mm/gup: remove unused vmas parameter from pin_user_pages_remote()
[linux-block.git] / kernel / events / uprobes.c
CommitLineData
720e596a 1// SPDX-License-Identifier: GPL-2.0+
2b144498 2/*
7b2d81d4 3 * User-space Probes (UProbes)
2b144498 4 *
35aa621b 5 * Copyright (C) IBM Corporation, 2008-2012
2b144498
SD
6 * Authors:
7 * Srikar Dronamraju
8 * Jim Keniston
90eec103 9 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
2b144498
SD
10 */
11
12#include <linux/kernel.h>
13#include <linux/highmem.h>
14#include <linux/pagemap.h> /* read_mapping_page */
15#include <linux/slab.h>
16#include <linux/sched.h>
6e84f315 17#include <linux/sched/mm.h>
f7ccbae4 18#include <linux/sched/coredump.h>
e8440c14 19#include <linux/export.h>
2b144498
SD
20#include <linux/rmap.h> /* anon_vma_prepare */
21#include <linux/mmu_notifier.h> /* set_pte_at_notify */
5fcd079a 22#include <linux/swap.h> /* folio_free_swap */
0326f5a9
SD
23#include <linux/ptrace.h> /* user_enable_single_step */
24#include <linux/kdebug.h> /* notifier mechanism */
32cdba1e 25#include <linux/percpu-rwsem.h>
aa59c53f 26#include <linux/task_work.h>
40814f68 27#include <linux/shmem_fs.h>
f385cb85 28#include <linux/khugepaged.h>
7b2d81d4 29
2b144498
SD
30#include <linux/uprobes.h>
31
d4b3b638
SD
32#define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
33#define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
34
2b144498 35static struct rb_root uprobes_tree = RB_ROOT;
441f1eb7
ON
36/*
37 * allows us to skip the uprobe_mmap if there are no uprobe events active
38 * at this time. Probably a fine grained per inode count is better?
39 */
40#define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree)
7b2d81d4 41
2b144498
SD
42static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
43
44#define UPROBES_HASH_SZ 13
2b144498
SD
45/* serialize uprobe->pending_list */
46static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
7b2d81d4 47#define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498 48
2bf1acc2 49DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
32cdba1e 50
cb9a19fe 51/* Have a copy of original instruction */
71434f2f 52#define UPROBE_COPY_INSN 0
cb9a19fe 53
3ff54efd
SD
54struct uprobe {
55 struct rb_node rb_node; /* node in the rb tree */
ce59b8e9 56 refcount_t ref;
e591c8d7 57 struct rw_semaphore register_rwsem;
3ff54efd
SD
58 struct rw_semaphore consumer_rwsem;
59 struct list_head pending_list;
60 struct uprobe_consumer *consumers;
61 struct inode *inode; /* Also hold a ref to inode */
62 loff_t offset;
1cc33161 63 loff_t ref_ctr_offset;
71434f2f 64 unsigned long flags;
ad439356
ON
65
66 /*
67 * The generic code assumes that it has two members of unknown type
68 * owned by the arch-specific code:
69 *
70 * insn - copy_insn() saves the original instruction here for
71 * arch_uprobe_analyze_insn().
72 *
73 * ixol - potentially modified instruction to execute out of
74 * line, copied to xol_area by xol_get_insn_slot().
75 */
3ff54efd
SD
76 struct arch_uprobe arch;
77};
78
1cc33161
RB
79struct delayed_uprobe {
80 struct list_head list;
81 struct uprobe *uprobe;
82 struct mm_struct *mm;
83};
84
85static DEFINE_MUTEX(delayed_uprobe_lock);
86static LIST_HEAD(delayed_uprobe_list);
87
c912dae6 88/*
ad439356
ON
89 * Execute out of line area: anonymous executable mapping installed
90 * by the probed task to execute the copy of the original instruction
91 * mangled by set_swbp().
92 *
c912dae6
ON
93 * On a breakpoint hit, thread contests for a slot. It frees the
94 * slot after singlestep. Currently a fixed number of slots are
95 * allocated.
96 */
97struct xol_area {
704bde3c
ON
98 wait_queue_head_t wq; /* if all slots are busy */
99 atomic_t slot_count; /* number of in-use slots */
100 unsigned long *bitmap; /* 0 = free slot */
c912dae6 101
704bde3c
ON
102 struct vm_special_mapping xol_mapping;
103 struct page *pages[2];
c912dae6
ON
104 /*
105 * We keep the vma's vm_start rather than a pointer to the vma
106 * itself. The probed process or a naughty kernel module could make
107 * the vma go away, and we must handle that reasonably gracefully.
108 */
704bde3c 109 unsigned long vaddr; /* Page(s) of instruction slots */
c912dae6
ON
110};
111
2b144498
SD
112/*
113 * valid_vma: Verify if the specified vma is an executable vma
114 * Relax restrictions while unregistering: vm_flags might have
115 * changed after breakpoint was inserted.
116 * - is_register: indicates if we are in register context.
117 * - Return 1 if the specified virtual address is in an
118 * executable vma.
119 */
120static bool valid_vma(struct vm_area_struct *vma, bool is_register)
121{
13f59c5e 122 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
2b144498 123
e40cfce6
ON
124 if (is_register)
125 flags |= VM_WRITE;
2b144498 126
e40cfce6 127 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
2b144498
SD
128}
129
57683f72 130static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
2b144498 131{
57683f72 132 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
2b144498
SD
133}
134
cb113b47
ON
135static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
136{
137 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
138}
139
2b144498
SD
140/**
141 * __replace_page - replace page in vma by new page.
142 * based on replace_page in mm/ksm.c
143 *
144 * @vma: vma that holds the pte pointing to page
c517ee74 145 * @addr: address the old @page is mapped at
fb4fb04f
SL
146 * @old_page: the page we are replacing by new_page
147 * @new_page: the modified page we replace page by
2b144498 148 *
fb4fb04f
SL
149 * If @new_page is NULL, only unmap @old_page.
150 *
151 * Returns 0 on success, negative error code otherwise.
2b144498 152 */
c517ee74 153static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
bdfaa2ee 154 struct page *old_page, struct page *new_page)
2b144498 155{
5fcd079a 156 struct folio *old_folio = page_folio(old_page);
82e66bf7 157 struct folio *new_folio;
2b144498 158 struct mm_struct *mm = vma->vm_mm;
5fcd079a 159 DEFINE_FOLIO_VMA_WALK(pvmw, old_folio, vma, addr, 0);
9f92448c 160 int err;
ac46d4f3 161 struct mmu_notifier_range range;
00501b53 162
7d4a8be0 163 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
6f4f13e8 164 addr + PAGE_SIZE);
ac46d4f3 165
fb4fb04f 166 if (new_page) {
82e66bf7
MWO
167 new_folio = page_folio(new_page);
168 err = mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL);
fb4fb04f
SL
169 if (err)
170 return err;
171 }
2b144498 172
5fcd079a
MWO
173 /* For folio_free_swap() below */
174 folio_lock(old_folio);
9f92448c 175
ac46d4f3 176 mmu_notifier_invalidate_range_start(&range);
9f92448c 177 err = -EAGAIN;
9d82c694 178 if (!page_vma_mapped_walk(&pvmw))
9f92448c 179 goto unlock;
14fa2daa 180 VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
2b144498 181
fb4fb04f 182 if (new_page) {
82e66bf7 183 folio_get(new_folio);
40f2bbf7 184 page_add_new_anon_rmap(new_page, vma, addr);
82e66bf7 185 folio_add_lru_vma(new_folio, vma);
fb4fb04f
SL
186 } else
187 /* no new page, just dec_mm_counter for old_page */
188 dec_mm_counter(mm, MM_ANONPAGES);
2b144498 189
5fcd079a 190 if (!folio_test_anon(old_folio)) {
bdfaa2ee 191 dec_mm_counter(mm, mm_counter_file(old_page));
7396fa81
SD
192 inc_mm_counter(mm, MM_ANONPAGES);
193 }
194
14fa2daa
KS
195 flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
196 ptep_clear_flush_notify(vma, addr, pvmw.pte);
fb4fb04f
SL
197 if (new_page)
198 set_pte_at_notify(mm, addr, pvmw.pte,
199 mk_pte(new_page, vma->vm_page_prot));
2b144498 200
cea86fe2 201 page_remove_rmap(old_page, vma, false);
5fcd079a
MWO
202 if (!folio_mapped(old_folio))
203 folio_free_swap(old_folio);
14fa2daa 204 page_vma_mapped_walk_done(&pvmw);
5fcd079a 205 folio_put(old_folio);
194f8dcb 206
9f92448c
ON
207 err = 0;
208 unlock:
ac46d4f3 209 mmu_notifier_invalidate_range_end(&range);
5fcd079a 210 folio_unlock(old_folio);
9f92448c 211 return err;
2b144498
SD
212}
213
214/**
5cb4ac3a 215 * is_swbp_insn - check if instruction is breakpoint instruction.
2b144498 216 * @insn: instruction to be checked.
5cb4ac3a 217 * Default implementation of is_swbp_insn
2b144498
SD
218 * Returns true if @insn is a breakpoint instruction.
219 */
5cb4ac3a 220bool __weak is_swbp_insn(uprobe_opcode_t *insn)
2b144498 221{
5cb4ac3a 222 return *insn == UPROBE_SWBP_INSN;
2b144498
SD
223}
224
0908ad6e
AM
225/**
226 * is_trap_insn - check if instruction is breakpoint instruction.
227 * @insn: instruction to be checked.
228 * Default implementation of is_trap_insn
229 * Returns true if @insn is a breakpoint instruction.
230 *
231 * This function is needed for the case where an architecture has multiple
232 * trap instructions (like powerpc).
233 */
234bool __weak is_trap_insn(uprobe_opcode_t *insn)
235{
236 return is_swbp_insn(insn);
237}
238
ab0d805c 239static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
cceb55aa
ON
240{
241 void *kaddr = kmap_atomic(page);
ab0d805c 242 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
cceb55aa
ON
243 kunmap_atomic(kaddr);
244}
245
5669ccee
ON
246static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
247{
248 void *kaddr = kmap_atomic(page);
249 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
250 kunmap_atomic(kaddr);
251}
252
ed6f6a50
ON
253static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
254{
255 uprobe_opcode_t old_opcode;
256 bool is_swbp;
257
0908ad6e
AM
258 /*
259 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
260 * We do not check if it is any other 'trap variant' which could
261 * be conditional trap instruction such as the one powerpc supports.
262 *
263 * The logic is that we do not care if the underlying instruction
264 * is a trap variant; uprobes always wins over any other (gdb)
265 * breakpoint.
266 */
ab0d805c 267 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
ed6f6a50
ON
268 is_swbp = is_swbp_insn(&old_opcode);
269
270 if (is_swbp_insn(new_opcode)) {
271 if (is_swbp) /* register: already installed? */
272 return 0;
273 } else {
274 if (!is_swbp) /* unregister: was it changed by us? */
076a365b 275 return 0;
ed6f6a50
ON
276 }
277
278 return 1;
279}
280
1cc33161
RB
281static struct delayed_uprobe *
282delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
283{
284 struct delayed_uprobe *du;
285
286 list_for_each_entry(du, &delayed_uprobe_list, list)
287 if (du->uprobe == uprobe && du->mm == mm)
288 return du;
289 return NULL;
290}
291
292static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
293{
294 struct delayed_uprobe *du;
295
296 if (delayed_uprobe_check(uprobe, mm))
297 return 0;
298
299 du = kzalloc(sizeof(*du), GFP_KERNEL);
300 if (!du)
301 return -ENOMEM;
302
303 du->uprobe = uprobe;
304 du->mm = mm;
305 list_add(&du->list, &delayed_uprobe_list);
306 return 0;
307}
308
309static void delayed_uprobe_delete(struct delayed_uprobe *du)
310{
311 if (WARN_ON(!du))
312 return;
313 list_del(&du->list);
314 kfree(du);
315}
316
317static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
318{
319 struct list_head *pos, *q;
320 struct delayed_uprobe *du;
321
322 if (!uprobe && !mm)
323 return;
324
325 list_for_each_safe(pos, q, &delayed_uprobe_list) {
326 du = list_entry(pos, struct delayed_uprobe, list);
327
328 if (uprobe && du->uprobe != uprobe)
329 continue;
330 if (mm && du->mm != mm)
331 continue;
332
333 delayed_uprobe_delete(du);
334 }
335}
336
337static bool valid_ref_ctr_vma(struct uprobe *uprobe,
338 struct vm_area_struct *vma)
339{
340 unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
341
342 return uprobe->ref_ctr_offset &&
343 vma->vm_file &&
344 file_inode(vma->vm_file) == uprobe->inode &&
345 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
346 vma->vm_start <= vaddr &&
347 vma->vm_end > vaddr;
348}
349
350static struct vm_area_struct *
351find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
352{
fcb72a58 353 VMA_ITERATOR(vmi, mm, 0);
1cc33161
RB
354 struct vm_area_struct *tmp;
355
fcb72a58 356 for_each_vma(vmi, tmp)
1cc33161
RB
357 if (valid_ref_ctr_vma(uprobe, tmp))
358 return tmp;
359
360 return NULL;
361}
362
363static int
364__update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
365{
366 void *kaddr;
367 struct page *page;
368 struct vm_area_struct *vma;
369 int ret;
370 short *ptr;
371
372 if (!vaddr || !d)
373 return -EINVAL;
374
64019a2e 375 ret = get_user_pages_remote(mm, vaddr, 1,
1cc33161
RB
376 FOLL_WRITE, &page, &vma, NULL);
377 if (unlikely(ret <= 0)) {
378 /*
379 * We are asking for 1 page. If get_user_pages_remote() fails,
380 * it may return 0, in that case we have to return error.
381 */
382 return ret == 0 ? -EBUSY : ret;
383 }
384
385 kaddr = kmap_atomic(page);
386 ptr = kaddr + (vaddr & ~PAGE_MASK);
387
388 if (unlikely(*ptr + d < 0)) {
389 pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
390 "curr val: %d, delta: %d\n", vaddr, *ptr, d);
391 ret = -EINVAL;
392 goto out;
393 }
394
395 *ptr += d;
396 ret = 0;
397out:
398 kunmap_atomic(kaddr);
399 put_page(page);
400 return ret;
401}
402
403static void update_ref_ctr_warn(struct uprobe *uprobe,
404 struct mm_struct *mm, short d)
405{
406 pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
407 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
408 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
409 (unsigned long long) uprobe->offset,
410 (unsigned long long) uprobe->ref_ctr_offset, mm);
411}
412
413static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
414 short d)
415{
416 struct vm_area_struct *rc_vma;
417 unsigned long rc_vaddr;
418 int ret = 0;
419
420 rc_vma = find_ref_ctr_vma(uprobe, mm);
421
422 if (rc_vma) {
423 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
424 ret = __update_ref_ctr(mm, rc_vaddr, d);
425 if (ret)
426 update_ref_ctr_warn(uprobe, mm, d);
427
428 if (d > 0)
429 return ret;
430 }
431
432 mutex_lock(&delayed_uprobe_lock);
433 if (d > 0)
434 ret = delayed_uprobe_add(uprobe, mm);
435 else
436 delayed_uprobe_remove(uprobe, mm);
437 mutex_unlock(&delayed_uprobe_lock);
438
439 return ret;
440}
441
2b144498
SD
442/*
443 * NOTE:
444 * Expect the breakpoint instruction to be the smallest size instruction for
445 * the architecture. If an arch has variable length instruction and the
446 * breakpoint instruction is not of the smallest length instruction
0908ad6e 447 * supported by that architecture then we need to modify is_trap_at_addr and
f72d41fa
ON
448 * uprobe_write_opcode accordingly. This would never be a problem for archs
449 * that have fixed length instructions.
29dedee0 450 *
f72d41fa 451 * uprobe_write_opcode - write the opcode at a given virtual address.
9ce4d216 452 * @auprobe: arch specific probepoint information.
2b144498 453 * @mm: the probed process address space.
2b144498
SD
454 * @vaddr: the virtual address to store the opcode.
455 * @opcode: opcode to be written at @vaddr.
456 *
c1e8d7c6 457 * Called with mm->mmap_lock held for write.
2b144498
SD
458 * Return 0 (success) or a negative errno.
459 */
6d43743e
RB
460int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
461 unsigned long vaddr, uprobe_opcode_t opcode)
2b144498 462{
1cc33161 463 struct uprobe *uprobe;
2b144498 464 struct page *old_page, *new_page;
2b144498 465 struct vm_area_struct *vma;
1cc33161 466 int ret, is_register, ref_ctr_updated = 0;
f385cb85 467 bool orig_page_huge = false;
aa5de305 468 unsigned int gup_flags = FOLL_FORCE;
1cc33161
RB
469
470 is_register = is_swbp_insn(&opcode);
471 uprobe = container_of(auprobe, struct uprobe, arch);
f403072c 472
5323ce71 473retry:
aa5de305
SL
474 if (is_register)
475 gup_flags |= FOLL_SPLIT_PMD;
2b144498 476 /* Read the page with vaddr into memory */
64019a2e 477 ret = get_user_pages_remote(mm, vaddr, 1, gup_flags,
aa5de305 478 &old_page, &vma, NULL);
2b144498
SD
479 if (ret <= 0)
480 return ret;
7b2d81d4 481
ed6f6a50
ON
482 ret = verify_opcode(old_page, vaddr, &opcode);
483 if (ret <= 0)
484 goto put_old;
485
aa5de305
SL
486 if (WARN(!is_register && PageCompound(old_page),
487 "uprobe unregister should never work on compound page\n")) {
488 ret = -EINVAL;
489 goto put_old;
490 }
491
1cc33161
RB
492 /* We are going to replace instruction, update ref_ctr. */
493 if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
494 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
495 if (ret)
496 goto put_old;
497
498 ref_ctr_updated = 1;
499 }
500
fb4fb04f
SL
501 ret = 0;
502 if (!is_register && !PageAnon(old_page))
503 goto put_old;
504
29dedee0
ON
505 ret = anon_vma_prepare(vma);
506 if (ret)
507 goto put_old;
508
2b144498
SD
509 ret = -ENOMEM;
510 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
511 if (!new_page)
9f92448c 512 goto put_old;
2b144498 513
29dedee0 514 __SetPageUptodate(new_page);
3f47107c
ON
515 copy_highpage(new_page, old_page);
516 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2b144498 517
fb4fb04f
SL
518 if (!is_register) {
519 struct page *orig_page;
520 pgoff_t index;
521
522 VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
523
524 index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
525 orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
526 index);
527
528 if (orig_page) {
529 if (PageUptodate(orig_page) &&
530 pages_identical(new_page, orig_page)) {
531 /* let go new_page */
532 put_page(new_page);
533 new_page = NULL;
f385cb85
SL
534
535 if (PageCompound(orig_page))
536 orig_page_huge = true;
fb4fb04f
SL
537 }
538 put_page(orig_page);
539 }
540 }
541
c517ee74 542 ret = __replace_page(vma, vaddr, old_page, new_page);
fb4fb04f
SL
543 if (new_page)
544 put_page(new_page);
9f92448c 545put_old:
7b2d81d4
IM
546 put_page(old_page);
547
5323ce71
ON
548 if (unlikely(ret == -EAGAIN))
549 goto retry;
1cc33161
RB
550
551 /* Revert back reference counter if instruction update failed. */
552 if (ret && is_register && ref_ctr_updated)
553 update_ref_ctr(uprobe, mm, -1);
554
f385cb85
SL
555 /* try collapse pmd for compound page */
556 if (!ret && orig_page_huge)
34488399 557 collapse_pte_mapped_thp(mm, vaddr, false);
f385cb85 558
2b144498
SD
559 return ret;
560}
561
2b144498 562/**
5cb4ac3a 563 * set_swbp - store breakpoint at a given address.
e3343e6a 564 * @auprobe: arch specific probepoint information.
2b144498 565 * @mm: the probed process address space.
2b144498
SD
566 * @vaddr: the virtual address to insert the opcode.
567 *
568 * For mm @mm, store the breakpoint instruction at @vaddr.
569 * Return 0 (success) or a negative errno.
570 */
5cb4ac3a 571int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 572{
6d43743e 573 return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
2b144498
SD
574}
575
576/**
577 * set_orig_insn - Restore the original instruction.
578 * @mm: the probed process address space.
e3343e6a 579 * @auprobe: arch specific probepoint information.
2b144498 580 * @vaddr: the virtual address to insert the opcode.
2b144498
SD
581 *
582 * For mm @mm, restore the original opcode (opcode) at @vaddr.
583 * Return 0 (success) or a negative errno.
584 */
7b2d81d4 585int __weak
ded86e7c 586set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 587{
6d43743e
RB
588 return uprobe_write_opcode(auprobe, mm, vaddr,
589 *(uprobe_opcode_t *)&auprobe->insn);
2b144498
SD
590}
591
f231722a
ON
592static struct uprobe *get_uprobe(struct uprobe *uprobe)
593{
ce59b8e9 594 refcount_inc(&uprobe->ref);
f231722a
ON
595 return uprobe;
596}
597
598static void put_uprobe(struct uprobe *uprobe)
599{
ce59b8e9 600 if (refcount_dec_and_test(&uprobe->ref)) {
1cc33161
RB
601 /*
602 * If application munmap(exec_vma) before uprobe_unregister()
603 * gets called, we don't get a chance to remove uprobe from
604 * delayed_uprobe_list from remove_breakpoint(). Do it here.
605 */
1aed58e6 606 mutex_lock(&delayed_uprobe_lock);
1cc33161 607 delayed_uprobe_remove(uprobe, NULL);
1aed58e6 608 mutex_unlock(&delayed_uprobe_lock);
f231722a 609 kfree(uprobe);
1cc33161 610 }
f231722a
ON
611}
612
a905e84e
PZ
613static __always_inline
614int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset,
615 const struct uprobe *r)
2b144498 616{
a905e84e 617 if (l_inode < r->inode)
2b144498 618 return -1;
7b2d81d4 619
a905e84e 620 if (l_inode > r->inode)
2b144498 621 return 1;
2b144498 622
a905e84e 623 if (l_offset < r->offset)
7b2d81d4
IM
624 return -1;
625
a905e84e 626 if (l_offset > r->offset)
7b2d81d4 627 return 1;
2b144498
SD
628
629 return 0;
630}
631
a905e84e
PZ
632#define __node_2_uprobe(node) \
633 rb_entry((node), struct uprobe, rb_node)
634
635struct __uprobe_key {
636 struct inode *inode;
637 loff_t offset;
638};
639
640static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b)
641{
642 const struct __uprobe_key *a = key;
643 return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b));
644}
645
646static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b)
647{
648 struct uprobe *u = __node_2_uprobe(a);
649 return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b));
650}
651
2b144498
SD
652static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
653{
a905e84e
PZ
654 struct __uprobe_key key = {
655 .inode = inode,
656 .offset = offset,
657 };
658 struct rb_node *node = rb_find(&key, &uprobes_tree, __uprobe_cmp_key);
659
660 if (node)
b0d6d478 661 return get_uprobe(__node_2_uprobe(node));
a905e84e 662
2b144498
SD
663 return NULL;
664}
665
666/*
667 * Find a uprobe corresponding to a given inode:offset
668 * Acquires uprobes_treelock
669 */
670static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
671{
672 struct uprobe *uprobe;
2b144498 673
6f47caa0 674 spin_lock(&uprobes_treelock);
2b144498 675 uprobe = __find_uprobe(inode, offset);
6f47caa0 676 spin_unlock(&uprobes_treelock);
7b2d81d4 677
2b144498
SD
678 return uprobe;
679}
680
681static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
682{
a905e84e 683 struct rb_node *node;
2b144498 684
a905e84e
PZ
685 node = rb_find_add(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp);
686 if (node)
687 return get_uprobe(__node_2_uprobe(node));
2b144498 688
2b144498 689 /* get access + creation ref */
ce59b8e9 690 refcount_set(&uprobe->ref, 2);
a905e84e 691 return NULL;
2b144498
SD
692}
693
694/*
7b2d81d4 695 * Acquire uprobes_treelock.
2b144498
SD
696 * Matching uprobe already exists in rbtree;
697 * increment (access refcount) and return the matching uprobe.
698 *
699 * No matching uprobe; insert the uprobe in rb_tree;
700 * get a double refcount (access + creation) and return NULL.
701 */
702static struct uprobe *insert_uprobe(struct uprobe *uprobe)
703{
2b144498
SD
704 struct uprobe *u;
705
6f47caa0 706 spin_lock(&uprobes_treelock);
2b144498 707 u = __insert_uprobe(uprobe);
6f47caa0 708 spin_unlock(&uprobes_treelock);
7b2d81d4 709
2b144498
SD
710 return u;
711}
712
22bad382
RB
713static void
714ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
715{
716 pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
717 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
718 uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
719 (unsigned long long) cur_uprobe->ref_ctr_offset,
720 (unsigned long long) uprobe->ref_ctr_offset);
721}
722
1cc33161
RB
723static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
724 loff_t ref_ctr_offset)
2b144498
SD
725{
726 struct uprobe *uprobe, *cur_uprobe;
727
728 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
729 if (!uprobe)
730 return NULL;
731
61f94203 732 uprobe->inode = inode;
2b144498 733 uprobe->offset = offset;
1cc33161 734 uprobe->ref_ctr_offset = ref_ctr_offset;
e591c8d7 735 init_rwsem(&uprobe->register_rwsem);
2b144498 736 init_rwsem(&uprobe->consumer_rwsem);
2b144498
SD
737
738 /* add to uprobes_tree, sorted on inode:offset */
739 cur_uprobe = insert_uprobe(uprobe);
2b144498
SD
740 /* a uprobe exists for this inode:offset combination */
741 if (cur_uprobe) {
22bad382
RB
742 if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
743 ref_ctr_mismatch_warn(cur_uprobe, uprobe);
744 put_uprobe(cur_uprobe);
745 kfree(uprobe);
746 return ERR_PTR(-EINVAL);
747 }
2b144498
SD
748 kfree(uprobe);
749 uprobe = cur_uprobe;
7b2d81d4
IM
750 }
751
2b144498
SD
752 return uprobe;
753}
754
9a98e03c 755static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
756{
757 down_write(&uprobe->consumer_rwsem);
e3343e6a
SD
758 uc->next = uprobe->consumers;
759 uprobe->consumers = uc;
2b144498 760 up_write(&uprobe->consumer_rwsem);
2b144498
SD
761}
762
763/*
e3343e6a
SD
764 * For uprobe @uprobe, delete the consumer @uc.
765 * Return true if the @uc is deleted successfully
2b144498
SD
766 * or return false.
767 */
e3343e6a 768static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
769{
770 struct uprobe_consumer **con;
771 bool ret = false;
772
773 down_write(&uprobe->consumer_rwsem);
774 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
e3343e6a
SD
775 if (*con == uc) {
776 *con = uc->next;
2b144498
SD
777 ret = true;
778 break;
779 }
780 }
781 up_write(&uprobe->consumer_rwsem);
7b2d81d4 782
2b144498
SD
783 return ret;
784}
785
2ded0980
ON
786static int __copy_insn(struct address_space *mapping, struct file *filp,
787 void *insn, int nbytes, loff_t offset)
2b144498 788{
2b144498 789 struct page *page;
2b144498 790 /*
40814f68 791 * Ensure that the page that has the original instruction is populated
7e0a1265 792 * and in page-cache. If ->read_folio == NULL it must be shmem_mapping(),
40814f68 793 * see uprobe_register().
2b144498 794 */
7e0a1265 795 if (mapping->a_ops->read_folio)
09cbfeaf 796 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
40814f68 797 else
09cbfeaf 798 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
2b144498
SD
799 if (IS_ERR(page))
800 return PTR_ERR(page);
801
2edb7b55 802 copy_from_page(page, offset, insn, nbytes);
09cbfeaf 803 put_page(page);
7b2d81d4 804
2b144498
SD
805 return 0;
806}
807
d436615e 808static int copy_insn(struct uprobe *uprobe, struct file *filp)
2b144498 809{
2ded0980
ON
810 struct address_space *mapping = uprobe->inode->i_mapping;
811 loff_t offs = uprobe->offset;
803200e2
ON
812 void *insn = &uprobe->arch.insn;
813 int size = sizeof(uprobe->arch.insn);
2ded0980
ON
814 int len, err = -EIO;
815
816 /* Copy only available bytes, -EIO if nothing was read */
817 do {
818 if (offs >= i_size_read(uprobe->inode))
819 break;
820
821 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
822 err = __copy_insn(mapping, filp, insn, len, offs);
fc36f595 823 if (err)
2ded0980
ON
824 break;
825
826 insn += len;
827 offs += len;
828 size -= len;
829 } while (size);
830
831 return err;
2b144498
SD
832}
833
cb9a19fe
ON
834static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
835 struct mm_struct *mm, unsigned long vaddr)
836{
837 int ret = 0;
838
71434f2f 839 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
cb9a19fe
ON
840 return ret;
841
d4d3ccc6
ON
842 /* TODO: move this into _register, until then we abuse this sem. */
843 down_write(&uprobe->consumer_rwsem);
71434f2f 844 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
4710f05f
ON
845 goto out;
846
cb9a19fe
ON
847 ret = copy_insn(uprobe, file);
848 if (ret)
849 goto out;
850
851 ret = -ENOTSUPP;
803200e2 852 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
cb9a19fe
ON
853 goto out;
854
855 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
856 if (ret)
857 goto out;
858
09d3f015 859 smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
71434f2f 860 set_bit(UPROBE_COPY_INSN, &uprobe->flags);
cb9a19fe
ON
861
862 out:
d4d3ccc6 863 up_write(&uprobe->consumer_rwsem);
4710f05f 864
cb9a19fe
ON
865 return ret;
866}
867
8a7f2fa0
ON
868static inline bool consumer_filter(struct uprobe_consumer *uc,
869 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
806a98bd 870{
8a7f2fa0 871 return !uc->filter || uc->filter(uc, ctx, mm);
806a98bd
ON
872}
873
8a7f2fa0
ON
874static bool filter_chain(struct uprobe *uprobe,
875 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
63633cbf 876{
1ff6fee5
ON
877 struct uprobe_consumer *uc;
878 bool ret = false;
879
880 down_read(&uprobe->consumer_rwsem);
881 for (uc = uprobe->consumers; uc; uc = uc->next) {
8a7f2fa0 882 ret = consumer_filter(uc, ctx, mm);
1ff6fee5
ON
883 if (ret)
884 break;
885 }
886 up_read(&uprobe->consumer_rwsem);
887
888 return ret;
63633cbf
ON
889}
890
e3343e6a
SD
891static int
892install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
816c03fb 893 struct vm_area_struct *vma, unsigned long vaddr)
2b144498 894{
f8ac4ec9 895 bool first_uprobe;
2b144498
SD
896 int ret;
897
cb9a19fe
ON
898 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
899 if (ret)
900 return ret;
682968e0 901
f8ac4ec9
ON
902 /*
903 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
904 * the task can hit this breakpoint right after __replace_page().
905 */
906 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
907 if (first_uprobe)
908 set_bit(MMF_HAS_UPROBES, &mm->flags);
909
816c03fb 910 ret = set_swbp(&uprobe->arch, mm, vaddr);
9f68f672
ON
911 if (!ret)
912 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
913 else if (first_uprobe)
f8ac4ec9 914 clear_bit(MMF_HAS_UPROBES, &mm->flags);
2b144498
SD
915
916 return ret;
917}
918
076a365b 919static int
816c03fb 920remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 921{
9f68f672 922 set_bit(MMF_RECALC_UPROBES, &mm->flags);
076a365b 923 return set_orig_insn(&uprobe->arch, mm, vaddr);
2b144498
SD
924}
925
06b7bcd8
ON
926static inline bool uprobe_is_active(struct uprobe *uprobe)
927{
928 return !RB_EMPTY_NODE(&uprobe->rb_node);
929}
0326f5a9 930/*
778b032d
ON
931 * There could be threads that have already hit the breakpoint. They
932 * will recheck the current insn and restart if find_uprobe() fails.
933 * See find_active_uprobe().
0326f5a9 934 */
2b144498
SD
935static void delete_uprobe(struct uprobe *uprobe)
936{
06b7bcd8
ON
937 if (WARN_ON(!uprobe_is_active(uprobe)))
938 return;
939
6f47caa0 940 spin_lock(&uprobes_treelock);
2b144498 941 rb_erase(&uprobe->rb_node, &uprobes_tree);
6f47caa0 942 spin_unlock(&uprobes_treelock);
06b7bcd8 943 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
2b144498 944 put_uprobe(uprobe);
2b144498
SD
945}
946
26872090
ON
947struct map_info {
948 struct map_info *next;
949 struct mm_struct *mm;
816c03fb 950 unsigned long vaddr;
26872090
ON
951};
952
953static inline struct map_info *free_map_info(struct map_info *info)
2b144498 954{
26872090
ON
955 struct map_info *next = info->next;
956 kfree(info);
957 return next;
958}
959
960static struct map_info *
961build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
962{
963 unsigned long pgoff = offset >> PAGE_SHIFT;
2b144498 964 struct vm_area_struct *vma;
26872090
ON
965 struct map_info *curr = NULL;
966 struct map_info *prev = NULL;
967 struct map_info *info;
968 int more = 0;
2b144498 969
26872090 970 again:
4a23717a 971 i_mmap_lock_read(mapping);
6b2dbba8 972 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
2b144498
SD
973 if (!valid_vma(vma, is_register))
974 continue;
975
7a5bfb66
ON
976 if (!prev && !more) {
977 /*
c8c06efa 978 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
7a5bfb66
ON
979 * reclaim. This is optimistic, no harm done if it fails.
980 */
981 prev = kmalloc(sizeof(struct map_info),
982 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
983 if (prev)
984 prev->next = NULL;
985 }
26872090
ON
986 if (!prev) {
987 more++;
988 continue;
2b144498 989 }
2b144498 990
388f7934 991 if (!mmget_not_zero(vma->vm_mm))
26872090 992 continue;
7b2d81d4 993
26872090
ON
994 info = prev;
995 prev = prev->next;
996 info->next = curr;
997 curr = info;
2b144498 998
26872090 999 info->mm = vma->vm_mm;
57683f72 1000 info->vaddr = offset_to_vaddr(vma, offset);
26872090 1001 }
4a23717a 1002 i_mmap_unlock_read(mapping);
2b144498 1003
26872090
ON
1004 if (!more)
1005 goto out;
1006
1007 prev = curr;
1008 while (curr) {
1009 mmput(curr->mm);
1010 curr = curr->next;
1011 }
7b2d81d4 1012
26872090
ON
1013 do {
1014 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1015 if (!info) {
1016 curr = ERR_PTR(-ENOMEM);
1017 goto out;
1018 }
1019 info->next = prev;
1020 prev = info;
1021 } while (--more);
1022
1023 goto again;
1024 out:
1025 while (prev)
1026 prev = free_map_info(prev);
1027 return curr;
2b144498
SD
1028}
1029
bdf8647c
ON
1030static int
1031register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
2b144498 1032{
bdf8647c 1033 bool is_register = !!new;
26872090
ON
1034 struct map_info *info;
1035 int err = 0;
2b144498 1036
32cdba1e 1037 percpu_down_write(&dup_mmap_sem);
26872090
ON
1038 info = build_map_info(uprobe->inode->i_mapping,
1039 uprobe->offset, is_register);
32cdba1e
ON
1040 if (IS_ERR(info)) {
1041 err = PTR_ERR(info);
1042 goto out;
1043 }
7b2d81d4 1044
26872090
ON
1045 while (info) {
1046 struct mm_struct *mm = info->mm;
1047 struct vm_area_struct *vma;
7b2d81d4 1048
076a365b 1049 if (err && is_register)
26872090 1050 goto free;
7b2d81d4 1051
d8ed45c5 1052 mmap_write_lock(mm);
f4d6dfe5
ON
1053 vma = find_vma(mm, info->vaddr);
1054 if (!vma || !valid_vma(vma, is_register) ||
f281769e 1055 file_inode(vma->vm_file) != uprobe->inode)
26872090
ON
1056 goto unlock;
1057
f4d6dfe5
ON
1058 if (vma->vm_start > info->vaddr ||
1059 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
26872090 1060 goto unlock;
2b144498 1061
806a98bd
ON
1062 if (is_register) {
1063 /* consult only the "caller", new consumer. */
bdf8647c 1064 if (consumer_filter(new,
8a7f2fa0 1065 UPROBE_FILTER_REGISTER, mm))
806a98bd
ON
1066 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1067 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
8a7f2fa0
ON
1068 if (!filter_chain(uprobe,
1069 UPROBE_FILTER_UNREGISTER, mm))
806a98bd
ON
1070 err |= remove_breakpoint(uprobe, mm, info->vaddr);
1071 }
78f74116 1072
26872090 1073 unlock:
d8ed45c5 1074 mmap_write_unlock(mm);
26872090
ON
1075 free:
1076 mmput(mm);
1077 info = free_map_info(info);
2b144498 1078 }
32cdba1e
ON
1079 out:
1080 percpu_up_write(&dup_mmap_sem);
26872090 1081 return err;
2b144498
SD
1082}
1083
38e967ae
RB
1084static void
1085__uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498 1086{
04aab9b2
ON
1087 int err;
1088
06d07139 1089 if (WARN_ON(!consumer_del(uprobe, uc)))
04aab9b2 1090 return;
2b144498 1091
bdf8647c 1092 err = register_for_each_vma(uprobe, NULL);
bb929284
ON
1093 /* TODO : cant unregister? schedule a worker thread */
1094 if (!uprobe->consumers && !err)
1095 delete_uprobe(uprobe);
2b144498
SD
1096}
1097
1098/*
7140ad38 1099 * uprobe_unregister - unregister an already registered probe.
38e967ae
RB
1100 * @inode: the file in which the probe has to be removed.
1101 * @offset: offset from the start of the file.
1102 * @uc: identify which probe if multiple probes are colocated.
1103 */
1104void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1105{
1106 struct uprobe *uprobe;
1107
1108 uprobe = find_uprobe(inode, offset);
1109 if (WARN_ON(!uprobe))
1110 return;
1111
1112 down_write(&uprobe->register_rwsem);
1113 __uprobe_unregister(uprobe, uc);
1114 up_write(&uprobe->register_rwsem);
1115 put_uprobe(uprobe);
1116}
1117EXPORT_SYMBOL_GPL(uprobe_unregister);
1118
1119/*
1120 * __uprobe_register - register a probe
2b144498
SD
1121 * @inode: the file in which the probe has to be placed.
1122 * @offset: offset from the start of the file.
e3343e6a 1123 * @uc: information on howto handle the probe..
2b144498 1124 *
38e967ae 1125 * Apart from the access refcount, __uprobe_register() takes a creation
2b144498
SD
1126 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1127 * inserted into the rbtree (i.e first consumer for a @inode:@offset
7b2d81d4 1128 * tuple). Creation refcount stops uprobe_unregister from freeing the
2b144498 1129 * @uprobe even before the register operation is complete. Creation
e3343e6a 1130 * refcount is released when the last @uc for the @uprobe
38e967ae 1131 * unregisters. Caller of __uprobe_register() is required to keep @inode
61f94203 1132 * (and the containing mount) referenced.
2b144498
SD
1133 *
1134 * Return errno if it cannot successully install probes
1135 * else return 0 (success)
1136 */
38e967ae 1137static int __uprobe_register(struct inode *inode, loff_t offset,
1cc33161 1138 loff_t ref_ctr_offset, struct uprobe_consumer *uc)
2b144498
SD
1139{
1140 struct uprobe *uprobe;
7b2d81d4 1141 int ret;
2b144498 1142
ea024870
AA
1143 /* Uprobe must have at least one set consumer */
1144 if (!uc->handler && !uc->ret_handler)
1145 return -EINVAL;
1146
40814f68 1147 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
5efe7448 1148 if (!inode->i_mapping->a_ops->read_folio &&
5efe7448 1149 !shmem_mapping(inode->i_mapping))
41ccba02 1150 return -EIO;
f0744af7 1151 /* Racy, just to catch the obvious mistakes */
2b144498 1152 if (offset > i_size_read(inode))
7b2d81d4 1153 return -EINVAL;
2b144498 1154
013b2deb
ON
1155 /*
1156 * This ensures that copy_from_page(), copy_to_page() and
1157 * __update_ref_ctr() can't cross page boundary.
1158 */
1159 if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE))
1160 return -EINVAL;
1161 if (!IS_ALIGNED(ref_ctr_offset, sizeof(short)))
1162 return -EINVAL;
1163
66d06dff 1164 retry:
1cc33161 1165 uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
66d06dff
ON
1166 if (!uprobe)
1167 return -ENOMEM;
22bad382
RB
1168 if (IS_ERR(uprobe))
1169 return PTR_ERR(uprobe);
1170
66d06dff
ON
1171 /*
1172 * We can race with uprobe_unregister()->delete_uprobe().
1173 * Check uprobe_is_active() and retry if it is false.
1174 */
1175 down_write(&uprobe->register_rwsem);
1176 ret = -EAGAIN;
1177 if (likely(uprobe_is_active(uprobe))) {
38e967ae
RB
1178 consumer_add(uprobe, uc);
1179 ret = register_for_each_vma(uprobe, uc);
9a98e03c 1180 if (ret)
04aab9b2 1181 __uprobe_unregister(uprobe, uc);
2b144498 1182 }
66d06dff
ON
1183 up_write(&uprobe->register_rwsem);
1184 put_uprobe(uprobe);
2b144498 1185
66d06dff
ON
1186 if (unlikely(ret == -EAGAIN))
1187 goto retry;
2b144498
SD
1188 return ret;
1189}
38e967ae
RB
1190
1191int uprobe_register(struct inode *inode, loff_t offset,
1192 struct uprobe_consumer *uc)
1193{
1cc33161 1194 return __uprobe_register(inode, offset, 0, uc);
38e967ae 1195}
e8440c14 1196EXPORT_SYMBOL_GPL(uprobe_register);
2b144498 1197
1cc33161
RB
1198int uprobe_register_refctr(struct inode *inode, loff_t offset,
1199 loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1200{
1201 return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1202}
1203EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1204
bdf8647c 1205/*
788faab7 1206 * uprobe_apply - unregister an already registered probe.
bdf8647c
ON
1207 * @inode: the file in which the probe has to be removed.
1208 * @offset: offset from the start of the file.
1209 * @uc: consumer which wants to add more or remove some breakpoints
1210 * @add: add or remove the breakpoints
1211 */
1212int uprobe_apply(struct inode *inode, loff_t offset,
1213 struct uprobe_consumer *uc, bool add)
1214{
1215 struct uprobe *uprobe;
1216 struct uprobe_consumer *con;
1217 int ret = -ENOENT;
1218
1219 uprobe = find_uprobe(inode, offset);
06d07139 1220 if (WARN_ON(!uprobe))
bdf8647c
ON
1221 return ret;
1222
1223 down_write(&uprobe->register_rwsem);
1224 for (con = uprobe->consumers; con && con != uc ; con = con->next)
1225 ;
1226 if (con)
1227 ret = register_for_each_vma(uprobe, add ? uc : NULL);
1228 up_write(&uprobe->register_rwsem);
1229 put_uprobe(uprobe);
1230
1231 return ret;
1232}
1233
da1816b1
ON
1234static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1235{
fcb72a58 1236 VMA_ITERATOR(vmi, mm, 0);
da1816b1
ON
1237 struct vm_area_struct *vma;
1238 int err = 0;
1239
d8ed45c5 1240 mmap_read_lock(mm);
fcb72a58 1241 for_each_vma(vmi, vma) {
da1816b1
ON
1242 unsigned long vaddr;
1243 loff_t offset;
1244
1245 if (!valid_vma(vma, false) ||
f281769e 1246 file_inode(vma->vm_file) != uprobe->inode)
da1816b1
ON
1247 continue;
1248
1249 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1250 if (uprobe->offset < offset ||
1251 uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1252 continue;
1253
1254 vaddr = offset_to_vaddr(vma, uprobe->offset);
1255 err |= remove_breakpoint(uprobe, mm, vaddr);
1256 }
d8ed45c5 1257 mmap_read_unlock(mm);
da1816b1
ON
1258
1259 return err;
1260}
1261
891c3970
ON
1262static struct rb_node *
1263find_node_in_range(struct inode *inode, loff_t min, loff_t max)
2b144498 1264{
2b144498 1265 struct rb_node *n = uprobes_tree.rb_node;
2b144498
SD
1266
1267 while (n) {
891c3970 1268 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
2b144498 1269
891c3970 1270 if (inode < u->inode) {
2b144498 1271 n = n->rb_left;
891c3970 1272 } else if (inode > u->inode) {
2b144498 1273 n = n->rb_right;
891c3970
ON
1274 } else {
1275 if (max < u->offset)
1276 n = n->rb_left;
1277 else if (min > u->offset)
1278 n = n->rb_right;
1279 else
1280 break;
1281 }
2b144498 1282 }
7b2d81d4 1283
891c3970 1284 return n;
2b144498
SD
1285}
1286
1287/*
891c3970 1288 * For a given range in vma, build a list of probes that need to be inserted.
2b144498 1289 */
891c3970
ON
1290static void build_probe_list(struct inode *inode,
1291 struct vm_area_struct *vma,
1292 unsigned long start, unsigned long end,
1293 struct list_head *head)
2b144498 1294{
891c3970 1295 loff_t min, max;
891c3970
ON
1296 struct rb_node *n, *t;
1297 struct uprobe *u;
7b2d81d4 1298
891c3970 1299 INIT_LIST_HEAD(head);
cb113b47 1300 min = vaddr_to_offset(vma, start);
891c3970 1301 max = min + (end - start) - 1;
2b144498 1302
6f47caa0 1303 spin_lock(&uprobes_treelock);
891c3970
ON
1304 n = find_node_in_range(inode, min, max);
1305 if (n) {
1306 for (t = n; t; t = rb_prev(t)) {
1307 u = rb_entry(t, struct uprobe, rb_node);
1308 if (u->inode != inode || u->offset < min)
1309 break;
1310 list_add(&u->pending_list, head);
f231722a 1311 get_uprobe(u);
891c3970
ON
1312 }
1313 for (t = n; (t = rb_next(t)); ) {
1314 u = rb_entry(t, struct uprobe, rb_node);
1315 if (u->inode != inode || u->offset > max)
1316 break;
1317 list_add(&u->pending_list, head);
f231722a 1318 get_uprobe(u);
891c3970 1319 }
2b144498 1320 }
6f47caa0 1321 spin_unlock(&uprobes_treelock);
2b144498
SD
1322}
1323
1cc33161
RB
1324/* @vma contains reference counter, not the probed instruction. */
1325static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1326{
1327 struct list_head *pos, *q;
1328 struct delayed_uprobe *du;
1329 unsigned long vaddr;
1330 int ret = 0, err = 0;
1331
1332 mutex_lock(&delayed_uprobe_lock);
1333 list_for_each_safe(pos, q, &delayed_uprobe_list) {
1334 du = list_entry(pos, struct delayed_uprobe, list);
1335
1336 if (du->mm != vma->vm_mm ||
1337 !valid_ref_ctr_vma(du->uprobe, vma))
1338 continue;
1339
1340 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1341 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1342 if (ret) {
1343 update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1344 if (!err)
1345 err = ret;
1346 }
1347 delayed_uprobe_delete(du);
1348 }
1349 mutex_unlock(&delayed_uprobe_lock);
1350 return err;
1351}
1352
2b144498 1353/*
0503ea8f 1354 * Called from mmap_region/vma_merge with mm->mmap_lock acquired.
2b144498 1355 *
5e5be71a
ON
1356 * Currently we ignore all errors and always return 0, the callers
1357 * can't handle the failure anyway.
2b144498 1358 */
7b2d81d4 1359int uprobe_mmap(struct vm_area_struct *vma)
2b144498
SD
1360{
1361 struct list_head tmp_list;
665605a2 1362 struct uprobe *uprobe, *u;
2b144498 1363 struct inode *inode;
2b144498 1364
1cc33161
RB
1365 if (no_uprobe_events())
1366 return 0;
1367
1368 if (vma->vm_file &&
1369 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1370 test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1371 delayed_ref_ctr_inc(vma);
1372
1373 if (!valid_vma(vma, true))
7b2d81d4 1374 return 0;
2b144498 1375
f281769e 1376 inode = file_inode(vma->vm_file);
2b144498 1377 if (!inode)
7b2d81d4 1378 return 0;
2b144498 1379
2b144498 1380 mutex_lock(uprobes_mmap_hash(inode));
891c3970 1381 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
806a98bd
ON
1382 /*
1383 * We can race with uprobe_unregister(), this uprobe can be already
1384 * removed. But in this case filter_chain() must return false, all
1385 * consumers have gone away.
1386 */
665605a2 1387 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
806a98bd 1388 if (!fatal_signal_pending(current) &&
8a7f2fa0 1389 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
57683f72 1390 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
5e5be71a 1391 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
2b144498
SD
1392 }
1393 put_uprobe(uprobe);
1394 }
2b144498
SD
1395 mutex_unlock(uprobes_mmap_hash(inode));
1396
5e5be71a 1397 return 0;
2b144498
SD
1398}
1399
9f68f672
ON
1400static bool
1401vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1402{
1403 loff_t min, max;
1404 struct inode *inode;
1405 struct rb_node *n;
1406
f281769e 1407 inode = file_inode(vma->vm_file);
9f68f672
ON
1408
1409 min = vaddr_to_offset(vma, start);
1410 max = min + (end - start) - 1;
1411
1412 spin_lock(&uprobes_treelock);
1413 n = find_node_in_range(inode, min, max);
1414 spin_unlock(&uprobes_treelock);
1415
1416 return !!n;
1417}
1418
682968e0
SD
1419/*
1420 * Called in context of a munmap of a vma.
1421 */
cbc91f71 1422void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
682968e0 1423{
441f1eb7 1424 if (no_uprobe_events() || !valid_vma(vma, false))
682968e0
SD
1425 return;
1426
2fd611a9
ON
1427 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1428 return;
1429
9f68f672
ON
1430 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1431 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
f8ac4ec9
ON
1432 return;
1433
9f68f672
ON
1434 if (vma_has_uprobes(vma, start, end))
1435 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
682968e0
SD
1436}
1437
d4b3b638 1438/* Slot allocation for XOL */
6441ec8b 1439static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
d4b3b638 1440{
704bde3c
ON
1441 struct vm_area_struct *vma;
1442 int ret;
d4b3b638 1443
d8ed45c5 1444 if (mmap_write_lock_killable(mm))
598fdc1d
MH
1445 return -EINTR;
1446
704bde3c
ON
1447 if (mm->uprobes_state.xol_area) {
1448 ret = -EALREADY;
d4b3b638 1449 goto fail;
704bde3c 1450 }
d4b3b638 1451
af0d95af
ON
1452 if (!area->vaddr) {
1453 /* Try to map as high as possible, this is only a hint. */
1454 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1455 PAGE_SIZE, 0, 0);
ff68dac6 1456 if (IS_ERR_VALUE(area->vaddr)) {
af0d95af
ON
1457 ret = area->vaddr;
1458 goto fail;
1459 }
d4b3b638
SD
1460 }
1461
704bde3c
ON
1462 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1463 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1464 &area->xol_mapping);
1465 if (IS_ERR(vma)) {
1466 ret = PTR_ERR(vma);
d4b3b638 1467 goto fail;
704bde3c 1468 }
d4b3b638 1469
704bde3c 1470 ret = 0;
5c6338b4
PM
1471 /* pairs with get_xol_area() */
1472 smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
c8a82538 1473 fail:
d8ed45c5 1474 mmap_write_unlock(mm);
d4b3b638
SD
1475
1476 return ret;
1477}
1478
af0d95af 1479static struct xol_area *__create_xol_area(unsigned long vaddr)
d4b3b638 1480{
9b545df8 1481 struct mm_struct *mm = current->mm;
e78aebfd 1482 uprobe_opcode_t insn = UPROBE_SWBP_INSN;
6441ec8b 1483 struct xol_area *area;
9b545df8 1484
af0d95af 1485 area = kmalloc(sizeof(*area), GFP_KERNEL);
d4b3b638 1486 if (unlikely(!area))
c8a82538 1487 goto out;
d4b3b638 1488
6396bb22
KC
1489 area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1490 GFP_KERNEL);
d4b3b638 1491 if (!area->bitmap)
c8a82538
ON
1492 goto free_area;
1493
704bde3c 1494 area->xol_mapping.name = "[uprobes]";
869ae761 1495 area->xol_mapping.fault = NULL;
704bde3c 1496 area->xol_mapping.pages = area->pages;
f58bea2f
ON
1497 area->pages[0] = alloc_page(GFP_HIGHUSER);
1498 if (!area->pages[0])
c8a82538 1499 goto free_bitmap;
f58bea2f 1500 area->pages[1] = NULL;
d4b3b638 1501
af0d95af 1502 area->vaddr = vaddr;
6441ec8b
ON
1503 init_waitqueue_head(&area->wq);
1504 /* Reserve the 1st slot for get_trampoline_vaddr() */
e78aebfd 1505 set_bit(0, area->bitmap);
e78aebfd 1506 atomic_set(&area->slot_count, 1);
297e765e 1507 arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
e78aebfd 1508
6441ec8b 1509 if (!xol_add_vma(mm, area))
d4b3b638
SD
1510 return area;
1511
f58bea2f 1512 __free_page(area->pages[0]);
c8a82538 1513 free_bitmap:
d4b3b638 1514 kfree(area->bitmap);
c8a82538 1515 free_area:
d4b3b638 1516 kfree(area);
c8a82538 1517 out:
6441ec8b
ON
1518 return NULL;
1519}
1520
1521/*
1522 * get_xol_area - Allocate process's xol_area if necessary.
1523 * This area will be used for storing instructions for execution out of line.
1524 *
1525 * Returns the allocated area or NULL.
1526 */
1527static struct xol_area *get_xol_area(void)
1528{
1529 struct mm_struct *mm = current->mm;
1530 struct xol_area *area;
1531
1532 if (!mm->uprobes_state.xol_area)
af0d95af 1533 __create_xol_area(0);
6441ec8b 1534
5c6338b4
PM
1535 /* Pairs with xol_add_vma() smp_store_release() */
1536 area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
9b545df8 1537 return area;
d4b3b638
SD
1538}
1539
1540/*
1541 * uprobe_clear_state - Free the area allocated for slots.
1542 */
1543void uprobe_clear_state(struct mm_struct *mm)
1544{
1545 struct xol_area *area = mm->uprobes_state.xol_area;
1546
1cc33161
RB
1547 mutex_lock(&delayed_uprobe_lock);
1548 delayed_uprobe_remove(NULL, mm);
1549 mutex_unlock(&delayed_uprobe_lock);
1550
d4b3b638
SD
1551 if (!area)
1552 return;
1553
f58bea2f 1554 put_page(area->pages[0]);
d4b3b638
SD
1555 kfree(area->bitmap);
1556 kfree(area);
1557}
1558
32cdba1e
ON
1559void uprobe_start_dup_mmap(void)
1560{
1561 percpu_down_read(&dup_mmap_sem);
1562}
1563
1564void uprobe_end_dup_mmap(void)
1565{
1566 percpu_up_read(&dup_mmap_sem);
1567}
1568
f8ac4ec9
ON
1569void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1570{
9f68f672 1571 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
f8ac4ec9 1572 set_bit(MMF_HAS_UPROBES, &newmm->flags);
9f68f672
ON
1573 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1574 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1575 }
f8ac4ec9
ON
1576}
1577
d4b3b638
SD
1578/*
1579 * - search for a free slot.
1580 */
1581static unsigned long xol_take_insn_slot(struct xol_area *area)
1582{
1583 unsigned long slot_addr;
1584 int slot_nr;
1585
1586 do {
1587 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1588 if (slot_nr < UINSNS_PER_PAGE) {
1589 if (!test_and_set_bit(slot_nr, area->bitmap))
1590 break;
1591
1592 slot_nr = UINSNS_PER_PAGE;
1593 continue;
1594 }
1595 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1596 } while (slot_nr >= UINSNS_PER_PAGE);
1597
1598 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1599 atomic_inc(&area->slot_count);
1600
1601 return slot_addr;
1602}
1603
1604/*
a6cb3f6d 1605 * xol_get_insn_slot - allocate a slot for xol.
d4b3b638
SD
1606 * Returns the allocated slot address or 0.
1607 */
a6cb3f6d 1608static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
d4b3b638
SD
1609{
1610 struct xol_area *area;
a6cb3f6d 1611 unsigned long xol_vaddr;
d4b3b638 1612
9b545df8
ON
1613 area = get_xol_area();
1614 if (!area)
1615 return 0;
d4b3b638 1616
a6cb3f6d
ON
1617 xol_vaddr = xol_take_insn_slot(area);
1618 if (unlikely(!xol_vaddr))
d4b3b638
SD
1619 return 0;
1620
f58bea2f 1621 arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
72e6ae28 1622 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
d4b3b638 1623
a6cb3f6d 1624 return xol_vaddr;
d4b3b638
SD
1625}
1626
1627/*
1628 * xol_free_insn_slot - If slot was earlier allocated by
1629 * @xol_get_insn_slot(), make the slot available for
1630 * subsequent requests.
1631 */
1632static void xol_free_insn_slot(struct task_struct *tsk)
1633{
1634 struct xol_area *area;
1635 unsigned long vma_end;
1636 unsigned long slot_addr;
1637
1638 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1639 return;
1640
1641 slot_addr = tsk->utask->xol_vaddr;
af4355e9 1642 if (unlikely(!slot_addr))
d4b3b638
SD
1643 return;
1644
1645 area = tsk->mm->uprobes_state.xol_area;
1646 vma_end = area->vaddr + PAGE_SIZE;
1647 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1648 unsigned long offset;
1649 int slot_nr;
1650
1651 offset = slot_addr - area->vaddr;
1652 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1653 if (slot_nr >= UINSNS_PER_PAGE)
1654 return;
1655
1656 clear_bit(slot_nr, area->bitmap);
1657 atomic_dec(&area->slot_count);
2a742ced 1658 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
d4b3b638
SD
1659 if (waitqueue_active(&area->wq))
1660 wake_up(&area->wq);
1661
1662 tsk->utask->xol_vaddr = 0;
1663 }
1664}
1665
72e6ae28
VK
1666void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1667 void *src, unsigned long len)
1668{
1669 /* Initialize the slot */
1670 copy_to_page(page, vaddr, src, len);
1671
1672 /*
885f7f8e 1673 * We probably need flush_icache_user_page() but it needs vma.
72e6ae28
VK
1674 * This should work on most of architectures by default. If
1675 * architecture needs to do something different it can define
1676 * its own version of the function.
1677 */
1678 flush_dcache_page(page);
1679}
1680
0326f5a9
SD
1681/**
1682 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1683 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1684 * instruction.
1685 * Return the address of the breakpoint instruction.
1686 */
1687unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1688{
1689 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1690}
1691
b02ef20a
ON
1692unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1693{
1694 struct uprobe_task *utask = current->utask;
1695
1696 if (unlikely(utask && utask->active_uprobe))
1697 return utask->vaddr;
1698
1699 return instruction_pointer(regs);
1700}
1701
2bb5e840
ON
1702static struct return_instance *free_ret_instance(struct return_instance *ri)
1703{
1704 struct return_instance *next = ri->next;
1705 put_uprobe(ri->uprobe);
1706 kfree(ri);
1707 return next;
1708}
1709
0326f5a9
SD
1710/*
1711 * Called with no locks held.
788faab7 1712 * Called in context of an exiting or an exec-ing thread.
0326f5a9
SD
1713 */
1714void uprobe_free_utask(struct task_struct *t)
1715{
1716 struct uprobe_task *utask = t->utask;
2bb5e840 1717 struct return_instance *ri;
0326f5a9 1718
0326f5a9
SD
1719 if (!utask)
1720 return;
1721
1722 if (utask->active_uprobe)
1723 put_uprobe(utask->active_uprobe);
1724
0dfd0eb8 1725 ri = utask->return_instances;
2bb5e840
ON
1726 while (ri)
1727 ri = free_ret_instance(ri);
0dfd0eb8 1728
d4b3b638 1729 xol_free_insn_slot(t);
0326f5a9
SD
1730 kfree(utask);
1731 t->utask = NULL;
1732}
1733
0326f5a9 1734/*
c034f48e 1735 * Allocate a uprobe_task object for the task if necessary.
5a2df662 1736 * Called when the thread hits a breakpoint.
0326f5a9
SD
1737 *
1738 * Returns:
1739 * - pointer to new uprobe_task on success
1740 * - NULL otherwise
1741 */
5a2df662 1742static struct uprobe_task *get_utask(void)
0326f5a9 1743{
5a2df662
ON
1744 if (!current->utask)
1745 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1746 return current->utask;
0326f5a9
SD
1747}
1748
248d3a7b
ON
1749static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1750{
1751 struct uprobe_task *n_utask;
1752 struct return_instance **p, *o, *n;
1753
1754 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1755 if (!n_utask)
1756 return -ENOMEM;
1757 t->utask = n_utask;
1758
1759 p = &n_utask->return_instances;
1760 for (o = o_utask->return_instances; o; o = o->next) {
1761 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1762 if (!n)
1763 return -ENOMEM;
1764
1765 *n = *o;
f231722a 1766 get_uprobe(n->uprobe);
248d3a7b
ON
1767 n->next = NULL;
1768
1769 *p = n;
1770 p = &n->next;
1771 n_utask->depth++;
1772 }
1773
1774 return 0;
1775}
1776
1777static void uprobe_warn(struct task_struct *t, const char *msg)
1778{
1779 pr_warn("uprobe: %s:%d failed to %s\n",
1780 current->comm, current->pid, msg);
1781}
1782
aa59c53f
ON
1783static void dup_xol_work(struct callback_head *work)
1784{
aa59c53f
ON
1785 if (current->flags & PF_EXITING)
1786 return;
1787
598fdc1d
MH
1788 if (!__create_xol_area(current->utask->dup_xol_addr) &&
1789 !fatal_signal_pending(current))
aa59c53f
ON
1790 uprobe_warn(current, "dup xol area");
1791}
1792
b68e0749
ON
1793/*
1794 * Called in context of a new clone/fork from copy_process.
1795 */
3ab67966 1796void uprobe_copy_process(struct task_struct *t, unsigned long flags)
b68e0749 1797{
248d3a7b
ON
1798 struct uprobe_task *utask = current->utask;
1799 struct mm_struct *mm = current->mm;
aa59c53f 1800 struct xol_area *area;
248d3a7b 1801
b68e0749 1802 t->utask = NULL;
248d3a7b 1803
3ab67966
ON
1804 if (!utask || !utask->return_instances)
1805 return;
1806
1807 if (mm == t->mm && !(flags & CLONE_VFORK))
248d3a7b
ON
1808 return;
1809
1810 if (dup_utask(t, utask))
1811 return uprobe_warn(t, "dup ret instances");
aa59c53f
ON
1812
1813 /* The task can fork() after dup_xol_work() fails */
1814 area = mm->uprobes_state.xol_area;
1815 if (!area)
1816 return uprobe_warn(t, "dup xol area");
1817
3ab67966
ON
1818 if (mm == t->mm)
1819 return;
1820
32473431
ON
1821 t->utask->dup_xol_addr = area->vaddr;
1822 init_task_work(&t->utask->dup_xol_work, dup_xol_work);
91989c70 1823 task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME);
b68e0749
ON
1824}
1825
e78aebfd
AA
1826/*
1827 * Current area->vaddr notion assume the trampoline address is always
1828 * equal area->vaddr.
1829 *
1830 * Returns -1 in case the xol_area is not allocated.
1831 */
1832static unsigned long get_trampoline_vaddr(void)
1833{
1834 struct xol_area *area;
1835 unsigned long trampoline_vaddr = -1;
1836
5c6338b4
PM
1837 /* Pairs with xol_add_vma() smp_store_release() */
1838 area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
e78aebfd
AA
1839 if (area)
1840 trampoline_vaddr = area->vaddr;
1841
1842 return trampoline_vaddr;
1843}
1844
db087ef6
ON
1845static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1846 struct pt_regs *regs)
a5b7e1a8
ON
1847{
1848 struct return_instance *ri = utask->return_instances;
db087ef6 1849 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
86dcb702
ON
1850
1851 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
a5b7e1a8
ON
1852 ri = free_ret_instance(ri);
1853 utask->depth--;
1854 }
1855 utask->return_instances = ri;
1856}
1857
0dfd0eb8
AA
1858static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1859{
1860 struct return_instance *ri;
1861 struct uprobe_task *utask;
1862 unsigned long orig_ret_vaddr, trampoline_vaddr;
db087ef6 1863 bool chained;
0dfd0eb8
AA
1864
1865 if (!get_xol_area())
1866 return;
1867
1868 utask = get_utask();
1869 if (!utask)
1870 return;
1871
ded49c55
AA
1872 if (utask->depth >= MAX_URETPROBE_DEPTH) {
1873 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1874 " nestedness limit pid/tgid=%d/%d\n",
1875 current->pid, current->tgid);
1876 return;
1877 }
1878
6c58d0e4 1879 ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
0dfd0eb8 1880 if (!ri)
6c58d0e4 1881 return;
0dfd0eb8
AA
1882
1883 trampoline_vaddr = get_trampoline_vaddr();
1884 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1885 if (orig_ret_vaddr == -1)
1886 goto fail;
1887
a5b7e1a8 1888 /* drop the entries invalidated by longjmp() */
db087ef6
ON
1889 chained = (orig_ret_vaddr == trampoline_vaddr);
1890 cleanup_return_instances(utask, chained, regs);
a5b7e1a8 1891
0dfd0eb8
AA
1892 /*
1893 * We don't want to keep trampoline address in stack, rather keep the
1894 * original return address of first caller thru all the consequent
1895 * instances. This also makes breakpoint unwrapping easier.
1896 */
db087ef6 1897 if (chained) {
0dfd0eb8
AA
1898 if (!utask->return_instances) {
1899 /*
1900 * This situation is not possible. Likely we have an
1901 * attack from user-space.
1902 */
6c58d0e4 1903 uprobe_warn(current, "handle tail call");
0dfd0eb8
AA
1904 goto fail;
1905 }
0dfd0eb8
AA
1906 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1907 }
1908
f231722a 1909 ri->uprobe = get_uprobe(uprobe);
0dfd0eb8 1910 ri->func = instruction_pointer(regs);
7b868e48 1911 ri->stack = user_stack_pointer(regs);
0dfd0eb8
AA
1912 ri->orig_ret_vaddr = orig_ret_vaddr;
1913 ri->chained = chained;
1914
ded49c55 1915 utask->depth++;
0dfd0eb8
AA
1916 ri->next = utask->return_instances;
1917 utask->return_instances = ri;
1918
1919 return;
0dfd0eb8
AA
1920 fail:
1921 kfree(ri);
1922}
1923
0326f5a9
SD
1924/* Prepare to single-step probed instruction out of line. */
1925static int
a6cb3f6d 1926pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
0326f5a9 1927{
a6cb3f6d
ON
1928 struct uprobe_task *utask;
1929 unsigned long xol_vaddr;
aba51024 1930 int err;
a6cb3f6d 1931
608e7427
ON
1932 utask = get_utask();
1933 if (!utask)
1934 return -ENOMEM;
a6cb3f6d
ON
1935
1936 xol_vaddr = xol_get_insn_slot(uprobe);
1937 if (!xol_vaddr)
1938 return -ENOMEM;
1939
1940 utask->xol_vaddr = xol_vaddr;
1941 utask->vaddr = bp_vaddr;
d4b3b638 1942
aba51024
ON
1943 err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1944 if (unlikely(err)) {
1945 xol_free_insn_slot(current);
1946 return err;
1947 }
1948
608e7427
ON
1949 utask->active_uprobe = uprobe;
1950 utask->state = UTASK_SSTEP;
aba51024 1951 return 0;
0326f5a9
SD
1952}
1953
1954/*
1955 * If we are singlestepping, then ensure this thread is not connected to
1956 * non-fatal signals until completion of singlestep. When xol insn itself
1957 * triggers the signal, restart the original insn even if the task is
1958 * already SIGKILL'ed (since coredump should report the correct ip). This
1959 * is even more important if the task has a handler for SIGSEGV/etc, The
1960 * _same_ instruction should be repeated again after return from the signal
1961 * handler, and SSTEP can never finish in this case.
1962 */
1963bool uprobe_deny_signal(void)
1964{
1965 struct task_struct *t = current;
1966 struct uprobe_task *utask = t->utask;
1967
1968 if (likely(!utask || !utask->active_uprobe))
1969 return false;
1970
1971 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1972
5c251e9d 1973 if (task_sigpending(t)) {
0326f5a9
SD
1974 spin_lock_irq(&t->sighand->siglock);
1975 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1976 spin_unlock_irq(&t->sighand->siglock);
1977
1978 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1979 utask->state = UTASK_SSTEP_TRAPPED;
1980 set_tsk_thread_flag(t, TIF_UPROBE);
0326f5a9
SD
1981 }
1982 }
1983
1984 return true;
1985}
1986
499a4f3e
ON
1987static void mmf_recalc_uprobes(struct mm_struct *mm)
1988{
fcb72a58 1989 VMA_ITERATOR(vmi, mm, 0);
499a4f3e
ON
1990 struct vm_area_struct *vma;
1991
fcb72a58 1992 for_each_vma(vmi, vma) {
499a4f3e
ON
1993 if (!valid_vma(vma, false))
1994 continue;
1995 /*
1996 * This is not strictly accurate, we can race with
1997 * uprobe_unregister() and see the already removed
1998 * uprobe if delete_uprobe() was not yet called.
63633cbf 1999 * Or this uprobe can be filtered out.
499a4f3e
ON
2000 */
2001 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
2002 return;
2003 }
2004
2005 clear_bit(MMF_HAS_UPROBES, &mm->flags);
2006}
2007
0908ad6e 2008static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
ec75fba9
ON
2009{
2010 struct page *page;
2011 uprobe_opcode_t opcode;
2012 int result;
2013
013b2deb
ON
2014 if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE)))
2015 return -EINVAL;
2016
ec75fba9 2017 pagefault_disable();
bd28b145 2018 result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
ec75fba9
ON
2019 pagefault_enable();
2020
2021 if (likely(result == 0))
2022 goto out;
2023
1e987790
DH
2024 /*
2025 * The NULL 'tsk' here ensures that any faults that occur here
2026 * will not be accounted to the task. 'mm' *is* current->mm,
2027 * but we treat this as a 'remote' access since it is
2028 * essentially a kernel access to the memory.
2029 */
64019a2e 2030 result = get_user_pages_remote(mm, vaddr, 1, FOLL_FORCE, &page,
5b56d49f 2031 NULL, NULL);
ec75fba9
ON
2032 if (result < 0)
2033 return result;
2034
ab0d805c 2035 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
ec75fba9
ON
2036 put_page(page);
2037 out:
0908ad6e
AM
2038 /* This needs to return true for any variant of the trap insn */
2039 return is_trap_insn(&opcode);
ec75fba9
ON
2040}
2041
d790d346 2042static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
0326f5a9 2043{
3a9ea052
ON
2044 struct mm_struct *mm = current->mm;
2045 struct uprobe *uprobe = NULL;
0326f5a9 2046 struct vm_area_struct *vma;
0326f5a9 2047
d8ed45c5 2048 mmap_read_lock(mm);
9016dded
LH
2049 vma = vma_lookup(mm, bp_vaddr);
2050 if (vma) {
3a9ea052 2051 if (valid_vma(vma, false)) {
f281769e 2052 struct inode *inode = file_inode(vma->vm_file);
cb113b47 2053 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
0326f5a9 2054
3a9ea052
ON
2055 uprobe = find_uprobe(inode, offset);
2056 }
d790d346
ON
2057
2058 if (!uprobe)
0908ad6e 2059 *is_swbp = is_trap_at_addr(mm, bp_vaddr);
d790d346
ON
2060 } else {
2061 *is_swbp = -EFAULT;
0326f5a9 2062 }
499a4f3e
ON
2063
2064 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2065 mmf_recalc_uprobes(mm);
d8ed45c5 2066 mmap_read_unlock(mm);
0326f5a9 2067
3a9ea052
ON
2068 return uprobe;
2069}
2070
da1816b1
ON
2071static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2072{
2073 struct uprobe_consumer *uc;
2074 int remove = UPROBE_HANDLER_REMOVE;
0dfd0eb8 2075 bool need_prep = false; /* prepare return uprobe, when needed */
da1816b1
ON
2076
2077 down_read(&uprobe->register_rwsem);
2078 for (uc = uprobe->consumers; uc; uc = uc->next) {
ea024870 2079 int rc = 0;
da1816b1 2080
ea024870
AA
2081 if (uc->handler) {
2082 rc = uc->handler(uc, regs);
2083 WARN(rc & ~UPROBE_HANDLER_MASK,
d75f773c 2084 "bad rc=0x%x from %ps()\n", rc, uc->handler);
ea024870 2085 }
0dfd0eb8
AA
2086
2087 if (uc->ret_handler)
2088 need_prep = true;
2089
da1816b1
ON
2090 remove &= rc;
2091 }
2092
0dfd0eb8
AA
2093 if (need_prep && !remove)
2094 prepare_uretprobe(uprobe, regs); /* put bp at return */
2095
da1816b1
ON
2096 if (remove && uprobe->consumers) {
2097 WARN_ON(!uprobe_is_active(uprobe));
2098 unapply_uprobe(uprobe, current->mm);
2099 }
2100 up_read(&uprobe->register_rwsem);
2101}
2102
fec8898d
AA
2103static void
2104handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2105{
2106 struct uprobe *uprobe = ri->uprobe;
2107 struct uprobe_consumer *uc;
2108
2109 down_read(&uprobe->register_rwsem);
2110 for (uc = uprobe->consumers; uc; uc = uc->next) {
2111 if (uc->ret_handler)
2112 uc->ret_handler(uc, ri->func, regs);
2113 }
2114 up_read(&uprobe->register_rwsem);
2115}
2116
a83cfeb9
ON
2117static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2118{
2119 bool chained;
2120
2121 do {
2122 chained = ri->chained;
2123 ri = ri->next; /* can't be NULL if chained */
2124 } while (chained);
2125
2126 return ri;
2127}
2128
0b5256c7 2129static void handle_trampoline(struct pt_regs *regs)
fec8898d
AA
2130{
2131 struct uprobe_task *utask;
a83cfeb9 2132 struct return_instance *ri, *next;
5eeb50de 2133 bool valid;
fec8898d
AA
2134
2135 utask = current->utask;
2136 if (!utask)
0b5256c7 2137 goto sigill;
fec8898d
AA
2138
2139 ri = utask->return_instances;
2140 if (!ri)
0b5256c7 2141 goto sigill;
fec8898d 2142
a83cfeb9 2143 do {
5eeb50de
ON
2144 /*
2145 * We should throw out the frames invalidated by longjmp().
2146 * If this chain is valid, then the next one should be alive
2147 * or NULL; the latter case means that nobody but ri->func
2148 * could hit this trampoline on return. TODO: sigaltstack().
2149 */
2150 next = find_next_ret_chain(ri);
86dcb702 2151 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
5eeb50de
ON
2152
2153 instruction_pointer_set(regs, ri->orig_ret_vaddr);
2154 do {
2155 if (valid)
2156 handle_uretprobe_chain(ri, regs);
2157 ri = free_ret_instance(ri);
2158 utask->depth--;
2159 } while (ri != next);
2160 } while (!valid);
fec8898d
AA
2161
2162 utask->return_instances = ri;
0b5256c7
ON
2163 return;
2164
2165 sigill:
2166 uprobe_warn(current, "handle uretprobe, sending SIGILL.");
3cf5d076 2167 force_sig(SIGILL);
fec8898d 2168
fec8898d
AA
2169}
2170
6fe50a28
DL
2171bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2172{
2173 return false;
2174}
2175
86dcb702
ON
2176bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2177 struct pt_regs *regs)
97da8976
ON
2178{
2179 return true;
2180}
2181
3a9ea052
ON
2182/*
2183 * Run handler and ask thread to singlestep.
2184 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2185 */
2186static void handle_swbp(struct pt_regs *regs)
2187{
3a9ea052
ON
2188 struct uprobe *uprobe;
2189 unsigned long bp_vaddr;
3f649ab7 2190 int is_swbp;
3a9ea052
ON
2191
2192 bp_vaddr = uprobe_get_swbp_addr(regs);
0b5256c7
ON
2193 if (bp_vaddr == get_trampoline_vaddr())
2194 return handle_trampoline(regs);
fec8898d
AA
2195
2196 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
0326f5a9 2197 if (!uprobe) {
56bb4cf6
ON
2198 if (is_swbp > 0) {
2199 /* No matching uprobe; signal SIGTRAP. */
fe5ed7ab 2200 force_sig(SIGTRAP);
56bb4cf6
ON
2201 } else {
2202 /*
2203 * Either we raced with uprobe_unregister() or we can't
2204 * access this memory. The latter is only possible if
2205 * another thread plays with our ->mm. In both cases
2206 * we can simply restart. If this vma was unmapped we
2207 * can pretend this insn was not executed yet and get
2208 * the (correct) SIGSEGV after restart.
2209 */
2210 instruction_pointer_set(regs, bp_vaddr);
2211 }
0326f5a9
SD
2212 return;
2213 }
74e59dfc
ON
2214
2215 /* change it in advance for ->handler() and restart */
2216 instruction_pointer_set(regs, bp_vaddr);
2217
142b18dd
ON
2218 /*
2219 * TODO: move copy_insn/etc into _register and remove this hack.
2220 * After we hit the bp, _unregister + _register can install the
2221 * new and not-yet-analyzed uprobe at the same address, restart.
2222 */
71434f2f 2223 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
74e59dfc 2224 goto out;
0326f5a9 2225
09d3f015
AP
2226 /*
2227 * Pairs with the smp_wmb() in prepare_uprobe().
2228 *
2229 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2230 * we must also see the stores to &uprobe->arch performed by the
2231 * prepare_uprobe() call.
2232 */
2233 smp_rmb();
2234
72fd293a
ON
2235 /* Tracing handlers use ->utask to communicate with fetch methods */
2236 if (!get_utask())
2237 goto out;
2238
6fe50a28
DL
2239 if (arch_uprobe_ignore(&uprobe->arch, regs))
2240 goto out;
2241
0326f5a9 2242 handler_chain(uprobe, regs);
6fe50a28 2243
8a6b1732 2244 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
0578a970 2245 goto out;
0326f5a9 2246
608e7427 2247 if (!pre_ssout(uprobe, regs, bp_vaddr))
0326f5a9 2248 return;
0326f5a9 2249
8a6b1732 2250 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
0578a970 2251out:
8bd87445 2252 put_uprobe(uprobe);
0326f5a9
SD
2253}
2254
2255/*
2256 * Perform required fix-ups and disable singlestep.
2257 * Allow pending signals to take effect.
2258 */
2259static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2260{
2261 struct uprobe *uprobe;
014940ba 2262 int err = 0;
0326f5a9
SD
2263
2264 uprobe = utask->active_uprobe;
2265 if (utask->state == UTASK_SSTEP_ACK)
014940ba 2266 err = arch_uprobe_post_xol(&uprobe->arch, regs);
0326f5a9
SD
2267 else if (utask->state == UTASK_SSTEP_TRAPPED)
2268 arch_uprobe_abort_xol(&uprobe->arch, regs);
2269 else
2270 WARN_ON_ONCE(1);
2271
2272 put_uprobe(uprobe);
2273 utask->active_uprobe = NULL;
2274 utask->state = UTASK_RUNNING;
d4b3b638 2275 xol_free_insn_slot(current);
0326f5a9
SD
2276
2277 spin_lock_irq(&current->sighand->siglock);
2278 recalc_sigpending(); /* see uprobe_deny_signal() */
2279 spin_unlock_irq(&current->sighand->siglock);
014940ba
ON
2280
2281 if (unlikely(err)) {
2282 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
3cf5d076 2283 force_sig(SIGILL);
014940ba 2284 }
0326f5a9
SD
2285}
2286
2287/*
1b08e907
ON
2288 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2289 * allows the thread to return from interrupt. After that handle_swbp()
2290 * sets utask->active_uprobe.
0326f5a9 2291 *
1b08e907
ON
2292 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2293 * and allows the thread to return from interrupt.
0326f5a9
SD
2294 *
2295 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2296 * uprobe_notify_resume().
2297 */
2298void uprobe_notify_resume(struct pt_regs *regs)
2299{
2300 struct uprobe_task *utask;
2301
db023ea5
ON
2302 clear_thread_flag(TIF_UPROBE);
2303
0326f5a9 2304 utask = current->utask;
1b08e907 2305 if (utask && utask->active_uprobe)
0326f5a9 2306 handle_singlestep(utask, regs);
1b08e907
ON
2307 else
2308 handle_swbp(regs);
0326f5a9
SD
2309}
2310
2311/*
2312 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2313 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2314 */
2315int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2316{
0dfd0eb8
AA
2317 if (!current->mm)
2318 return 0;
2319
2320 if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2321 (!current->utask || !current->utask->return_instances))
0326f5a9
SD
2322 return 0;
2323
0326f5a9 2324 set_thread_flag(TIF_UPROBE);
0326f5a9
SD
2325 return 1;
2326}
2327
2328/*
2329 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2330 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2331 */
2332int uprobe_post_sstep_notifier(struct pt_regs *regs)
2333{
2334 struct uprobe_task *utask = current->utask;
2335
2336 if (!current->mm || !utask || !utask->active_uprobe)
2337 /* task is currently not uprobed */
2338 return 0;
2339
2340 utask->state = UTASK_SSTEP_ACK;
2341 set_thread_flag(TIF_UPROBE);
2342 return 1;
2343}
2344
2345static struct notifier_block uprobe_exception_nb = {
2346 .notifier_call = arch_uprobe_exception_notify,
2347 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
2348};
2349
aad42dd4 2350void __init uprobes_init(void)
2b144498
SD
2351{
2352 int i;
2353
66d06dff 2354 for (i = 0; i < UPROBES_HASH_SZ; i++)
2b144498 2355 mutex_init(&uprobes_mmap_mutex[i]);
0326f5a9 2356
aad42dd4 2357 BUG_ON(register_die_notifier(&uprobe_exception_nb));
2b144498 2358}