perf/core: Reduce PMU access to adjust sample freq
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
8e86e015 1// SPDX-License-Identifier: GPL-2.0
0793a61d 2/*
57c0c15b 3 * Performance events core code:
0793a61d 4 *
98144511 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
0793a61d
TG
9 */
10
11#include <linux/fs.h>
b9cacc7b 12#include <linux/mm.h>
0793a61d
TG
13#include <linux/cpu.h>
14#include <linux/smp.h>
2e80a82a 15#include <linux/idr.h>
04289bb9 16#include <linux/file.h>
0793a61d 17#include <linux/poll.h>
5a0e3ad6 18#include <linux/slab.h>
76e1d904 19#include <linux/hash.h>
12351ef8 20#include <linux/tick.h>
0793a61d 21#include <linux/sysfs.h>
22a4f650 22#include <linux/dcache.h>
0793a61d 23#include <linux/percpu.h>
22a4f650 24#include <linux/ptrace.h>
c277443c 25#include <linux/reboot.h>
b9cacc7b 26#include <linux/vmstat.h>
abe43400 27#include <linux/device.h>
6e5fdeed 28#include <linux/export.h>
906010b2 29#include <linux/vmalloc.h>
b9cacc7b 30#include <linux/hardirq.h>
03911132 31#include <linux/hugetlb.h>
b9cacc7b 32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
375637bc
AS
47#include <linux/namei.h>
48#include <linux/parser.h>
e6017571 49#include <linux/sched/clock.h>
6e84f315 50#include <linux/sched/mm.h>
e4222673
HB
51#include <linux/proc_ns.h>
52#include <linux/mount.h>
6eef8a71 53#include <linux/min_heap.h>
8d97e718 54#include <linux/highmem.h>
8af26be0 55#include <linux/pgtable.h>
88a16a13 56#include <linux/buildid.h>
ca6c2132 57#include <linux/task_work.h>
0793a61d 58
76369139
FW
59#include "internal.h"
60
4e193bd4
TB
61#include <asm/irq_regs.h>
62
272325c4
PZ
63typedef int (*remote_function_f)(void *);
64
fe4b04fa 65struct remote_function_call {
e7e7ee2e 66 struct task_struct *p;
272325c4 67 remote_function_f func;
e7e7ee2e
IM
68 void *info;
69 int ret;
fe4b04fa
PZ
70};
71
72static void remote_function(void *data)
73{
74 struct remote_function_call *tfc = data;
75 struct task_struct *p = tfc->p;
76
77 if (p) {
0da4cf3e
PZ
78 /* -EAGAIN */
79 if (task_cpu(p) != smp_processor_id())
80 return;
81
82 /*
83 * Now that we're on right CPU with IRQs disabled, we can test
84 * if we hit the right task without races.
85 */
86
87 tfc->ret = -ESRCH; /* No such (running) process */
88 if (p != current)
fe4b04fa
PZ
89 return;
90 }
91
92 tfc->ret = tfc->func(tfc->info);
93}
94
95/**
96 * task_function_call - call a function on the cpu on which a task runs
97 * @p: the task to evaluate
98 * @func: the function to be called
99 * @info: the function call argument
100 *
101 * Calls the function @func when the task is currently running. This might
2ed6edd3
BR
102 * be on the current CPU, which just calls the function directly. This will
103 * retry due to any failures in smp_call_function_single(), such as if the
104 * task_cpu() goes offline concurrently.
fe4b04fa 105 *
6d6b8b9f 106 * returns @func return value or -ESRCH or -ENXIO when the process isn't running
fe4b04fa
PZ
107 */
108static int
272325c4 109task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
110{
111 struct remote_function_call data = {
e7e7ee2e
IM
112 .p = p,
113 .func = func,
114 .info = info,
0da4cf3e 115 .ret = -EAGAIN,
fe4b04fa 116 };
0da4cf3e 117 int ret;
fe4b04fa 118
2ed6edd3
BR
119 for (;;) {
120 ret = smp_call_function_single(task_cpu(p), remote_function,
121 &data, 1);
6d6b8b9f
KJ
122 if (!ret)
123 ret = data.ret;
2ed6edd3
BR
124
125 if (ret != -EAGAIN)
126 break;
127
128 cond_resched();
129 }
fe4b04fa 130
0da4cf3e 131 return ret;
fe4b04fa
PZ
132}
133
134/**
135 * cpu_function_call - call a function on the cpu
a1ddf524 136 * @cpu: target cpu to queue this function
fe4b04fa
PZ
137 * @func: the function to be called
138 * @info: the function call argument
139 *
140 * Calls the function @func on the remote cpu.
141 *
142 * returns: @func return value or -ENXIO when the cpu is offline
143 */
272325c4 144static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
145{
146 struct remote_function_call data = {
e7e7ee2e
IM
147 .p = NULL,
148 .func = func,
149 .info = info,
150 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
151 };
152
153 smp_call_function_single(cpu, remote_function, &data, 1);
154
155 return data.ret;
156}
157
fae3fde6
PZ
158static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159 struct perf_event_context *ctx)
0017960f 160{
fae3fde6
PZ
161 raw_spin_lock(&cpuctx->ctx.lock);
162 if (ctx)
163 raw_spin_lock(&ctx->lock);
164}
165
166static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167 struct perf_event_context *ctx)
168{
169 if (ctx)
170 raw_spin_unlock(&ctx->lock);
171 raw_spin_unlock(&cpuctx->ctx.lock);
172}
173
63b6da39
PZ
174#define TASK_TOMBSTONE ((void *)-1L)
175
176static bool is_kernel_event(struct perf_event *event)
177{
f47c02c0 178 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
179}
180
bd275681
PZ
181static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
182
183struct perf_event_context *perf_cpu_task_ctx(void)
184{
185 lockdep_assert_irqs_disabled();
186 return this_cpu_ptr(&perf_cpu_context)->task_ctx;
187}
188
39a43640
PZ
189/*
190 * On task ctx scheduling...
191 *
192 * When !ctx->nr_events a task context will not be scheduled. This means
193 * we can disable the scheduler hooks (for performance) without leaving
194 * pending task ctx state.
195 *
196 * This however results in two special cases:
197 *
198 * - removing the last event from a task ctx; this is relatively straight
199 * forward and is done in __perf_remove_from_context.
200 *
201 * - adding the first event to a task ctx; this is tricky because we cannot
202 * rely on ctx->is_active and therefore cannot use event_function_call().
203 * See perf_install_in_context().
204 *
39a43640
PZ
205 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
206 */
207
fae3fde6
PZ
208typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
209 struct perf_event_context *, void *);
210
211struct event_function_struct {
212 struct perf_event *event;
213 event_f func;
214 void *data;
215};
216
217static int event_function(void *info)
218{
219 struct event_function_struct *efs = info;
220 struct perf_event *event = efs->event;
0017960f 221 struct perf_event_context *ctx = event->ctx;
bd275681 222 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
fae3fde6 223 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 224 int ret = 0;
fae3fde6 225
16444645 226 lockdep_assert_irqs_disabled();
fae3fde6 227
63b6da39 228 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
229 /*
230 * Since we do the IPI call without holding ctx->lock things can have
231 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
232 */
233 if (ctx->task) {
63b6da39 234 if (ctx->task != current) {
0da4cf3e 235 ret = -ESRCH;
63b6da39
PZ
236 goto unlock;
237 }
fae3fde6 238
fae3fde6
PZ
239 /*
240 * We only use event_function_call() on established contexts,
241 * and event_function() is only ever called when active (or
242 * rather, we'll have bailed in task_function_call() or the
243 * above ctx->task != current test), therefore we must have
244 * ctx->is_active here.
245 */
246 WARN_ON_ONCE(!ctx->is_active);
247 /*
248 * And since we have ctx->is_active, cpuctx->task_ctx must
249 * match.
250 */
63b6da39
PZ
251 WARN_ON_ONCE(task_ctx != ctx);
252 } else {
253 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 254 }
63b6da39 255
fae3fde6 256 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 257unlock:
fae3fde6
PZ
258 perf_ctx_unlock(cpuctx, task_ctx);
259
63b6da39 260 return ret;
fae3fde6
PZ
261}
262
fae3fde6 263static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
264{
265 struct perf_event_context *ctx = event->ctx;
63b6da39 266 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
267 struct event_function_struct efs = {
268 .event = event,
269 .func = func,
270 .data = data,
271 };
0017960f 272
c97f4736
PZ
273 if (!event->parent) {
274 /*
275 * If this is a !child event, we must hold ctx::mutex to
c034f48e 276 * stabilize the event->ctx relation. See
c97f4736
PZ
277 * perf_event_ctx_lock().
278 */
279 lockdep_assert_held(&ctx->mutex);
280 }
0017960f
PZ
281
282 if (!task) {
fae3fde6 283 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
284 return;
285 }
286
63b6da39
PZ
287 if (task == TASK_TOMBSTONE)
288 return;
289
a096309b 290again:
fae3fde6 291 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
292 return;
293
294 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
295 /*
296 * Reload the task pointer, it might have been changed by
297 * a concurrent perf_event_context_sched_out().
298 */
299 task = ctx->task;
a096309b
PZ
300 if (task == TASK_TOMBSTONE) {
301 raw_spin_unlock_irq(&ctx->lock);
302 return;
0017960f 303 }
a096309b
PZ
304 if (ctx->is_active) {
305 raw_spin_unlock_irq(&ctx->lock);
306 goto again;
307 }
308 func(event, NULL, ctx, data);
0017960f
PZ
309 raw_spin_unlock_irq(&ctx->lock);
310}
311
cca20946
PZ
312/*
313 * Similar to event_function_call() + event_function(), but hard assumes IRQs
314 * are already disabled and we're on the right CPU.
315 */
316static void event_function_local(struct perf_event *event, event_f func, void *data)
317{
318 struct perf_event_context *ctx = event->ctx;
bd275681 319 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
cca20946
PZ
320 struct task_struct *task = READ_ONCE(ctx->task);
321 struct perf_event_context *task_ctx = NULL;
322
16444645 323 lockdep_assert_irqs_disabled();
cca20946
PZ
324
325 if (task) {
326 if (task == TASK_TOMBSTONE)
327 return;
328
329 task_ctx = ctx;
330 }
331
332 perf_ctx_lock(cpuctx, task_ctx);
333
334 task = ctx->task;
335 if (task == TASK_TOMBSTONE)
336 goto unlock;
337
338 if (task) {
339 /*
340 * We must be either inactive or active and the right task,
341 * otherwise we're screwed, since we cannot IPI to somewhere
342 * else.
343 */
344 if (ctx->is_active) {
345 if (WARN_ON_ONCE(task != current))
346 goto unlock;
347
348 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
349 goto unlock;
350 }
351 } else {
352 WARN_ON_ONCE(&cpuctx->ctx != ctx);
353 }
354
355 func(event, cpuctx, ctx, data);
356unlock:
357 perf_ctx_unlock(cpuctx, task_ctx);
358}
359
e5d1367f
SE
360#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
361 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
362 PERF_FLAG_PID_CGROUP |\
363 PERF_FLAG_FD_CLOEXEC)
e5d1367f 364
bce38cd5
SE
365/*
366 * branch priv levels that need permission checks
367 */
368#define PERF_SAMPLE_BRANCH_PERM_PLM \
369 (PERF_SAMPLE_BRANCH_KERNEL |\
370 PERF_SAMPLE_BRANCH_HV)
371
0b3fcf17
SE
372enum event_type_t {
373 EVENT_FLEXIBLE = 0x1,
374 EVENT_PINNED = 0x2,
3cbaa590 375 EVENT_TIME = 0x4,
487f05e1
AS
376 /* see ctx_resched() for details */
377 EVENT_CPU = 0x8,
f06cc667 378 EVENT_CGROUP = 0x10,
0b3fcf17
SE
379 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
380};
381
e5d1367f
SE
382/*
383 * perf_sched_events : >0 events exist
e5d1367f 384 */
9107c89e
PZ
385
386static void perf_sched_delayed(struct work_struct *work);
387DEFINE_STATIC_KEY_FALSE(perf_sched_events);
388static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
389static DEFINE_MUTEX(perf_sched_mutex);
390static atomic_t perf_sched_count;
391
f2fb6bef 392static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 393
cdd6c482
IM
394static atomic_t nr_mmap_events __read_mostly;
395static atomic_t nr_comm_events __read_mostly;
e4222673 396static atomic_t nr_namespaces_events __read_mostly;
cdd6c482 397static atomic_t nr_task_events __read_mostly;
948b26b6 398static atomic_t nr_freq_events __read_mostly;
45ac1403 399static atomic_t nr_switch_events __read_mostly;
76193a94 400static atomic_t nr_ksymbol_events __read_mostly;
6ee52e2a 401static atomic_t nr_bpf_events __read_mostly;
96aaab68 402static atomic_t nr_cgroup_events __read_mostly;
e17d43b9 403static atomic_t nr_text_poke_events __read_mostly;
88a16a13 404static atomic_t nr_build_id_events __read_mostly;
9ee318a7 405
108b02cf
PZ
406static LIST_HEAD(pmus);
407static DEFINE_MUTEX(pmus_lock);
408static struct srcu_struct pmus_srcu;
a63fbed7 409static cpumask_var_t perf_online_mask;
bdacfaf2 410static struct kmem_cache *perf_event_cache;
108b02cf 411
0764771d 412/*
cdd6c482 413 * perf event paranoia level:
0fbdea19
IM
414 * -1 - not paranoid at all
415 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 416 * 1 - disallow cpu events for unpriv
0fbdea19 417 * 2 - disallow kernel profiling for unpriv
0764771d 418 */
0161028b 419int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 420
20443384
FW
421/* Minimum for 512 kiB + 1 user control page */
422int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
423
424/*
cdd6c482 425 * max perf event sample rate
df58ab24 426 */
14c63f17
DH
427#define DEFAULT_MAX_SAMPLE_RATE 100000
428#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
429#define DEFAULT_CPU_TIME_MAX_PERCENT 25
430
431int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
432
433static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
434static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
435
d9494cb4
PZ
436static int perf_sample_allowed_ns __read_mostly =
437 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 438
18ab2cd3 439static void update_perf_cpu_limits(void)
14c63f17
DH
440{
441 u64 tmp = perf_sample_period_ns;
442
443 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
444 tmp = div_u64(tmp, 100);
445 if (!tmp)
446 tmp = 1;
447
448 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 449}
163ec435 450
bd275681 451static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
9e630205 452
e6814ec3
XJ
453int perf_event_max_sample_rate_handler(struct ctl_table *table, int write,
454 void *buffer, size_t *lenp, loff_t *ppos)
163ec435 455{
1a51c5da
SE
456 int ret;
457 int perf_cpu = sysctl_perf_cpu_time_max_percent;
ab7fdefb
KL
458 /*
459 * If throttling is disabled don't allow the write:
460 */
1a51c5da 461 if (write && (perf_cpu == 100 || perf_cpu == 0))
ab7fdefb
KL
462 return -EINVAL;
463
1a51c5da
SE
464 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 if (ret || !write)
466 return ret;
467
163ec435 468 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
469 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
470 update_perf_cpu_limits();
471
472 return 0;
473}
474
475int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
476
477int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
32927393 478 void *buffer, size_t *lenp, loff_t *ppos)
14c63f17 479{
1572e45a 480 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
14c63f17
DH
481
482 if (ret || !write)
483 return ret;
484
b303e7c1
PZ
485 if (sysctl_perf_cpu_time_max_percent == 100 ||
486 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
487 printk(KERN_WARNING
488 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
489 WRITE_ONCE(perf_sample_allowed_ns, 0);
490 } else {
491 update_perf_cpu_limits();
492 }
163ec435
PZ
493
494 return 0;
495}
1ccd1549 496
14c63f17
DH
497/*
498 * perf samples are done in some very critical code paths (NMIs).
499 * If they take too much CPU time, the system can lock up and not
500 * get any real work done. This will drop the sample rate when
501 * we detect that events are taking too long.
502 */
503#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 504static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 505
91a612ee
PZ
506static u64 __report_avg;
507static u64 __report_allowed;
508
6a02ad66 509static void perf_duration_warn(struct irq_work *w)
14c63f17 510{
0d87d7ec 511 printk_ratelimited(KERN_INFO
91a612ee
PZ
512 "perf: interrupt took too long (%lld > %lld), lowering "
513 "kernel.perf_event_max_sample_rate to %d\n",
514 __report_avg, __report_allowed,
515 sysctl_perf_event_sample_rate);
6a02ad66
PZ
516}
517
518static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
519
520void perf_sample_event_took(u64 sample_len_ns)
521{
91a612ee
PZ
522 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
523 u64 running_len;
524 u64 avg_len;
525 u32 max;
14c63f17 526
91a612ee 527 if (max_len == 0)
14c63f17
DH
528 return;
529
91a612ee
PZ
530 /* Decay the counter by 1 average sample. */
531 running_len = __this_cpu_read(running_sample_length);
532 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
533 running_len += sample_len_ns;
534 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
535
536 /*
91a612ee
PZ
537 * Note: this will be biased artifically low until we have
538 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
539 * from having to maintain a count.
540 */
91a612ee
PZ
541 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
542 if (avg_len <= max_len)
14c63f17
DH
543 return;
544
91a612ee
PZ
545 __report_avg = avg_len;
546 __report_allowed = max_len;
14c63f17 547
91a612ee
PZ
548 /*
549 * Compute a throttle threshold 25% below the current duration.
550 */
551 avg_len += avg_len / 4;
552 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
553 if (avg_len < max)
554 max /= (u32)avg_len;
555 else
556 max = 1;
14c63f17 557
91a612ee
PZ
558 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
559 WRITE_ONCE(max_samples_per_tick, max);
560
561 sysctl_perf_event_sample_rate = max * HZ;
562 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 563
cd578abb 564 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 565 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 566 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 567 __report_avg, __report_allowed,
cd578abb
PZ
568 sysctl_perf_event_sample_rate);
569 }
14c63f17
DH
570}
571
cdd6c482 572static atomic64_t perf_event_id;
a96bbc16 573
e5d1367f
SE
574static void update_context_time(struct perf_event_context *ctx);
575static u64 perf_event_time(struct perf_event *event);
0b3fcf17 576
cdd6c482 577void __weak perf_event_print_debug(void) { }
0793a61d 578
0b3fcf17
SE
579static inline u64 perf_clock(void)
580{
581 return local_clock();
582}
583
34f43927
PZ
584static inline u64 perf_event_clock(struct perf_event *event)
585{
586 return event->clock();
587}
588
0d3d73aa
PZ
589/*
590 * State based event timekeeping...
591 *
592 * The basic idea is to use event->state to determine which (if any) time
593 * fields to increment with the current delta. This means we only need to
594 * update timestamps when we change state or when they are explicitly requested
595 * (read).
596 *
597 * Event groups make things a little more complicated, but not terribly so. The
598 * rules for a group are that if the group leader is OFF the entire group is
599 * OFF, irrespecive of what the group member states are. This results in
600 * __perf_effective_state().
601 *
602 * A futher ramification is that when a group leader flips between OFF and
603 * !OFF, we need to update all group member times.
604 *
605 *
606 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
607 * need to make sure the relevant context time is updated before we try and
608 * update our timestamps.
609 */
610
611static __always_inline enum perf_event_state
612__perf_effective_state(struct perf_event *event)
613{
614 struct perf_event *leader = event->group_leader;
615
616 if (leader->state <= PERF_EVENT_STATE_OFF)
617 return leader->state;
618
619 return event->state;
620}
621
622static __always_inline void
623__perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
624{
625 enum perf_event_state state = __perf_effective_state(event);
626 u64 delta = now - event->tstamp;
627
628 *enabled = event->total_time_enabled;
629 if (state >= PERF_EVENT_STATE_INACTIVE)
630 *enabled += delta;
631
632 *running = event->total_time_running;
633 if (state >= PERF_EVENT_STATE_ACTIVE)
634 *running += delta;
635}
636
637static void perf_event_update_time(struct perf_event *event)
638{
639 u64 now = perf_event_time(event);
640
641 __perf_update_times(event, now, &event->total_time_enabled,
642 &event->total_time_running);
643 event->tstamp = now;
644}
645
646static void perf_event_update_sibling_time(struct perf_event *leader)
647{
648 struct perf_event *sibling;
649
edb39592 650 for_each_sibling_event(sibling, leader)
0d3d73aa
PZ
651 perf_event_update_time(sibling);
652}
653
654static void
655perf_event_set_state(struct perf_event *event, enum perf_event_state state)
656{
657 if (event->state == state)
658 return;
659
660 perf_event_update_time(event);
661 /*
662 * If a group leader gets enabled/disabled all its siblings
663 * are affected too.
664 */
665 if ((event->state < 0) ^ (state < 0))
666 perf_event_update_sibling_time(event);
667
668 WRITE_ONCE(event->state, state);
669}
670
09f5e7dc
PZ
671/*
672 * UP store-release, load-acquire
673 */
674
675#define __store_release(ptr, val) \
676do { \
677 barrier(); \
678 WRITE_ONCE(*(ptr), (val)); \
679} while (0)
680
681#define __load_acquire(ptr) \
682({ \
683 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \
684 barrier(); \
685 ___p; \
686})
687
f06cc667 688static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
bd275681
PZ
689{
690 struct perf_event_pmu_context *pmu_ctx;
691
f06cc667
PZ
692 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
693 if (cgroup && !pmu_ctx->nr_cgroups)
694 continue;
bd275681 695 perf_pmu_disable(pmu_ctx->pmu);
f06cc667 696 }
bd275681
PZ
697}
698
f06cc667 699static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
bd275681
PZ
700{
701 struct perf_event_pmu_context *pmu_ctx;
702
f06cc667
PZ
703 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
704 if (cgroup && !pmu_ctx->nr_cgroups)
705 continue;
bd275681 706 perf_pmu_enable(pmu_ctx->pmu);
f06cc667 707 }
bd275681
PZ
708}
709
710static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type);
711static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type);
712
e5d1367f
SE
713#ifdef CONFIG_CGROUP_PERF
714
e5d1367f
SE
715static inline bool
716perf_cgroup_match(struct perf_event *event)
717{
bd275681 718 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
e5d1367f 719
ef824fa1
TH
720 /* @event doesn't care about cgroup */
721 if (!event->cgrp)
722 return true;
723
724 /* wants specific cgroup scope but @cpuctx isn't associated with any */
725 if (!cpuctx->cgrp)
726 return false;
727
728 /*
729 * Cgroup scoping is recursive. An event enabled for a cgroup is
730 * also enabled for all its descendant cgroups. If @cpuctx's
731 * cgroup is a descendant of @event's (the test covers identity
732 * case), it's a match.
733 */
734 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
735 event->cgrp->css.cgroup);
e5d1367f
SE
736}
737
e5d1367f
SE
738static inline void perf_detach_cgroup(struct perf_event *event)
739{
4e2ba650 740 css_put(&event->cgrp->css);
e5d1367f
SE
741 event->cgrp = NULL;
742}
743
744static inline int is_cgroup_event(struct perf_event *event)
745{
746 return event->cgrp != NULL;
747}
748
749static inline u64 perf_cgroup_event_time(struct perf_event *event)
750{
751 struct perf_cgroup_info *t;
752
753 t = per_cpu_ptr(event->cgrp->info, event->cpu);
754 return t->time;
755}
756
09f5e7dc 757static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
e5d1367f 758{
09f5e7dc 759 struct perf_cgroup_info *t;
e5d1367f 760
09f5e7dc
PZ
761 t = per_cpu_ptr(event->cgrp->info, event->cpu);
762 if (!__load_acquire(&t->active))
763 return t->time;
764 now += READ_ONCE(t->timeoffset);
765 return now;
766}
e5d1367f 767
09f5e7dc
PZ
768static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
769{
770 if (adv)
771 info->time += now - info->timestamp;
e5d1367f 772 info->timestamp = now;
09f5e7dc
PZ
773 /*
774 * see update_context_time()
775 */
776 WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
e5d1367f
SE
777}
778
09f5e7dc 779static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
e5d1367f 780{
c917e0f2
SL
781 struct perf_cgroup *cgrp = cpuctx->cgrp;
782 struct cgroup_subsys_state *css;
09f5e7dc 783 struct perf_cgroup_info *info;
c917e0f2
SL
784
785 if (cgrp) {
09f5e7dc
PZ
786 u64 now = perf_clock();
787
c917e0f2
SL
788 for (css = &cgrp->css; css; css = css->parent) {
789 cgrp = container_of(css, struct perf_cgroup, css);
09f5e7dc
PZ
790 info = this_cpu_ptr(cgrp->info);
791
792 __update_cgrp_time(info, now, true);
793 if (final)
794 __store_release(&info->active, 0);
c917e0f2
SL
795 }
796 }
e5d1367f
SE
797}
798
799static inline void update_cgrp_time_from_event(struct perf_event *event)
800{
09f5e7dc 801 struct perf_cgroup_info *info;
3f7cce3c 802
e5d1367f 803 /*
3f7cce3c
SE
804 * ensure we access cgroup data only when needed and
805 * when we know the cgroup is pinned (css_get)
e5d1367f 806 */
3f7cce3c 807 if (!is_cgroup_event(event))
e5d1367f
SE
808 return;
809
6875186a 810 info = this_cpu_ptr(event->cgrp->info);
3f7cce3c
SE
811 /*
812 * Do not update time when cgroup is not active
813 */
6875186a 814 if (info->active)
09f5e7dc 815 __update_cgrp_time(info, perf_clock(), true);
e5d1367f
SE
816}
817
818static inline void
a0827713 819perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
e5d1367f 820{
a0827713
CZ
821 struct perf_event_context *ctx = &cpuctx->ctx;
822 struct perf_cgroup *cgrp = cpuctx->cgrp;
e5d1367f 823 struct perf_cgroup_info *info;
c917e0f2 824 struct cgroup_subsys_state *css;
e5d1367f 825
3f7cce3c
SE
826 /*
827 * ctx->lock held by caller
828 * ensure we do not access cgroup data
829 * unless we have the cgroup pinned (css_get)
830 */
a0827713 831 if (!cgrp)
e5d1367f
SE
832 return;
833
a0827713 834 WARN_ON_ONCE(!ctx->nr_cgroups);
c917e0f2
SL
835
836 for (css = &cgrp->css; css; css = css->parent) {
837 cgrp = container_of(css, struct perf_cgroup, css);
838 info = this_cpu_ptr(cgrp->info);
09f5e7dc
PZ
839 __update_cgrp_time(info, ctx->timestamp, false);
840 __store_release(&info->active, 1);
c917e0f2 841 }
e5d1367f
SE
842}
843
e5d1367f
SE
844/*
845 * reschedule events based on the cgroup constraint of task.
e5d1367f 846 */
96492a6c 847static void perf_cgroup_switch(struct task_struct *task)
e5d1367f 848{
bd275681 849 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
96492a6c 850 struct perf_cgroup *cgrp;
e5d1367f 851
f841b682
CZ
852 /*
853 * cpuctx->cgrp is set when the first cgroup event enabled,
854 * and is cleared when the last cgroup event disabled.
855 */
856 if (READ_ONCE(cpuctx->cgrp) == NULL)
857 return;
96492a6c 858
bd275681 859 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
f841b682
CZ
860
861 cgrp = perf_cgroup_from_task(task, NULL);
bd275681
PZ
862 if (READ_ONCE(cpuctx->cgrp) == cgrp)
863 return;
e5d1367f 864
bd275681 865 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
f06cc667 866 perf_ctx_disable(&cpuctx->ctx, true);
e5d1367f 867
f06cc667 868 ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
bd275681
PZ
869 /*
870 * must not be done before ctxswout due
871 * to update_cgrp_time_from_cpuctx() in
872 * ctx_sched_out()
873 */
874 cpuctx->cgrp = cgrp;
875 /*
876 * set cgrp before ctxsw in to allow
877 * perf_cgroup_set_timestamp() in ctx_sched_in()
878 * to not have to pass task around
879 */
f06cc667 880 ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
e5d1367f 881
f06cc667 882 perf_ctx_enable(&cpuctx->ctx, true);
bd275681 883 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f
SE
884}
885
c2283c93
IR
886static int perf_cgroup_ensure_storage(struct perf_event *event,
887 struct cgroup_subsys_state *css)
888{
889 struct perf_cpu_context *cpuctx;
890 struct perf_event **storage;
891 int cpu, heap_size, ret = 0;
892
893 /*
894 * Allow storage to have sufficent space for an iterator for each
895 * possibly nested cgroup plus an iterator for events with no cgroup.
896 */
897 for (heap_size = 1; css; css = css->parent)
898 heap_size++;
899
900 for_each_possible_cpu(cpu) {
bd275681 901 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
c2283c93
IR
902 if (heap_size <= cpuctx->heap_size)
903 continue;
904
905 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
906 GFP_KERNEL, cpu_to_node(cpu));
907 if (!storage) {
908 ret = -ENOMEM;
909 break;
910 }
911
912 raw_spin_lock_irq(&cpuctx->ctx.lock);
913 if (cpuctx->heap_size < heap_size) {
914 swap(cpuctx->heap, storage);
915 if (storage == cpuctx->heap_default)
916 storage = NULL;
917 cpuctx->heap_size = heap_size;
918 }
919 raw_spin_unlock_irq(&cpuctx->ctx.lock);
920
921 kfree(storage);
922 }
923
924 return ret;
925}
926
e5d1367f
SE
927static inline int perf_cgroup_connect(int fd, struct perf_event *event,
928 struct perf_event_attr *attr,
929 struct perf_event *group_leader)
930{
931 struct perf_cgroup *cgrp;
932 struct cgroup_subsys_state *css;
2903ff01
AV
933 struct fd f = fdget(fd);
934 int ret = 0;
e5d1367f 935
2903ff01 936 if (!f.file)
e5d1367f
SE
937 return -EBADF;
938
b583043e 939 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 940 &perf_event_cgrp_subsys);
3db272c0
LZ
941 if (IS_ERR(css)) {
942 ret = PTR_ERR(css);
943 goto out;
944 }
e5d1367f 945
c2283c93
IR
946 ret = perf_cgroup_ensure_storage(event, css);
947 if (ret)
948 goto out;
949
e5d1367f
SE
950 cgrp = container_of(css, struct perf_cgroup, css);
951 event->cgrp = cgrp;
952
953 /*
954 * all events in a group must monitor
955 * the same cgroup because a task belongs
956 * to only one perf cgroup at a time
957 */
958 if (group_leader && group_leader->cgrp != cgrp) {
959 perf_detach_cgroup(event);
960 ret = -EINVAL;
e5d1367f 961 }
3db272c0 962out:
2903ff01 963 fdput(f);
e5d1367f
SE
964 return ret;
965}
966
db4a8356 967static inline void
33238c50 968perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
db4a8356
DCC
969{
970 struct perf_cpu_context *cpuctx;
971
972 if (!is_cgroup_event(event))
973 return;
974
f06cc667
PZ
975 event->pmu_ctx->nr_cgroups++;
976
db4a8356
DCC
977 /*
978 * Because cgroup events are always per-cpu events,
07c59729 979 * @ctx == &cpuctx->ctx.
db4a8356 980 */
07c59729 981 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
33801b94 982
33238c50 983 if (ctx->nr_cgroups++)
33801b94 984 return;
33238c50 985
e19cd0b6 986 cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
33238c50
PZ
987}
988
989static inline void
990perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
991{
992 struct perf_cpu_context *cpuctx;
993
994 if (!is_cgroup_event(event))
33801b94 995 return;
996
f06cc667
PZ
997 event->pmu_ctx->nr_cgroups--;
998
33238c50
PZ
999 /*
1000 * Because cgroup events are always per-cpu events,
1001 * @ctx == &cpuctx->ctx.
1002 */
1003 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1004
1005 if (--ctx->nr_cgroups)
1006 return;
1007
e19cd0b6 1008 cpuctx->cgrp = NULL;
db4a8356
DCC
1009}
1010
e5d1367f
SE
1011#else /* !CONFIG_CGROUP_PERF */
1012
1013static inline bool
1014perf_cgroup_match(struct perf_event *event)
1015{
1016 return true;
1017}
1018
1019static inline void perf_detach_cgroup(struct perf_event *event)
1020{}
1021
1022static inline int is_cgroup_event(struct perf_event *event)
1023{
1024 return 0;
1025}
1026
e5d1367f
SE
1027static inline void update_cgrp_time_from_event(struct perf_event *event)
1028{
1029}
1030
09f5e7dc
PZ
1031static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1032 bool final)
e5d1367f
SE
1033{
1034}
1035
e5d1367f
SE
1036static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1037 struct perf_event_attr *attr,
1038 struct perf_event *group_leader)
1039{
1040 return -EINVAL;
1041}
1042
1043static inline void
a0827713 1044perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
e5d1367f
SE
1045{
1046}
1047
09f5e7dc 1048static inline u64 perf_cgroup_event_time(struct perf_event *event)
e5d1367f 1049{
09f5e7dc 1050 return 0;
e5d1367f
SE
1051}
1052
09f5e7dc 1053static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
e5d1367f
SE
1054{
1055 return 0;
1056}
1057
db4a8356 1058static inline void
33238c50 1059perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
db4a8356
DCC
1060{
1061}
1062
33238c50
PZ
1063static inline void
1064perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1065{
1066}
96492a6c
CZ
1067
1068static void perf_cgroup_switch(struct task_struct *task)
1069{
1070}
e5d1367f
SE
1071#endif
1072
9e630205
SE
1073/*
1074 * set default to be dependent on timer tick just
1075 * like original code
1076 */
1077#define PERF_CPU_HRTIMER (1000 / HZ)
1078/*
8a1115ff 1079 * function must be called with interrupts disabled
9e630205 1080 */
272325c4 1081static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205 1082{
bd275681 1083 struct perf_cpu_pmu_context *cpc;
8d5bce0c 1084 bool rotations;
9e630205 1085
16444645 1086 lockdep_assert_irqs_disabled();
9e630205 1087
bd275681
PZ
1088 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1089 rotations = perf_rotate_context(cpc);
9e630205 1090
bd275681 1091 raw_spin_lock(&cpc->hrtimer_lock);
4cfafd30 1092 if (rotations)
bd275681 1093 hrtimer_forward_now(hr, cpc->hrtimer_interval);
4cfafd30 1094 else
bd275681
PZ
1095 cpc->hrtimer_active = 0;
1096 raw_spin_unlock(&cpc->hrtimer_lock);
9e630205 1097
4cfafd30 1098 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1099}
1100
bd275681 1101static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
9e630205 1102{
bd275681
PZ
1103 struct hrtimer *timer = &cpc->hrtimer;
1104 struct pmu *pmu = cpc->epc.pmu;
272325c4 1105 u64 interval;
9e630205 1106
62b85639
SE
1107 /*
1108 * check default is sane, if not set then force to
1109 * default interval (1/tick)
1110 */
272325c4
PZ
1111 interval = pmu->hrtimer_interval_ms;
1112 if (interval < 1)
1113 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1114
bd275681 1115 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1116
bd275681 1117 raw_spin_lock_init(&cpc->hrtimer_lock);
30f9028b 1118 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
272325c4 1119 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1120}
1121
bd275681 1122static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
9e630205 1123{
bd275681 1124 struct hrtimer *timer = &cpc->hrtimer;
4cfafd30 1125 unsigned long flags;
9e630205 1126
bd275681
PZ
1127 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1128 if (!cpc->hrtimer_active) {
1129 cpc->hrtimer_active = 1;
1130 hrtimer_forward_now(timer, cpc->hrtimer_interval);
30f9028b 1131 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
4cfafd30 1132 }
bd275681 1133 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
9e630205 1134
272325c4 1135 return 0;
9e630205
SE
1136}
1137
1af6239d
PZ
1138static int perf_mux_hrtimer_restart_ipi(void *arg)
1139{
1140 return perf_mux_hrtimer_restart(arg);
1141}
1142
33696fc0 1143void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1144{
33696fc0
PZ
1145 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1146 if (!(*count)++)
1147 pmu->pmu_disable(pmu);
9e35ad38 1148}
9e35ad38 1149
33696fc0 1150void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1151{
33696fc0
PZ
1152 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1153 if (!--(*count))
1154 pmu->pmu_enable(pmu);
9e35ad38 1155}
9e35ad38 1156
bd275681 1157static void perf_assert_pmu_disabled(struct pmu *pmu)
2fde4f94 1158{
bd275681 1159 WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
9e35ad38 1160}
9e35ad38 1161
cdd6c482 1162static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1163{
8c94abbb 1164 refcount_inc(&ctx->refcount);
a63eaf34
PM
1165}
1166
ff9ff926
KL
1167static void *alloc_task_ctx_data(struct pmu *pmu)
1168{
217c2a63
KL
1169 if (pmu->task_ctx_cache)
1170 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1171
5a09928d 1172 return NULL;
ff9ff926
KL
1173}
1174
1175static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1176{
217c2a63
KL
1177 if (pmu->task_ctx_cache && task_ctx_data)
1178 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
ff9ff926
KL
1179}
1180
4af57ef2
YZ
1181static void free_ctx(struct rcu_head *head)
1182{
1183 struct perf_event_context *ctx;
1184
1185 ctx = container_of(head, struct perf_event_context, rcu_head);
4af57ef2
YZ
1186 kfree(ctx);
1187}
1188
cdd6c482 1189static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1190{
8c94abbb 1191 if (refcount_dec_and_test(&ctx->refcount)) {
564c2b21
PM
1192 if (ctx->parent_ctx)
1193 put_ctx(ctx->parent_ctx);
63b6da39 1194 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1195 put_task_struct(ctx->task);
4af57ef2 1196 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1197 }
a63eaf34
PM
1198}
1199
f63a8daa
PZ
1200/*
1201 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1202 * perf_pmu_migrate_context() we need some magic.
1203 *
1204 * Those places that change perf_event::ctx will hold both
1205 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1206 *
8b10c5e2
PZ
1207 * Lock ordering is by mutex address. There are two other sites where
1208 * perf_event_context::mutex nests and those are:
1209 *
1210 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1211 * perf_event_exit_event()
1212 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1213 *
1214 * - perf_event_init_context() [ parent, 0 ]
1215 * inherit_task_group()
1216 * inherit_group()
1217 * inherit_event()
1218 * perf_event_alloc()
1219 * perf_init_event()
1220 * perf_try_init_event() [ child , 1 ]
1221 *
1222 * While it appears there is an obvious deadlock here -- the parent and child
1223 * nesting levels are inverted between the two. This is in fact safe because
1224 * life-time rules separate them. That is an exiting task cannot fork, and a
1225 * spawning task cannot (yet) exit.
1226 *
c034f48e 1227 * But remember that these are parent<->child context relations, and
8b10c5e2
PZ
1228 * migration does not affect children, therefore these two orderings should not
1229 * interact.
f63a8daa
PZ
1230 *
1231 * The change in perf_event::ctx does not affect children (as claimed above)
1232 * because the sys_perf_event_open() case will install a new event and break
1233 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1234 * concerned with cpuctx and that doesn't have children.
1235 *
1236 * The places that change perf_event::ctx will issue:
1237 *
1238 * perf_remove_from_context();
1239 * synchronize_rcu();
1240 * perf_install_in_context();
1241 *
1242 * to affect the change. The remove_from_context() + synchronize_rcu() should
1243 * quiesce the event, after which we can install it in the new location. This
1244 * means that only external vectors (perf_fops, prctl) can perturb the event
1245 * while in transit. Therefore all such accessors should also acquire
1246 * perf_event_context::mutex to serialize against this.
1247 *
1248 * However; because event->ctx can change while we're waiting to acquire
1249 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1250 * function.
1251 *
1252 * Lock order:
f7cfd871 1253 * exec_update_lock
f63a8daa
PZ
1254 * task_struct::perf_event_mutex
1255 * perf_event_context::mutex
f63a8daa 1256 * perf_event::child_mutex;
07c4a776 1257 * perf_event_context::lock
f63a8daa 1258 * perf_event::mmap_mutex
c1e8d7c6 1259 * mmap_lock
18736eef 1260 * perf_addr_filters_head::lock
82d94856
PZ
1261 *
1262 * cpu_hotplug_lock
1263 * pmus_lock
1264 * cpuctx->mutex / perf_event_context::mutex
f63a8daa 1265 */
a83fe28e
PZ
1266static struct perf_event_context *
1267perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1268{
1269 struct perf_event_context *ctx;
1270
1271again:
1272 rcu_read_lock();
6aa7de05 1273 ctx = READ_ONCE(event->ctx);
8c94abbb 1274 if (!refcount_inc_not_zero(&ctx->refcount)) {
f63a8daa
PZ
1275 rcu_read_unlock();
1276 goto again;
1277 }
1278 rcu_read_unlock();
1279
a83fe28e 1280 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1281 if (event->ctx != ctx) {
1282 mutex_unlock(&ctx->mutex);
1283 put_ctx(ctx);
1284 goto again;
1285 }
1286
1287 return ctx;
1288}
1289
a83fe28e
PZ
1290static inline struct perf_event_context *
1291perf_event_ctx_lock(struct perf_event *event)
1292{
1293 return perf_event_ctx_lock_nested(event, 0);
1294}
1295
f63a8daa
PZ
1296static void perf_event_ctx_unlock(struct perf_event *event,
1297 struct perf_event_context *ctx)
1298{
1299 mutex_unlock(&ctx->mutex);
1300 put_ctx(ctx);
1301}
1302
211de6eb
PZ
1303/*
1304 * This must be done under the ctx->lock, such as to serialize against
1305 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1306 * calling scheduler related locks and ctx->lock nests inside those.
1307 */
1308static __must_check struct perf_event_context *
1309unclone_ctx(struct perf_event_context *ctx)
71a851b4 1310{
211de6eb
PZ
1311 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1312
1313 lockdep_assert_held(&ctx->lock);
1314
1315 if (parent_ctx)
71a851b4 1316 ctx->parent_ctx = NULL;
5a3126d4 1317 ctx->generation++;
211de6eb
PZ
1318
1319 return parent_ctx;
71a851b4
PZ
1320}
1321
1d953111
ON
1322static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1323 enum pid_type type)
6844c09d 1324{
1d953111 1325 u32 nr;
6844c09d
ACM
1326 /*
1327 * only top level events have the pid namespace they were created in
1328 */
1329 if (event->parent)
1330 event = event->parent;
1331
1d953111
ON
1332 nr = __task_pid_nr_ns(p, type, event->ns);
1333 /* avoid -1 if it is idle thread or runs in another ns */
1334 if (!nr && !pid_alive(p))
1335 nr = -1;
1336 return nr;
6844c09d
ACM
1337}
1338
1d953111 1339static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
6844c09d 1340{
6883f81a 1341 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1d953111 1342}
6844c09d 1343
1d953111
ON
1344static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1345{
1346 return perf_event_pid_type(event, p, PIDTYPE_PID);
6844c09d
ACM
1347}
1348
7f453c24 1349/*
cdd6c482 1350 * If we inherit events we want to return the parent event id
7f453c24
PZ
1351 * to userspace.
1352 */
cdd6c482 1353static u64 primary_event_id(struct perf_event *event)
7f453c24 1354{
cdd6c482 1355 u64 id = event->id;
7f453c24 1356
cdd6c482
IM
1357 if (event->parent)
1358 id = event->parent->id;
7f453c24
PZ
1359
1360 return id;
1361}
1362
25346b93 1363/*
cdd6c482 1364 * Get the perf_event_context for a task and lock it.
63b6da39 1365 *
c034f48e 1366 * This has to cope with the fact that until it is locked,
25346b93
PM
1367 * the context could get moved to another task.
1368 */
cdd6c482 1369static struct perf_event_context *
bd275681 1370perf_lock_task_context(struct task_struct *task, unsigned long *flags)
25346b93 1371{
cdd6c482 1372 struct perf_event_context *ctx;
25346b93 1373
9ed6060d 1374retry:
058ebd0e
PZ
1375 /*
1376 * One of the few rules of preemptible RCU is that one cannot do
1377 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1378 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1379 * rcu_read_unlock_special().
1380 *
1381 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1382 * side critical section has interrupts disabled.
058ebd0e 1383 */
2fd59077 1384 local_irq_save(*flags);
058ebd0e 1385 rcu_read_lock();
bd275681 1386 ctx = rcu_dereference(task->perf_event_ctxp);
25346b93
PM
1387 if (ctx) {
1388 /*
1389 * If this context is a clone of another, it might
1390 * get swapped for another underneath us by
cdd6c482 1391 * perf_event_task_sched_out, though the
25346b93
PM
1392 * rcu_read_lock() protects us from any context
1393 * getting freed. Lock the context and check if it
1394 * got swapped before we could get the lock, and retry
1395 * if so. If we locked the right context, then it
1396 * can't get swapped on us any more.
1397 */
2fd59077 1398 raw_spin_lock(&ctx->lock);
bd275681 1399 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
2fd59077 1400 raw_spin_unlock(&ctx->lock);
058ebd0e 1401 rcu_read_unlock();
2fd59077 1402 local_irq_restore(*flags);
25346b93
PM
1403 goto retry;
1404 }
b49a9e7e 1405
63b6da39 1406 if (ctx->task == TASK_TOMBSTONE ||
8c94abbb 1407 !refcount_inc_not_zero(&ctx->refcount)) {
2fd59077 1408 raw_spin_unlock(&ctx->lock);
b49a9e7e 1409 ctx = NULL;
828b6f0e
PZ
1410 } else {
1411 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1412 }
25346b93
PM
1413 }
1414 rcu_read_unlock();
2fd59077
PM
1415 if (!ctx)
1416 local_irq_restore(*flags);
25346b93
PM
1417 return ctx;
1418}
1419
1420/*
1421 * Get the context for a task and increment its pin_count so it
1422 * can't get swapped to another task. This also increments its
1423 * reference count so that the context can't get freed.
1424 */
8dc85d54 1425static struct perf_event_context *
bd275681 1426perf_pin_task_context(struct task_struct *task)
25346b93 1427{
cdd6c482 1428 struct perf_event_context *ctx;
25346b93
PM
1429 unsigned long flags;
1430
bd275681 1431 ctx = perf_lock_task_context(task, &flags);
25346b93
PM
1432 if (ctx) {
1433 ++ctx->pin_count;
e625cce1 1434 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1435 }
1436 return ctx;
1437}
1438
cdd6c482 1439static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1440{
1441 unsigned long flags;
1442
e625cce1 1443 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1444 --ctx->pin_count;
e625cce1 1445 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1446}
1447
f67218c3
PZ
1448/*
1449 * Update the record of the current time in a context.
1450 */
09f5e7dc 1451static void __update_context_time(struct perf_event_context *ctx, bool adv)
f67218c3
PZ
1452{
1453 u64 now = perf_clock();
1454
f3c0eba2
PZ
1455 lockdep_assert_held(&ctx->lock);
1456
09f5e7dc
PZ
1457 if (adv)
1458 ctx->time += now - ctx->timestamp;
f67218c3 1459 ctx->timestamp = now;
09f5e7dc
PZ
1460
1461 /*
1462 * The above: time' = time + (now - timestamp), can be re-arranged
1463 * into: time` = now + (time - timestamp), which gives a single value
1464 * offset to compute future time without locks on.
1465 *
1466 * See perf_event_time_now(), which can be used from NMI context where
1467 * it's (obviously) not possible to acquire ctx->lock in order to read
1468 * both the above values in a consistent manner.
1469 */
1470 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1471}
1472
1473static void update_context_time(struct perf_event_context *ctx)
1474{
1475 __update_context_time(ctx, true);
f67218c3
PZ
1476}
1477
4158755d
SE
1478static u64 perf_event_time(struct perf_event *event)
1479{
1480 struct perf_event_context *ctx = event->ctx;
e5d1367f 1481
09f5e7dc
PZ
1482 if (unlikely(!ctx))
1483 return 0;
1484
e5d1367f
SE
1485 if (is_cgroup_event(event))
1486 return perf_cgroup_event_time(event);
1487
09f5e7dc
PZ
1488 return ctx->time;
1489}
1490
1491static u64 perf_event_time_now(struct perf_event *event, u64 now)
1492{
1493 struct perf_event_context *ctx = event->ctx;
1494
1495 if (unlikely(!ctx))
1496 return 0;
1497
1498 if (is_cgroup_event(event))
1499 return perf_cgroup_event_time_now(event, now);
1500
1501 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1502 return ctx->time;
1503
1504 now += READ_ONCE(ctx->timeoffset);
1505 return now;
4158755d
SE
1506}
1507
487f05e1
AS
1508static enum event_type_t get_event_type(struct perf_event *event)
1509{
1510 struct perf_event_context *ctx = event->ctx;
1511 enum event_type_t event_type;
1512
1513 lockdep_assert_held(&ctx->lock);
1514
3bda69c1
AS
1515 /*
1516 * It's 'group type', really, because if our group leader is
1517 * pinned, so are we.
1518 */
1519 if (event->group_leader != event)
1520 event = event->group_leader;
1521
487f05e1
AS
1522 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1523 if (!ctx->task)
1524 event_type |= EVENT_CPU;
1525
1526 return event_type;
1527}
1528
8e1a2031 1529/*
161c85fa 1530 * Helper function to initialize event group nodes.
8e1a2031 1531 */
161c85fa 1532static void init_event_group(struct perf_event *event)
8e1a2031
AB
1533{
1534 RB_CLEAR_NODE(&event->group_node);
1535 event->group_index = 0;
1536}
1537
1538/*
1539 * Extract pinned or flexible groups from the context
161c85fa 1540 * based on event attrs bits.
8e1a2031
AB
1541 */
1542static struct perf_event_groups *
1543get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
889ff015
FW
1544{
1545 if (event->attr.pinned)
1546 return &ctx->pinned_groups;
1547 else
1548 return &ctx->flexible_groups;
1549}
1550
8e1a2031 1551/*
161c85fa 1552 * Helper function to initializes perf_event_group trees.
8e1a2031 1553 */
161c85fa 1554static void perf_event_groups_init(struct perf_event_groups *groups)
8e1a2031
AB
1555{
1556 groups->tree = RB_ROOT;
1557 groups->index = 0;
1558}
1559
a3b89864
PZ
1560static inline struct cgroup *event_cgroup(const struct perf_event *event)
1561{
1562 struct cgroup *cgroup = NULL;
1563
1564#ifdef CONFIG_CGROUP_PERF
1565 if (event->cgrp)
1566 cgroup = event->cgrp->css.cgroup;
1567#endif
1568
1569 return cgroup;
1570}
1571
8e1a2031
AB
1572/*
1573 * Compare function for event groups;
161c85fa
PZ
1574 *
1575 * Implements complex key that first sorts by CPU and then by virtual index
1576 * which provides ordering when rotating groups for the same CPU.
8e1a2031 1577 */
a3b89864 1578static __always_inline int
bd275681
PZ
1579perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1580 const struct cgroup *left_cgroup, const u64 left_group_index,
1581 const struct perf_event *right)
8e1a2031 1582{
a3b89864
PZ
1583 if (left_cpu < right->cpu)
1584 return -1;
1585 if (left_cpu > right->cpu)
1586 return 1;
161c85fa 1587
bd275681
PZ
1588 if (left_pmu) {
1589 if (left_pmu < right->pmu_ctx->pmu)
1590 return -1;
1591 if (left_pmu > right->pmu_ctx->pmu)
1592 return 1;
1593 }
1594
95ed6c70 1595#ifdef CONFIG_CGROUP_PERF
a3b89864
PZ
1596 {
1597 const struct cgroup *right_cgroup = event_cgroup(right);
1598
1599 if (left_cgroup != right_cgroup) {
1600 if (!left_cgroup) {
1601 /*
1602 * Left has no cgroup but right does, no
1603 * cgroups come first.
1604 */
1605 return -1;
1606 }
1607 if (!right_cgroup) {
1608 /*
1609 * Right has no cgroup but left does, no
1610 * cgroups come first.
1611 */
1612 return 1;
1613 }
1614 /* Two dissimilar cgroups, order by id. */
1615 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1616 return -1;
1617
1618 return 1;
95ed6c70 1619 }
95ed6c70
IR
1620 }
1621#endif
1622
a3b89864
PZ
1623 if (left_group_index < right->group_index)
1624 return -1;
1625 if (left_group_index > right->group_index)
1626 return 1;
1627
1628 return 0;
1629}
161c85fa 1630
a3b89864
PZ
1631#define __node_2_pe(node) \
1632 rb_entry((node), struct perf_event, group_node)
1633
1634static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1635{
1636 struct perf_event *e = __node_2_pe(a);
bd275681
PZ
1637 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1638 e->group_index, __node_2_pe(b)) < 0;
a3b89864
PZ
1639}
1640
1641struct __group_key {
1642 int cpu;
bd275681 1643 struct pmu *pmu;
a3b89864
PZ
1644 struct cgroup *cgroup;
1645};
1646
1647static inline int __group_cmp(const void *key, const struct rb_node *node)
1648{
1649 const struct __group_key *a = key;
1650 const struct perf_event *b = __node_2_pe(node);
1651
bd275681
PZ
1652 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1653 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1654}
1655
1656static inline int
1657__group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1658{
1659 const struct __group_key *a = key;
1660 const struct perf_event *b = __node_2_pe(node);
1661
1662 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1663 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1664 b->group_index, b);
8e1a2031
AB
1665}
1666
1667/*
bd275681
PZ
1668 * Insert @event into @groups' tree; using
1669 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1670 * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
8e1a2031
AB
1671 */
1672static void
1673perf_event_groups_insert(struct perf_event_groups *groups,
161c85fa 1674 struct perf_event *event)
8e1a2031 1675{
8e1a2031
AB
1676 event->group_index = ++groups->index;
1677
a3b89864 1678 rb_add(&event->group_node, &groups->tree, __group_less);
8e1a2031
AB
1679}
1680
1681/*
161c85fa 1682 * Helper function to insert event into the pinned or flexible groups.
8e1a2031
AB
1683 */
1684static void
1685add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1686{
1687 struct perf_event_groups *groups;
1688
1689 groups = get_event_groups(event, ctx);
1690 perf_event_groups_insert(groups, event);
1691}
1692
1693/*
161c85fa 1694 * Delete a group from a tree.
8e1a2031
AB
1695 */
1696static void
1697perf_event_groups_delete(struct perf_event_groups *groups,
161c85fa 1698 struct perf_event *event)
8e1a2031 1699{
161c85fa
PZ
1700 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1701 RB_EMPTY_ROOT(&groups->tree));
8e1a2031 1702
161c85fa 1703 rb_erase(&event->group_node, &groups->tree);
8e1a2031
AB
1704 init_event_group(event);
1705}
1706
1707/*
161c85fa 1708 * Helper function to delete event from its groups.
8e1a2031
AB
1709 */
1710static void
1711del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1712{
1713 struct perf_event_groups *groups;
1714
1715 groups = get_event_groups(event, ctx);
1716 perf_event_groups_delete(groups, event);
1717}
1718
1719/*
bd275681 1720 * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
8e1a2031
AB
1721 */
1722static struct perf_event *
95ed6c70 1723perf_event_groups_first(struct perf_event_groups *groups, int cpu,
bd275681 1724 struct pmu *pmu, struct cgroup *cgrp)
8e1a2031 1725{
a3b89864
PZ
1726 struct __group_key key = {
1727 .cpu = cpu,
bd275681 1728 .pmu = pmu,
a3b89864
PZ
1729 .cgroup = cgrp,
1730 };
1731 struct rb_node *node;
95ed6c70 1732
a3b89864
PZ
1733 node = rb_find_first(&key, &groups->tree, __group_cmp);
1734 if (node)
1735 return __node_2_pe(node);
8e1a2031 1736
a3b89864 1737 return NULL;
8e1a2031
AB
1738}
1739
1cac7b1a 1740static struct perf_event *
bd275681 1741perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1cac7b1a 1742{
a3b89864
PZ
1743 struct __group_key key = {
1744 .cpu = event->cpu,
bd275681 1745 .pmu = pmu,
a3b89864
PZ
1746 .cgroup = event_cgroup(event),
1747 };
1748 struct rb_node *next;
1cac7b1a 1749
a3b89864
PZ
1750 next = rb_next_match(&key, &event->group_node, __group_cmp);
1751 if (next)
1752 return __node_2_pe(next);
95ed6c70 1753
a3b89864 1754 return NULL;
1cac7b1a
PZ
1755}
1756
bd275681
PZ
1757#define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \
1758 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \
1759 event; event = perf_event_groups_next(event, pmu))
1760
8e1a2031 1761/*
161c85fa 1762 * Iterate through the whole groups tree.
8e1a2031 1763 */
6e6804d2
PZ
1764#define perf_event_groups_for_each(event, groups) \
1765 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1766 typeof(*event), group_node); event; \
1767 event = rb_entry_safe(rb_next(&event->group_node), \
1768 typeof(*event), group_node))
8e1a2031 1769
fccc714b 1770/*
788faab7 1771 * Add an event from the lists for its context.
fccc714b
PZ
1772 * Must be called with ctx->mutex and ctx->lock held.
1773 */
04289bb9 1774static void
cdd6c482 1775list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1776{
c994d613
PZ
1777 lockdep_assert_held(&ctx->lock);
1778
8a49542c
PZ
1779 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1780 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9 1781
0d3d73aa
PZ
1782 event->tstamp = perf_event_time(event);
1783
04289bb9 1784 /*
8a49542c
PZ
1785 * If we're a stand alone event or group leader, we go to the context
1786 * list, group events are kept attached to the group so that
1787 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1788 */
8a49542c 1789 if (event->group_leader == event) {
4ff6a8de 1790 event->group_caps = event->event_caps;
8e1a2031 1791 add_event_to_groups(event, ctx);
5c148194 1792 }
592903cd 1793
cdd6c482
IM
1794 list_add_rcu(&event->event_entry, &ctx->event_list);
1795 ctx->nr_events++;
82ff0c02
RH
1796 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1797 ctx->nr_user++;
cdd6c482 1798 if (event->attr.inherit_stat)
bfbd3381 1799 ctx->nr_stat++;
5a3126d4 1800
33238c50
PZ
1801 if (event->state > PERF_EVENT_STATE_OFF)
1802 perf_cgroup_event_enable(event, ctx);
1803
5a3126d4 1804 ctx->generation++;
bd275681 1805 event->pmu_ctx->nr_events++;
04289bb9
IM
1806}
1807
0231bb53
JO
1808/*
1809 * Initialize event state based on the perf_event_attr::disabled.
1810 */
1811static inline void perf_event__state_init(struct perf_event *event)
1812{
1813 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1814 PERF_EVENT_STATE_INACTIVE;
1815}
1816
382c27f4 1817static int __perf_event_read_size(u64 read_format, int nr_siblings)
c320c7b7
ACM
1818{
1819 int entry = sizeof(u64); /* value */
1820 int size = 0;
1821 int nr = 1;
1822
382c27f4 1823 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
c320c7b7
ACM
1824 size += sizeof(u64);
1825
382c27f4 1826 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
c320c7b7
ACM
1827 size += sizeof(u64);
1828
382c27f4 1829 if (read_format & PERF_FORMAT_ID)
c320c7b7
ACM
1830 entry += sizeof(u64);
1831
382c27f4 1832 if (read_format & PERF_FORMAT_LOST)
119a784c
NK
1833 entry += sizeof(u64);
1834
382c27f4 1835 if (read_format & PERF_FORMAT_GROUP) {
a723968c 1836 nr += nr_siblings;
c320c7b7
ACM
1837 size += sizeof(u64);
1838 }
1839
382c27f4
PZ
1840 /*
1841 * Since perf_event_validate_size() limits this to 16k and inhibits
1842 * adding more siblings, this will never overflow.
1843 */
1844 return size + nr * entry;
c320c7b7
ACM
1845}
1846
a723968c 1847static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1848{
1849 struct perf_sample_data *data;
c320c7b7
ACM
1850 u16 size = 0;
1851
c320c7b7
ACM
1852 if (sample_type & PERF_SAMPLE_IP)
1853 size += sizeof(data->ip);
1854
6844c09d
ACM
1855 if (sample_type & PERF_SAMPLE_ADDR)
1856 size += sizeof(data->addr);
1857
1858 if (sample_type & PERF_SAMPLE_PERIOD)
1859 size += sizeof(data->period);
1860
2a6c6b7d
KL
1861 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1862 size += sizeof(data->weight.full);
c3feedf2 1863
6844c09d
ACM
1864 if (sample_type & PERF_SAMPLE_READ)
1865 size += event->read_size;
1866
d6be9ad6
SE
1867 if (sample_type & PERF_SAMPLE_DATA_SRC)
1868 size += sizeof(data->data_src.val);
1869
fdfbbd07
AK
1870 if (sample_type & PERF_SAMPLE_TRANSACTION)
1871 size += sizeof(data->txn);
1872
fc7ce9c7
KL
1873 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1874 size += sizeof(data->phys_addr);
1875
6546b19f
NK
1876 if (sample_type & PERF_SAMPLE_CGROUP)
1877 size += sizeof(data->cgroup);
1878
8d97e718
KL
1879 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1880 size += sizeof(data->data_page_size);
1881
995f088e
SE
1882 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1883 size += sizeof(data->code_page_size);
1884
6844c09d
ACM
1885 event->header_size = size;
1886}
1887
a723968c
PZ
1888/*
1889 * Called at perf_event creation and when events are attached/detached from a
1890 * group.
1891 */
1892static void perf_event__header_size(struct perf_event *event)
1893{
382c27f4
PZ
1894 event->read_size =
1895 __perf_event_read_size(event->attr.read_format,
1896 event->group_leader->nr_siblings);
a723968c
PZ
1897 __perf_event_header_size(event, event->attr.sample_type);
1898}
1899
6844c09d
ACM
1900static void perf_event__id_header_size(struct perf_event *event)
1901{
1902 struct perf_sample_data *data;
1903 u64 sample_type = event->attr.sample_type;
1904 u16 size = 0;
1905
c320c7b7
ACM
1906 if (sample_type & PERF_SAMPLE_TID)
1907 size += sizeof(data->tid_entry);
1908
1909 if (sample_type & PERF_SAMPLE_TIME)
1910 size += sizeof(data->time);
1911
ff3d527c
AH
1912 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1913 size += sizeof(data->id);
1914
c320c7b7
ACM
1915 if (sample_type & PERF_SAMPLE_ID)
1916 size += sizeof(data->id);
1917
1918 if (sample_type & PERF_SAMPLE_STREAM_ID)
1919 size += sizeof(data->stream_id);
1920
1921 if (sample_type & PERF_SAMPLE_CPU)
1922 size += sizeof(data->cpu_entry);
1923
6844c09d 1924 event->id_header_size = size;
c320c7b7
ACM
1925}
1926
382c27f4
PZ
1927/*
1928 * Check that adding an event to the group does not result in anybody
1929 * overflowing the 64k event limit imposed by the output buffer.
1930 *
1931 * Specifically, check that the read_size for the event does not exceed 16k,
1932 * read_size being the one term that grows with groups size. Since read_size
1933 * depends on per-event read_format, also (re)check the existing events.
1934 *
1935 * This leaves 48k for the constant size fields and things like callchains,
1936 * branch stacks and register sets.
1937 */
a723968c
PZ
1938static bool perf_event_validate_size(struct perf_event *event)
1939{
382c27f4 1940 struct perf_event *sibling, *group_leader = event->group_leader;
a723968c 1941
382c27f4
PZ
1942 if (__perf_event_read_size(event->attr.read_format,
1943 group_leader->nr_siblings + 1) > 16*1024)
a723968c
PZ
1944 return false;
1945
382c27f4
PZ
1946 if (__perf_event_read_size(group_leader->attr.read_format,
1947 group_leader->nr_siblings + 1) > 16*1024)
1948 return false;
1949
7e2c1e4b
MR
1950 /*
1951 * When creating a new group leader, group_leader->ctx is initialized
1952 * after the size has been validated, but we cannot safely use
1953 * for_each_sibling_event() until group_leader->ctx is set. A new group
1954 * leader cannot have any siblings yet, so we can safely skip checking
1955 * the non-existent siblings.
1956 */
1957 if (event == group_leader)
1958 return true;
1959
382c27f4
PZ
1960 for_each_sibling_event(sibling, group_leader) {
1961 if (__perf_event_read_size(sibling->attr.read_format,
1962 group_leader->nr_siblings + 1) > 16*1024)
1963 return false;
1964 }
1965
a723968c
PZ
1966 return true;
1967}
1968
8a49542c
PZ
1969static void perf_group_attach(struct perf_event *event)
1970{
c320c7b7 1971 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1972
a76a82a3
PZ
1973 lockdep_assert_held(&event->ctx->lock);
1974
74c3337c 1975 /*
bd275681
PZ
1976 * We can have double attach due to group movement (move_group) in
1977 * perf_event_open().
74c3337c
PZ
1978 */
1979 if (event->attach_state & PERF_ATTACH_GROUP)
1980 return;
1981
8a49542c
PZ
1982 event->attach_state |= PERF_ATTACH_GROUP;
1983
1984 if (group_leader == event)
1985 return;
1986
652884fe
PZ
1987 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1988
4ff6a8de 1989 group_leader->group_caps &= event->event_caps;
8a49542c 1990
8343aae6 1991 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
8a49542c 1992 group_leader->nr_siblings++;
32671e37 1993 group_leader->group_generation++;
c320c7b7
ACM
1994
1995 perf_event__header_size(group_leader);
1996
edb39592 1997 for_each_sibling_event(pos, group_leader)
c320c7b7 1998 perf_event__header_size(pos);
8a49542c
PZ
1999}
2000
a63eaf34 2001/*
788faab7 2002 * Remove an event from the lists for its context.
fccc714b 2003 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 2004 */
04289bb9 2005static void
cdd6c482 2006list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 2007{
652884fe
PZ
2008 WARN_ON_ONCE(event->ctx != ctx);
2009 lockdep_assert_held(&ctx->lock);
2010
8a49542c
PZ
2011 /*
2012 * We can have double detach due to exit/hot-unplug + close.
2013 */
2014 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 2015 return;
8a49542c
PZ
2016
2017 event->attach_state &= ~PERF_ATTACH_CONTEXT;
2018
cdd6c482 2019 ctx->nr_events--;
82ff0c02
RH
2020 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2021 ctx->nr_user--;
cdd6c482 2022 if (event->attr.inherit_stat)
bfbd3381 2023 ctx->nr_stat--;
8bc20959 2024
cdd6c482 2025 list_del_rcu(&event->event_entry);
04289bb9 2026
8a49542c 2027 if (event->group_leader == event)
8e1a2031 2028 del_event_from_groups(event, ctx);
5c148194 2029
b2e74a26
SE
2030 /*
2031 * If event was in error state, then keep it
2032 * that way, otherwise bogus counts will be
2033 * returned on read(). The only way to get out
2034 * of error state is by explicit re-enabling
2035 * of the event
2036 */
33238c50
PZ
2037 if (event->state > PERF_EVENT_STATE_OFF) {
2038 perf_cgroup_event_disable(event, ctx);
0d3d73aa 2039 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
33238c50 2040 }
5a3126d4
PZ
2041
2042 ctx->generation++;
bd275681 2043 event->pmu_ctx->nr_events--;
050735b0
PZ
2044}
2045
ab43762e
AS
2046static int
2047perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2048{
2049 if (!has_aux(aux_event))
2050 return 0;
2051
2052 if (!event->pmu->aux_output_match)
2053 return 0;
2054
2055 return event->pmu->aux_output_match(aux_event);
2056}
2057
2058static void put_event(struct perf_event *event);
2059static void event_sched_out(struct perf_event *event,
ab43762e
AS
2060 struct perf_event_context *ctx);
2061
2062static void perf_put_aux_event(struct perf_event *event)
2063{
2064 struct perf_event_context *ctx = event->ctx;
ab43762e
AS
2065 struct perf_event *iter;
2066
2067 /*
2068 * If event uses aux_event tear down the link
2069 */
2070 if (event->aux_event) {
2071 iter = event->aux_event;
2072 event->aux_event = NULL;
2073 put_event(iter);
2074 return;
2075 }
2076
2077 /*
2078 * If the event is an aux_event, tear down all links to
2079 * it from other events.
2080 */
2081 for_each_sibling_event(iter, event->group_leader) {
2082 if (iter->aux_event != event)
2083 continue;
2084
2085 iter->aux_event = NULL;
2086 put_event(event);
2087
2088 /*
2089 * If it's ACTIVE, schedule it out and put it into ERROR
2090 * state so that we don't try to schedule it again. Note
2091 * that perf_event_enable() will clear the ERROR status.
2092 */
bd275681 2093 event_sched_out(iter, ctx);
ab43762e
AS
2094 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2095 }
2096}
2097
a4faf00d
AS
2098static bool perf_need_aux_event(struct perf_event *event)
2099{
2100 return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2101}
2102
ab43762e
AS
2103static int perf_get_aux_event(struct perf_event *event,
2104 struct perf_event *group_leader)
2105{
2106 /*
2107 * Our group leader must be an aux event if we want to be
2108 * an aux_output. This way, the aux event will precede its
2109 * aux_output events in the group, and therefore will always
2110 * schedule first.
2111 */
2112 if (!group_leader)
2113 return 0;
2114
a4faf00d
AS
2115 /*
2116 * aux_output and aux_sample_size are mutually exclusive.
2117 */
2118 if (event->attr.aux_output && event->attr.aux_sample_size)
2119 return 0;
2120
2121 if (event->attr.aux_output &&
2122 !perf_aux_output_match(event, group_leader))
2123 return 0;
2124
2125 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
ab43762e
AS
2126 return 0;
2127
2128 if (!atomic_long_inc_not_zero(&group_leader->refcount))
2129 return 0;
2130
2131 /*
2132 * Link aux_outputs to their aux event; this is undone in
2133 * perf_group_detach() by perf_put_aux_event(). When the
2134 * group in torn down, the aux_output events loose their
2135 * link to the aux_event and can't schedule any more.
2136 */
2137 event->aux_event = group_leader;
2138
2139 return 1;
2140}
2141
ab6f824c
PZ
2142static inline struct list_head *get_event_list(struct perf_event *event)
2143{
bd275681
PZ
2144 return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2145 &event->pmu_ctx->flexible_active;
ab6f824c
PZ
2146}
2147
9f0c4fa1
KL
2148/*
2149 * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2150 * cannot exist on their own, schedule them out and move them into the ERROR
2151 * state. Also see _perf_event_enable(), it will not be able to recover
2152 * this ERROR state.
2153 */
2154static inline void perf_remove_sibling_event(struct perf_event *event)
2155{
bd275681 2156 event_sched_out(event, event->ctx);
9f0c4fa1
KL
2157 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2158}
2159
8a49542c 2160static void perf_group_detach(struct perf_event *event)
050735b0 2161{
9f0c4fa1 2162 struct perf_event *leader = event->group_leader;
050735b0 2163 struct perf_event *sibling, *tmp;
6668128a 2164 struct perf_event_context *ctx = event->ctx;
8a49542c 2165
6668128a 2166 lockdep_assert_held(&ctx->lock);
a76a82a3 2167
8a49542c
PZ
2168 /*
2169 * We can have double detach due to exit/hot-unplug + close.
2170 */
2171 if (!(event->attach_state & PERF_ATTACH_GROUP))
2172 return;
2173
2174 event->attach_state &= ~PERF_ATTACH_GROUP;
2175
ab43762e
AS
2176 perf_put_aux_event(event);
2177
8a49542c
PZ
2178 /*
2179 * If this is a sibling, remove it from its group.
2180 */
9f0c4fa1 2181 if (leader != event) {
8343aae6 2182 list_del_init(&event->sibling_list);
8a49542c 2183 event->group_leader->nr_siblings--;
32671e37 2184 event->group_leader->group_generation++;
c320c7b7 2185 goto out;
8a49542c
PZ
2186 }
2187
04289bb9 2188 /*
cdd6c482
IM
2189 * If this was a group event with sibling events then
2190 * upgrade the siblings to singleton events by adding them
8a49542c 2191 * to whatever list we are on.
04289bb9 2192 */
8343aae6 2193 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
8e1a2031 2194
9f0c4fa1
KL
2195 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2196 perf_remove_sibling_event(sibling);
2197
04289bb9 2198 sibling->group_leader = sibling;
24868367 2199 list_del_init(&sibling->sibling_list);
d6f962b5
FW
2200
2201 /* Inherit group flags from the previous leader */
4ff6a8de 2202 sibling->group_caps = event->group_caps;
652884fe 2203
fd0815f6 2204 if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
8e1a2031 2205 add_event_to_groups(sibling, event->ctx);
6668128a 2206
ab6f824c
PZ
2207 if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2208 list_add_tail(&sibling->active_list, get_event_list(sibling));
8e1a2031
AB
2209 }
2210
652884fe 2211 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 2212 }
c320c7b7
ACM
2213
2214out:
9f0c4fa1 2215 for_each_sibling_event(tmp, leader)
c320c7b7 2216 perf_event__header_size(tmp);
9f0c4fa1
KL
2217
2218 perf_event__header_size(leader);
04289bb9
IM
2219}
2220
ef54c1a4
PZ
2221static void sync_child_event(struct perf_event *child_event);
2222
2223static void perf_child_detach(struct perf_event *event)
2224{
2225 struct perf_event *parent_event = event->parent;
2226
2227 if (!(event->attach_state & PERF_ATTACH_CHILD))
2228 return;
2229
2230 event->attach_state &= ~PERF_ATTACH_CHILD;
2231
2232 if (WARN_ON_ONCE(!parent_event))
2233 return;
2234
2235 lockdep_assert_held(&parent_event->child_mutex);
2236
2237 sync_child_event(event);
2238 list_del_init(&event->child_list);
2239}
2240
fadfe7be
JO
2241static bool is_orphaned_event(struct perf_event *event)
2242{
a69b0ca4 2243 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
2244}
2245
fa66f07a
SE
2246static inline int
2247event_filter_match(struct perf_event *event)
2248{
0b8f1e2e 2249 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
bd275681 2250 perf_cgroup_match(event);
fa66f07a
SE
2251}
2252
9ffcfa6f 2253static void
bd275681 2254event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
3b6f9e5c 2255{
bd275681
PZ
2256 struct perf_event_pmu_context *epc = event->pmu_ctx;
2257 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
0d3d73aa 2258 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
652884fe 2259
bd275681
PZ
2260 // XXX cpc serialization, probably per-cpu IRQ disabled
2261
652884fe
PZ
2262 WARN_ON_ONCE(event->ctx != ctx);
2263 lockdep_assert_held(&ctx->lock);
2264
cdd6c482 2265 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 2266 return;
3b6f9e5c 2267
6668128a
PZ
2268 /*
2269 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2270 * we can schedule events _OUT_ individually through things like
2271 * __perf_remove_from_context().
2272 */
2273 list_del_init(&event->active_list);
2274
44377277
AS
2275 perf_pmu_disable(event->pmu);
2276
28a967c3
PZ
2277 event->pmu->del(event, 0);
2278 event->oncpu = -1;
0d3d73aa 2279
ca6c2132
PZ
2280 if (event->pending_disable) {
2281 event->pending_disable = 0;
33238c50 2282 perf_cgroup_event_disable(event, ctx);
0d3d73aa 2283 state = PERF_EVENT_STATE_OFF;
970892a9 2284 }
ca6c2132
PZ
2285
2286 if (event->pending_sigtrap) {
2287 bool dec = true;
2288
2289 event->pending_sigtrap = 0;
2290 if (state != PERF_EVENT_STATE_OFF &&
2291 !event->pending_work) {
2292 event->pending_work = 1;
2293 dec = false;
517e6a30 2294 WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount));
ca6c2132
PZ
2295 task_work_add(current, &event->pending_task, TWA_RESUME);
2296 }
2297 if (dec)
2298 local_dec(&event->ctx->nr_pending);
2299 }
2300
0d3d73aa 2301 perf_event_set_state(event, state);
3b6f9e5c 2302
cdd6c482 2303 if (!is_software_event(event))
bd275681 2304 cpc->active_oncpu--;
0259bf63 2305 if (event->attr.freq && event->attr.sample_freq) {
0f5a2601 2306 ctx->nr_freq--;
0259bf63
NK
2307 epc->nr_freq--;
2308 }
bd275681
PZ
2309 if (event->attr.exclusive || !cpc->active_oncpu)
2310 cpc->exclusive = 0;
44377277
AS
2311
2312 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
2313}
2314
d859e29f 2315static void
bd275681 2316group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
d859e29f 2317{
cdd6c482 2318 struct perf_event *event;
0d3d73aa
PZ
2319
2320 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2321 return;
d859e29f 2322
bd275681 2323 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
3f005e7d 2324
bd275681 2325 event_sched_out(group_event, ctx);
d859e29f
PM
2326
2327 /*
2328 * Schedule out siblings (if any):
2329 */
edb39592 2330 for_each_sibling_event(event, group_event)
bd275681 2331 event_sched_out(event, ctx);
d859e29f
PM
2332}
2333
45a0e07a 2334#define DETACH_GROUP 0x01UL
ef54c1a4 2335#define DETACH_CHILD 0x02UL
517e6a30 2336#define DETACH_DEAD 0x04UL
0017960f 2337
0793a61d 2338/*
cdd6c482 2339 * Cross CPU call to remove a performance event
0793a61d 2340 *
cdd6c482 2341 * We disable the event on the hardware level first. After that we
0793a61d
TG
2342 * remove it from the context list.
2343 */
fae3fde6
PZ
2344static void
2345__perf_remove_from_context(struct perf_event *event,
2346 struct perf_cpu_context *cpuctx,
2347 struct perf_event_context *ctx,
2348 void *info)
0793a61d 2349{
bd275681 2350 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
45a0e07a 2351 unsigned long flags = (unsigned long)info;
0793a61d 2352
3c5c8711
PZ
2353 if (ctx->is_active & EVENT_TIME) {
2354 update_context_time(ctx);
09f5e7dc 2355 update_cgrp_time_from_cpuctx(cpuctx, false);
3c5c8711
PZ
2356 }
2357
517e6a30
PZ
2358 /*
2359 * Ensure event_sched_out() switches to OFF, at the very least
2360 * this avoids raising perf_pending_task() at this time.
2361 */
2362 if (flags & DETACH_DEAD)
2363 event->pending_disable = 1;
bd275681 2364 event_sched_out(event, ctx);
45a0e07a 2365 if (flags & DETACH_GROUP)
46ce0fe9 2366 perf_group_detach(event);
ef54c1a4
PZ
2367 if (flags & DETACH_CHILD)
2368 perf_child_detach(event);
cdd6c482 2369 list_del_event(event, ctx);
517e6a30
PZ
2370 if (flags & DETACH_DEAD)
2371 event->state = PERF_EVENT_STATE_DEAD;
39a43640 2372
bd275681
PZ
2373 if (!pmu_ctx->nr_events) {
2374 pmu_ctx->rotate_necessary = 0;
2375
2376 if (ctx->task && ctx->is_active) {
2377 struct perf_cpu_pmu_context *cpc;
2378
2379 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2380 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2381 cpc->task_epc = NULL;
2382 }
2383 }
2384
39a43640 2385 if (!ctx->nr_events && ctx->is_active) {
09f5e7dc
PZ
2386 if (ctx == &cpuctx->ctx)
2387 update_cgrp_time_from_cpuctx(cpuctx, true);
2388
64ce3126 2389 ctx->is_active = 0;
39a43640
PZ
2390 if (ctx->task) {
2391 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2392 cpuctx->task_ctx = NULL;
2393 }
64ce3126 2394 }
0793a61d
TG
2395}
2396
0793a61d 2397/*
cdd6c482 2398 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 2399 *
cdd6c482
IM
2400 * If event->ctx is a cloned context, callers must make sure that
2401 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
2402 * remains valid. This is OK when called from perf_release since
2403 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 2404 * When called from perf_event_exit_task, it's OK because the
c93f7669 2405 * context has been detached from its task.
0793a61d 2406 */
45a0e07a 2407static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 2408{
a76a82a3
PZ
2409 struct perf_event_context *ctx = event->ctx;
2410
2411 lockdep_assert_held(&ctx->mutex);
0793a61d 2412
a76a82a3 2413 /*
ef54c1a4
PZ
2414 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2415 * to work in the face of TASK_TOMBSTONE, unlike every other
2416 * event_function_call() user.
a76a82a3 2417 */
ef54c1a4 2418 raw_spin_lock_irq(&ctx->lock);
bd275681
PZ
2419 if (!ctx->is_active) {
2420 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
ef54c1a4 2421 ctx, (void *)flags);
a76a82a3 2422 raw_spin_unlock_irq(&ctx->lock);
ef54c1a4 2423 return;
a76a82a3 2424 }
ef54c1a4
PZ
2425 raw_spin_unlock_irq(&ctx->lock);
2426
2427 event_function_call(event, __perf_remove_from_context, (void *)flags);
0793a61d
TG
2428}
2429
d859e29f 2430/*
cdd6c482 2431 * Cross CPU call to disable a performance event
d859e29f 2432 */
fae3fde6
PZ
2433static void __perf_event_disable(struct perf_event *event,
2434 struct perf_cpu_context *cpuctx,
2435 struct perf_event_context *ctx,
2436 void *info)
7b648018 2437{
fae3fde6
PZ
2438 if (event->state < PERF_EVENT_STATE_INACTIVE)
2439 return;
7b648018 2440
3c5c8711
PZ
2441 if (ctx->is_active & EVENT_TIME) {
2442 update_context_time(ctx);
2443 update_cgrp_time_from_event(event);
2444 }
2445
bd275681
PZ
2446 perf_pmu_disable(event->pmu_ctx->pmu);
2447
fae3fde6 2448 if (event == event->group_leader)
bd275681 2449 group_sched_out(event, ctx);
fae3fde6 2450 else
bd275681 2451 event_sched_out(event, ctx);
0d3d73aa
PZ
2452
2453 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
33238c50 2454 perf_cgroup_event_disable(event, ctx);
bd275681
PZ
2455
2456 perf_pmu_enable(event->pmu_ctx->pmu);
7b648018
PZ
2457}
2458
d859e29f 2459/*
788faab7 2460 * Disable an event.
c93f7669 2461 *
cdd6c482
IM
2462 * If event->ctx is a cloned context, callers must make sure that
2463 * every task struct that event->ctx->task could possibly point to
9f014e3a 2464 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2465 * perf_event_for_each_child or perf_event_for_each because they
2466 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
2467 * goes to exit will block in perf_event_exit_event().
2468 *
ca6c2132 2469 * When called from perf_pending_irq it's OK because event->ctx
c93f7669 2470 * is the current context on this CPU and preemption is disabled,
cdd6c482 2471 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 2472 */
f63a8daa 2473static void _perf_event_disable(struct perf_event *event)
d859e29f 2474{
cdd6c482 2475 struct perf_event_context *ctx = event->ctx;
d859e29f 2476
e625cce1 2477 raw_spin_lock_irq(&ctx->lock);
7b648018 2478 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 2479 raw_spin_unlock_irq(&ctx->lock);
7b648018 2480 return;
53cfbf59 2481 }
e625cce1 2482 raw_spin_unlock_irq(&ctx->lock);
7b648018 2483
fae3fde6
PZ
2484 event_function_call(event, __perf_event_disable, NULL);
2485}
2486
2487void perf_event_disable_local(struct perf_event *event)
2488{
2489 event_function_local(event, __perf_event_disable, NULL);
d859e29f 2490}
f63a8daa
PZ
2491
2492/*
2493 * Strictly speaking kernel users cannot create groups and therefore this
2494 * interface does not need the perf_event_ctx_lock() magic.
2495 */
2496void perf_event_disable(struct perf_event *event)
2497{
2498 struct perf_event_context *ctx;
2499
2500 ctx = perf_event_ctx_lock(event);
2501 _perf_event_disable(event);
2502 perf_event_ctx_unlock(event, ctx);
2503}
dcfce4a0 2504EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 2505
5aab90ce
JO
2506void perf_event_disable_inatomic(struct perf_event *event)
2507{
ca6c2132
PZ
2508 event->pending_disable = 1;
2509 irq_work_queue(&event->pending_irq);
5aab90ce
JO
2510}
2511
4fe757dd
PZ
2512#define MAX_INTERRUPTS (~0ULL)
2513
2514static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2515static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2516
235c7fc7 2517static int
bd275681 2518event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
235c7fc7 2519{
bd275681
PZ
2520 struct perf_event_pmu_context *epc = event->pmu_ctx;
2521 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
44377277 2522 int ret = 0;
4158755d 2523
ab6f824c
PZ
2524 WARN_ON_ONCE(event->ctx != ctx);
2525
63342411
PZ
2526 lockdep_assert_held(&ctx->lock);
2527
cdd6c482 2528 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2529 return 0;
2530
95ff4ca2
AS
2531 WRITE_ONCE(event->oncpu, smp_processor_id());
2532 /*
0c1cbc18
PZ
2533 * Order event::oncpu write to happen before the ACTIVE state is
2534 * visible. This allows perf_event_{stop,read}() to observe the correct
2535 * ->oncpu if it sees ACTIVE.
95ff4ca2
AS
2536 */
2537 smp_wmb();
0d3d73aa 2538 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2539
2540 /*
2541 * Unthrottle events, since we scheduled we might have missed several
2542 * ticks already, also for a heavily scheduling task there is little
2543 * guarantee it'll get a tick in a timely manner.
2544 */
2545 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2546 perf_log_throttle(event, 1);
2547 event->hw.interrupts = 0;
2548 }
2549
44377277
AS
2550 perf_pmu_disable(event->pmu);
2551
ec0d7729
AS
2552 perf_log_itrace_start(event);
2553
a4eaf7f1 2554 if (event->pmu->add(event, PERF_EF_START)) {
0d3d73aa 2555 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
cdd6c482 2556 event->oncpu = -1;
44377277
AS
2557 ret = -EAGAIN;
2558 goto out;
235c7fc7
IM
2559 }
2560
cdd6c482 2561 if (!is_software_event(event))
bd275681 2562 cpc->active_oncpu++;
0259bf63 2563 if (event->attr.freq && event->attr.sample_freq) {
0f5a2601 2564 ctx->nr_freq++;
0259bf63
NK
2565 epc->nr_freq++;
2566 }
cdd6c482 2567 if (event->attr.exclusive)
bd275681 2568 cpc->exclusive = 1;
3b6f9e5c 2569
44377277
AS
2570out:
2571 perf_pmu_enable(event->pmu);
2572
2573 return ret;
235c7fc7
IM
2574}
2575
6751b71e 2576static int
bd275681 2577group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
6751b71e 2578{
6bde9b6c 2579 struct perf_event *event, *partial_group = NULL;
bd275681 2580 struct pmu *pmu = group_event->pmu_ctx->pmu;
6751b71e 2581
cdd6c482 2582 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2583 return 0;
2584
fbbe0701 2585 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2586
bd275681 2587 if (event_sched_in(group_event, ctx))
251ff2d4 2588 goto error;
6751b71e
PM
2589
2590 /*
2591 * Schedule in siblings as one group (if any):
2592 */
edb39592 2593 for_each_sibling_event(event, group_event) {
bd275681 2594 if (event_sched_in(event, ctx)) {
cdd6c482 2595 partial_group = event;
6751b71e
PM
2596 goto group_error;
2597 }
2598 }
2599
9ffcfa6f 2600 if (!pmu->commit_txn(pmu))
6e85158c 2601 return 0;
9ffcfa6f 2602
6751b71e
PM
2603group_error:
2604 /*
2605 * Groups can be scheduled in as one unit only, so undo any
2606 * partial group before returning:
0d3d73aa 2607 * The events up to the failed event are scheduled out normally.
6751b71e 2608 */
edb39592 2609 for_each_sibling_event(event, group_event) {
cdd6c482 2610 if (event == partial_group)
0d3d73aa 2611 break;
d7842da4 2612
bd275681 2613 event_sched_out(event, ctx);
6751b71e 2614 }
bd275681 2615 event_sched_out(group_event, ctx);
6751b71e 2616
251ff2d4 2617error:
ad5133b7 2618 pmu->cancel_txn(pmu);
6751b71e
PM
2619 return -EAGAIN;
2620}
2621
3b6f9e5c 2622/*
cdd6c482 2623 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2624 */
bd275681 2625static int group_can_go_on(struct perf_event *event, int can_add_hw)
3b6f9e5c 2626{
bd275681
PZ
2627 struct perf_event_pmu_context *epc = event->pmu_ctx;
2628 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2629
3b6f9e5c 2630 /*
cdd6c482 2631 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2632 */
4ff6a8de 2633 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2634 return 1;
2635 /*
2636 * If an exclusive group is already on, no other hardware
cdd6c482 2637 * events can go on.
3b6f9e5c 2638 */
bd275681 2639 if (cpc->exclusive)
3b6f9e5c
PM
2640 return 0;
2641 /*
2642 * If this group is exclusive and there are already
cdd6c482 2643 * events on the CPU, it can't go on.
3b6f9e5c 2644 */
1908dc91 2645 if (event->attr.exclusive && !list_empty(get_event_list(event)))
3b6f9e5c
PM
2646 return 0;
2647 /*
2648 * Otherwise, try to add it if all previous groups were able
2649 * to go on.
2650 */
2651 return can_add_hw;
2652}
2653
cdd6c482
IM
2654static void add_event_to_ctx(struct perf_event *event,
2655 struct perf_event_context *ctx)
53cfbf59 2656{
cdd6c482 2657 list_add_event(event, ctx);
8a49542c 2658 perf_group_attach(event);
53cfbf59
PM
2659}
2660
bd275681
PZ
2661static void task_ctx_sched_out(struct perf_event_context *ctx,
2662 enum event_type_t event_type)
bd2afa49 2663{
bd275681
PZ
2664 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2665
bd2afa49
PZ
2666 if (!cpuctx->task_ctx)
2667 return;
2668
2669 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2670 return;
2671
bd275681 2672 ctx_sched_out(ctx, event_type);
bd2afa49
PZ
2673}
2674
dce5855b 2675static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
a0827713 2676 struct perf_event_context *ctx)
dce5855b 2677{
bd275681 2678 ctx_sched_in(&cpuctx->ctx, EVENT_PINNED);
dce5855b 2679 if (ctx)
bd275681
PZ
2680 ctx_sched_in(ctx, EVENT_PINNED);
2681 ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE);
dce5855b 2682 if (ctx)
bd275681 2683 ctx_sched_in(ctx, EVENT_FLEXIBLE);
dce5855b
PZ
2684}
2685
487f05e1
AS
2686/*
2687 * We want to maintain the following priority of scheduling:
2688 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2689 * - task pinned (EVENT_PINNED)
2690 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2691 * - task flexible (EVENT_FLEXIBLE).
2692 *
2693 * In order to avoid unscheduling and scheduling back in everything every
2694 * time an event is added, only do it for the groups of equal priority and
2695 * below.
2696 *
2697 * This can be called after a batch operation on task events, in which case
2698 * event_type is a bit mask of the types of events involved. For CPU events,
2699 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2700 */
bd275681
PZ
2701/*
2702 * XXX: ctx_resched() reschedule entire perf_event_context while adding new
2703 * event to the context or enabling existing event in the context. We can
2704 * probably optimize it by rescheduling only affected pmu_ctx.
2705 */
3e349507 2706static void ctx_resched(struct perf_cpu_context *cpuctx,
487f05e1
AS
2707 struct perf_event_context *task_ctx,
2708 enum event_type_t event_type)
0017960f 2709{
487f05e1
AS
2710 bool cpu_event = !!(event_type & EVENT_CPU);
2711
2712 /*
2713 * If pinned groups are involved, flexible groups also need to be
2714 * scheduled out.
2715 */
2716 if (event_type & EVENT_PINNED)
2717 event_type |= EVENT_FLEXIBLE;
2718
bd275681 2719 event_type &= EVENT_ALL;
bd903afe 2720
f06cc667 2721 perf_ctx_disable(&cpuctx->ctx, false);
bd275681 2722 if (task_ctx) {
f06cc667 2723 perf_ctx_disable(task_ctx, false);
bd275681
PZ
2724 task_ctx_sched_out(task_ctx, event_type);
2725 }
487f05e1
AS
2726
2727 /*
2728 * Decide which cpu ctx groups to schedule out based on the types
2729 * of events that caused rescheduling:
2730 * - EVENT_CPU: schedule out corresponding groups;
2731 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2732 * - otherwise, do nothing more.
2733 */
2734 if (cpu_event)
bd275681
PZ
2735 ctx_sched_out(&cpuctx->ctx, event_type);
2736 else if (event_type & EVENT_PINNED)
2737 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
487f05e1 2738
a0827713 2739 perf_event_sched_in(cpuctx, task_ctx);
bd275681 2740
f06cc667 2741 perf_ctx_enable(&cpuctx->ctx, false);
bd275681 2742 if (task_ctx)
f06cc667 2743 perf_ctx_enable(task_ctx, false);
0017960f
PZ
2744}
2745
c68d224e
SE
2746void perf_pmu_resched(struct pmu *pmu)
2747{
bd275681 2748 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
c68d224e
SE
2749 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2750
2751 perf_ctx_lock(cpuctx, task_ctx);
2752 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2753 perf_ctx_unlock(cpuctx, task_ctx);
2754}
2755
0793a61d 2756/*
cdd6c482 2757 * Cross CPU call to install and enable a performance event
682076ae 2758 *
a096309b
PZ
2759 * Very similar to remote_function() + event_function() but cannot assume that
2760 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2761 */
fe4b04fa 2762static int __perf_install_in_context(void *info)
0793a61d 2763{
a096309b
PZ
2764 struct perf_event *event = info;
2765 struct perf_event_context *ctx = event->ctx;
bd275681 2766 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2c29ef0f 2767 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2768 bool reprogram = true;
a096309b 2769 int ret = 0;
0793a61d 2770
63b6da39 2771 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2772 if (ctx->task) {
b58f6b0d
PZ
2773 raw_spin_lock(&ctx->lock);
2774 task_ctx = ctx;
a096309b 2775
63cae12b 2776 reprogram = (ctx->task == current);
b58f6b0d 2777
39a43640 2778 /*
63cae12b
PZ
2779 * If the task is running, it must be running on this CPU,
2780 * otherwise we cannot reprogram things.
2781 *
2782 * If its not running, we don't care, ctx->lock will
2783 * serialize against it becoming runnable.
39a43640 2784 */
63cae12b
PZ
2785 if (task_curr(ctx->task) && !reprogram) {
2786 ret = -ESRCH;
2787 goto unlock;
2788 }
a096309b 2789
63cae12b 2790 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2791 } else if (task_ctx) {
2792 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2793 }
b58f6b0d 2794
33801b94 2795#ifdef CONFIG_CGROUP_PERF
33238c50 2796 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
33801b94 2797 /*
2798 * If the current cgroup doesn't match the event's
2799 * cgroup, we should not try to schedule it.
2800 */
2801 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2802 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2803 event->cgrp->css.cgroup);
2804 }
2805#endif
2806
63cae12b 2807 if (reprogram) {
bd275681 2808 ctx_sched_out(ctx, EVENT_TIME);
a096309b 2809 add_event_to_ctx(event, ctx);
487f05e1 2810 ctx_resched(cpuctx, task_ctx, get_event_type(event));
a096309b
PZ
2811 } else {
2812 add_event_to_ctx(event, ctx);
2813 }
2814
63b6da39 2815unlock:
2c29ef0f 2816 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2817
a096309b 2818 return ret;
0793a61d
TG
2819}
2820
8a58ddae
AS
2821static bool exclusive_event_installable(struct perf_event *event,
2822 struct perf_event_context *ctx);
2823
0793a61d 2824/*
a096309b
PZ
2825 * Attach a performance event to a context.
2826 *
2827 * Very similar to event_function_call, see comment there.
0793a61d
TG
2828 */
2829static void
cdd6c482
IM
2830perf_install_in_context(struct perf_event_context *ctx,
2831 struct perf_event *event,
0793a61d
TG
2832 int cpu)
2833{
a096309b 2834 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2835
fe4b04fa
PZ
2836 lockdep_assert_held(&ctx->mutex);
2837
8a58ddae
AS
2838 WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2839
0cda4c02 2840 if (event->cpu != -1)
bd275681 2841 WARN_ON_ONCE(event->cpu != cpu);
c3f00c70 2842
0b8f1e2e
PZ
2843 /*
2844 * Ensures that if we can observe event->ctx, both the event and ctx
2845 * will be 'complete'. See perf_iterate_sb_cpu().
2846 */
2847 smp_store_release(&event->ctx, ctx);
2848
db0503e4
PZ
2849 /*
2850 * perf_event_attr::disabled events will not run and can be initialized
2851 * without IPI. Except when this is the first event for the context, in
2852 * that case we need the magic of the IPI to set ctx->is_active.
2853 *
2854 * The IOC_ENABLE that is sure to follow the creation of a disabled
2855 * event will issue the IPI and reprogram the hardware.
2856 */
c5de60cd
NK
2857 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2858 ctx->nr_events && !is_cgroup_event(event)) {
db0503e4
PZ
2859 raw_spin_lock_irq(&ctx->lock);
2860 if (ctx->task == TASK_TOMBSTONE) {
2861 raw_spin_unlock_irq(&ctx->lock);
2862 return;
2863 }
2864 add_event_to_ctx(event, ctx);
2865 raw_spin_unlock_irq(&ctx->lock);
2866 return;
2867 }
2868
a096309b
PZ
2869 if (!task) {
2870 cpu_function_call(cpu, __perf_install_in_context, event);
2871 return;
2872 }
2873
2874 /*
2875 * Should not happen, we validate the ctx is still alive before calling.
2876 */
2877 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2878 return;
2879
39a43640
PZ
2880 /*
2881 * Installing events is tricky because we cannot rely on ctx->is_active
2882 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2883 *
2884 * Instead we use task_curr(), which tells us if the task is running.
2885 * However, since we use task_curr() outside of rq::lock, we can race
2886 * against the actual state. This means the result can be wrong.
2887 *
2888 * If we get a false positive, we retry, this is harmless.
2889 *
2890 * If we get a false negative, things are complicated. If we are after
2891 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2892 * value must be correct. If we're before, it doesn't matter since
2893 * perf_event_context_sched_in() will program the counter.
2894 *
2895 * However, this hinges on the remote context switch having observed
2896 * our task->perf_event_ctxp[] store, such that it will in fact take
2897 * ctx::lock in perf_event_context_sched_in().
2898 *
2899 * We do this by task_function_call(), if the IPI fails to hit the task
2900 * we know any future context switch of task must see the
2901 * perf_event_ctpx[] store.
39a43640 2902 */
63cae12b 2903
63b6da39 2904 /*
63cae12b
PZ
2905 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2906 * task_cpu() load, such that if the IPI then does not find the task
2907 * running, a future context switch of that task must observe the
2908 * store.
63b6da39 2909 */
63cae12b
PZ
2910 smp_mb();
2911again:
2912 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2913 return;
2914
2915 raw_spin_lock_irq(&ctx->lock);
2916 task = ctx->task;
84c4e620 2917 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2918 /*
2919 * Cannot happen because we already checked above (which also
2920 * cannot happen), and we hold ctx->mutex, which serializes us
2921 * against perf_event_exit_task_context().
2922 */
63b6da39
PZ
2923 raw_spin_unlock_irq(&ctx->lock);
2924 return;
2925 }
39a43640 2926 /*
63cae12b
PZ
2927 * If the task is not running, ctx->lock will avoid it becoming so,
2928 * thus we can safely install the event.
39a43640 2929 */
63cae12b
PZ
2930 if (task_curr(task)) {
2931 raw_spin_unlock_irq(&ctx->lock);
2932 goto again;
2933 }
2934 add_event_to_ctx(event, ctx);
2935 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2936}
2937
d859e29f 2938/*
cdd6c482 2939 * Cross CPU call to enable a performance event
d859e29f 2940 */
fae3fde6
PZ
2941static void __perf_event_enable(struct perf_event *event,
2942 struct perf_cpu_context *cpuctx,
2943 struct perf_event_context *ctx,
2944 void *info)
04289bb9 2945{
cdd6c482 2946 struct perf_event *leader = event->group_leader;
fae3fde6 2947 struct perf_event_context *task_ctx;
04289bb9 2948
6e801e01
PZ
2949 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2950 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2951 return;
3cbed429 2952
bd2afa49 2953 if (ctx->is_active)
bd275681 2954 ctx_sched_out(ctx, EVENT_TIME);
bd2afa49 2955
0d3d73aa 2956 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
33238c50 2957 perf_cgroup_event_enable(event, ctx);
04289bb9 2958
fae3fde6
PZ
2959 if (!ctx->is_active)
2960 return;
2961
e5d1367f 2962 if (!event_filter_match(event)) {
bd275681 2963 ctx_sched_in(ctx, EVENT_TIME);
fae3fde6 2964 return;
e5d1367f 2965 }
f4c4176f 2966
04289bb9 2967 /*
cdd6c482 2968 * If the event is in a group and isn't the group leader,
d859e29f 2969 * then don't put it on unless the group is on.
04289bb9 2970 */
bd2afa49 2971 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
bd275681 2972 ctx_sched_in(ctx, EVENT_TIME);
fae3fde6 2973 return;
bd2afa49 2974 }
fe4b04fa 2975
fae3fde6
PZ
2976 task_ctx = cpuctx->task_ctx;
2977 if (ctx->task)
2978 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2979
487f05e1 2980 ctx_resched(cpuctx, task_ctx, get_event_type(event));
7b648018
PZ
2981}
2982
d859e29f 2983/*
788faab7 2984 * Enable an event.
c93f7669 2985 *
cdd6c482
IM
2986 * If event->ctx is a cloned context, callers must make sure that
2987 * every task struct that event->ctx->task could possibly point to
c93f7669 2988 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2989 * perf_event_for_each_child or perf_event_for_each as described
2990 * for perf_event_disable.
d859e29f 2991 */
f63a8daa 2992static void _perf_event_enable(struct perf_event *event)
d859e29f 2993{
cdd6c482 2994 struct perf_event_context *ctx = event->ctx;
d859e29f 2995
7b648018 2996 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2997 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2998 event->state < PERF_EVENT_STATE_ERROR) {
9f0c4fa1 2999out:
7b648018 3000 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
3001 return;
3002 }
3003
d859e29f 3004 /*
cdd6c482 3005 * If the event is in error state, clear that first.
7b648018
PZ
3006 *
3007 * That way, if we see the event in error state below, we know that it
3008 * has gone back into error state, as distinct from the task having
3009 * been scheduled away before the cross-call arrived.
d859e29f 3010 */
9f0c4fa1
KL
3011 if (event->state == PERF_EVENT_STATE_ERROR) {
3012 /*
3013 * Detached SIBLING events cannot leave ERROR state.
3014 */
3015 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3016 event->group_leader == event)
3017 goto out;
3018
cdd6c482 3019 event->state = PERF_EVENT_STATE_OFF;
9f0c4fa1 3020 }
e625cce1 3021 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 3022
fae3fde6 3023 event_function_call(event, __perf_event_enable, NULL);
d859e29f 3024}
f63a8daa
PZ
3025
3026/*
3027 * See perf_event_disable();
3028 */
3029void perf_event_enable(struct perf_event *event)
3030{
3031 struct perf_event_context *ctx;
3032
3033 ctx = perf_event_ctx_lock(event);
3034 _perf_event_enable(event);
3035 perf_event_ctx_unlock(event, ctx);
3036}
dcfce4a0 3037EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 3038
375637bc
AS
3039struct stop_event_data {
3040 struct perf_event *event;
3041 unsigned int restart;
3042};
3043
95ff4ca2
AS
3044static int __perf_event_stop(void *info)
3045{
375637bc
AS
3046 struct stop_event_data *sd = info;
3047 struct perf_event *event = sd->event;
95ff4ca2 3048
375637bc 3049 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
3050 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3051 return 0;
3052
3053 /* matches smp_wmb() in event_sched_in() */
3054 smp_rmb();
3055
3056 /*
3057 * There is a window with interrupts enabled before we get here,
3058 * so we need to check again lest we try to stop another CPU's event.
3059 */
3060 if (READ_ONCE(event->oncpu) != smp_processor_id())
3061 return -EAGAIN;
3062
3063 event->pmu->stop(event, PERF_EF_UPDATE);
3064
375637bc
AS
3065 /*
3066 * May race with the actual stop (through perf_pmu_output_stop()),
3067 * but it is only used for events with AUX ring buffer, and such
3068 * events will refuse to restart because of rb::aux_mmap_count==0,
3069 * see comments in perf_aux_output_begin().
3070 *
788faab7 3071 * Since this is happening on an event-local CPU, no trace is lost
375637bc
AS
3072 * while restarting.
3073 */
3074 if (sd->restart)
c9bbdd48 3075 event->pmu->start(event, 0);
375637bc 3076
95ff4ca2
AS
3077 return 0;
3078}
3079
767ae086 3080static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
3081{
3082 struct stop_event_data sd = {
3083 .event = event,
767ae086 3084 .restart = restart,
375637bc
AS
3085 };
3086 int ret = 0;
3087
3088 do {
3089 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3090 return 0;
3091
3092 /* matches smp_wmb() in event_sched_in() */
3093 smp_rmb();
3094
3095 /*
3096 * We only want to restart ACTIVE events, so if the event goes
3097 * inactive here (event->oncpu==-1), there's nothing more to do;
3098 * fall through with ret==-ENXIO.
3099 */
3100 ret = cpu_function_call(READ_ONCE(event->oncpu),
3101 __perf_event_stop, &sd);
3102 } while (ret == -EAGAIN);
3103
3104 return ret;
3105}
3106
3107/*
3108 * In order to contain the amount of racy and tricky in the address filter
3109 * configuration management, it is a two part process:
3110 *
3111 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3112 * we update the addresses of corresponding vmas in
c60f83b8 3113 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
375637bc
AS
3114 * (p2) when an event is scheduled in (pmu::add), it calls
3115 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3116 * if the generation has changed since the previous call.
3117 *
3118 * If (p1) happens while the event is active, we restart it to force (p2).
3119 *
3120 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3121 * pre-existing mappings, called once when new filters arrive via SET_FILTER
3122 * ioctl;
3123 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
c1e8d7c6 3124 * registered mapping, called for every new mmap(), with mm::mmap_lock down
375637bc
AS
3125 * for reading;
3126 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3127 * of exec.
3128 */
3129void perf_event_addr_filters_sync(struct perf_event *event)
3130{
3131 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3132
3133 if (!has_addr_filter(event))
3134 return;
3135
3136 raw_spin_lock(&ifh->lock);
3137 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3138 event->pmu->addr_filters_sync(event);
3139 event->hw.addr_filters_gen = event->addr_filters_gen;
3140 }
3141 raw_spin_unlock(&ifh->lock);
3142}
3143EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3144
f63a8daa 3145static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 3146{
2023b359 3147 /*
cdd6c482 3148 * not supported on inherited events
2023b359 3149 */
2e939d1d 3150 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
3151 return -EINVAL;
3152
cdd6c482 3153 atomic_add(refresh, &event->event_limit);
f63a8daa 3154 _perf_event_enable(event);
2023b359
PZ
3155
3156 return 0;
79f14641 3157}
f63a8daa
PZ
3158
3159/*
3160 * See perf_event_disable()
3161 */
3162int perf_event_refresh(struct perf_event *event, int refresh)
3163{
3164 struct perf_event_context *ctx;
3165 int ret;
3166
3167 ctx = perf_event_ctx_lock(event);
3168 ret = _perf_event_refresh(event, refresh);
3169 perf_event_ctx_unlock(event, ctx);
3170
3171 return ret;
3172}
26ca5c11 3173EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 3174
32ff77e8
MC
3175static int perf_event_modify_breakpoint(struct perf_event *bp,
3176 struct perf_event_attr *attr)
3177{
3178 int err;
3179
3180 _perf_event_disable(bp);
3181
3182 err = modify_user_hw_breakpoint_check(bp, attr, true);
32ff77e8 3183
bf06278c 3184 if (!bp->attr.disabled)
32ff77e8 3185 _perf_event_enable(bp);
bf06278c
JO
3186
3187 return err;
32ff77e8
MC
3188}
3189
3c25fc97
ME
3190/*
3191 * Copy event-type-independent attributes that may be modified.
3192 */
3193static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3194 const struct perf_event_attr *from)
3195{
3196 to->sig_data = from->sig_data;
3197}
3198
32ff77e8
MC
3199static int perf_event_modify_attr(struct perf_event *event,
3200 struct perf_event_attr *attr)
3201{
47f661ec
ME
3202 int (*func)(struct perf_event *, struct perf_event_attr *);
3203 struct perf_event *child;
3204 int err;
3205
32ff77e8
MC
3206 if (event->attr.type != attr->type)
3207 return -EINVAL;
3208
3209 switch (event->attr.type) {
3210 case PERF_TYPE_BREAKPOINT:
47f661ec
ME
3211 func = perf_event_modify_breakpoint;
3212 break;
32ff77e8
MC
3213 default:
3214 /* Place holder for future additions. */
3215 return -EOPNOTSUPP;
3216 }
47f661ec
ME
3217
3218 WARN_ON_ONCE(event->ctx->parent_ctx);
3219
3220 mutex_lock(&event->child_mutex);
3c25fc97
ME
3221 /*
3222 * Event-type-independent attributes must be copied before event-type
3223 * modification, which will validate that final attributes match the
3224 * source attributes after all relevant attributes have been copied.
3225 */
3226 perf_event_modify_copy_attr(&event->attr, attr);
47f661ec
ME
3227 err = func(event, attr);
3228 if (err)
3229 goto out;
3230 list_for_each_entry(child, &event->child_list, child_list) {
3c25fc97 3231 perf_event_modify_copy_attr(&child->attr, attr);
47f661ec
ME
3232 err = func(child, attr);
3233 if (err)
3234 goto out;
3235 }
3236out:
3237 mutex_unlock(&event->child_mutex);
3238 return err;
32ff77e8
MC
3239}
3240
bd275681
PZ
3241static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3242 enum event_type_t event_type)
235c7fc7 3243{
bd275681 3244 struct perf_event_context *ctx = pmu_ctx->ctx;
6668128a 3245 struct perf_event *event, *tmp;
bd275681
PZ
3246 struct pmu *pmu = pmu_ctx->pmu;
3247
3248 if (ctx->task && !ctx->is_active) {
3249 struct perf_cpu_pmu_context *cpc;
3250
3251 cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3252 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3253 cpc->task_epc = NULL;
3254 }
3255
3256 if (!event_type)
3257 return;
3258
3259 perf_pmu_disable(pmu);
3260 if (event_type & EVENT_PINNED) {
3261 list_for_each_entry_safe(event, tmp,
3262 &pmu_ctx->pinned_active,
3263 active_list)
3264 group_sched_out(event, ctx);
3265 }
3266
3267 if (event_type & EVENT_FLEXIBLE) {
3268 list_for_each_entry_safe(event, tmp,
3269 &pmu_ctx->flexible_active,
3270 active_list)
3271 group_sched_out(event, ctx);
3272 /*
3273 * Since we cleared EVENT_FLEXIBLE, also clear
3274 * rotate_necessary, is will be reset by
3275 * ctx_flexible_sched_in() when needed.
3276 */
3277 pmu_ctx->rotate_necessary = 0;
3278 }
3279 perf_pmu_enable(pmu);
3280}
3281
3282static void
3283ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type)
3284{
3285 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3286 struct perf_event_pmu_context *pmu_ctx;
db24d33e 3287 int is_active = ctx->is_active;
f06cc667
PZ
3288 bool cgroup = event_type & EVENT_CGROUP;
3289
3290 event_type &= ~EVENT_CGROUP;
235c7fc7 3291
c994d613 3292 lockdep_assert_held(&ctx->lock);
235c7fc7 3293
39a43640
PZ
3294 if (likely(!ctx->nr_events)) {
3295 /*
3296 * See __perf_remove_from_context().
3297 */
3298 WARN_ON_ONCE(ctx->is_active);
3299 if (ctx->task)
3300 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 3301 return;
39a43640
PZ
3302 }
3303
8fdc6539
PZ
3304 /*
3305 * Always update time if it was set; not only when it changes.
3306 * Otherwise we can 'forget' to update time for any but the last
3307 * context we sched out. For example:
3308 *
3309 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3310 * ctx_sched_out(.event_type = EVENT_PINNED)
3311 *
3312 * would only update time for the pinned events.
3313 */
3cbaa590
PZ
3314 if (is_active & EVENT_TIME) {
3315 /* update (and stop) ctx time */
3316 update_context_time(ctx);
09f5e7dc
PZ
3317 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3318 /*
3319 * CPU-release for the below ->is_active store,
3320 * see __load_acquire() in perf_event_time_now()
3321 */
3322 barrier();
3323 }
3324
3325 ctx->is_active &= ~event_type;
3326 if (!(ctx->is_active & EVENT_ALL))
3327 ctx->is_active = 0;
3328
3329 if (ctx->task) {
3330 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3331 if (!ctx->is_active)
3332 cpuctx->task_ctx = NULL;
3cbaa590
PZ
3333 }
3334
8fdc6539
PZ
3335 is_active ^= ctx->is_active; /* changed bits */
3336
f06cc667
PZ
3337 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3338 if (cgroup && !pmu_ctx->nr_cgroups)
3339 continue;
bd275681 3340 __pmu_ctx_sched_out(pmu_ctx, is_active);
f06cc667 3341 }
235c7fc7
IM
3342}
3343
564c2b21 3344/*
5a3126d4
PZ
3345 * Test whether two contexts are equivalent, i.e. whether they have both been
3346 * cloned from the same version of the same context.
3347 *
3348 * Equivalence is measured using a generation number in the context that is
3349 * incremented on each modification to it; see unclone_ctx(), list_add_event()
3350 * and list_del_event().
564c2b21 3351 */
cdd6c482
IM
3352static int context_equiv(struct perf_event_context *ctx1,
3353 struct perf_event_context *ctx2)
564c2b21 3354{
211de6eb
PZ
3355 lockdep_assert_held(&ctx1->lock);
3356 lockdep_assert_held(&ctx2->lock);
3357
5a3126d4
PZ
3358 /* Pinning disables the swap optimization */
3359 if (ctx1->pin_count || ctx2->pin_count)
3360 return 0;
3361
3362 /* If ctx1 is the parent of ctx2 */
3363 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3364 return 1;
3365
3366 /* If ctx2 is the parent of ctx1 */
3367 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3368 return 1;
3369
3370 /*
3371 * If ctx1 and ctx2 have the same parent; we flatten the parent
3372 * hierarchy, see perf_event_init_context().
3373 */
3374 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3375 ctx1->parent_gen == ctx2->parent_gen)
3376 return 1;
3377
3378 /* Unmatched */
3379 return 0;
564c2b21
PM
3380}
3381
cdd6c482
IM
3382static void __perf_event_sync_stat(struct perf_event *event,
3383 struct perf_event *next_event)
bfbd3381
PZ
3384{
3385 u64 value;
3386
cdd6c482 3387 if (!event->attr.inherit_stat)
bfbd3381
PZ
3388 return;
3389
3390 /*
cdd6c482 3391 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
3392 * because we're in the middle of a context switch and have IRQs
3393 * disabled, which upsets smp_call_function_single(), however
cdd6c482 3394 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
3395 * don't need to use it.
3396 */
0d3d73aa 3397 if (event->state == PERF_EVENT_STATE_ACTIVE)
3dbebf15 3398 event->pmu->read(event);
bfbd3381 3399
0d3d73aa 3400 perf_event_update_time(event);
bfbd3381
PZ
3401
3402 /*
cdd6c482 3403 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
3404 * values when we flip the contexts.
3405 */
e7850595
PZ
3406 value = local64_read(&next_event->count);
3407 value = local64_xchg(&event->count, value);
3408 local64_set(&next_event->count, value);
bfbd3381 3409
cdd6c482
IM
3410 swap(event->total_time_enabled, next_event->total_time_enabled);
3411 swap(event->total_time_running, next_event->total_time_running);
19d2e755 3412
bfbd3381 3413 /*
19d2e755 3414 * Since we swizzled the values, update the user visible data too.
bfbd3381 3415 */
cdd6c482
IM
3416 perf_event_update_userpage(event);
3417 perf_event_update_userpage(next_event);
bfbd3381
PZ
3418}
3419
cdd6c482
IM
3420static void perf_event_sync_stat(struct perf_event_context *ctx,
3421 struct perf_event_context *next_ctx)
bfbd3381 3422{
cdd6c482 3423 struct perf_event *event, *next_event;
bfbd3381
PZ
3424
3425 if (!ctx->nr_stat)
3426 return;
3427
02ffdbc8
PZ
3428 update_context_time(ctx);
3429
cdd6c482
IM
3430 event = list_first_entry(&ctx->event_list,
3431 struct perf_event, event_entry);
bfbd3381 3432
cdd6c482
IM
3433 next_event = list_first_entry(&next_ctx->event_list,
3434 struct perf_event, event_entry);
bfbd3381 3435
cdd6c482
IM
3436 while (&event->event_entry != &ctx->event_list &&
3437 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 3438
cdd6c482 3439 __perf_event_sync_stat(event, next_event);
bfbd3381 3440
cdd6c482
IM
3441 event = list_next_entry(event, event_entry);
3442 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
3443 }
3444}
3445
bd275681
PZ
3446#define double_list_for_each_entry(pos1, pos2, head1, head2, member) \
3447 for (pos1 = list_first_entry(head1, typeof(*pos1), member), \
3448 pos2 = list_first_entry(head2, typeof(*pos2), member); \
3449 !list_entry_is_head(pos1, head1, member) && \
3450 !list_entry_is_head(pos2, head2, member); \
3451 pos1 = list_next_entry(pos1, member), \
3452 pos2 = list_next_entry(pos2, member))
3453
3454static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3455 struct perf_event_context *next_ctx)
3456{
3457 struct perf_event_pmu_context *prev_epc, *next_epc;
3458
3459 if (!prev_ctx->nr_task_data)
3460 return;
3461
3462 double_list_for_each_entry(prev_epc, next_epc,
3463 &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3464 pmu_ctx_entry) {
3465
3466 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3467 continue;
3468
3469 /*
3470 * PMU specific parts of task perf context can require
3471 * additional synchronization. As an example of such
3472 * synchronization see implementation details of Intel
3473 * LBR call stack data profiling;
3474 */
3475 if (prev_epc->pmu->swap_task_ctx)
3476 prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3477 else
3478 swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3479 }
3480}
3481
3482static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3483{
3484 struct perf_event_pmu_context *pmu_ctx;
3485 struct perf_cpu_pmu_context *cpc;
3486
3487 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3488 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3489
3490 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3491 pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3492 }
3493}
3494
3495static void
3496perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
0793a61d 3497{
bd275681 3498 struct perf_event_context *ctx = task->perf_event_ctxp;
cdd6c482 3499 struct perf_event_context *next_ctx;
5a3126d4 3500 struct perf_event_context *parent, *next_parent;
c93f7669 3501 int do_switch = 1;
0793a61d 3502
108b02cf
PZ
3503 if (likely(!ctx))
3504 return;
10989fb2 3505
c93f7669 3506 rcu_read_lock();
bd275681 3507 next_ctx = rcu_dereference(next->perf_event_ctxp);
5a3126d4
PZ
3508 if (!next_ctx)
3509 goto unlock;
3510
3511 parent = rcu_dereference(ctx->parent_ctx);
3512 next_parent = rcu_dereference(next_ctx->parent_ctx);
3513
3514 /* If neither context have a parent context; they cannot be clones. */
802c8a61 3515 if (!parent && !next_parent)
5a3126d4
PZ
3516 goto unlock;
3517
3518 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
3519 /*
3520 * Looks like the two contexts are clones, so we might be
3521 * able to optimize the context switch. We lock both
3522 * contexts and check that they are clones under the
3523 * lock (including re-checking that neither has been
3524 * uncloned in the meantime). It doesn't matter which
3525 * order we take the locks because no other cpu could
3526 * be trying to lock both of these tasks.
3527 */
e625cce1
TG
3528 raw_spin_lock(&ctx->lock);
3529 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 3530 if (context_equiv(ctx, next_ctx)) {
c2b98a86 3531
f06cc667 3532 perf_ctx_disable(ctx, false);
ca6c2132
PZ
3533
3534 /* PMIs are disabled; ctx->nr_pending is stable. */
3535 if (local_read(&ctx->nr_pending) ||
3536 local_read(&next_ctx->nr_pending)) {
3537 /*
3538 * Must not swap out ctx when there's pending
3539 * events that rely on the ctx->task relation.
3540 */
3541 raw_spin_unlock(&next_ctx->lock);
3542 rcu_read_unlock();
3543 goto inside_switch;
3544 }
3545
63b6da39
PZ
3546 WRITE_ONCE(ctx->task, next);
3547 WRITE_ONCE(next_ctx->task, task);
5a158c3c 3548
bd275681
PZ
3549 perf_ctx_sched_task_cb(ctx, false);
3550 perf_event_swap_task_ctx_data(ctx, next_ctx);
5a158c3c 3551
f06cc667 3552 perf_ctx_enable(ctx, false);
44fae179 3553
63b6da39
PZ
3554 /*
3555 * RCU_INIT_POINTER here is safe because we've not
3556 * modified the ctx and the above modification of
3557 * ctx->task and ctx->task_ctx_data are immaterial
3558 * since those values are always verified under
3559 * ctx->lock which we're now holding.
3560 */
bd275681
PZ
3561 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3562 RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
63b6da39 3563
c93f7669 3564 do_switch = 0;
bfbd3381 3565
cdd6c482 3566 perf_event_sync_stat(ctx, next_ctx);
c93f7669 3567 }
e625cce1
TG
3568 raw_spin_unlock(&next_ctx->lock);
3569 raw_spin_unlock(&ctx->lock);
564c2b21 3570 }
5a3126d4 3571unlock:
c93f7669 3572 rcu_read_unlock();
564c2b21 3573
c93f7669 3574 if (do_switch) {
facc4307 3575 raw_spin_lock(&ctx->lock);
f06cc667 3576 perf_ctx_disable(ctx, false);
44fae179 3577
ca6c2132 3578inside_switch:
bd275681
PZ
3579 perf_ctx_sched_task_cb(ctx, false);
3580 task_ctx_sched_out(ctx, EVENT_ALL);
44fae179 3581
f06cc667 3582 perf_ctx_enable(ctx, false);
facc4307 3583 raw_spin_unlock(&ctx->lock);
c93f7669 3584 }
0793a61d
TG
3585}
3586
a5398bff 3587static DEFINE_PER_CPU(struct list_head, sched_cb_list);
bd275681 3588static DEFINE_PER_CPU(int, perf_sched_cb_usages);
a5398bff 3589
ba532500
YZ
3590void perf_sched_cb_dec(struct pmu *pmu)
3591{
bd275681 3592 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
e48c1788 3593
a5398bff 3594 this_cpu_dec(perf_sched_cb_usages);
bd275681 3595 barrier();
a5398bff 3596
bd275681
PZ
3597 if (!--cpc->sched_cb_usage)
3598 list_del(&cpc->sched_cb_entry);
ba532500
YZ
3599}
3600
e48c1788 3601
ba532500
YZ
3602void perf_sched_cb_inc(struct pmu *pmu)
3603{
bd275681 3604 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
e48c1788 3605
bd275681
PZ
3606 if (!cpc->sched_cb_usage++)
3607 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
a5398bff 3608
bd275681 3609 barrier();
a5398bff 3610 this_cpu_inc(perf_sched_cb_usages);
ba532500
YZ
3611}
3612
3613/*
3614 * This function provides the context switch callback to the lower code
3615 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
3616 *
3617 * This callback is relevant even to per-cpu events; for example multi event
3618 * PEBS requires this to provide PID/TID information. This requires we flush
3619 * all queued PEBS records before we context switch to a new task.
ba532500 3620 */
bd275681 3621static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
556cccad 3622{
bd275681 3623 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
556cccad
KL
3624 struct pmu *pmu;
3625
bd275681 3626 pmu = cpc->epc.pmu;
556cccad 3627
bd275681 3628 /* software PMUs will not have sched_task */
556cccad
KL
3629 if (WARN_ON_ONCE(!pmu->sched_task))
3630 return;
3631
3632 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3633 perf_pmu_disable(pmu);
3634
bd275681 3635 pmu->sched_task(cpc->task_epc, sched_in);
556cccad
KL
3636
3637 perf_pmu_enable(pmu);
3638 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3639}
3640
a5398bff
KL
3641static void perf_pmu_sched_task(struct task_struct *prev,
3642 struct task_struct *next,
3643 bool sched_in)
3644{
bd275681
PZ
3645 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3646 struct perf_cpu_pmu_context *cpc;
a5398bff 3647
bd275681
PZ
3648 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3649 if (prev == next || cpuctx->task_ctx)
a5398bff
KL
3650 return;
3651
bd275681
PZ
3652 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3653 __perf_pmu_sched_task(cpc, sched_in);
a5398bff
KL
3654}
3655
45ac1403
AH
3656static void perf_event_switch(struct task_struct *task,
3657 struct task_struct *next_prev, bool sched_in);
3658
8dc85d54
PZ
3659/*
3660 * Called from scheduler to remove the events of the current task,
3661 * with interrupts disabled.
3662 *
3663 * We stop each event and update the event value in event->count.
3664 *
3665 * This does not protect us against NMI, but disable()
3666 * sets the disabled bit in the control field of event _before_
3667 * accessing the event control register. If a NMI hits, then it will
3668 * not restart the event.
3669 */
ab0cce56
JO
3670void __perf_event_task_sched_out(struct task_struct *task,
3671 struct task_struct *next)
8dc85d54 3672{
a5398bff
KL
3673 if (__this_cpu_read(perf_sched_cb_usages))
3674 perf_pmu_sched_task(task, next, false);
3675
45ac1403
AH
3676 if (atomic_read(&nr_switch_events))
3677 perf_event_switch(task, next, false);
3678
bd275681 3679 perf_event_context_sched_out(task, next);
e5d1367f
SE
3680
3681 /*
3682 * if cgroup events exist on this CPU, then we need
3683 * to check if we have to switch out PMU state.
3684 * cgroup event are system-wide mode only
3685 */
f841b682 3686 perf_cgroup_switch(next);
8dc85d54
PZ
3687}
3688
6eef8a71 3689static bool perf_less_group_idx(const void *l, const void *r)
0793a61d 3690{
24fb6b8e
IR
3691 const struct perf_event *le = *(const struct perf_event **)l;
3692 const struct perf_event *re = *(const struct perf_event **)r;
6eef8a71
IR
3693
3694 return le->group_index < re->group_index;
3695}
3696
3697static void swap_ptr(void *l, void *r)
3698{
3699 void **lp = l, **rp = r;
3700
3701 swap(*lp, *rp);
3702}
3703
3704static const struct min_heap_callbacks perf_min_heap = {
3705 .elem_size = sizeof(struct perf_event *),
3706 .less = perf_less_group_idx,
3707 .swp = swap_ptr,
3708};
3709
3710static void __heap_add(struct min_heap *heap, struct perf_event *event)
3711{
3712 struct perf_event **itrs = heap->data;
3713
3714 if (event) {
3715 itrs[heap->nr] = event;
3716 heap->nr++;
3717 }
3718}
3719
bd275681
PZ
3720static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3721{
3722 struct perf_cpu_pmu_context *cpc;
3723
3724 if (!pmu_ctx->ctx->task)
3725 return;
3726
3727 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3728 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3729 cpc->task_epc = pmu_ctx;
3730}
3731
3732static noinline int visit_groups_merge(struct perf_event_context *ctx,
836196be 3733 struct perf_event_groups *groups, int cpu,
bd275681 3734 struct pmu *pmu,
6eef8a71
IR
3735 int (*func)(struct perf_event *, void *),
3736 void *data)
3737{
95ed6c70
IR
3738#ifdef CONFIG_CGROUP_PERF
3739 struct cgroup_subsys_state *css = NULL;
3740#endif
bd275681 3741 struct perf_cpu_context *cpuctx = NULL;
6eef8a71
IR
3742 /* Space for per CPU and/or any CPU event iterators. */
3743 struct perf_event *itrs[2];
836196be
IR
3744 struct min_heap event_heap;
3745 struct perf_event **evt;
1cac7b1a 3746 int ret;
8e1a2031 3747
bd275681
PZ
3748 if (pmu->filter && pmu->filter(pmu, cpu))
3749 return 0;
3750
3751 if (!ctx->task) {
3752 cpuctx = this_cpu_ptr(&perf_cpu_context);
836196be
IR
3753 event_heap = (struct min_heap){
3754 .data = cpuctx->heap,
3755 .nr = 0,
3756 .size = cpuctx->heap_size,
3757 };
c2283c93
IR
3758
3759 lockdep_assert_held(&cpuctx->ctx.lock);
95ed6c70
IR
3760
3761#ifdef CONFIG_CGROUP_PERF
3762 if (cpuctx->cgrp)
3763 css = &cpuctx->cgrp->css;
3764#endif
836196be
IR
3765 } else {
3766 event_heap = (struct min_heap){
3767 .data = itrs,
3768 .nr = 0,
3769 .size = ARRAY_SIZE(itrs),
3770 };
3771 /* Events not within a CPU context may be on any CPU. */
bd275681 3772 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
836196be
IR
3773 }
3774 evt = event_heap.data;
3775
bd275681 3776 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
95ed6c70
IR
3777
3778#ifdef CONFIG_CGROUP_PERF
3779 for (; css; css = css->parent)
bd275681 3780 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
95ed6c70 3781#endif
1cac7b1a 3782
bd275681
PZ
3783 if (event_heap.nr) {
3784 __link_epc((*evt)->pmu_ctx);
3785 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3786 }
3787
6eef8a71 3788 min_heapify_all(&event_heap, &perf_min_heap);
1cac7b1a 3789
6eef8a71 3790 while (event_heap.nr) {
1cac7b1a
PZ
3791 ret = func(*evt, data);
3792 if (ret)
3793 return ret;
3794
bd275681 3795 *evt = perf_event_groups_next(*evt, pmu);
6eef8a71
IR
3796 if (*evt)
3797 min_heapify(&event_heap, 0, &perf_min_heap);
3798 else
3799 min_heap_pop(&event_heap, &perf_min_heap);
8e1a2031 3800 }
0793a61d 3801
1cac7b1a
PZ
3802 return 0;
3803}
3804
09f5e7dc
PZ
3805/*
3806 * Because the userpage is strictly per-event (there is no concept of context,
3807 * so there cannot be a context indirection), every userpage must be updated
3808 * when context time starts :-(
3809 *
3810 * IOW, we must not miss EVENT_TIME edges.
3811 */
f7925653
SL
3812static inline bool event_update_userpage(struct perf_event *event)
3813{
3814 if (likely(!atomic_read(&event->mmap_count)))
3815 return false;
3816
3817 perf_event_update_time(event);
f7925653
SL
3818 perf_event_update_userpage(event);
3819
3820 return true;
3821}
3822
3823static inline void group_update_userpage(struct perf_event *group_event)
3824{
3825 struct perf_event *event;
3826
3827 if (!event_update_userpage(group_event))
3828 return;
3829
3830 for_each_sibling_event(event, group_event)
3831 event_update_userpage(event);
3832}
3833
ab6f824c 3834static int merge_sched_in(struct perf_event *event, void *data)
1cac7b1a 3835{
2c2366c7 3836 struct perf_event_context *ctx = event->ctx;
2c2366c7 3837 int *can_add_hw = data;
ab6f824c 3838
1cac7b1a
PZ
3839 if (event->state <= PERF_EVENT_STATE_OFF)
3840 return 0;
3841
3842 if (!event_filter_match(event))
3843 return 0;
3844
bd275681
PZ
3845 if (group_can_go_on(event, *can_add_hw)) {
3846 if (!group_sched_in(event, ctx))
ab6f824c 3847 list_add_tail(&event->active_list, get_event_list(event));
6668128a 3848 }
1cac7b1a 3849
ab6f824c 3850 if (event->state == PERF_EVENT_STATE_INACTIVE) {
f7925653 3851 *can_add_hw = 0;
33238c50
PZ
3852 if (event->attr.pinned) {
3853 perf_cgroup_event_disable(event, ctx);
ab6f824c 3854 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
f7925653 3855 } else {
bd275681
PZ
3856 struct perf_cpu_pmu_context *cpc;
3857
3858 event->pmu_ctx->rotate_necessary = 1;
3859 cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3860 perf_mux_hrtimer_restart(cpc);
f7925653 3861 group_update_userpage(event);
33238c50 3862 }
3b6f9e5c 3863 }
1cac7b1a
PZ
3864
3865 return 0;
5b0311e1
FW
3866}
3867
f06cc667
PZ
3868static void pmu_groups_sched_in(struct perf_event_context *ctx,
3869 struct perf_event_groups *groups,
3870 struct pmu *pmu)
5b0311e1 3871{
2c2366c7 3872 int can_add_hw = 1;
f06cc667
PZ
3873 visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3874 merge_sched_in, &can_add_hw);
1cac7b1a 3875}
8e1a2031 3876
f06cc667
PZ
3877static void ctx_groups_sched_in(struct perf_event_context *ctx,
3878 struct perf_event_groups *groups,
3879 bool cgroup)
1cac7b1a 3880{
bd275681 3881 struct perf_event_pmu_context *pmu_ctx;
0793a61d 3882
f06cc667
PZ
3883 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3884 if (cgroup && !pmu_ctx->nr_cgroups)
3885 continue;
3886 pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu);
bd275681
PZ
3887 }
3888}
836196be 3889
f06cc667
PZ
3890static void __pmu_ctx_sched_in(struct perf_event_context *ctx,
3891 struct pmu *pmu)
bd275681 3892{
f06cc667 3893 pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu);
5b0311e1
FW
3894}
3895
3896static void
bd275681 3897ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type)
5b0311e1 3898{
bd275681 3899 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
db24d33e 3900 int is_active = ctx->is_active;
f06cc667
PZ
3901 bool cgroup = event_type & EVENT_CGROUP;
3902
3903 event_type &= ~EVENT_CGROUP;
c994d613
PZ
3904
3905 lockdep_assert_held(&ctx->lock);
e5d1367f 3906
5b0311e1 3907 if (likely(!ctx->nr_events))
facc4307 3908 return;
5b0311e1 3909
baf1b12a 3910 if (!(is_active & EVENT_TIME)) {
09f5e7dc
PZ
3911 /* start ctx time */
3912 __update_context_time(ctx, false);
a0827713 3913 perf_cgroup_set_timestamp(cpuctx);
09f5e7dc
PZ
3914 /*
3915 * CPU-release for the below ->is_active store,
3916 * see __load_acquire() in perf_event_time_now()
3917 */
3918 barrier();
3919 }
3920
3cbaa590 3921 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3922 if (ctx->task) {
3923 if (!is_active)
3924 cpuctx->task_ctx = ctx;
3925 else
3926 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3927 }
3928
3cbaa590
PZ
3929 is_active ^= ctx->is_active; /* changed bits */
3930
5b0311e1
FW
3931 /*
3932 * First go through the list and put on any pinned groups
3933 * in order to give them the best chance of going on.
3934 */
3cbaa590 3935 if (is_active & EVENT_PINNED)
f06cc667 3936 ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup);
5b0311e1
FW
3937
3938 /* Then walk through the lower prio flexible groups */
3cbaa590 3939 if (is_active & EVENT_FLEXIBLE)
f06cc667 3940 ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup);
235c7fc7
IM
3941}
3942
bd275681 3943static void perf_event_context_sched_in(struct task_struct *task)
329c0e01 3944{
bd275681
PZ
3945 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3946 struct perf_event_context *ctx;
329c0e01 3947
bd275681
PZ
3948 rcu_read_lock();
3949 ctx = rcu_dereference(task->perf_event_ctxp);
3950 if (!ctx)
3951 goto rcu_unlock;
235c7fc7 3952
bd275681
PZ
3953 if (cpuctx->task_ctx == ctx) {
3954 perf_ctx_lock(cpuctx, ctx);
f06cc667 3955 perf_ctx_disable(ctx, false);
012669c7 3956
bd275681 3957 perf_ctx_sched_task_cb(ctx, true);
012669c7 3958
f06cc667 3959 perf_ctx_enable(ctx, false);
bd275681
PZ
3960 perf_ctx_unlock(cpuctx, ctx);
3961 goto rcu_unlock;
556cccad 3962 }
329c0e01 3963
facc4307 3964 perf_ctx_lock(cpuctx, ctx);
fdccc3fb 3965 /*
3966 * We must check ctx->nr_events while holding ctx->lock, such
3967 * that we serialize against perf_install_in_context().
3968 */
3969 if (!ctx->nr_events)
3970 goto unlock;
3971
f06cc667 3972 perf_ctx_disable(ctx, false);
329c0e01
FW
3973 /*
3974 * We want to keep the following priority order:
3975 * cpu pinned (that don't need to move), task pinned,
3976 * cpu flexible, task flexible.
fe45bafb
AS
3977 *
3978 * However, if task's ctx is not carrying any pinned
3979 * events, no need to flip the cpuctx's events around.
329c0e01 3980 */
bd275681 3981 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
f06cc667 3982 perf_ctx_disable(&cpuctx->ctx, false);
bd275681
PZ
3983 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
3984 }
3985
a0827713 3986 perf_event_sched_in(cpuctx, ctx);
556cccad 3987
bd275681 3988 perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
556cccad 3989
bd275681 3990 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
f06cc667 3991 perf_ctx_enable(&cpuctx->ctx, false);
bd275681 3992
f06cc667 3993 perf_ctx_enable(ctx, false);
fdccc3fb 3994
3995unlock:
facc4307 3996 perf_ctx_unlock(cpuctx, ctx);
bd275681
PZ
3997rcu_unlock:
3998 rcu_read_unlock();
235c7fc7
IM
3999}
4000
8dc85d54
PZ
4001/*
4002 * Called from scheduler to add the events of the current task
4003 * with interrupts disabled.
4004 *
4005 * We restore the event value and then enable it.
4006 *
4007 * This does not protect us against NMI, but enable()
4008 * sets the enabled bit in the control field of event _before_
4009 * accessing the event control register. If a NMI hits, then it will
4010 * keep the event running.
4011 */
ab0cce56
JO
4012void __perf_event_task_sched_in(struct task_struct *prev,
4013 struct task_struct *task)
8dc85d54 4014{
bd275681 4015 perf_event_context_sched_in(task);
d010b332 4016
45ac1403
AH
4017 if (atomic_read(&nr_switch_events))
4018 perf_event_switch(task, prev, true);
a5398bff
KL
4019
4020 if (__this_cpu_read(perf_sched_cb_usages))
4021 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
4022}
4023
abd50713
PZ
4024static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4025{
4026 u64 frequency = event->attr.sample_freq;
4027 u64 sec = NSEC_PER_SEC;
4028 u64 divisor, dividend;
4029
4030 int count_fls, nsec_fls, frequency_fls, sec_fls;
4031
4032 count_fls = fls64(count);
4033 nsec_fls = fls64(nsec);
4034 frequency_fls = fls64(frequency);
4035 sec_fls = 30;
4036
4037 /*
4038 * We got @count in @nsec, with a target of sample_freq HZ
4039 * the target period becomes:
4040 *
4041 * @count * 10^9
4042 * period = -------------------
4043 * @nsec * sample_freq
4044 *
4045 */
4046
4047 /*
4048 * Reduce accuracy by one bit such that @a and @b converge
4049 * to a similar magnitude.
4050 */
fe4b04fa 4051#define REDUCE_FLS(a, b) \
abd50713
PZ
4052do { \
4053 if (a##_fls > b##_fls) { \
4054 a >>= 1; \
4055 a##_fls--; \
4056 } else { \
4057 b >>= 1; \
4058 b##_fls--; \
4059 } \
4060} while (0)
4061
4062 /*
4063 * Reduce accuracy until either term fits in a u64, then proceed with
4064 * the other, so that finally we can do a u64/u64 division.
4065 */
4066 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4067 REDUCE_FLS(nsec, frequency);
4068 REDUCE_FLS(sec, count);
4069 }
4070
4071 if (count_fls + sec_fls > 64) {
4072 divisor = nsec * frequency;
4073
4074 while (count_fls + sec_fls > 64) {
4075 REDUCE_FLS(count, sec);
4076 divisor >>= 1;
4077 }
4078
4079 dividend = count * sec;
4080 } else {
4081 dividend = count * sec;
4082
4083 while (nsec_fls + frequency_fls > 64) {
4084 REDUCE_FLS(nsec, frequency);
4085 dividend >>= 1;
4086 }
4087
4088 divisor = nsec * frequency;
4089 }
4090
f6ab91ad
PZ
4091 if (!divisor)
4092 return dividend;
4093
abd50713
PZ
4094 return div64_u64(dividend, divisor);
4095}
4096
e050e3f0
SE
4097static DEFINE_PER_CPU(int, perf_throttled_count);
4098static DEFINE_PER_CPU(u64, perf_throttled_seq);
4099
f39d47ff 4100static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 4101{
cdd6c482 4102 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 4103 s64 period, sample_period;
bd2b5b12
PZ
4104 s64 delta;
4105
abd50713 4106 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
4107
4108 delta = (s64)(period - hwc->sample_period);
4109 delta = (delta + 7) / 8; /* low pass filter */
4110
4111 sample_period = hwc->sample_period + delta;
4112
4113 if (!sample_period)
4114 sample_period = 1;
4115
bd2b5b12 4116 hwc->sample_period = sample_period;
abd50713 4117
e7850595 4118 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
4119 if (disable)
4120 event->pmu->stop(event, PERF_EF_UPDATE);
4121
e7850595 4122 local64_set(&hwc->period_left, 0);
f39d47ff
SE
4123
4124 if (disable)
4125 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 4126 }
bd2b5b12
PZ
4127}
4128
0259bf63 4129static void perf_adjust_freq_unthr_events(struct list_head *event_list)
60db5e09 4130{
cdd6c482
IM
4131 struct perf_event *event;
4132 struct hw_perf_event *hwc;
e050e3f0 4133 u64 now, period = TICK_NSEC;
abd50713 4134 s64 delta;
60db5e09 4135
0259bf63 4136 list_for_each_entry(event, event_list, active_list) {
cdd6c482 4137 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
4138 continue;
4139
bd275681 4140 // XXX use visit thingy to avoid the -1,cpu match
5632ab12 4141 if (!event_filter_match(event))
5d27c23d
PZ
4142 continue;
4143
cdd6c482 4144 hwc = &event->hw;
6a24ed6c 4145
ae23bff1 4146 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 4147 hwc->interrupts = 0;
cdd6c482 4148 perf_log_throttle(event, 1);
f38628b0
NK
4149 if (!event->attr.freq || !event->attr.sample_freq)
4150 event->pmu->start(event, 0);
a78ac325
PZ
4151 }
4152
cdd6c482 4153 if (!event->attr.freq || !event->attr.sample_freq)
0259bf63 4154 continue;
60db5e09 4155
e050e3f0
SE
4156 /*
4157 * stop the event and update event->count
4158 */
4159 event->pmu->stop(event, PERF_EF_UPDATE);
4160
e7850595 4161 now = local64_read(&event->count);
abd50713
PZ
4162 delta = now - hwc->freq_count_stamp;
4163 hwc->freq_count_stamp = now;
60db5e09 4164
e050e3f0
SE
4165 /*
4166 * restart the event
4167 * reload only if value has changed
f39d47ff
SE
4168 * we have stopped the event so tell that
4169 * to perf_adjust_period() to avoid stopping it
4170 * twice.
e050e3f0 4171 */
abd50713 4172 if (delta > 0)
f39d47ff 4173 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
4174
4175 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
0259bf63
NK
4176 }
4177}
4178
4179/*
4180 * combine freq adjustment with unthrottling to avoid two passes over the
4181 * events. At the same time, make sure, having freq events does not change
4182 * the rate of unthrottling as that would introduce bias.
4183 */
4184static void
4185perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4186{
4187 struct perf_event_pmu_context *pmu_ctx;
4188
4189 /*
4190 * only need to iterate over all events iff:
4191 * - context have events in frequency mode (needs freq adjust)
4192 * - there are events to unthrottle on this cpu
4193 */
4194 if (!(ctx->nr_freq || unthrottle))
4195 return;
4196
4197 raw_spin_lock(&ctx->lock);
4198
4199 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4200 if (!(pmu_ctx->nr_freq || unthrottle))
4201 continue;
4202 if (!perf_pmu_ctx_is_active(pmu_ctx))
4203 continue;
4204 if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT)
4205 continue;
4206
4207 perf_pmu_disable(pmu_ctx->pmu);
4208 perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active);
4209 perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active);
4210 perf_pmu_enable(pmu_ctx->pmu);
60db5e09 4211 }
e050e3f0
SE
4212
4213 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
4214}
4215
235c7fc7 4216/*
8703a7cf 4217 * Move @event to the tail of the @ctx's elegible events.
235c7fc7 4218 */
8703a7cf 4219static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
0793a61d 4220{
dddd3379
TG
4221 /*
4222 * Rotate the first entry last of non-pinned groups. Rotation might be
4223 * disabled by the inheritance code.
4224 */
8703a7cf
PZ
4225 if (ctx->rotate_disable)
4226 return;
8e1a2031 4227
8703a7cf
PZ
4228 perf_event_groups_delete(&ctx->flexible_groups, event);
4229 perf_event_groups_insert(&ctx->flexible_groups, event);
235c7fc7
IM
4230}
4231
7fa343b7 4232/* pick an event from the flexible_groups to rotate */
8d5bce0c 4233static inline struct perf_event *
bd275681 4234ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
235c7fc7 4235{
7fa343b7 4236 struct perf_event *event;
bd275681
PZ
4237 struct rb_node *node;
4238 struct rb_root *tree;
4239 struct __group_key key = {
4240 .pmu = pmu_ctx->pmu,
4241 };
7fa343b7
SL
4242
4243 /* pick the first active flexible event */
bd275681 4244 event = list_first_entry_or_null(&pmu_ctx->flexible_active,
7fa343b7 4245 struct perf_event, active_list);
bd275681
PZ
4246 if (event)
4247 goto out;
7fa343b7
SL
4248
4249 /* if no active flexible event, pick the first event */
bd275681 4250 tree = &pmu_ctx->ctx->flexible_groups.tree;
7fa343b7 4251
bd275681
PZ
4252 if (!pmu_ctx->ctx->task) {
4253 key.cpu = smp_processor_id();
4254
4255 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4256 if (node)
4257 event = __node_2_pe(node);
4258 goto out;
7fa343b7
SL
4259 }
4260
bd275681
PZ
4261 key.cpu = -1;
4262 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4263 if (node) {
4264 event = __node_2_pe(node);
4265 goto out;
4266 }
4267
4268 key.cpu = smp_processor_id();
4269 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4270 if (node)
4271 event = __node_2_pe(node);
4272
4273out:
90c91dfb
PZ
4274 /*
4275 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4276 * finds there are unschedulable events, it will set it again.
4277 */
bd275681 4278 pmu_ctx->rotate_necessary = 0;
90c91dfb 4279
7fa343b7 4280 return event;
8d5bce0c
PZ
4281}
4282
bd275681 4283static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
8d5bce0c 4284{
bd275681
PZ
4285 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4286 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
8d5bce0c 4287 struct perf_event *cpu_event = NULL, *task_event = NULL;
fd7d5517 4288 int cpu_rotate, task_rotate;
bd275681 4289 struct pmu *pmu;
8d5bce0c
PZ
4290
4291 /*
4292 * Since we run this from IRQ context, nobody can install new
4293 * events, thus the event count values are stable.
4294 */
7fc23a53 4295
bd275681
PZ
4296 cpu_epc = &cpc->epc;
4297 pmu = cpu_epc->pmu;
4298 task_epc = cpc->task_epc;
4299
4300 cpu_rotate = cpu_epc->rotate_necessary;
bd275681 4301 task_rotate = task_epc ? task_epc->rotate_necessary : 0;
9717e6cd 4302
8d5bce0c
PZ
4303 if (!(cpu_rotate || task_rotate))
4304 return false;
0f5a2601 4305
facc4307 4306 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
bd275681 4307 perf_pmu_disable(pmu);
60db5e09 4308
8d5bce0c 4309 if (task_rotate)
bd275681 4310 task_event = ctx_event_to_rotate(task_epc);
8d5bce0c 4311 if (cpu_rotate)
bd275681 4312 cpu_event = ctx_event_to_rotate(cpu_epc);
8703a7cf 4313
8d5bce0c
PZ
4314 /*
4315 * As per the order given at ctx_resched() first 'pop' task flexible
4316 * and then, if needed CPU flexible.
4317 */
bd275681
PZ
4318 if (task_event || (task_epc && cpu_event)) {
4319 update_context_time(task_epc->ctx);
4320 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4321 }
0793a61d 4322
bd275681
PZ
4323 if (cpu_event) {
4324 update_context_time(&cpuctx->ctx);
4325 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
8d5bce0c 4326 rotate_ctx(&cpuctx->ctx, cpu_event);
bd275681
PZ
4327 __pmu_ctx_sched_in(&cpuctx->ctx, pmu);
4328 }
235c7fc7 4329
bd275681
PZ
4330 if (task_event)
4331 rotate_ctx(task_epc->ctx, task_event);
235c7fc7 4332
bd275681
PZ
4333 if (task_event || (task_epc && cpu_event))
4334 __pmu_ctx_sched_in(task_epc->ctx, pmu);
235c7fc7 4335
bd275681 4336 perf_pmu_enable(pmu);
0f5a2601 4337 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
9e630205 4338
8d5bce0c 4339 return true;
e9d2b064
PZ
4340}
4341
4342void perf_event_task_tick(void)
4343{
bd275681
PZ
4344 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4345 struct perf_event_context *ctx;
e050e3f0 4346 int throttled;
b5ab4cd5 4347
16444645 4348 lockdep_assert_irqs_disabled();
e9d2b064 4349
e050e3f0
SE
4350 __this_cpu_inc(perf_throttled_seq);
4351 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 4352 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 4353
bd275681
PZ
4354 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4355
4356 rcu_read_lock();
4357 ctx = rcu_dereference(current->perf_event_ctxp);
4358 if (ctx)
4359 perf_adjust_freq_unthr_context(ctx, !!throttled);
4360 rcu_read_unlock();
0793a61d
TG
4361}
4362
889ff015
FW
4363static int event_enable_on_exec(struct perf_event *event,
4364 struct perf_event_context *ctx)
4365{
4366 if (!event->attr.enable_on_exec)
4367 return 0;
4368
4369 event->attr.enable_on_exec = 0;
4370 if (event->state >= PERF_EVENT_STATE_INACTIVE)
4371 return 0;
4372
0d3d73aa 4373 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
889ff015
FW
4374
4375 return 1;
4376}
4377
57e7986e 4378/*
cdd6c482 4379 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
4380 * This expects task == current.
4381 */
bd275681 4382static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 4383{
bd275681 4384 struct perf_event_context *clone_ctx = NULL;
487f05e1 4385 enum event_type_t event_type = 0;
3e349507 4386 struct perf_cpu_context *cpuctx;
cdd6c482 4387 struct perf_event *event;
57e7986e
PM
4388 unsigned long flags;
4389 int enabled = 0;
4390
4391 local_irq_save(flags);
bd275681
PZ
4392 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4393 goto out;
4394
4395 if (!ctx->nr_events)
57e7986e
PM
4396 goto out;
4397
bd275681 4398 cpuctx = this_cpu_ptr(&perf_cpu_context);
3e349507 4399 perf_ctx_lock(cpuctx, ctx);
bd275681
PZ
4400 ctx_sched_out(ctx, EVENT_TIME);
4401
487f05e1 4402 list_for_each_entry(event, &ctx->event_list, event_entry) {
3e349507 4403 enabled |= event_enable_on_exec(event, ctx);
487f05e1
AS
4404 event_type |= get_event_type(event);
4405 }
57e7986e
PM
4406
4407 /*
3e349507 4408 * Unclone and reschedule this context if we enabled any event.
57e7986e 4409 */
3e349507 4410 if (enabled) {
211de6eb 4411 clone_ctx = unclone_ctx(ctx);
487f05e1 4412 ctx_resched(cpuctx, ctx, event_type);
7bbba0eb 4413 } else {
bd275681 4414 ctx_sched_in(ctx, EVENT_TIME);
3e349507
PZ
4415 }
4416 perf_ctx_unlock(cpuctx, ctx);
57e7986e 4417
9ed6060d 4418out:
57e7986e 4419 local_irq_restore(flags);
211de6eb
PZ
4420
4421 if (clone_ctx)
4422 put_ctx(clone_ctx);
57e7986e
PM
4423}
4424
2e498d0a
ME
4425static void perf_remove_from_owner(struct perf_event *event);
4426static void perf_event_exit_event(struct perf_event *event,
4427 struct perf_event_context *ctx);
4428
4429/*
4430 * Removes all events from the current task that have been marked
4431 * remove-on-exec, and feeds their values back to parent events.
4432 */
bd275681 4433static void perf_event_remove_on_exec(struct perf_event_context *ctx)
2e498d0a 4434{
bd275681 4435 struct perf_event_context *clone_ctx = NULL;
2e498d0a 4436 struct perf_event *event, *next;
2e498d0a
ME
4437 unsigned long flags;
4438 bool modified = false;
4439
2e498d0a
ME
4440 mutex_lock(&ctx->mutex);
4441
4442 if (WARN_ON_ONCE(ctx->task != current))
4443 goto unlock;
4444
4445 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4446 if (!event->attr.remove_on_exec)
4447 continue;
4448
4449 if (!is_kernel_event(event))
4450 perf_remove_from_owner(event);
4451
4452 modified = true;
4453
4454 perf_event_exit_event(event, ctx);
4455 }
4456
4457 raw_spin_lock_irqsave(&ctx->lock, flags);
4458 if (modified)
4459 clone_ctx = unclone_ctx(ctx);
2e498d0a
ME
4460 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4461
4462unlock:
4463 mutex_unlock(&ctx->mutex);
4464
2e498d0a
ME
4465 if (clone_ctx)
4466 put_ctx(clone_ctx);
4467}
4468
0492d4c5
PZ
4469struct perf_read_data {
4470 struct perf_event *event;
4471 bool group;
7d88962e 4472 int ret;
0492d4c5
PZ
4473};
4474
451d24d1 4475static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
d6a2f903 4476{
d6a2f903
DCC
4477 u16 local_pkg, event_pkg;
4478
1765bb61
TK
4479 if ((unsigned)event_cpu >= nr_cpu_ids)
4480 return event_cpu;
4481
d6a2f903 4482 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
451d24d1
PZ
4483 int local_cpu = smp_processor_id();
4484
4485 event_pkg = topology_physical_package_id(event_cpu);
4486 local_pkg = topology_physical_package_id(local_cpu);
d6a2f903
DCC
4487
4488 if (event_pkg == local_pkg)
4489 return local_cpu;
4490 }
4491
4492 return event_cpu;
4493}
4494
0793a61d 4495/*
cdd6c482 4496 * Cross CPU call to read the hardware event
0793a61d 4497 */
cdd6c482 4498static void __perf_event_read(void *info)
0793a61d 4499{
0492d4c5
PZ
4500 struct perf_read_data *data = info;
4501 struct perf_event *sub, *event = data->event;
cdd6c482 4502 struct perf_event_context *ctx = event->ctx;
bd275681 4503 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4a00c16e 4504 struct pmu *pmu = event->pmu;
621a01ea 4505
e1ac3614
PM
4506 /*
4507 * If this is a task context, we need to check whether it is
4508 * the current task context of this cpu. If not it has been
4509 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
4510 * event->count would have been updated to a recent sample
4511 * when the event was scheduled out.
e1ac3614
PM
4512 */
4513 if (ctx->task && cpuctx->task_ctx != ctx)
4514 return;
4515
e625cce1 4516 raw_spin_lock(&ctx->lock);
0c1cbc18 4517 if (ctx->is_active & EVENT_TIME) {
542e72fc 4518 update_context_time(ctx);
e5d1367f
SE
4519 update_cgrp_time_from_event(event);
4520 }
0492d4c5 4521
0d3d73aa
PZ
4522 perf_event_update_time(event);
4523 if (data->group)
4524 perf_event_update_sibling_time(event);
0c1cbc18 4525
4a00c16e
SB
4526 if (event->state != PERF_EVENT_STATE_ACTIVE)
4527 goto unlock;
0492d4c5 4528
4a00c16e
SB
4529 if (!data->group) {
4530 pmu->read(event);
4531 data->ret = 0;
0492d4c5 4532 goto unlock;
4a00c16e
SB
4533 }
4534
4535 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4536
4537 pmu->read(event);
0492d4c5 4538
edb39592 4539 for_each_sibling_event(sub, event) {
4a00c16e
SB
4540 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4541 /*
4542 * Use sibling's PMU rather than @event's since
4543 * sibling could be on different (eg: software) PMU.
4544 */
0492d4c5 4545 sub->pmu->read(sub);
4a00c16e 4546 }
0492d4c5 4547 }
4a00c16e
SB
4548
4549 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
4550
4551unlock:
e625cce1 4552 raw_spin_unlock(&ctx->lock);
0793a61d
TG
4553}
4554
b5e58793
PZ
4555static inline u64 perf_event_count(struct perf_event *event)
4556{
c39a0e2c 4557 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
4558}
4559
09f5e7dc
PZ
4560static void calc_timer_values(struct perf_event *event,
4561 u64 *now,
4562 u64 *enabled,
4563 u64 *running)
4564{
4565 u64 ctx_time;
4566
4567 *now = perf_clock();
4568 ctx_time = perf_event_time_now(event, *now);
4569 __perf_update_times(event, ctx_time, enabled, running);
4570}
4571
ffe8690c
KX
4572/*
4573 * NMI-safe method to read a local event, that is an event that
4574 * is:
4575 * - either for the current task, or for this CPU
4576 * - does not have inherit set, for inherited task events
4577 * will not be local and we cannot read them atomically
4578 * - must not have a pmu::count method
4579 */
7d9285e8
YS
4580int perf_event_read_local(struct perf_event *event, u64 *value,
4581 u64 *enabled, u64 *running)
ffe8690c
KX
4582{
4583 unsigned long flags;
1765bb61
TK
4584 int event_oncpu;
4585 int event_cpu;
f91840a3 4586 int ret = 0;
ffe8690c
KX
4587
4588 /*
4589 * Disabling interrupts avoids all counter scheduling (context
4590 * switches, timer based rotation and IPIs).
4591 */
4592 local_irq_save(flags);
4593
ffe8690c
KX
4594 /*
4595 * It must not be an event with inherit set, we cannot read
4596 * all child counters from atomic context.
4597 */
f91840a3
AS
4598 if (event->attr.inherit) {
4599 ret = -EOPNOTSUPP;
4600 goto out;
4601 }
ffe8690c 4602
f91840a3
AS
4603 /* If this is a per-task event, it must be for current */
4604 if ((event->attach_state & PERF_ATTACH_TASK) &&
4605 event->hw.target != current) {
4606 ret = -EINVAL;
4607 goto out;
4608 }
4609
1765bb61
TK
4610 /*
4611 * Get the event CPU numbers, and adjust them to local if the event is
4612 * a per-package event that can be read locally
4613 */
4614 event_oncpu = __perf_event_read_cpu(event, event->oncpu);
4615 event_cpu = __perf_event_read_cpu(event, event->cpu);
4616
f91840a3
AS
4617 /* If this is a per-CPU event, it must be for this CPU */
4618 if (!(event->attach_state & PERF_ATTACH_TASK) &&
1765bb61 4619 event_cpu != smp_processor_id()) {
f91840a3
AS
4620 ret = -EINVAL;
4621 goto out;
4622 }
ffe8690c 4623
befb1b3c 4624 /* If this is a pinned event it must be running on this CPU */
1765bb61 4625 if (event->attr.pinned && event_oncpu != smp_processor_id()) {
befb1b3c
RC
4626 ret = -EBUSY;
4627 goto out;
4628 }
4629
ffe8690c
KX
4630 /*
4631 * If the event is currently on this CPU, its either a per-task event,
4632 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4633 * oncpu == -1).
4634 */
1765bb61 4635 if (event_oncpu == smp_processor_id())
ffe8690c
KX
4636 event->pmu->read(event);
4637
f91840a3 4638 *value = local64_read(&event->count);
0d3d73aa 4639 if (enabled || running) {
99643bab 4640 u64 __enabled, __running, __now;
0d3d73aa 4641
09f5e7dc 4642 calc_timer_values(event, &__now, &__enabled, &__running);
0d3d73aa
PZ
4643 if (enabled)
4644 *enabled = __enabled;
4645 if (running)
4646 *running = __running;
4647 }
f91840a3 4648out:
ffe8690c
KX
4649 local_irq_restore(flags);
4650
f91840a3 4651 return ret;
ffe8690c
KX
4652}
4653
7d88962e 4654static int perf_event_read(struct perf_event *event, bool group)
0793a61d 4655{
0c1cbc18 4656 enum perf_event_state state = READ_ONCE(event->state);
451d24d1 4657 int event_cpu, ret = 0;
7d88962e 4658
0793a61d 4659 /*
cdd6c482
IM
4660 * If event is enabled and currently active on a CPU, update the
4661 * value in the event structure:
0793a61d 4662 */
0c1cbc18
PZ
4663again:
4664 if (state == PERF_EVENT_STATE_ACTIVE) {
4665 struct perf_read_data data;
4666
4667 /*
4668 * Orders the ->state and ->oncpu loads such that if we see
4669 * ACTIVE we must also see the right ->oncpu.
4670 *
4671 * Matches the smp_wmb() from event_sched_in().
4672 */
4673 smp_rmb();
d6a2f903 4674
451d24d1
PZ
4675 event_cpu = READ_ONCE(event->oncpu);
4676 if ((unsigned)event_cpu >= nr_cpu_ids)
4677 return 0;
4678
0c1cbc18
PZ
4679 data = (struct perf_read_data){
4680 .event = event,
4681 .group = group,
4682 .ret = 0,
4683 };
4684
451d24d1
PZ
4685 preempt_disable();
4686 event_cpu = __perf_event_read_cpu(event, event_cpu);
d6a2f903 4687
58763148
PZ
4688 /*
4689 * Purposely ignore the smp_call_function_single() return
4690 * value.
4691 *
451d24d1 4692 * If event_cpu isn't a valid CPU it means the event got
58763148
PZ
4693 * scheduled out and that will have updated the event count.
4694 *
4695 * Therefore, either way, we'll have an up-to-date event count
4696 * after this.
4697 */
451d24d1
PZ
4698 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4699 preempt_enable();
58763148 4700 ret = data.ret;
0c1cbc18
PZ
4701
4702 } else if (state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
4703 struct perf_event_context *ctx = event->ctx;
4704 unsigned long flags;
4705
e625cce1 4706 raw_spin_lock_irqsave(&ctx->lock, flags);
0c1cbc18
PZ
4707 state = event->state;
4708 if (state != PERF_EVENT_STATE_INACTIVE) {
4709 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4710 goto again;
4711 }
4712
c530ccd9 4713 /*
0c1cbc18
PZ
4714 * May read while context is not active (e.g., thread is
4715 * blocked), in that case we cannot update context time
c530ccd9 4716 */
0c1cbc18 4717 if (ctx->is_active & EVENT_TIME) {
c530ccd9 4718 update_context_time(ctx);
e5d1367f
SE
4719 update_cgrp_time_from_event(event);
4720 }
0c1cbc18 4721
0d3d73aa 4722 perf_event_update_time(event);
0492d4c5 4723 if (group)
0d3d73aa 4724 perf_event_update_sibling_time(event);
e625cce1 4725 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 4726 }
7d88962e
SB
4727
4728 return ret;
0793a61d
TG
4729}
4730
a63eaf34 4731/*
cdd6c482 4732 * Initialize the perf_event context in a task_struct:
a63eaf34 4733 */
eb184479 4734static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 4735{
e625cce1 4736 raw_spin_lock_init(&ctx->lock);
a63eaf34 4737 mutex_init(&ctx->mutex);
bd275681 4738 INIT_LIST_HEAD(&ctx->pmu_ctx_list);
8e1a2031
AB
4739 perf_event_groups_init(&ctx->pinned_groups);
4740 perf_event_groups_init(&ctx->flexible_groups);
a63eaf34 4741 INIT_LIST_HEAD(&ctx->event_list);
8c94abbb 4742 refcount_set(&ctx->refcount, 1);
eb184479
PZ
4743}
4744
bd275681
PZ
4745static void
4746__perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4747{
4748 epc->pmu = pmu;
4749 INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4750 INIT_LIST_HEAD(&epc->pinned_active);
4751 INIT_LIST_HEAD(&epc->flexible_active);
4752 atomic_set(&epc->refcount, 1);
4753}
4754
eb184479 4755static struct perf_event_context *
bd275681 4756alloc_perf_context(struct task_struct *task)
eb184479
PZ
4757{
4758 struct perf_event_context *ctx;
4759
4760 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4761 if (!ctx)
4762 return NULL;
4763
4764 __perf_event_init_context(ctx);
7b3c92b8
MWO
4765 if (task)
4766 ctx->task = get_task_struct(task);
eb184479
PZ
4767
4768 return ctx;
a63eaf34
PM
4769}
4770
2ebd4ffb
MH
4771static struct task_struct *
4772find_lively_task_by_vpid(pid_t vpid)
4773{
4774 struct task_struct *task;
0793a61d
TG
4775
4776 rcu_read_lock();
2ebd4ffb 4777 if (!vpid)
0793a61d
TG
4778 task = current;
4779 else
2ebd4ffb 4780 task = find_task_by_vpid(vpid);
0793a61d
TG
4781 if (task)
4782 get_task_struct(task);
4783 rcu_read_unlock();
4784
4785 if (!task)
4786 return ERR_PTR(-ESRCH);
4787
2ebd4ffb 4788 return task;
2ebd4ffb
MH
4789}
4790
fe4b04fa
PZ
4791/*
4792 * Returns a matching context with refcount and pincount.
4793 */
108b02cf 4794static struct perf_event_context *
bd275681 4795find_get_context(struct task_struct *task, struct perf_event *event)
0793a61d 4796{
211de6eb 4797 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 4798 struct perf_cpu_context *cpuctx;
25346b93 4799 unsigned long flags;
bd275681 4800 int err;
0793a61d 4801
22a4ec72 4802 if (!task) {
cdd6c482 4803 /* Must be root to operate on a CPU event: */
da97e184
JFG
4804 err = perf_allow_cpu(&event->attr);
4805 if (err)
4806 return ERR_PTR(err);
0793a61d 4807
bd275681 4808 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
0793a61d 4809 ctx = &cpuctx->ctx;
c93f7669 4810 get_ctx(ctx);
6c605f83 4811 raw_spin_lock_irqsave(&ctx->lock, flags);
fe4b04fa 4812 ++ctx->pin_count;
6c605f83 4813 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 4814
0793a61d
TG
4815 return ctx;
4816 }
4817
8dc85d54 4818 err = -EINVAL;
9ed6060d 4819retry:
bd275681 4820 ctx = perf_lock_task_context(task, &flags);
c93f7669 4821 if (ctx) {
211de6eb 4822 clone_ctx = unclone_ctx(ctx);
fe4b04fa 4823 ++ctx->pin_count;
4af57ef2 4824
e625cce1 4825 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
4826
4827 if (clone_ctx)
4828 put_ctx(clone_ctx);
9137fb28 4829 } else {
bd275681 4830 ctx = alloc_perf_context(task);
c93f7669
PM
4831 err = -ENOMEM;
4832 if (!ctx)
4833 goto errout;
eb184479 4834
dbe08d82
ON
4835 err = 0;
4836 mutex_lock(&task->perf_event_mutex);
4837 /*
4838 * If it has already passed perf_event_exit_task().
4839 * we must see PF_EXITING, it takes this mutex too.
4840 */
4841 if (task->flags & PF_EXITING)
4842 err = -ESRCH;
bd275681 4843 else if (task->perf_event_ctxp)
dbe08d82 4844 err = -EAGAIN;
fe4b04fa 4845 else {
9137fb28 4846 get_ctx(ctx);
fe4b04fa 4847 ++ctx->pin_count;
bd275681 4848 rcu_assign_pointer(task->perf_event_ctxp, ctx);
fe4b04fa 4849 }
dbe08d82
ON
4850 mutex_unlock(&task->perf_event_mutex);
4851
4852 if (unlikely(err)) {
9137fb28 4853 put_ctx(ctx);
dbe08d82
ON
4854
4855 if (err == -EAGAIN)
4856 goto retry;
4857 goto errout;
a63eaf34
PM
4858 }
4859 }
4860
0793a61d 4861 return ctx;
c93f7669 4862
9ed6060d 4863errout:
c93f7669 4864 return ERR_PTR(err);
0793a61d
TG
4865}
4866
bd275681
PZ
4867static struct perf_event_pmu_context *
4868find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4869 struct perf_event *event)
4870{
4871 struct perf_event_pmu_context *new = NULL, *epc;
4872 void *task_ctx_data = NULL;
4873
4874 if (!ctx->task) {
889c58b3
PZ
4875 /*
4876 * perf_pmu_migrate_context() / __perf_pmu_install_event()
4877 * relies on the fact that find_get_pmu_context() cannot fail
4878 * for CPU contexts.
4879 */
bd275681
PZ
4880 struct perf_cpu_pmu_context *cpc;
4881
4882 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4883 epc = &cpc->epc;
4f64a6c9 4884 raw_spin_lock_irq(&ctx->lock);
bd275681
PZ
4885 if (!epc->ctx) {
4886 atomic_set(&epc->refcount, 1);
4887 epc->embedded = 1;
bd275681
PZ
4888 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4889 epc->ctx = ctx;
bd275681
PZ
4890 } else {
4891 WARN_ON_ONCE(epc->ctx != ctx);
4892 atomic_inc(&epc->refcount);
4893 }
4f64a6c9 4894 raw_spin_unlock_irq(&ctx->lock);
bd275681
PZ
4895 return epc;
4896 }
4897
4898 new = kzalloc(sizeof(*epc), GFP_KERNEL);
4899 if (!new)
4900 return ERR_PTR(-ENOMEM);
4901
4902 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4903 task_ctx_data = alloc_task_ctx_data(pmu);
4904 if (!task_ctx_data) {
4905 kfree(new);
4906 return ERR_PTR(-ENOMEM);
4907 }
4908 }
4909
4910 __perf_init_event_pmu_context(new, pmu);
4911
4912 /*
4913 * XXX
4914 *
4915 * lockdep_assert_held(&ctx->mutex);
4916 *
4917 * can't because perf_event_init_task() doesn't actually hold the
4918 * child_ctx->mutex.
4919 */
4920
4921 raw_spin_lock_irq(&ctx->lock);
4922 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4923 if (epc->pmu == pmu) {
4924 WARN_ON_ONCE(epc->ctx != ctx);
4925 atomic_inc(&epc->refcount);
4926 goto found_epc;
4927 }
4928 }
4929
4930 epc = new;
4931 new = NULL;
4932
4933 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4934 epc->ctx = ctx;
4935
4936found_epc:
4937 if (task_ctx_data && !epc->task_ctx_data) {
4938 epc->task_ctx_data = task_ctx_data;
4939 task_ctx_data = NULL;
4940 ctx->nr_task_data++;
4941 }
4942 raw_spin_unlock_irq(&ctx->lock);
4943
4944 free_task_ctx_data(pmu, task_ctx_data);
4945 kfree(new);
4946
4947 return epc;
4948}
4949
4950static void get_pmu_ctx(struct perf_event_pmu_context *epc)
4951{
4952 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
4953}
4954
4955static void free_epc_rcu(struct rcu_head *head)
4956{
4957 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
4958
4959 kfree(epc->task_ctx_data);
4960 kfree(epc);
4961}
4962
4963static void put_pmu_ctx(struct perf_event_pmu_context *epc)
4964{
4f64a6c9 4965 struct perf_event_context *ctx = epc->ctx;
bd275681
PZ
4966 unsigned long flags;
4967
4f64a6c9
JC
4968 /*
4969 * XXX
4970 *
4971 * lockdep_assert_held(&ctx->mutex);
4972 *
4973 * can't because of the call-site in _free_event()/put_event()
4974 * which isn't always called under ctx->mutex.
4975 */
4976 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
bd275681
PZ
4977 return;
4978
4f64a6c9 4979 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
bd275681 4980
4f64a6c9
JC
4981 list_del_init(&epc->pmu_ctx_entry);
4982 epc->ctx = NULL;
bd275681
PZ
4983
4984 WARN_ON_ONCE(!list_empty(&epc->pinned_active));
4985 WARN_ON_ONCE(!list_empty(&epc->flexible_active));
4986
4f64a6c9
JC
4987 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4988
bd275681
PZ
4989 if (epc->embedded)
4990 return;
4991
4992 call_rcu(&epc->rcu_head, free_epc_rcu);
4993}
4994
6fb2915d
LZ
4995static void perf_event_free_filter(struct perf_event *event);
4996
cdd6c482 4997static void free_event_rcu(struct rcu_head *head)
592903cd 4998{
bd275681 4999 struct perf_event *event = container_of(head, typeof(*event), rcu_head);
592903cd 5000
cdd6c482
IM
5001 if (event->ns)
5002 put_pid_ns(event->ns);
6fb2915d 5003 perf_event_free_filter(event);
bdacfaf2 5004 kmem_cache_free(perf_event_cache, event);
592903cd
PZ
5005}
5006
b69cf536 5007static void ring_buffer_attach(struct perf_event *event,
56de4e8f 5008 struct perf_buffer *rb);
925d519a 5009
f2fb6bef
KL
5010static void detach_sb_event(struct perf_event *event)
5011{
5012 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
5013
5014 raw_spin_lock(&pel->lock);
5015 list_del_rcu(&event->sb_list);
5016 raw_spin_unlock(&pel->lock);
5017}
5018
a4f144eb 5019static bool is_sb_event(struct perf_event *event)
f2fb6bef 5020{
a4f144eb
DCC
5021 struct perf_event_attr *attr = &event->attr;
5022
f2fb6bef 5023 if (event->parent)
a4f144eb 5024 return false;
f2fb6bef
KL
5025
5026 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 5027 return false;
f2fb6bef 5028
a4f144eb
DCC
5029 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
5030 attr->comm || attr->comm_exec ||
76193a94 5031 attr->task || attr->ksymbol ||
e17d43b9 5032 attr->context_switch || attr->text_poke ||
21038f2b 5033 attr->bpf_event)
a4f144eb
DCC
5034 return true;
5035 return false;
5036}
5037
5038static void unaccount_pmu_sb_event(struct perf_event *event)
5039{
5040 if (is_sb_event(event))
5041 detach_sb_event(event);
f2fb6bef
KL
5042}
5043
555e0c1e
FW
5044#ifdef CONFIG_NO_HZ_FULL
5045static DEFINE_SPINLOCK(nr_freq_lock);
5046#endif
5047
5048static void unaccount_freq_event_nohz(void)
5049{
5050#ifdef CONFIG_NO_HZ_FULL
5051 spin_lock(&nr_freq_lock);
5052 if (atomic_dec_and_test(&nr_freq_events))
5053 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5054 spin_unlock(&nr_freq_lock);
5055#endif
5056}
5057
5058static void unaccount_freq_event(void)
5059{
5060 if (tick_nohz_full_enabled())
5061 unaccount_freq_event_nohz();
5062 else
5063 atomic_dec(&nr_freq_events);
5064}
5065
4beb31f3
FW
5066static void unaccount_event(struct perf_event *event)
5067{
25432ae9
PZ
5068 bool dec = false;
5069
4beb31f3
FW
5070 if (event->parent)
5071 return;
5072
a5398bff 5073 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
25432ae9 5074 dec = true;
4beb31f3
FW
5075 if (event->attr.mmap || event->attr.mmap_data)
5076 atomic_dec(&nr_mmap_events);
88a16a13
JO
5077 if (event->attr.build_id)
5078 atomic_dec(&nr_build_id_events);
4beb31f3
FW
5079 if (event->attr.comm)
5080 atomic_dec(&nr_comm_events);
e4222673
HB
5081 if (event->attr.namespaces)
5082 atomic_dec(&nr_namespaces_events);
96aaab68
NK
5083 if (event->attr.cgroup)
5084 atomic_dec(&nr_cgroup_events);
4beb31f3
FW
5085 if (event->attr.task)
5086 atomic_dec(&nr_task_events);
948b26b6 5087 if (event->attr.freq)
555e0c1e 5088 unaccount_freq_event();
45ac1403 5089 if (event->attr.context_switch) {
25432ae9 5090 dec = true;
45ac1403
AH
5091 atomic_dec(&nr_switch_events);
5092 }
4beb31f3 5093 if (is_cgroup_event(event))
25432ae9 5094 dec = true;
4beb31f3 5095 if (has_branch_stack(event))
25432ae9 5096 dec = true;
76193a94
SL
5097 if (event->attr.ksymbol)
5098 atomic_dec(&nr_ksymbol_events);
6ee52e2a
SL
5099 if (event->attr.bpf_event)
5100 atomic_dec(&nr_bpf_events);
e17d43b9
AH
5101 if (event->attr.text_poke)
5102 atomic_dec(&nr_text_poke_events);
25432ae9 5103
9107c89e
PZ
5104 if (dec) {
5105 if (!atomic_add_unless(&perf_sched_count, -1, 1))
5106 schedule_delayed_work(&perf_sched_work, HZ);
5107 }
4beb31f3 5108
f2fb6bef 5109 unaccount_pmu_sb_event(event);
4beb31f3 5110}
925d519a 5111
9107c89e
PZ
5112static void perf_sched_delayed(struct work_struct *work)
5113{
5114 mutex_lock(&perf_sched_mutex);
5115 if (atomic_dec_and_test(&perf_sched_count))
5116 static_branch_disable(&perf_sched_events);
5117 mutex_unlock(&perf_sched_mutex);
5118}
5119
bed5b25a
AS
5120/*
5121 * The following implement mutual exclusion of events on "exclusive" pmus
5122 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5123 * at a time, so we disallow creating events that might conflict, namely:
5124 *
5125 * 1) cpu-wide events in the presence of per-task events,
5126 * 2) per-task events in the presence of cpu-wide events,
bd275681 5127 * 3) two matching events on the same perf_event_context.
bed5b25a
AS
5128 *
5129 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 5130 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
5131 */
5132static int exclusive_event_init(struct perf_event *event)
5133{
5134 struct pmu *pmu = event->pmu;
5135
8a58ddae 5136 if (!is_exclusive_pmu(pmu))
bed5b25a
AS
5137 return 0;
5138
5139 /*
5140 * Prevent co-existence of per-task and cpu-wide events on the
5141 * same exclusive pmu.
5142 *
5143 * Negative pmu::exclusive_cnt means there are cpu-wide
5144 * events on this "exclusive" pmu, positive means there are
5145 * per-task events.
5146 *
5147 * Since this is called in perf_event_alloc() path, event::ctx
5148 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5149 * to mean "per-task event", because unlike other attach states it
5150 * never gets cleared.
5151 */
5152 if (event->attach_state & PERF_ATTACH_TASK) {
5153 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5154 return -EBUSY;
5155 } else {
5156 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5157 return -EBUSY;
5158 }
5159
5160 return 0;
5161}
5162
5163static void exclusive_event_destroy(struct perf_event *event)
5164{
5165 struct pmu *pmu = event->pmu;
5166
8a58ddae 5167 if (!is_exclusive_pmu(pmu))
bed5b25a
AS
5168 return;
5169
5170 /* see comment in exclusive_event_init() */
5171 if (event->attach_state & PERF_ATTACH_TASK)
5172 atomic_dec(&pmu->exclusive_cnt);
5173 else
5174 atomic_inc(&pmu->exclusive_cnt);
5175}
5176
5177static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5178{
3bf6215a 5179 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
5180 (e1->cpu == e2->cpu ||
5181 e1->cpu == -1 ||
5182 e2->cpu == -1))
5183 return true;
5184 return false;
5185}
5186
bed5b25a
AS
5187static bool exclusive_event_installable(struct perf_event *event,
5188 struct perf_event_context *ctx)
5189{
5190 struct perf_event *iter_event;
5191 struct pmu *pmu = event->pmu;
5192
8a58ddae
AS
5193 lockdep_assert_held(&ctx->mutex);
5194
5195 if (!is_exclusive_pmu(pmu))
bed5b25a
AS
5196 return true;
5197
5198 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5199 if (exclusive_event_match(iter_event, event))
5200 return false;
5201 }
5202
5203 return true;
5204}
5205
375637bc
AS
5206static void perf_addr_filters_splice(struct perf_event *event,
5207 struct list_head *head);
5208
683ede43 5209static void _free_event(struct perf_event *event)
f1600952 5210{
ca6c2132 5211 irq_work_sync(&event->pending_irq);
925d519a 5212
4beb31f3 5213 unaccount_event(event);
9ee318a7 5214
da97e184
JFG
5215 security_perf_event_free(event);
5216
76369139 5217 if (event->rb) {
9bb5d40c
PZ
5218 /*
5219 * Can happen when we close an event with re-directed output.
5220 *
5221 * Since we have a 0 refcount, perf_mmap_close() will skip
5222 * over us; possibly making our ring_buffer_put() the last.
5223 */
5224 mutex_lock(&event->mmap_mutex);
b69cf536 5225 ring_buffer_attach(event, NULL);
9bb5d40c 5226 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
5227 }
5228
e5d1367f
SE
5229 if (is_cgroup_event(event))
5230 perf_detach_cgroup(event);
5231
a0733e69
PZ
5232 if (!event->parent) {
5233 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5234 put_callchain_buffers();
5235 }
5236
5237 perf_event_free_bpf_prog(event);
375637bc 5238 perf_addr_filters_splice(event, NULL);
c60f83b8 5239 kfree(event->addr_filter_ranges);
a0733e69
PZ
5240
5241 if (event->destroy)
5242 event->destroy(event);
5243
1cf8dfe8
PZ
5244 /*
5245 * Must be after ->destroy(), due to uprobe_perf_close() using
5246 * hw.target.
5247 */
621b6d2e
PB
5248 if (event->hw.target)
5249 put_task_struct(event->hw.target);
5250
bd275681
PZ
5251 if (event->pmu_ctx)
5252 put_pmu_ctx(event->pmu_ctx);
5253
1cf8dfe8
PZ
5254 /*
5255 * perf_event_free_task() relies on put_ctx() being 'last', in particular
5256 * all task references must be cleaned up.
5257 */
5258 if (event->ctx)
5259 put_ctx(event->ctx);
5260
62a92c8f
AS
5261 exclusive_event_destroy(event);
5262 module_put(event->pmu->module);
a0733e69
PZ
5263
5264 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
5265}
5266
683ede43
PZ
5267/*
5268 * Used to free events which have a known refcount of 1, such as in error paths
5269 * where the event isn't exposed yet and inherited events.
5270 */
5271static void free_event(struct perf_event *event)
0793a61d 5272{
683ede43
PZ
5273 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5274 "unexpected event refcount: %ld; ptr=%p\n",
5275 atomic_long_read(&event->refcount), event)) {
5276 /* leak to avoid use-after-free */
5277 return;
5278 }
0793a61d 5279
683ede43 5280 _free_event(event);
0793a61d
TG
5281}
5282
a66a3052 5283/*
f8697762 5284 * Remove user event from the owner task.
a66a3052 5285 */
f8697762 5286static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 5287{
8882135b 5288 struct task_struct *owner;
fb0459d7 5289
8882135b 5290 rcu_read_lock();
8882135b 5291 /*
f47c02c0
PZ
5292 * Matches the smp_store_release() in perf_event_exit_task(). If we
5293 * observe !owner it means the list deletion is complete and we can
5294 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
5295 * owner->perf_event_mutex.
5296 */
506458ef 5297 owner = READ_ONCE(event->owner);
8882135b
PZ
5298 if (owner) {
5299 /*
5300 * Since delayed_put_task_struct() also drops the last
5301 * task reference we can safely take a new reference
5302 * while holding the rcu_read_lock().
5303 */
5304 get_task_struct(owner);
5305 }
5306 rcu_read_unlock();
5307
5308 if (owner) {
f63a8daa
PZ
5309 /*
5310 * If we're here through perf_event_exit_task() we're already
5311 * holding ctx->mutex which would be an inversion wrt. the
5312 * normal lock order.
5313 *
5314 * However we can safely take this lock because its the child
5315 * ctx->mutex.
5316 */
5317 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5318
8882135b
PZ
5319 /*
5320 * We have to re-check the event->owner field, if it is cleared
5321 * we raced with perf_event_exit_task(), acquiring the mutex
5322 * ensured they're done, and we can proceed with freeing the
5323 * event.
5324 */
f47c02c0 5325 if (event->owner) {
8882135b 5326 list_del_init(&event->owner_entry);
f47c02c0
PZ
5327 smp_store_release(&event->owner, NULL);
5328 }
8882135b
PZ
5329 mutex_unlock(&owner->perf_event_mutex);
5330 put_task_struct(owner);
5331 }
f8697762
JO
5332}
5333
f8697762
JO
5334static void put_event(struct perf_event *event)
5335{
f8697762
JO
5336 if (!atomic_long_dec_and_test(&event->refcount))
5337 return;
5338
c6e5b732
PZ
5339 _free_event(event);
5340}
5341
5342/*
5343 * Kill an event dead; while event:refcount will preserve the event
5344 * object, it will not preserve its functionality. Once the last 'user'
5345 * gives up the object, we'll destroy the thing.
5346 */
5347int perf_event_release_kernel(struct perf_event *event)
5348{
a4f4bb6d 5349 struct perf_event_context *ctx = event->ctx;
c6e5b732 5350 struct perf_event *child, *tmp;
82d94856 5351 LIST_HEAD(free_list);
c6e5b732 5352
a4f4bb6d 5353 /*
bd275681
PZ
5354 * If we got here through err_alloc: free_event(event); we will not
5355 * have attached to a context yet.
a4f4bb6d
PZ
5356 */
5357 if (!ctx) {
5358 WARN_ON_ONCE(event->attach_state &
5359 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5360 goto no_ctx;
5361 }
5362
f8697762
JO
5363 if (!is_kernel_event(event))
5364 perf_remove_from_owner(event);
8882135b 5365
5fa7c8ec 5366 ctx = perf_event_ctx_lock(event);
a83fe28e 5367 WARN_ON_ONCE(ctx->parent_ctx);
683ede43 5368
683ede43 5369 /*
d8a8cfc7 5370 * Mark this event as STATE_DEAD, there is no external reference to it
a69b0ca4 5371 * anymore.
683ede43 5372 *
a69b0ca4
PZ
5373 * Anybody acquiring event->child_mutex after the below loop _must_
5374 * also see this, most importantly inherit_event() which will avoid
5375 * placing more children on the list.
683ede43 5376 *
c6e5b732
PZ
5377 * Thus this guarantees that we will in fact observe and kill _ALL_
5378 * child events.
683ede43 5379 */
517e6a30 5380 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
a69b0ca4
PZ
5381
5382 perf_event_ctx_unlock(event, ctx);
683ede43 5383
c6e5b732
PZ
5384again:
5385 mutex_lock(&event->child_mutex);
5386 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 5387
c6e5b732
PZ
5388 /*
5389 * Cannot change, child events are not migrated, see the
5390 * comment with perf_event_ctx_lock_nested().
5391 */
506458ef 5392 ctx = READ_ONCE(child->ctx);
c6e5b732
PZ
5393 /*
5394 * Since child_mutex nests inside ctx::mutex, we must jump
5395 * through hoops. We start by grabbing a reference on the ctx.
5396 *
5397 * Since the event cannot get freed while we hold the
5398 * child_mutex, the context must also exist and have a !0
5399 * reference count.
5400 */
5401 get_ctx(ctx);
5402
5403 /*
5404 * Now that we have a ctx ref, we can drop child_mutex, and
5405 * acquire ctx::mutex without fear of it going away. Then we
5406 * can re-acquire child_mutex.
5407 */
5408 mutex_unlock(&event->child_mutex);
5409 mutex_lock(&ctx->mutex);
5410 mutex_lock(&event->child_mutex);
5411
5412 /*
5413 * Now that we hold ctx::mutex and child_mutex, revalidate our
5414 * state, if child is still the first entry, it didn't get freed
5415 * and we can continue doing so.
5416 */
5417 tmp = list_first_entry_or_null(&event->child_list,
5418 struct perf_event, child_list);
5419 if (tmp == child) {
5420 perf_remove_from_context(child, DETACH_GROUP);
82d94856 5421 list_move(&child->child_list, &free_list);
c6e5b732
PZ
5422 /*
5423 * This matches the refcount bump in inherit_event();
5424 * this can't be the last reference.
5425 */
5426 put_event(event);
5427 }
5428
5429 mutex_unlock(&event->child_mutex);
5430 mutex_unlock(&ctx->mutex);
5431 put_ctx(ctx);
5432 goto again;
5433 }
5434 mutex_unlock(&event->child_mutex);
5435
82d94856 5436 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
1cf8dfe8
PZ
5437 void *var = &child->ctx->refcount;
5438
82d94856
PZ
5439 list_del(&child->child_list);
5440 free_event(child);
1cf8dfe8
PZ
5441
5442 /*
5443 * Wake any perf_event_free_task() waiting for this event to be
5444 * freed.
5445 */
5446 smp_mb(); /* pairs with wait_var_event() */
5447 wake_up_var(var);
82d94856
PZ
5448 }
5449
a4f4bb6d
PZ
5450no_ctx:
5451 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
5452 return 0;
5453}
5454EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5455
8b10c5e2
PZ
5456/*
5457 * Called when the last reference to the file is gone.
5458 */
a6fa941d
AV
5459static int perf_release(struct inode *inode, struct file *file)
5460{
c6e5b732 5461 perf_event_release_kernel(file->private_data);
a6fa941d 5462 return 0;
fb0459d7 5463}
fb0459d7 5464
ca0dd44c 5465static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 5466{
cdd6c482 5467 struct perf_event *child;
e53c0994
PZ
5468 u64 total = 0;
5469
59ed446f
PZ
5470 *enabled = 0;
5471 *running = 0;
5472
6f10581a 5473 mutex_lock(&event->child_mutex);
01add3ea 5474
7d88962e 5475 (void)perf_event_read(event, false);
01add3ea
SB
5476 total += perf_event_count(event);
5477
59ed446f
PZ
5478 *enabled += event->total_time_enabled +
5479 atomic64_read(&event->child_total_time_enabled);
5480 *running += event->total_time_running +
5481 atomic64_read(&event->child_total_time_running);
5482
5483 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 5484 (void)perf_event_read(child, false);
01add3ea 5485 total += perf_event_count(child);
59ed446f
PZ
5486 *enabled += child->total_time_enabled;
5487 *running += child->total_time_running;
5488 }
6f10581a 5489 mutex_unlock(&event->child_mutex);
e53c0994
PZ
5490
5491 return total;
5492}
ca0dd44c
PZ
5493
5494u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5495{
5496 struct perf_event_context *ctx;
5497 u64 count;
5498
5499 ctx = perf_event_ctx_lock(event);
5500 count = __perf_event_read_value(event, enabled, running);
5501 perf_event_ctx_unlock(event, ctx);
5502
5503 return count;
5504}
fb0459d7 5505EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 5506
7d88962e 5507static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 5508 u64 read_format, u64 *values)
3dab77fb 5509{
2aeb1883 5510 struct perf_event_context *ctx = leader->ctx;
32671e37 5511 struct perf_event *sub, *parent;
2aeb1883 5512 unsigned long flags;
fa8c2693 5513 int n = 1; /* skip @nr */
7d88962e 5514 int ret;
f63a8daa 5515
7d88962e
SB
5516 ret = perf_event_read(leader, true);
5517 if (ret)
5518 return ret;
abf4868b 5519
a9cd8194 5520 raw_spin_lock_irqsave(&ctx->lock, flags);
32671e37
PZ
5521 /*
5522 * Verify the grouping between the parent and child (inherited)
5523 * events is still in tact.
5524 *
5525 * Specifically:
5526 * - leader->ctx->lock pins leader->sibling_list
5527 * - parent->child_mutex pins parent->child_list
5528 * - parent->ctx->mutex pins parent->sibling_list
5529 *
5530 * Because parent->ctx != leader->ctx (and child_list nests inside
5531 * ctx->mutex), group destruction is not atomic between children, also
5532 * see perf_event_release_kernel(). Additionally, parent can grow the
5533 * group.
5534 *
5535 * Therefore it is possible to have parent and child groups in a
5536 * different configuration and summing over such a beast makes no sense
5537 * what so ever.
5538 *
5539 * Reject this.
5540 */
5541 parent = leader->parent;
5542 if (parent &&
5543 (parent->group_generation != leader->group_generation ||
5544 parent->nr_siblings != leader->nr_siblings)) {
5545 ret = -ECHILD;
5546 goto unlock;
5547 }
a9cd8194 5548
fa8c2693
PZ
5549 /*
5550 * Since we co-schedule groups, {enabled,running} times of siblings
5551 * will be identical to those of the leader, so we only publish one
5552 * set.
5553 */
5554 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5555 values[n++] += leader->total_time_enabled +
5556 atomic64_read(&leader->child_total_time_enabled);
5557 }
3dab77fb 5558
fa8c2693
PZ
5559 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5560 values[n++] += leader->total_time_running +
5561 atomic64_read(&leader->child_total_time_running);
5562 }
5563
5564 /*
5565 * Write {count,id} tuples for every sibling.
5566 */
5567 values[n++] += perf_event_count(leader);
abf4868b
PZ
5568 if (read_format & PERF_FORMAT_ID)
5569 values[n++] = primary_event_id(leader);
119a784c
NK
5570 if (read_format & PERF_FORMAT_LOST)
5571 values[n++] = atomic64_read(&leader->lost_samples);
3dab77fb 5572
edb39592 5573 for_each_sibling_event(sub, leader) {
fa8c2693
PZ
5574 values[n++] += perf_event_count(sub);
5575 if (read_format & PERF_FORMAT_ID)
5576 values[n++] = primary_event_id(sub);
119a784c
NK
5577 if (read_format & PERF_FORMAT_LOST)
5578 values[n++] = atomic64_read(&sub->lost_samples);
fa8c2693 5579 }
7d88962e 5580
32671e37 5581unlock:
2aeb1883 5582 raw_spin_unlock_irqrestore(&ctx->lock, flags);
32671e37 5583 return ret;
fa8c2693 5584}
3dab77fb 5585
fa8c2693
PZ
5586static int perf_read_group(struct perf_event *event,
5587 u64 read_format, char __user *buf)
5588{
5589 struct perf_event *leader = event->group_leader, *child;
5590 struct perf_event_context *ctx = leader->ctx;
7d88962e 5591 int ret;
fa8c2693 5592 u64 *values;
3dab77fb 5593
fa8c2693 5594 lockdep_assert_held(&ctx->mutex);
3dab77fb 5595
fa8c2693
PZ
5596 values = kzalloc(event->read_size, GFP_KERNEL);
5597 if (!values)
5598 return -ENOMEM;
3dab77fb 5599
fa8c2693
PZ
5600 values[0] = 1 + leader->nr_siblings;
5601
fa8c2693 5602 mutex_lock(&leader->child_mutex);
abf4868b 5603
7d88962e
SB
5604 ret = __perf_read_group_add(leader, read_format, values);
5605 if (ret)
5606 goto unlock;
5607
5608 list_for_each_entry(child, &leader->child_list, child_list) {
5609 ret = __perf_read_group_add(child, read_format, values);
5610 if (ret)
5611 goto unlock;
5612 }
abf4868b 5613
fa8c2693 5614 mutex_unlock(&leader->child_mutex);
abf4868b 5615
7d88962e 5616 ret = event->read_size;
fa8c2693
PZ
5617 if (copy_to_user(buf, values, event->read_size))
5618 ret = -EFAULT;
7d88962e 5619 goto out;
fa8c2693 5620
7d88962e
SB
5621unlock:
5622 mutex_unlock(&leader->child_mutex);
5623out:
fa8c2693 5624 kfree(values);
abf4868b 5625 return ret;
3dab77fb
PZ
5626}
5627
b15f495b 5628static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
5629 u64 read_format, char __user *buf)
5630{
59ed446f 5631 u64 enabled, running;
119a784c 5632 u64 values[5];
3dab77fb
PZ
5633 int n = 0;
5634
ca0dd44c 5635 values[n++] = __perf_event_read_value(event, &enabled, &running);
59ed446f
PZ
5636 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5637 values[n++] = enabled;
5638 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5639 values[n++] = running;
3dab77fb 5640 if (read_format & PERF_FORMAT_ID)
cdd6c482 5641 values[n++] = primary_event_id(event);
119a784c
NK
5642 if (read_format & PERF_FORMAT_LOST)
5643 values[n++] = atomic64_read(&event->lost_samples);
3dab77fb
PZ
5644
5645 if (copy_to_user(buf, values, n * sizeof(u64)))
5646 return -EFAULT;
5647
5648 return n * sizeof(u64);
5649}
5650
dc633982
JO
5651static bool is_event_hup(struct perf_event *event)
5652{
5653 bool no_children;
5654
a69b0ca4 5655 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
5656 return false;
5657
5658 mutex_lock(&event->child_mutex);
5659 no_children = list_empty(&event->child_list);
5660 mutex_unlock(&event->child_mutex);
5661 return no_children;
5662}
5663
0793a61d 5664/*
cdd6c482 5665 * Read the performance event - simple non blocking version for now
0793a61d
TG
5666 */
5667static ssize_t
b15f495b 5668__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 5669{
cdd6c482 5670 u64 read_format = event->attr.read_format;
3dab77fb 5671 int ret;
0793a61d 5672
3b6f9e5c 5673 /*
788faab7 5674 * Return end-of-file for a read on an event that is in
3b6f9e5c
PM
5675 * error state (i.e. because it was pinned but it couldn't be
5676 * scheduled on to the CPU at some point).
5677 */
cdd6c482 5678 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
5679 return 0;
5680
c320c7b7 5681 if (count < event->read_size)
3dab77fb
PZ
5682 return -ENOSPC;
5683
cdd6c482 5684 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 5685 if (read_format & PERF_FORMAT_GROUP)
b15f495b 5686 ret = perf_read_group(event, read_format, buf);
3dab77fb 5687 else
b15f495b 5688 ret = perf_read_one(event, read_format, buf);
0793a61d 5689
3dab77fb 5690 return ret;
0793a61d
TG
5691}
5692
0793a61d
TG
5693static ssize_t
5694perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5695{
cdd6c482 5696 struct perf_event *event = file->private_data;
f63a8daa
PZ
5697 struct perf_event_context *ctx;
5698 int ret;
0793a61d 5699
da97e184
JFG
5700 ret = security_perf_event_read(event);
5701 if (ret)
5702 return ret;
5703
f63a8daa 5704 ctx = perf_event_ctx_lock(event);
b15f495b 5705 ret = __perf_read(event, buf, count);
f63a8daa
PZ
5706 perf_event_ctx_unlock(event, ctx);
5707
5708 return ret;
0793a61d
TG
5709}
5710
9dd95748 5711static __poll_t perf_poll(struct file *file, poll_table *wait)
0793a61d 5712{
cdd6c482 5713 struct perf_event *event = file->private_data;
56de4e8f 5714 struct perf_buffer *rb;
a9a08845 5715 __poll_t events = EPOLLHUP;
c7138f37 5716
e708d7ad 5717 poll_wait(file, &event->waitq, wait);
179033b3 5718
dc633982 5719 if (is_event_hup(event))
179033b3 5720 return events;
c7138f37 5721
10c6db11 5722 /*
9bb5d40c
PZ
5723 * Pin the event->rb by taking event->mmap_mutex; otherwise
5724 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
5725 */
5726 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
5727 rb = event->rb;
5728 if (rb)
76369139 5729 events = atomic_xchg(&rb->poll, 0);
10c6db11 5730 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
5731 return events;
5732}
5733
f63a8daa 5734static void _perf_event_reset(struct perf_event *event)
6de6a7b9 5735{
7d88962e 5736 (void)perf_event_read(event, false);
e7850595 5737 local64_set(&event->count, 0);
cdd6c482 5738 perf_event_update_userpage(event);
3df5edad
PZ
5739}
5740
52ba4b0b
LX
5741/* Assume it's not an event with inherit set. */
5742u64 perf_event_pause(struct perf_event *event, bool reset)
5743{
5744 struct perf_event_context *ctx;
5745 u64 count;
5746
5747 ctx = perf_event_ctx_lock(event);
5748 WARN_ON_ONCE(event->attr.inherit);
5749 _perf_event_disable(event);
5750 count = local64_read(&event->count);
5751 if (reset)
5752 local64_set(&event->count, 0);
5753 perf_event_ctx_unlock(event, ctx);
5754
5755 return count;
5756}
5757EXPORT_SYMBOL_GPL(perf_event_pause);
5758
c93f7669 5759/*
cdd6c482
IM
5760 * Holding the top-level event's child_mutex means that any
5761 * descendant process that has inherited this event will block
8ba289b8 5762 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 5763 * task existence requirements of perf_event_enable/disable.
c93f7669 5764 */
cdd6c482
IM
5765static void perf_event_for_each_child(struct perf_event *event,
5766 void (*func)(struct perf_event *))
3df5edad 5767{
cdd6c482 5768 struct perf_event *child;
3df5edad 5769
cdd6c482 5770 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 5771
cdd6c482
IM
5772 mutex_lock(&event->child_mutex);
5773 func(event);
5774 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 5775 func(child);
cdd6c482 5776 mutex_unlock(&event->child_mutex);
3df5edad
PZ
5777}
5778
cdd6c482
IM
5779static void perf_event_for_each(struct perf_event *event,
5780 void (*func)(struct perf_event *))
3df5edad 5781{
cdd6c482
IM
5782 struct perf_event_context *ctx = event->ctx;
5783 struct perf_event *sibling;
3df5edad 5784
f63a8daa
PZ
5785 lockdep_assert_held(&ctx->mutex);
5786
cdd6c482 5787 event = event->group_leader;
75f937f2 5788
cdd6c482 5789 perf_event_for_each_child(event, func);
edb39592 5790 for_each_sibling_event(sibling, event)
724b6daa 5791 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
5792}
5793
fae3fde6
PZ
5794static void __perf_event_period(struct perf_event *event,
5795 struct perf_cpu_context *cpuctx,
5796 struct perf_event_context *ctx,
5797 void *info)
c7999c6f 5798{
fae3fde6 5799 u64 value = *((u64 *)info);
c7999c6f 5800 bool active;
08247e31 5801
cdd6c482 5802 if (event->attr.freq) {
cdd6c482 5803 event->attr.sample_freq = value;
08247e31 5804 } else {
cdd6c482
IM
5805 event->attr.sample_period = value;
5806 event->hw.sample_period = value;
08247e31 5807 }
bad7192b
PZ
5808
5809 active = (event->state == PERF_EVENT_STATE_ACTIVE);
5810 if (active) {
bd275681 5811 perf_pmu_disable(event->pmu);
1e02cd40
PZ
5812 /*
5813 * We could be throttled; unthrottle now to avoid the tick
5814 * trying to unthrottle while we already re-started the event.
5815 */
5816 if (event->hw.interrupts == MAX_INTERRUPTS) {
5817 event->hw.interrupts = 0;
5818 perf_log_throttle(event, 1);
5819 }
bad7192b
PZ
5820 event->pmu->stop(event, PERF_EF_UPDATE);
5821 }
5822
5823 local64_set(&event->hw.period_left, 0);
5824
5825 if (active) {
5826 event->pmu->start(event, PERF_EF_RELOAD);
bd275681 5827 perf_pmu_enable(event->pmu);
bad7192b 5828 }
c7999c6f
PZ
5829}
5830
81ec3f3c
JO
5831static int perf_event_check_period(struct perf_event *event, u64 value)
5832{
5833 return event->pmu->check_period(event, value);
5834}
5835
3ca270fc 5836static int _perf_event_period(struct perf_event *event, u64 value)
c7999c6f 5837{
c7999c6f
PZ
5838 if (!is_sampling_event(event))
5839 return -EINVAL;
5840
c7999c6f
PZ
5841 if (!value)
5842 return -EINVAL;
5843
5844 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5845 return -EINVAL;
5846
81ec3f3c
JO
5847 if (perf_event_check_period(event, value))
5848 return -EINVAL;
5849
913a90bc
RB
5850 if (!event->attr.freq && (value & (1ULL << 63)))
5851 return -EINVAL;
5852
fae3fde6 5853 event_function_call(event, __perf_event_period, &value);
08247e31 5854
c7999c6f 5855 return 0;
08247e31
PZ
5856}
5857
3ca270fc
LX
5858int perf_event_period(struct perf_event *event, u64 value)
5859{
5860 struct perf_event_context *ctx;
5861 int ret;
5862
5863 ctx = perf_event_ctx_lock(event);
5864 ret = _perf_event_period(event, value);
5865 perf_event_ctx_unlock(event, ctx);
5866
5867 return ret;
5868}
5869EXPORT_SYMBOL_GPL(perf_event_period);
5870
ac9721f3
PZ
5871static const struct file_operations perf_fops;
5872
2903ff01 5873static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 5874{
2903ff01
AV
5875 struct fd f = fdget(fd);
5876 if (!f.file)
5877 return -EBADF;
ac9721f3 5878
2903ff01
AV
5879 if (f.file->f_op != &perf_fops) {
5880 fdput(f);
5881 return -EBADF;
ac9721f3 5882 }
2903ff01
AV
5883 *p = f;
5884 return 0;
ac9721f3
PZ
5885}
5886
5887static int perf_event_set_output(struct perf_event *event,
5888 struct perf_event *output_event);
6fb2915d 5889static int perf_event_set_filter(struct perf_event *event, void __user *arg);
32ff77e8
MC
5890static int perf_copy_attr(struct perf_event_attr __user *uattr,
5891 struct perf_event_attr *attr);
a4be7c27 5892
f63a8daa 5893static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 5894{
cdd6c482 5895 void (*func)(struct perf_event *);
3df5edad 5896 u32 flags = arg;
d859e29f
PM
5897
5898 switch (cmd) {
cdd6c482 5899 case PERF_EVENT_IOC_ENABLE:
f63a8daa 5900 func = _perf_event_enable;
d859e29f 5901 break;
cdd6c482 5902 case PERF_EVENT_IOC_DISABLE:
f63a8daa 5903 func = _perf_event_disable;
79f14641 5904 break;
cdd6c482 5905 case PERF_EVENT_IOC_RESET:
f63a8daa 5906 func = _perf_event_reset;
6de6a7b9 5907 break;
3df5edad 5908
cdd6c482 5909 case PERF_EVENT_IOC_REFRESH:
f63a8daa 5910 return _perf_event_refresh(event, arg);
08247e31 5911
cdd6c482 5912 case PERF_EVENT_IOC_PERIOD:
3ca270fc
LX
5913 {
5914 u64 value;
08247e31 5915
3ca270fc
LX
5916 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5917 return -EFAULT;
08247e31 5918
3ca270fc
LX
5919 return _perf_event_period(event, value);
5920 }
cf4957f1
JO
5921 case PERF_EVENT_IOC_ID:
5922 {
5923 u64 id = primary_event_id(event);
5924
5925 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5926 return -EFAULT;
5927 return 0;
5928 }
5929
cdd6c482 5930 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 5931 {
ac9721f3 5932 int ret;
ac9721f3 5933 if (arg != -1) {
2903ff01
AV
5934 struct perf_event *output_event;
5935 struct fd output;
5936 ret = perf_fget_light(arg, &output);
5937 if (ret)
5938 return ret;
5939 output_event = output.file->private_data;
5940 ret = perf_event_set_output(event, output_event);
5941 fdput(output);
5942 } else {
5943 ret = perf_event_set_output(event, NULL);
ac9721f3 5944 }
ac9721f3
PZ
5945 return ret;
5946 }
a4be7c27 5947
6fb2915d
LZ
5948 case PERF_EVENT_IOC_SET_FILTER:
5949 return perf_event_set_filter(event, (void __user *)arg);
5950
2541517c 5951 case PERF_EVENT_IOC_SET_BPF:
652c1b17
AN
5952 {
5953 struct bpf_prog *prog;
5954 int err;
5955
5956 prog = bpf_prog_get(arg);
5957 if (IS_ERR(prog))
5958 return PTR_ERR(prog);
5959
82e6b1ee 5960 err = perf_event_set_bpf_prog(event, prog, 0);
652c1b17
AN
5961 if (err) {
5962 bpf_prog_put(prog);
5963 return err;
5964 }
5965
5966 return 0;
5967 }
2541517c 5968
86e7972f 5969 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
56de4e8f 5970 struct perf_buffer *rb;
86e7972f
WN
5971
5972 rcu_read_lock();
5973 rb = rcu_dereference(event->rb);
5974 if (!rb || !rb->nr_pages) {
5975 rcu_read_unlock();
5976 return -EINVAL;
5977 }
5978 rb_toggle_paused(rb, !!arg);
5979 rcu_read_unlock();
5980 return 0;
5981 }
f371b304
YS
5982
5983 case PERF_EVENT_IOC_QUERY_BPF:
f4e2298e 5984 return perf_event_query_prog_array(event, (void __user *)arg);
32ff77e8
MC
5985
5986 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5987 struct perf_event_attr new_attr;
5988 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5989 &new_attr);
5990
5991 if (err)
5992 return err;
5993
5994 return perf_event_modify_attr(event, &new_attr);
5995 }
d859e29f 5996 default:
3df5edad 5997 return -ENOTTY;
d859e29f 5998 }
3df5edad
PZ
5999
6000 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 6001 perf_event_for_each(event, func);
3df5edad 6002 else
cdd6c482 6003 perf_event_for_each_child(event, func);
3df5edad
PZ
6004
6005 return 0;
d859e29f
PM
6006}
6007
f63a8daa
PZ
6008static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6009{
6010 struct perf_event *event = file->private_data;
6011 struct perf_event_context *ctx;
6012 long ret;
6013
da97e184
JFG
6014 /* Treat ioctl like writes as it is likely a mutating operation. */
6015 ret = security_perf_event_write(event);
6016 if (ret)
6017 return ret;
6018
f63a8daa
PZ
6019 ctx = perf_event_ctx_lock(event);
6020 ret = _perf_ioctl(event, cmd, arg);
6021 perf_event_ctx_unlock(event, ctx);
6022
6023 return ret;
6024}
6025
b3f20785
PM
6026#ifdef CONFIG_COMPAT
6027static long perf_compat_ioctl(struct file *file, unsigned int cmd,
6028 unsigned long arg)
6029{
6030 switch (_IOC_NR(cmd)) {
6031 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6032 case _IOC_NR(PERF_EVENT_IOC_ID):
82489c5f
ES
6033 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6034 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
b3f20785
PM
6035 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6036 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6037 cmd &= ~IOCSIZE_MASK;
6038 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6039 }
6040 break;
6041 }
6042 return perf_ioctl(file, cmd, arg);
6043}
6044#else
6045# define perf_compat_ioctl NULL
6046#endif
6047
cdd6c482 6048int perf_event_task_enable(void)
771d7cde 6049{
f63a8daa 6050 struct perf_event_context *ctx;
cdd6c482 6051 struct perf_event *event;
771d7cde 6052
cdd6c482 6053 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
6054 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6055 ctx = perf_event_ctx_lock(event);
6056 perf_event_for_each_child(event, _perf_event_enable);
6057 perf_event_ctx_unlock(event, ctx);
6058 }
cdd6c482 6059 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
6060
6061 return 0;
6062}
6063
cdd6c482 6064int perf_event_task_disable(void)
771d7cde 6065{
f63a8daa 6066 struct perf_event_context *ctx;
cdd6c482 6067 struct perf_event *event;
771d7cde 6068
cdd6c482 6069 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
6070 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6071 ctx = perf_event_ctx_lock(event);
6072 perf_event_for_each_child(event, _perf_event_disable);
6073 perf_event_ctx_unlock(event, ctx);
6074 }
cdd6c482 6075 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
6076
6077 return 0;
6078}
6079
cdd6c482 6080static int perf_event_index(struct perf_event *event)
194002b2 6081{
a4eaf7f1
PZ
6082 if (event->hw.state & PERF_HES_STOPPED)
6083 return 0;
6084
cdd6c482 6085 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
6086 return 0;
6087
35edc2a5 6088 return event->pmu->event_idx(event);
194002b2
PZ
6089}
6090
fa731587
PZ
6091static void perf_event_init_userpage(struct perf_event *event)
6092{
6093 struct perf_event_mmap_page *userpg;
56de4e8f 6094 struct perf_buffer *rb;
fa731587
PZ
6095
6096 rcu_read_lock();
6097 rb = rcu_dereference(event->rb);
6098 if (!rb)
6099 goto unlock;
6100
6101 userpg = rb->user_page;
6102
6103 /* Allow new userspace to detect that bit 0 is deprecated */
6104 userpg->cap_bit0_is_deprecated = 1;
6105 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
6106 userpg->data_offset = PAGE_SIZE;
6107 userpg->data_size = perf_data_size(rb);
fa731587
PZ
6108
6109unlock:
6110 rcu_read_unlock();
6111}
6112
c1317ec2
AL
6113void __weak arch_perf_update_userpage(
6114 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
6115{
6116}
6117
38ff667b
PZ
6118/*
6119 * Callers need to ensure there can be no nesting of this function, otherwise
6120 * the seqlock logic goes bad. We can not serialize this because the arch
6121 * code calls this from NMI context.
6122 */
cdd6c482 6123void perf_event_update_userpage(struct perf_event *event)
37d81828 6124{
cdd6c482 6125 struct perf_event_mmap_page *userpg;
56de4e8f 6126 struct perf_buffer *rb;
e3f3541c 6127 u64 enabled, running, now;
38ff667b
PZ
6128
6129 rcu_read_lock();
5ec4c599
PZ
6130 rb = rcu_dereference(event->rb);
6131 if (!rb)
6132 goto unlock;
6133
0d641208
EM
6134 /*
6135 * compute total_time_enabled, total_time_running
6136 * based on snapshot values taken when the event
6137 * was last scheduled in.
6138 *
6139 * we cannot simply called update_context_time()
6140 * because of locking issue as we can be called in
6141 * NMI context
6142 */
e3f3541c 6143 calc_timer_values(event, &now, &enabled, &running);
38ff667b 6144
76369139 6145 userpg = rb->user_page;
7b732a75 6146 /*
9d2dcc8f
MF
6147 * Disable preemption to guarantee consistent time stamps are stored to
6148 * the user page.
7b732a75
PZ
6149 */
6150 preempt_disable();
37d81828 6151 ++userpg->lock;
92f22a38 6152 barrier();
cdd6c482 6153 userpg->index = perf_event_index(event);
b5e58793 6154 userpg->offset = perf_event_count(event);
365a4038 6155 if (userpg->index)
e7850595 6156 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 6157
0d641208 6158 userpg->time_enabled = enabled +
cdd6c482 6159 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 6160
0d641208 6161 userpg->time_running = running +
cdd6c482 6162 atomic64_read(&event->child_total_time_running);
7f8b4e4e 6163
c1317ec2 6164 arch_perf_update_userpage(event, userpg, now);
e3f3541c 6165
92f22a38 6166 barrier();
37d81828 6167 ++userpg->lock;
7b732a75 6168 preempt_enable();
38ff667b 6169unlock:
7b732a75 6170 rcu_read_unlock();
37d81828 6171}
82975c46 6172EXPORT_SYMBOL_GPL(perf_event_update_userpage);
37d81828 6173
9e3ed2d7 6174static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
906010b2 6175{
11bac800 6176 struct perf_event *event = vmf->vma->vm_file->private_data;
56de4e8f 6177 struct perf_buffer *rb;
9e3ed2d7 6178 vm_fault_t ret = VM_FAULT_SIGBUS;
906010b2
PZ
6179
6180 if (vmf->flags & FAULT_FLAG_MKWRITE) {
6181 if (vmf->pgoff == 0)
6182 ret = 0;
6183 return ret;
6184 }
6185
6186 rcu_read_lock();
76369139
FW
6187 rb = rcu_dereference(event->rb);
6188 if (!rb)
906010b2
PZ
6189 goto unlock;
6190
6191 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
6192 goto unlock;
6193
76369139 6194 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
6195 if (!vmf->page)
6196 goto unlock;
6197
6198 get_page(vmf->page);
11bac800 6199 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
906010b2
PZ
6200 vmf->page->index = vmf->pgoff;
6201
6202 ret = 0;
6203unlock:
6204 rcu_read_unlock();
6205
6206 return ret;
6207}
6208
10c6db11 6209static void ring_buffer_attach(struct perf_event *event,
56de4e8f 6210 struct perf_buffer *rb)
10c6db11 6211{
56de4e8f 6212 struct perf_buffer *old_rb = NULL;
10c6db11
PZ
6213 unsigned long flags;
6214
961c3912
JC
6215 WARN_ON_ONCE(event->parent);
6216
b69cf536
PZ
6217 if (event->rb) {
6218 /*
6219 * Should be impossible, we set this when removing
6220 * event->rb_entry and wait/clear when adding event->rb_entry.
6221 */
6222 WARN_ON_ONCE(event->rcu_pending);
10c6db11 6223
b69cf536 6224 old_rb = event->rb;
b69cf536
PZ
6225 spin_lock_irqsave(&old_rb->event_lock, flags);
6226 list_del_rcu(&event->rb_entry);
6227 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 6228
2f993cf0
ON
6229 event->rcu_batches = get_state_synchronize_rcu();
6230 event->rcu_pending = 1;
b69cf536 6231 }
10c6db11 6232
b69cf536 6233 if (rb) {
2f993cf0
ON
6234 if (event->rcu_pending) {
6235 cond_synchronize_rcu(event->rcu_batches);
6236 event->rcu_pending = 0;
6237 }
6238
b69cf536
PZ
6239 spin_lock_irqsave(&rb->event_lock, flags);
6240 list_add_rcu(&event->rb_entry, &rb->event_list);
6241 spin_unlock_irqrestore(&rb->event_lock, flags);
6242 }
6243
767ae086
AS
6244 /*
6245 * Avoid racing with perf_mmap_close(AUX): stop the event
6246 * before swizzling the event::rb pointer; if it's getting
6247 * unmapped, its aux_mmap_count will be 0 and it won't
6248 * restart. See the comment in __perf_pmu_output_stop().
6249 *
6250 * Data will inevitably be lost when set_output is done in
6251 * mid-air, but then again, whoever does it like this is
6252 * not in for the data anyway.
6253 */
6254 if (has_aux(event))
6255 perf_event_stop(event, 0);
6256
b69cf536
PZ
6257 rcu_assign_pointer(event->rb, rb);
6258
6259 if (old_rb) {
6260 ring_buffer_put(old_rb);
6261 /*
6262 * Since we detached before setting the new rb, so that we
6263 * could attach the new rb, we could have missed a wakeup.
6264 * Provide it now.
6265 */
6266 wake_up_all(&event->waitq);
6267 }
10c6db11
PZ
6268}
6269
6270static void ring_buffer_wakeup(struct perf_event *event)
6271{
56de4e8f 6272 struct perf_buffer *rb;
10c6db11 6273
961c3912
JC
6274 if (event->parent)
6275 event = event->parent;
6276
10c6db11
PZ
6277 rcu_read_lock();
6278 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
6279 if (rb) {
6280 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6281 wake_up_all(&event->waitq);
6282 }
10c6db11
PZ
6283 rcu_read_unlock();
6284}
6285
56de4e8f 6286struct perf_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 6287{
56de4e8f 6288 struct perf_buffer *rb;
7b732a75 6289
961c3912
JC
6290 if (event->parent)
6291 event = event->parent;
6292
ac9721f3 6293 rcu_read_lock();
76369139
FW
6294 rb = rcu_dereference(event->rb);
6295 if (rb) {
fecb8ed2 6296 if (!refcount_inc_not_zero(&rb->refcount))
76369139 6297 rb = NULL;
ac9721f3
PZ
6298 }
6299 rcu_read_unlock();
6300
76369139 6301 return rb;
ac9721f3
PZ
6302}
6303
56de4e8f 6304void ring_buffer_put(struct perf_buffer *rb)
ac9721f3 6305{
fecb8ed2 6306 if (!refcount_dec_and_test(&rb->refcount))
ac9721f3 6307 return;
7b732a75 6308
9bb5d40c 6309 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 6310
76369139 6311 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
6312}
6313
6314static void perf_mmap_open(struct vm_area_struct *vma)
6315{
cdd6c482 6316 struct perf_event *event = vma->vm_file->private_data;
7b732a75 6317
cdd6c482 6318 atomic_inc(&event->mmap_count);
9bb5d40c 6319 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 6320
45bfb2e5
PZ
6321 if (vma->vm_pgoff)
6322 atomic_inc(&event->rb->aux_mmap_count);
6323
1e0fb9ec 6324 if (event->pmu->event_mapped)
bfe33492 6325 event->pmu->event_mapped(event, vma->vm_mm);
7b732a75
PZ
6326}
6327
95ff4ca2
AS
6328static void perf_pmu_output_stop(struct perf_event *event);
6329
9bb5d40c
PZ
6330/*
6331 * A buffer can be mmap()ed multiple times; either directly through the same
6332 * event, or through other events by use of perf_event_set_output().
6333 *
6334 * In order to undo the VM accounting done by perf_mmap() we need to destroy
6335 * the buffer here, where we still have a VM context. This means we need
6336 * to detach all events redirecting to us.
6337 */
7b732a75
PZ
6338static void perf_mmap_close(struct vm_area_struct *vma)
6339{
cdd6c482 6340 struct perf_event *event = vma->vm_file->private_data;
56de4e8f 6341 struct perf_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
6342 struct user_struct *mmap_user = rb->mmap_user;
6343 int mmap_locked = rb->mmap_locked;
6344 unsigned long size = perf_data_size(rb);
f91072ed 6345 bool detach_rest = false;
789f90fc 6346
1e0fb9ec 6347 if (event->pmu->event_unmapped)
bfe33492 6348 event->pmu->event_unmapped(event, vma->vm_mm);
1e0fb9ec 6349
45bfb2e5
PZ
6350 /*
6351 * rb->aux_mmap_count will always drop before rb->mmap_count and
6352 * event->mmap_count, so it is ok to use event->mmap_mutex to
6353 * serialize with perf_mmap here.
6354 */
6355 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6356 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
6357 /*
6358 * Stop all AUX events that are writing to this buffer,
6359 * so that we can free its AUX pages and corresponding PMU
6360 * data. Note that after rb::aux_mmap_count dropped to zero,
6361 * they won't start any more (see perf_aux_output_begin()).
6362 */
6363 perf_pmu_output_stop(event);
6364
6365 /* now it's safe to free the pages */
36b3db03
AS
6366 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6367 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
45bfb2e5 6368
95ff4ca2 6369 /* this has to be the last one */
45bfb2e5 6370 rb_free_aux(rb);
ca3bb3d0 6371 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
95ff4ca2 6372
45bfb2e5
PZ
6373 mutex_unlock(&event->mmap_mutex);
6374 }
6375
f91072ed
JO
6376 if (atomic_dec_and_test(&rb->mmap_count))
6377 detach_rest = true;
9bb5d40c
PZ
6378
6379 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 6380 goto out_put;
9bb5d40c 6381
b69cf536 6382 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
6383 mutex_unlock(&event->mmap_mutex);
6384
6385 /* If there's still other mmap()s of this buffer, we're done. */
f91072ed 6386 if (!detach_rest)
b69cf536 6387 goto out_put;
ac9721f3 6388
9bb5d40c
PZ
6389 /*
6390 * No other mmap()s, detach from all other events that might redirect
6391 * into the now unreachable buffer. Somewhat complicated by the
6392 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6393 */
6394again:
6395 rcu_read_lock();
6396 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6397 if (!atomic_long_inc_not_zero(&event->refcount)) {
6398 /*
6399 * This event is en-route to free_event() which will
6400 * detach it and remove it from the list.
6401 */
6402 continue;
6403 }
6404 rcu_read_unlock();
789f90fc 6405
9bb5d40c
PZ
6406 mutex_lock(&event->mmap_mutex);
6407 /*
6408 * Check we didn't race with perf_event_set_output() which can
6409 * swizzle the rb from under us while we were waiting to
6410 * acquire mmap_mutex.
6411 *
6412 * If we find a different rb; ignore this event, a next
6413 * iteration will no longer find it on the list. We have to
6414 * still restart the iteration to make sure we're not now
6415 * iterating the wrong list.
6416 */
b69cf536
PZ
6417 if (event->rb == rb)
6418 ring_buffer_attach(event, NULL);
6419
cdd6c482 6420 mutex_unlock(&event->mmap_mutex);
9bb5d40c 6421 put_event(event);
ac9721f3 6422
9bb5d40c
PZ
6423 /*
6424 * Restart the iteration; either we're on the wrong list or
6425 * destroyed its integrity by doing a deletion.
6426 */
6427 goto again;
7b732a75 6428 }
9bb5d40c
PZ
6429 rcu_read_unlock();
6430
6431 /*
6432 * It could be there's still a few 0-ref events on the list; they'll
6433 * get cleaned up by free_event() -- they'll also still have their
6434 * ref on the rb and will free it whenever they are done with it.
6435 *
6436 * Aside from that, this buffer is 'fully' detached and unmapped,
6437 * undo the VM accounting.
6438 */
6439
d44248a4
SL
6440 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6441 &mmap_user->locked_vm);
70f8a3ca 6442 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
9bb5d40c
PZ
6443 free_uid(mmap_user);
6444
b69cf536 6445out_put:
9bb5d40c 6446 ring_buffer_put(rb); /* could be last */
37d81828
PM
6447}
6448
f0f37e2f 6449static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 6450 .open = perf_mmap_open,
fca0c116 6451 .close = perf_mmap_close, /* non mergeable */
43a21ea8
PZ
6452 .fault = perf_mmap_fault,
6453 .page_mkwrite = perf_mmap_fault,
37d81828
PM
6454};
6455
6456static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6457{
cdd6c482 6458 struct perf_event *event = file->private_data;
22a4f650 6459 unsigned long user_locked, user_lock_limit;
789f90fc 6460 struct user_struct *user = current_user();
56de4e8f 6461 struct perf_buffer *rb = NULL;
22a4f650 6462 unsigned long locked, lock_limit;
7b732a75
PZ
6463 unsigned long vma_size;
6464 unsigned long nr_pages;
45bfb2e5 6465 long user_extra = 0, extra = 0;
d57e34fd 6466 int ret = 0, flags = 0;
37d81828 6467
c7920614
PZ
6468 /*
6469 * Don't allow mmap() of inherited per-task counters. This would
6470 * create a performance issue due to all children writing to the
76369139 6471 * same rb.
c7920614
PZ
6472 */
6473 if (event->cpu == -1 && event->attr.inherit)
6474 return -EINVAL;
6475
43a21ea8 6476 if (!(vma->vm_flags & VM_SHARED))
37d81828 6477 return -EINVAL;
7b732a75 6478
da97e184
JFG
6479 ret = security_perf_event_read(event);
6480 if (ret)
6481 return ret;
6482
7b732a75 6483 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
6484
6485 if (vma->vm_pgoff == 0) {
6486 nr_pages = (vma_size / PAGE_SIZE) - 1;
6487 } else {
6488 /*
6489 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6490 * mapped, all subsequent mappings should have the same size
6491 * and offset. Must be above the normal perf buffer.
6492 */
6493 u64 aux_offset, aux_size;
6494
6495 if (!event->rb)
6496 return -EINVAL;
6497
6498 nr_pages = vma_size / PAGE_SIZE;
6499
6500 mutex_lock(&event->mmap_mutex);
6501 ret = -EINVAL;
6502
6503 rb = event->rb;
6504 if (!rb)
6505 goto aux_unlock;
6506
6aa7de05
MR
6507 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6508 aux_size = READ_ONCE(rb->user_page->aux_size);
45bfb2e5
PZ
6509
6510 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6511 goto aux_unlock;
6512
6513 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6514 goto aux_unlock;
6515
6516 /* already mapped with a different offset */
6517 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6518 goto aux_unlock;
6519
6520 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6521 goto aux_unlock;
6522
6523 /* already mapped with a different size */
6524 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6525 goto aux_unlock;
6526
6527 if (!is_power_of_2(nr_pages))
6528 goto aux_unlock;
6529
6530 if (!atomic_inc_not_zero(&rb->mmap_count))
6531 goto aux_unlock;
6532
6533 if (rb_has_aux(rb)) {
6534 atomic_inc(&rb->aux_mmap_count);
6535 ret = 0;
6536 goto unlock;
6537 }
6538
6539 atomic_set(&rb->aux_mmap_count, 1);
6540 user_extra = nr_pages;
6541
6542 goto accounting;
6543 }
7b732a75 6544
7730d865 6545 /*
76369139 6546 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
6547 * can do bitmasks instead of modulo.
6548 */
2ed11312 6549 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
6550 return -EINVAL;
6551
7b732a75 6552 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
6553 return -EINVAL;
6554
cdd6c482 6555 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 6556again:
cdd6c482 6557 mutex_lock(&event->mmap_mutex);
76369139 6558 if (event->rb) {
60490e79 6559 if (data_page_nr(event->rb) != nr_pages) {
ebb3c4c4 6560 ret = -EINVAL;
9bb5d40c
PZ
6561 goto unlock;
6562 }
6563
6564 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6565 /*
68e3c698
PZ
6566 * Raced against perf_mmap_close(); remove the
6567 * event and try again.
9bb5d40c 6568 */
68e3c698 6569 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
6570 mutex_unlock(&event->mmap_mutex);
6571 goto again;
6572 }
6573
ebb3c4c4
PZ
6574 goto unlock;
6575 }
6576
789f90fc 6577 user_extra = nr_pages + 1;
45bfb2e5
PZ
6578
6579accounting:
cdd6c482 6580 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
6581
6582 /*
6583 * Increase the limit linearly with more CPUs:
6584 */
6585 user_lock_limit *= num_online_cpus();
6586
00346155
SL
6587 user_locked = atomic_long_read(&user->locked_vm);
6588
6589 /*
6590 * sysctl_perf_event_mlock may have changed, so that
6591 * user->locked_vm > user_lock_limit
6592 */
6593 if (user_locked > user_lock_limit)
6594 user_locked = user_lock_limit;
6595 user_locked += user_extra;
c5078f78 6596
c4b75479 6597 if (user_locked > user_lock_limit) {
d44248a4
SL
6598 /*
6599 * charge locked_vm until it hits user_lock_limit;
6600 * charge the rest from pinned_vm
6601 */
789f90fc 6602 extra = user_locked - user_lock_limit;
d44248a4
SL
6603 user_extra -= extra;
6604 }
7b732a75 6605
78d7d407 6606 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 6607 lock_limit >>= PAGE_SHIFT;
70f8a3ca 6608 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
7b732a75 6609
da97e184 6610 if ((locked > lock_limit) && perf_is_paranoid() &&
459ec28a 6611 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
6612 ret = -EPERM;
6613 goto unlock;
6614 }
7b732a75 6615
45bfb2e5 6616 WARN_ON(!rb && event->rb);
906010b2 6617
d57e34fd 6618 if (vma->vm_flags & VM_WRITE)
76369139 6619 flags |= RING_BUFFER_WRITABLE;
d57e34fd 6620
76369139 6621 if (!rb) {
45bfb2e5
PZ
6622 rb = rb_alloc(nr_pages,
6623 event->attr.watermark ? event->attr.wakeup_watermark : 0,
6624 event->cpu, flags);
26cb63ad 6625
45bfb2e5
PZ
6626 if (!rb) {
6627 ret = -ENOMEM;
6628 goto unlock;
6629 }
43a21ea8 6630
45bfb2e5
PZ
6631 atomic_set(&rb->mmap_count, 1);
6632 rb->mmap_user = get_current_user();
6633 rb->mmap_locked = extra;
26cb63ad 6634
45bfb2e5 6635 ring_buffer_attach(event, rb);
ac9721f3 6636
f7925653 6637 perf_event_update_time(event);
45bfb2e5
PZ
6638 perf_event_init_userpage(event);
6639 perf_event_update_userpage(event);
6640 } else {
1a594131
AS
6641 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6642 event->attr.aux_watermark, flags);
45bfb2e5
PZ
6643 if (!ret)
6644 rb->aux_mmap_locked = extra;
6645 }
9a0f05cb 6646
ebb3c4c4 6647unlock:
45bfb2e5
PZ
6648 if (!ret) {
6649 atomic_long_add(user_extra, &user->locked_vm);
70f8a3ca 6650 atomic64_add(extra, &vma->vm_mm->pinned_vm);
45bfb2e5 6651
ac9721f3 6652 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
6653 } else if (rb) {
6654 atomic_dec(&rb->mmap_count);
6655 }
6656aux_unlock:
cdd6c482 6657 mutex_unlock(&event->mmap_mutex);
37d81828 6658
9bb5d40c
PZ
6659 /*
6660 * Since pinned accounting is per vm we cannot allow fork() to copy our
6661 * vma.
6662 */
1c71222e 6663 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
37d81828 6664 vma->vm_ops = &perf_mmap_vmops;
7b732a75 6665
1e0fb9ec 6666 if (event->pmu->event_mapped)
bfe33492 6667 event->pmu->event_mapped(event, vma->vm_mm);
1e0fb9ec 6668
7b732a75 6669 return ret;
37d81828
PM
6670}
6671
3c446b3d
PZ
6672static int perf_fasync(int fd, struct file *filp, int on)
6673{
496ad9aa 6674 struct inode *inode = file_inode(filp);
cdd6c482 6675 struct perf_event *event = filp->private_data;
3c446b3d
PZ
6676 int retval;
6677
5955102c 6678 inode_lock(inode);
cdd6c482 6679 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 6680 inode_unlock(inode);
3c446b3d
PZ
6681
6682 if (retval < 0)
6683 return retval;
6684
6685 return 0;
6686}
6687
0793a61d 6688static const struct file_operations perf_fops = {
3326c1ce 6689 .llseek = no_llseek,
0793a61d
TG
6690 .release = perf_release,
6691 .read = perf_read,
6692 .poll = perf_poll,
d859e29f 6693 .unlocked_ioctl = perf_ioctl,
b3f20785 6694 .compat_ioctl = perf_compat_ioctl,
37d81828 6695 .mmap = perf_mmap,
3c446b3d 6696 .fasync = perf_fasync,
0793a61d
TG
6697};
6698
925d519a 6699/*
cdd6c482 6700 * Perf event wakeup
925d519a
PZ
6701 *
6702 * If there's data, ensure we set the poll() state and publish everything
6703 * to user-space before waking everybody up.
6704 */
6705
fed66e2c
PZ
6706static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6707{
6708 /* only the parent has fasync state */
6709 if (event->parent)
6710 event = event->parent;
6711 return &event->fasync;
6712}
6713
cdd6c482 6714void perf_event_wakeup(struct perf_event *event)
925d519a 6715{
10c6db11 6716 ring_buffer_wakeup(event);
4c9e2542 6717
cdd6c482 6718 if (event->pending_kill) {
fed66e2c 6719 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 6720 event->pending_kill = 0;
4c9e2542 6721 }
925d519a
PZ
6722}
6723
97ba62b2
ME
6724static void perf_sigtrap(struct perf_event *event)
6725{
97ba62b2
ME
6726 /*
6727 * We'd expect this to only occur if the irq_work is delayed and either
6728 * ctx->task or current has changed in the meantime. This can be the
6729 * case on architectures that do not implement arch_irq_work_raise().
6730 */
6731 if (WARN_ON_ONCE(event->ctx->task != current))
6732 return;
6733
6734 /*
ca6c2132
PZ
6735 * Both perf_pending_task() and perf_pending_irq() can race with the
6736 * task exiting.
97ba62b2
ME
6737 */
6738 if (current->flags & PF_EXITING)
6739 return;
6740
78ed93d7 6741 send_sig_perf((void __user *)event->pending_addr,
0d6d062c 6742 event->orig_type, event->attr.sig_data);
97ba62b2
ME
6743}
6744
ca6c2132
PZ
6745/*
6746 * Deliver the pending work in-event-context or follow the context.
6747 */
6748static void __perf_pending_irq(struct perf_event *event)
1d54ad94 6749{
ca6c2132 6750 int cpu = READ_ONCE(event->oncpu);
1d54ad94 6751
ca6c2132
PZ
6752 /*
6753 * If the event isn't running; we done. event_sched_out() will have
6754 * taken care of things.
6755 */
1d54ad94
PZ
6756 if (cpu < 0)
6757 return;
6758
ca6c2132
PZ
6759 /*
6760 * Yay, we hit home and are in the context of the event.
6761 */
1d54ad94 6762 if (cpu == smp_processor_id()) {
ca6c2132
PZ
6763 if (event->pending_sigtrap) {
6764 event->pending_sigtrap = 0;
97ba62b2 6765 perf_sigtrap(event);
ca6c2132
PZ
6766 local_dec(&event->ctx->nr_pending);
6767 }
6768 if (event->pending_disable) {
6769 event->pending_disable = 0;
6770 perf_event_disable_local(event);
97ba62b2 6771 }
1d54ad94
PZ
6772 return;
6773 }
6774
6775 /*
6776 * CPU-A CPU-B
6777 *
6778 * perf_event_disable_inatomic()
6779 * @pending_disable = CPU-A;
6780 * irq_work_queue();
6781 *
6782 * sched-out
6783 * @pending_disable = -1;
6784 *
6785 * sched-in
6786 * perf_event_disable_inatomic()
6787 * @pending_disable = CPU-B;
6788 * irq_work_queue(); // FAILS
6789 *
6790 * irq_work_run()
ca6c2132 6791 * perf_pending_irq()
1d54ad94
PZ
6792 *
6793 * But the event runs on CPU-B and wants disabling there.
6794 */
ca6c2132 6795 irq_work_queue_on(&event->pending_irq, cpu);
1d54ad94
PZ
6796}
6797
ca6c2132 6798static void perf_pending_irq(struct irq_work *entry)
79f14641 6799{
ca6c2132 6800 struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
d525211f
PZ
6801 int rctx;
6802
d525211f
PZ
6803 /*
6804 * If we 'fail' here, that's OK, it means recursion is already disabled
6805 * and we won't recurse 'further'.
6806 */
ca6c2132 6807 rctx = perf_swevent_get_recursion_context();
79f14641 6808
ca6c2132
PZ
6809 /*
6810 * The wakeup isn't bound to the context of the event -- it can happen
6811 * irrespective of where the event is.
6812 */
cdd6c482
IM
6813 if (event->pending_wakeup) {
6814 event->pending_wakeup = 0;
6815 perf_event_wakeup(event);
79f14641 6816 }
d525211f 6817
ca6c2132
PZ
6818 __perf_pending_irq(event);
6819
d525211f
PZ
6820 if (rctx >= 0)
6821 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
6822}
6823
ca6c2132
PZ
6824static void perf_pending_task(struct callback_head *head)
6825{
6826 struct perf_event *event = container_of(head, struct perf_event, pending_task);
6827 int rctx;
6828
6829 /*
6830 * If we 'fail' here, that's OK, it means recursion is already disabled
6831 * and we won't recurse 'further'.
6832 */
6833 preempt_disable_notrace();
6834 rctx = perf_swevent_get_recursion_context();
6835
6836 if (event->pending_work) {
6837 event->pending_work = 0;
6838 perf_sigtrap(event);
6839 local_dec(&event->ctx->nr_pending);
6840 }
6841
6842 if (rctx >= 0)
6843 perf_swevent_put_recursion_context(rctx);
6844 preempt_enable_notrace();
517e6a30
PZ
6845
6846 put_event(event);
ca6c2132
PZ
6847}
6848
2aef6f30 6849#ifdef CONFIG_GUEST_PERF_EVENTS
ff083a2d 6850struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
39447b38 6851
87b940a0
SC
6852DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6853DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6854DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
39447b38 6855
2934e3d0 6856void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
39447b38 6857{
ff083a2d 6858 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
2934e3d0 6859 return;
ff083a2d
SC
6860
6861 rcu_assign_pointer(perf_guest_cbs, cbs);
87b940a0
SC
6862 static_call_update(__perf_guest_state, cbs->state);
6863 static_call_update(__perf_guest_get_ip, cbs->get_ip);
6864
6865 /* Implementing ->handle_intel_pt_intr is optional. */
6866 if (cbs->handle_intel_pt_intr)
6867 static_call_update(__perf_guest_handle_intel_pt_intr,
6868 cbs->handle_intel_pt_intr);
39447b38
ZY
6869}
6870EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6871
2934e3d0 6872void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
39447b38 6873{
ff083a2d 6874 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
2934e3d0 6875 return;
ff083a2d
SC
6876
6877 rcu_assign_pointer(perf_guest_cbs, NULL);
87b940a0
SC
6878 static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6879 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6880 static_call_update(__perf_guest_handle_intel_pt_intr,
6881 (void *)&__static_call_return0);
ff083a2d 6882 synchronize_rcu();
39447b38
ZY
6883}
6884EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
2aef6f30 6885#endif
39447b38 6886
4018994f
JO
6887static void
6888perf_output_sample_regs(struct perf_output_handle *handle,
6889 struct pt_regs *regs, u64 mask)
6890{
6891 int bit;
29dd3288 6892 DECLARE_BITMAP(_mask, 64);
4018994f 6893
29dd3288
MS
6894 bitmap_from_u64(_mask, mask);
6895 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
6896 u64 val;
6897
6898 val = perf_reg_value(regs, bit);
6899 perf_output_put(handle, val);
6900 }
6901}
6902
60e2364e 6903static void perf_sample_regs_user(struct perf_regs *regs_user,
76a4efa8 6904 struct pt_regs *regs)
4018994f 6905{
88a7c26a
AL
6906 if (user_mode(regs)) {
6907 regs_user->abi = perf_reg_abi(current);
2565711f 6908 regs_user->regs = regs;
085ebfe9 6909 } else if (!(current->flags & PF_KTHREAD)) {
76a4efa8 6910 perf_get_regs_user(regs_user, regs);
2565711f
PZ
6911 } else {
6912 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6913 regs_user->regs = NULL;
4018994f
JO
6914 }
6915}
6916
60e2364e
SE
6917static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6918 struct pt_regs *regs)
6919{
6920 regs_intr->regs = regs;
6921 regs_intr->abi = perf_reg_abi(current);
6922}
6923
6924
c5ebcedb
JO
6925/*
6926 * Get remaining task size from user stack pointer.
6927 *
6928 * It'd be better to take stack vma map and limit this more
9f014e3a 6929 * precisely, but there's no way to get it safely under interrupt,
c5ebcedb
JO
6930 * so using TASK_SIZE as limit.
6931 */
6932static u64 perf_ustack_task_size(struct pt_regs *regs)
6933{
6934 unsigned long addr = perf_user_stack_pointer(regs);
6935
6936 if (!addr || addr >= TASK_SIZE)
6937 return 0;
6938
6939 return TASK_SIZE - addr;
6940}
6941
6942static u16
6943perf_sample_ustack_size(u16 stack_size, u16 header_size,
6944 struct pt_regs *regs)
6945{
6946 u64 task_size;
6947
6948 /* No regs, no stack pointer, no dump. */
6949 if (!regs)
6950 return 0;
6951
6952 /*
6953 * Check if we fit in with the requested stack size into the:
6954 * - TASK_SIZE
6955 * If we don't, we limit the size to the TASK_SIZE.
6956 *
6957 * - remaining sample size
6958 * If we don't, we customize the stack size to
6959 * fit in to the remaining sample size.
6960 */
6961
6962 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6963 stack_size = min(stack_size, (u16) task_size);
6964
6965 /* Current header size plus static size and dynamic size. */
6966 header_size += 2 * sizeof(u64);
6967
6968 /* Do we fit in with the current stack dump size? */
6969 if ((u16) (header_size + stack_size) < header_size) {
6970 /*
6971 * If we overflow the maximum size for the sample,
6972 * we customize the stack dump size to fit in.
6973 */
6974 stack_size = USHRT_MAX - header_size - sizeof(u64);
6975 stack_size = round_up(stack_size, sizeof(u64));
6976 }
6977
6978 return stack_size;
6979}
6980
6981static void
6982perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6983 struct pt_regs *regs)
6984{
6985 /* Case of a kernel thread, nothing to dump */
6986 if (!regs) {
6987 u64 size = 0;
6988 perf_output_put(handle, size);
6989 } else {
6990 unsigned long sp;
6991 unsigned int rem;
6992 u64 dyn_size;
6993
6994 /*
6995 * We dump:
6996 * static size
6997 * - the size requested by user or the best one we can fit
6998 * in to the sample max size
6999 * data
7000 * - user stack dump data
7001 * dynamic size
7002 * - the actual dumped size
7003 */
7004
7005 /* Static size. */
7006 perf_output_put(handle, dump_size);
7007
7008 /* Data. */
7009 sp = perf_user_stack_pointer(regs);
7010 rem = __output_copy_user(handle, (void *) sp, dump_size);
7011 dyn_size = dump_size - rem;
7012
7013 perf_output_skip(handle, rem);
7014
7015 /* Dynamic size. */
7016 perf_output_put(handle, dyn_size);
7017 }
7018}
7019
a4faf00d
AS
7020static unsigned long perf_prepare_sample_aux(struct perf_event *event,
7021 struct perf_sample_data *data,
7022 size_t size)
7023{
7024 struct perf_event *sampler = event->aux_event;
56de4e8f 7025 struct perf_buffer *rb;
a4faf00d
AS
7026
7027 data->aux_size = 0;
7028
7029 if (!sampler)
7030 goto out;
7031
7032 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7033 goto out;
7034
7035 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7036 goto out;
7037
961c3912 7038 rb = ring_buffer_get(sampler);
a4faf00d
AS
7039 if (!rb)
7040 goto out;
7041
7042 /*
7043 * If this is an NMI hit inside sampling code, don't take
7044 * the sample. See also perf_aux_sample_output().
7045 */
7046 if (READ_ONCE(rb->aux_in_sampling)) {
7047 data->aux_size = 0;
7048 } else {
7049 size = min_t(size_t, size, perf_aux_size(rb));
7050 data->aux_size = ALIGN(size, sizeof(u64));
7051 }
7052 ring_buffer_put(rb);
7053
7054out:
7055 return data->aux_size;
7056}
7057
32961aec
HX
7058static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7059 struct perf_event *event,
7060 struct perf_output_handle *handle,
7061 unsigned long size)
a4faf00d
AS
7062{
7063 unsigned long flags;
7064 long ret;
7065
7066 /*
7067 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7068 * paths. If we start calling them in NMI context, they may race with
7069 * the IRQ ones, that is, for example, re-starting an event that's just
7070 * been stopped, which is why we're using a separate callback that
7071 * doesn't change the event state.
7072 *
7073 * IRQs need to be disabled to prevent IPIs from racing with us.
7074 */
7075 local_irq_save(flags);
7076 /*
7077 * Guard against NMI hits inside the critical section;
7078 * see also perf_prepare_sample_aux().
7079 */
7080 WRITE_ONCE(rb->aux_in_sampling, 1);
7081 barrier();
7082
7083 ret = event->pmu->snapshot_aux(event, handle, size);
7084
7085 barrier();
7086 WRITE_ONCE(rb->aux_in_sampling, 0);
7087 local_irq_restore(flags);
7088
7089 return ret;
7090}
7091
7092static void perf_aux_sample_output(struct perf_event *event,
7093 struct perf_output_handle *handle,
7094 struct perf_sample_data *data)
7095{
7096 struct perf_event *sampler = event->aux_event;
56de4e8f 7097 struct perf_buffer *rb;
a4faf00d 7098 unsigned long pad;
a4faf00d
AS
7099 long size;
7100
7101 if (WARN_ON_ONCE(!sampler || !data->aux_size))
7102 return;
7103
961c3912 7104 rb = ring_buffer_get(sampler);
a4faf00d
AS
7105 if (!rb)
7106 return;
7107
7108 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7109
7110 /*
7111 * An error here means that perf_output_copy() failed (returned a
7112 * non-zero surplus that it didn't copy), which in its current
7113 * enlightened implementation is not possible. If that changes, we'd
7114 * like to know.
7115 */
7116 if (WARN_ON_ONCE(size < 0))
7117 goto out_put;
7118
7119 /*
7120 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7121 * perf_prepare_sample_aux(), so should not be more than that.
7122 */
7123 pad = data->aux_size - size;
7124 if (WARN_ON_ONCE(pad >= sizeof(u64)))
7125 pad = 8;
7126
7127 if (pad) {
7128 u64 zero = 0;
7129 perf_output_copy(handle, &zero, pad);
7130 }
7131
7132out_put:
7133 ring_buffer_put(rb);
7134}
7135
bb447c27
NK
7136/*
7137 * A set of common sample data types saved even for non-sample records
7138 * when event->attr.sample_id_all is set.
7139 */
7140#define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \
7141 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \
7142 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7143
a7c8d0da 7144static void __perf_event_header__init_id(struct perf_sample_data *data,
3aac580d
KL
7145 struct perf_event *event,
7146 u64 sample_type)
6844c09d 7147{
3aac580d 7148 data->type = event->attr.sample_type;
bb447c27 7149 data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
6844c09d
ACM
7150
7151 if (sample_type & PERF_SAMPLE_TID) {
7152 /* namespace issues */
7153 data->tid_entry.pid = perf_event_pid(event, current);
7154 data->tid_entry.tid = perf_event_tid(event, current);
7155 }
7156
7157 if (sample_type & PERF_SAMPLE_TIME)
34f43927 7158 data->time = perf_event_clock(event);
6844c09d 7159
ff3d527c 7160 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
7161 data->id = primary_event_id(event);
7162
7163 if (sample_type & PERF_SAMPLE_STREAM_ID)
7164 data->stream_id = event->id;
7165
7166 if (sample_type & PERF_SAMPLE_CPU) {
7167 data->cpu_entry.cpu = raw_smp_processor_id();
7168 data->cpu_entry.reserved = 0;
7169 }
7170}
7171
76369139
FW
7172void perf_event_header__init_id(struct perf_event_header *header,
7173 struct perf_sample_data *data,
7174 struct perf_event *event)
c980d109 7175{
a7c8d0da
NK
7176 if (event->attr.sample_id_all) {
7177 header->size += event->id_header_size;
7178 __perf_event_header__init_id(data, event, event->attr.sample_type);
7179 }
c980d109
ACM
7180}
7181
7182static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7183 struct perf_sample_data *data)
7184{
7185 u64 sample_type = data->type;
7186
7187 if (sample_type & PERF_SAMPLE_TID)
7188 perf_output_put(handle, data->tid_entry);
7189
7190 if (sample_type & PERF_SAMPLE_TIME)
7191 perf_output_put(handle, data->time);
7192
7193 if (sample_type & PERF_SAMPLE_ID)
7194 perf_output_put(handle, data->id);
7195
7196 if (sample_type & PERF_SAMPLE_STREAM_ID)
7197 perf_output_put(handle, data->stream_id);
7198
7199 if (sample_type & PERF_SAMPLE_CPU)
7200 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
7201
7202 if (sample_type & PERF_SAMPLE_IDENTIFIER)
7203 perf_output_put(handle, data->id);
c980d109
ACM
7204}
7205
76369139
FW
7206void perf_event__output_id_sample(struct perf_event *event,
7207 struct perf_output_handle *handle,
7208 struct perf_sample_data *sample)
c980d109
ACM
7209{
7210 if (event->attr.sample_id_all)
7211 __perf_event__output_id_sample(handle, sample);
7212}
7213
3dab77fb 7214static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
7215 struct perf_event *event,
7216 u64 enabled, u64 running)
3dab77fb 7217{
cdd6c482 7218 u64 read_format = event->attr.read_format;
119a784c 7219 u64 values[5];
3dab77fb
PZ
7220 int n = 0;
7221
b5e58793 7222 values[n++] = perf_event_count(event);
3dab77fb 7223 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 7224 values[n++] = enabled +
cdd6c482 7225 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
7226 }
7227 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 7228 values[n++] = running +
cdd6c482 7229 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
7230 }
7231 if (read_format & PERF_FORMAT_ID)
cdd6c482 7232 values[n++] = primary_event_id(event);
119a784c
NK
7233 if (read_format & PERF_FORMAT_LOST)
7234 values[n++] = atomic64_read(&event->lost_samples);
3dab77fb 7235
76369139 7236 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
7237}
7238
3dab77fb 7239static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
7240 struct perf_event *event,
7241 u64 enabled, u64 running)
3dab77fb 7242{
cdd6c482
IM
7243 struct perf_event *leader = event->group_leader, *sub;
7244 u64 read_format = event->attr.read_format;
6b959ba2 7245 unsigned long flags;
119a784c 7246 u64 values[6];
3dab77fb
PZ
7247 int n = 0;
7248
6b959ba2
YJ
7249 /*
7250 * Disabling interrupts avoids all counter scheduling
7251 * (context switches, timer based rotation and IPIs).
7252 */
7253 local_irq_save(flags);
7254
3dab77fb
PZ
7255 values[n++] = 1 + leader->nr_siblings;
7256
7257 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 7258 values[n++] = enabled;
3dab77fb
PZ
7259
7260 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 7261 values[n++] = running;
3dab77fb 7262
9e5b127d
PZ
7263 if ((leader != event) &&
7264 (leader->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
7265 leader->pmu->read(leader);
7266
b5e58793 7267 values[n++] = perf_event_count(leader);
3dab77fb 7268 if (read_format & PERF_FORMAT_ID)
cdd6c482 7269 values[n++] = primary_event_id(leader);
119a784c
NK
7270 if (read_format & PERF_FORMAT_LOST)
7271 values[n++] = atomic64_read(&leader->lost_samples);
3dab77fb 7272
76369139 7273 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 7274
edb39592 7275 for_each_sibling_event(sub, leader) {
3dab77fb
PZ
7276 n = 0;
7277
6f5ab001
JO
7278 if ((sub != event) &&
7279 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
7280 sub->pmu->read(sub);
7281
b5e58793 7282 values[n++] = perf_event_count(sub);
3dab77fb 7283 if (read_format & PERF_FORMAT_ID)
cdd6c482 7284 values[n++] = primary_event_id(sub);
119a784c
NK
7285 if (read_format & PERF_FORMAT_LOST)
7286 values[n++] = atomic64_read(&sub->lost_samples);
3dab77fb 7287
76369139 7288 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 7289 }
6b959ba2
YJ
7290
7291 local_irq_restore(flags);
3dab77fb
PZ
7292}
7293
eed01528
SE
7294#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7295 PERF_FORMAT_TOTAL_TIME_RUNNING)
7296
ba5213ae
PZ
7297/*
7298 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7299 *
7300 * The problem is that its both hard and excessively expensive to iterate the
7301 * child list, not to mention that its impossible to IPI the children running
7302 * on another CPU, from interrupt/NMI context.
7303 */
3dab77fb 7304static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 7305 struct perf_event *event)
3dab77fb 7306{
e3f3541c 7307 u64 enabled = 0, running = 0, now;
eed01528
SE
7308 u64 read_format = event->attr.read_format;
7309
7310 /*
7311 * compute total_time_enabled, total_time_running
7312 * based on snapshot values taken when the event
7313 * was last scheduled in.
7314 *
7315 * we cannot simply called update_context_time()
7316 * because of locking issue as we are called in
7317 * NMI context
7318 */
c4794295 7319 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 7320 calc_timer_values(event, &now, &enabled, &running);
eed01528 7321
cdd6c482 7322 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 7323 perf_output_read_group(handle, event, enabled, running);
3dab77fb 7324 else
eed01528 7325 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
7326}
7327
5622f295
MM
7328void perf_output_sample(struct perf_output_handle *handle,
7329 struct perf_event_header *header,
7330 struct perf_sample_data *data,
cdd6c482 7331 struct perf_event *event)
5622f295
MM
7332{
7333 u64 sample_type = data->type;
7334
7335 perf_output_put(handle, *header);
7336
ff3d527c
AH
7337 if (sample_type & PERF_SAMPLE_IDENTIFIER)
7338 perf_output_put(handle, data->id);
7339
5622f295
MM
7340 if (sample_type & PERF_SAMPLE_IP)
7341 perf_output_put(handle, data->ip);
7342
7343 if (sample_type & PERF_SAMPLE_TID)
7344 perf_output_put(handle, data->tid_entry);
7345
7346 if (sample_type & PERF_SAMPLE_TIME)
7347 perf_output_put(handle, data->time);
7348
7349 if (sample_type & PERF_SAMPLE_ADDR)
7350 perf_output_put(handle, data->addr);
7351
7352 if (sample_type & PERF_SAMPLE_ID)
7353 perf_output_put(handle, data->id);
7354
7355 if (sample_type & PERF_SAMPLE_STREAM_ID)
7356 perf_output_put(handle, data->stream_id);
7357
7358 if (sample_type & PERF_SAMPLE_CPU)
7359 perf_output_put(handle, data->cpu_entry);
7360
7361 if (sample_type & PERF_SAMPLE_PERIOD)
7362 perf_output_put(handle, data->period);
7363
7364 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 7365 perf_output_read(handle, event);
5622f295
MM
7366
7367 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
99e818cc 7368 int size = 1;
5622f295 7369
99e818cc
JO
7370 size += data->callchain->nr;
7371 size *= sizeof(u64);
7372 __output_copy(handle, data->callchain, size);
5622f295
MM
7373 }
7374
7375 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
7376 struct perf_raw_record *raw = data->raw;
7377
7378 if (raw) {
7379 struct perf_raw_frag *frag = &raw->frag;
7380
7381 perf_output_put(handle, raw->size);
7382 do {
7383 if (frag->copy) {
7384 __output_custom(handle, frag->copy,
7385 frag->data, frag->size);
7386 } else {
7387 __output_copy(handle, frag->data,
7388 frag->size);
7389 }
7390 if (perf_raw_frag_last(frag))
7391 break;
7392 frag = frag->next;
7393 } while (1);
7394 if (frag->pad)
7395 __output_skip(handle, NULL, frag->pad);
5622f295
MM
7396 } else {
7397 struct {
7398 u32 size;
7399 u32 data;
7400 } raw = {
7401 .size = sizeof(u32),
7402 .data = 0,
7403 };
7404 perf_output_put(handle, raw);
7405 }
7406 }
a7ac67ea 7407
bce38cd5 7408 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
eb55b455 7409 if (data->br_stack) {
bce38cd5
SE
7410 size_t size;
7411
7412 size = data->br_stack->nr
7413 * sizeof(struct perf_branch_entry);
7414
7415 perf_output_put(handle, data->br_stack->nr);
03b02db9 7416 if (branch_sample_hw_index(event))
bbfd5e4f 7417 perf_output_put(handle, data->br_stack->hw_idx);
bce38cd5 7418 perf_output_copy(handle, data->br_stack->entries, size);
571d91dc
KL
7419 /*
7420 * Add the extension space which is appended
7421 * right after the struct perf_branch_stack.
7422 */
7423 if (data->br_stack_cntr) {
7424 size = data->br_stack->nr * sizeof(u64);
7425 perf_output_copy(handle, data->br_stack_cntr, size);
7426 }
bce38cd5
SE
7427 } else {
7428 /*
7429 * we always store at least the value of nr
7430 */
7431 u64 nr = 0;
7432 perf_output_put(handle, nr);
7433 }
7434 }
4018994f
JO
7435
7436 if (sample_type & PERF_SAMPLE_REGS_USER) {
7437 u64 abi = data->regs_user.abi;
7438
7439 /*
7440 * If there are no regs to dump, notice it through
7441 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7442 */
7443 perf_output_put(handle, abi);
7444
7445 if (abi) {
7446 u64 mask = event->attr.sample_regs_user;
7447 perf_output_sample_regs(handle,
7448 data->regs_user.regs,
7449 mask);
7450 }
7451 }
c5ebcedb 7452
a5cdd40c 7453 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
7454 perf_output_sample_ustack(handle,
7455 data->stack_user_size,
7456 data->regs_user.regs);
a5cdd40c 7457 }
c3feedf2 7458
2a6c6b7d
KL
7459 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7460 perf_output_put(handle, data->weight.full);
d6be9ad6
SE
7461
7462 if (sample_type & PERF_SAMPLE_DATA_SRC)
7463 perf_output_put(handle, data->data_src.val);
a5cdd40c 7464
fdfbbd07
AK
7465 if (sample_type & PERF_SAMPLE_TRANSACTION)
7466 perf_output_put(handle, data->txn);
7467
60e2364e
SE
7468 if (sample_type & PERF_SAMPLE_REGS_INTR) {
7469 u64 abi = data->regs_intr.abi;
7470 /*
7471 * If there are no regs to dump, notice it through
7472 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7473 */
7474 perf_output_put(handle, abi);
7475
7476 if (abi) {
7477 u64 mask = event->attr.sample_regs_intr;
7478
7479 perf_output_sample_regs(handle,
7480 data->regs_intr.regs,
7481 mask);
7482 }
7483 }
7484
fc7ce9c7
KL
7485 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7486 perf_output_put(handle, data->phys_addr);
7487
6546b19f
NK
7488 if (sample_type & PERF_SAMPLE_CGROUP)
7489 perf_output_put(handle, data->cgroup);
7490
8d97e718
KL
7491 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7492 perf_output_put(handle, data->data_page_size);
7493
995f088e
SE
7494 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7495 perf_output_put(handle, data->code_page_size);
7496
a4faf00d
AS
7497 if (sample_type & PERF_SAMPLE_AUX) {
7498 perf_output_put(handle, data->aux_size);
7499
7500 if (data->aux_size)
7501 perf_aux_sample_output(event, handle, data);
7502 }
7503
a5cdd40c
PZ
7504 if (!event->attr.watermark) {
7505 int wakeup_events = event->attr.wakeup_events;
7506
7507 if (wakeup_events) {
56de4e8f 7508 struct perf_buffer *rb = handle->rb;
a5cdd40c
PZ
7509 int events = local_inc_return(&rb->events);
7510
7511 if (events >= wakeup_events) {
7512 local_sub(wakeup_events, &rb->events);
7513 local_inc(&rb->wakeup);
7514 }
7515 }
7516 }
5622f295
MM
7517}
7518
fc7ce9c7
KL
7519static u64 perf_virt_to_phys(u64 virt)
7520{
7521 u64 phys_addr = 0;
fc7ce9c7
KL
7522
7523 if (!virt)
7524 return 0;
7525
7526 if (virt >= TASK_SIZE) {
7527 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7528 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7529 !(virt >= VMALLOC_START && virt < VMALLOC_END))
7530 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7531 } else {
7532 /*
7533 * Walking the pages tables for user address.
7534 * Interrupts are disabled, so it prevents any tear down
7535 * of the page tables.
dadbb612 7536 * Try IRQ-safe get_user_page_fast_only first.
fc7ce9c7
KL
7537 * If failed, leave phys_addr as 0.
7538 */
d3296fb3 7539 if (current->mm != NULL) {
4716023a
GT
7540 struct page *p;
7541
d3296fb3 7542 pagefault_disable();
4716023a 7543 if (get_user_page_fast_only(virt, 0, &p)) {
d3296fb3 7544 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
4716023a
GT
7545 put_page(p);
7546 }
d3296fb3
JO
7547 pagefault_enable();
7548 }
fc7ce9c7
KL
7549 }
7550
7551 return phys_addr;
7552}
7553
8d97e718 7554/*
8af26be0 7555 * Return the pagetable size of a given virtual address.
8d97e718 7556 */
8af26be0 7557static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
8d97e718 7558{
8af26be0 7559 u64 size = 0;
8d97e718 7560
8af26be0
PZ
7561#ifdef CONFIG_HAVE_FAST_GUP
7562 pgd_t *pgdp, pgd;
7563 p4d_t *p4dp, p4d;
7564 pud_t *pudp, pud;
7565 pmd_t *pmdp, pmd;
7566 pte_t *ptep, pte;
8d97e718 7567
8af26be0
PZ
7568 pgdp = pgd_offset(mm, addr);
7569 pgd = READ_ONCE(*pgdp);
7570 if (pgd_none(pgd))
8d97e718
KL
7571 return 0;
7572
8af26be0
PZ
7573 if (pgd_leaf(pgd))
7574 return pgd_leaf_size(pgd);
8d97e718 7575
8af26be0
PZ
7576 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7577 p4d = READ_ONCE(*p4dp);
7578 if (!p4d_present(p4d))
8d97e718
KL
7579 return 0;
7580
8af26be0
PZ
7581 if (p4d_leaf(p4d))
7582 return p4d_leaf_size(p4d);
8d97e718 7583
8af26be0
PZ
7584 pudp = pud_offset_lockless(p4dp, p4d, addr);
7585 pud = READ_ONCE(*pudp);
7586 if (!pud_present(pud))
8d97e718
KL
7587 return 0;
7588
8af26be0
PZ
7589 if (pud_leaf(pud))
7590 return pud_leaf_size(pud);
8d97e718 7591
8af26be0 7592 pmdp = pmd_offset_lockless(pudp, pud, addr);
a92cbb82 7593again:
1180e732 7594 pmd = pmdp_get_lockless(pmdp);
8af26be0 7595 if (!pmd_present(pmd))
8d97e718 7596 return 0;
8d97e718 7597
8af26be0
PZ
7598 if (pmd_leaf(pmd))
7599 return pmd_leaf_size(pmd);
51b646b2 7600
8af26be0 7601 ptep = pte_offset_map(&pmd, addr);
a92cbb82
HD
7602 if (!ptep)
7603 goto again;
7604
8af26be0
PZ
7605 pte = ptep_get_lockless(ptep);
7606 if (pte_present(pte))
7607 size = pte_leaf_size(pte);
7608 pte_unmap(ptep);
7609#endif /* CONFIG_HAVE_FAST_GUP */
8d97e718 7610
8af26be0 7611 return size;
8d97e718
KL
7612}
7613
8d97e718
KL
7614static u64 perf_get_page_size(unsigned long addr)
7615{
7616 struct mm_struct *mm;
7617 unsigned long flags;
7618 u64 size;
7619
7620 if (!addr)
7621 return 0;
7622
7623 /*
7624 * Software page-table walkers must disable IRQs,
7625 * which prevents any tear down of the page tables.
7626 */
7627 local_irq_save(flags);
7628
7629 mm = current->mm;
7630 if (!mm) {
7631 /*
7632 * For kernel threads and the like, use init_mm so that
7633 * we can find kernel memory.
7634 */
7635 mm = &init_mm;
7636 }
7637
8af26be0 7638 size = perf_get_pgtable_size(mm, addr);
8d97e718
KL
7639
7640 local_irq_restore(flags);
7641
7642 return size;
7643}
7644
99e818cc
JO
7645static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7646
6cbc304f 7647struct perf_callchain_entry *
8cf7e0e2
JO
7648perf_callchain(struct perf_event *event, struct pt_regs *regs)
7649{
7650 bool kernel = !event->attr.exclude_callchain_kernel;
7651 bool user = !event->attr.exclude_callchain_user;
7652 /* Disallow cross-task user callchains. */
7653 bool crosstask = event->ctx->task && event->ctx->task != current;
7654 const u32 max_stack = event->attr.sample_max_stack;
99e818cc 7655 struct perf_callchain_entry *callchain;
8cf7e0e2
JO
7656
7657 if (!kernel && !user)
99e818cc 7658 return &__empty_callchain;
8cf7e0e2 7659
99e818cc
JO
7660 callchain = get_perf_callchain(regs, 0, kernel, user,
7661 max_stack, crosstask, true);
7662 return callchain ?: &__empty_callchain;
8cf7e0e2
JO
7663}
7664
bb447c27
NK
7665static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7666{
7667 return d * !!(flags & s);
7668}
7669
f6e70715 7670void perf_prepare_sample(struct perf_sample_data *data,
cdd6c482 7671 struct perf_event *event,
5622f295 7672 struct pt_regs *regs)
7b732a75 7673{
cdd6c482 7674 u64 sample_type = event->attr.sample_type;
3aac580d 7675 u64 filtered_sample_type;
7b732a75 7676
3aac580d 7677 /*
bb447c27
NK
7678 * Add the sample flags that are dependent to others. And clear the
7679 * sample flags that have already been done by the PMU driver.
3aac580d 7680 */
bb447c27
NK
7681 filtered_sample_type = sample_type;
7682 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7683 PERF_SAMPLE_IP);
7684 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7685 PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7686 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7687 PERF_SAMPLE_REGS_USER);
7688 filtered_sample_type &= ~data->sample_flags;
6844c09d 7689
f6e70715
NK
7690 if (filtered_sample_type == 0) {
7691 /* Make sure it has the correct data->type for output */
7692 data->type = event->attr.sample_type;
7693 return;
394ee076
PZ
7694 }
7695
a7c8d0da 7696 __perf_event_header__init_id(data, event, filtered_sample_type);
7e3f977e 7697
bb447c27 7698 if (filtered_sample_type & PERF_SAMPLE_IP) {
5622f295 7699 data->ip = perf_instruction_pointer(regs);
bb447c27
NK
7700 data->sample_flags |= PERF_SAMPLE_IP;
7701 }
7e3f977e 7702
31046500
NK
7703 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7704 perf_sample_save_callchain(data, event, regs);
a044560c 7705
0a9081cf
NK
7706 if (filtered_sample_type & PERF_SAMPLE_RAW) {
7707 data->raw = NULL;
7708 data->dyn_size += sizeof(u64);
7709 data->sample_flags |= PERF_SAMPLE_RAW;
7f453c24 7710 }
bce38cd5 7711
eb55b455
NK
7712 if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7713 data->br_stack = NULL;
7714 data->dyn_size += sizeof(u64);
7715 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
bce38cd5 7716 }
4018994f 7717
bb447c27 7718 if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
76a4efa8 7719 perf_sample_regs_user(&data->regs_user, regs);
2565711f 7720
bb447c27
NK
7721 /*
7722 * It cannot use the filtered_sample_type here as REGS_USER can be set
7723 * by STACK_USER (using __cond_set() above) and we don't want to update
7724 * the dyn_size if it's not requested by users.
7725 */
7726 if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
4018994f
JO
7727 /* regs dump ABI info */
7728 int size = sizeof(u64);
7729
4018994f
JO
7730 if (data->regs_user.regs) {
7731 u64 mask = event->attr.sample_regs_user;
7732 size += hweight64(mask) * sizeof(u64);
7733 }
7734
4cf7a136 7735 data->dyn_size += size;
bb447c27 7736 data->sample_flags |= PERF_SAMPLE_REGS_USER;
4018994f 7737 }
c5ebcedb 7738
bb447c27 7739 if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb 7740 /*
9f014e3a 7741 * Either we need PERF_SAMPLE_STACK_USER bit to be always
c5ebcedb
JO
7742 * processed as the last one or have additional check added
7743 * in case new sample type is added, because we could eat
7744 * up the rest of the sample size.
7745 */
c5ebcedb 7746 u16 stack_size = event->attr.sample_stack_user;
f6e70715 7747 u16 header_size = perf_sample_data_size(data, event);
c5ebcedb
JO
7748 u16 size = sizeof(u64);
7749
f6e70715 7750 stack_size = perf_sample_ustack_size(stack_size, header_size,
2565711f 7751 data->regs_user.regs);
c5ebcedb
JO
7752
7753 /*
7754 * If there is something to dump, add space for the dump
7755 * itself and for the field that tells the dynamic size,
7756 * which is how many have been actually dumped.
7757 */
7758 if (stack_size)
7759 size += sizeof(u64) + stack_size;
7760
7761 data->stack_user_size = stack_size;
4cf7a136 7762 data->dyn_size += size;
bb447c27 7763 data->sample_flags |= PERF_SAMPLE_STACK_USER;
c5ebcedb 7764 }
60e2364e 7765
bb447c27 7766 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
2abe681d 7767 data->weight.full = 0;
bb447c27
NK
7768 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7769 }
2abe681d 7770
bb447c27 7771 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
e16fd7f2 7772 data->data_src.val = PERF_MEM_NA;
bb447c27
NK
7773 data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7774 }
e16fd7f2 7775
bb447c27 7776 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
ee9db0e1 7777 data->txn = 0;
bb447c27
NK
7778 data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7779 }
ee9db0e1 7780
bb447c27
NK
7781 if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7782 data->addr = 0;
7783 data->sample_flags |= PERF_SAMPLE_ADDR;
7b084630
NK
7784 }
7785
bb447c27 7786 if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
60e2364e
SE
7787 /* regs dump ABI info */
7788 int size = sizeof(u64);
7789
7790 perf_sample_regs_intr(&data->regs_intr, regs);
7791
7792 if (data->regs_intr.regs) {
7793 u64 mask = event->attr.sample_regs_intr;
7794
7795 size += hweight64(mask) * sizeof(u64);
7796 }
7797
4cf7a136 7798 data->dyn_size += size;
bb447c27 7799 data->sample_flags |= PERF_SAMPLE_REGS_INTR;
60e2364e 7800 }
fc7ce9c7 7801
bb447c27 7802 if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
fc7ce9c7 7803 data->phys_addr = perf_virt_to_phys(data->addr);
bb447c27
NK
7804 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
7805 }
a4faf00d 7806
6546b19f 7807#ifdef CONFIG_CGROUP_PERF
bb447c27 7808 if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
6546b19f
NK
7809 struct cgroup *cgrp;
7810
7811 /* protected by RCU */
7812 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7813 data->cgroup = cgroup_id(cgrp);
bb447c27 7814 data->sample_flags |= PERF_SAMPLE_CGROUP;
6546b19f
NK
7815 }
7816#endif
7817
8d97e718
KL
7818 /*
7819 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7820 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7821 * but the value will not dump to the userspace.
7822 */
bb447c27 7823 if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
8d97e718 7824 data->data_page_size = perf_get_page_size(data->addr);
bb447c27
NK
7825 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
7826 }
8d97e718 7827
bb447c27 7828 if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
995f088e 7829 data->code_page_size = perf_get_page_size(data->ip);
bb447c27
NK
7830 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
7831 }
995f088e 7832
bb447c27 7833 if (filtered_sample_type & PERF_SAMPLE_AUX) {
a4faf00d 7834 u64 size;
f6e70715 7835 u16 header_size = perf_sample_data_size(data, event);
a4faf00d 7836
f6e70715 7837 header_size += sizeof(u64); /* size */
a4faf00d
AS
7838
7839 /*
7840 * Given the 16bit nature of header::size, an AUX sample can
7841 * easily overflow it, what with all the preceding sample bits.
7842 * Make sure this doesn't happen by using up to U16_MAX bytes
7843 * per sample in total (rounded down to 8 byte boundary).
7844 */
f6e70715 7845 size = min_t(size_t, U16_MAX - header_size,
a4faf00d
AS
7846 event->attr.aux_sample_size);
7847 size = rounddown(size, 8);
7848 size = perf_prepare_sample_aux(event, data, size);
7849
f6e70715 7850 WARN_ON_ONCE(size + header_size > U16_MAX);
4cf7a136 7851 data->dyn_size += size + sizeof(u64); /* size above */
bb447c27 7852 data->sample_flags |= PERF_SAMPLE_AUX;
a4faf00d 7853 }
f6e70715 7854}
4cf7a136 7855
f6e70715
NK
7856void perf_prepare_header(struct perf_event_header *header,
7857 struct perf_sample_data *data,
7858 struct perf_event *event,
7859 struct pt_regs *regs)
7860{
7861 header->type = PERF_RECORD_SAMPLE;
7862 header->size = perf_sample_data_size(data, event);
7863 header->misc = perf_misc_flags(regs);
4cf7a136 7864
a4faf00d
AS
7865 /*
7866 * If you're adding more sample types here, you likely need to do
7867 * something about the overflowing header::size, like repurpose the
7868 * lowest 3 bits of size, which should be always zero at the moment.
7869 * This raises a more important question, do we really need 512k sized
7870 * samples and why, so good argumentation is in order for whatever you
7871 * do here next.
7872 */
7873 WARN_ON_ONCE(header->size & 7);
5622f295 7874}
7f453c24 7875
56201969 7876static __always_inline int
9ecda41a
WN
7877__perf_event_output(struct perf_event *event,
7878 struct perf_sample_data *data,
7879 struct pt_regs *regs,
7880 int (*output_begin)(struct perf_output_handle *,
267fb273 7881 struct perf_sample_data *,
9ecda41a
WN
7882 struct perf_event *,
7883 unsigned int))
5622f295
MM
7884{
7885 struct perf_output_handle handle;
7886 struct perf_event_header header;
56201969 7887 int err;
689802b2 7888
927c7a9e
FW
7889 /* protect the callchain buffers */
7890 rcu_read_lock();
7891
f6e70715
NK
7892 perf_prepare_sample(data, event, regs);
7893 perf_prepare_header(&header, data, event, regs);
5c148194 7894
267fb273 7895 err = output_begin(&handle, data, event, header.size);
56201969 7896 if (err)
927c7a9e 7897 goto exit;
0322cd6e 7898
cdd6c482 7899 perf_output_sample(&handle, &header, data, event);
f413cdb8 7900
8a057d84 7901 perf_output_end(&handle);
927c7a9e
FW
7902
7903exit:
7904 rcu_read_unlock();
56201969 7905 return err;
0322cd6e
PZ
7906}
7907
9ecda41a
WN
7908void
7909perf_event_output_forward(struct perf_event *event,
7910 struct perf_sample_data *data,
7911 struct pt_regs *regs)
7912{
7913 __perf_event_output(event, data, regs, perf_output_begin_forward);
7914}
7915
7916void
7917perf_event_output_backward(struct perf_event *event,
7918 struct perf_sample_data *data,
7919 struct pt_regs *regs)
7920{
7921 __perf_event_output(event, data, regs, perf_output_begin_backward);
7922}
7923
56201969 7924int
9ecda41a
WN
7925perf_event_output(struct perf_event *event,
7926 struct perf_sample_data *data,
7927 struct pt_regs *regs)
7928{
56201969 7929 return __perf_event_output(event, data, regs, perf_output_begin);
9ecda41a
WN
7930}
7931
38b200d6 7932/*
cdd6c482 7933 * read event_id
38b200d6
PZ
7934 */
7935
7936struct perf_read_event {
7937 struct perf_event_header header;
7938
7939 u32 pid;
7940 u32 tid;
38b200d6
PZ
7941};
7942
7943static void
cdd6c482 7944perf_event_read_event(struct perf_event *event,
38b200d6
PZ
7945 struct task_struct *task)
7946{
7947 struct perf_output_handle handle;
c980d109 7948 struct perf_sample_data sample;
dfc65094 7949 struct perf_read_event read_event = {
38b200d6 7950 .header = {
cdd6c482 7951 .type = PERF_RECORD_READ,
38b200d6 7952 .misc = 0,
c320c7b7 7953 .size = sizeof(read_event) + event->read_size,
38b200d6 7954 },
cdd6c482
IM
7955 .pid = perf_event_pid(event, task),
7956 .tid = perf_event_tid(event, task),
38b200d6 7957 };
3dab77fb 7958 int ret;
38b200d6 7959
c980d109 7960 perf_event_header__init_id(&read_event.header, &sample, event);
267fb273 7961 ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
38b200d6
PZ
7962 if (ret)
7963 return;
7964
dfc65094 7965 perf_output_put(&handle, read_event);
cdd6c482 7966 perf_output_read(&handle, event);
c980d109 7967 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 7968
38b200d6
PZ
7969 perf_output_end(&handle);
7970}
7971
aab5b71e 7972typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
7973
7974static void
aab5b71e
PZ
7975perf_iterate_ctx(struct perf_event_context *ctx,
7976 perf_iterate_f output,
b73e4fef 7977 void *data, bool all)
52d857a8
JO
7978{
7979 struct perf_event *event;
7980
7981 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
7982 if (!all) {
7983 if (event->state < PERF_EVENT_STATE_INACTIVE)
7984 continue;
7985 if (!event_filter_match(event))
7986 continue;
7987 }
7988
67516844 7989 output(event, data);
52d857a8
JO
7990 }
7991}
7992
aab5b71e 7993static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
7994{
7995 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7996 struct perf_event *event;
7997
7998 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
7999 /*
8000 * Skip events that are not fully formed yet; ensure that
8001 * if we observe event->ctx, both event and ctx will be
8002 * complete enough. See perf_install_in_context().
8003 */
8004 if (!smp_load_acquire(&event->ctx))
8005 continue;
8006
f2fb6bef
KL
8007 if (event->state < PERF_EVENT_STATE_INACTIVE)
8008 continue;
8009 if (!event_filter_match(event))
8010 continue;
8011 output(event, data);
8012 }
8013}
8014
aab5b71e
PZ
8015/*
8016 * Iterate all events that need to receive side-band events.
8017 *
8018 * For new callers; ensure that account_pmu_sb_event() includes
8019 * your event, otherwise it might not get delivered.
8020 */
52d857a8 8021static void
aab5b71e 8022perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
8023 struct perf_event_context *task_ctx)
8024{
52d857a8 8025 struct perf_event_context *ctx;
52d857a8 8026
aab5b71e
PZ
8027 rcu_read_lock();
8028 preempt_disable();
8029
4e93ad60 8030 /*
aab5b71e
PZ
8031 * If we have task_ctx != NULL we only notify the task context itself.
8032 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
8033 * context.
8034 */
8035 if (task_ctx) {
aab5b71e
PZ
8036 perf_iterate_ctx(task_ctx, output, data, false);
8037 goto done;
4e93ad60
JO
8038 }
8039
aab5b71e 8040 perf_iterate_sb_cpu(output, data);
f2fb6bef 8041
bd275681
PZ
8042 ctx = rcu_dereference(current->perf_event_ctxp);
8043 if (ctx)
8044 perf_iterate_ctx(ctx, output, data, false);
aab5b71e 8045done:
f2fb6bef 8046 preempt_enable();
52d857a8 8047 rcu_read_unlock();
95ff4ca2
AS
8048}
8049
375637bc
AS
8050/*
8051 * Clear all file-based filters at exec, they'll have to be
8052 * re-instated when/if these objects are mmapped again.
8053 */
8054static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8055{
8056 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8057 struct perf_addr_filter *filter;
8058 unsigned int restart = 0, count = 0;
8059 unsigned long flags;
8060
8061 if (!has_addr_filter(event))
8062 return;
8063
8064 raw_spin_lock_irqsave(&ifh->lock, flags);
8065 list_for_each_entry(filter, &ifh->list, entry) {
9511bce9 8066 if (filter->path.dentry) {
c60f83b8
AS
8067 event->addr_filter_ranges[count].start = 0;
8068 event->addr_filter_ranges[count].size = 0;
375637bc
AS
8069 restart++;
8070 }
8071
8072 count++;
8073 }
8074
8075 if (restart)
8076 event->addr_filters_gen++;
8077 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8078
8079 if (restart)
767ae086 8080 perf_event_stop(event, 1);
375637bc
AS
8081}
8082
8083void perf_event_exec(void)
8084{
8085 struct perf_event_context *ctx;
375637bc 8086
bd275681
PZ
8087 ctx = perf_pin_task_context(current);
8088 if (!ctx)
8089 return;
375637bc 8090
bd275681
PZ
8091 perf_event_enable_on_exec(ctx);
8092 perf_event_remove_on_exec(ctx);
8093 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
375637bc 8094
bd275681
PZ
8095 perf_unpin_context(ctx);
8096 put_ctx(ctx);
375637bc
AS
8097}
8098
95ff4ca2 8099struct remote_output {
56de4e8f 8100 struct perf_buffer *rb;
95ff4ca2
AS
8101 int err;
8102};
8103
8104static void __perf_event_output_stop(struct perf_event *event, void *data)
8105{
8106 struct perf_event *parent = event->parent;
8107 struct remote_output *ro = data;
56de4e8f 8108 struct perf_buffer *rb = ro->rb;
375637bc
AS
8109 struct stop_event_data sd = {
8110 .event = event,
8111 };
95ff4ca2
AS
8112
8113 if (!has_aux(event))
8114 return;
8115
8116 if (!parent)
8117 parent = event;
8118
8119 /*
8120 * In case of inheritance, it will be the parent that links to the
767ae086
AS
8121 * ring-buffer, but it will be the child that's actually using it.
8122 *
8123 * We are using event::rb to determine if the event should be stopped,
8124 * however this may race with ring_buffer_attach() (through set_output),
8125 * which will make us skip the event that actually needs to be stopped.
8126 * So ring_buffer_attach() has to stop an aux event before re-assigning
8127 * its rb pointer.
95ff4ca2
AS
8128 */
8129 if (rcu_dereference(parent->rb) == rb)
375637bc 8130 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
8131}
8132
8133static int __perf_pmu_output_stop(void *info)
8134{
8135 struct perf_event *event = info;
bd275681 8136 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
95ff4ca2
AS
8137 struct remote_output ro = {
8138 .rb = event->rb,
8139 };
8140
8141 rcu_read_lock();
aab5b71e 8142 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 8143 if (cpuctx->task_ctx)
aab5b71e 8144 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 8145 &ro, false);
95ff4ca2
AS
8146 rcu_read_unlock();
8147
8148 return ro.err;
8149}
8150
8151static void perf_pmu_output_stop(struct perf_event *event)
8152{
8153 struct perf_event *iter;
8154 int err, cpu;
8155
8156restart:
8157 rcu_read_lock();
8158 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8159 /*
8160 * For per-CPU events, we need to make sure that neither they
8161 * nor their children are running; for cpu==-1 events it's
8162 * sufficient to stop the event itself if it's active, since
8163 * it can't have children.
8164 */
8165 cpu = iter->cpu;
8166 if (cpu == -1)
8167 cpu = READ_ONCE(iter->oncpu);
8168
8169 if (cpu == -1)
8170 continue;
8171
8172 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8173 if (err == -EAGAIN) {
8174 rcu_read_unlock();
8175 goto restart;
8176 }
8177 }
8178 rcu_read_unlock();
52d857a8
JO
8179}
8180
60313ebe 8181/*
9f498cc5
PZ
8182 * task tracking -- fork/exit
8183 *
13d7a241 8184 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
8185 */
8186
9f498cc5 8187struct perf_task_event {
3a80b4a3 8188 struct task_struct *task;
cdd6c482 8189 struct perf_event_context *task_ctx;
60313ebe
PZ
8190
8191 struct {
8192 struct perf_event_header header;
8193
8194 u32 pid;
8195 u32 ppid;
9f498cc5
PZ
8196 u32 tid;
8197 u32 ptid;
393b2ad8 8198 u64 time;
cdd6c482 8199 } event_id;
60313ebe
PZ
8200};
8201
67516844
JO
8202static int perf_event_task_match(struct perf_event *event)
8203{
13d7a241
SE
8204 return event->attr.comm || event->attr.mmap ||
8205 event->attr.mmap2 || event->attr.mmap_data ||
8206 event->attr.task;
67516844
JO
8207}
8208
cdd6c482 8209static void perf_event_task_output(struct perf_event *event,
52d857a8 8210 void *data)
60313ebe 8211{
52d857a8 8212 struct perf_task_event *task_event = data;
60313ebe 8213 struct perf_output_handle handle;
c980d109 8214 struct perf_sample_data sample;
9f498cc5 8215 struct task_struct *task = task_event->task;
c980d109 8216 int ret, size = task_event->event_id.header.size;
8bb39f9a 8217
67516844
JO
8218 if (!perf_event_task_match(event))
8219 return;
8220
c980d109 8221 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 8222
267fb273 8223 ret = perf_output_begin(&handle, &sample, event,
a7ac67ea 8224 task_event->event_id.header.size);
ef60777c 8225 if (ret)
c980d109 8226 goto out;
60313ebe 8227
cdd6c482 8228 task_event->event_id.pid = perf_event_pid(event, task);
cdd6c482 8229 task_event->event_id.tid = perf_event_tid(event, task);
f3bed55e
IR
8230
8231 if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8232 task_event->event_id.ppid = perf_event_pid(event,
8233 task->real_parent);
8234 task_event->event_id.ptid = perf_event_pid(event,
8235 task->real_parent);
8236 } else { /* PERF_RECORD_FORK */
8237 task_event->event_id.ppid = perf_event_pid(event, current);
8238 task_event->event_id.ptid = perf_event_tid(event, current);
8239 }
9f498cc5 8240
34f43927
PZ
8241 task_event->event_id.time = perf_event_clock(event);
8242
cdd6c482 8243 perf_output_put(&handle, task_event->event_id);
393b2ad8 8244
c980d109
ACM
8245 perf_event__output_id_sample(event, &handle, &sample);
8246
60313ebe 8247 perf_output_end(&handle);
c980d109
ACM
8248out:
8249 task_event->event_id.header.size = size;
60313ebe
PZ
8250}
8251
cdd6c482
IM
8252static void perf_event_task(struct task_struct *task,
8253 struct perf_event_context *task_ctx,
3a80b4a3 8254 int new)
60313ebe 8255{
9f498cc5 8256 struct perf_task_event task_event;
60313ebe 8257
cdd6c482
IM
8258 if (!atomic_read(&nr_comm_events) &&
8259 !atomic_read(&nr_mmap_events) &&
8260 !atomic_read(&nr_task_events))
60313ebe
PZ
8261 return;
8262
9f498cc5 8263 task_event = (struct perf_task_event){
3a80b4a3
PZ
8264 .task = task,
8265 .task_ctx = task_ctx,
cdd6c482 8266 .event_id = {
60313ebe 8267 .header = {
cdd6c482 8268 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 8269 .misc = 0,
cdd6c482 8270 .size = sizeof(task_event.event_id),
60313ebe 8271 },
573402db
PZ
8272 /* .pid */
8273 /* .ppid */
9f498cc5
PZ
8274 /* .tid */
8275 /* .ptid */
34f43927 8276 /* .time */
60313ebe
PZ
8277 },
8278 };
8279
aab5b71e 8280 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
8281 &task_event,
8282 task_ctx);
9f498cc5
PZ
8283}
8284
cdd6c482 8285void perf_event_fork(struct task_struct *task)
9f498cc5 8286{
cdd6c482 8287 perf_event_task(task, NULL, 1);
e4222673 8288 perf_event_namespaces(task);
60313ebe
PZ
8289}
8290
8d1b2d93
PZ
8291/*
8292 * comm tracking
8293 */
8294
8295struct perf_comm_event {
22a4f650
IM
8296 struct task_struct *task;
8297 char *comm;
8d1b2d93
PZ
8298 int comm_size;
8299
8300 struct {
8301 struct perf_event_header header;
8302
8303 u32 pid;
8304 u32 tid;
cdd6c482 8305 } event_id;
8d1b2d93
PZ
8306};
8307
67516844
JO
8308static int perf_event_comm_match(struct perf_event *event)
8309{
8310 return event->attr.comm;
8311}
8312
cdd6c482 8313static void perf_event_comm_output(struct perf_event *event,
52d857a8 8314 void *data)
8d1b2d93 8315{
52d857a8 8316 struct perf_comm_event *comm_event = data;
8d1b2d93 8317 struct perf_output_handle handle;
c980d109 8318 struct perf_sample_data sample;
cdd6c482 8319 int size = comm_event->event_id.header.size;
c980d109
ACM
8320 int ret;
8321
67516844
JO
8322 if (!perf_event_comm_match(event))
8323 return;
8324
c980d109 8325 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
267fb273 8326 ret = perf_output_begin(&handle, &sample, event,
a7ac67ea 8327 comm_event->event_id.header.size);
8d1b2d93
PZ
8328
8329 if (ret)
c980d109 8330 goto out;
8d1b2d93 8331
cdd6c482
IM
8332 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8333 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 8334
cdd6c482 8335 perf_output_put(&handle, comm_event->event_id);
76369139 8336 __output_copy(&handle, comm_event->comm,
8d1b2d93 8337 comm_event->comm_size);
c980d109
ACM
8338
8339 perf_event__output_id_sample(event, &handle, &sample);
8340
8d1b2d93 8341 perf_output_end(&handle);
c980d109
ACM
8342out:
8343 comm_event->event_id.header.size = size;
8d1b2d93
PZ
8344}
8345
cdd6c482 8346static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 8347{
413ee3b4 8348 char comm[TASK_COMM_LEN];
8d1b2d93 8349 unsigned int size;
8d1b2d93 8350
413ee3b4 8351 memset(comm, 0, sizeof(comm));
c9732f14 8352 strscpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 8353 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
8354
8355 comm_event->comm = comm;
8356 comm_event->comm_size = size;
8357
cdd6c482 8358 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 8359
aab5b71e 8360 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
8361 comm_event,
8362 NULL);
8d1b2d93
PZ
8363}
8364
82b89778 8365void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 8366{
9ee318a7
PZ
8367 struct perf_comm_event comm_event;
8368
cdd6c482 8369 if (!atomic_read(&nr_comm_events))
9ee318a7 8370 return;
a63eaf34 8371
9ee318a7 8372 comm_event = (struct perf_comm_event){
8d1b2d93 8373 .task = task,
573402db
PZ
8374 /* .comm */
8375 /* .comm_size */
cdd6c482 8376 .event_id = {
573402db 8377 .header = {
cdd6c482 8378 .type = PERF_RECORD_COMM,
82b89778 8379 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
8380 /* .size */
8381 },
8382 /* .pid */
8383 /* .tid */
8d1b2d93
PZ
8384 },
8385 };
8386
cdd6c482 8387 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
8388}
8389
e4222673
HB
8390/*
8391 * namespaces tracking
8392 */
8393
8394struct perf_namespaces_event {
8395 struct task_struct *task;
8396
8397 struct {
8398 struct perf_event_header header;
8399
8400 u32 pid;
8401 u32 tid;
8402 u64 nr_namespaces;
8403 struct perf_ns_link_info link_info[NR_NAMESPACES];
8404 } event_id;
8405};
8406
8407static int perf_event_namespaces_match(struct perf_event *event)
8408{
8409 return event->attr.namespaces;
8410}
8411
8412static void perf_event_namespaces_output(struct perf_event *event,
8413 void *data)
8414{
8415 struct perf_namespaces_event *namespaces_event = data;
8416 struct perf_output_handle handle;
8417 struct perf_sample_data sample;
34900ec5 8418 u16 header_size = namespaces_event->event_id.header.size;
e4222673
HB
8419 int ret;
8420
8421 if (!perf_event_namespaces_match(event))
8422 return;
8423
8424 perf_event_header__init_id(&namespaces_event->event_id.header,
8425 &sample, event);
267fb273 8426 ret = perf_output_begin(&handle, &sample, event,
e4222673
HB
8427 namespaces_event->event_id.header.size);
8428 if (ret)
34900ec5 8429 goto out;
e4222673
HB
8430
8431 namespaces_event->event_id.pid = perf_event_pid(event,
8432 namespaces_event->task);
8433 namespaces_event->event_id.tid = perf_event_tid(event,
8434 namespaces_event->task);
8435
8436 perf_output_put(&handle, namespaces_event->event_id);
8437
8438 perf_event__output_id_sample(event, &handle, &sample);
8439
8440 perf_output_end(&handle);
34900ec5
JO
8441out:
8442 namespaces_event->event_id.header.size = header_size;
e4222673
HB
8443}
8444
8445static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8446 struct task_struct *task,
8447 const struct proc_ns_operations *ns_ops)
8448{
8449 struct path ns_path;
8450 struct inode *ns_inode;
ce623f89 8451 int error;
e4222673
HB
8452
8453 error = ns_get_path(&ns_path, task, ns_ops);
8454 if (!error) {
8455 ns_inode = ns_path.dentry->d_inode;
8456 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8457 ns_link_info->ino = ns_inode->i_ino;
0e18dd12 8458 path_put(&ns_path);
e4222673
HB
8459 }
8460}
8461
8462void perf_event_namespaces(struct task_struct *task)
8463{
8464 struct perf_namespaces_event namespaces_event;
8465 struct perf_ns_link_info *ns_link_info;
8466
8467 if (!atomic_read(&nr_namespaces_events))
8468 return;
8469
8470 namespaces_event = (struct perf_namespaces_event){
8471 .task = task,
8472 .event_id = {
8473 .header = {
8474 .type = PERF_RECORD_NAMESPACES,
8475 .misc = 0,
8476 .size = sizeof(namespaces_event.event_id),
8477 },
8478 /* .pid */
8479 /* .tid */
8480 .nr_namespaces = NR_NAMESPACES,
8481 /* .link_info[NR_NAMESPACES] */
8482 },
8483 };
8484
8485 ns_link_info = namespaces_event.event_id.link_info;
8486
8487 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8488 task, &mntns_operations);
8489
8490#ifdef CONFIG_USER_NS
8491 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8492 task, &userns_operations);
8493#endif
8494#ifdef CONFIG_NET_NS
8495 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8496 task, &netns_operations);
8497#endif
8498#ifdef CONFIG_UTS_NS
8499 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8500 task, &utsns_operations);
8501#endif
8502#ifdef CONFIG_IPC_NS
8503 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8504 task, &ipcns_operations);
8505#endif
8506#ifdef CONFIG_PID_NS
8507 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8508 task, &pidns_operations);
8509#endif
8510#ifdef CONFIG_CGROUPS
8511 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8512 task, &cgroupns_operations);
8513#endif
8514
8515 perf_iterate_sb(perf_event_namespaces_output,
8516 &namespaces_event,
8517 NULL);
8518}
8519
96aaab68
NK
8520/*
8521 * cgroup tracking
8522 */
8523#ifdef CONFIG_CGROUP_PERF
8524
8525struct perf_cgroup_event {
8526 char *path;
8527 int path_size;
8528 struct {
8529 struct perf_event_header header;
8530 u64 id;
8531 char path[];
8532 } event_id;
8533};
8534
8535static int perf_event_cgroup_match(struct perf_event *event)
8536{
8537 return event->attr.cgroup;
8538}
8539
8540static void perf_event_cgroup_output(struct perf_event *event, void *data)
8541{
8542 struct perf_cgroup_event *cgroup_event = data;
8543 struct perf_output_handle handle;
8544 struct perf_sample_data sample;
8545 u16 header_size = cgroup_event->event_id.header.size;
8546 int ret;
8547
8548 if (!perf_event_cgroup_match(event))
8549 return;
8550
8551 perf_event_header__init_id(&cgroup_event->event_id.header,
8552 &sample, event);
267fb273 8553 ret = perf_output_begin(&handle, &sample, event,
96aaab68
NK
8554 cgroup_event->event_id.header.size);
8555 if (ret)
8556 goto out;
8557
8558 perf_output_put(&handle, cgroup_event->event_id);
8559 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8560
8561 perf_event__output_id_sample(event, &handle, &sample);
8562
8563 perf_output_end(&handle);
8564out:
8565 cgroup_event->event_id.header.size = header_size;
8566}
8567
8568static void perf_event_cgroup(struct cgroup *cgrp)
8569{
8570 struct perf_cgroup_event cgroup_event;
8571 char path_enomem[16] = "//enomem";
8572 char *pathname;
8573 size_t size;
8574
8575 if (!atomic_read(&nr_cgroup_events))
8576 return;
8577
8578 cgroup_event = (struct perf_cgroup_event){
8579 .event_id = {
8580 .header = {
8581 .type = PERF_RECORD_CGROUP,
8582 .misc = 0,
8583 .size = sizeof(cgroup_event.event_id),
8584 },
8585 .id = cgroup_id(cgrp),
8586 },
8587 };
8588
8589 pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8590 if (pathname == NULL) {
8591 cgroup_event.path = path_enomem;
8592 } else {
8593 /* just to be sure to have enough space for alignment */
8594 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8595 cgroup_event.path = pathname;
8596 }
8597
8598 /*
8599 * Since our buffer works in 8 byte units we need to align our string
8600 * size to a multiple of 8. However, we must guarantee the tail end is
8601 * zero'd out to avoid leaking random bits to userspace.
8602 */
8603 size = strlen(cgroup_event.path) + 1;
8604 while (!IS_ALIGNED(size, sizeof(u64)))
8605 cgroup_event.path[size++] = '\0';
8606
8607 cgroup_event.event_id.header.size += size;
8608 cgroup_event.path_size = size;
8609
8610 perf_iterate_sb(perf_event_cgroup_output,
8611 &cgroup_event,
8612 NULL);
8613
8614 kfree(pathname);
8615}
8616
8617#endif
8618
0a4a9391
PZ
8619/*
8620 * mmap tracking
8621 */
8622
8623struct perf_mmap_event {
089dd79d
PZ
8624 struct vm_area_struct *vma;
8625
8626 const char *file_name;
8627 int file_size;
13d7a241
SE
8628 int maj, min;
8629 u64 ino;
8630 u64 ino_generation;
f972eb63 8631 u32 prot, flags;
88a16a13
JO
8632 u8 build_id[BUILD_ID_SIZE_MAX];
8633 u32 build_id_size;
0a4a9391
PZ
8634
8635 struct {
8636 struct perf_event_header header;
8637
8638 u32 pid;
8639 u32 tid;
8640 u64 start;
8641 u64 len;
8642 u64 pgoff;
cdd6c482 8643 } event_id;
0a4a9391
PZ
8644};
8645
67516844
JO
8646static int perf_event_mmap_match(struct perf_event *event,
8647 void *data)
8648{
8649 struct perf_mmap_event *mmap_event = data;
8650 struct vm_area_struct *vma = mmap_event->vma;
8651 int executable = vma->vm_flags & VM_EXEC;
8652
8653 return (!executable && event->attr.mmap_data) ||
13d7a241 8654 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
8655}
8656
cdd6c482 8657static void perf_event_mmap_output(struct perf_event *event,
52d857a8 8658 void *data)
0a4a9391 8659{
52d857a8 8660 struct perf_mmap_event *mmap_event = data;
0a4a9391 8661 struct perf_output_handle handle;
c980d109 8662 struct perf_sample_data sample;
cdd6c482 8663 int size = mmap_event->event_id.header.size;
d9c1bb2f 8664 u32 type = mmap_event->event_id.header.type;
88a16a13 8665 bool use_build_id;
c980d109 8666 int ret;
0a4a9391 8667
67516844
JO
8668 if (!perf_event_mmap_match(event, data))
8669 return;
8670
13d7a241
SE
8671 if (event->attr.mmap2) {
8672 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8673 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8674 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8675 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 8676 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
8677 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8678 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
8679 }
8680
c980d109 8681 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
267fb273 8682 ret = perf_output_begin(&handle, &sample, event,
a7ac67ea 8683 mmap_event->event_id.header.size);
0a4a9391 8684 if (ret)
c980d109 8685 goto out;
0a4a9391 8686
cdd6c482
IM
8687 mmap_event->event_id.pid = perf_event_pid(event, current);
8688 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 8689
88a16a13
JO
8690 use_build_id = event->attr.build_id && mmap_event->build_id_size;
8691
8692 if (event->attr.mmap2 && use_build_id)
8693 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8694
cdd6c482 8695 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
8696
8697 if (event->attr.mmap2) {
88a16a13
JO
8698 if (use_build_id) {
8699 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8700
8701 __output_copy(&handle, size, 4);
8702 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8703 } else {
8704 perf_output_put(&handle, mmap_event->maj);
8705 perf_output_put(&handle, mmap_event->min);
8706 perf_output_put(&handle, mmap_event->ino);
8707 perf_output_put(&handle, mmap_event->ino_generation);
8708 }
f972eb63
PZ
8709 perf_output_put(&handle, mmap_event->prot);
8710 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
8711 }
8712
76369139 8713 __output_copy(&handle, mmap_event->file_name,
0a4a9391 8714 mmap_event->file_size);
c980d109
ACM
8715
8716 perf_event__output_id_sample(event, &handle, &sample);
8717
78d613eb 8718 perf_output_end(&handle);
c980d109
ACM
8719out:
8720 mmap_event->event_id.header.size = size;
d9c1bb2f 8721 mmap_event->event_id.header.type = type;
0a4a9391
PZ
8722}
8723
cdd6c482 8724static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 8725{
089dd79d
PZ
8726 struct vm_area_struct *vma = mmap_event->vma;
8727 struct file *file = vma->vm_file;
13d7a241
SE
8728 int maj = 0, min = 0;
8729 u64 ino = 0, gen = 0;
f972eb63 8730 u32 prot = 0, flags = 0;
0a4a9391
PZ
8731 unsigned int size;
8732 char tmp[16];
8733 char *buf = NULL;
549f5c77 8734 char *name = NULL;
413ee3b4 8735
0b3589be
PZ
8736 if (vma->vm_flags & VM_READ)
8737 prot |= PROT_READ;
8738 if (vma->vm_flags & VM_WRITE)
8739 prot |= PROT_WRITE;
8740 if (vma->vm_flags & VM_EXEC)
8741 prot |= PROT_EXEC;
8742
8743 if (vma->vm_flags & VM_MAYSHARE)
8744 flags = MAP_SHARED;
8745 else
8746 flags = MAP_PRIVATE;
8747
0b3589be
PZ
8748 if (vma->vm_flags & VM_LOCKED)
8749 flags |= MAP_LOCKED;
03911132 8750 if (is_vm_hugetlb_page(vma))
0b3589be
PZ
8751 flags |= MAP_HUGETLB;
8752
0a4a9391 8753 if (file) {
13d7a241
SE
8754 struct inode *inode;
8755 dev_t dev;
3ea2f2b9 8756
2c42cfbf 8757 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 8758 if (!buf) {
c7e548b4
ON
8759 name = "//enomem";
8760 goto cpy_name;
0a4a9391 8761 }
413ee3b4 8762 /*
3ea2f2b9 8763 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
8764 * need to add enough zero bytes after the string to handle
8765 * the 64bit alignment we do later.
8766 */
9bf39ab2 8767 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 8768 if (IS_ERR(name)) {
c7e548b4
ON
8769 name = "//toolong";
8770 goto cpy_name;
0a4a9391 8771 }
13d7a241
SE
8772 inode = file_inode(vma->vm_file);
8773 dev = inode->i_sb->s_dev;
8774 ino = inode->i_ino;
8775 gen = inode->i_generation;
8776 maj = MAJOR(dev);
8777 min = MINOR(dev);
f972eb63 8778
c7e548b4 8779 goto got_name;
0a4a9391 8780 } else {
549f5c77 8781 if (vma->vm_ops && vma->vm_ops->name)
fbe26abe 8782 name = (char *) vma->vm_ops->name(vma);
549f5c77
KW
8783 if (!name)
8784 name = (char *)arch_vma_name(vma);
8785 if (!name) {
8786 if (vma_is_initial_heap(vma))
8787 name = "[heap]";
8788 else if (vma_is_initial_stack(vma))
8789 name = "[stack]";
8790 else
8791 name = "//anon";
fbe26abe 8792 }
0a4a9391
PZ
8793 }
8794
c7e548b4 8795cpy_name:
c9732f14 8796 strscpy(tmp, name, sizeof(tmp));
c7e548b4 8797 name = tmp;
0a4a9391 8798got_name:
2c42cfbf
PZ
8799 /*
8800 * Since our buffer works in 8 byte units we need to align our string
8801 * size to a multiple of 8. However, we must guarantee the tail end is
8802 * zero'd out to avoid leaking random bits to userspace.
8803 */
8804 size = strlen(name)+1;
8805 while (!IS_ALIGNED(size, sizeof(u64)))
8806 name[size++] = '\0';
0a4a9391
PZ
8807
8808 mmap_event->file_name = name;
8809 mmap_event->file_size = size;
13d7a241
SE
8810 mmap_event->maj = maj;
8811 mmap_event->min = min;
8812 mmap_event->ino = ino;
8813 mmap_event->ino_generation = gen;
f972eb63
PZ
8814 mmap_event->prot = prot;
8815 mmap_event->flags = flags;
0a4a9391 8816
2fe85427
SE
8817 if (!(vma->vm_flags & VM_EXEC))
8818 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8819
cdd6c482 8820 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 8821
88a16a13
JO
8822 if (atomic_read(&nr_build_id_events))
8823 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8824
aab5b71e 8825 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
8826 mmap_event,
8827 NULL);
665c2142 8828
0a4a9391
PZ
8829 kfree(buf);
8830}
8831
375637bc
AS
8832/*
8833 * Check whether inode and address range match filter criteria.
8834 */
8835static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8836 struct file *file, unsigned long offset,
8837 unsigned long size)
8838{
7f635ff1
MP
8839 /* d_inode(NULL) won't be equal to any mapped user-space file */
8840 if (!filter->path.dentry)
8841 return false;
8842
9511bce9 8843 if (d_inode(filter->path.dentry) != file_inode(file))
375637bc
AS
8844 return false;
8845
8846 if (filter->offset > offset + size)
8847 return false;
8848
8849 if (filter->offset + filter->size < offset)
8850 return false;
8851
8852 return true;
8853}
8854
c60f83b8
AS
8855static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8856 struct vm_area_struct *vma,
8857 struct perf_addr_filter_range *fr)
8858{
8859 unsigned long vma_size = vma->vm_end - vma->vm_start;
8860 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8861 struct file *file = vma->vm_file;
8862
8863 if (!perf_addr_filter_match(filter, file, off, vma_size))
8864 return false;
8865
8866 if (filter->offset < off) {
8867 fr->start = vma->vm_start;
8868 fr->size = min(vma_size, filter->size - (off - filter->offset));
8869 } else {
8870 fr->start = vma->vm_start + filter->offset - off;
8871 fr->size = min(vma->vm_end - fr->start, filter->size);
8872 }
8873
8874 return true;
8875}
8876
375637bc
AS
8877static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8878{
8879 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8880 struct vm_area_struct *vma = data;
375637bc
AS
8881 struct perf_addr_filter *filter;
8882 unsigned int restart = 0, count = 0;
c60f83b8 8883 unsigned long flags;
375637bc
AS
8884
8885 if (!has_addr_filter(event))
8886 return;
8887
c60f83b8 8888 if (!vma->vm_file)
375637bc
AS
8889 return;
8890
8891 raw_spin_lock_irqsave(&ifh->lock, flags);
8892 list_for_each_entry(filter, &ifh->list, entry) {
c60f83b8
AS
8893 if (perf_addr_filter_vma_adjust(filter, vma,
8894 &event->addr_filter_ranges[count]))
375637bc 8895 restart++;
375637bc
AS
8896
8897 count++;
8898 }
8899
8900 if (restart)
8901 event->addr_filters_gen++;
8902 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8903
8904 if (restart)
767ae086 8905 perf_event_stop(event, 1);
375637bc
AS
8906}
8907
8908/*
8909 * Adjust all task's events' filters to the new vma
8910 */
8911static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8912{
8913 struct perf_event_context *ctx;
375637bc 8914
12b40a23
MP
8915 /*
8916 * Data tracing isn't supported yet and as such there is no need
8917 * to keep track of anything that isn't related to executable code:
8918 */
8919 if (!(vma->vm_flags & VM_EXEC))
8920 return;
8921
375637bc 8922 rcu_read_lock();
bd275681
PZ
8923 ctx = rcu_dereference(current->perf_event_ctxp);
8924 if (ctx)
aab5b71e 8925 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
8926 rcu_read_unlock();
8927}
8928
3af9e859 8929void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 8930{
9ee318a7
PZ
8931 struct perf_mmap_event mmap_event;
8932
cdd6c482 8933 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
8934 return;
8935
8936 mmap_event = (struct perf_mmap_event){
089dd79d 8937 .vma = vma,
573402db
PZ
8938 /* .file_name */
8939 /* .file_size */
cdd6c482 8940 .event_id = {
573402db 8941 .header = {
cdd6c482 8942 .type = PERF_RECORD_MMAP,
39447b38 8943 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
8944 /* .size */
8945 },
8946 /* .pid */
8947 /* .tid */
089dd79d
PZ
8948 .start = vma->vm_start,
8949 .len = vma->vm_end - vma->vm_start,
3a0304e9 8950 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 8951 },
13d7a241
SE
8952 /* .maj (attr_mmap2 only) */
8953 /* .min (attr_mmap2 only) */
8954 /* .ino (attr_mmap2 only) */
8955 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
8956 /* .prot (attr_mmap2 only) */
8957 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
8958 };
8959
375637bc 8960 perf_addr_filters_adjust(vma);
cdd6c482 8961 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
8962}
8963
68db7e98
AS
8964void perf_event_aux_event(struct perf_event *event, unsigned long head,
8965 unsigned long size, u64 flags)
8966{
8967 struct perf_output_handle handle;
8968 struct perf_sample_data sample;
8969 struct perf_aux_event {
8970 struct perf_event_header header;
8971 u64 offset;
8972 u64 size;
8973 u64 flags;
8974 } rec = {
8975 .header = {
8976 .type = PERF_RECORD_AUX,
8977 .misc = 0,
8978 .size = sizeof(rec),
8979 },
8980 .offset = head,
8981 .size = size,
8982 .flags = flags,
8983 };
8984 int ret;
8985
8986 perf_event_header__init_id(&rec.header, &sample, event);
267fb273 8987 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
68db7e98
AS
8988
8989 if (ret)
8990 return;
8991
8992 perf_output_put(&handle, rec);
8993 perf_event__output_id_sample(event, &handle, &sample);
8994
8995 perf_output_end(&handle);
8996}
8997
f38b0dbb
KL
8998/*
8999 * Lost/dropped samples logging
9000 */
9001void perf_log_lost_samples(struct perf_event *event, u64 lost)
9002{
9003 struct perf_output_handle handle;
9004 struct perf_sample_data sample;
9005 int ret;
9006
9007 struct {
9008 struct perf_event_header header;
9009 u64 lost;
9010 } lost_samples_event = {
9011 .header = {
9012 .type = PERF_RECORD_LOST_SAMPLES,
9013 .misc = 0,
9014 .size = sizeof(lost_samples_event),
9015 },
9016 .lost = lost,
9017 };
9018
9019 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
9020
267fb273 9021 ret = perf_output_begin(&handle, &sample, event,
f38b0dbb
KL
9022 lost_samples_event.header.size);
9023 if (ret)
9024 return;
9025
9026 perf_output_put(&handle, lost_samples_event);
9027 perf_event__output_id_sample(event, &handle, &sample);
9028 perf_output_end(&handle);
9029}
9030
45ac1403
AH
9031/*
9032 * context_switch tracking
9033 */
9034
9035struct perf_switch_event {
9036 struct task_struct *task;
9037 struct task_struct *next_prev;
9038
9039 struct {
9040 struct perf_event_header header;
9041 u32 next_prev_pid;
9042 u32 next_prev_tid;
9043 } event_id;
9044};
9045
9046static int perf_event_switch_match(struct perf_event *event)
9047{
9048 return event->attr.context_switch;
9049}
9050
9051static void perf_event_switch_output(struct perf_event *event, void *data)
9052{
9053 struct perf_switch_event *se = data;
9054 struct perf_output_handle handle;
9055 struct perf_sample_data sample;
9056 int ret;
9057
9058 if (!perf_event_switch_match(event))
9059 return;
9060
9061 /* Only CPU-wide events are allowed to see next/prev pid/tid */
9062 if (event->ctx->task) {
9063 se->event_id.header.type = PERF_RECORD_SWITCH;
9064 se->event_id.header.size = sizeof(se->event_id.header);
9065 } else {
9066 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9067 se->event_id.header.size = sizeof(se->event_id);
9068 se->event_id.next_prev_pid =
9069 perf_event_pid(event, se->next_prev);
9070 se->event_id.next_prev_tid =
9071 perf_event_tid(event, se->next_prev);
9072 }
9073
9074 perf_event_header__init_id(&se->event_id.header, &sample, event);
9075
267fb273 9076 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
45ac1403
AH
9077 if (ret)
9078 return;
9079
9080 if (event->ctx->task)
9081 perf_output_put(&handle, se->event_id.header);
9082 else
9083 perf_output_put(&handle, se->event_id);
9084
9085 perf_event__output_id_sample(event, &handle, &sample);
9086
9087 perf_output_end(&handle);
9088}
9089
9090static void perf_event_switch(struct task_struct *task,
9091 struct task_struct *next_prev, bool sched_in)
9092{
9093 struct perf_switch_event switch_event;
9094
9095 /* N.B. caller checks nr_switch_events != 0 */
9096
9097 switch_event = (struct perf_switch_event){
9098 .task = task,
9099 .next_prev = next_prev,
9100 .event_id = {
9101 .header = {
9102 /* .type */
9103 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9104 /* .size */
9105 },
9106 /* .next_prev_pid */
9107 /* .next_prev_tid */
9108 },
9109 };
9110
3ba9f93b 9111 if (!sched_in && task->on_rq) {
101592b4
AB
9112 switch_event.event_id.header.misc |=
9113 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
3ba9f93b 9114 }
101592b4 9115
3ba9f93b 9116 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
45ac1403
AH
9117}
9118
a78ac325
PZ
9119/*
9120 * IRQ throttle logging
9121 */
9122
cdd6c482 9123static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
9124{
9125 struct perf_output_handle handle;
c980d109 9126 struct perf_sample_data sample;
a78ac325
PZ
9127 int ret;
9128
9129 struct {
9130 struct perf_event_header header;
9131 u64 time;
cca3f454 9132 u64 id;
7f453c24 9133 u64 stream_id;
a78ac325
PZ
9134 } throttle_event = {
9135 .header = {
cdd6c482 9136 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
9137 .misc = 0,
9138 .size = sizeof(throttle_event),
9139 },
34f43927 9140 .time = perf_event_clock(event),
cdd6c482
IM
9141 .id = primary_event_id(event),
9142 .stream_id = event->id,
a78ac325
PZ
9143 };
9144
966ee4d6 9145 if (enable)
cdd6c482 9146 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 9147
c980d109
ACM
9148 perf_event_header__init_id(&throttle_event.header, &sample, event);
9149
267fb273 9150 ret = perf_output_begin(&handle, &sample, event,
a7ac67ea 9151 throttle_event.header.size);
a78ac325
PZ
9152 if (ret)
9153 return;
9154
9155 perf_output_put(&handle, throttle_event);
c980d109 9156 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
9157 perf_output_end(&handle);
9158}
9159
76193a94
SL
9160/*
9161 * ksymbol register/unregister tracking
9162 */
9163
9164struct perf_ksymbol_event {
9165 const char *name;
9166 int name_len;
9167 struct {
9168 struct perf_event_header header;
9169 u64 addr;
9170 u32 len;
9171 u16 ksym_type;
9172 u16 flags;
9173 } event_id;
9174};
9175
9176static int perf_event_ksymbol_match(struct perf_event *event)
9177{
9178 return event->attr.ksymbol;
9179}
9180
9181static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9182{
9183 struct perf_ksymbol_event *ksymbol_event = data;
9184 struct perf_output_handle handle;
9185 struct perf_sample_data sample;
9186 int ret;
9187
9188 if (!perf_event_ksymbol_match(event))
9189 return;
9190
9191 perf_event_header__init_id(&ksymbol_event->event_id.header,
9192 &sample, event);
267fb273 9193 ret = perf_output_begin(&handle, &sample, event,
76193a94
SL
9194 ksymbol_event->event_id.header.size);
9195 if (ret)
9196 return;
9197
9198 perf_output_put(&handle, ksymbol_event->event_id);
9199 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9200 perf_event__output_id_sample(event, &handle, &sample);
9201
9202 perf_output_end(&handle);
9203}
9204
9205void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9206 const char *sym)
9207{
9208 struct perf_ksymbol_event ksymbol_event;
9209 char name[KSYM_NAME_LEN];
9210 u16 flags = 0;
9211 int name_len;
9212
9213 if (!atomic_read(&nr_ksymbol_events))
9214 return;
9215
9216 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9217 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9218 goto err;
9219
c9732f14 9220 strscpy(name, sym, KSYM_NAME_LEN);
76193a94
SL
9221 name_len = strlen(name) + 1;
9222 while (!IS_ALIGNED(name_len, sizeof(u64)))
9223 name[name_len++] = '\0';
9224 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9225
9226 if (unregister)
9227 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9228
9229 ksymbol_event = (struct perf_ksymbol_event){
9230 .name = name,
9231 .name_len = name_len,
9232 .event_id = {
9233 .header = {
9234 .type = PERF_RECORD_KSYMBOL,
9235 .size = sizeof(ksymbol_event.event_id) +
9236 name_len,
9237 },
9238 .addr = addr,
9239 .len = len,
9240 .ksym_type = ksym_type,
9241 .flags = flags,
9242 },
9243 };
9244
9245 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9246 return;
9247err:
9248 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9249}
9250
6ee52e2a
SL
9251/*
9252 * bpf program load/unload tracking
9253 */
9254
9255struct perf_bpf_event {
9256 struct bpf_prog *prog;
9257 struct {
9258 struct perf_event_header header;
9259 u16 type;
9260 u16 flags;
9261 u32 id;
9262 u8 tag[BPF_TAG_SIZE];
9263 } event_id;
9264};
9265
9266static int perf_event_bpf_match(struct perf_event *event)
9267{
9268 return event->attr.bpf_event;
9269}
9270
9271static void perf_event_bpf_output(struct perf_event *event, void *data)
9272{
9273 struct perf_bpf_event *bpf_event = data;
9274 struct perf_output_handle handle;
9275 struct perf_sample_data sample;
9276 int ret;
9277
9278 if (!perf_event_bpf_match(event))
9279 return;
9280
9281 perf_event_header__init_id(&bpf_event->event_id.header,
9282 &sample, event);
eb81a2ed 9283 ret = perf_output_begin(&handle, &sample, event,
6ee52e2a
SL
9284 bpf_event->event_id.header.size);
9285 if (ret)
9286 return;
9287
9288 perf_output_put(&handle, bpf_event->event_id);
9289 perf_event__output_id_sample(event, &handle, &sample);
9290
9291 perf_output_end(&handle);
9292}
9293
9294static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9295 enum perf_bpf_event_type type)
9296{
9297 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
6ee52e2a
SL
9298 int i;
9299
9300 if (prog->aux->func_cnt == 0) {
6ee52e2a
SL
9301 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9302 (u64)(unsigned long)prog->bpf_func,
bfea9a85
JO
9303 prog->jited_len, unregister,
9304 prog->aux->ksym.name);
6ee52e2a
SL
9305 } else {
9306 for (i = 0; i < prog->aux->func_cnt; i++) {
9307 struct bpf_prog *subprog = prog->aux->func[i];
9308
6ee52e2a
SL
9309 perf_event_ksymbol(
9310 PERF_RECORD_KSYMBOL_TYPE_BPF,
9311 (u64)(unsigned long)subprog->bpf_func,
bfea9a85 9312 subprog->jited_len, unregister,
47df8a2f 9313 subprog->aux->ksym.name);
6ee52e2a
SL
9314 }
9315 }
9316}
9317
9318void perf_event_bpf_event(struct bpf_prog *prog,
9319 enum perf_bpf_event_type type,
9320 u16 flags)
9321{
9322 struct perf_bpf_event bpf_event;
9323
6ee52e2a
SL
9324 switch (type) {
9325 case PERF_BPF_EVENT_PROG_LOAD:
9326 case PERF_BPF_EVENT_PROG_UNLOAD:
9327 if (atomic_read(&nr_ksymbol_events))
9328 perf_event_bpf_emit_ksymbols(prog, type);
9329 break;
9330 default:
aecaa3ed 9331 return;
6ee52e2a
SL
9332 }
9333
9334 if (!atomic_read(&nr_bpf_events))
9335 return;
9336
9337 bpf_event = (struct perf_bpf_event){
9338 .prog = prog,
9339 .event_id = {
9340 .header = {
9341 .type = PERF_RECORD_BPF_EVENT,
9342 .size = sizeof(bpf_event.event_id),
9343 },
9344 .type = type,
9345 .flags = flags,
9346 .id = prog->aux->id,
9347 },
9348 };
9349
9350 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9351
9352 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9353 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9354}
9355
e17d43b9
AH
9356struct perf_text_poke_event {
9357 const void *old_bytes;
9358 const void *new_bytes;
9359 size_t pad;
9360 u16 old_len;
9361 u16 new_len;
9362
9363 struct {
9364 struct perf_event_header header;
9365
9366 u64 addr;
9367 } event_id;
9368};
9369
9370static int perf_event_text_poke_match(struct perf_event *event)
9371{
9372 return event->attr.text_poke;
9373}
9374
9375static void perf_event_text_poke_output(struct perf_event *event, void *data)
9376{
9377 struct perf_text_poke_event *text_poke_event = data;
9378 struct perf_output_handle handle;
9379 struct perf_sample_data sample;
9380 u64 padding = 0;
9381 int ret;
9382
9383 if (!perf_event_text_poke_match(event))
9384 return;
9385
9386 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9387
267fb273
PZ
9388 ret = perf_output_begin(&handle, &sample, event,
9389 text_poke_event->event_id.header.size);
e17d43b9
AH
9390 if (ret)
9391 return;
9392
9393 perf_output_put(&handle, text_poke_event->event_id);
9394 perf_output_put(&handle, text_poke_event->old_len);
9395 perf_output_put(&handle, text_poke_event->new_len);
9396
9397 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9398 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9399
9400 if (text_poke_event->pad)
9401 __output_copy(&handle, &padding, text_poke_event->pad);
9402
9403 perf_event__output_id_sample(event, &handle, &sample);
9404
9405 perf_output_end(&handle);
9406}
9407
9408void perf_event_text_poke(const void *addr, const void *old_bytes,
9409 size_t old_len, const void *new_bytes, size_t new_len)
9410{
9411 struct perf_text_poke_event text_poke_event;
9412 size_t tot, pad;
9413
9414 if (!atomic_read(&nr_text_poke_events))
9415 return;
9416
9417 tot = sizeof(text_poke_event.old_len) + old_len;
9418 tot += sizeof(text_poke_event.new_len) + new_len;
9419 pad = ALIGN(tot, sizeof(u64)) - tot;
9420
9421 text_poke_event = (struct perf_text_poke_event){
9422 .old_bytes = old_bytes,
9423 .new_bytes = new_bytes,
9424 .pad = pad,
9425 .old_len = old_len,
9426 .new_len = new_len,
9427 .event_id = {
9428 .header = {
9429 .type = PERF_RECORD_TEXT_POKE,
9430 .misc = PERF_RECORD_MISC_KERNEL,
9431 .size = sizeof(text_poke_event.event_id) + tot + pad,
9432 },
9433 .addr = (unsigned long)addr,
9434 },
9435 };
9436
9437 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9438}
9439
8d4e6c4c
AS
9440void perf_event_itrace_started(struct perf_event *event)
9441{
9442 event->attach_state |= PERF_ATTACH_ITRACE;
9443}
9444
ec0d7729
AS
9445static void perf_log_itrace_start(struct perf_event *event)
9446{
9447 struct perf_output_handle handle;
9448 struct perf_sample_data sample;
9449 struct perf_aux_event {
9450 struct perf_event_header header;
9451 u32 pid;
9452 u32 tid;
9453 } rec;
9454 int ret;
9455
9456 if (event->parent)
9457 event = event->parent;
9458
9459 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8d4e6c4c 9460 event->attach_state & PERF_ATTACH_ITRACE)
ec0d7729
AS
9461 return;
9462
ec0d7729
AS
9463 rec.header.type = PERF_RECORD_ITRACE_START;
9464 rec.header.misc = 0;
9465 rec.header.size = sizeof(rec);
9466 rec.pid = perf_event_pid(event, current);
9467 rec.tid = perf_event_tid(event, current);
9468
9469 perf_event_header__init_id(&rec.header, &sample, event);
267fb273 9470 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
ec0d7729
AS
9471
9472 if (ret)
9473 return;
9474
9475 perf_output_put(&handle, rec);
9476 perf_event__output_id_sample(event, &handle, &sample);
9477
9478 perf_output_end(&handle);
9479}
9480
8b8ff8cc
AH
9481void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9482{
9483 struct perf_output_handle handle;
9484 struct perf_sample_data sample;
9485 struct perf_aux_event {
9486 struct perf_event_header header;
9487 u64 hw_id;
9488 } rec;
9489 int ret;
9490
9491 if (event->parent)
9492 event = event->parent;
9493
9494 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID;
9495 rec.header.misc = 0;
9496 rec.header.size = sizeof(rec);
9497 rec.hw_id = hw_id;
9498
9499 perf_event_header__init_id(&rec.header, &sample, event);
9500 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9501
9502 if (ret)
9503 return;
9504
9505 perf_output_put(&handle, rec);
9506 perf_event__output_id_sample(event, &handle, &sample);
9507
9508 perf_output_end(&handle);
9509}
7d30d480 9510EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
8b8ff8cc 9511
475113d9
JO
9512static int
9513__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 9514{
cdd6c482 9515 struct hw_perf_event *hwc = &event->hw;
79f14641 9516 int ret = 0;
475113d9 9517 u64 seq;
96398826 9518
e050e3f0
SE
9519 seq = __this_cpu_read(perf_throttled_seq);
9520 if (seq != hwc->interrupts_seq) {
9521 hwc->interrupts_seq = seq;
9522 hwc->interrupts = 1;
9523 } else {
9524 hwc->interrupts++;
15def34e
YJ
9525 if (unlikely(throttle &&
9526 hwc->interrupts > max_samples_per_tick)) {
e050e3f0 9527 __this_cpu_inc(perf_throttled_count);
555e0c1e 9528 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
9529 hwc->interrupts = MAX_INTERRUPTS;
9530 perf_log_throttle(event, 0);
a78ac325
PZ
9531 ret = 1;
9532 }
e050e3f0 9533 }
60db5e09 9534
cdd6c482 9535 if (event->attr.freq) {
def0a9b2 9536 u64 now = perf_clock();
abd50713 9537 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 9538
abd50713 9539 hwc->freq_time_stamp = now;
bd2b5b12 9540
abd50713 9541 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 9542 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
9543 }
9544
475113d9
JO
9545 return ret;
9546}
9547
9548int perf_event_account_interrupt(struct perf_event *event)
9549{
9550 return __perf_event_account_interrupt(event, 1);
9551}
9552
030a976e
PZ
9553static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9554{
9555 /*
9556 * Due to interrupt latency (AKA "skid"), we may enter the
9557 * kernel before taking an overflow, even if the PMU is only
9558 * counting user events.
9559 */
9560 if (event->attr.exclude_kernel && !user_mode(regs))
9561 return false;
9562
9563 return true;
9564}
9565
475113d9
JO
9566/*
9567 * Generic event overflow handling, sampling.
9568 */
9569
9570static int __perf_event_overflow(struct perf_event *event,
ca6c2132
PZ
9571 int throttle, struct perf_sample_data *data,
9572 struct pt_regs *regs)
475113d9
JO
9573{
9574 int events = atomic_read(&event->event_limit);
9575 int ret = 0;
9576
9577 /*
9578 * Non-sampling counters might still use the PMI to fold short
9579 * hardware counters, ignore those.
9580 */
9581 if (unlikely(!is_sampling_event(event)))
9582 return 0;
9583
9584 ret = __perf_event_account_interrupt(event, throttle);
cc1582c2 9585
2023b359
PZ
9586 /*
9587 * XXX event_limit might not quite work as expected on inherited
cdd6c482 9588 * events
2023b359
PZ
9589 */
9590
cdd6c482
IM
9591 event->pending_kill = POLL_IN;
9592 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 9593 ret = 1;
cdd6c482 9594 event->pending_kill = POLL_HUP;
5aab90ce 9595 perf_event_disable_inatomic(event);
79f14641
PZ
9596 }
9597
ca6c2132 9598 if (event->attr.sigtrap) {
030a976e
PZ
9599 /*
9600 * The desired behaviour of sigtrap vs invalid samples is a bit
9601 * tricky; on the one hand, one should not loose the SIGTRAP if
9602 * it is the first event, on the other hand, we should also not
9603 * trigger the WARN or override the data address.
9604 */
9605 bool valid_sample = sample_is_allowed(event, regs);
bb88f969
ME
9606 unsigned int pending_id = 1;
9607
9608 if (regs)
9609 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
ca6c2132 9610 if (!event->pending_sigtrap) {
bb88f969 9611 event->pending_sigtrap = pending_id;
ca6c2132 9612 local_inc(&event->ctx->nr_pending);
030a976e 9613 } else if (event->attr.exclude_kernel && valid_sample) {
bb88f969
ME
9614 /*
9615 * Should not be able to return to user space without
9616 * consuming pending_sigtrap; with exceptions:
9617 *
9618 * 1. Where !exclude_kernel, events can overflow again
9619 * in the kernel without returning to user space.
9620 *
9621 * 2. Events that can overflow again before the IRQ-
9622 * work without user space progress (e.g. hrtimer).
9623 * To approximate progress (with false negatives),
9624 * check 32-bit hash of the current IP.
9625 */
9626 WARN_ON_ONCE(event->pending_sigtrap != pending_id);
ca6c2132 9627 }
af169b77
PZ
9628
9629 event->pending_addr = 0;
030a976e 9630 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
af169b77 9631 event->pending_addr = data->addr;
ca6c2132
PZ
9632 irq_work_queue(&event->pending_irq);
9633 }
9634
aa6a5f3c 9635 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 9636
fed66e2c 9637 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17 9638 event->pending_wakeup = 1;
ca6c2132 9639 irq_work_queue(&event->pending_irq);
f506b3dc
PZ
9640 }
9641
79f14641 9642 return ret;
f6c7d5fe
PZ
9643}
9644
a8b0ca17 9645int perf_event_overflow(struct perf_event *event,
ca6c2132
PZ
9646 struct perf_sample_data *data,
9647 struct pt_regs *regs)
850bc73f 9648{
a8b0ca17 9649 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
9650}
9651
15dbf27c 9652/*
cdd6c482 9653 * Generic software event infrastructure
15dbf27c
PZ
9654 */
9655
b28ab83c
PZ
9656struct swevent_htable {
9657 struct swevent_hlist *swevent_hlist;
9658 struct mutex hlist_mutex;
9659 int hlist_refcount;
9660
9661 /* Recursion avoidance in each contexts */
9662 int recursion[PERF_NR_CONTEXTS];
9663};
9664
9665static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9666
7b4b6658 9667/*
cdd6c482
IM
9668 * We directly increment event->count and keep a second value in
9669 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
9670 * is kept in the range [-sample_period, 0] so that we can use the
9671 * sign as trigger.
9672 */
9673
ab573844 9674u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 9675{
cdd6c482 9676 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
9677 u64 period = hwc->last_period;
9678 u64 nr, offset;
9679 s64 old, val;
9680
9681 hwc->last_period = hwc->sample_period;
15dbf27c 9682
28fd85a1
UB
9683 old = local64_read(&hwc->period_left);
9684 do {
9685 val = old;
9686 if (val < 0)
9687 return 0;
15dbf27c 9688
28fd85a1
UB
9689 nr = div64_u64(period + val, period);
9690 offset = nr * period;
9691 val -= offset;
9692 } while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
15dbf27c 9693
7b4b6658 9694 return nr;
15dbf27c
PZ
9695}
9696
0cff784a 9697static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 9698 struct perf_sample_data *data,
5622f295 9699 struct pt_regs *regs)
15dbf27c 9700{
cdd6c482 9701 struct hw_perf_event *hwc = &event->hw;
850bc73f 9702 int throttle = 0;
15dbf27c 9703
0cff784a
PZ
9704 if (!overflow)
9705 overflow = perf_swevent_set_period(event);
15dbf27c 9706
7b4b6658
PZ
9707 if (hwc->interrupts == MAX_INTERRUPTS)
9708 return;
15dbf27c 9709
7b4b6658 9710 for (; overflow; overflow--) {
a8b0ca17 9711 if (__perf_event_overflow(event, throttle,
5622f295 9712 data, regs)) {
7b4b6658
PZ
9713 /*
9714 * We inhibit the overflow from happening when
9715 * hwc->interrupts == MAX_INTERRUPTS.
9716 */
9717 break;
9718 }
cf450a73 9719 throttle = 1;
7b4b6658 9720 }
15dbf27c
PZ
9721}
9722
a4eaf7f1 9723static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 9724 struct perf_sample_data *data,
5622f295 9725 struct pt_regs *regs)
7b4b6658 9726{
cdd6c482 9727 struct hw_perf_event *hwc = &event->hw;
d6d020e9 9728
e7850595 9729 local64_add(nr, &event->count);
d6d020e9 9730
0cff784a
PZ
9731 if (!regs)
9732 return;
9733
6c7e550f 9734 if (!is_sampling_event(event))
7b4b6658 9735 return;
d6d020e9 9736
5d81e5cf
AV
9737 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9738 data->period = nr;
9739 return perf_swevent_overflow(event, 1, data, regs);
9740 } else
9741 data->period = event->hw.last_period;
9742
0cff784a 9743 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 9744 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 9745
e7850595 9746 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 9747 return;
df1a132b 9748
a8b0ca17 9749 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
9750}
9751
f5ffe02e
FW
9752static int perf_exclude_event(struct perf_event *event,
9753 struct pt_regs *regs)
9754{
a4eaf7f1 9755 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 9756 return 1;
a4eaf7f1 9757
f5ffe02e
FW
9758 if (regs) {
9759 if (event->attr.exclude_user && user_mode(regs))
9760 return 1;
9761
9762 if (event->attr.exclude_kernel && !user_mode(regs))
9763 return 1;
9764 }
9765
9766 return 0;
9767}
9768
cdd6c482 9769static int perf_swevent_match(struct perf_event *event,
1c432d89 9770 enum perf_type_id type,
6fb2915d
LZ
9771 u32 event_id,
9772 struct perf_sample_data *data,
9773 struct pt_regs *regs)
15dbf27c 9774{
cdd6c482 9775 if (event->attr.type != type)
a21ca2ca 9776 return 0;
f5ffe02e 9777
cdd6c482 9778 if (event->attr.config != event_id)
15dbf27c
PZ
9779 return 0;
9780
f5ffe02e
FW
9781 if (perf_exclude_event(event, regs))
9782 return 0;
15dbf27c
PZ
9783
9784 return 1;
9785}
9786
76e1d904
FW
9787static inline u64 swevent_hash(u64 type, u32 event_id)
9788{
9789 u64 val = event_id | (type << 32);
9790
9791 return hash_64(val, SWEVENT_HLIST_BITS);
9792}
9793
49f135ed
FW
9794static inline struct hlist_head *
9795__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 9796{
49f135ed
FW
9797 u64 hash = swevent_hash(type, event_id);
9798
9799 return &hlist->heads[hash];
9800}
76e1d904 9801
49f135ed
FW
9802/* For the read side: events when they trigger */
9803static inline struct hlist_head *
b28ab83c 9804find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
9805{
9806 struct swevent_hlist *hlist;
76e1d904 9807
b28ab83c 9808 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
9809 if (!hlist)
9810 return NULL;
9811
49f135ed
FW
9812 return __find_swevent_head(hlist, type, event_id);
9813}
9814
9815/* For the event head insertion and removal in the hlist */
9816static inline struct hlist_head *
b28ab83c 9817find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
9818{
9819 struct swevent_hlist *hlist;
9820 u32 event_id = event->attr.config;
9821 u64 type = event->attr.type;
9822
9823 /*
9824 * Event scheduling is always serialized against hlist allocation
9825 * and release. Which makes the protected version suitable here.
9826 * The context lock guarantees that.
9827 */
b28ab83c 9828 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
9829 lockdep_is_held(&event->ctx->lock));
9830 if (!hlist)
9831 return NULL;
9832
9833 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
9834}
9835
9836static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 9837 u64 nr,
76e1d904
FW
9838 struct perf_sample_data *data,
9839 struct pt_regs *regs)
15dbf27c 9840{
4a32fea9 9841 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 9842 struct perf_event *event;
76e1d904 9843 struct hlist_head *head;
15dbf27c 9844
76e1d904 9845 rcu_read_lock();
b28ab83c 9846 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
9847 if (!head)
9848 goto end;
9849
b67bfe0d 9850 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 9851 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 9852 perf_swevent_event(event, nr, data, regs);
15dbf27c 9853 }
76e1d904
FW
9854end:
9855 rcu_read_unlock();
15dbf27c
PZ
9856}
9857
86038c5e
PZI
9858DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9859
4ed7c92d 9860int perf_swevent_get_recursion_context(void)
96f6d444 9861{
4a32fea9 9862 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 9863
b28ab83c 9864 return get_recursion_context(swhash->recursion);
96f6d444 9865}
645e8cc0 9866EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 9867
98b5c2c6 9868void perf_swevent_put_recursion_context(int rctx)
15dbf27c 9869{
4a32fea9 9870 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 9871
b28ab83c 9872 put_recursion_context(swhash->recursion, rctx);
ce71b9df 9873}
15dbf27c 9874
86038c5e 9875void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 9876{
a4234bfc 9877 struct perf_sample_data data;
4ed7c92d 9878
86038c5e 9879 if (WARN_ON_ONCE(!regs))
4ed7c92d 9880 return;
a4234bfc 9881
fd0d000b 9882 perf_sample_data_init(&data, addr, 0);
a8b0ca17 9883 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
9884}
9885
9886void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9887{
9888 int rctx;
9889
9890 preempt_disable_notrace();
9891 rctx = perf_swevent_get_recursion_context();
9892 if (unlikely(rctx < 0))
9893 goto fail;
9894
9895 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
9896
9897 perf_swevent_put_recursion_context(rctx);
86038c5e 9898fail:
1c024eca 9899 preempt_enable_notrace();
b8e83514
PZ
9900}
9901
cdd6c482 9902static void perf_swevent_read(struct perf_event *event)
15dbf27c 9903{
15dbf27c
PZ
9904}
9905
a4eaf7f1 9906static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 9907{
4a32fea9 9908 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 9909 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
9910 struct hlist_head *head;
9911
6c7e550f 9912 if (is_sampling_event(event)) {
7b4b6658 9913 hwc->last_period = hwc->sample_period;
cdd6c482 9914 perf_swevent_set_period(event);
7b4b6658 9915 }
76e1d904 9916
a4eaf7f1
PZ
9917 hwc->state = !(flags & PERF_EF_START);
9918
b28ab83c 9919 head = find_swevent_head(swhash, event);
12ca6ad2 9920 if (WARN_ON_ONCE(!head))
76e1d904
FW
9921 return -EINVAL;
9922
9923 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 9924 perf_event_update_userpage(event);
76e1d904 9925
15dbf27c
PZ
9926 return 0;
9927}
9928
a4eaf7f1 9929static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 9930{
76e1d904 9931 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
9932}
9933
a4eaf7f1 9934static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 9935{
a4eaf7f1 9936 event->hw.state = 0;
d6d020e9 9937}
aa9c4c0f 9938
a4eaf7f1 9939static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 9940{
a4eaf7f1 9941 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
9942}
9943
49f135ed
FW
9944/* Deref the hlist from the update side */
9945static inline struct swevent_hlist *
b28ab83c 9946swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 9947{
b28ab83c
PZ
9948 return rcu_dereference_protected(swhash->swevent_hlist,
9949 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
9950}
9951
b28ab83c 9952static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 9953{
b28ab83c 9954 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 9955
49f135ed 9956 if (!hlist)
76e1d904
FW
9957 return;
9958
70691d4a 9959 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 9960 kfree_rcu(hlist, rcu_head);
76e1d904
FW
9961}
9962
3b364d7b 9963static void swevent_hlist_put_cpu(int cpu)
76e1d904 9964{
b28ab83c 9965 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 9966
b28ab83c 9967 mutex_lock(&swhash->hlist_mutex);
76e1d904 9968
b28ab83c
PZ
9969 if (!--swhash->hlist_refcount)
9970 swevent_hlist_release(swhash);
76e1d904 9971
b28ab83c 9972 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
9973}
9974
3b364d7b 9975static void swevent_hlist_put(void)
76e1d904
FW
9976{
9977 int cpu;
9978
76e1d904 9979 for_each_possible_cpu(cpu)
3b364d7b 9980 swevent_hlist_put_cpu(cpu);
76e1d904
FW
9981}
9982
3b364d7b 9983static int swevent_hlist_get_cpu(int cpu)
76e1d904 9984{
b28ab83c 9985 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
9986 int err = 0;
9987
b28ab83c 9988 mutex_lock(&swhash->hlist_mutex);
a63fbed7
TG
9989 if (!swevent_hlist_deref(swhash) &&
9990 cpumask_test_cpu(cpu, perf_online_mask)) {
76e1d904
FW
9991 struct swevent_hlist *hlist;
9992
9993 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9994 if (!hlist) {
9995 err = -ENOMEM;
9996 goto exit;
9997 }
b28ab83c 9998 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 9999 }
b28ab83c 10000 swhash->hlist_refcount++;
9ed6060d 10001exit:
b28ab83c 10002 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
10003
10004 return err;
10005}
10006
3b364d7b 10007static int swevent_hlist_get(void)
76e1d904 10008{
3b364d7b 10009 int err, cpu, failed_cpu;
76e1d904 10010
a63fbed7 10011 mutex_lock(&pmus_lock);
76e1d904 10012 for_each_possible_cpu(cpu) {
3b364d7b 10013 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
10014 if (err) {
10015 failed_cpu = cpu;
10016 goto fail;
10017 }
10018 }
a63fbed7 10019 mutex_unlock(&pmus_lock);
76e1d904 10020 return 0;
9ed6060d 10021fail:
76e1d904
FW
10022 for_each_possible_cpu(cpu) {
10023 if (cpu == failed_cpu)
10024 break;
3b364d7b 10025 swevent_hlist_put_cpu(cpu);
76e1d904 10026 }
a63fbed7 10027 mutex_unlock(&pmus_lock);
76e1d904
FW
10028 return err;
10029}
10030
c5905afb 10031struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 10032
b0a873eb
PZ
10033static void sw_perf_event_destroy(struct perf_event *event)
10034{
10035 u64 event_id = event->attr.config;
95476b64 10036
b0a873eb
PZ
10037 WARN_ON(event->parent);
10038
c5905afb 10039 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 10040 swevent_hlist_put();
b0a873eb
PZ
10041}
10042
0d6d062c
RB
10043static struct pmu perf_cpu_clock; /* fwd declaration */
10044static struct pmu perf_task_clock;
10045
b0a873eb
PZ
10046static int perf_swevent_init(struct perf_event *event)
10047{
8176cced 10048 u64 event_id = event->attr.config;
b0a873eb
PZ
10049
10050 if (event->attr.type != PERF_TYPE_SOFTWARE)
10051 return -ENOENT;
10052
2481c5fa
SE
10053 /*
10054 * no branch sampling for software events
10055 */
10056 if (has_branch_stack(event))
10057 return -EOPNOTSUPP;
10058
b0a873eb
PZ
10059 switch (event_id) {
10060 case PERF_COUNT_SW_CPU_CLOCK:
0d6d062c
RB
10061 event->attr.type = perf_cpu_clock.type;
10062 return -ENOENT;
b0a873eb 10063 case PERF_COUNT_SW_TASK_CLOCK:
0d6d062c 10064 event->attr.type = perf_task_clock.type;
b0a873eb
PZ
10065 return -ENOENT;
10066
10067 default:
10068 break;
10069 }
10070
ce677831 10071 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
10072 return -ENOENT;
10073
10074 if (!event->parent) {
10075 int err;
10076
3b364d7b 10077 err = swevent_hlist_get();
b0a873eb
PZ
10078 if (err)
10079 return err;
10080
c5905afb 10081 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
10082 event->destroy = sw_perf_event_destroy;
10083 }
10084
10085 return 0;
10086}
10087
10088static struct pmu perf_swevent = {
89a1e187 10089 .task_ctx_nr = perf_sw_context,
95476b64 10090
34f43927
PZ
10091 .capabilities = PERF_PMU_CAP_NO_NMI,
10092
b0a873eb 10093 .event_init = perf_swevent_init,
a4eaf7f1
PZ
10094 .add = perf_swevent_add,
10095 .del = perf_swevent_del,
10096 .start = perf_swevent_start,
10097 .stop = perf_swevent_stop,
1c024eca 10098 .read = perf_swevent_read,
1c024eca
PZ
10099};
10100
b0a873eb
PZ
10101#ifdef CONFIG_EVENT_TRACING
10102
571f97f7
RB
10103static void tp_perf_event_destroy(struct perf_event *event)
10104{
10105 perf_trace_destroy(event);
10106}
10107
10108static int perf_tp_event_init(struct perf_event *event)
10109{
10110 int err;
10111
10112 if (event->attr.type != PERF_TYPE_TRACEPOINT)
10113 return -ENOENT;
10114
10115 /*
10116 * no branch sampling for tracepoint events
10117 */
10118 if (has_branch_stack(event))
10119 return -EOPNOTSUPP;
10120
10121 err = perf_trace_init(event);
10122 if (err)
10123 return err;
10124
10125 event->destroy = tp_perf_event_destroy;
10126
10127 return 0;
10128}
10129
10130static struct pmu perf_tracepoint = {
10131 .task_ctx_nr = perf_sw_context,
10132
10133 .event_init = perf_tp_event_init,
10134 .add = perf_trace_add,
10135 .del = perf_trace_del,
10136 .start = perf_swevent_start,
10137 .stop = perf_swevent_stop,
10138 .read = perf_swevent_read,
10139};
10140
1c024eca
PZ
10141static int perf_tp_filter_match(struct perf_event *event,
10142 struct perf_sample_data *data)
10143{
7e3f977e 10144 void *record = data->raw->frag.data;
1c024eca 10145
b71b437e
PZ
10146 /* only top level events have filters set */
10147 if (event->parent)
10148 event = event->parent;
10149
1c024eca
PZ
10150 if (likely(!event->filter) || filter_match_preds(event->filter, record))
10151 return 1;
10152 return 0;
10153}
10154
10155static int perf_tp_event_match(struct perf_event *event,
10156 struct perf_sample_data *data,
10157 struct pt_regs *regs)
10158{
a0f7d0f7
FW
10159 if (event->hw.state & PERF_HES_STOPPED)
10160 return 0;
580d607c 10161 /*
9fd2e48b 10162 * If exclude_kernel, only trace user-space tracepoints (uprobes)
580d607c 10163 */
9fd2e48b 10164 if (event->attr.exclude_kernel && !user_mode(regs))
1c024eca
PZ
10165 return 0;
10166
10167 if (!perf_tp_filter_match(event, data))
10168 return 0;
10169
10170 return 1;
10171}
10172
85b67bcb
AS
10173void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10174 struct trace_event_call *call, u64 count,
10175 struct pt_regs *regs, struct hlist_head *head,
10176 struct task_struct *task)
10177{
e87c6bc3 10178 if (bpf_prog_array_valid(call)) {
85b67bcb 10179 *(struct pt_regs **)raw_data = regs;
e87c6bc3 10180 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
85b67bcb
AS
10181 perf_swevent_put_recursion_context(rctx);
10182 return;
10183 }
10184 }
10185 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8fd0fbbe 10186 rctx, task);
85b67bcb
AS
10187}
10188EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10189
571f97f7
RB
10190static void __perf_tp_event_target_task(u64 count, void *record,
10191 struct pt_regs *regs,
10192 struct perf_sample_data *data,
10193 struct perf_event *event)
10194{
10195 struct trace_entry *entry = record;
10196
10197 if (event->attr.config != entry->type)
10198 return;
10199 /* Cannot deliver synchronous signal to other task. */
10200 if (event->attr.sigtrap)
10201 return;
10202 if (perf_tp_event_match(event, data, regs))
10203 perf_swevent_event(event, count, data, regs);
10204}
10205
10206static void perf_tp_event_target_task(u64 count, void *record,
10207 struct pt_regs *regs,
10208 struct perf_sample_data *data,
10209 struct perf_event_context *ctx)
10210{
10211 unsigned int cpu = smp_processor_id();
10212 struct pmu *pmu = &perf_tracepoint;
10213 struct perf_event *event, *sibling;
10214
10215 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10216 __perf_tp_event_target_task(count, record, regs, data, event);
10217 for_each_sibling_event(sibling, event)
10218 __perf_tp_event_target_task(count, record, regs, data, sibling);
10219 }
10220
10221 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10222 __perf_tp_event_target_task(count, record, regs, data, event);
10223 for_each_sibling_event(sibling, event)
10224 __perf_tp_event_target_task(count, record, regs, data, sibling);
10225 }
10226}
10227
1e1dcd93 10228void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff 10229 struct pt_regs *regs, struct hlist_head *head, int rctx,
8fd0fbbe 10230 struct task_struct *task)
95476b64
FW
10231{
10232 struct perf_sample_data data;
8fd0fbbe 10233 struct perf_event *event;
1c024eca 10234
95476b64 10235 struct perf_raw_record raw = {
7e3f977e
DB
10236 .frag = {
10237 .size = entry_size,
10238 .data = record,
10239 },
95476b64
FW
10240 };
10241
1e1dcd93 10242 perf_sample_data_init(&data, 0, 0);
0a9081cf 10243 perf_sample_save_raw_data(&data, &raw);
95476b64 10244
1e1dcd93
AS
10245 perf_trace_buf_update(record, event_type);
10246
8fd0fbbe 10247 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1d1bfe30 10248 if (perf_tp_event_match(event, &data, regs)) {
a8b0ca17 10249 perf_swevent_event(event, count, &data, regs);
1d1bfe30
YJ
10250
10251 /*
10252 * Here use the same on-stack perf_sample_data,
10253 * some members in data are event-specific and
10254 * need to be re-computed for different sweveents.
10255 * Re-initialize data->sample_flags safely to avoid
10256 * the problem that next event skips preparing data
10257 * because data->sample_flags is set.
10258 */
10259 perf_sample_data_init(&data, 0, 0);
10260 perf_sample_save_raw_data(&data, &raw);
10261 }
4f41c013 10262 }
ecc55f84 10263
e6dab5ff
AV
10264 /*
10265 * If we got specified a target task, also iterate its context and
10266 * deliver this event there too.
10267 */
10268 if (task && task != current) {
10269 struct perf_event_context *ctx;
e6dab5ff
AV
10270
10271 rcu_read_lock();
bd275681 10272 ctx = rcu_dereference(task->perf_event_ctxp);
e6dab5ff
AV
10273 if (!ctx)
10274 goto unlock;
10275
571f97f7
RB
10276 raw_spin_lock(&ctx->lock);
10277 perf_tp_event_target_task(count, record, regs, &data, ctx);
10278 raw_spin_unlock(&ctx->lock);
e6dab5ff
AV
10279unlock:
10280 rcu_read_unlock();
10281 }
10282
ecc55f84 10283 perf_swevent_put_recursion_context(rctx);
95476b64
FW
10284}
10285EXPORT_SYMBOL_GPL(perf_tp_event);
10286
33ea4b24 10287#if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
e12f03d7
SL
10288/*
10289 * Flags in config, used by dynamic PMU kprobe and uprobe
10290 * The flags should match following PMU_FORMAT_ATTR().
10291 *
10292 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10293 * if not set, create kprobe/uprobe
a6ca88b2
SL
10294 *
10295 * The following values specify a reference counter (or semaphore in the
10296 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10297 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10298 *
10299 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
10300 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
e12f03d7
SL
10301 */
10302enum perf_probe_config {
10303 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
a6ca88b2
SL
10304 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10305 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
e12f03d7
SL
10306};
10307
10308PMU_FORMAT_ATTR(retprobe, "config:0");
a6ca88b2 10309#endif
e12f03d7 10310
a6ca88b2
SL
10311#ifdef CONFIG_KPROBE_EVENTS
10312static struct attribute *kprobe_attrs[] = {
e12f03d7
SL
10313 &format_attr_retprobe.attr,
10314 NULL,
10315};
10316
a6ca88b2 10317static struct attribute_group kprobe_format_group = {
e12f03d7 10318 .name = "format",
a6ca88b2 10319 .attrs = kprobe_attrs,
e12f03d7
SL
10320};
10321
a6ca88b2
SL
10322static const struct attribute_group *kprobe_attr_groups[] = {
10323 &kprobe_format_group,
e12f03d7
SL
10324 NULL,
10325};
10326
10327static int perf_kprobe_event_init(struct perf_event *event);
10328static struct pmu perf_kprobe = {
10329 .task_ctx_nr = perf_sw_context,
10330 .event_init = perf_kprobe_event_init,
10331 .add = perf_trace_add,
10332 .del = perf_trace_del,
10333 .start = perf_swevent_start,
10334 .stop = perf_swevent_stop,
10335 .read = perf_swevent_read,
a6ca88b2 10336 .attr_groups = kprobe_attr_groups,
e12f03d7
SL
10337};
10338
10339static int perf_kprobe_event_init(struct perf_event *event)
10340{
10341 int err;
10342 bool is_retprobe;
10343
10344 if (event->attr.type != perf_kprobe.type)
10345 return -ENOENT;
32e6e967 10346
c9e0924e 10347 if (!perfmon_capable())
32e6e967
SL
10348 return -EACCES;
10349
e12f03d7
SL
10350 /*
10351 * no branch sampling for probe events
10352 */
10353 if (has_branch_stack(event))
10354 return -EOPNOTSUPP;
10355
10356 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10357 err = perf_kprobe_init(event, is_retprobe);
10358 if (err)
10359 return err;
10360
10361 event->destroy = perf_kprobe_destroy;
10362
10363 return 0;
10364}
10365#endif /* CONFIG_KPROBE_EVENTS */
10366
33ea4b24 10367#ifdef CONFIG_UPROBE_EVENTS
a6ca88b2
SL
10368PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10369
10370static struct attribute *uprobe_attrs[] = {
10371 &format_attr_retprobe.attr,
10372 &format_attr_ref_ctr_offset.attr,
10373 NULL,
10374};
10375
10376static struct attribute_group uprobe_format_group = {
10377 .name = "format",
10378 .attrs = uprobe_attrs,
10379};
10380
10381static const struct attribute_group *uprobe_attr_groups[] = {
10382 &uprobe_format_group,
10383 NULL,
10384};
10385
33ea4b24
SL
10386static int perf_uprobe_event_init(struct perf_event *event);
10387static struct pmu perf_uprobe = {
10388 .task_ctx_nr = perf_sw_context,
10389 .event_init = perf_uprobe_event_init,
10390 .add = perf_trace_add,
10391 .del = perf_trace_del,
10392 .start = perf_swevent_start,
10393 .stop = perf_swevent_stop,
10394 .read = perf_swevent_read,
a6ca88b2 10395 .attr_groups = uprobe_attr_groups,
33ea4b24
SL
10396};
10397
10398static int perf_uprobe_event_init(struct perf_event *event)
10399{
10400 int err;
a6ca88b2 10401 unsigned long ref_ctr_offset;
33ea4b24
SL
10402 bool is_retprobe;
10403
10404 if (event->attr.type != perf_uprobe.type)
10405 return -ENOENT;
32e6e967 10406
c9e0924e 10407 if (!perfmon_capable())
32e6e967
SL
10408 return -EACCES;
10409
33ea4b24
SL
10410 /*
10411 * no branch sampling for probe events
10412 */
10413 if (has_branch_stack(event))
10414 return -EOPNOTSUPP;
10415
10416 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
a6ca88b2
SL
10417 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10418 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
33ea4b24
SL
10419 if (err)
10420 return err;
10421
10422 event->destroy = perf_uprobe_destroy;
10423
10424 return 0;
10425}
10426#endif /* CONFIG_UPROBE_EVENTS */
10427
b0a873eb
PZ
10428static inline void perf_tp_register(void)
10429{
2e80a82a 10430 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e12f03d7
SL
10431#ifdef CONFIG_KPROBE_EVENTS
10432 perf_pmu_register(&perf_kprobe, "kprobe", -1);
10433#endif
33ea4b24
SL
10434#ifdef CONFIG_UPROBE_EVENTS
10435 perf_pmu_register(&perf_uprobe, "uprobe", -1);
10436#endif
e077df4f 10437}
6fb2915d 10438
6fb2915d
LZ
10439static void perf_event_free_filter(struct perf_event *event)
10440{
10441 ftrace_profile_free_filter(event);
10442}
10443
aa6a5f3c
AS
10444#ifdef CONFIG_BPF_SYSCALL
10445static void bpf_overflow_handler(struct perf_event *event,
10446 struct perf_sample_data *data,
10447 struct pt_regs *regs)
10448{
10449 struct bpf_perf_event_data_kern ctx = {
10450 .data = data,
7d9285e8 10451 .event = event,
aa6a5f3c 10452 };
594286b7 10453 struct bpf_prog *prog;
aa6a5f3c
AS
10454 int ret = 0;
10455
c895f6f7 10456 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
aa6a5f3c
AS
10457 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10458 goto out;
10459 rcu_read_lock();
594286b7 10460 prog = READ_ONCE(event->prog);
16817ad7 10461 if (prog) {
0eed2822 10462 perf_prepare_sample(data, event, regs);
594286b7 10463 ret = bpf_prog_run(prog, &ctx);
16817ad7 10464 }
aa6a5f3c
AS
10465 rcu_read_unlock();
10466out:
10467 __this_cpu_dec(bpf_prog_active);
aa6a5f3c
AS
10468 if (!ret)
10469 return;
10470
10471 event->orig_overflow_handler(event, data, regs);
10472}
10473
82e6b1ee
AN
10474static int perf_event_set_bpf_handler(struct perf_event *event,
10475 struct bpf_prog *prog,
10476 u64 bpf_cookie)
aa6a5f3c 10477{
aa6a5f3c
AS
10478 if (event->overflow_handler_context)
10479 /* hw breakpoint or kernel counter */
10480 return -EINVAL;
10481
10482 if (event->prog)
10483 return -EEXIST;
10484
652c1b17
AN
10485 if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10486 return -EINVAL;
aa6a5f3c 10487
5d99cb2c
SL
10488 if (event->attr.precise_ip &&
10489 prog->call_get_stack &&
16817ad7 10490 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
5d99cb2c
SL
10491 event->attr.exclude_callchain_kernel ||
10492 event->attr.exclude_callchain_user)) {
10493 /*
10494 * On perf_event with precise_ip, calling bpf_get_stack()
10495 * may trigger unwinder warnings and occasional crashes.
10496 * bpf_get_[stack|stackid] works around this issue by using
10497 * callchain attached to perf_sample_data. If the
10498 * perf_event does not full (kernel and user) callchain
10499 * attached to perf_sample_data, do not allow attaching BPF
10500 * program that calls bpf_get_[stack|stackid].
10501 */
5d99cb2c
SL
10502 return -EPROTO;
10503 }
10504
aa6a5f3c 10505 event->prog = prog;
82e6b1ee 10506 event->bpf_cookie = bpf_cookie;
aa6a5f3c
AS
10507 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10508 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10509 return 0;
10510}
10511
10512static void perf_event_free_bpf_handler(struct perf_event *event)
10513{
10514 struct bpf_prog *prog = event->prog;
10515
10516 if (!prog)
10517 return;
10518
10519 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10520 event->prog = NULL;
10521 bpf_prog_put(prog);
10522}
10523#else
82e6b1ee
AN
10524static int perf_event_set_bpf_handler(struct perf_event *event,
10525 struct bpf_prog *prog,
10526 u64 bpf_cookie)
aa6a5f3c
AS
10527{
10528 return -EOPNOTSUPP;
10529}
10530static void perf_event_free_bpf_handler(struct perf_event *event)
10531{
10532}
10533#endif
10534
e12f03d7
SL
10535/*
10536 * returns true if the event is a tracepoint, or a kprobe/upprobe created
10537 * with perf_event_open()
10538 */
10539static inline bool perf_event_is_tracing(struct perf_event *event)
10540{
10541 if (event->pmu == &perf_tracepoint)
10542 return true;
10543#ifdef CONFIG_KPROBE_EVENTS
10544 if (event->pmu == &perf_kprobe)
10545 return true;
33ea4b24
SL
10546#endif
10547#ifdef CONFIG_UPROBE_EVENTS
10548 if (event->pmu == &perf_uprobe)
10549 return true;
e12f03d7
SL
10550#endif
10551 return false;
10552}
10553
82e6b1ee
AN
10554int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10555 u64 bpf_cookie)
2541517c 10556{
64ad7556 10557 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
2541517c 10558
e12f03d7 10559 if (!perf_event_is_tracing(event))
82e6b1ee 10560 return perf_event_set_bpf_handler(event, prog, bpf_cookie);
2541517c 10561
64ad7556
DK
10562 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10563 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
98b5c2c6 10564 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
cf5f5cea 10565 is_syscall_tp = is_syscall_trace_event(event->tp_event);
64ad7556 10566 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
98b5c2c6 10567 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
10568 return -EINVAL;
10569
64ad7556 10570 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
cf5f5cea 10571 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
652c1b17 10572 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
2541517c 10573 return -EINVAL;
2541517c 10574
66c84731 10575 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe)
64ad7556
DK
10576 /* only uprobe programs are allowed to be sleepable */
10577 return -EINVAL;
10578
9802d865 10579 /* Kprobe override only works for kprobes, not uprobes. */
64ad7556 10580 if (prog->kprobe_override && !is_kprobe)
9802d865 10581 return -EINVAL;
9802d865 10582
cf5f5cea 10583 if (is_tracepoint || is_syscall_tp) {
32bbe007
AS
10584 int off = trace_event_get_offsets(event->tp_event);
10585
652c1b17 10586 if (prog->aux->max_ctx_offset > off)
32bbe007 10587 return -EACCES;
32bbe007 10588 }
2541517c 10589
82e6b1ee 10590 return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
2541517c
AS
10591}
10592
b89fbfbb 10593void perf_event_free_bpf_prog(struct perf_event *event)
2541517c 10594{
e12f03d7 10595 if (!perf_event_is_tracing(event)) {
0b4c6841 10596 perf_event_free_bpf_handler(event);
2541517c 10597 return;
2541517c 10598 }
e87c6bc3 10599 perf_event_detach_bpf_prog(event);
2541517c
AS
10600}
10601
e077df4f 10602#else
6fb2915d 10603
b0a873eb 10604static inline void perf_tp_register(void)
e077df4f 10605{
e077df4f 10606}
6fb2915d 10607
6fb2915d
LZ
10608static void perf_event_free_filter(struct perf_event *event)
10609{
10610}
10611
82e6b1ee
AN
10612int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10613 u64 bpf_cookie)
2541517c
AS
10614{
10615 return -ENOENT;
10616}
10617
b89fbfbb 10618void perf_event_free_bpf_prog(struct perf_event *event)
2541517c
AS
10619{
10620}
07b139c8 10621#endif /* CONFIG_EVENT_TRACING */
e077df4f 10622
24f1e32c 10623#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 10624void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 10625{
f5ffe02e
FW
10626 struct perf_sample_data sample;
10627 struct pt_regs *regs = data;
10628
fd0d000b 10629 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 10630
a4eaf7f1 10631 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 10632 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
10633}
10634#endif
10635
375637bc
AS
10636/*
10637 * Allocate a new address filter
10638 */
10639static struct perf_addr_filter *
10640perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10641{
10642 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10643 struct perf_addr_filter *filter;
10644
10645 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10646 if (!filter)
10647 return NULL;
10648
10649 INIT_LIST_HEAD(&filter->entry);
10650 list_add_tail(&filter->entry, filters);
10651
10652 return filter;
10653}
10654
10655static void free_filters_list(struct list_head *filters)
10656{
10657 struct perf_addr_filter *filter, *iter;
10658
10659 list_for_each_entry_safe(filter, iter, filters, entry) {
9511bce9 10660 path_put(&filter->path);
375637bc
AS
10661 list_del(&filter->entry);
10662 kfree(filter);
10663 }
10664}
10665
10666/*
10667 * Free existing address filters and optionally install new ones
10668 */
10669static void perf_addr_filters_splice(struct perf_event *event,
10670 struct list_head *head)
10671{
10672 unsigned long flags;
10673 LIST_HEAD(list);
10674
10675 if (!has_addr_filter(event))
10676 return;
10677
10678 /* don't bother with children, they don't have their own filters */
10679 if (event->parent)
10680 return;
10681
10682 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10683
10684 list_splice_init(&event->addr_filters.list, &list);
10685 if (head)
10686 list_splice(head, &event->addr_filters.list);
10687
10688 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10689
10690 free_filters_list(&list);
10691}
10692
10693/*
10694 * Scan through mm's vmas and see if one of them matches the
10695 * @filter; if so, adjust filter's address range.
c1e8d7c6 10696 * Called with mm::mmap_lock down for reading.
375637bc 10697 */
c60f83b8
AS
10698static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10699 struct mm_struct *mm,
10700 struct perf_addr_filter_range *fr)
375637bc
AS
10701{
10702 struct vm_area_struct *vma;
fcb72a58 10703 VMA_ITERATOR(vmi, mm, 0);
375637bc 10704
fcb72a58 10705 for_each_vma(vmi, vma) {
c60f83b8 10706 if (!vma->vm_file)
375637bc
AS
10707 continue;
10708
c60f83b8
AS
10709 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10710 return;
375637bc 10711 }
375637bc
AS
10712}
10713
10714/*
10715 * Update event's address range filters based on the
10716 * task's existing mappings, if any.
10717 */
10718static void perf_event_addr_filters_apply(struct perf_event *event)
10719{
10720 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10721 struct task_struct *task = READ_ONCE(event->ctx->task);
10722 struct perf_addr_filter *filter;
10723 struct mm_struct *mm = NULL;
10724 unsigned int count = 0;
10725 unsigned long flags;
10726
10727 /*
10728 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10729 * will stop on the parent's child_mutex that our caller is also holding
10730 */
10731 if (task == TASK_TOMBSTONE)
10732 return;
10733
52a44f83 10734 if (ifh->nr_file_filters) {
b89a05b2 10735 mm = get_task_mm(task);
52a44f83
AS
10736 if (!mm)
10737 goto restart;
375637bc 10738
d8ed45c5 10739 mmap_read_lock(mm);
52a44f83 10740 }
375637bc
AS
10741
10742 raw_spin_lock_irqsave(&ifh->lock, flags);
10743 list_for_each_entry(filter, &ifh->list, entry) {
52a44f83
AS
10744 if (filter->path.dentry) {
10745 /*
10746 * Adjust base offset if the filter is associated to a
10747 * binary that needs to be mapped:
10748 */
10749 event->addr_filter_ranges[count].start = 0;
10750 event->addr_filter_ranges[count].size = 0;
375637bc 10751
c60f83b8 10752 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
52a44f83
AS
10753 } else {
10754 event->addr_filter_ranges[count].start = filter->offset;
10755 event->addr_filter_ranges[count].size = filter->size;
10756 }
375637bc
AS
10757
10758 count++;
10759 }
10760
10761 event->addr_filters_gen++;
10762 raw_spin_unlock_irqrestore(&ifh->lock, flags);
10763
52a44f83 10764 if (ifh->nr_file_filters) {
d8ed45c5 10765 mmap_read_unlock(mm);
375637bc 10766
52a44f83
AS
10767 mmput(mm);
10768 }
375637bc
AS
10769
10770restart:
767ae086 10771 perf_event_stop(event, 1);
375637bc
AS
10772}
10773
10774/*
10775 * Address range filtering: limiting the data to certain
10776 * instruction address ranges. Filters are ioctl()ed to us from
10777 * userspace as ascii strings.
10778 *
10779 * Filter string format:
10780 *
10781 * ACTION RANGE_SPEC
10782 * where ACTION is one of the
10783 * * "filter": limit the trace to this region
10784 * * "start": start tracing from this address
10785 * * "stop": stop tracing at this address/region;
10786 * RANGE_SPEC is
10787 * * for kernel addresses: <start address>[/<size>]
10788 * * for object files: <start address>[/<size>]@</path/to/object/file>
10789 *
6ed70cf3
AS
10790 * if <size> is not specified or is zero, the range is treated as a single
10791 * address; not valid for ACTION=="filter".
375637bc
AS
10792 */
10793enum {
e96271f3 10794 IF_ACT_NONE = -1,
375637bc
AS
10795 IF_ACT_FILTER,
10796 IF_ACT_START,
10797 IF_ACT_STOP,
10798 IF_SRC_FILE,
10799 IF_SRC_KERNEL,
10800 IF_SRC_FILEADDR,
10801 IF_SRC_KERNELADDR,
10802};
10803
10804enum {
10805 IF_STATE_ACTION = 0,
10806 IF_STATE_SOURCE,
10807 IF_STATE_END,
10808};
10809
10810static const match_table_t if_tokens = {
10811 { IF_ACT_FILTER, "filter" },
10812 { IF_ACT_START, "start" },
10813 { IF_ACT_STOP, "stop" },
10814 { IF_SRC_FILE, "%u/%u@%s" },
10815 { IF_SRC_KERNEL, "%u/%u" },
10816 { IF_SRC_FILEADDR, "%u@%s" },
10817 { IF_SRC_KERNELADDR, "%u" },
e96271f3 10818 { IF_ACT_NONE, NULL },
375637bc
AS
10819};
10820
10821/*
10822 * Address filter string parser
10823 */
10824static int
10825perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10826 struct list_head *filters)
10827{
10828 struct perf_addr_filter *filter = NULL;
10829 char *start, *orig, *filename = NULL;
375637bc
AS
10830 substring_t args[MAX_OPT_ARGS];
10831 int state = IF_STATE_ACTION, token;
10832 unsigned int kernel = 0;
10833 int ret = -EINVAL;
10834
10835 orig = fstr = kstrdup(fstr, GFP_KERNEL);
10836 if (!fstr)
10837 return -ENOMEM;
10838
10839 while ((start = strsep(&fstr, " ,\n")) != NULL) {
6ed70cf3
AS
10840 static const enum perf_addr_filter_action_t actions[] = {
10841 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10842 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
10843 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
10844 };
375637bc
AS
10845 ret = -EINVAL;
10846
10847 if (!*start)
10848 continue;
10849
10850 /* filter definition begins */
10851 if (state == IF_STATE_ACTION) {
10852 filter = perf_addr_filter_new(event, filters);
10853 if (!filter)
10854 goto fail;
10855 }
10856
10857 token = match_token(start, if_tokens, args);
10858 switch (token) {
10859 case IF_ACT_FILTER:
10860 case IF_ACT_START:
375637bc
AS
10861 case IF_ACT_STOP:
10862 if (state != IF_STATE_ACTION)
10863 goto fail;
10864
6ed70cf3 10865 filter->action = actions[token];
375637bc
AS
10866 state = IF_STATE_SOURCE;
10867 break;
10868
10869 case IF_SRC_KERNELADDR:
10870 case IF_SRC_KERNEL:
10871 kernel = 1;
df561f66 10872 fallthrough;
375637bc
AS
10873
10874 case IF_SRC_FILEADDR:
10875 case IF_SRC_FILE:
10876 if (state != IF_STATE_SOURCE)
10877 goto fail;
10878
375637bc
AS
10879 *args[0].to = 0;
10880 ret = kstrtoul(args[0].from, 0, &filter->offset);
10881 if (ret)
10882 goto fail;
10883
6ed70cf3 10884 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
375637bc
AS
10885 *args[1].to = 0;
10886 ret = kstrtoul(args[1].from, 0, &filter->size);
10887 if (ret)
10888 goto fail;
10889 }
10890
4059ffd0 10891 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
6ed70cf3 10892 int fpos = token == IF_SRC_FILE ? 2 : 1;
4059ffd0 10893
7bdb157c 10894 kfree(filename);
4059ffd0 10895 filename = match_strdup(&args[fpos]);
375637bc
AS
10896 if (!filename) {
10897 ret = -ENOMEM;
10898 goto fail;
10899 }
10900 }
10901
10902 state = IF_STATE_END;
10903 break;
10904
10905 default:
10906 goto fail;
10907 }
10908
10909 /*
10910 * Filter definition is fully parsed, validate and install it.
10911 * Make sure that it doesn't contradict itself or the event's
10912 * attribute.
10913 */
10914 if (state == IF_STATE_END) {
9ccbfbb1 10915 ret = -EINVAL;
375637bc 10916
6ed70cf3
AS
10917 /*
10918 * ACTION "filter" must have a non-zero length region
10919 * specified.
10920 */
10921 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10922 !filter->size)
10923 goto fail;
10924
375637bc
AS
10925 if (!kernel) {
10926 if (!filename)
10927 goto fail;
10928
6ce77bfd
AS
10929 /*
10930 * For now, we only support file-based filters
10931 * in per-task events; doing so for CPU-wide
10932 * events requires additional context switching
10933 * trickery, since same object code will be
10934 * mapped at different virtual addresses in
10935 * different processes.
10936 */
10937 ret = -EOPNOTSUPP;
10938 if (!event->ctx->task)
7bdb157c 10939 goto fail;
6ce77bfd 10940
375637bc 10941 /* look up the path and grab its inode */
9511bce9
SL
10942 ret = kern_path(filename, LOOKUP_FOLLOW,
10943 &filter->path);
375637bc 10944 if (ret)
7bdb157c 10945 goto fail;
375637bc
AS
10946
10947 ret = -EINVAL;
9511bce9
SL
10948 if (!filter->path.dentry ||
10949 !S_ISREG(d_inode(filter->path.dentry)
10950 ->i_mode))
375637bc 10951 goto fail;
6ce77bfd
AS
10952
10953 event->addr_filters.nr_file_filters++;
375637bc
AS
10954 }
10955
10956 /* ready to consume more filters */
d680ff24
AH
10957 kfree(filename);
10958 filename = NULL;
375637bc
AS
10959 state = IF_STATE_ACTION;
10960 filter = NULL;
d680ff24 10961 kernel = 0;
375637bc
AS
10962 }
10963 }
10964
10965 if (state != IF_STATE_ACTION)
10966 goto fail;
10967
7bdb157c 10968 kfree(filename);
375637bc
AS
10969 kfree(orig);
10970
10971 return 0;
10972
375637bc 10973fail:
7bdb157c 10974 kfree(filename);
375637bc
AS
10975 free_filters_list(filters);
10976 kfree(orig);
10977
10978 return ret;
10979}
10980
10981static int
10982perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10983{
10984 LIST_HEAD(filters);
10985 int ret;
10986
10987 /*
10988 * Since this is called in perf_ioctl() path, we're already holding
10989 * ctx::mutex.
10990 */
10991 lockdep_assert_held(&event->ctx->mutex);
10992
10993 if (WARN_ON_ONCE(event->parent))
10994 return -EINVAL;
10995
375637bc
AS
10996 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10997 if (ret)
6ce77bfd 10998 goto fail_clear_files;
375637bc
AS
10999
11000 ret = event->pmu->addr_filters_validate(&filters);
6ce77bfd
AS
11001 if (ret)
11002 goto fail_free_filters;
375637bc
AS
11003
11004 /* remove existing filters, if any */
11005 perf_addr_filters_splice(event, &filters);
11006
11007 /* install new filters */
11008 perf_event_for_each_child(event, perf_event_addr_filters_apply);
11009
6ce77bfd
AS
11010 return ret;
11011
11012fail_free_filters:
11013 free_filters_list(&filters);
11014
11015fail_clear_files:
11016 event->addr_filters.nr_file_filters = 0;
11017
375637bc
AS
11018 return ret;
11019}
11020
c796bbbe
AS
11021static int perf_event_set_filter(struct perf_event *event, void __user *arg)
11022{
c796bbbe 11023 int ret = -EINVAL;
e12f03d7 11024 char *filter_str;
c796bbbe
AS
11025
11026 filter_str = strndup_user(arg, PAGE_SIZE);
11027 if (IS_ERR(filter_str))
11028 return PTR_ERR(filter_str);
11029
e12f03d7
SL
11030#ifdef CONFIG_EVENT_TRACING
11031 if (perf_event_is_tracing(event)) {
11032 struct perf_event_context *ctx = event->ctx;
11033
11034 /*
11035 * Beware, here be dragons!!
11036 *
11037 * the tracepoint muck will deadlock against ctx->mutex, but
11038 * the tracepoint stuff does not actually need it. So
11039 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11040 * already have a reference on ctx.
11041 *
11042 * This can result in event getting moved to a different ctx,
11043 * but that does not affect the tracepoint state.
11044 */
11045 mutex_unlock(&ctx->mutex);
11046 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11047 mutex_lock(&ctx->mutex);
11048 } else
11049#endif
11050 if (has_addr_filter(event))
375637bc 11051 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
11052
11053 kfree(filter_str);
11054 return ret;
11055}
11056
b0a873eb
PZ
11057/*
11058 * hrtimer based swevent callback
11059 */
f29ac756 11060
b0a873eb 11061static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 11062{
b0a873eb
PZ
11063 enum hrtimer_restart ret = HRTIMER_RESTART;
11064 struct perf_sample_data data;
11065 struct pt_regs *regs;
11066 struct perf_event *event;
11067 u64 period;
f29ac756 11068
b0a873eb 11069 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
11070
11071 if (event->state != PERF_EVENT_STATE_ACTIVE)
11072 return HRTIMER_NORESTART;
11073
b0a873eb 11074 event->pmu->read(event);
f344011c 11075
fd0d000b 11076 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
11077 regs = get_irq_regs();
11078
11079 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 11080 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 11081 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
11082 ret = HRTIMER_NORESTART;
11083 }
24f1e32c 11084
b0a873eb
PZ
11085 period = max_t(u64, 10000, event->hw.sample_period);
11086 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 11087
b0a873eb 11088 return ret;
f29ac756
PZ
11089}
11090
b0a873eb 11091static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 11092{
b0a873eb 11093 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
11094 s64 period;
11095
11096 if (!is_sampling_event(event))
11097 return;
f5ffe02e 11098
5d508e82
FBH
11099 period = local64_read(&hwc->period_left);
11100 if (period) {
11101 if (period < 0)
11102 period = 10000;
fa407f35 11103
5d508e82
FBH
11104 local64_set(&hwc->period_left, 0);
11105 } else {
11106 period = max_t(u64, 10000, hwc->sample_period);
11107 }
3497d206 11108 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
30f9028b 11109 HRTIMER_MODE_REL_PINNED_HARD);
24f1e32c 11110}
b0a873eb
PZ
11111
11112static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 11113{
b0a873eb
PZ
11114 struct hw_perf_event *hwc = &event->hw;
11115
6c7e550f 11116 if (is_sampling_event(event)) {
b0a873eb 11117 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 11118 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
11119
11120 hrtimer_cancel(&hwc->hrtimer);
11121 }
24f1e32c
FW
11122}
11123
ba3dd36c
PZ
11124static void perf_swevent_init_hrtimer(struct perf_event *event)
11125{
11126 struct hw_perf_event *hwc = &event->hw;
11127
11128 if (!is_sampling_event(event))
11129 return;
11130
30f9028b 11131 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
ba3dd36c
PZ
11132 hwc->hrtimer.function = perf_swevent_hrtimer;
11133
11134 /*
11135 * Since hrtimers have a fixed rate, we can do a static freq->period
11136 * mapping and avoid the whole period adjust feedback stuff.
11137 */
11138 if (event->attr.freq) {
11139 long freq = event->attr.sample_freq;
11140
11141 event->attr.sample_period = NSEC_PER_SEC / freq;
11142 hwc->sample_period = event->attr.sample_period;
11143 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 11144 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
11145 event->attr.freq = 0;
11146 }
11147}
11148
b0a873eb
PZ
11149/*
11150 * Software event: cpu wall time clock
11151 */
11152
11153static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 11154{
b0a873eb
PZ
11155 s64 prev;
11156 u64 now;
11157
a4eaf7f1 11158 now = local_clock();
b0a873eb
PZ
11159 prev = local64_xchg(&event->hw.prev_count, now);
11160 local64_add(now - prev, &event->count);
24f1e32c 11161}
24f1e32c 11162
a4eaf7f1 11163static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 11164{
a4eaf7f1 11165 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 11166 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
11167}
11168
a4eaf7f1 11169static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 11170{
b0a873eb
PZ
11171 perf_swevent_cancel_hrtimer(event);
11172 cpu_clock_event_update(event);
11173}
f29ac756 11174
a4eaf7f1
PZ
11175static int cpu_clock_event_add(struct perf_event *event, int flags)
11176{
11177 if (flags & PERF_EF_START)
11178 cpu_clock_event_start(event, flags);
6a694a60 11179 perf_event_update_userpage(event);
a4eaf7f1
PZ
11180
11181 return 0;
11182}
11183
11184static void cpu_clock_event_del(struct perf_event *event, int flags)
11185{
11186 cpu_clock_event_stop(event, flags);
11187}
11188
b0a873eb
PZ
11189static void cpu_clock_event_read(struct perf_event *event)
11190{
11191 cpu_clock_event_update(event);
11192}
f344011c 11193
b0a873eb
PZ
11194static int cpu_clock_event_init(struct perf_event *event)
11195{
0d6d062c 11196 if (event->attr.type != perf_cpu_clock.type)
b0a873eb
PZ
11197 return -ENOENT;
11198
11199 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11200 return -ENOENT;
11201
2481c5fa
SE
11202 /*
11203 * no branch sampling for software events
11204 */
11205 if (has_branch_stack(event))
11206 return -EOPNOTSUPP;
11207
ba3dd36c
PZ
11208 perf_swevent_init_hrtimer(event);
11209
b0a873eb 11210 return 0;
f29ac756
PZ
11211}
11212
b0a873eb 11213static struct pmu perf_cpu_clock = {
89a1e187
PZ
11214 .task_ctx_nr = perf_sw_context,
11215
34f43927 11216 .capabilities = PERF_PMU_CAP_NO_NMI,
0d6d062c 11217 .dev = PMU_NULL_DEV,
34f43927 11218
b0a873eb 11219 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
11220 .add = cpu_clock_event_add,
11221 .del = cpu_clock_event_del,
11222 .start = cpu_clock_event_start,
11223 .stop = cpu_clock_event_stop,
b0a873eb
PZ
11224 .read = cpu_clock_event_read,
11225};
11226
11227/*
11228 * Software event: task time clock
11229 */
11230
11231static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 11232{
b0a873eb
PZ
11233 u64 prev;
11234 s64 delta;
5c92d124 11235
b0a873eb
PZ
11236 prev = local64_xchg(&event->hw.prev_count, now);
11237 delta = now - prev;
11238 local64_add(delta, &event->count);
11239}
5c92d124 11240
a4eaf7f1 11241static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 11242{
a4eaf7f1 11243 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 11244 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
11245}
11246
a4eaf7f1 11247static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
11248{
11249 perf_swevent_cancel_hrtimer(event);
11250 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
11251}
11252
11253static int task_clock_event_add(struct perf_event *event, int flags)
11254{
11255 if (flags & PERF_EF_START)
11256 task_clock_event_start(event, flags);
6a694a60 11257 perf_event_update_userpage(event);
b0a873eb 11258
a4eaf7f1
PZ
11259 return 0;
11260}
11261
11262static void task_clock_event_del(struct perf_event *event, int flags)
11263{
11264 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
11265}
11266
11267static void task_clock_event_read(struct perf_event *event)
11268{
768a06e2
PZ
11269 u64 now = perf_clock();
11270 u64 delta = now - event->ctx->timestamp;
11271 u64 time = event->ctx->time + delta;
b0a873eb
PZ
11272
11273 task_clock_event_update(event, time);
11274}
11275
11276static int task_clock_event_init(struct perf_event *event)
6fb2915d 11277{
0d6d062c 11278 if (event->attr.type != perf_task_clock.type)
b0a873eb
PZ
11279 return -ENOENT;
11280
11281 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11282 return -ENOENT;
11283
2481c5fa
SE
11284 /*
11285 * no branch sampling for software events
11286 */
11287 if (has_branch_stack(event))
11288 return -EOPNOTSUPP;
11289
ba3dd36c
PZ
11290 perf_swevent_init_hrtimer(event);
11291
b0a873eb 11292 return 0;
6fb2915d
LZ
11293}
11294
b0a873eb 11295static struct pmu perf_task_clock = {
89a1e187
PZ
11296 .task_ctx_nr = perf_sw_context,
11297
34f43927 11298 .capabilities = PERF_PMU_CAP_NO_NMI,
0d6d062c 11299 .dev = PMU_NULL_DEV,
34f43927 11300
b0a873eb 11301 .event_init = task_clock_event_init,
a4eaf7f1
PZ
11302 .add = task_clock_event_add,
11303 .del = task_clock_event_del,
11304 .start = task_clock_event_start,
11305 .stop = task_clock_event_stop,
b0a873eb
PZ
11306 .read = task_clock_event_read,
11307};
6fb2915d 11308
ad5133b7 11309static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 11310{
e077df4f 11311}
6fb2915d 11312
fbbe0701
SB
11313static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11314{
11315}
11316
ad5133b7 11317static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 11318{
ad5133b7 11319 return 0;
6fb2915d
LZ
11320}
11321
81ec3f3c
JO
11322static int perf_event_nop_int(struct perf_event *event, u64 value)
11323{
11324 return 0;
11325}
11326
18ab2cd3 11327static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
11328
11329static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 11330{
fbbe0701
SB
11331 __this_cpu_write(nop_txn_flags, flags);
11332
11333 if (flags & ~PERF_PMU_TXN_ADD)
11334 return;
11335
ad5133b7 11336 perf_pmu_disable(pmu);
6fb2915d
LZ
11337}
11338
ad5133b7
PZ
11339static int perf_pmu_commit_txn(struct pmu *pmu)
11340{
fbbe0701
SB
11341 unsigned int flags = __this_cpu_read(nop_txn_flags);
11342
11343 __this_cpu_write(nop_txn_flags, 0);
11344
11345 if (flags & ~PERF_PMU_TXN_ADD)
11346 return 0;
11347
ad5133b7
PZ
11348 perf_pmu_enable(pmu);
11349 return 0;
11350}
e077df4f 11351
ad5133b7 11352static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 11353{
fbbe0701
SB
11354 unsigned int flags = __this_cpu_read(nop_txn_flags);
11355
11356 __this_cpu_write(nop_txn_flags, 0);
11357
11358 if (flags & ~PERF_PMU_TXN_ADD)
11359 return;
11360
ad5133b7 11361 perf_pmu_enable(pmu);
24f1e32c
FW
11362}
11363
35edc2a5
PZ
11364static int perf_event_idx_default(struct perf_event *event)
11365{
c719f560 11366 return 0;
35edc2a5
PZ
11367}
11368
51676957
PZ
11369static void free_pmu_context(struct pmu *pmu)
11370{
bd275681 11371 free_percpu(pmu->cpu_pmu_context);
24f1e32c 11372}
6e855cd4 11373
8dc85d54 11374/*
6e855cd4 11375 * Let userspace know that this PMU supports address range filtering:
8dc85d54 11376 */
6e855cd4
AS
11377static ssize_t nr_addr_filters_show(struct device *dev,
11378 struct device_attribute *attr,
11379 char *page)
24f1e32c 11380{
6e855cd4
AS
11381 struct pmu *pmu = dev_get_drvdata(dev);
11382
dca6344d 11383 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
6e855cd4
AS
11384}
11385DEVICE_ATTR_RO(nr_addr_filters);
11386
2e80a82a 11387static struct idr pmu_idr;
d6d020e9 11388
abe43400
PZ
11389static ssize_t
11390type_show(struct device *dev, struct device_attribute *attr, char *page)
11391{
11392 struct pmu *pmu = dev_get_drvdata(dev);
11393
dca6344d 11394 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
abe43400 11395}
90826ca7 11396static DEVICE_ATTR_RO(type);
abe43400 11397
62b85639
SE
11398static ssize_t
11399perf_event_mux_interval_ms_show(struct device *dev,
11400 struct device_attribute *attr,
11401 char *page)
11402{
11403 struct pmu *pmu = dev_get_drvdata(dev);
11404
dca6344d 11405 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
62b85639
SE
11406}
11407
272325c4
PZ
11408static DEFINE_MUTEX(mux_interval_mutex);
11409
62b85639
SE
11410static ssize_t
11411perf_event_mux_interval_ms_store(struct device *dev,
11412 struct device_attribute *attr,
11413 const char *buf, size_t count)
11414{
11415 struct pmu *pmu = dev_get_drvdata(dev);
11416 int timer, cpu, ret;
11417
11418 ret = kstrtoint(buf, 0, &timer);
11419 if (ret)
11420 return ret;
11421
11422 if (timer < 1)
11423 return -EINVAL;
11424
11425 /* same value, noting to do */
11426 if (timer == pmu->hrtimer_interval_ms)
11427 return count;
11428
272325c4 11429 mutex_lock(&mux_interval_mutex);
62b85639
SE
11430 pmu->hrtimer_interval_ms = timer;
11431
11432 /* update all cpuctx for this PMU */
a63fbed7 11433 cpus_read_lock();
272325c4 11434 for_each_online_cpu(cpu) {
bd275681
PZ
11435 struct perf_cpu_pmu_context *cpc;
11436 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11437 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
62b85639 11438
1af6239d 11439 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
62b85639 11440 }
a63fbed7 11441 cpus_read_unlock();
272325c4 11442 mutex_unlock(&mux_interval_mutex);
62b85639
SE
11443
11444 return count;
11445}
90826ca7 11446static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 11447
90826ca7
GKH
11448static struct attribute *pmu_dev_attrs[] = {
11449 &dev_attr_type.attr,
11450 &dev_attr_perf_event_mux_interval_ms.attr,
652ffc21
GK
11451 &dev_attr_nr_addr_filters.attr,
11452 NULL,
11453};
11454
11455static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
11456{
11457 struct device *dev = kobj_to_dev(kobj);
11458 struct pmu *pmu = dev_get_drvdata(dev);
11459
388a1fb7 11460 if (n == 2 && !pmu->nr_addr_filters)
652ffc21
GK
11461 return 0;
11462
11463 return a->mode;
652ffc21
GK
11464}
11465
11466static struct attribute_group pmu_dev_attr_group = {
11467 .is_visible = pmu_dev_is_visible,
11468 .attrs = pmu_dev_attrs,
11469};
11470
11471static const struct attribute_group *pmu_dev_groups[] = {
11472 &pmu_dev_attr_group,
90826ca7 11473 NULL,
abe43400
PZ
11474};
11475
11476static int pmu_bus_running;
11477static struct bus_type pmu_bus = {
11478 .name = "event_source",
90826ca7 11479 .dev_groups = pmu_dev_groups,
abe43400
PZ
11480};
11481
11482static void pmu_dev_release(struct device *dev)
11483{
11484 kfree(dev);
11485}
11486
11487static int pmu_dev_alloc(struct pmu *pmu)
11488{
11489 int ret = -ENOMEM;
11490
11491 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11492 if (!pmu->dev)
11493 goto out;
11494
0c9d42ed 11495 pmu->dev->groups = pmu->attr_groups;
abe43400 11496 device_initialize(pmu->dev);
abe43400
PZ
11497
11498 dev_set_drvdata(pmu->dev, pmu);
11499 pmu->dev->bus = &pmu_bus;
143f83e2 11500 pmu->dev->parent = pmu->parent;
abe43400 11501 pmu->dev->release = pmu_dev_release;
e8d7a90c
CZ
11502
11503 ret = dev_set_name(pmu->dev, "%s", pmu->name);
11504 if (ret)
11505 goto free_dev;
11506
abe43400
PZ
11507 ret = device_add(pmu->dev);
11508 if (ret)
11509 goto free_dev;
11510
652ffc21 11511 if (pmu->attr_update) {
f3a3a825 11512 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
652ffc21
GK
11513 if (ret)
11514 goto del_dev;
11515 }
f3a3a825 11516
abe43400
PZ
11517out:
11518 return ret;
11519
6e855cd4
AS
11520del_dev:
11521 device_del(pmu->dev);
11522
abe43400
PZ
11523free_dev:
11524 put_device(pmu->dev);
11525 goto out;
11526}
11527
547e9fd7 11528static struct lock_class_key cpuctx_mutex;
facc4307 11529static struct lock_class_key cpuctx_lock;
547e9fd7 11530
03d8e80b 11531int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 11532{
66d258c5 11533 int cpu, ret, max = PERF_TYPE_MAX;
24f1e32c 11534
b0a873eb 11535 mutex_lock(&pmus_lock);
33696fc0
PZ
11536 ret = -ENOMEM;
11537 pmu->pmu_disable_count = alloc_percpu(int);
11538 if (!pmu->pmu_disable_count)
11539 goto unlock;
f29ac756 11540
2e80a82a 11541 pmu->type = -1;
0d6d062c
RB
11542 if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11543 ret = -EINVAL;
11544 goto free_pdc;
11545 }
11546
2e80a82a
PZ
11547 pmu->name = name;
11548
0d6d062c
RB
11549 if (type >= 0)
11550 max = type;
66d258c5 11551
0d6d062c
RB
11552 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11553 if (ret < 0)
11554 goto free_pdc;
66d258c5 11555
0d6d062c 11556 WARN_ON(type >= 0 && ret != type);
66d258c5 11557
0d6d062c 11558 type = ret;
2e80a82a
PZ
11559 pmu->type = type;
11560
0d6d062c 11561 if (pmu_bus_running && !pmu->dev) {
abe43400
PZ
11562 ret = pmu_dev_alloc(pmu);
11563 if (ret)
11564 goto free_idr;
11565 }
11566
c4814202 11567 ret = -ENOMEM;
bd275681
PZ
11568 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11569 if (!pmu->cpu_pmu_context)
abe43400 11570 goto free_dev;
f344011c 11571
108b02cf 11572 for_each_possible_cpu(cpu) {
bd275681 11573 struct perf_cpu_pmu_context *cpc;
9e630205 11574
bd275681
PZ
11575 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11576 __perf_init_event_pmu_context(&cpc->epc, pmu);
11577 __perf_mux_hrtimer_init(cpc, cpu);
108b02cf 11578 }
76e1d904 11579
ad5133b7
PZ
11580 if (!pmu->start_txn) {
11581 if (pmu->pmu_enable) {
11582 /*
11583 * If we have pmu_enable/pmu_disable calls, install
11584 * transaction stubs that use that to try and batch
11585 * hardware accesses.
11586 */
11587 pmu->start_txn = perf_pmu_start_txn;
11588 pmu->commit_txn = perf_pmu_commit_txn;
11589 pmu->cancel_txn = perf_pmu_cancel_txn;
11590 } else {
fbbe0701 11591 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
11592 pmu->commit_txn = perf_pmu_nop_int;
11593 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 11594 }
5c92d124 11595 }
15dbf27c 11596
ad5133b7
PZ
11597 if (!pmu->pmu_enable) {
11598 pmu->pmu_enable = perf_pmu_nop_void;
11599 pmu->pmu_disable = perf_pmu_nop_void;
11600 }
11601
81ec3f3c
JO
11602 if (!pmu->check_period)
11603 pmu->check_period = perf_event_nop_int;
11604
35edc2a5
PZ
11605 if (!pmu->event_idx)
11606 pmu->event_idx = perf_event_idx_default;
11607
0d6d062c 11608 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 11609 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
11610 ret = 0;
11611unlock:
b0a873eb
PZ
11612 mutex_unlock(&pmus_lock);
11613
33696fc0 11614 return ret;
108b02cf 11615
abe43400 11616free_dev:
0d6d062c
RB
11617 if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11618 device_del(pmu->dev);
11619 put_device(pmu->dev);
11620 }
abe43400 11621
2e80a82a 11622free_idr:
0d6d062c 11623 idr_remove(&pmu_idr, pmu->type);
2e80a82a 11624
108b02cf
PZ
11625free_pdc:
11626 free_percpu(pmu->pmu_disable_count);
11627 goto unlock;
f29ac756 11628}
c464c76e 11629EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 11630
b0a873eb 11631void perf_pmu_unregister(struct pmu *pmu)
5c92d124 11632{
b0a873eb
PZ
11633 mutex_lock(&pmus_lock);
11634 list_del_rcu(&pmu->entry);
5c92d124 11635
0475f9ea 11636 /*
cde8e884
PZ
11637 * We dereference the pmu list under both SRCU and regular RCU, so
11638 * synchronize against both of those.
0475f9ea 11639 */
b0a873eb 11640 synchronize_srcu(&pmus_srcu);
cde8e884 11641 synchronize_rcu();
d6d020e9 11642
33696fc0 11643 free_percpu(pmu->pmu_disable_count);
0d6d062c
RB
11644 idr_remove(&pmu_idr, pmu->type);
11645 if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
0933840a
JO
11646 if (pmu->nr_addr_filters)
11647 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11648 device_del(pmu->dev);
11649 put_device(pmu->dev);
11650 }
51676957 11651 free_pmu_context(pmu);
a9f97721 11652 mutex_unlock(&pmus_lock);
b0a873eb 11653}
c464c76e 11654EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 11655
e321d02d
KL
11656static inline bool has_extended_regs(struct perf_event *event)
11657{
11658 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11659 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11660}
11661
cc34b98b
MR
11662static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11663{
ccd41c86 11664 struct perf_event_context *ctx = NULL;
cc34b98b
MR
11665 int ret;
11666
11667 if (!try_module_get(pmu->module))
11668 return -ENODEV;
ccd41c86 11669
0c7296ca
PZ
11670 /*
11671 * A number of pmu->event_init() methods iterate the sibling_list to,
11672 * for example, validate if the group fits on the PMU. Therefore,
11673 * if this is a sibling event, acquire the ctx->mutex to protect
11674 * the sibling_list.
11675 */
11676 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
8b10c5e2
PZ
11677 /*
11678 * This ctx->mutex can nest when we're called through
11679 * inheritance. See the perf_event_ctx_lock_nested() comment.
11680 */
11681 ctx = perf_event_ctx_lock_nested(event->group_leader,
11682 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
11683 BUG_ON(!ctx);
11684 }
11685
cc34b98b
MR
11686 event->pmu = pmu;
11687 ret = pmu->event_init(event);
ccd41c86
PZ
11688
11689 if (ctx)
11690 perf_event_ctx_unlock(event->group_leader, ctx);
11691
cc6795ae 11692 if (!ret) {
e321d02d
KL
11693 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11694 has_extended_regs(event))
11695 ret = -EOPNOTSUPP;
11696
cc6795ae 11697 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
e321d02d 11698 event_has_any_exclude_flag(event))
cc6795ae 11699 ret = -EINVAL;
e321d02d
KL
11700
11701 if (ret && event->destroy)
11702 event->destroy(event);
cc6795ae
AM
11703 }
11704
cc34b98b
MR
11705 if (ret)
11706 module_put(pmu->module);
11707
11708 return ret;
11709}
11710
18ab2cd3 11711static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb 11712{
55bcf6ef 11713 bool extended_type = false;
66d258c5 11714 int idx, type, ret;
85c617ab 11715 struct pmu *pmu;
b0a873eb
PZ
11716
11717 idx = srcu_read_lock(&pmus_srcu);
2e80a82a 11718
0d6d062c
RB
11719 /*
11720 * Save original type before calling pmu->event_init() since certain
11721 * pmus overwrites event->attr.type to forward event to another pmu.
11722 */
11723 event->orig_type = event->attr.type;
11724
40999312
KL
11725 /* Try parent's PMU first: */
11726 if (event->parent && event->parent->pmu) {
11727 pmu = event->parent->pmu;
11728 ret = perf_try_init_event(pmu, event);
11729 if (!ret)
11730 goto unlock;
11731 }
11732
66d258c5
PZ
11733 /*
11734 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11735 * are often aliases for PERF_TYPE_RAW.
11736 */
11737 type = event->attr.type;
55bcf6ef
KL
11738 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11739 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11740 if (!type) {
11741 type = PERF_TYPE_RAW;
11742 } else {
11743 extended_type = true;
11744 event->attr.config &= PERF_HW_EVENT_MASK;
11745 }
11746 }
66d258c5
PZ
11747
11748again:
2e80a82a 11749 rcu_read_lock();
66d258c5 11750 pmu = idr_find(&pmu_idr, type);
2e80a82a 11751 rcu_read_unlock();
940c5b29 11752 if (pmu) {
55bcf6ef
KL
11753 if (event->attr.type != type && type != PERF_TYPE_RAW &&
11754 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11755 goto fail;
11756
cc34b98b 11757 ret = perf_try_init_event(pmu, event);
55bcf6ef 11758 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
66d258c5
PZ
11759 type = event->attr.type;
11760 goto again;
11761 }
11762
940c5b29
LM
11763 if (ret)
11764 pmu = ERR_PTR(ret);
66d258c5 11765
2e80a82a 11766 goto unlock;
940c5b29 11767 }
2e80a82a 11768
9f0bff11 11769 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
cc34b98b 11770 ret = perf_try_init_event(pmu, event);
b0a873eb 11771 if (!ret)
e5f4d339 11772 goto unlock;
76e1d904 11773
b0a873eb
PZ
11774 if (ret != -ENOENT) {
11775 pmu = ERR_PTR(ret);
e5f4d339 11776 goto unlock;
f344011c 11777 }
5c92d124 11778 }
55bcf6ef 11779fail:
e5f4d339
PZ
11780 pmu = ERR_PTR(-ENOENT);
11781unlock:
b0a873eb 11782 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 11783
4aeb0b42 11784 return pmu;
5c92d124
IM
11785}
11786
f2fb6bef
KL
11787static void attach_sb_event(struct perf_event *event)
11788{
11789 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11790
11791 raw_spin_lock(&pel->lock);
11792 list_add_rcu(&event->sb_list, &pel->list);
11793 raw_spin_unlock(&pel->lock);
11794}
11795
aab5b71e
PZ
11796/*
11797 * We keep a list of all !task (and therefore per-cpu) events
11798 * that need to receive side-band records.
11799 *
11800 * This avoids having to scan all the various PMU per-cpu contexts
11801 * looking for them.
11802 */
f2fb6bef
KL
11803static void account_pmu_sb_event(struct perf_event *event)
11804{
a4f144eb 11805 if (is_sb_event(event))
f2fb6bef
KL
11806 attach_sb_event(event);
11807}
11808
555e0c1e
FW
11809/* Freq events need the tick to stay alive (see perf_event_task_tick). */
11810static void account_freq_event_nohz(void)
11811{
11812#ifdef CONFIG_NO_HZ_FULL
11813 /* Lock so we don't race with concurrent unaccount */
11814 spin_lock(&nr_freq_lock);
11815 if (atomic_inc_return(&nr_freq_events) == 1)
11816 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11817 spin_unlock(&nr_freq_lock);
11818#endif
11819}
11820
11821static void account_freq_event(void)
11822{
11823 if (tick_nohz_full_enabled())
11824 account_freq_event_nohz();
11825 else
11826 atomic_inc(&nr_freq_events);
11827}
11828
11829
766d6c07
FW
11830static void account_event(struct perf_event *event)
11831{
25432ae9
PZ
11832 bool inc = false;
11833
4beb31f3
FW
11834 if (event->parent)
11835 return;
11836
a5398bff 11837 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
25432ae9 11838 inc = true;
766d6c07
FW
11839 if (event->attr.mmap || event->attr.mmap_data)
11840 atomic_inc(&nr_mmap_events);
88a16a13
JO
11841 if (event->attr.build_id)
11842 atomic_inc(&nr_build_id_events);
766d6c07
FW
11843 if (event->attr.comm)
11844 atomic_inc(&nr_comm_events);
e4222673
HB
11845 if (event->attr.namespaces)
11846 atomic_inc(&nr_namespaces_events);
96aaab68
NK
11847 if (event->attr.cgroup)
11848 atomic_inc(&nr_cgroup_events);
766d6c07
FW
11849 if (event->attr.task)
11850 atomic_inc(&nr_task_events);
555e0c1e
FW
11851 if (event->attr.freq)
11852 account_freq_event();
45ac1403
AH
11853 if (event->attr.context_switch) {
11854 atomic_inc(&nr_switch_events);
25432ae9 11855 inc = true;
45ac1403 11856 }
4beb31f3 11857 if (has_branch_stack(event))
25432ae9 11858 inc = true;
4beb31f3 11859 if (is_cgroup_event(event))
25432ae9 11860 inc = true;
76193a94
SL
11861 if (event->attr.ksymbol)
11862 atomic_inc(&nr_ksymbol_events);
6ee52e2a
SL
11863 if (event->attr.bpf_event)
11864 atomic_inc(&nr_bpf_events);
e17d43b9
AH
11865 if (event->attr.text_poke)
11866 atomic_inc(&nr_text_poke_events);
25432ae9 11867
9107c89e 11868 if (inc) {
5bce9db1
AS
11869 /*
11870 * We need the mutex here because static_branch_enable()
11871 * must complete *before* the perf_sched_count increment
11872 * becomes visible.
11873 */
9107c89e
PZ
11874 if (atomic_inc_not_zero(&perf_sched_count))
11875 goto enabled;
11876
11877 mutex_lock(&perf_sched_mutex);
11878 if (!atomic_read(&perf_sched_count)) {
11879 static_branch_enable(&perf_sched_events);
11880 /*
11881 * Guarantee that all CPUs observe they key change and
11882 * call the perf scheduling hooks before proceeding to
11883 * install events that need them.
11884 */
0809d954 11885 synchronize_rcu();
9107c89e
PZ
11886 }
11887 /*
11888 * Now that we have waited for the sync_sched(), allow further
11889 * increments to by-pass the mutex.
11890 */
11891 atomic_inc(&perf_sched_count);
11892 mutex_unlock(&perf_sched_mutex);
11893 }
11894enabled:
4beb31f3 11895
f2fb6bef 11896 account_pmu_sb_event(event);
766d6c07
FW
11897}
11898
0793a61d 11899/*
788faab7 11900 * Allocate and initialize an event structure
0793a61d 11901 */
cdd6c482 11902static struct perf_event *
c3f00c70 11903perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
11904 struct task_struct *task,
11905 struct perf_event *group_leader,
11906 struct perf_event *parent_event,
4dc0da86 11907 perf_overflow_handler_t overflow_handler,
79dff51e 11908 void *context, int cgroup_fd)
0793a61d 11909{
51b0fe39 11910 struct pmu *pmu;
cdd6c482
IM
11911 struct perf_event *event;
11912 struct hw_perf_event *hwc;
90983b16 11913 long err = -EINVAL;
ff65338e 11914 int node;
0793a61d 11915
66832eb4
ON
11916 if ((unsigned)cpu >= nr_cpu_ids) {
11917 if (!task || cpu != -1)
11918 return ERR_PTR(-EINVAL);
11919 }
97ba62b2
ME
11920 if (attr->sigtrap && !task) {
11921 /* Requires a task: avoid signalling random tasks. */
11922 return ERR_PTR(-EINVAL);
11923 }
66832eb4 11924
ff65338e
NK
11925 node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11926 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11927 node);
cdd6c482 11928 if (!event)
d5d2bc0d 11929 return ERR_PTR(-ENOMEM);
0793a61d 11930
04289bb9 11931 /*
cdd6c482 11932 * Single events are their own group leaders, with an
04289bb9
IM
11933 * empty sibling list:
11934 */
11935 if (!group_leader)
cdd6c482 11936 group_leader = event;
04289bb9 11937
cdd6c482
IM
11938 mutex_init(&event->child_mutex);
11939 INIT_LIST_HEAD(&event->child_list);
fccc714b 11940
cdd6c482
IM
11941 INIT_LIST_HEAD(&event->event_entry);
11942 INIT_LIST_HEAD(&event->sibling_list);
6668128a 11943 INIT_LIST_HEAD(&event->active_list);
8e1a2031 11944 init_event_group(event);
10c6db11 11945 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 11946 INIT_LIST_HEAD(&event->active_entry);
375637bc 11947 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
11948 INIT_HLIST_NODE(&event->hlist_entry);
11949
10c6db11 11950
cdd6c482 11951 init_waitqueue_head(&event->waitq);
ca6c2132
PZ
11952 init_irq_work(&event->pending_irq, perf_pending_irq);
11953 init_task_work(&event->pending_task, perf_pending_task);
0793a61d 11954
cdd6c482 11955 mutex_init(&event->mmap_mutex);
375637bc 11956 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 11957
a6fa941d 11958 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
11959 event->cpu = cpu;
11960 event->attr = *attr;
11961 event->group_leader = group_leader;
11962 event->pmu = NULL;
cdd6c482 11963 event->oncpu = -1;
a96bbc16 11964
cdd6c482 11965 event->parent = parent_event;
b84fbc9f 11966
17cf22c3 11967 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 11968 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 11969
cdd6c482 11970 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 11971
e3265a43
NK
11972 if (parent_event)
11973 event->event_caps = parent_event->event_caps;
11974
d580ff86
PZ
11975 if (task) {
11976 event->attach_state = PERF_ATTACH_TASK;
d580ff86 11977 /*
50f16a8b
PZ
11978 * XXX pmu::event_init needs to know what task to account to
11979 * and we cannot use the ctx information because we need the
11980 * pmu before we get a ctx.
d580ff86 11981 */
7b3c92b8 11982 event->hw.target = get_task_struct(task);
d580ff86
PZ
11983 }
11984
34f43927
PZ
11985 event->clock = &local_clock;
11986 if (parent_event)
11987 event->clock = parent_event->clock;
11988
4dc0da86 11989 if (!overflow_handler && parent_event) {
b326e956 11990 overflow_handler = parent_event->overflow_handler;
4dc0da86 11991 context = parent_event->overflow_handler_context;
f1e4ba5b 11992#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c 11993 if (overflow_handler == bpf_overflow_handler) {
85192dbf 11994 struct bpf_prog *prog = parent_event->prog;
aa6a5f3c 11995
85192dbf 11996 bpf_prog_inc(prog);
aa6a5f3c
AS
11997 event->prog = prog;
11998 event->orig_overflow_handler =
11999 parent_event->orig_overflow_handler;
12000 }
12001#endif
4dc0da86 12002 }
66832eb4 12003
1879445d
WN
12004 if (overflow_handler) {
12005 event->overflow_handler = overflow_handler;
12006 event->overflow_handler_context = context;
9ecda41a
WN
12007 } else if (is_write_backward(event)){
12008 event->overflow_handler = perf_event_output_backward;
12009 event->overflow_handler_context = NULL;
1879445d 12010 } else {
9ecda41a 12011 event->overflow_handler = perf_event_output_forward;
1879445d
WN
12012 event->overflow_handler_context = NULL;
12013 }
97eaf530 12014
0231bb53 12015 perf_event__state_init(event);
a86ed508 12016
4aeb0b42 12017 pmu = NULL;
b8e83514 12018
cdd6c482 12019 hwc = &event->hw;
bd2b5b12 12020 hwc->sample_period = attr->sample_period;
0d48696f 12021 if (attr->freq && attr->sample_freq)
bd2b5b12 12022 hwc->sample_period = 1;
eced1dfc 12023 hwc->last_period = hwc->sample_period;
bd2b5b12 12024
e7850595 12025 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 12026
2023b359 12027 /*
ba5213ae
PZ
12028 * We currently do not support PERF_SAMPLE_READ on inherited events.
12029 * See perf_output_read().
2023b359 12030 */
ba5213ae 12031 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
90983b16 12032 goto err_ns;
a46a2300
YZ
12033
12034 if (!has_branch_stack(event))
12035 event->attr.branch_sample_type = 0;
2023b359 12036
b0a873eb 12037 pmu = perf_init_event(event);
85c617ab 12038 if (IS_ERR(pmu)) {
4aeb0b42 12039 err = PTR_ERR(pmu);
90983b16 12040 goto err_ns;
621a01ea 12041 }
d5d2bc0d 12042
09f4e8f0 12043 /*
bd275681
PZ
12044 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
12045 * events (they don't make sense as the cgroup will be different
12046 * on other CPUs in the uncore mask).
09f4e8f0 12047 */
bd275681 12048 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
09f4e8f0
PZ
12049 err = -EINVAL;
12050 goto err_pmu;
12051 }
12052
ab43762e
AS
12053 if (event->attr.aux_output &&
12054 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
12055 err = -EOPNOTSUPP;
12056 goto err_pmu;
12057 }
12058
98add2af
PZ
12059 if (cgroup_fd != -1) {
12060 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
12061 if (err)
12062 goto err_pmu;
12063 }
12064
bed5b25a
AS
12065 err = exclusive_event_init(event);
12066 if (err)
12067 goto err_pmu;
12068
375637bc 12069 if (has_addr_filter(event)) {
c60f83b8
AS
12070 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12071 sizeof(struct perf_addr_filter_range),
12072 GFP_KERNEL);
12073 if (!event->addr_filter_ranges) {
36cc2b92 12074 err = -ENOMEM;
375637bc 12075 goto err_per_task;
36cc2b92 12076 }
375637bc 12077
18736eef
AS
12078 /*
12079 * Clone the parent's vma offsets: they are valid until exec()
12080 * even if the mm is not shared with the parent.
12081 */
12082 if (event->parent) {
12083 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12084
12085 raw_spin_lock_irq(&ifh->lock);
c60f83b8
AS
12086 memcpy(event->addr_filter_ranges,
12087 event->parent->addr_filter_ranges,
12088 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
18736eef
AS
12089 raw_spin_unlock_irq(&ifh->lock);
12090 }
12091
375637bc
AS
12092 /* force hw sync on the address filters */
12093 event->addr_filters_gen = 1;
12094 }
12095
cdd6c482 12096 if (!event->parent) {
927c7a9e 12097 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 12098 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 12099 if (err)
375637bc 12100 goto err_addr_filters;
d010b332 12101 }
f344011c 12102 }
9ee318a7 12103
da97e184
JFG
12104 err = security_perf_event_alloc(event);
12105 if (err)
12106 goto err_callchain_buffer;
12107
927a5570
AS
12108 /* symmetric to unaccount_event() in _free_event() */
12109 account_event(event);
12110
cdd6c482 12111 return event;
90983b16 12112
da97e184
JFG
12113err_callchain_buffer:
12114 if (!event->parent) {
12115 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
12116 put_callchain_buffers();
12117 }
375637bc 12118err_addr_filters:
c60f83b8 12119 kfree(event->addr_filter_ranges);
375637bc 12120
bed5b25a
AS
12121err_per_task:
12122 exclusive_event_destroy(event);
12123
90983b16 12124err_pmu:
98add2af
PZ
12125 if (is_cgroup_event(event))
12126 perf_detach_cgroup(event);
90983b16
FW
12127 if (event->destroy)
12128 event->destroy(event);
c464c76e 12129 module_put(pmu->module);
90983b16 12130err_ns:
621b6d2e
PB
12131 if (event->hw.target)
12132 put_task_struct(event->hw.target);
4674ffe2 12133 call_rcu(&event->rcu_head, free_event_rcu);
90983b16
FW
12134
12135 return ERR_PTR(err);
0793a61d
TG
12136}
12137
cdd6c482
IM
12138static int perf_copy_attr(struct perf_event_attr __user *uattr,
12139 struct perf_event_attr *attr)
974802ea 12140{
974802ea 12141 u32 size;
cdf8073d 12142 int ret;
974802ea 12143
c2ba8f41 12144 /* Zero the full structure, so that a short copy will be nice. */
974802ea
PZ
12145 memset(attr, 0, sizeof(*attr));
12146
12147 ret = get_user(size, &uattr->size);
12148 if (ret)
12149 return ret;
12150
c2ba8f41
AS
12151 /* ABI compatibility quirk: */
12152 if (!size)
974802ea 12153 size = PERF_ATTR_SIZE_VER0;
c2ba8f41 12154 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
974802ea
PZ
12155 goto err_size;
12156
c2ba8f41
AS
12157 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12158 if (ret) {
12159 if (ret == -E2BIG)
12160 goto err_size;
12161 return ret;
974802ea
PZ
12162 }
12163
f12f42ac
MX
12164 attr->size = size;
12165
a4faf00d 12166 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
974802ea
PZ
12167 return -EINVAL;
12168
12169 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12170 return -EINVAL;
12171
12172 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12173 return -EINVAL;
12174
bce38cd5
SE
12175 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12176 u64 mask = attr->branch_sample_type;
12177
12178 /* only using defined bits */
12179 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12180 return -EINVAL;
12181
12182 /* at least one branch bit must be set */
12183 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12184 return -EINVAL;
12185
bce38cd5
SE
12186 /* propagate priv level, when not set for branch */
12187 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12188
12189 /* exclude_kernel checked on syscall entry */
12190 if (!attr->exclude_kernel)
12191 mask |= PERF_SAMPLE_BRANCH_KERNEL;
12192
12193 if (!attr->exclude_user)
12194 mask |= PERF_SAMPLE_BRANCH_USER;
12195
12196 if (!attr->exclude_hv)
12197 mask |= PERF_SAMPLE_BRANCH_HV;
12198 /*
12199 * adjust user setting (for HW filter setup)
12200 */
12201 attr->branch_sample_type = mask;
12202 }
e712209a 12203 /* privileged levels capture (kernel, hv): check permissions */
da97e184
JFG
12204 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12205 ret = perf_allow_kernel(attr);
12206 if (ret)
12207 return ret;
12208 }
bce38cd5 12209 }
4018994f 12210
c5ebcedb 12211 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 12212 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
12213 if (ret)
12214 return ret;
12215 }
12216
12217 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12218 if (!arch_perf_have_user_stack_dump())
12219 return -ENOSYS;
12220
12221 /*
12222 * We have __u32 type for the size, but so far
12223 * we can only use __u16 as maximum due to the
12224 * __u16 sample size limit.
12225 */
12226 if (attr->sample_stack_user >= USHRT_MAX)
78b562fb 12227 return -EINVAL;
c5ebcedb 12228 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
78b562fb 12229 return -EINVAL;
c5ebcedb 12230 }
4018994f 12231
5f970521
JO
12232 if (!attr->sample_max_stack)
12233 attr->sample_max_stack = sysctl_perf_event_max_stack;
12234
60e2364e
SE
12235 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12236 ret = perf_reg_validate(attr->sample_regs_intr);
6546b19f
NK
12237
12238#ifndef CONFIG_CGROUP_PERF
12239 if (attr->sample_type & PERF_SAMPLE_CGROUP)
12240 return -EINVAL;
12241#endif
2a6c6b7d
KL
12242 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12243 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12244 return -EINVAL;
6546b19f 12245
2b26f0aa
ME
12246 if (!attr->inherit && attr->inherit_thread)
12247 return -EINVAL;
12248
2e498d0a
ME
12249 if (attr->remove_on_exec && attr->enable_on_exec)
12250 return -EINVAL;
12251
97ba62b2
ME
12252 if (attr->sigtrap && !attr->remove_on_exec)
12253 return -EINVAL;
12254
974802ea
PZ
12255out:
12256 return ret;
12257
12258err_size:
12259 put_user(sizeof(*attr), &uattr->size);
12260 ret = -E2BIG;
12261 goto out;
12262}
12263
68e3c698
PZ
12264static void mutex_lock_double(struct mutex *a, struct mutex *b)
12265{
12266 if (b < a)
12267 swap(a, b);
12268
12269 mutex_lock(a);
12270 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12271}
12272
ac9721f3
PZ
12273static int
12274perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 12275{
56de4e8f 12276 struct perf_buffer *rb = NULL;
a4be7c27
PZ
12277 int ret = -EINVAL;
12278
68e3c698
PZ
12279 if (!output_event) {
12280 mutex_lock(&event->mmap_mutex);
a4be7c27 12281 goto set;
68e3c698 12282 }
a4be7c27 12283
ac9721f3
PZ
12284 /* don't allow circular references */
12285 if (event == output_event)
a4be7c27
PZ
12286 goto out;
12287
0f139300
PZ
12288 /*
12289 * Don't allow cross-cpu buffers
12290 */
12291 if (output_event->cpu != event->cpu)
12292 goto out;
12293
12294 /*
76369139 12295 * If its not a per-cpu rb, it must be the same task.
0f139300 12296 */
24d3ae2f 12297 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
0f139300
PZ
12298 goto out;
12299
34f43927
PZ
12300 /*
12301 * Mixing clocks in the same buffer is trouble you don't need.
12302 */
12303 if (output_event->clock != event->clock)
12304 goto out;
12305
9ecda41a
WN
12306 /*
12307 * Either writing ring buffer from beginning or from end.
12308 * Mixing is not allowed.
12309 */
12310 if (is_write_backward(output_event) != is_write_backward(event))
12311 goto out;
12312
45bfb2e5
PZ
12313 /*
12314 * If both events generate aux data, they must be on the same PMU
12315 */
12316 if (has_aux(event) && has_aux(output_event) &&
12317 event->pmu != output_event->pmu)
12318 goto out;
12319
68e3c698
PZ
12320 /*
12321 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since
12322 * output_event is already on rb->event_list, and the list iteration
12323 * restarts after every removal, it is guaranteed this new event is
12324 * observed *OR* if output_event is already removed, it's guaranteed we
12325 * observe !rb->mmap_count.
12326 */
12327 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
a4be7c27 12328set:
ac9721f3
PZ
12329 /* Can't redirect output if we've got an active mmap() */
12330 if (atomic_read(&event->mmap_count))
12331 goto unlock;
a4be7c27 12332
ac9721f3 12333 if (output_event) {
76369139
FW
12334 /* get the rb we want to redirect to */
12335 rb = ring_buffer_get(output_event);
12336 if (!rb)
ac9721f3 12337 goto unlock;
68e3c698
PZ
12338
12339 /* did we race against perf_mmap_close() */
12340 if (!atomic_read(&rb->mmap_count)) {
12341 ring_buffer_put(rb);
12342 goto unlock;
12343 }
a4be7c27
PZ
12344 }
12345
b69cf536 12346 ring_buffer_attach(event, rb);
9bb5d40c 12347
a4be7c27 12348 ret = 0;
ac9721f3
PZ
12349unlock:
12350 mutex_unlock(&event->mmap_mutex);
68e3c698
PZ
12351 if (output_event)
12352 mutex_unlock(&output_event->mmap_mutex);
ac9721f3 12353
a4be7c27 12354out:
a4be7c27
PZ
12355 return ret;
12356}
12357
34f43927
PZ
12358static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12359{
12360 bool nmi_safe = false;
12361
12362 switch (clk_id) {
12363 case CLOCK_MONOTONIC:
12364 event->clock = &ktime_get_mono_fast_ns;
12365 nmi_safe = true;
12366 break;
12367
12368 case CLOCK_MONOTONIC_RAW:
12369 event->clock = &ktime_get_raw_fast_ns;
12370 nmi_safe = true;
12371 break;
12372
12373 case CLOCK_REALTIME:
12374 event->clock = &ktime_get_real_ns;
12375 break;
12376
12377 case CLOCK_BOOTTIME:
9285ec4c 12378 event->clock = &ktime_get_boottime_ns;
34f43927
PZ
12379 break;
12380
12381 case CLOCK_TAI:
9285ec4c 12382 event->clock = &ktime_get_clocktai_ns;
34f43927
PZ
12383 break;
12384
12385 default:
12386 return -EINVAL;
12387 }
12388
12389 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12390 return -EINVAL;
12391
12392 return 0;
12393}
12394
b068fc04
ME
12395static bool
12396perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12397{
12398 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12399 bool is_capable = perfmon_capable();
12400
12401 if (attr->sigtrap) {
12402 /*
12403 * perf_event_attr::sigtrap sends signals to the other task.
12404 * Require the current task to also have CAP_KILL.
12405 */
12406 rcu_read_lock();
12407 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12408 rcu_read_unlock();
12409
12410 /*
12411 * If the required capabilities aren't available, checks for
12412 * ptrace permissions: upgrade to ATTACH, since sending signals
12413 * can effectively change the target task.
12414 */
12415 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12416 }
12417
12418 /*
12419 * Preserve ptrace permission check for backwards compatibility. The
12420 * ptrace check also includes checks that the current task and other
12421 * task have matching uids, and is therefore not done here explicitly.
12422 */
12423 return is_capable || ptrace_may_access(task, ptrace_mode);
12424}
12425
0793a61d 12426/**
cdd6c482 12427 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 12428 *
cdd6c482 12429 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 12430 * @pid: target pid
9f66a381 12431 * @cpu: target cpu
cdd6c482 12432 * @group_fd: group leader event fd
a1ddf524 12433 * @flags: perf event open flags
0793a61d 12434 */
cdd6c482
IM
12435SYSCALL_DEFINE5(perf_event_open,
12436 struct perf_event_attr __user *, attr_uptr,
2743a5b0 12437 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 12438{
b04243ef 12439 struct perf_event *group_leader = NULL, *output_event = NULL;
bd275681 12440 struct perf_event_pmu_context *pmu_ctx;
b04243ef 12441 struct perf_event *event, *sibling;
cdd6c482 12442 struct perf_event_attr attr;
bd275681 12443 struct perf_event_context *ctx;
cdd6c482 12444 struct file *event_file = NULL;
2903ff01 12445 struct fd group = {NULL, 0};
38a81da2 12446 struct task_struct *task = NULL;
89a1e187 12447 struct pmu *pmu;
ea635c64 12448 int event_fd;
b04243ef 12449 int move_group = 0;
dc86cabe 12450 int err;
a21b0b35 12451 int f_flags = O_RDWR;
79dff51e 12452 int cgroup_fd = -1;
0793a61d 12453
2743a5b0 12454 /* for future expandability... */
e5d1367f 12455 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
12456 return -EINVAL;
12457
0a041ebc 12458 err = perf_copy_attr(attr_uptr, &attr);
da97e184
JFG
12459 if (err)
12460 return err;
12461
0a041ebc
NK
12462 /* Do we allow access to perf_event_open(2) ? */
12463 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
dc86cabe
IM
12464 if (err)
12465 return err;
eab656ae 12466
0764771d 12467 if (!attr.exclude_kernel) {
da97e184
JFG
12468 err = perf_allow_kernel(&attr);
12469 if (err)
12470 return err;
0764771d
PZ
12471 }
12472
e4222673 12473 if (attr.namespaces) {
18aa1856 12474 if (!perfmon_capable())
e4222673
HB
12475 return -EACCES;
12476 }
12477
df58ab24 12478 if (attr.freq) {
cdd6c482 12479 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 12480 return -EINVAL;
0819b2e3
PZ
12481 } else {
12482 if (attr.sample_period & (1ULL << 63))
12483 return -EINVAL;
df58ab24
PZ
12484 }
12485
fc7ce9c7 12486 /* Only privileged users can get physical addresses */
da97e184
JFG
12487 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12488 err = perf_allow_kernel(&attr);
12489 if (err)
12490 return err;
12491 }
fc7ce9c7 12492
08ef1af4
OM
12493 /* REGS_INTR can leak data, lockdown must prevent this */
12494 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12495 err = security_locked_down(LOCKDOWN_PERF);
12496 if (err)
12497 return err;
12498 }
b0c8fdc7 12499
e5d1367f
SE
12500 /*
12501 * In cgroup mode, the pid argument is used to pass the fd
12502 * opened to the cgroup directory in cgroupfs. The cpu argument
12503 * designates the cpu on which to monitor threads from that
12504 * cgroup.
12505 */
12506 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12507 return -EINVAL;
12508
a21b0b35
YD
12509 if (flags & PERF_FLAG_FD_CLOEXEC)
12510 f_flags |= O_CLOEXEC;
12511
12512 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
12513 if (event_fd < 0)
12514 return event_fd;
12515
ac9721f3 12516 if (group_fd != -1) {
2903ff01
AV
12517 err = perf_fget_light(group_fd, &group);
12518 if (err)
d14b12d7 12519 goto err_fd;
2903ff01 12520 group_leader = group.file->private_data;
ac9721f3
PZ
12521 if (flags & PERF_FLAG_FD_OUTPUT)
12522 output_event = group_leader;
12523 if (flags & PERF_FLAG_FD_NO_GROUP)
12524 group_leader = NULL;
12525 }
12526
e5d1367f 12527 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
12528 task = find_lively_task_by_vpid(pid);
12529 if (IS_ERR(task)) {
12530 err = PTR_ERR(task);
12531 goto err_group_fd;
12532 }
12533 }
12534
1f4ee503
PZ
12535 if (task && group_leader &&
12536 group_leader->attr.inherit != attr.inherit) {
12537 err = -EINVAL;
12538 goto err_task;
12539 }
12540
79dff51e
MF
12541 if (flags & PERF_FLAG_PID_CGROUP)
12542 cgroup_fd = pid;
12543
4dc0da86 12544 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 12545 NULL, NULL, cgroup_fd);
d14b12d7
SE
12546 if (IS_ERR(event)) {
12547 err = PTR_ERR(event);
78af4dc9 12548 goto err_task;
d14b12d7
SE
12549 }
12550
53b25335
VW
12551 if (is_sampling_event(event)) {
12552 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 12553 err = -EOPNOTSUPP;
53b25335
VW
12554 goto err_alloc;
12555 }
12556 }
12557
89a1e187
PZ
12558 /*
12559 * Special case software events and allow them to be part of
12560 * any hardware group.
12561 */
12562 pmu = event->pmu;
b04243ef 12563
34f43927
PZ
12564 if (attr.use_clockid) {
12565 err = perf_event_set_clock(event, attr.clockid);
12566 if (err)
12567 goto err_alloc;
12568 }
12569
4ff6a8de
DCC
12570 if (pmu->task_ctx_nr == perf_sw_context)
12571 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12572
bd275681
PZ
12573 if (task) {
12574 err = down_read_interruptible(&task->signal->exec_update_lock);
12575 if (err)
12576 goto err_alloc;
12577
12578 /*
12579 * We must hold exec_update_lock across this and any potential
12580 * perf_install_in_context() call for this new event to
12581 * serialize against exec() altering our credentials (and the
12582 * perf_event_exit_task() that could imply).
12583 */
12584 err = -EACCES;
12585 if (!perf_check_permission(&attr, task))
12586 goto err_cred;
b04243ef 12587 }
89a1e187
PZ
12588
12589 /*
12590 * Get the target context (task or percpu):
12591 */
bd275681 12592 ctx = find_get_context(task, event);
89a1e187
PZ
12593 if (IS_ERR(ctx)) {
12594 err = PTR_ERR(ctx);
bd275681
PZ
12595 goto err_cred;
12596 }
12597
12598 mutex_lock(&ctx->mutex);
12599
12600 if (ctx->task == TASK_TOMBSTONE) {
12601 err = -ESRCH;
12602 goto err_locked;
12603 }
12604
12605 if (!task) {
12606 /*
12607 * Check if the @cpu we're creating an event for is online.
12608 *
12609 * We use the perf_cpu_context::ctx::mutex to serialize against
12610 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12611 */
12612 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12613
12614 if (!cpuctx->online) {
12615 err = -ENODEV;
12616 goto err_locked;
12617 }
89a1e187
PZ
12618 }
12619
ac9721f3 12620 if (group_leader) {
dc86cabe 12621 err = -EINVAL;
04289bb9 12622
04289bb9 12623 /*
ccff286d
IM
12624 * Do not allow a recursive hierarchy (this new sibling
12625 * becoming part of another group-sibling):
12626 */
12627 if (group_leader->group_leader != group_leader)
bd275681 12628 goto err_locked;
34f43927
PZ
12629
12630 /* All events in a group should have the same clock */
12631 if (group_leader->clock != event->clock)
bd275681 12632 goto err_locked;
34f43927 12633
ccff286d 12634 /*
64aee2a9
MR
12635 * Make sure we're both events for the same CPU;
12636 * grouping events for different CPUs is broken; since
12637 * you can never concurrently schedule them anyhow.
04289bb9 12638 */
64aee2a9 12639 if (group_leader->cpu != event->cpu)
bd275681 12640 goto err_locked;
64aee2a9
MR
12641
12642 /*
bd275681 12643 * Make sure we're both on the same context; either task or cpu.
64aee2a9 12644 */
bd275681
PZ
12645 if (group_leader->ctx != ctx)
12646 goto err_locked;
b04243ef 12647
3b6f9e5c
PM
12648 /*
12649 * Only a group leader can be exclusive or pinned
12650 */
0d48696f 12651 if (attr.exclusive || attr.pinned)
84c4e620 12652 goto err_locked;
321027c1 12653
bd275681
PZ
12654 if (is_software_event(event) &&
12655 !in_software_context(group_leader)) {
321027c1 12656 /*
bd275681
PZ
12657 * If the event is a sw event, but the group_leader
12658 * is on hw context.
12659 *
12660 * Allow the addition of software events to hw
12661 * groups, this is safe because software events
12662 * never fail to schedule.
12663 *
12664 * Note the comment that goes with struct
12665 * perf_event_pmu_context.
321027c1 12666 */
bd275681 12667 pmu = group_leader->pmu_ctx->pmu;
bf480f93
RB
12668 } else if (!is_software_event(event)) {
12669 if (is_software_event(group_leader) &&
12670 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12671 /*
12672 * In case the group is a pure software group, and we
12673 * try to add a hardware event, move the whole group to
12674 * the hardware context.
12675 */
12676 move_group = 1;
321027c1 12677 }
8a58ddae 12678
bf480f93
RB
12679 /* Don't allow group of multiple hw events from different pmus */
12680 if (!in_software_context(group_leader) &&
12681 group_leader->pmu_ctx->pmu != pmu)
8a58ddae
AS
12682 goto err_locked;
12683 }
f55fc2a5
PZ
12684 }
12685
bd275681
PZ
12686 /*
12687 * Now that we're certain of the pmu; find the pmu_ctx.
12688 */
12689 pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12690 if (IS_ERR(pmu_ctx)) {
12691 err = PTR_ERR(pmu_ctx);
84c4e620
PZ
12692 goto err_locked;
12693 }
bd275681 12694 event->pmu_ctx = pmu_ctx;
84c4e620 12695
bd275681
PZ
12696 if (output_event) {
12697 err = perf_event_set_output(event, output_event);
12698 if (err)
12699 goto err_context;
a723968c
PZ
12700 }
12701
bd275681
PZ
12702 if (!perf_event_validate_size(event)) {
12703 err = -E2BIG;
12704 goto err_context;
a63fbed7
TG
12705 }
12706
da9ec3d3
MR
12707 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12708 err = -EINVAL;
bd275681 12709 goto err_context;
da9ec3d3 12710 }
a63fbed7 12711
f55fc2a5
PZ
12712 /*
12713 * Must be under the same ctx::mutex as perf_install_in_context(),
12714 * because we need to serialize with concurrent event creation.
12715 */
12716 if (!exclusive_event_installable(event, ctx)) {
f55fc2a5 12717 err = -EBUSY;
bd275681 12718 goto err_context;
f55fc2a5 12719 }
f63a8daa 12720
f55fc2a5
PZ
12721 WARN_ON_ONCE(ctx->parent_ctx);
12722
bd275681
PZ
12723 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
12724 if (IS_ERR(event_file)) {
12725 err = PTR_ERR(event_file);
12726 event_file = NULL;
12727 goto err_context;
12728 }
12729
79c9ce57
PZ
12730 /*
12731 * This is the point on no return; we cannot fail hereafter. This is
12732 * where we start modifying current state.
12733 */
12734
f55fc2a5 12735 if (move_group) {
45a0e07a 12736 perf_remove_from_context(group_leader, 0);
bd275681 12737 put_pmu_ctx(group_leader->pmu_ctx);
0231bb53 12738
edb39592 12739 for_each_sibling_event(sibling, group_leader) {
45a0e07a 12740 perf_remove_from_context(sibling, 0);
bd275681 12741 put_pmu_ctx(sibling->pmu_ctx);
b04243ef 12742 }
b04243ef 12743
8f95b435
PZI
12744 /*
12745 * Install the group siblings before the group leader.
12746 *
12747 * Because a group leader will try and install the entire group
12748 * (through the sibling list, which is still in-tact), we can
12749 * end up with siblings installed in the wrong context.
12750 *
12751 * By installing siblings first we NO-OP because they're not
12752 * reachable through the group lists.
12753 */
edb39592 12754 for_each_sibling_event(sibling, group_leader) {
bd275681
PZ
12755 sibling->pmu_ctx = pmu_ctx;
12756 get_pmu_ctx(pmu_ctx);
8f95b435 12757 perf_event__state_init(sibling);
9fc81d87 12758 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef 12759 }
8f95b435
PZI
12760
12761 /*
12762 * Removing from the context ends up with disabled
12763 * event. What we want here is event in the initial
12764 * startup state, ready to be add into new context.
12765 */
bd275681
PZ
12766 group_leader->pmu_ctx = pmu_ctx;
12767 get_pmu_ctx(pmu_ctx);
8f95b435
PZI
12768 perf_event__state_init(group_leader);
12769 perf_install_in_context(ctx, group_leader, group_leader->cpu);
bed5b25a
AS
12770 }
12771
f73e22ab
PZ
12772 /*
12773 * Precalculate sample_data sizes; do while holding ctx::mutex such
12774 * that we're serialized against further additions and before
12775 * perf_install_in_context() which is the point the event is active and
12776 * can use these values.
12777 */
12778 perf_event__header_size(event);
12779 perf_event__id_header_size(event);
12780
78cd2c74
PZ
12781 event->owner = current;
12782
e2d37cd2 12783 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 12784 perf_unpin_context(ctx);
f63a8daa 12785
d859e29f 12786 mutex_unlock(&ctx->mutex);
9b51f66d 12787
79c9ce57 12788 if (task) {
f7cfd871 12789 up_read(&task->signal->exec_update_lock);
79c9ce57
PZ
12790 put_task_struct(task);
12791 }
12792
cdd6c482
IM
12793 mutex_lock(&current->perf_event_mutex);
12794 list_add_tail(&event->owner_entry, &current->perf_event_list);
12795 mutex_unlock(&current->perf_event_mutex);
082ff5a2 12796
8a49542c
PZ
12797 /*
12798 * Drop the reference on the group_event after placing the
12799 * new event on the sibling_list. This ensures destruction
12800 * of the group leader will find the pointer to itself in
12801 * perf_group_detach().
12802 */
2903ff01 12803 fdput(group);
ea635c64
AV
12804 fd_install(event_fd, event_file);
12805 return event_fd;
0793a61d 12806
bd275681 12807err_context:
a551844e
PZ
12808 put_pmu_ctx(event->pmu_ctx);
12809 event->pmu_ctx = NULL; /* _free_event() */
f55fc2a5 12810err_locked:
f55fc2a5 12811 mutex_unlock(&ctx->mutex);
bd275681
PZ
12812 perf_unpin_context(ctx);
12813 put_ctx(ctx);
78af4dc9 12814err_cred:
12815 if (task)
d01e7f10 12816 up_read(&task->signal->exec_update_lock);
c6be5a5c 12817err_alloc:
bd275681 12818 free_event(event);
1f4ee503 12819err_task:
e7d0bc04
PZ
12820 if (task)
12821 put_task_struct(task);
89a1e187 12822err_group_fd:
2903ff01 12823 fdput(group);
ea635c64
AV
12824err_fd:
12825 put_unused_fd(event_fd);
dc86cabe 12826 return err;
0793a61d
TG
12827}
12828
fb0459d7
AV
12829/**
12830 * perf_event_create_kernel_counter
12831 *
12832 * @attr: attributes of the counter to create
12833 * @cpu: cpu in which the counter is bound
38a81da2 12834 * @task: task to profile (NULL for percpu)
a1ddf524
HX
12835 * @overflow_handler: callback to trigger when we hit the event
12836 * @context: context data could be used in overflow_handler callback
fb0459d7
AV
12837 */
12838struct perf_event *
12839perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 12840 struct task_struct *task,
4dc0da86
AK
12841 perf_overflow_handler_t overflow_handler,
12842 void *context)
fb0459d7 12843{
bd275681 12844 struct perf_event_pmu_context *pmu_ctx;
fb0459d7 12845 struct perf_event_context *ctx;
c3f00c70 12846 struct perf_event *event;
bd275681 12847 struct pmu *pmu;
fb0459d7 12848 int err;
d859e29f 12849
dce5affb
AS
12850 /*
12851 * Grouping is not supported for kernel events, neither is 'AUX',
12852 * make sure the caller's intentions are adjusted.
12853 */
12854 if (attr->aux_output)
12855 return ERR_PTR(-EINVAL);
12856
4dc0da86 12857 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 12858 overflow_handler, context, -1);
c3f00c70
PZ
12859 if (IS_ERR(event)) {
12860 err = PTR_ERR(event);
12861 goto err;
12862 }
d859e29f 12863
f8697762 12864 /* Mark owner so we could distinguish it from user events. */
63b6da39 12865 event->owner = TASK_TOMBSTONE;
bd275681
PZ
12866 pmu = event->pmu;
12867
12868 if (pmu->task_ctx_nr == perf_sw_context)
12869 event->event_caps |= PERF_EV_CAP_SOFTWARE;
f8697762 12870
f25d8ba9
AS
12871 /*
12872 * Get the target context (task or percpu):
12873 */
bd275681 12874 ctx = find_get_context(task, event);
c6567f64
FW
12875 if (IS_ERR(ctx)) {
12876 err = PTR_ERR(ctx);
bd275681 12877 goto err_alloc;
d859e29f 12878 }
fb0459d7 12879
fb0459d7
AV
12880 WARN_ON_ONCE(ctx->parent_ctx);
12881 mutex_lock(&ctx->mutex);
84c4e620
PZ
12882 if (ctx->task == TASK_TOMBSTONE) {
12883 err = -ESRCH;
12884 goto err_unlock;
12885 }
12886
bd275681
PZ
12887 pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12888 if (IS_ERR(pmu_ctx)) {
12889 err = PTR_ERR(pmu_ctx);
12890 goto err_unlock;
12891 }
12892 event->pmu_ctx = pmu_ctx;
12893
a63fbed7
TG
12894 if (!task) {
12895 /*
12896 * Check if the @cpu we're creating an event for is online.
12897 *
12898 * We use the perf_cpu_context::ctx::mutex to serialize against
12899 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12900 */
12901 struct perf_cpu_context *cpuctx =
12902 container_of(ctx, struct perf_cpu_context, ctx);
12903 if (!cpuctx->online) {
12904 err = -ENODEV;
bd275681 12905 goto err_pmu_ctx;
a63fbed7
TG
12906 }
12907 }
12908
bed5b25a 12909 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 12910 err = -EBUSY;
bd275681 12911 goto err_pmu_ctx;
bed5b25a
AS
12912 }
12913
4ce54af8 12914 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 12915 perf_unpin_context(ctx);
fb0459d7
AV
12916 mutex_unlock(&ctx->mutex);
12917
fb0459d7
AV
12918 return event;
12919
bd275681
PZ
12920err_pmu_ctx:
12921 put_pmu_ctx(pmu_ctx);
a551844e 12922 event->pmu_ctx = NULL; /* _free_event() */
84c4e620
PZ
12923err_unlock:
12924 mutex_unlock(&ctx->mutex);
12925 perf_unpin_context(ctx);
12926 put_ctx(ctx);
bd275681 12927err_alloc:
c3f00c70
PZ
12928 free_event(event);
12929err:
c6567f64 12930 return ERR_PTR(err);
9b51f66d 12931}
fb0459d7 12932EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 12933
bd275681
PZ
12934static void __perf_pmu_remove(struct perf_event_context *ctx,
12935 int cpu, struct pmu *pmu,
12936 struct perf_event_groups *groups,
12937 struct list_head *events)
0cda4c02 12938{
bd275681 12939 struct perf_event *event, *sibling;
0cda4c02 12940
bd275681 12941 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
45a0e07a 12942 perf_remove_from_context(event, 0);
bd275681
PZ
12943 put_pmu_ctx(event->pmu_ctx);
12944 list_add(&event->migrate_entry, events);
12945
12946 for_each_sibling_event(sibling, event) {
12947 perf_remove_from_context(sibling, 0);
bd275681
PZ
12948 put_pmu_ctx(sibling->pmu_ctx);
12949 list_add(&sibling->migrate_entry, events);
12950 }
0cda4c02 12951 }
bd275681 12952}
0cda4c02 12953
bd275681
PZ
12954static void __perf_pmu_install_event(struct pmu *pmu,
12955 struct perf_event_context *ctx,
12956 int cpu, struct perf_event *event)
12957{
12958 struct perf_event_pmu_context *epc;
889c58b3
PZ
12959 struct perf_event_context *old_ctx = event->ctx;
12960
12961 get_ctx(ctx); /* normally find_get_context() */
bd275681
PZ
12962
12963 event->cpu = cpu;
12964 epc = find_get_pmu_context(pmu, ctx, event);
12965 event->pmu_ctx = epc;
12966
12967 if (event->state >= PERF_EVENT_STATE_OFF)
12968 event->state = PERF_EVENT_STATE_INACTIVE;
bd275681 12969 perf_install_in_context(ctx, event, cpu);
889c58b3
PZ
12970
12971 /*
12972 * Now that event->ctx is updated and visible, put the old ctx.
12973 */
12974 put_ctx(old_ctx);
bd275681
PZ
12975}
12976
12977static void __perf_pmu_install(struct perf_event_context *ctx,
12978 int cpu, struct pmu *pmu, struct list_head *events)
12979{
12980 struct perf_event *event, *tmp;
0cda4c02 12981
8f95b435
PZI
12982 /*
12983 * Re-instate events in 2 passes.
12984 *
12985 * Skip over group leaders and only install siblings on this first
12986 * pass, siblings will not get enabled without a leader, however a
12987 * leader will enable its siblings, even if those are still on the old
12988 * context.
12989 */
bd275681 12990 list_for_each_entry_safe(event, tmp, events, migrate_entry) {
8f95b435
PZI
12991 if (event->group_leader == event)
12992 continue;
12993
12994 list_del(&event->migrate_entry);
bd275681 12995 __perf_pmu_install_event(pmu, ctx, cpu, event);
8f95b435
PZI
12996 }
12997
12998 /*
12999 * Once all the siblings are setup properly, install the group leaders
13000 * to make it go.
13001 */
bd275681 13002 list_for_each_entry_safe(event, tmp, events, migrate_entry) {
9886167d 13003 list_del(&event->migrate_entry);
bd275681 13004 __perf_pmu_install_event(pmu, ctx, cpu, event);
0cda4c02 13005 }
bd275681
PZ
13006}
13007
13008void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
13009{
13010 struct perf_event_context *src_ctx, *dst_ctx;
13011 LIST_HEAD(events);
13012
889c58b3
PZ
13013 /*
13014 * Since per-cpu context is persistent, no need to grab an extra
13015 * reference.
13016 */
bd275681
PZ
13017 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
13018 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
13019
13020 /*
13021 * See perf_event_ctx_lock() for comments on the details
13022 * of swizzling perf_event::ctx.
13023 */
13024 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
13025
13026 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
13027 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
13028
b1680989
PZ
13029 if (!list_empty(&events)) {
13030 /*
13031 * Wait for the events to quiesce before re-instating them.
13032 */
13033 synchronize_rcu();
bd275681 13034
b1680989
PZ
13035 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
13036 }
bd275681 13037
0cda4c02 13038 mutex_unlock(&dst_ctx->mutex);
f63a8daa 13039 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
13040}
13041EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
13042
ef54c1a4 13043static void sync_child_event(struct perf_event *child_event)
d859e29f 13044{
cdd6c482 13045 struct perf_event *parent_event = child_event->parent;
8bc20959 13046 u64 child_val;
d859e29f 13047
ef54c1a4
PZ
13048 if (child_event->attr.inherit_stat) {
13049 struct task_struct *task = child_event->ctx->task;
13050
13051 if (task && task != TASK_TOMBSTONE)
13052 perf_event_read_event(child_event, task);
13053 }
38b200d6 13054
b5e58793 13055 child_val = perf_event_count(child_event);
d859e29f
PM
13056
13057 /*
13058 * Add back the child's count to the parent's count:
13059 */
a6e6dea6 13060 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
13061 atomic64_add(child_event->total_time_enabled,
13062 &parent_event->child_total_time_enabled);
13063 atomic64_add(child_event->total_time_running,
13064 &parent_event->child_total_time_running);
d859e29f
PM
13065}
13066
9b51f66d 13067static void
ef54c1a4 13068perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
9b51f66d 13069{
ef54c1a4
PZ
13070 struct perf_event *parent_event = event->parent;
13071 unsigned long detach_flags = 0;
8ba289b8 13072
ef54c1a4
PZ
13073 if (parent_event) {
13074 /*
13075 * Do not destroy the 'original' grouping; because of the
13076 * context switch optimization the original events could've
13077 * ended up in a random child task.
13078 *
13079 * If we were to destroy the original group, all group related
13080 * operations would cease to function properly after this
13081 * random child dies.
13082 *
13083 * Do destroy all inherited groups, we don't care about those
13084 * and being thorough is better.
13085 */
13086 detach_flags = DETACH_GROUP | DETACH_CHILD;
13087 mutex_lock(&parent_event->child_mutex);
13088 }
32132a3d 13089
ef54c1a4
PZ
13090 perf_remove_from_context(event, detach_flags);
13091
13092 raw_spin_lock_irq(&ctx->lock);
13093 if (event->state > PERF_EVENT_STATE_EXIT)
13094 perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
13095 raw_spin_unlock_irq(&ctx->lock);
0cc0c027 13096
9b51f66d 13097 /*
ef54c1a4 13098 * Child events can be freed.
9b51f66d 13099 */
ef54c1a4
PZ
13100 if (parent_event) {
13101 mutex_unlock(&parent_event->child_mutex);
13102 /*
13103 * Kick perf_poll() for is_event_hup();
13104 */
13105 perf_event_wakeup(parent_event);
13106 free_event(event);
13107 put_event(parent_event);
8ba289b8 13108 return;
4bcf349a 13109 }
8ba289b8
PZ
13110
13111 /*
ef54c1a4 13112 * Parent events are governed by their filedesc, retain them.
8ba289b8 13113 */
ef54c1a4 13114 perf_event_wakeup(event);
9b51f66d
IM
13115}
13116
bd275681 13117static void perf_event_exit_task_context(struct task_struct *child)
9b51f66d 13118{
211de6eb 13119 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 13120 struct perf_event *child_event, *next;
63b6da39
PZ
13121
13122 WARN_ON_ONCE(child != current);
9b51f66d 13123
bd275681 13124 child_ctx = perf_pin_task_context(child);
63b6da39 13125 if (!child_ctx)
9b51f66d
IM
13126 return;
13127
ad3a37de 13128 /*
6a3351b6
PZ
13129 * In order to reduce the amount of tricky in ctx tear-down, we hold
13130 * ctx::mutex over the entire thing. This serializes against almost
13131 * everything that wants to access the ctx.
13132 *
13133 * The exception is sys_perf_event_open() /
13134 * perf_event_create_kernel_count() which does find_get_context()
13135 * without ctx::mutex (it cannot because of the move_group double mutex
13136 * lock thing). See the comments in perf_install_in_context().
ad3a37de 13137 */
6a3351b6 13138 mutex_lock(&child_ctx->mutex);
c93f7669
PM
13139
13140 /*
6a3351b6
PZ
13141 * In a single ctx::lock section, de-schedule the events and detach the
13142 * context from the task such that we cannot ever get it scheduled back
13143 * in.
c93f7669 13144 */
6a3351b6 13145 raw_spin_lock_irq(&child_ctx->lock);
bd275681 13146 task_ctx_sched_out(child_ctx, EVENT_ALL);
4a1c0f26 13147
71a851b4 13148 /*
63b6da39
PZ
13149 * Now that the context is inactive, destroy the task <-> ctx relation
13150 * and mark the context dead.
71a851b4 13151 */
bd275681 13152 RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
63b6da39
PZ
13153 put_ctx(child_ctx); /* cannot be last */
13154 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13155 put_task_struct(current); /* cannot be last */
4a1c0f26 13156
211de6eb 13157 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 13158 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 13159
211de6eb
PZ
13160 if (clone_ctx)
13161 put_ctx(clone_ctx);
4a1c0f26 13162
9f498cc5 13163 /*
cdd6c482
IM
13164 * Report the task dead after unscheduling the events so that we
13165 * won't get any samples after PERF_RECORD_EXIT. We can however still
13166 * get a few PERF_RECORD_READ events.
9f498cc5 13167 */
cdd6c482 13168 perf_event_task(child, child_ctx, 0);
a63eaf34 13169
ebf905fc 13170 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
ef54c1a4 13171 perf_event_exit_event(child_event, child_ctx);
8bc20959 13172
a63eaf34
PM
13173 mutex_unlock(&child_ctx->mutex);
13174
13175 put_ctx(child_ctx);
9b51f66d
IM
13176}
13177
8dc85d54
PZ
13178/*
13179 * When a child task exits, feed back event values to parent events.
79c9ce57 13180 *
f7cfd871 13181 * Can be called with exec_update_lock held when called from
96ecee29 13182 * setup_new_exec().
8dc85d54
PZ
13183 */
13184void perf_event_exit_task(struct task_struct *child)
13185{
8882135b 13186 struct perf_event *event, *tmp;
8dc85d54 13187
8882135b
PZ
13188 mutex_lock(&child->perf_event_mutex);
13189 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13190 owner_entry) {
13191 list_del_init(&event->owner_entry);
13192
13193 /*
13194 * Ensure the list deletion is visible before we clear
13195 * the owner, closes a race against perf_release() where
13196 * we need to serialize on the owner->perf_event_mutex.
13197 */
f47c02c0 13198 smp_store_release(&event->owner, NULL);
8882135b
PZ
13199 }
13200 mutex_unlock(&child->perf_event_mutex);
13201
bd275681 13202 perf_event_exit_task_context(child);
4e93ad60
JO
13203
13204 /*
13205 * The perf_event_exit_task_context calls perf_event_task
13206 * with child's task_ctx, which generates EXIT events for
13207 * child contexts and sets child->perf_event_ctxp[] to NULL.
13208 * At this point we need to send EXIT events to cpu contexts.
13209 */
13210 perf_event_task(child, NULL, 0);
8dc85d54
PZ
13211}
13212
889ff015
FW
13213static void perf_free_event(struct perf_event *event,
13214 struct perf_event_context *ctx)
13215{
13216 struct perf_event *parent = event->parent;
13217
13218 if (WARN_ON_ONCE(!parent))
13219 return;
13220
13221 mutex_lock(&parent->child_mutex);
13222 list_del_init(&event->child_list);
13223 mutex_unlock(&parent->child_mutex);
13224
a6fa941d 13225 put_event(parent);
889ff015 13226
652884fe 13227 raw_spin_lock_irq(&ctx->lock);
8a49542c 13228 perf_group_detach(event);
889ff015 13229 list_del_event(event, ctx);
652884fe 13230 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
13231 free_event(event);
13232}
13233
bbbee908 13234/*
1cf8dfe8
PZ
13235 * Free a context as created by inheritance by perf_event_init_task() below,
13236 * used by fork() in case of fail.
652884fe 13237 *
1cf8dfe8
PZ
13238 * Even though the task has never lived, the context and events have been
13239 * exposed through the child_list, so we must take care tearing it all down.
bbbee908 13240 */
cdd6c482 13241void perf_event_free_task(struct task_struct *task)
bbbee908 13242{
8dc85d54 13243 struct perf_event_context *ctx;
cdd6c482 13244 struct perf_event *event, *tmp;
bbbee908 13245
bd275681
PZ
13246 ctx = rcu_access_pointer(task->perf_event_ctxp);
13247 if (!ctx)
13248 return;
bbbee908 13249
bd275681
PZ
13250 mutex_lock(&ctx->mutex);
13251 raw_spin_lock_irq(&ctx->lock);
13252 /*
13253 * Destroy the task <-> ctx relation and mark the context dead.
13254 *
13255 * This is important because even though the task hasn't been
13256 * exposed yet the context has been (through child_list).
13257 */
13258 RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13259 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13260 put_task_struct(task); /* cannot be last */
13261 raw_spin_unlock_irq(&ctx->lock);
bbbee908 13262
bbbee908 13263
bd275681
PZ
13264 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13265 perf_free_event(event, ctx);
1cf8dfe8 13266
bd275681
PZ
13267 mutex_unlock(&ctx->mutex);
13268
13269 /*
13270 * perf_event_release_kernel() could've stolen some of our
13271 * child events and still have them on its free_list. In that
13272 * case we must wait for these events to have been freed (in
13273 * particular all their references to this task must've been
13274 * dropped).
13275 *
13276 * Without this copy_process() will unconditionally free this
13277 * task (irrespective of its reference count) and
13278 * _free_event()'s put_task_struct(event->hw.target) will be a
13279 * use-after-free.
13280 *
13281 * Wait for all events to drop their context reference.
13282 */
13283 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13284 put_ctx(ctx); /* must be last */
889ff015
FW
13285}
13286
4e231c79
PZ
13287void perf_event_delayed_put(struct task_struct *task)
13288{
bd275681 13289 WARN_ON_ONCE(task->perf_event_ctxp);
4e231c79
PZ
13290}
13291
e03e7ee3 13292struct file *perf_event_get(unsigned int fd)
ffe8690c 13293{
02e5ad97 13294 struct file *file = fget(fd);
e03e7ee3
AS
13295 if (!file)
13296 return ERR_PTR(-EBADF);
ffe8690c 13297
e03e7ee3
AS
13298 if (file->f_op != &perf_fops) {
13299 fput(file);
13300 return ERR_PTR(-EBADF);
13301 }
ffe8690c 13302
e03e7ee3 13303 return file;
ffe8690c
KX
13304}
13305
f8d959a5
YS
13306const struct perf_event *perf_get_event(struct file *file)
13307{
13308 if (file->f_op != &perf_fops)
13309 return ERR_PTR(-EINVAL);
13310
13311 return file->private_data;
13312}
13313
ffe8690c
KX
13314const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13315{
13316 if (!event)
13317 return ERR_PTR(-EINVAL);
13318
13319 return &event->attr;
13320}
13321
97dee4f3 13322/*
788faab7 13323 * Inherit an event from parent task to child task.
d8a8cfc7
PZ
13324 *
13325 * Returns:
13326 * - valid pointer on success
13327 * - NULL for orphaned events
13328 * - IS_ERR() on error
97dee4f3
PZ
13329 */
13330static struct perf_event *
13331inherit_event(struct perf_event *parent_event,
13332 struct task_struct *parent,
13333 struct perf_event_context *parent_ctx,
13334 struct task_struct *child,
13335 struct perf_event *group_leader,
13336 struct perf_event_context *child_ctx)
13337{
8ca2bd41 13338 enum perf_event_state parent_state = parent_event->state;
bd275681 13339 struct perf_event_pmu_context *pmu_ctx;
97dee4f3 13340 struct perf_event *child_event;
cee010ec 13341 unsigned long flags;
97dee4f3
PZ
13342
13343 /*
13344 * Instead of creating recursive hierarchies of events,
13345 * we link inherited events back to the original parent,
13346 * which has a filp for sure, which we use as the reference
13347 * count:
13348 */
13349 if (parent_event->parent)
13350 parent_event = parent_event->parent;
13351
13352 child_event = perf_event_alloc(&parent_event->attr,
13353 parent_event->cpu,
d580ff86 13354 child,
97dee4f3 13355 group_leader, parent_event,
79dff51e 13356 NULL, NULL, -1);
97dee4f3
PZ
13357 if (IS_ERR(child_event))
13358 return child_event;
a6fa941d 13359
bd275681 13360 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
c55bfbb3 13361 if (IS_ERR(pmu_ctx)) {
bd275681 13362 free_event(child_event);
e2d37148 13363 return ERR_CAST(pmu_ctx);
313ccb96 13364 }
bd275681 13365 child_event->pmu_ctx = pmu_ctx;
313ccb96 13366
c6e5b732
PZ
13367 /*
13368 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13369 * must be under the same lock in order to serialize against
13370 * perf_event_release_kernel(), such that either we must observe
13371 * is_orphaned_event() or they will observe us on the child_list.
13372 */
13373 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
13374 if (is_orphaned_event(parent_event) ||
13375 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 13376 mutex_unlock(&parent_event->child_mutex);
313ccb96 13377 /* task_ctx_data is freed with child_ctx */
a6fa941d
AV
13378 free_event(child_event);
13379 return NULL;
13380 }
13381
97dee4f3
PZ
13382 get_ctx(child_ctx);
13383
13384 /*
13385 * Make the child state follow the state of the parent event,
13386 * not its attr.disabled bit. We hold the parent's mutex,
13387 * so we won't race with perf_event_{en, dis}able_family.
13388 */
1929def9 13389 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
13390 child_event->state = PERF_EVENT_STATE_INACTIVE;
13391 else
13392 child_event->state = PERF_EVENT_STATE_OFF;
13393
13394 if (parent_event->attr.freq) {
13395 u64 sample_period = parent_event->hw.sample_period;
13396 struct hw_perf_event *hwc = &child_event->hw;
13397
13398 hwc->sample_period = sample_period;
13399 hwc->last_period = sample_period;
13400
13401 local64_set(&hwc->period_left, sample_period);
13402 }
13403
13404 child_event->ctx = child_ctx;
13405 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
13406 child_event->overflow_handler_context
13407 = parent_event->overflow_handler_context;
97dee4f3 13408
614b6780
TG
13409 /*
13410 * Precalculate sample_data sizes
13411 */
13412 perf_event__header_size(child_event);
6844c09d 13413 perf_event__id_header_size(child_event);
614b6780 13414
97dee4f3
PZ
13415 /*
13416 * Link it up in the child's context:
13417 */
cee010ec 13418 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 13419 add_event_to_ctx(child_event, child_ctx);
ef54c1a4 13420 child_event->attach_state |= PERF_ATTACH_CHILD;
cee010ec 13421 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 13422
97dee4f3
PZ
13423 /*
13424 * Link this into the parent event's child list
13425 */
97dee4f3
PZ
13426 list_add_tail(&child_event->child_list, &parent_event->child_list);
13427 mutex_unlock(&parent_event->child_mutex);
13428
13429 return child_event;
13430}
13431
d8a8cfc7
PZ
13432/*
13433 * Inherits an event group.
13434 *
13435 * This will quietly suppress orphaned events; !inherit_event() is not an error.
13436 * This matches with perf_event_release_kernel() removing all child events.
13437 *
13438 * Returns:
13439 * - 0 on success
13440 * - <0 on error
13441 */
97dee4f3
PZ
13442static int inherit_group(struct perf_event *parent_event,
13443 struct task_struct *parent,
13444 struct perf_event_context *parent_ctx,
13445 struct task_struct *child,
13446 struct perf_event_context *child_ctx)
13447{
13448 struct perf_event *leader;
13449 struct perf_event *sub;
13450 struct perf_event *child_ctr;
13451
13452 leader = inherit_event(parent_event, parent, parent_ctx,
13453 child, NULL, child_ctx);
13454 if (IS_ERR(leader))
13455 return PTR_ERR(leader);
d8a8cfc7
PZ
13456 /*
13457 * @leader can be NULL here because of is_orphaned_event(). In this
13458 * case inherit_event() will create individual events, similar to what
13459 * perf_group_detach() would do anyway.
13460 */
edb39592 13461 for_each_sibling_event(sub, parent_event) {
97dee4f3
PZ
13462 child_ctr = inherit_event(sub, parent, parent_ctx,
13463 child, leader, child_ctx);
13464 if (IS_ERR(child_ctr))
13465 return PTR_ERR(child_ctr);
f733c6b5 13466
00496fe5 13467 if (sub->aux_event == parent_event && child_ctr &&
f733c6b5
AS
13468 !perf_get_aux_event(child_ctr, leader))
13469 return -EINVAL;
97dee4f3 13470 }
a71ef314
PZ
13471 if (leader)
13472 leader->group_generation = parent_event->group_generation;
97dee4f3 13473 return 0;
889ff015
FW
13474}
13475
d8a8cfc7
PZ
13476/*
13477 * Creates the child task context and tries to inherit the event-group.
13478 *
13479 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13480 * inherited_all set when we 'fail' to inherit an orphaned event; this is
13481 * consistent with perf_event_release_kernel() removing all child events.
13482 *
13483 * Returns:
13484 * - 0 on success
13485 * - <0 on error
13486 */
889ff015
FW
13487static int
13488inherit_task_group(struct perf_event *event, struct task_struct *parent,
13489 struct perf_event_context *parent_ctx,
bd275681 13490 struct task_struct *child,
2b26f0aa 13491 u64 clone_flags, int *inherited_all)
889ff015 13492{
8dc85d54 13493 struct perf_event_context *child_ctx;
bd275681 13494 int ret;
889ff015 13495
2b26f0aa 13496 if (!event->attr.inherit ||
97ba62b2
ME
13497 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13498 /* Do not inherit if sigtrap and signal handlers were cleared. */
13499 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
889ff015
FW
13500 *inherited_all = 0;
13501 return 0;
bbbee908
PZ
13502 }
13503
bd275681 13504 child_ctx = child->perf_event_ctxp;
889ff015
FW
13505 if (!child_ctx) {
13506 /*
13507 * This is executed from the parent task context, so
13508 * inherit events that have been marked for cloning.
13509 * First allocate and initialize a context for the
13510 * child.
13511 */
bd275681 13512 child_ctx = alloc_perf_context(child);
889ff015
FW
13513 if (!child_ctx)
13514 return -ENOMEM;
bbbee908 13515
bd275681 13516 child->perf_event_ctxp = child_ctx;
889ff015
FW
13517 }
13518
bd275681 13519 ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
889ff015
FW
13520 if (ret)
13521 *inherited_all = 0;
13522
13523 return ret;
bbbee908
PZ
13524}
13525
9b51f66d 13526/*
cdd6c482 13527 * Initialize the perf_event context in task_struct
9b51f66d 13528 */
bd275681 13529static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
9b51f66d 13530{
889ff015 13531 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
13532 struct perf_event_context *cloned_ctx;
13533 struct perf_event *event;
9b51f66d 13534 struct task_struct *parent = current;
564c2b21 13535 int inherited_all = 1;
dddd3379 13536 unsigned long flags;
6ab423e0 13537 int ret = 0;
9b51f66d 13538
bd275681 13539 if (likely(!parent->perf_event_ctxp))
6ab423e0
PZ
13540 return 0;
13541
ad3a37de 13542 /*
25346b93
PM
13543 * If the parent's context is a clone, pin it so it won't get
13544 * swapped under us.
ad3a37de 13545 */
bd275681 13546 parent_ctx = perf_pin_task_context(parent);
ffb4ef21
PZ
13547 if (!parent_ctx)
13548 return 0;
25346b93 13549
ad3a37de
PM
13550 /*
13551 * No need to check if parent_ctx != NULL here; since we saw
13552 * it non-NULL earlier, the only reason for it to become NULL
13553 * is if we exit, and since we're currently in the middle of
13554 * a fork we can't be exiting at the same time.
13555 */
ad3a37de 13556
9b51f66d
IM
13557 /*
13558 * Lock the parent list. No need to lock the child - not PID
13559 * hashed yet and not running, so nobody can access it.
13560 */
d859e29f 13561 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
13562
13563 /*
13564 * We dont have to disable NMIs - we are only looking at
13565 * the list, not manipulating it:
13566 */
6e6804d2 13567 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
8dc85d54 13568 ret = inherit_task_group(event, parent, parent_ctx,
bd275681 13569 child, clone_flags, &inherited_all);
889ff015 13570 if (ret)
e7cc4865 13571 goto out_unlock;
889ff015 13572 }
b93f7978 13573
dddd3379
TG
13574 /*
13575 * We can't hold ctx->lock when iterating the ->flexible_group list due
13576 * to allocations, but we need to prevent rotation because
13577 * rotate_ctx() will change the list from interrupt context.
13578 */
13579 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13580 parent_ctx->rotate_disable = 1;
13581 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13582
6e6804d2 13583 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
8dc85d54 13584 ret = inherit_task_group(event, parent, parent_ctx,
bd275681 13585 child, clone_flags, &inherited_all);
889ff015 13586 if (ret)
e7cc4865 13587 goto out_unlock;
564c2b21
PM
13588 }
13589
dddd3379
TG
13590 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13591 parent_ctx->rotate_disable = 0;
dddd3379 13592
bd275681 13593 child_ctx = child->perf_event_ctxp;
889ff015 13594
05cbaa28 13595 if (child_ctx && inherited_all) {
564c2b21
PM
13596 /*
13597 * Mark the child context as a clone of the parent
13598 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
13599 *
13600 * Note that if the parent is a clone, the holding of
13601 * parent_ctx->lock avoids it from being uncloned.
564c2b21 13602 */
c5ed5145 13603 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
13604 if (cloned_ctx) {
13605 child_ctx->parent_ctx = cloned_ctx;
25346b93 13606 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
13607 } else {
13608 child_ctx->parent_ctx = parent_ctx;
13609 child_ctx->parent_gen = parent_ctx->generation;
13610 }
13611 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
13612 }
13613
c5ed5145 13614 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
e7cc4865 13615out_unlock:
d859e29f 13616 mutex_unlock(&parent_ctx->mutex);
6ab423e0 13617
25346b93 13618 perf_unpin_context(parent_ctx);
fe4b04fa 13619 put_ctx(parent_ctx);
ad3a37de 13620
6ab423e0 13621 return ret;
9b51f66d
IM
13622}
13623
8dc85d54
PZ
13624/*
13625 * Initialize the perf_event context in task_struct
13626 */
2b26f0aa 13627int perf_event_init_task(struct task_struct *child, u64 clone_flags)
8dc85d54 13628{
bd275681 13629 int ret;
8dc85d54 13630
bd275681 13631 child->perf_event_ctxp = NULL;
8550d7cb
ON
13632 mutex_init(&child->perf_event_mutex);
13633 INIT_LIST_HEAD(&child->perf_event_list);
13634
bd275681
PZ
13635 ret = perf_event_init_context(child, clone_flags);
13636 if (ret) {
13637 perf_event_free_task(child);
13638 return ret;
8dc85d54
PZ
13639 }
13640
13641 return 0;
13642}
13643
220b140b
PM
13644static void __init perf_event_init_all_cpus(void)
13645{
b28ab83c 13646 struct swevent_htable *swhash;
bd275681 13647 struct perf_cpu_context *cpuctx;
220b140b 13648 int cpu;
220b140b 13649
a63fbed7
TG
13650 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13651
220b140b 13652 for_each_possible_cpu(cpu) {
b28ab83c
PZ
13653 swhash = &per_cpu(swevent_htable, cpu);
13654 mutex_init(&swhash->hlist_mutex);
f2fb6bef
KL
13655
13656 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13657 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788 13658
a5398bff 13659 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
bd275681
PZ
13660
13661 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13662 __perf_event_init_context(&cpuctx->ctx);
13663 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
13664 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
13665 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
13666 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
13667 cpuctx->heap = cpuctx->heap_default;
220b140b
PM
13668 }
13669}
13670
d18bf422 13671static void perf_swevent_init_cpu(unsigned int cpu)
0793a61d 13672{
108b02cf 13673 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 13674
b28ab83c 13675 mutex_lock(&swhash->hlist_mutex);
059fcd8c 13676 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
13677 struct swevent_hlist *hlist;
13678
b28ab83c
PZ
13679 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13680 WARN_ON(!hlist);
13681 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 13682 }
b28ab83c 13683 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
13684}
13685
2965faa5 13686#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 13687static void __perf_event_exit_context(void *__info)
0793a61d 13688{
bd275681 13689 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
108b02cf 13690 struct perf_event_context *ctx = __info;
fae3fde6 13691 struct perf_event *event;
0793a61d 13692
fae3fde6 13693 raw_spin_lock(&ctx->lock);
bd275681 13694 ctx_sched_out(ctx, EVENT_TIME);
fae3fde6 13695 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 13696 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 13697 raw_spin_unlock(&ctx->lock);
0793a61d 13698}
108b02cf
PZ
13699
13700static void perf_event_exit_cpu_context(int cpu)
13701{
a63fbed7 13702 struct perf_cpu_context *cpuctx;
108b02cf 13703 struct perf_event_context *ctx;
108b02cf 13704
bd275681 13705 // XXX simplify cpuctx->online
a63fbed7 13706 mutex_lock(&pmus_lock);
bd275681
PZ
13707 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13708 ctx = &cpuctx->ctx;
108b02cf 13709
bd275681
PZ
13710 mutex_lock(&ctx->mutex);
13711 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13712 cpuctx->online = 0;
13713 mutex_unlock(&ctx->mutex);
a63fbed7
TG
13714 cpumask_clear_cpu(cpu, perf_online_mask);
13715 mutex_unlock(&pmus_lock);
108b02cf 13716}
00e16c3d
TG
13717#else
13718
13719static void perf_event_exit_cpu_context(int cpu) { }
13720
13721#endif
108b02cf 13722
a63fbed7
TG
13723int perf_event_init_cpu(unsigned int cpu)
13724{
13725 struct perf_cpu_context *cpuctx;
13726 struct perf_event_context *ctx;
a63fbed7
TG
13727
13728 perf_swevent_init_cpu(cpu);
13729
13730 mutex_lock(&pmus_lock);
13731 cpumask_set_cpu(cpu, perf_online_mask);
bd275681
PZ
13732 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13733 ctx = &cpuctx->ctx;
a63fbed7 13734
bd275681
PZ
13735 mutex_lock(&ctx->mutex);
13736 cpuctx->online = 1;
13737 mutex_unlock(&ctx->mutex);
a63fbed7
TG
13738 mutex_unlock(&pmus_lock);
13739
13740 return 0;
13741}
13742
00e16c3d 13743int perf_event_exit_cpu(unsigned int cpu)
0793a61d 13744{
e3703f8c 13745 perf_event_exit_cpu_context(cpu);
00e16c3d 13746 return 0;
0793a61d 13747}
0793a61d 13748
c277443c
PZ
13749static int
13750perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13751{
13752 int cpu;
13753
13754 for_each_online_cpu(cpu)
13755 perf_event_exit_cpu(cpu);
13756
13757 return NOTIFY_OK;
13758}
13759
13760/*
13761 * Run the perf reboot notifier at the very last possible moment so that
13762 * the generic watchdog code runs as long as possible.
13763 */
13764static struct notifier_block perf_reboot_notifier = {
13765 .notifier_call = perf_reboot,
13766 .priority = INT_MIN,
13767};
13768
cdd6c482 13769void __init perf_event_init(void)
0793a61d 13770{
3c502e7a
JW
13771 int ret;
13772
2e80a82a
PZ
13773 idr_init(&pmu_idr);
13774
220b140b 13775 perf_event_init_all_cpus();
b0a873eb 13776 init_srcu_struct(&pmus_srcu);
2e80a82a 13777 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
0d6d062c
RB
13778 perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
13779 perf_pmu_register(&perf_task_clock, "task_clock", -1);
b0a873eb 13780 perf_tp_register();
00e16c3d 13781 perf_event_init_cpu(smp_processor_id());
c277443c 13782 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
13783
13784 ret = init_hw_breakpoint();
13785 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 13786
bdacfaf2
NK
13787 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13788
b01c3a00
JO
13789 /*
13790 * Build time assertion that we keep the data_head at the intended
13791 * location. IOW, validation we got the __reserved[] size right.
13792 */
13793 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13794 != 1024);
0793a61d 13795}
abe43400 13796
fd979c01
CS
13797ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13798 char *page)
13799{
13800 struct perf_pmu_events_attr *pmu_attr =
13801 container_of(attr, struct perf_pmu_events_attr, attr);
13802
13803 if (pmu_attr->event_str)
13804 return sprintf(page, "%s\n", pmu_attr->event_str);
13805
13806 return 0;
13807}
675965b0 13808EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 13809
abe43400
PZ
13810static int __init perf_event_sysfs_init(void)
13811{
13812 struct pmu *pmu;
13813 int ret;
13814
13815 mutex_lock(&pmus_lock);
13816
13817 ret = bus_register(&pmu_bus);
13818 if (ret)
13819 goto unlock;
13820
13821 list_for_each_entry(pmu, &pmus, entry) {
0d6d062c 13822 if (pmu->dev)
abe43400
PZ
13823 continue;
13824
13825 ret = pmu_dev_alloc(pmu);
13826 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13827 }
13828 pmu_bus_running = 1;
13829 ret = 0;
13830
13831unlock:
13832 mutex_unlock(&pmus_lock);
13833
13834 return ret;
13835}
13836device_initcall(perf_event_sysfs_init);
e5d1367f
SE
13837
13838#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
13839static struct cgroup_subsys_state *
13840perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
13841{
13842 struct perf_cgroup *jc;
e5d1367f 13843
1b15d055 13844 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
13845 if (!jc)
13846 return ERR_PTR(-ENOMEM);
13847
e5d1367f
SE
13848 jc->info = alloc_percpu(struct perf_cgroup_info);
13849 if (!jc->info) {
13850 kfree(jc);
13851 return ERR_PTR(-ENOMEM);
13852 }
13853
e5d1367f
SE
13854 return &jc->css;
13855}
13856
eb95419b 13857static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 13858{
eb95419b
TH
13859 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13860
e5d1367f
SE
13861 free_percpu(jc->info);
13862 kfree(jc);
13863}
13864
96aaab68
NK
13865static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13866{
13867 perf_event_cgroup(css->cgroup);
13868 return 0;
13869}
13870
e5d1367f
SE
13871static int __perf_cgroup_move(void *info)
13872{
13873 struct task_struct *task = info;
bd275681
PZ
13874
13875 preempt_disable();
f841b682 13876 perf_cgroup_switch(task);
bd275681
PZ
13877 preempt_enable();
13878
e5d1367f
SE
13879 return 0;
13880}
13881
1f7dd3e5 13882static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 13883{
bb9d97b6 13884 struct task_struct *task;
1f7dd3e5 13885 struct cgroup_subsys_state *css;
bb9d97b6 13886
1f7dd3e5 13887 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 13888 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
13889}
13890
073219e9 13891struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
13892 .css_alloc = perf_cgroup_css_alloc,
13893 .css_free = perf_cgroup_css_free,
96aaab68 13894 .css_online = perf_cgroup_css_online,
bb9d97b6 13895 .attach = perf_cgroup_attach,
968ebff1
TH
13896 /*
13897 * Implicitly enable on dfl hierarchy so that perf events can
13898 * always be filtered by cgroup2 path as long as perf_event
13899 * controller is not mounted on a legacy hierarchy.
13900 */
13901 .implicit_on_dfl = true,
8cfd8147 13902 .threaded = true,
e5d1367f
SE
13903};
13904#endif /* CONFIG_CGROUP_PERF */
c22ac2a3
SL
13905
13906DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);