->utask)
1367 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1368 return current->utask;
0326f5a9
SD
1369}
1370
248d3a7b
ON
1371static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1372{
1373 struct uprobe_task *n_utask;
1374 struct return_instance **p, *o, *n;
1375
1376 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1377 if (!n_utask)
1378 return -ENOMEM;
1379 t->utask = n_utask;
1380
1381 p = &n_utask->return_instances;
1382 for (o = o_utask->return_instances; o; o = o->next) {
1383 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1384 if (!n)
1385 return -ENOMEM;
1386
1387 *n = *o;
1388 atomic_inc(&n->uprobe->ref);
1389 n->next = NULL;
1390
1391 *p = n;
1392 p = &n->next;
1393 n_utask->depth++;
1394 }
1395
1396 return 0;
1397}
1398
1399static void uprobe_warn(struct task_struct *t, const char *msg)
1400{
1401 pr_warn("uprobe: %s:%d failed to %s\n",
1402 current->comm, current->pid, msg);
1403}
1404
aa59c53f
ON
1405static void dup_xol_work(struct callback_head *work)
1406{
1407 kfree(work);
1408
1409 if (current->flags & PF_EXITING)
1410 return;
1411
1412 if (!__create_xol_area(current->utask->vaddr))
1413 uprobe_warn(current, "dup xol area");
1414}
1415
b68e0749
ON
1416/*
1417 * Called in context of a new clone/fork from copy_process.
1418 */
3ab67966 1419void uprobe_copy_process(struct task_struct *t, unsigned long flags)
b68e0749 1420{
248d3a7b
ON
1421 struct uprobe_task *utask = current->utask;
1422 struct mm_struct *mm = current->mm;
aa59c53f
ON
1423 struct callback_head *work;
1424 struct xol_area *area;
248d3a7b 1425
b68e0749 1426 t->utask = NULL;
248d3a7b 1427
3ab67966
ON
1428 if (!utask || !utask->return_instances)
1429 return;
1430
1431 if (mm == t->mm && !(flags & CLONE_VFORK))
248d3a7b
ON
1432 return;
1433
1434 if (dup_utask(t, utask))
1435 return uprobe_warn(t, "dup ret instances");
aa59c53f
ON
1436
1437 /* The task can fork() after dup_xol_work() fails */
1438 area = mm->uprobes_state.xol_area;
1439 if (!area)
1440 return uprobe_warn(t, "dup xol area");
1441
3ab67966
ON
1442 if (mm == t->mm)
1443 return;
1444
aa59c53f
ON
1445 /* TODO: move it into the union in uprobe_task */
1446 work = kmalloc(sizeof(*work), GFP_KERNEL);
1447 if (!work)
1448 return uprobe_warn(t, "dup xol area");
1449
70d7f987 1450 t->utask->vaddr = area->vaddr;
aa59c53f
ON
1451 init_task_work(work, dup_xol_work);
1452 task_work_add(t, work, true);
b68e0749
ON
1453}
1454
e78aebfd
AA
1455/*
1456 * Current area->vaddr notion assume the trampoline address is always
1457 * equal area->vaddr.
1458 *
1459 * Returns -1 in case the xol_area is not allocated.
1460 */
1461static unsigned long get_trampoline_vaddr(void)
1462{
1463 struct xol_area *area;
1464 unsigned long trampoline_vaddr = -1;
1465
1466 area = current->mm->uprobes_state.xol_area;
1467 smp_read_barrier_depends();
1468 if (area)
1469 trampoline_vaddr = area->vaddr;
1470
1471 return trampoline_vaddr;
1472}
1473
0dfd0eb8
AA
1474static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1475{
1476 struct return_instance *ri;
1477 struct uprobe_task *utask;
1478 unsigned long orig_ret_vaddr, trampoline_vaddr;
1479 bool chained = false;
1480
1481 if (!get_xol_area())
1482 return;
1483
1484 utask = get_utask();
1485 if (!utask)
1486 return;
1487
ded49c55
AA
1488 if (utask->depth >= MAX_URETPROBE_DEPTH) {
1489 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1490 " nestedness limit pid/tgid=%d/%d\n",
1491 current->pid, current->tgid);
1492 return;
1493 }
1494
0dfd0eb8
AA
1495 ri = kzalloc(sizeof(struct return_instance), GFP_KERNEL);
1496 if (!ri)
1497 goto fail;
1498
1499 trampoline_vaddr = get_trampoline_vaddr();
1500 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1501 if (orig_ret_vaddr == -1)
1502 goto fail;
1503
1504 /*
1505 * We don't want to keep trampoline address in stack, rather keep the
1506 * original return address of first caller thru all the consequent
1507 * instances. This also makes breakpoint unwrapping easier.
1508 */
1509 if (orig_ret_vaddr == trampoline_vaddr) {
1510 if (!utask->return_instances) {
1511 /*
1512 * This situation is not possible. Likely we have an
1513 * attack from user-space.
1514 */
1515 pr_warn("uprobe: unable to set uretprobe pid/tgid=%d/%d\n",
1516 current->pid, current->tgid);
1517 goto fail;
1518 }
1519
1520 chained = true;
1521 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1522 }
1523
1524 atomic_inc(&uprobe->ref);
1525 ri->uprobe = uprobe;
1526 ri->func = instruction_pointer(regs);
1527 ri->orig_ret_vaddr = orig_ret_vaddr;
1528 ri->chained = chained;
1529
ded49c55
AA
1530 utask->depth++;
1531
0dfd0eb8
AA
1532 /* add instance to the stack */
1533 ri->next = utask->return_instances;
1534 utask->return_instances = ri;
1535
1536 return;
1537
1538 fail:
1539 kfree(ri);
1540}
1541
0326f5a9
SD
1542/* Prepare to single-step probed instruction out of line. */
1543static int
a6cb3f6d 1544pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
0326f5a9 1545{
a6cb3f6d
ON
1546 struct uprobe_task *utask;
1547 unsigned long xol_vaddr;
aba51024 1548 int err;
a6cb3f6d 1549
608e7427
ON
1550 utask = get_utask();
1551 if (!utask)
1552 return -ENOMEM;
a6cb3f6d
ON
1553
1554 xol_vaddr = xol_get_insn_slot(uprobe);
1555 if (!xol_vaddr)
1556 return -ENOMEM;
1557
1558 utask->xol_vaddr = xol_vaddr;
1559 utask->vaddr = bp_vaddr;
d4b3b638 1560
aba51024
ON
1561 err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1562 if (unlikely(err)) {
1563 xol_free_insn_slot(current);
1564 return err;
1565 }
1566
608e7427
ON
1567 utask->active_uprobe = uprobe;
1568 utask->state = UTASK_SSTEP;
aba51024 1569 return 0;
0326f5a9
SD
1570}
1571
1572/*
1573 * If we are singlestepping, then ensure this thread is not connected to
1574 * non-fatal signals until completion of singlestep. When xol insn itself
1575 * triggers the signal, restart the original insn even if the task is
1576 * already SIGKILL'ed (since coredump should report the correct ip). This
1577 * is even more important if the task has a handler for SIGSEGV/etc, The
1578 * _same_ instruction should be repeated again after return from the signal
1579 * handler, and SSTEP can never finish in this case.
1580 */
1581bool uprobe_deny_signal(void)
1582{
1583 struct task_struct *t = current;
1584 struct uprobe_task *utask = t->utask;
1585
1586 if (likely(!utask || !utask->active_uprobe))
1587 return false;
1588
1589 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1590
1591 if (signal_pending(t)) {
1592 spin_lock_irq(&t->sighand->siglock);
1593 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1594 spin_unlock_irq(&t->sighand->siglock);
1595
1596 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1597 utask->state = UTASK_SSTEP_TRAPPED;
1598 set_tsk_thread_flag(t, TIF_UPROBE);
1599 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1600 }
1601 }
1602
1603 return true;
1604}
1605
1606/*
1607 * Avoid singlestepping the original instruction if the original instruction
1608 * is a NOP or can be emulated.
1609 */
1610static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1611{
71434f2f 1612 if (test_bit(UPROBE_SKIP_SSTEP, &uprobe->flags)) {
0578a970
ON
1613 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1614 return true;
71434f2f 1615 clear_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
0578a970 1616 }
0326f5a9
SD
1617 return false;
1618}
1619
499a4f3e
ON
1620static void mmf_recalc_uprobes(struct mm_struct *mm)
1621{
1622 struct vm_area_struct *vma;
1623
1624 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1625 if (!valid_vma(vma, false))
1626 continue;
1627 /*
1628 * This is not strictly accurate, we can race with
1629 * uprobe_unregister() and see the already removed
1630 * uprobe if delete_uprobe() was not yet called.
63633cbf 1631 * Or this uprobe can be filtered out.
499a4f3e
ON
1632 */
1633 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1634 return;
1635 }
1636
1637 clear_bit(MMF_HAS_UPROBES, &mm->flags);
1638}
1639
0908ad6e 1640static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
ec75fba9
ON
1641{
1642 struct page *page;
1643 uprobe_opcode_t opcode;
1644 int result;
1645
1646 pagefault_disable();
1647 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1648 sizeof(opcode));
1649 pagefault_enable();
1650
1651 if (likely(result == 0))
1652 goto out;
1653
1654 result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1655 if (result < 0)
1656 return result;
1657
ab0d805c 1658 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
ec75fba9
ON
1659 put_page(page);
1660 out:
0908ad6e
AM
1661 /* This needs to return true for any variant of the trap insn */
1662 return is_trap_insn(&opcode);
ec75fba9
ON
1663}
1664
d790d346 1665static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
0326f5a9 1666{
3a9ea052
ON
1667 struct mm_struct *mm = current->mm;
1668 struct uprobe *uprobe = NULL;
0326f5a9 1669 struct vm_area_struct *vma;
0326f5a9 1670
0326f5a9
SD
1671 down_read(&mm->mmap_sem);
1672 vma = find_vma(mm, bp_vaddr);
3a9ea052
ON
1673 if (vma && vma->vm_start <= bp_vaddr) {
1674 if (valid_vma(vma, false)) {
f281769e 1675 struct inode *inode = file_inode(vma->vm_file);
cb113b47 1676 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
0326f5a9 1677
3a9ea052
ON
1678 uprobe = find_uprobe(inode, offset);
1679 }
d790d346
ON
1680
1681 if (!uprobe)
0908ad6e 1682 *is_swbp = is_trap_at_addr(mm, bp_vaddr);
d790d346
ON
1683 } else {
1684 *is_swbp = -EFAULT;
0326f5a9 1685 }
499a4f3e
ON
1686
1687 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1688 mmf_recalc_uprobes(mm);
0326f5a9
SD
1689 up_read(&mm->mmap_sem);
1690
3a9ea052
ON
1691 return uprobe;
1692}
1693
da1816b1
ON
1694static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1695{
1696 struct uprobe_consumer *uc;
1697 int remove = UPROBE_HANDLER_REMOVE;
0dfd0eb8 1698 bool need_prep = false; /* prepare return uprobe, when needed */
da1816b1
ON
1699
1700 down_read(&uprobe->register_rwsem);
1701 for (uc = uprobe->consumers; uc; uc = uc->next) {
ea024870 1702 int rc = 0;
da1816b1 1703
ea024870
AA
1704 if (uc->handler) {
1705 rc = uc->handler(uc, regs);
1706 WARN(rc & ~UPROBE_HANDLER_MASK,
1707 "bad rc=0x%x from %pf()\n", rc, uc->handler);
1708 }
0dfd0eb8
AA
1709
1710 if (uc->ret_handler)
1711 need_prep = true;
1712
da1816b1
ON
1713 remove &= rc;
1714 }
1715
0dfd0eb8
AA
1716 if (need_prep && !remove)
1717 prepare_uretprobe(uprobe, regs); /* put bp at return */
1718
da1816b1
ON
1719 if (remove && uprobe->consumers) {
1720 WARN_ON(!uprobe_is_active(uprobe));
1721 unapply_uprobe(uprobe, current->mm);
1722 }
1723 up_read(&uprobe->register_rwsem);
1724}
1725
fec8898d
AA
1726static void
1727handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1728{
1729 struct uprobe *uprobe = ri->uprobe;
1730 struct uprobe_consumer *uc;
1731
1732 down_read(&uprobe->register_rwsem);
1733 for (uc = uprobe->consumers; uc; uc = uc->next) {
1734 if (uc->ret_handler)
1735 uc->ret_handler(uc, ri->func, regs);
1736 }
1737 up_read(&uprobe->register_rwsem);
1738}
1739
1740static bool handle_trampoline(struct pt_regs *regs)
1741{
1742 struct uprobe_task *utask;
1743 struct return_instance *ri, *tmp;
1744 bool chained;
1745
1746 utask = current->utask;
1747 if (!utask)
1748 return false;
1749
1750 ri = utask->return_instances;
1751 if (!ri)
1752 return false;
1753
1754 /*
1755 * TODO: we should throw out return_instance's invalidated by
1756 * longjmp(), currently we assume that the probed function always
1757 * returns.
1758 */
1759 instruction_pointer_set(regs, ri->orig_ret_vaddr);
1760
1761 for (;;) {
1762 handle_uretprobe_chain(ri, regs);
1763
1764 chained = ri->chained;
1765 put_uprobe(ri->uprobe);
1766
1767 tmp = ri;
1768 ri = ri->next;
1769 kfree(tmp);
878b5a6e 1770 utask->depth--;
fec8898d
AA
1771
1772 if (!chained)
1773 break;
fec8898d
AA
1774 BUG_ON(!ri);
1775 }
1776
1777 utask->return_instances = ri;
1778
1779 return true;
1780}
1781
3a9ea052
ON
1782/*
1783 * Run handler and ask thread to singlestep.
1784 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1785 */
1786static void handle_swbp(struct pt_regs *regs)
1787{
3a9ea052
ON
1788 struct uprobe *uprobe;
1789 unsigned long bp_vaddr;
56bb4cf6 1790 int uninitialized_var(is_swbp);
3a9ea052
ON
1791
1792 bp_vaddr = uprobe_get_swbp_addr(regs);
fec8898d
AA
1793 if (bp_vaddr == get_trampoline_vaddr()) {
1794 if (handle_trampoline(regs))
1795 return;
3a9ea052 1796
fec8898d
AA
1797 pr_warn("uprobe: unable to handle uretprobe pid/tgid=%d/%d\n",
1798 current->pid, current->tgid);
1799 }
1800
1801 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
0326f5a9 1802 if (!uprobe) {
56bb4cf6
ON
1803 if (is_swbp > 0) {
1804 /* No matching uprobe; signal SIGTRAP. */
1805 send_sig(SIGTRAP, current, 0);
1806 } else {
1807 /*
1808 * Either we raced with uprobe_unregister() or we can't
1809 * access this memory. The latter is only possible if
1810 * another thread plays with our ->mm. In both cases
1811 * we can simply restart. If this vma was unmapped we
1812 * can pretend this insn was not executed yet and get
1813 * the (correct) SIGSEGV after restart.
1814 */
1815 instruction_pointer_set(regs, bp_vaddr);
1816 }
0326f5a9
SD
1817 return;
1818 }
74e59dfc
ON
1819
1820 /* change it in advance for ->handler() and restart */
1821 instruction_pointer_set(regs, bp_vaddr);
1822
142b18dd
ON
1823 /*
1824 * TODO: move copy_insn/etc into _register and remove this hack.
1825 * After we hit the bp, _unregister + _register can install the
1826 * new and not-yet-analyzed uprobe at the same address, restart.
1827 */
1828 smp_rmb(); /* pairs with wmb() in install_breakpoint() */
71434f2f 1829 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
74e59dfc 1830 goto out;
0326f5a9 1831
0326f5a9 1832 handler_chain(uprobe, regs);
0578a970
ON
1833 if (can_skip_sstep(uprobe, regs))
1834 goto out;
0326f5a9 1835
608e7427 1836 if (!pre_ssout(uprobe, regs, bp_vaddr))
0326f5a9 1837 return;
0326f5a9 1838
74e59dfc 1839 /* can_skip_sstep() succeeded, or restart if can't singlestep */
0578a970 1840out:
8bd87445 1841 put_uprobe(uprobe);
0326f5a9
SD
1842}
1843
1844/*
1845 * Perform required fix-ups and disable singlestep.
1846 * Allow pending signals to take effect.
1847 */
1848static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1849{
1850 struct uprobe *uprobe;
1851
1852 uprobe = utask->active_uprobe;
1853 if (utask->state == UTASK_SSTEP_ACK)
1854 arch_uprobe_post_xol(&uprobe->arch, regs);
1855 else if (utask->state == UTASK_SSTEP_TRAPPED)
1856 arch_uprobe_abort_xol(&uprobe->arch, regs);
1857 else
1858 WARN_ON_ONCE(1);
1859
1860 put_uprobe(uprobe);
1861 utask->active_uprobe = NULL;
1862 utask->state = UTASK_RUNNING;
d4b3b638 1863 xol_free_insn_slot(current);
0326f5a9
SD
1864
1865 spin_lock_irq(&current->sighand->siglock);
1866 recalc_sigpending(); /* see uprobe_deny_signal() */
1867 spin_unlock_irq(&current->sighand->siglock);
1868}
1869
1870/*
1b08e907
ON
1871 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1872 * allows the thread to return from interrupt. After that handle_swbp()
1873 * sets utask->active_uprobe.
0326f5a9 1874 *
1b08e907
ON
1875 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1876 * and allows the thread to return from interrupt.
0326f5a9
SD
1877 *
1878 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1879 * uprobe_notify_resume().
1880 */
1881void uprobe_notify_resume(struct pt_regs *regs)
1882{
1883 struct uprobe_task *utask;
1884
db023ea5
ON
1885 clear_thread_flag(TIF_UPROBE);
1886
0326f5a9 1887 utask = current->utask;
1b08e907 1888 if (utask && utask->active_uprobe)
0326f5a9 1889 handle_singlestep(utask, regs);
1b08e907
ON
1890 else
1891 handle_swbp(regs);
0326f5a9
SD
1892}
1893
1894/*
1895 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1896 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1897 */
1898int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1899{
0dfd0eb8
AA
1900 if (!current->mm)
1901 return 0;
1902
1903 if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
1904 (!current->utask || !current->utask->return_instances))
0326f5a9
SD
1905 return 0;
1906
0326f5a9 1907 set_thread_flag(TIF_UPROBE);
0326f5a9
SD
1908 return 1;
1909}
1910
1911/*
1912 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1913 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1914 */
1915int uprobe_post_sstep_notifier(struct pt_regs *regs)
1916{
1917 struct uprobe_task *utask = current->utask;
1918
1919 if (!current->mm || !utask || !utask->active_uprobe)
1920 /* task is currently not uprobed */
1921 return 0;
1922
1923 utask->state = UTASK_SSTEP_ACK;
1924 set_thread_flag(TIF_UPROBE);
1925 return 1;
1926}
1927
1928static struct notifier_block uprobe_exception_nb = {
1929 .notifier_call = arch_uprobe_exception_notify,
1930 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
1931};
1932
2b144498
SD
1933static int __init init_uprobes(void)
1934{
1935 int i;
1936
66d06dff 1937 for (i = 0; i < UPROBES_HASH_SZ; i++)
2b144498 1938 mutex_init(&uprobes_mmap_mutex[i]);
0326f5a9 1939
32cdba1e
ON
1940 if (percpu_init_rwsem(&dup_mmap_sem))
1941 return -ENOMEM;
1942
0326f5a9 1943 return register_die_notifier(&uprobe_exception_nb);
2b144498 1944}
736e89d9 1945__initcall(init_uprobes);