x86/cpufeature: Create a new synthetic cpu capability for machine check recovery
[linux-2.6-block.git] / kernel / events / uprobes.c
CommitLineData
2b144498 1/*
7b2d81d4 2 * User-space Probes (UProbes)
2b144498
SD
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
35aa621b 18 * Copyright (C) IBM Corporation, 2008-2012
2b144498
SD
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
90eec103 22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
2b144498
SD
23 */
24
25#include <linux/kernel.h>
26#include <linux/highmem.h>
27#include <linux/pagemap.h> /* read_mapping_page */
28#include <linux/slab.h>
29#include <linux/sched.h>
e8440c14 30#include <linux/export.h>
2b144498
SD
31#include <linux/rmap.h> /* anon_vma_prepare */
32#include <linux/mmu_notifier.h> /* set_pte_at_notify */
33#include <linux/swap.h> /* try_to_free_swap */
0326f5a9
SD
34#include <linux/ptrace.h> /* user_enable_single_step */
35#include <linux/kdebug.h> /* notifier mechanism */
194f8dcb 36#include "../../mm/internal.h" /* munlock_vma_page */
32cdba1e 37#include <linux/percpu-rwsem.h>
aa59c53f 38#include <linux/task_work.h>
40814f68 39#include <linux/shmem_fs.h>
7b2d81d4 40
2b144498
SD
41#include <linux/uprobes.h>
42
d4b3b638
SD
43#define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
44#define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
45
2b144498 46static struct rb_root uprobes_tree = RB_ROOT;
441f1eb7
ON
47/*
48 * allows us to skip the uprobe_mmap if there are no uprobe events active
49 * at this time. Probably a fine grained per inode count is better?
50 */
51#define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree)
7b2d81d4 52
2b144498
SD
53static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
54
55#define UPROBES_HASH_SZ 13
2b144498
SD
56/* serialize uprobe->pending_list */
57static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
7b2d81d4 58#define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498 59
32cdba1e
ON
60static struct percpu_rw_semaphore dup_mmap_sem;
61
cb9a19fe 62/* Have a copy of original instruction */
71434f2f 63#define UPROBE_COPY_INSN 0
cb9a19fe 64
3ff54efd
SD
65struct uprobe {
66 struct rb_node rb_node; /* node in the rb tree */
67 atomic_t ref;
e591c8d7 68 struct rw_semaphore register_rwsem;
3ff54efd
SD
69 struct rw_semaphore consumer_rwsem;
70 struct list_head pending_list;
71 struct uprobe_consumer *consumers;
72 struct inode *inode; /* Also hold a ref to inode */
73 loff_t offset;
71434f2f 74 unsigned long flags;
ad439356
ON
75
76 /*
77 * The generic code assumes that it has two members of unknown type
78 * owned by the arch-specific code:
79 *
80 * insn - copy_insn() saves the original instruction here for
81 * arch_uprobe_analyze_insn().
82 *
83 * ixol - potentially modified instruction to execute out of
84 * line, copied to xol_area by xol_get_insn_slot().
85 */
3ff54efd
SD
86 struct arch_uprobe arch;
87};
88
c912dae6 89/*
ad439356
ON
90 * Execute out of line area: anonymous executable mapping installed
91 * by the probed task to execute the copy of the original instruction
92 * mangled by set_swbp().
93 *
c912dae6
ON
94 * On a breakpoint hit, thread contests for a slot. It frees the
95 * slot after singlestep. Currently a fixed number of slots are
96 * allocated.
97 */
98struct xol_area {
704bde3c
ON
99 wait_queue_head_t wq; /* if all slots are busy */
100 atomic_t slot_count; /* number of in-use slots */
101 unsigned long *bitmap; /* 0 = free slot */
c912dae6 102
704bde3c
ON
103 struct vm_special_mapping xol_mapping;
104 struct page *pages[2];
c912dae6
ON
105 /*
106 * We keep the vma's vm_start rather than a pointer to the vma
107 * itself. The probed process or a naughty kernel module could make
108 * the vma go away, and we must handle that reasonably gracefully.
109 */
704bde3c 110 unsigned long vaddr; /* Page(s) of instruction slots */
c912dae6
ON
111};
112
2b144498
SD
113/*
114 * valid_vma: Verify if the specified vma is an executable vma
115 * Relax restrictions while unregistering: vm_flags might have
116 * changed after breakpoint was inserted.
117 * - is_register: indicates if we are in register context.
118 * - Return 1 if the specified virtual address is in an
119 * executable vma.
120 */
121static bool valid_vma(struct vm_area_struct *vma, bool is_register)
122{
13f59c5e 123 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
2b144498 124
e40cfce6
ON
125 if (is_register)
126 flags |= VM_WRITE;
2b144498 127
e40cfce6 128 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
2b144498
SD
129}
130
57683f72 131static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
2b144498 132{
57683f72 133 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
2b144498
SD
134}
135
cb113b47
ON
136static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
137{
138 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
139}
140
2b144498
SD
141/**
142 * __replace_page - replace page in vma by new page.
143 * based on replace_page in mm/ksm.c
144 *
145 * @vma: vma that holds the pte pointing to page
c517ee74 146 * @addr: address the old @page is mapped at
2b144498
SD
147 * @page: the cowed page we are replacing by kpage
148 * @kpage: the modified page we replace page by
149 *
150 * Returns 0 on success, -EFAULT on failure.
151 */
c517ee74
ON
152static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
153 struct page *page, struct page *kpage)
2b144498
SD
154{
155 struct mm_struct *mm = vma->vm_mm;
5323ce71
ON
156 spinlock_t *ptl;
157 pte_t *ptep;
9f92448c 158 int err;
6bdb913f
HE
159 /* For mmu_notifiers */
160 const unsigned long mmun_start = addr;
161 const unsigned long mmun_end = addr + PAGE_SIZE;
00501b53
JW
162 struct mem_cgroup *memcg;
163
f627c2f5
KS
164 err = mem_cgroup_try_charge(kpage, vma->vm_mm, GFP_KERNEL, &memcg,
165 false);
00501b53
JW
166 if (err)
167 return err;
2b144498 168
194f8dcb 169 /* For try_to_free_swap() and munlock_vma_page() below */
9f92448c
ON
170 lock_page(page);
171
6bdb913f 172 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
9f92448c 173 err = -EAGAIN;
5323ce71 174 ptep = page_check_address(page, mm, addr, &ptl, 0);
2b144498 175 if (!ptep)
9f92448c 176 goto unlock;
2b144498
SD
177
178 get_page(kpage);
d281ee61 179 page_add_new_anon_rmap(kpage, vma, addr, false);
f627c2f5 180 mem_cgroup_commit_charge(kpage, memcg, false, false);
00501b53 181 lru_cache_add_active_or_unevictable(kpage, vma);
2b144498 182
7396fa81 183 if (!PageAnon(page)) {
eca56ff9 184 dec_mm_counter(mm, mm_counter_file(page));
7396fa81
SD
185 inc_mm_counter(mm, MM_ANONPAGES);
186 }
187
2b144498 188 flush_cache_page(vma, addr, pte_pfn(*ptep));
34ee645e 189 ptep_clear_flush_notify(vma, addr, ptep);
2b144498
SD
190 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
191
d281ee61 192 page_remove_rmap(page, false);
2b144498
SD
193 if (!page_mapped(page))
194 try_to_free_swap(page);
2b144498 195 pte_unmap_unlock(ptep, ptl);
2b144498 196
194f8dcb
ON
197 if (vma->vm_flags & VM_LOCKED)
198 munlock_vma_page(page);
199 put_page(page);
200
9f92448c
ON
201 err = 0;
202 unlock:
f627c2f5 203 mem_cgroup_cancel_charge(kpage, memcg, false);
6bdb913f 204 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
9f92448c
ON
205 unlock_page(page);
206 return err;
2b144498
SD
207}
208
209/**
5cb4ac3a 210 * is_swbp_insn - check if instruction is breakpoint instruction.
2b144498 211 * @insn: instruction to be checked.
5cb4ac3a 212 * Default implementation of is_swbp_insn
2b144498
SD
213 * Returns true if @insn is a breakpoint instruction.
214 */
5cb4ac3a 215bool __weak is_swbp_insn(uprobe_opcode_t *insn)
2b144498 216{
5cb4ac3a 217 return *insn == UPROBE_SWBP_INSN;
2b144498
SD
218}
219
0908ad6e
AM
220/**
221 * is_trap_insn - check if instruction is breakpoint instruction.
222 * @insn: instruction to be checked.
223 * Default implementation of is_trap_insn
224 * Returns true if @insn is a breakpoint instruction.
225 *
226 * This function is needed for the case where an architecture has multiple
227 * trap instructions (like powerpc).
228 */
229bool __weak is_trap_insn(uprobe_opcode_t *insn)
230{
231 return is_swbp_insn(insn);
232}
233
ab0d805c 234static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
cceb55aa
ON
235{
236 void *kaddr = kmap_atomic(page);
ab0d805c 237 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
cceb55aa
ON
238 kunmap_atomic(kaddr);
239}
240
5669ccee
ON
241static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
242{
243 void *kaddr = kmap_atomic(page);
244 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
245 kunmap_atomic(kaddr);
246}
247
ed6f6a50
ON
248static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
249{
250 uprobe_opcode_t old_opcode;
251 bool is_swbp;
252
0908ad6e
AM
253 /*
254 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
255 * We do not check if it is any other 'trap variant' which could
256 * be conditional trap instruction such as the one powerpc supports.
257 *
258 * The logic is that we do not care if the underlying instruction
259 * is a trap variant; uprobes always wins over any other (gdb)
260 * breakpoint.
261 */
ab0d805c 262 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
ed6f6a50
ON
263 is_swbp = is_swbp_insn(&old_opcode);
264
265 if (is_swbp_insn(new_opcode)) {
266 if (is_swbp) /* register: already installed? */
267 return 0;
268 } else {
269 if (!is_swbp) /* unregister: was it changed by us? */
076a365b 270 return 0;
ed6f6a50
ON
271 }
272
273 return 1;
274}
275
2b144498
SD
276/*
277 * NOTE:
278 * Expect the breakpoint instruction to be the smallest size instruction for
279 * the architecture. If an arch has variable length instruction and the
280 * breakpoint instruction is not of the smallest length instruction
0908ad6e 281 * supported by that architecture then we need to modify is_trap_at_addr and
f72d41fa
ON
282 * uprobe_write_opcode accordingly. This would never be a problem for archs
283 * that have fixed length instructions.
29dedee0 284 *
f72d41fa 285 * uprobe_write_opcode - write the opcode at a given virtual address.
2b144498 286 * @mm: the probed process address space.
2b144498
SD
287 * @vaddr: the virtual address to store the opcode.
288 * @opcode: opcode to be written at @vaddr.
289 *
29dedee0 290 * Called with mm->mmap_sem held for write.
2b144498
SD
291 * Return 0 (success) or a negative errno.
292 */
f72d41fa 293int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
cceb55aa 294 uprobe_opcode_t opcode)
2b144498
SD
295{
296 struct page *old_page, *new_page;
2b144498 297 struct vm_area_struct *vma;
2b144498 298 int ret;
f403072c 299
5323ce71 300retry:
2b144498 301 /* Read the page with vaddr into memory */
75ed82ea 302 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
2b144498
SD
303 if (ret <= 0)
304 return ret;
7b2d81d4 305
ed6f6a50
ON
306 ret = verify_opcode(old_page, vaddr, &opcode);
307 if (ret <= 0)
308 goto put_old;
309
29dedee0
ON
310 ret = anon_vma_prepare(vma);
311 if (ret)
312 goto put_old;
313
2b144498
SD
314 ret = -ENOMEM;
315 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
316 if (!new_page)
9f92448c 317 goto put_old;
2b144498 318
29dedee0 319 __SetPageUptodate(new_page);
3f47107c
ON
320 copy_highpage(new_page, old_page);
321 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2b144498 322
c517ee74 323 ret = __replace_page(vma, vaddr, old_page, new_page);
2b144498 324 page_cache_release(new_page);
9f92448c 325put_old:
7b2d81d4
IM
326 put_page(old_page);
327
5323ce71
ON
328 if (unlikely(ret == -EAGAIN))
329 goto retry;
2b144498
SD
330 return ret;
331}
332
2b144498 333/**
5cb4ac3a 334 * set_swbp - store breakpoint at a given address.
e3343e6a 335 * @auprobe: arch specific probepoint information.
2b144498 336 * @mm: the probed process address space.
2b144498
SD
337 * @vaddr: the virtual address to insert the opcode.
338 *
339 * For mm @mm, store the breakpoint instruction at @vaddr.
340 * Return 0 (success) or a negative errno.
341 */
5cb4ac3a 342int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 343{
f72d41fa 344 return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
2b144498
SD
345}
346
347/**
348 * set_orig_insn - Restore the original instruction.
349 * @mm: the probed process address space.
e3343e6a 350 * @auprobe: arch specific probepoint information.
2b144498 351 * @vaddr: the virtual address to insert the opcode.
2b144498
SD
352 *
353 * For mm @mm, restore the original opcode (opcode) at @vaddr.
354 * Return 0 (success) or a negative errno.
355 */
7b2d81d4 356int __weak
ded86e7c 357set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 358{
803200e2 359 return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn);
2b144498
SD
360}
361
f231722a
ON
362static struct uprobe *get_uprobe(struct uprobe *uprobe)
363{
364 atomic_inc(&uprobe->ref);
365 return uprobe;
366}
367
368static void put_uprobe(struct uprobe *uprobe)
369{
370 if (atomic_dec_and_test(&uprobe->ref))
371 kfree(uprobe);
372}
373
2b144498
SD
374static int match_uprobe(struct uprobe *l, struct uprobe *r)
375{
376 if (l->inode < r->inode)
377 return -1;
7b2d81d4 378
2b144498
SD
379 if (l->inode > r->inode)
380 return 1;
2b144498 381
7b2d81d4
IM
382 if (l->offset < r->offset)
383 return -1;
384
385 if (l->offset > r->offset)
386 return 1;
2b144498
SD
387
388 return 0;
389}
390
391static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
392{
393 struct uprobe u = { .inode = inode, .offset = offset };
394 struct rb_node *n = uprobes_tree.rb_node;
395 struct uprobe *uprobe;
396 int match;
397
398 while (n) {
399 uprobe = rb_entry(n, struct uprobe, rb_node);
400 match = match_uprobe(&u, uprobe);
f231722a
ON
401 if (!match)
402 return get_uprobe(uprobe);
7b2d81d4 403
2b144498
SD
404 if (match < 0)
405 n = n->rb_left;
406 else
407 n = n->rb_right;
408 }
409 return NULL;
410}
411
412/*
413 * Find a uprobe corresponding to a given inode:offset
414 * Acquires uprobes_treelock
415 */
416static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
417{
418 struct uprobe *uprobe;
2b144498 419
6f47caa0 420 spin_lock(&uprobes_treelock);
2b144498 421 uprobe = __find_uprobe(inode, offset);
6f47caa0 422 spin_unlock(&uprobes_treelock);
7b2d81d4 423
2b144498
SD
424 return uprobe;
425}
426
427static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
428{
429 struct rb_node **p = &uprobes_tree.rb_node;
430 struct rb_node *parent = NULL;
431 struct uprobe *u;
432 int match;
433
434 while (*p) {
435 parent = *p;
436 u = rb_entry(parent, struct uprobe, rb_node);
437 match = match_uprobe(uprobe, u);
f231722a
ON
438 if (!match)
439 return get_uprobe(u);
2b144498
SD
440
441 if (match < 0)
442 p = &parent->rb_left;
443 else
444 p = &parent->rb_right;
445
446 }
7b2d81d4 447
2b144498
SD
448 u = NULL;
449 rb_link_node(&uprobe->rb_node, parent, p);
450 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
451 /* get access + creation ref */
452 atomic_set(&uprobe->ref, 2);
7b2d81d4 453
2b144498
SD
454 return u;
455}
456
457/*
7b2d81d4 458 * Acquire uprobes_treelock.
2b144498
SD
459 * Matching uprobe already exists in rbtree;
460 * increment (access refcount) and return the matching uprobe.
461 *
462 * No matching uprobe; insert the uprobe in rb_tree;
463 * get a double refcount (access + creation) and return NULL.
464 */
465static struct uprobe *insert_uprobe(struct uprobe *uprobe)
466{
2b144498
SD
467 struct uprobe *u;
468
6f47caa0 469 spin_lock(&uprobes_treelock);
2b144498 470 u = __insert_uprobe(uprobe);
6f47caa0 471 spin_unlock(&uprobes_treelock);
7b2d81d4 472
2b144498
SD
473 return u;
474}
475
2b144498
SD
476static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
477{
478 struct uprobe *uprobe, *cur_uprobe;
479
480 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
481 if (!uprobe)
482 return NULL;
483
484 uprobe->inode = igrab(inode);
485 uprobe->offset = offset;
e591c8d7 486 init_rwsem(&uprobe->register_rwsem);
2b144498 487 init_rwsem(&uprobe->consumer_rwsem);
2b144498
SD
488
489 /* add to uprobes_tree, sorted on inode:offset */
490 cur_uprobe = insert_uprobe(uprobe);
2b144498
SD
491 /* a uprobe exists for this inode:offset combination */
492 if (cur_uprobe) {
493 kfree(uprobe);
494 uprobe = cur_uprobe;
495 iput(inode);
7b2d81d4
IM
496 }
497
2b144498
SD
498 return uprobe;
499}
500
9a98e03c 501static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
502{
503 down_write(&uprobe->consumer_rwsem);
e3343e6a
SD
504 uc->next = uprobe->consumers;
505 uprobe->consumers = uc;
2b144498 506 up_write(&uprobe->consumer_rwsem);
2b144498
SD
507}
508
509/*
e3343e6a
SD
510 * For uprobe @uprobe, delete the consumer @uc.
511 * Return true if the @uc is deleted successfully
2b144498
SD
512 * or return false.
513 */
e3343e6a 514static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
515{
516 struct uprobe_consumer **con;
517 bool ret = false;
518
519 down_write(&uprobe->consumer_rwsem);
520 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
e3343e6a
SD
521 if (*con == uc) {
522 *con = uc->next;
2b144498
SD
523 ret = true;
524 break;
525 }
526 }
527 up_write(&uprobe->consumer_rwsem);
7b2d81d4 528
2b144498
SD
529 return ret;
530}
531
2ded0980
ON
532static int __copy_insn(struct address_space *mapping, struct file *filp,
533 void *insn, int nbytes, loff_t offset)
2b144498 534{
2b144498 535 struct page *page;
2b144498 536 /*
40814f68
ON
537 * Ensure that the page that has the original instruction is populated
538 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
539 * see uprobe_register().
2b144498 540 */
40814f68
ON
541 if (mapping->a_ops->readpage)
542 page = read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT, filp);
543 else
544 page = shmem_read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT);
2b144498
SD
545 if (IS_ERR(page))
546 return PTR_ERR(page);
547
2edb7b55 548 copy_from_page(page, offset, insn, nbytes);
2b144498 549 page_cache_release(page);
7b2d81d4 550
2b144498
SD
551 return 0;
552}
553
d436615e 554static int copy_insn(struct uprobe *uprobe, struct file *filp)
2b144498 555{
2ded0980
ON
556 struct address_space *mapping = uprobe->inode->i_mapping;
557 loff_t offs = uprobe->offset;
803200e2
ON
558 void *insn = &uprobe->arch.insn;
559 int size = sizeof(uprobe->arch.insn);
2ded0980
ON
560 int len, err = -EIO;
561
562 /* Copy only available bytes, -EIO if nothing was read */
563 do {
564 if (offs >= i_size_read(uprobe->inode))
565 break;
566
567 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
568 err = __copy_insn(mapping, filp, insn, len, offs);
fc36f595 569 if (err)
2ded0980
ON
570 break;
571
572 insn += len;
573 offs += len;
574 size -= len;
575 } while (size);
576
577 return err;
2b144498
SD
578}
579
cb9a19fe
ON
580static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
581 struct mm_struct *mm, unsigned long vaddr)
582{
583 int ret = 0;
584
71434f2f 585 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
cb9a19fe
ON
586 return ret;
587
d4d3ccc6
ON
588 /* TODO: move this into _register, until then we abuse this sem. */
589 down_write(&uprobe->consumer_rwsem);
71434f2f 590 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
4710f05f
ON
591 goto out;
592
cb9a19fe
ON
593 ret = copy_insn(uprobe, file);
594 if (ret)
595 goto out;
596
597 ret = -ENOTSUPP;
803200e2 598 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
cb9a19fe
ON
599 goto out;
600
601 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
602 if (ret)
603 goto out;
604
f72d41fa 605 /* uprobe_write_opcode() assumes we don't cross page boundary */
cb9a19fe
ON
606 BUG_ON((uprobe->offset & ~PAGE_MASK) +
607 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
608
609 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
71434f2f 610 set_bit(UPROBE_COPY_INSN, &uprobe->flags);
cb9a19fe
ON
611
612 out:
d4d3ccc6 613 up_write(&uprobe->consumer_rwsem);
4710f05f 614
cb9a19fe
ON
615 return ret;
616}
617
8a7f2fa0
ON
618static inline bool consumer_filter(struct uprobe_consumer *uc,
619 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
806a98bd 620{
8a7f2fa0 621 return !uc->filter || uc->filter(uc, ctx, mm);
806a98bd
ON
622}
623
8a7f2fa0
ON
624static bool filter_chain(struct uprobe *uprobe,
625 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
63633cbf 626{
1ff6fee5
ON
627 struct uprobe_consumer *uc;
628 bool ret = false;
629
630 down_read(&uprobe->consumer_rwsem);
631 for (uc = uprobe->consumers; uc; uc = uc->next) {
8a7f2fa0 632 ret = consumer_filter(uc, ctx, mm);
1ff6fee5
ON
633 if (ret)
634 break;
635 }
636 up_read(&uprobe->consumer_rwsem);
637
638 return ret;
63633cbf
ON
639}
640
e3343e6a
SD
641static int
642install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
816c03fb 643 struct vm_area_struct *vma, unsigned long vaddr)
2b144498 644{
f8ac4ec9 645 bool first_uprobe;
2b144498
SD
646 int ret;
647
cb9a19fe
ON
648 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
649 if (ret)
650 return ret;
682968e0 651
f8ac4ec9
ON
652 /*
653 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
654 * the task can hit this breakpoint right after __replace_page().
655 */
656 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
657 if (first_uprobe)
658 set_bit(MMF_HAS_UPROBES, &mm->flags);
659
816c03fb 660 ret = set_swbp(&uprobe->arch, mm, vaddr);
9f68f672
ON
661 if (!ret)
662 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
663 else if (first_uprobe)
f8ac4ec9 664 clear_bit(MMF_HAS_UPROBES, &mm->flags);
2b144498
SD
665
666 return ret;
667}
668
076a365b 669static int
816c03fb 670remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 671{
9f68f672 672 set_bit(MMF_RECALC_UPROBES, &mm->flags);
076a365b 673 return set_orig_insn(&uprobe->arch, mm, vaddr);
2b144498
SD
674}
675
06b7bcd8
ON
676static inline bool uprobe_is_active(struct uprobe *uprobe)
677{
678 return !RB_EMPTY_NODE(&uprobe->rb_node);
679}
0326f5a9 680/*
778b032d
ON
681 * There could be threads that have already hit the breakpoint. They
682 * will recheck the current insn and restart if find_uprobe() fails.
683 * See find_active_uprobe().
0326f5a9 684 */
2b144498
SD
685static void delete_uprobe(struct uprobe *uprobe)
686{
06b7bcd8
ON
687 if (WARN_ON(!uprobe_is_active(uprobe)))
688 return;
689
6f47caa0 690 spin_lock(&uprobes_treelock);
2b144498 691 rb_erase(&uprobe->rb_node, &uprobes_tree);
6f47caa0 692 spin_unlock(&uprobes_treelock);
06b7bcd8 693 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
2b144498
SD
694 iput(uprobe->inode);
695 put_uprobe(uprobe);
2b144498
SD
696}
697
26872090
ON
698struct map_info {
699 struct map_info *next;
700 struct mm_struct *mm;
816c03fb 701 unsigned long vaddr;
26872090
ON
702};
703
704static inline struct map_info *free_map_info(struct map_info *info)
2b144498 705{
26872090
ON
706 struct map_info *next = info->next;
707 kfree(info);
708 return next;
709}
710
711static struct map_info *
712build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
713{
714 unsigned long pgoff = offset >> PAGE_SHIFT;
2b144498 715 struct vm_area_struct *vma;
26872090
ON
716 struct map_info *curr = NULL;
717 struct map_info *prev = NULL;
718 struct map_info *info;
719 int more = 0;
2b144498 720
26872090 721 again:
4a23717a 722 i_mmap_lock_read(mapping);
6b2dbba8 723 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
2b144498
SD
724 if (!valid_vma(vma, is_register))
725 continue;
726
7a5bfb66
ON
727 if (!prev && !more) {
728 /*
c8c06efa 729 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
7a5bfb66
ON
730 * reclaim. This is optimistic, no harm done if it fails.
731 */
732 prev = kmalloc(sizeof(struct map_info),
733 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
734 if (prev)
735 prev->next = NULL;
736 }
26872090
ON
737 if (!prev) {
738 more++;
739 continue;
2b144498 740 }
2b144498 741
26872090
ON
742 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
743 continue;
7b2d81d4 744
26872090
ON
745 info = prev;
746 prev = prev->next;
747 info->next = curr;
748 curr = info;
2b144498 749
26872090 750 info->mm = vma->vm_mm;
57683f72 751 info->vaddr = offset_to_vaddr(vma, offset);
26872090 752 }
4a23717a 753 i_mmap_unlock_read(mapping);
2b144498 754
26872090
ON
755 if (!more)
756 goto out;
757
758 prev = curr;
759 while (curr) {
760 mmput(curr->mm);
761 curr = curr->next;
762 }
7b2d81d4 763
26872090
ON
764 do {
765 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
766 if (!info) {
767 curr = ERR_PTR(-ENOMEM);
768 goto out;
769 }
770 info->next = prev;
771 prev = info;
772 } while (--more);
773
774 goto again;
775 out:
776 while (prev)
777 prev = free_map_info(prev);
778 return curr;
2b144498
SD
779}
780
bdf8647c
ON
781static int
782register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
2b144498 783{
bdf8647c 784 bool is_register = !!new;
26872090
ON
785 struct map_info *info;
786 int err = 0;
2b144498 787
32cdba1e 788 percpu_down_write(&dup_mmap_sem);
26872090
ON
789 info = build_map_info(uprobe->inode->i_mapping,
790 uprobe->offset, is_register);
32cdba1e
ON
791 if (IS_ERR(info)) {
792 err = PTR_ERR(info);
793 goto out;
794 }
7b2d81d4 795
26872090
ON
796 while (info) {
797 struct mm_struct *mm = info->mm;
798 struct vm_area_struct *vma;
7b2d81d4 799
076a365b 800 if (err && is_register)
26872090 801 goto free;
7b2d81d4 802
77fc4af1 803 down_write(&mm->mmap_sem);
f4d6dfe5
ON
804 vma = find_vma(mm, info->vaddr);
805 if (!vma || !valid_vma(vma, is_register) ||
f281769e 806 file_inode(vma->vm_file) != uprobe->inode)
26872090
ON
807 goto unlock;
808
f4d6dfe5
ON
809 if (vma->vm_start > info->vaddr ||
810 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
26872090 811 goto unlock;
2b144498 812
806a98bd
ON
813 if (is_register) {
814 /* consult only the "caller", new consumer. */
bdf8647c 815 if (consumer_filter(new,
8a7f2fa0 816 UPROBE_FILTER_REGISTER, mm))
806a98bd
ON
817 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
818 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
8a7f2fa0
ON
819 if (!filter_chain(uprobe,
820 UPROBE_FILTER_UNREGISTER, mm))
806a98bd
ON
821 err |= remove_breakpoint(uprobe, mm, info->vaddr);
822 }
78f74116 823
26872090
ON
824 unlock:
825 up_write(&mm->mmap_sem);
826 free:
827 mmput(mm);
828 info = free_map_info(info);
2b144498 829 }
32cdba1e
ON
830 out:
831 percpu_up_write(&dup_mmap_sem);
26872090 832 return err;
2b144498
SD
833}
834
9a98e03c 835static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498 836{
9a98e03c 837 consumer_add(uprobe, uc);
bdf8647c 838 return register_for_each_vma(uprobe, uc);
2b144498
SD
839}
840
04aab9b2 841static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498 842{
04aab9b2
ON
843 int err;
844
06d07139 845 if (WARN_ON(!consumer_del(uprobe, uc)))
04aab9b2 846 return;
2b144498 847
bdf8647c 848 err = register_for_each_vma(uprobe, NULL);
bb929284
ON
849 /* TODO : cant unregister? schedule a worker thread */
850 if (!uprobe->consumers && !err)
851 delete_uprobe(uprobe);
2b144498
SD
852}
853
854/*
7b2d81d4 855 * uprobe_register - register a probe
2b144498
SD
856 * @inode: the file in which the probe has to be placed.
857 * @offset: offset from the start of the file.
e3343e6a 858 * @uc: information on howto handle the probe..
2b144498 859 *
7b2d81d4 860 * Apart from the access refcount, uprobe_register() takes a creation
2b144498
SD
861 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
862 * inserted into the rbtree (i.e first consumer for a @inode:@offset
7b2d81d4 863 * tuple). Creation refcount stops uprobe_unregister from freeing the
2b144498 864 * @uprobe even before the register operation is complete. Creation
e3343e6a 865 * refcount is released when the last @uc for the @uprobe
2b144498
SD
866 * unregisters.
867 *
868 * Return errno if it cannot successully install probes
869 * else return 0 (success)
870 */
e3343e6a 871int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498
SD
872{
873 struct uprobe *uprobe;
7b2d81d4 874 int ret;
2b144498 875
ea024870
AA
876 /* Uprobe must have at least one set consumer */
877 if (!uc->handler && !uc->ret_handler)
878 return -EINVAL;
879
40814f68
ON
880 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
881 if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
41ccba02 882 return -EIO;
f0744af7 883 /* Racy, just to catch the obvious mistakes */
2b144498 884 if (offset > i_size_read(inode))
7b2d81d4 885 return -EINVAL;
2b144498 886
66d06dff 887 retry:
2b144498 888 uprobe = alloc_uprobe(inode, offset);
66d06dff
ON
889 if (!uprobe)
890 return -ENOMEM;
891 /*
892 * We can race with uprobe_unregister()->delete_uprobe().
893 * Check uprobe_is_active() and retry if it is false.
894 */
895 down_write(&uprobe->register_rwsem);
896 ret = -EAGAIN;
897 if (likely(uprobe_is_active(uprobe))) {
9a98e03c
ON
898 ret = __uprobe_register(uprobe, uc);
899 if (ret)
04aab9b2 900 __uprobe_unregister(uprobe, uc);
2b144498 901 }
66d06dff
ON
902 up_write(&uprobe->register_rwsem);
903 put_uprobe(uprobe);
2b144498 904
66d06dff
ON
905 if (unlikely(ret == -EAGAIN))
906 goto retry;
2b144498
SD
907 return ret;
908}
e8440c14 909EXPORT_SYMBOL_GPL(uprobe_register);
2b144498 910
bdf8647c
ON
911/*
912 * uprobe_apply - unregister a already registered probe.
913 * @inode: the file in which the probe has to be removed.
914 * @offset: offset from the start of the file.
915 * @uc: consumer which wants to add more or remove some breakpoints
916 * @add: add or remove the breakpoints
917 */
918int uprobe_apply(struct inode *inode, loff_t offset,
919 struct uprobe_consumer *uc, bool add)
920{
921 struct uprobe *uprobe;
922 struct uprobe_consumer *con;
923 int ret = -ENOENT;
924
925 uprobe = find_uprobe(inode, offset);
06d07139 926 if (WARN_ON(!uprobe))
bdf8647c
ON
927 return ret;
928
929 down_write(&uprobe->register_rwsem);
930 for (con = uprobe->consumers; con && con != uc ; con = con->next)
931 ;
932 if (con)
933 ret = register_for_each_vma(uprobe, add ? uc : NULL);
934 up_write(&uprobe->register_rwsem);
935 put_uprobe(uprobe);
936
937 return ret;
938}
939
2b144498 940/*
7b2d81d4 941 * uprobe_unregister - unregister a already registered probe.
2b144498
SD
942 * @inode: the file in which the probe has to be removed.
943 * @offset: offset from the start of the file.
e3343e6a 944 * @uc: identify which probe if multiple probes are colocated.
2b144498 945 */
e3343e6a 946void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498 947{
7b2d81d4 948 struct uprobe *uprobe;
2b144498 949
2b144498 950 uprobe = find_uprobe(inode, offset);
06d07139 951 if (WARN_ON(!uprobe))
2b144498
SD
952 return;
953
e591c8d7 954 down_write(&uprobe->register_rwsem);
04aab9b2 955 __uprobe_unregister(uprobe, uc);
e591c8d7 956 up_write(&uprobe->register_rwsem);
c91368c4 957 put_uprobe(uprobe);
2b144498 958}
e8440c14 959EXPORT_SYMBOL_GPL(uprobe_unregister);
2b144498 960
da1816b1
ON
961static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
962{
963 struct vm_area_struct *vma;
964 int err = 0;
965
966 down_read(&mm->mmap_sem);
967 for (vma = mm->mmap; vma; vma = vma->vm_next) {
968 unsigned long vaddr;
969 loff_t offset;
970
971 if (!valid_vma(vma, false) ||
f281769e 972 file_inode(vma->vm_file) != uprobe->inode)
da1816b1
ON
973 continue;
974
975 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
976 if (uprobe->offset < offset ||
977 uprobe->offset >= offset + vma->vm_end - vma->vm_start)
978 continue;
979
980 vaddr = offset_to_vaddr(vma, uprobe->offset);
981 err |= remove_breakpoint(uprobe, mm, vaddr);
982 }
983 up_read(&mm->mmap_sem);
984
985 return err;
986}
987
891c3970
ON
988static struct rb_node *
989find_node_in_range(struct inode *inode, loff_t min, loff_t max)
2b144498 990{
2b144498 991 struct rb_node *n = uprobes_tree.rb_node;
2b144498
SD
992
993 while (n) {
891c3970 994 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
2b144498 995
891c3970 996 if (inode < u->inode) {
2b144498 997 n = n->rb_left;
891c3970 998 } else if (inode > u->inode) {
2b144498 999 n = n->rb_right;
891c3970
ON
1000 } else {
1001 if (max < u->offset)
1002 n = n->rb_left;
1003 else if (min > u->offset)
1004 n = n->rb_right;
1005 else
1006 break;
1007 }
2b144498 1008 }
7b2d81d4 1009
891c3970 1010 return n;
2b144498
SD
1011}
1012
1013/*
891c3970 1014 * For a given range in vma, build a list of probes that need to be inserted.
2b144498 1015 */
891c3970
ON
1016static void build_probe_list(struct inode *inode,
1017 struct vm_area_struct *vma,
1018 unsigned long start, unsigned long end,
1019 struct list_head *head)
2b144498 1020{
891c3970 1021 loff_t min, max;
891c3970
ON
1022 struct rb_node *n, *t;
1023 struct uprobe *u;
7b2d81d4 1024
891c3970 1025 INIT_LIST_HEAD(head);
cb113b47 1026 min = vaddr_to_offset(vma, start);
891c3970 1027 max = min + (end - start) - 1;
2b144498 1028
6f47caa0 1029 spin_lock(&uprobes_treelock);
891c3970
ON
1030 n = find_node_in_range(inode, min, max);
1031 if (n) {
1032 for (t = n; t; t = rb_prev(t)) {
1033 u = rb_entry(t, struct uprobe, rb_node);
1034 if (u->inode != inode || u->offset < min)
1035 break;
1036 list_add(&u->pending_list, head);
f231722a 1037 get_uprobe(u);
891c3970
ON
1038 }
1039 for (t = n; (t = rb_next(t)); ) {
1040 u = rb_entry(t, struct uprobe, rb_node);
1041 if (u->inode != inode || u->offset > max)
1042 break;
1043 list_add(&u->pending_list, head);
f231722a 1044 get_uprobe(u);
891c3970 1045 }
2b144498 1046 }
6f47caa0 1047 spin_unlock(&uprobes_treelock);
2b144498
SD
1048}
1049
1050/*
5e5be71a 1051 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
2b144498 1052 *
5e5be71a
ON
1053 * Currently we ignore all errors and always return 0, the callers
1054 * can't handle the failure anyway.
2b144498 1055 */
7b2d81d4 1056int uprobe_mmap(struct vm_area_struct *vma)
2b144498
SD
1057{
1058 struct list_head tmp_list;
665605a2 1059 struct uprobe *uprobe, *u;
2b144498 1060 struct inode *inode;
2b144498 1061
441f1eb7 1062 if (no_uprobe_events() || !valid_vma(vma, true))
7b2d81d4 1063 return 0;
2b144498 1064
f281769e 1065 inode = file_inode(vma->vm_file);
2b144498 1066 if (!inode)
7b2d81d4 1067 return 0;
2b144498 1068
2b144498 1069 mutex_lock(uprobes_mmap_hash(inode));
891c3970 1070 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
806a98bd
ON
1071 /*
1072 * We can race with uprobe_unregister(), this uprobe can be already
1073 * removed. But in this case filter_chain() must return false, all
1074 * consumers have gone away.
1075 */
665605a2 1076 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
806a98bd 1077 if (!fatal_signal_pending(current) &&
8a7f2fa0 1078 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
57683f72 1079 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
5e5be71a 1080 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
2b144498
SD
1081 }
1082 put_uprobe(uprobe);
1083 }
2b144498
SD
1084 mutex_unlock(uprobes_mmap_hash(inode));
1085
5e5be71a 1086 return 0;
2b144498
SD
1087}
1088
9f68f672
ON
1089static bool
1090vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1091{
1092 loff_t min, max;
1093 struct inode *inode;
1094 struct rb_node *n;
1095
f281769e 1096 inode = file_inode(vma->vm_file);
9f68f672
ON
1097
1098 min = vaddr_to_offset(vma, start);
1099 max = min + (end - start) - 1;
1100
1101 spin_lock(&uprobes_treelock);
1102 n = find_node_in_range(inode, min, max);
1103 spin_unlock(&uprobes_treelock);
1104
1105 return !!n;
1106}
1107
682968e0
SD
1108/*
1109 * Called in context of a munmap of a vma.
1110 */
cbc91f71 1111void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
682968e0 1112{
441f1eb7 1113 if (no_uprobe_events() || !valid_vma(vma, false))
682968e0
SD
1114 return;
1115
2fd611a9
ON
1116 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1117 return;
1118
9f68f672
ON
1119 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1120 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
f8ac4ec9
ON
1121 return;
1122
9f68f672
ON
1123 if (vma_has_uprobes(vma, start, end))
1124 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
682968e0
SD
1125}
1126
d4b3b638 1127/* Slot allocation for XOL */
6441ec8b 1128static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
d4b3b638 1129{
704bde3c
ON
1130 struct vm_area_struct *vma;
1131 int ret;
d4b3b638
SD
1132
1133 down_write(&mm->mmap_sem);
704bde3c
ON
1134 if (mm->uprobes_state.xol_area) {
1135 ret = -EALREADY;
d4b3b638 1136 goto fail;
704bde3c 1137 }
d4b3b638 1138
af0d95af
ON
1139 if (!area->vaddr) {
1140 /* Try to map as high as possible, this is only a hint. */
1141 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1142 PAGE_SIZE, 0, 0);
1143 if (area->vaddr & ~PAGE_MASK) {
1144 ret = area->vaddr;
1145 goto fail;
1146 }
d4b3b638
SD
1147 }
1148
704bde3c
ON
1149 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1150 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1151 &area->xol_mapping);
1152 if (IS_ERR(vma)) {
1153 ret = PTR_ERR(vma);
d4b3b638 1154 goto fail;
704bde3c 1155 }
d4b3b638 1156
704bde3c 1157 ret = 0;
d4b3b638
SD
1158 smp_wmb(); /* pairs with get_xol_area() */
1159 mm->uprobes_state.xol_area = area;
c8a82538 1160 fail:
d4b3b638 1161 up_write(&mm->mmap_sem);
d4b3b638
SD
1162
1163 return ret;
1164}
1165
af0d95af 1166static struct xol_area *__create_xol_area(unsigned long vaddr)
d4b3b638 1167{
9b545df8 1168 struct mm_struct *mm = current->mm;
e78aebfd 1169 uprobe_opcode_t insn = UPROBE_SWBP_INSN;
6441ec8b 1170 struct xol_area *area;
9b545df8 1171
af0d95af 1172 area = kmalloc(sizeof(*area), GFP_KERNEL);
d4b3b638 1173 if (unlikely(!area))
c8a82538 1174 goto out;
d4b3b638
SD
1175
1176 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
d4b3b638 1177 if (!area->bitmap)
c8a82538
ON
1178 goto free_area;
1179
704bde3c
ON
1180 area->xol_mapping.name = "[uprobes]";
1181 area->xol_mapping.pages = area->pages;
f58bea2f
ON
1182 area->pages[0] = alloc_page(GFP_HIGHUSER);
1183 if (!area->pages[0])
c8a82538 1184 goto free_bitmap;
f58bea2f 1185 area->pages[1] = NULL;
d4b3b638 1186
af0d95af 1187 area->vaddr = vaddr;
6441ec8b
ON
1188 init_waitqueue_head(&area->wq);
1189 /* Reserve the 1st slot for get_trampoline_vaddr() */
e78aebfd 1190 set_bit(0, area->bitmap);
e78aebfd 1191 atomic_set(&area->slot_count, 1);
f58bea2f 1192 copy_to_page(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
e78aebfd 1193
6441ec8b 1194 if (!xol_add_vma(mm, area))
d4b3b638
SD
1195 return area;
1196
f58bea2f 1197 __free_page(area->pages[0]);
c8a82538 1198 free_bitmap:
d4b3b638 1199 kfree(area->bitmap);
c8a82538 1200 free_area:
d4b3b638 1201 kfree(area);
c8a82538 1202 out:
6441ec8b
ON
1203 return NULL;
1204}
1205
1206/*
1207 * get_xol_area - Allocate process's xol_area if necessary.
1208 * This area will be used for storing instructions for execution out of line.
1209 *
1210 * Returns the allocated area or NULL.
1211 */
1212static struct xol_area *get_xol_area(void)
1213{
1214 struct mm_struct *mm = current->mm;
1215 struct xol_area *area;
1216
1217 if (!mm->uprobes_state.xol_area)
af0d95af 1218 __create_xol_area(0);
6441ec8b 1219
9b545df8 1220 area = mm->uprobes_state.xol_area;
6441ec8b 1221 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
9b545df8 1222 return area;
d4b3b638
SD
1223}
1224
1225/*
1226 * uprobe_clear_state - Free the area allocated for slots.
1227 */
1228void uprobe_clear_state(struct mm_struct *mm)
1229{
1230 struct xol_area *area = mm->uprobes_state.xol_area;
1231
1232 if (!area)
1233 return;
1234
f58bea2f 1235 put_page(area->pages[0]);
d4b3b638
SD
1236 kfree(area->bitmap);
1237 kfree(area);
1238}
1239
32cdba1e
ON
1240void uprobe_start_dup_mmap(void)
1241{
1242 percpu_down_read(&dup_mmap_sem);
1243}
1244
1245void uprobe_end_dup_mmap(void)
1246{
1247 percpu_up_read(&dup_mmap_sem);
1248}
1249
f8ac4ec9
ON
1250void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1251{
61559a81
ON
1252 newmm->uprobes_state.xol_area = NULL;
1253
9f68f672 1254 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
f8ac4ec9 1255 set_bit(MMF_HAS_UPROBES, &newmm->flags);
9f68f672
ON
1256 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1257 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1258 }
f8ac4ec9
ON
1259}
1260
d4b3b638
SD
1261/*
1262 * - search for a free slot.
1263 */
1264static unsigned long xol_take_insn_slot(struct xol_area *area)
1265{
1266 unsigned long slot_addr;
1267 int slot_nr;
1268
1269 do {
1270 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1271 if (slot_nr < UINSNS_PER_PAGE) {
1272 if (!test_and_set_bit(slot_nr, area->bitmap))
1273 break;
1274
1275 slot_nr = UINSNS_PER_PAGE;
1276 continue;
1277 }
1278 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1279 } while (slot_nr >= UINSNS_PER_PAGE);
1280
1281 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1282 atomic_inc(&area->slot_count);
1283
1284 return slot_addr;
1285}
1286
1287/*
a6cb3f6d 1288 * xol_get_insn_slot - allocate a slot for xol.
d4b3b638
SD
1289 * Returns the allocated slot address or 0.
1290 */
a6cb3f6d 1291static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
d4b3b638
SD
1292{
1293 struct xol_area *area;
a6cb3f6d 1294 unsigned long xol_vaddr;
d4b3b638 1295
9b545df8
ON
1296 area = get_xol_area();
1297 if (!area)
1298 return 0;
d4b3b638 1299
a6cb3f6d
ON
1300 xol_vaddr = xol_take_insn_slot(area);
1301 if (unlikely(!xol_vaddr))
d4b3b638
SD
1302 return 0;
1303
f58bea2f 1304 arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
72e6ae28 1305 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
d4b3b638 1306
a6cb3f6d 1307 return xol_vaddr;
d4b3b638
SD
1308}
1309
1310/*
1311 * xol_free_insn_slot - If slot was earlier allocated by
1312 * @xol_get_insn_slot(), make the slot available for
1313 * subsequent requests.
1314 */
1315static void xol_free_insn_slot(struct task_struct *tsk)
1316{
1317 struct xol_area *area;
1318 unsigned long vma_end;
1319 unsigned long slot_addr;
1320
1321 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1322 return;
1323
1324 slot_addr = tsk->utask->xol_vaddr;
af4355e9 1325 if (unlikely(!slot_addr))
d4b3b638
SD
1326 return;
1327
1328 area = tsk->mm->uprobes_state.xol_area;
1329 vma_end = area->vaddr + PAGE_SIZE;
1330 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1331 unsigned long offset;
1332 int slot_nr;
1333
1334 offset = slot_addr - area->vaddr;
1335 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1336 if (slot_nr >= UINSNS_PER_PAGE)
1337 return;
1338
1339 clear_bit(slot_nr, area->bitmap);
1340 atomic_dec(&area->slot_count);
2a742ced 1341 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
d4b3b638
SD
1342 if (waitqueue_active(&area->wq))
1343 wake_up(&area->wq);
1344
1345 tsk->utask->xol_vaddr = 0;
1346 }
1347}
1348
72e6ae28
VK
1349void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1350 void *src, unsigned long len)
1351{
1352 /* Initialize the slot */
1353 copy_to_page(page, vaddr, src, len);
1354
1355 /*
1356 * We probably need flush_icache_user_range() but it needs vma.
1357 * This should work on most of architectures by default. If
1358 * architecture needs to do something different it can define
1359 * its own version of the function.
1360 */
1361 flush_dcache_page(page);
1362}
1363
0326f5a9
SD
1364/**
1365 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1366 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1367 * instruction.
1368 * Return the address of the breakpoint instruction.
1369 */
1370unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1371{
1372 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1373}
1374
b02ef20a
ON
1375unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1376{
1377 struct uprobe_task *utask = current->utask;
1378
1379 if (unlikely(utask && utask->active_uprobe))
1380 return utask->vaddr;
1381
1382 return instruction_pointer(regs);
1383}
1384
2bb5e840
ON
1385static struct return_instance *free_ret_instance(struct return_instance *ri)
1386{
1387 struct return_instance *next = ri->next;
1388 put_uprobe(ri->uprobe);
1389 kfree(ri);
1390 return next;
1391}
1392
0326f5a9
SD
1393/*
1394 * Called with no locks held.
1395 * Called in context of a exiting or a exec-ing thread.
1396 */
1397void uprobe_free_utask(struct task_struct *t)
1398{
1399 struct uprobe_task *utask = t->utask;
2bb5e840 1400 struct return_instance *ri;
0326f5a9 1401
0326f5a9
SD
1402 if (!utask)
1403 return;
1404
1405 if (utask->active_uprobe)
1406 put_uprobe(utask->active_uprobe);
1407
0dfd0eb8 1408 ri = utask->return_instances;
2bb5e840
ON
1409 while (ri)
1410 ri = free_ret_instance(ri);
0dfd0eb8 1411
d4b3b638 1412 xol_free_insn_slot(t);
0326f5a9
SD
1413 kfree(utask);
1414 t->utask = NULL;
1415}
1416
0326f5a9 1417/*
5a2df662
ON
1418 * Allocate a uprobe_task object for the task if if necessary.
1419 * Called when the thread hits a breakpoint.
0326f5a9
SD
1420 *
1421 * Returns:
1422 * - pointer to new uprobe_task on success
1423 * - NULL otherwise
1424 */
5a2df662 1425static struct uprobe_task *get_utask(void)
0326f5a9 1426{
5a2df662
ON
1427 if (!current->utask)
1428 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1429 return current->utask;
0326f5a9
SD
1430}
1431
248d3a7b
ON
1432static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1433{
1434 struct uprobe_task *n_utask;
1435 struct return_instance **p, *o, *n;
1436
1437 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1438 if (!n_utask)
1439 return -ENOMEM;
1440 t->utask = n_utask;
1441
1442 p = &n_utask->return_instances;
1443 for (o = o_utask->return_instances; o; o = o->next) {
1444 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1445 if (!n)
1446 return -ENOMEM;
1447
1448 *n = *o;
f231722a 1449 get_uprobe(n->uprobe);
248d3a7b
ON
1450 n->next = NULL;
1451
1452 *p = n;
1453 p = &n->next;
1454 n_utask->depth++;
1455 }
1456
1457 return 0;
1458}
1459
1460static void uprobe_warn(struct task_struct *t, const char *msg)
1461{
1462 pr_warn("uprobe: %s:%d failed to %s\n",
1463 current->comm, current->pid, msg);
1464}
1465
aa59c53f
ON
1466static void dup_xol_work(struct callback_head *work)
1467{
aa59c53f
ON
1468 if (current->flags & PF_EXITING)
1469 return;
1470
32473431 1471 if (!__create_xol_area(current->utask->dup_xol_addr))
aa59c53f
ON
1472 uprobe_warn(current, "dup xol area");
1473}
1474
b68e0749
ON
1475/*
1476 * Called in context of a new clone/fork from copy_process.
1477 */
3ab67966 1478void uprobe_copy_process(struct task_struct *t, unsigned long flags)
b68e0749 1479{
248d3a7b
ON
1480 struct uprobe_task *utask = current->utask;
1481 struct mm_struct *mm = current->mm;
aa59c53f 1482 struct xol_area *area;
248d3a7b 1483
b68e0749 1484 t->utask = NULL;
248d3a7b 1485
3ab67966
ON
1486 if (!utask || !utask->return_instances)
1487 return;
1488
1489 if (mm == t->mm && !(flags & CLONE_VFORK))
248d3a7b
ON
1490 return;
1491
1492 if (dup_utask(t, utask))
1493 return uprobe_warn(t, "dup ret instances");
aa59c53f
ON
1494
1495 /* The task can fork() after dup_xol_work() fails */
1496 area = mm->uprobes_state.xol_area;
1497 if (!area)
1498 return uprobe_warn(t, "dup xol area");
1499
3ab67966
ON
1500 if (mm == t->mm)
1501 return;
1502
32473431
ON
1503 t->utask->dup_xol_addr = area->vaddr;
1504 init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1505 task_work_add(t, &t->utask->dup_xol_work, true);
b68e0749
ON
1506}
1507
e78aebfd
AA
1508/*
1509 * Current area->vaddr notion assume the trampoline address is always
1510 * equal area->vaddr.
1511 *
1512 * Returns -1 in case the xol_area is not allocated.
1513 */
1514static unsigned long get_trampoline_vaddr(void)
1515{
1516 struct xol_area *area;
1517 unsigned long trampoline_vaddr = -1;
1518
1519 area = current->mm->uprobes_state.xol_area;
1520 smp_read_barrier_depends();
1521 if (area)
1522 trampoline_vaddr = area->vaddr;
1523
1524 return trampoline_vaddr;
1525}
1526
db087ef6
ON
1527static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1528 struct pt_regs *regs)
a5b7e1a8
ON
1529{
1530 struct return_instance *ri = utask->return_instances;
db087ef6 1531 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
86dcb702
ON
1532
1533 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
a5b7e1a8
ON
1534 ri = free_ret_instance(ri);
1535 utask->depth--;
1536 }
1537 utask->return_instances = ri;
1538}
1539
0dfd0eb8
AA
1540static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1541{
1542 struct return_instance *ri;
1543 struct uprobe_task *utask;
1544 unsigned long orig_ret_vaddr, trampoline_vaddr;
db087ef6 1545 bool chained;
0dfd0eb8
AA
1546
1547 if (!get_xol_area())
1548 return;
1549
1550 utask = get_utask();
1551 if (!utask)
1552 return;
1553
ded49c55
AA
1554 if (utask->depth >= MAX_URETPROBE_DEPTH) {
1555 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1556 " nestedness limit pid/tgid=%d/%d\n",
1557 current->pid, current->tgid);
1558 return;
1559 }
1560
6c58d0e4 1561 ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
0dfd0eb8 1562 if (!ri)
6c58d0e4 1563 return;
0dfd0eb8
AA
1564
1565 trampoline_vaddr = get_trampoline_vaddr();
1566 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1567 if (orig_ret_vaddr == -1)
1568 goto fail;
1569
a5b7e1a8 1570 /* drop the entries invalidated by longjmp() */
db087ef6
ON
1571 chained = (orig_ret_vaddr == trampoline_vaddr);
1572 cleanup_return_instances(utask, chained, regs);
a5b7e1a8 1573
0dfd0eb8
AA
1574 /*
1575 * We don't want to keep trampoline address in stack, rather keep the
1576 * original return address of first caller thru all the consequent
1577 * instances. This also makes breakpoint unwrapping easier.
1578 */
db087ef6 1579 if (chained) {
0dfd0eb8
AA
1580 if (!utask->return_instances) {
1581 /*
1582 * This situation is not possible. Likely we have an
1583 * attack from user-space.
1584 */
6c58d0e4 1585 uprobe_warn(current, "handle tail call");
0dfd0eb8
AA
1586 goto fail;
1587 }
0dfd0eb8
AA
1588 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1589 }
1590
f231722a 1591 ri->uprobe = get_uprobe(uprobe);
0dfd0eb8 1592 ri->func = instruction_pointer(regs);
7b868e48 1593 ri->stack = user_stack_pointer(regs);
0dfd0eb8
AA
1594 ri->orig_ret_vaddr = orig_ret_vaddr;
1595 ri->chained = chained;
1596
ded49c55 1597 utask->depth++;
0dfd0eb8
AA
1598 ri->next = utask->return_instances;
1599 utask->return_instances = ri;
1600
1601 return;
0dfd0eb8
AA
1602 fail:
1603 kfree(ri);
1604}
1605
0326f5a9
SD
1606/* Prepare to single-step probed instruction out of line. */
1607static int
a6cb3f6d 1608pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
0326f5a9 1609{
a6cb3f6d
ON
1610 struct uprobe_task *utask;
1611 unsigned long xol_vaddr;
aba51024 1612 int err;
a6cb3f6d 1613
608e7427
ON
1614 utask = get_utask();
1615 if (!utask)
1616 return -ENOMEM;
a6cb3f6d
ON
1617
1618 xol_vaddr = xol_get_insn_slot(uprobe);
1619 if (!xol_vaddr)
1620 return -ENOMEM;
1621
1622 utask->xol_vaddr = xol_vaddr;
1623 utask->vaddr = bp_vaddr;
d4b3b638 1624
aba51024
ON
1625 err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1626 if (unlikely(err)) {
1627 xol_free_insn_slot(current);
1628 return err;
1629 }
1630
608e7427
ON
1631 utask->active_uprobe = uprobe;
1632 utask->state = UTASK_SSTEP;
aba51024 1633 return 0;
0326f5a9
SD
1634}
1635
1636/*
1637 * If we are singlestepping, then ensure this thread is not connected to
1638 * non-fatal signals until completion of singlestep. When xol insn itself
1639 * triggers the signal, restart the original insn even if the task is
1640 * already SIGKILL'ed (since coredump should report the correct ip). This
1641 * is even more important if the task has a handler for SIGSEGV/etc, The
1642 * _same_ instruction should be repeated again after return from the signal
1643 * handler, and SSTEP can never finish in this case.
1644 */
1645bool uprobe_deny_signal(void)
1646{
1647 struct task_struct *t = current;
1648 struct uprobe_task *utask = t->utask;
1649
1650 if (likely(!utask || !utask->active_uprobe))
1651 return false;
1652
1653 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1654
1655 if (signal_pending(t)) {
1656 spin_lock_irq(&t->sighand->siglock);
1657 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1658 spin_unlock_irq(&t->sighand->siglock);
1659
1660 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1661 utask->state = UTASK_SSTEP_TRAPPED;
1662 set_tsk_thread_flag(t, TIF_UPROBE);
0326f5a9
SD
1663 }
1664 }
1665
1666 return true;
1667}
1668
499a4f3e
ON
1669static void mmf_recalc_uprobes(struct mm_struct *mm)
1670{
1671 struct vm_area_struct *vma;
1672
1673 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1674 if (!valid_vma(vma, false))
1675 continue;
1676 /*
1677 * This is not strictly accurate, we can race with
1678 * uprobe_unregister() and see the already removed
1679 * uprobe if delete_uprobe() was not yet called.
63633cbf 1680 * Or this uprobe can be filtered out.
499a4f3e
ON
1681 */
1682 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1683 return;
1684 }
1685
1686 clear_bit(MMF_HAS_UPROBES, &mm->flags);
1687}
1688
0908ad6e 1689static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
ec75fba9
ON
1690{
1691 struct page *page;
1692 uprobe_opcode_t opcode;
1693 int result;
1694
1695 pagefault_disable();
1696 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1697 sizeof(opcode));
1698 pagefault_enable();
1699
1700 if (likely(result == 0))
1701 goto out;
1702
1703 result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1704 if (result < 0)
1705 return result;
1706
ab0d805c 1707 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
ec75fba9
ON
1708 put_page(page);
1709 out:
0908ad6e
AM
1710 /* This needs to return true for any variant of the trap insn */
1711 return is_trap_insn(&opcode);
ec75fba9
ON
1712}
1713
d790d346 1714static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
0326f5a9 1715{
3a9ea052
ON
1716 struct mm_struct *mm = current->mm;
1717 struct uprobe *uprobe = NULL;
0326f5a9 1718 struct vm_area_struct *vma;
0326f5a9 1719
0326f5a9
SD
1720 down_read(&mm->mmap_sem);
1721 vma = find_vma(mm, bp_vaddr);
3a9ea052
ON
1722 if (vma && vma->vm_start <= bp_vaddr) {
1723 if (valid_vma(vma, false)) {
f281769e 1724 struct inode *inode = file_inode(vma->vm_file);
cb113b47 1725 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
0326f5a9 1726
3a9ea052
ON
1727 uprobe = find_uprobe(inode, offset);
1728 }
d790d346
ON
1729
1730 if (!uprobe)
0908ad6e 1731 *is_swbp = is_trap_at_addr(mm, bp_vaddr);
d790d346
ON
1732 } else {
1733 *is_swbp = -EFAULT;
0326f5a9 1734 }
499a4f3e
ON
1735
1736 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1737 mmf_recalc_uprobes(mm);
0326f5a9
SD
1738 up_read(&mm->mmap_sem);
1739
3a9ea052
ON
1740 return uprobe;
1741}
1742
da1816b1
ON
1743static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1744{
1745 struct uprobe_consumer *uc;
1746 int remove = UPROBE_HANDLER_REMOVE;
0dfd0eb8 1747 bool need_prep = false; /* prepare return uprobe, when needed */
da1816b1
ON
1748
1749 down_read(&uprobe->register_rwsem);
1750 for (uc = uprobe->consumers; uc; uc = uc->next) {
ea024870 1751 int rc = 0;
da1816b1 1752
ea024870
AA
1753 if (uc->handler) {
1754 rc = uc->handler(uc, regs);
1755 WARN(rc & ~UPROBE_HANDLER_MASK,
1756 "bad rc=0x%x from %pf()\n", rc, uc->handler);
1757 }
0dfd0eb8
AA
1758
1759 if (uc->ret_handler)
1760 need_prep = true;
1761
da1816b1
ON
1762 remove &= rc;
1763 }
1764
0dfd0eb8
AA
1765 if (need_prep && !remove)
1766 prepare_uretprobe(uprobe, regs); /* put bp at return */
1767
da1816b1
ON
1768 if (remove && uprobe->consumers) {
1769 WARN_ON(!uprobe_is_active(uprobe));
1770 unapply_uprobe(uprobe, current->mm);
1771 }
1772 up_read(&uprobe->register_rwsem);
1773}
1774
fec8898d
AA
1775static void
1776handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1777{
1778 struct uprobe *uprobe = ri->uprobe;
1779 struct uprobe_consumer *uc;
1780
1781 down_read(&uprobe->register_rwsem);
1782 for (uc = uprobe->consumers; uc; uc = uc->next) {
1783 if (uc->ret_handler)
1784 uc->ret_handler(uc, ri->func, regs);
1785 }
1786 up_read(&uprobe->register_rwsem);
1787}
1788
a83cfeb9
ON
1789static struct return_instance *find_next_ret_chain(struct return_instance *ri)
1790{
1791 bool chained;
1792
1793 do {
1794 chained = ri->chained;
1795 ri = ri->next; /* can't be NULL if chained */
1796 } while (chained);
1797
1798 return ri;
1799}
1800
0b5256c7 1801static void handle_trampoline(struct pt_regs *regs)
fec8898d
AA
1802{
1803 struct uprobe_task *utask;
a83cfeb9 1804 struct return_instance *ri, *next;
5eeb50de 1805 bool valid;
fec8898d
AA
1806
1807 utask = current->utask;
1808 if (!utask)
0b5256c7 1809 goto sigill;
fec8898d
AA
1810
1811 ri = utask->return_instances;
1812 if (!ri)
0b5256c7 1813 goto sigill;
fec8898d 1814
a83cfeb9 1815 do {
5eeb50de
ON
1816 /*
1817 * We should throw out the frames invalidated by longjmp().
1818 * If this chain is valid, then the next one should be alive
1819 * or NULL; the latter case means that nobody but ri->func
1820 * could hit this trampoline on return. TODO: sigaltstack().
1821 */
1822 next = find_next_ret_chain(ri);
86dcb702 1823 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
5eeb50de
ON
1824
1825 instruction_pointer_set(regs, ri->orig_ret_vaddr);
1826 do {
1827 if (valid)
1828 handle_uretprobe_chain(ri, regs);
1829 ri = free_ret_instance(ri);
1830 utask->depth--;
1831 } while (ri != next);
1832 } while (!valid);
fec8898d
AA
1833
1834 utask->return_instances = ri;
0b5256c7
ON
1835 return;
1836
1837 sigill:
1838 uprobe_warn(current, "handle uretprobe, sending SIGILL.");
1839 force_sig_info(SIGILL, SEND_SIG_FORCED, current);
fec8898d 1840
fec8898d
AA
1841}
1842
6fe50a28
DL
1843bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
1844{
1845 return false;
1846}
1847
86dcb702
ON
1848bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1849 struct pt_regs *regs)
97da8976
ON
1850{
1851 return true;
1852}
1853
3a9ea052
ON
1854/*
1855 * Run handler and ask thread to singlestep.
1856 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1857 */
1858static void handle_swbp(struct pt_regs *regs)
1859{
3a9ea052
ON
1860 struct uprobe *uprobe;
1861 unsigned long bp_vaddr;
56bb4cf6 1862 int uninitialized_var(is_swbp);
3a9ea052
ON
1863
1864 bp_vaddr = uprobe_get_swbp_addr(regs);
0b5256c7
ON
1865 if (bp_vaddr == get_trampoline_vaddr())
1866 return handle_trampoline(regs);
fec8898d
AA
1867
1868 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
0326f5a9 1869 if (!uprobe) {
56bb4cf6
ON
1870 if (is_swbp > 0) {
1871 /* No matching uprobe; signal SIGTRAP. */
1872 send_sig(SIGTRAP, current, 0);
1873 } else {
1874 /*
1875 * Either we raced with uprobe_unregister() or we can't
1876 * access this memory. The latter is only possible if
1877 * another thread plays with our ->mm. In both cases
1878 * we can simply restart. If this vma was unmapped we
1879 * can pretend this insn was not executed yet and get
1880 * the (correct) SIGSEGV after restart.
1881 */
1882 instruction_pointer_set(regs, bp_vaddr);
1883 }
0326f5a9
SD
1884 return;
1885 }
74e59dfc
ON
1886
1887 /* change it in advance for ->handler() and restart */
1888 instruction_pointer_set(regs, bp_vaddr);
1889
142b18dd
ON
1890 /*
1891 * TODO: move copy_insn/etc into _register and remove this hack.
1892 * After we hit the bp, _unregister + _register can install the
1893 * new and not-yet-analyzed uprobe at the same address, restart.
1894 */
1895 smp_rmb(); /* pairs with wmb() in install_breakpoint() */
71434f2f 1896 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
74e59dfc 1897 goto out;
0326f5a9 1898
72fd293a
ON
1899 /* Tracing handlers use ->utask to communicate with fetch methods */
1900 if (!get_utask())
1901 goto out;
1902
6fe50a28
DL
1903 if (arch_uprobe_ignore(&uprobe->arch, regs))
1904 goto out;
1905
0326f5a9 1906 handler_chain(uprobe, regs);
6fe50a28 1907
8a6b1732 1908 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
0578a970 1909 goto out;
0326f5a9 1910
608e7427 1911 if (!pre_ssout(uprobe, regs, bp_vaddr))
0326f5a9 1912 return;
0326f5a9 1913
8a6b1732 1914 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
0578a970 1915out:
8bd87445 1916 put_uprobe(uprobe);
0326f5a9
SD
1917}
1918
1919/*
1920 * Perform required fix-ups and disable singlestep.
1921 * Allow pending signals to take effect.
1922 */
1923static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1924{
1925 struct uprobe *uprobe;
014940ba 1926 int err = 0;
0326f5a9
SD
1927
1928 uprobe = utask->active_uprobe;
1929 if (utask->state == UTASK_SSTEP_ACK)
014940ba 1930 err = arch_uprobe_post_xol(&uprobe->arch, regs);
0326f5a9
SD
1931 else if (utask->state == UTASK_SSTEP_TRAPPED)
1932 arch_uprobe_abort_xol(&uprobe->arch, regs);
1933 else
1934 WARN_ON_ONCE(1);
1935
1936 put_uprobe(uprobe);
1937 utask->active_uprobe = NULL;
1938 utask->state = UTASK_RUNNING;
d4b3b638 1939 xol_free_insn_slot(current);
0326f5a9
SD
1940
1941 spin_lock_irq(&current->sighand->siglock);
1942 recalc_sigpending(); /* see uprobe_deny_signal() */
1943 spin_unlock_irq(&current->sighand->siglock);
014940ba
ON
1944
1945 if (unlikely(err)) {
1946 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
1947 force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1948 }
0326f5a9
SD
1949}
1950
1951/*
1b08e907
ON
1952 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1953 * allows the thread to return from interrupt. After that handle_swbp()
1954 * sets utask->active_uprobe.
0326f5a9 1955 *
1b08e907
ON
1956 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1957 * and allows the thread to return from interrupt.
0326f5a9
SD
1958 *
1959 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1960 * uprobe_notify_resume().
1961 */
1962void uprobe_notify_resume(struct pt_regs *regs)
1963{
1964 struct uprobe_task *utask;
1965
db023ea5
ON
1966 clear_thread_flag(TIF_UPROBE);
1967
0326f5a9 1968 utask = current->utask;
1b08e907 1969 if (utask && utask->active_uprobe)
0326f5a9 1970 handle_singlestep(utask, regs);
1b08e907
ON
1971 else
1972 handle_swbp(regs);
0326f5a9
SD
1973}
1974
1975/*
1976 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1977 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1978 */
1979int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1980{
0dfd0eb8
AA
1981 if (!current->mm)
1982 return 0;
1983
1984 if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
1985 (!current->utask || !current->utask->return_instances))
0326f5a9
SD
1986 return 0;
1987
0326f5a9 1988 set_thread_flag(TIF_UPROBE);
0326f5a9
SD
1989 return 1;
1990}
1991
1992/*
1993 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1994 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1995 */
1996int uprobe_post_sstep_notifier(struct pt_regs *regs)
1997{
1998 struct uprobe_task *utask = current->utask;
1999
2000 if (!current->mm || !utask || !utask->active_uprobe)
2001 /* task is currently not uprobed */
2002 return 0;
2003
2004 utask->state = UTASK_SSTEP_ACK;
2005 set_thread_flag(TIF_UPROBE);
2006 return 1;
2007}
2008
2009static struct notifier_block uprobe_exception_nb = {
2010 .notifier_call = arch_uprobe_exception_notify,
2011 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
2012};
2013
2b144498
SD
2014static int __init init_uprobes(void)
2015{
2016 int i;
2017
66d06dff 2018 for (i = 0; i < UPROBES_HASH_SZ; i++)
2b144498 2019 mutex_init(&uprobes_mmap_mutex[i]);
0326f5a9 2020
32cdba1e
ON
2021 if (percpu_init_rwsem(&dup_mmap_sem))
2022 return -ENOMEM;
2023
0326f5a9 2024 return register_die_notifier(&uprobe_exception_nb);
2b144498 2025}
736e89d9 2026__initcall(init_uprobes);