perf: Add data_{offset,size} to user_page
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
6fb2915d 39#include <linux/ftrace_event.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
0793a61d 47
76369139
FW
48#include "internal.h"
49
4e193bd4
TB
50#include <asm/irq_regs.h>
51
fadfe7be
JO
52static struct workqueue_struct *perf_wq;
53
fe4b04fa 54struct remote_function_call {
e7e7ee2e
IM
55 struct task_struct *p;
56 int (*func)(void *info);
57 void *info;
58 int ret;
fe4b04fa
PZ
59};
60
61static void remote_function(void *data)
62{
63 struct remote_function_call *tfc = data;
64 struct task_struct *p = tfc->p;
65
66 if (p) {
67 tfc->ret = -EAGAIN;
68 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
69 return;
70 }
71
72 tfc->ret = tfc->func(tfc->info);
73}
74
75/**
76 * task_function_call - call a function on the cpu on which a task runs
77 * @p: the task to evaluate
78 * @func: the function to be called
79 * @info: the function call argument
80 *
81 * Calls the function @func when the task is currently running. This might
82 * be on the current CPU, which just calls the function directly
83 *
84 * returns: @func return value, or
85 * -ESRCH - when the process isn't running
86 * -EAGAIN - when the process moved away
87 */
88static int
89task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
90{
91 struct remote_function_call data = {
e7e7ee2e
IM
92 .p = p,
93 .func = func,
94 .info = info,
95 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
96 };
97
98 if (task_curr(p))
99 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
100
101 return data.ret;
102}
103
104/**
105 * cpu_function_call - call a function on the cpu
106 * @func: the function to be called
107 * @info: the function call argument
108 *
109 * Calls the function @func on the remote cpu.
110 *
111 * returns: @func return value or -ENXIO when the cpu is offline
112 */
113static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
114{
115 struct remote_function_call data = {
e7e7ee2e
IM
116 .p = NULL,
117 .func = func,
118 .info = info,
119 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
120 };
121
122 smp_call_function_single(cpu, remote_function, &data, 1);
123
124 return data.ret;
125}
126
f8697762
JO
127#define EVENT_OWNER_KERNEL ((void *) -1)
128
129static bool is_kernel_event(struct perf_event *event)
130{
131 return event->owner == EVENT_OWNER_KERNEL;
132}
133
e5d1367f
SE
134#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
135 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
136 PERF_FLAG_PID_CGROUP |\
137 PERF_FLAG_FD_CLOEXEC)
e5d1367f 138
bce38cd5
SE
139/*
140 * branch priv levels that need permission checks
141 */
142#define PERF_SAMPLE_BRANCH_PERM_PLM \
143 (PERF_SAMPLE_BRANCH_KERNEL |\
144 PERF_SAMPLE_BRANCH_HV)
145
0b3fcf17
SE
146enum event_type_t {
147 EVENT_FLEXIBLE = 0x1,
148 EVENT_PINNED = 0x2,
149 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
150};
151
e5d1367f
SE
152/*
153 * perf_sched_events : >0 events exist
154 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
155 */
c5905afb 156struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 157static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 158static DEFINE_PER_CPU(int, perf_sched_cb_usages);
e5d1367f 159
cdd6c482
IM
160static atomic_t nr_mmap_events __read_mostly;
161static atomic_t nr_comm_events __read_mostly;
162static atomic_t nr_task_events __read_mostly;
948b26b6 163static atomic_t nr_freq_events __read_mostly;
9ee318a7 164
108b02cf
PZ
165static LIST_HEAD(pmus);
166static DEFINE_MUTEX(pmus_lock);
167static struct srcu_struct pmus_srcu;
168
0764771d 169/*
cdd6c482 170 * perf event paranoia level:
0fbdea19
IM
171 * -1 - not paranoid at all
172 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 173 * 1 - disallow cpu events for unpriv
0fbdea19 174 * 2 - disallow kernel profiling for unpriv
0764771d 175 */
cdd6c482 176int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 177
20443384
FW
178/* Minimum for 512 kiB + 1 user control page */
179int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
180
181/*
cdd6c482 182 * max perf event sample rate
df58ab24 183 */
14c63f17
DH
184#define DEFAULT_MAX_SAMPLE_RATE 100000
185#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
186#define DEFAULT_CPU_TIME_MAX_PERCENT 25
187
188int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
189
190static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
191static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
192
d9494cb4
PZ
193static int perf_sample_allowed_ns __read_mostly =
194 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17
DH
195
196void update_perf_cpu_limits(void)
197{
198 u64 tmp = perf_sample_period_ns;
199
200 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 201 do_div(tmp, 100);
d9494cb4 202 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
14c63f17 203}
163ec435 204
9e630205
SE
205static int perf_rotate_context(struct perf_cpu_context *cpuctx);
206
163ec435
PZ
207int perf_proc_update_handler(struct ctl_table *table, int write,
208 void __user *buffer, size_t *lenp,
209 loff_t *ppos)
210{
723478c8 211 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
212
213 if (ret || !write)
214 return ret;
215
216 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
217 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
218 update_perf_cpu_limits();
219
220 return 0;
221}
222
223int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
224
225int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
226 void __user *buffer, size_t *lenp,
227 loff_t *ppos)
228{
229 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
230
231 if (ret || !write)
232 return ret;
233
234 update_perf_cpu_limits();
163ec435
PZ
235
236 return 0;
237}
1ccd1549 238
14c63f17
DH
239/*
240 * perf samples are done in some very critical code paths (NMIs).
241 * If they take too much CPU time, the system can lock up and not
242 * get any real work done. This will drop the sample rate when
243 * we detect that events are taking too long.
244 */
245#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 246static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 247
6a02ad66 248static void perf_duration_warn(struct irq_work *w)
14c63f17 249{
6a02ad66 250 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
14c63f17 251 u64 avg_local_sample_len;
e5302920 252 u64 local_samples_len;
6a02ad66 253
4a32fea9 254 local_samples_len = __this_cpu_read(running_sample_length);
6a02ad66
PZ
255 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
256
257 printk_ratelimited(KERN_WARNING
258 "perf interrupt took too long (%lld > %lld), lowering "
259 "kernel.perf_event_max_sample_rate to %d\n",
cd578abb 260 avg_local_sample_len, allowed_ns >> 1,
6a02ad66
PZ
261 sysctl_perf_event_sample_rate);
262}
263
264static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
265
266void perf_sample_event_took(u64 sample_len_ns)
267{
d9494cb4 268 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
6a02ad66
PZ
269 u64 avg_local_sample_len;
270 u64 local_samples_len;
14c63f17 271
d9494cb4 272 if (allowed_ns == 0)
14c63f17
DH
273 return;
274
275 /* decay the counter by 1 average sample */
4a32fea9 276 local_samples_len = __this_cpu_read(running_sample_length);
14c63f17
DH
277 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
278 local_samples_len += sample_len_ns;
4a32fea9 279 __this_cpu_write(running_sample_length, local_samples_len);
14c63f17
DH
280
281 /*
282 * note: this will be biased artifically low until we have
283 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
284 * from having to maintain a count.
285 */
286 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
287
d9494cb4 288 if (avg_local_sample_len <= allowed_ns)
14c63f17
DH
289 return;
290
291 if (max_samples_per_tick <= 1)
292 return;
293
294 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
295 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
296 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
297
14c63f17 298 update_perf_cpu_limits();
6a02ad66 299
cd578abb
PZ
300 if (!irq_work_queue(&perf_duration_work)) {
301 early_printk("perf interrupt took too long (%lld > %lld), lowering "
302 "kernel.perf_event_max_sample_rate to %d\n",
303 avg_local_sample_len, allowed_ns >> 1,
304 sysctl_perf_event_sample_rate);
305 }
14c63f17
DH
306}
307
cdd6c482 308static atomic64_t perf_event_id;
a96bbc16 309
0b3fcf17
SE
310static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
311 enum event_type_t event_type);
312
313static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
314 enum event_type_t event_type,
315 struct task_struct *task);
316
317static void update_context_time(struct perf_event_context *ctx);
318static u64 perf_event_time(struct perf_event *event);
0b3fcf17 319
cdd6c482 320void __weak perf_event_print_debug(void) { }
0793a61d 321
84c79910 322extern __weak const char *perf_pmu_name(void)
0793a61d 323{
84c79910 324 return "pmu";
0793a61d
TG
325}
326
0b3fcf17
SE
327static inline u64 perf_clock(void)
328{
329 return local_clock();
330}
331
34f43927
PZ
332static inline u64 perf_event_clock(struct perf_event *event)
333{
334 return event->clock();
335}
336
e5d1367f
SE
337static inline struct perf_cpu_context *
338__get_cpu_context(struct perf_event_context *ctx)
339{
340 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
341}
342
facc4307
PZ
343static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
344 struct perf_event_context *ctx)
345{
346 raw_spin_lock(&cpuctx->ctx.lock);
347 if (ctx)
348 raw_spin_lock(&ctx->lock);
349}
350
351static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
352 struct perf_event_context *ctx)
353{
354 if (ctx)
355 raw_spin_unlock(&ctx->lock);
356 raw_spin_unlock(&cpuctx->ctx.lock);
357}
358
e5d1367f
SE
359#ifdef CONFIG_CGROUP_PERF
360
e5d1367f
SE
361static inline bool
362perf_cgroup_match(struct perf_event *event)
363{
364 struct perf_event_context *ctx = event->ctx;
365 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
366
ef824fa1
TH
367 /* @event doesn't care about cgroup */
368 if (!event->cgrp)
369 return true;
370
371 /* wants specific cgroup scope but @cpuctx isn't associated with any */
372 if (!cpuctx->cgrp)
373 return false;
374
375 /*
376 * Cgroup scoping is recursive. An event enabled for a cgroup is
377 * also enabled for all its descendant cgroups. If @cpuctx's
378 * cgroup is a descendant of @event's (the test covers identity
379 * case), it's a match.
380 */
381 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
382 event->cgrp->css.cgroup);
e5d1367f
SE
383}
384
e5d1367f
SE
385static inline void perf_detach_cgroup(struct perf_event *event)
386{
4e2ba650 387 css_put(&event->cgrp->css);
e5d1367f
SE
388 event->cgrp = NULL;
389}
390
391static inline int is_cgroup_event(struct perf_event *event)
392{
393 return event->cgrp != NULL;
394}
395
396static inline u64 perf_cgroup_event_time(struct perf_event *event)
397{
398 struct perf_cgroup_info *t;
399
400 t = per_cpu_ptr(event->cgrp->info, event->cpu);
401 return t->time;
402}
403
404static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
405{
406 struct perf_cgroup_info *info;
407 u64 now;
408
409 now = perf_clock();
410
411 info = this_cpu_ptr(cgrp->info);
412
413 info->time += now - info->timestamp;
414 info->timestamp = now;
415}
416
417static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
418{
419 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
420 if (cgrp_out)
421 __update_cgrp_time(cgrp_out);
422}
423
424static inline void update_cgrp_time_from_event(struct perf_event *event)
425{
3f7cce3c
SE
426 struct perf_cgroup *cgrp;
427
e5d1367f 428 /*
3f7cce3c
SE
429 * ensure we access cgroup data only when needed and
430 * when we know the cgroup is pinned (css_get)
e5d1367f 431 */
3f7cce3c 432 if (!is_cgroup_event(event))
e5d1367f
SE
433 return;
434
3f7cce3c
SE
435 cgrp = perf_cgroup_from_task(current);
436 /*
437 * Do not update time when cgroup is not active
438 */
439 if (cgrp == event->cgrp)
440 __update_cgrp_time(event->cgrp);
e5d1367f
SE
441}
442
443static inline void
3f7cce3c
SE
444perf_cgroup_set_timestamp(struct task_struct *task,
445 struct perf_event_context *ctx)
e5d1367f
SE
446{
447 struct perf_cgroup *cgrp;
448 struct perf_cgroup_info *info;
449
3f7cce3c
SE
450 /*
451 * ctx->lock held by caller
452 * ensure we do not access cgroup data
453 * unless we have the cgroup pinned (css_get)
454 */
455 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
456 return;
457
458 cgrp = perf_cgroup_from_task(task);
459 info = this_cpu_ptr(cgrp->info);
3f7cce3c 460 info->timestamp = ctx->timestamp;
e5d1367f
SE
461}
462
463#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
464#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
465
466/*
467 * reschedule events based on the cgroup constraint of task.
468 *
469 * mode SWOUT : schedule out everything
470 * mode SWIN : schedule in based on cgroup for next
471 */
472void perf_cgroup_switch(struct task_struct *task, int mode)
473{
474 struct perf_cpu_context *cpuctx;
475 struct pmu *pmu;
476 unsigned long flags;
477
478 /*
479 * disable interrupts to avoid geting nr_cgroup
480 * changes via __perf_event_disable(). Also
481 * avoids preemption.
482 */
483 local_irq_save(flags);
484
485 /*
486 * we reschedule only in the presence of cgroup
487 * constrained events.
488 */
489 rcu_read_lock();
490
491 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 492 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
493 if (cpuctx->unique_pmu != pmu)
494 continue; /* ensure we process each cpuctx once */
e5d1367f 495
e5d1367f
SE
496 /*
497 * perf_cgroup_events says at least one
498 * context on this CPU has cgroup events.
499 *
500 * ctx->nr_cgroups reports the number of cgroup
501 * events for a context.
502 */
503 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
504 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
505 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
506
507 if (mode & PERF_CGROUP_SWOUT) {
508 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
509 /*
510 * must not be done before ctxswout due
511 * to event_filter_match() in event_sched_out()
512 */
513 cpuctx->cgrp = NULL;
514 }
515
516 if (mode & PERF_CGROUP_SWIN) {
e566b76e 517 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
518 /*
519 * set cgrp before ctxsw in to allow
520 * event_filter_match() to not have to pass
521 * task around
e5d1367f
SE
522 */
523 cpuctx->cgrp = perf_cgroup_from_task(task);
524 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
525 }
facc4307
PZ
526 perf_pmu_enable(cpuctx->ctx.pmu);
527 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 528 }
e5d1367f
SE
529 }
530
531 rcu_read_unlock();
532
533 local_irq_restore(flags);
534}
535
a8d757ef
SE
536static inline void perf_cgroup_sched_out(struct task_struct *task,
537 struct task_struct *next)
e5d1367f 538{
a8d757ef
SE
539 struct perf_cgroup *cgrp1;
540 struct perf_cgroup *cgrp2 = NULL;
541
542 /*
543 * we come here when we know perf_cgroup_events > 0
544 */
545 cgrp1 = perf_cgroup_from_task(task);
546
547 /*
548 * next is NULL when called from perf_event_enable_on_exec()
549 * that will systematically cause a cgroup_switch()
550 */
551 if (next)
552 cgrp2 = perf_cgroup_from_task(next);
553
554 /*
555 * only schedule out current cgroup events if we know
556 * that we are switching to a different cgroup. Otherwise,
557 * do no touch the cgroup events.
558 */
559 if (cgrp1 != cgrp2)
560 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
561}
562
a8d757ef
SE
563static inline void perf_cgroup_sched_in(struct task_struct *prev,
564 struct task_struct *task)
e5d1367f 565{
a8d757ef
SE
566 struct perf_cgroup *cgrp1;
567 struct perf_cgroup *cgrp2 = NULL;
568
569 /*
570 * we come here when we know perf_cgroup_events > 0
571 */
572 cgrp1 = perf_cgroup_from_task(task);
573
574 /* prev can never be NULL */
575 cgrp2 = perf_cgroup_from_task(prev);
576
577 /*
578 * only need to schedule in cgroup events if we are changing
579 * cgroup during ctxsw. Cgroup events were not scheduled
580 * out of ctxsw out if that was not the case.
581 */
582 if (cgrp1 != cgrp2)
583 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
584}
585
586static inline int perf_cgroup_connect(int fd, struct perf_event *event,
587 struct perf_event_attr *attr,
588 struct perf_event *group_leader)
589{
590 struct perf_cgroup *cgrp;
591 struct cgroup_subsys_state *css;
2903ff01
AV
592 struct fd f = fdget(fd);
593 int ret = 0;
e5d1367f 594
2903ff01 595 if (!f.file)
e5d1367f
SE
596 return -EBADF;
597
b583043e 598 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 599 &perf_event_cgrp_subsys);
3db272c0
LZ
600 if (IS_ERR(css)) {
601 ret = PTR_ERR(css);
602 goto out;
603 }
e5d1367f
SE
604
605 cgrp = container_of(css, struct perf_cgroup, css);
606 event->cgrp = cgrp;
607
608 /*
609 * all events in a group must monitor
610 * the same cgroup because a task belongs
611 * to only one perf cgroup at a time
612 */
613 if (group_leader && group_leader->cgrp != cgrp) {
614 perf_detach_cgroup(event);
615 ret = -EINVAL;
e5d1367f 616 }
3db272c0 617out:
2903ff01 618 fdput(f);
e5d1367f
SE
619 return ret;
620}
621
622static inline void
623perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
624{
625 struct perf_cgroup_info *t;
626 t = per_cpu_ptr(event->cgrp->info, event->cpu);
627 event->shadow_ctx_time = now - t->timestamp;
628}
629
630static inline void
631perf_cgroup_defer_enabled(struct perf_event *event)
632{
633 /*
634 * when the current task's perf cgroup does not match
635 * the event's, we need to remember to call the
636 * perf_mark_enable() function the first time a task with
637 * a matching perf cgroup is scheduled in.
638 */
639 if (is_cgroup_event(event) && !perf_cgroup_match(event))
640 event->cgrp_defer_enabled = 1;
641}
642
643static inline void
644perf_cgroup_mark_enabled(struct perf_event *event,
645 struct perf_event_context *ctx)
646{
647 struct perf_event *sub;
648 u64 tstamp = perf_event_time(event);
649
650 if (!event->cgrp_defer_enabled)
651 return;
652
653 event->cgrp_defer_enabled = 0;
654
655 event->tstamp_enabled = tstamp - event->total_time_enabled;
656 list_for_each_entry(sub, &event->sibling_list, group_entry) {
657 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
658 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
659 sub->cgrp_defer_enabled = 0;
660 }
661 }
662}
663#else /* !CONFIG_CGROUP_PERF */
664
665static inline bool
666perf_cgroup_match(struct perf_event *event)
667{
668 return true;
669}
670
671static inline void perf_detach_cgroup(struct perf_event *event)
672{}
673
674static inline int is_cgroup_event(struct perf_event *event)
675{
676 return 0;
677}
678
679static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
680{
681 return 0;
682}
683
684static inline void update_cgrp_time_from_event(struct perf_event *event)
685{
686}
687
688static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
689{
690}
691
a8d757ef
SE
692static inline void perf_cgroup_sched_out(struct task_struct *task,
693 struct task_struct *next)
e5d1367f
SE
694{
695}
696
a8d757ef
SE
697static inline void perf_cgroup_sched_in(struct task_struct *prev,
698 struct task_struct *task)
e5d1367f
SE
699{
700}
701
702static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
703 struct perf_event_attr *attr,
704 struct perf_event *group_leader)
705{
706 return -EINVAL;
707}
708
709static inline void
3f7cce3c
SE
710perf_cgroup_set_timestamp(struct task_struct *task,
711 struct perf_event_context *ctx)
e5d1367f
SE
712{
713}
714
715void
716perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
717{
718}
719
720static inline void
721perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
722{
723}
724
725static inline u64 perf_cgroup_event_time(struct perf_event *event)
726{
727 return 0;
728}
729
730static inline void
731perf_cgroup_defer_enabled(struct perf_event *event)
732{
733}
734
735static inline void
736perf_cgroup_mark_enabled(struct perf_event *event,
737 struct perf_event_context *ctx)
738{
739}
740#endif
741
9e630205
SE
742/*
743 * set default to be dependent on timer tick just
744 * like original code
745 */
746#define PERF_CPU_HRTIMER (1000 / HZ)
747/*
748 * function must be called with interrupts disbled
749 */
750static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
751{
752 struct perf_cpu_context *cpuctx;
753 enum hrtimer_restart ret = HRTIMER_NORESTART;
754 int rotations = 0;
755
756 WARN_ON(!irqs_disabled());
757
758 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
759
760 rotations = perf_rotate_context(cpuctx);
761
762 /*
763 * arm timer if needed
764 */
765 if (rotations) {
766 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
767 ret = HRTIMER_RESTART;
768 }
769
770 return ret;
771}
772
773/* CPU is going down */
774void perf_cpu_hrtimer_cancel(int cpu)
775{
776 struct perf_cpu_context *cpuctx;
777 struct pmu *pmu;
778 unsigned long flags;
779
780 if (WARN_ON(cpu != smp_processor_id()))
781 return;
782
783 local_irq_save(flags);
784
785 rcu_read_lock();
786
787 list_for_each_entry_rcu(pmu, &pmus, entry) {
788 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
789
790 if (pmu->task_ctx_nr == perf_sw_context)
791 continue;
792
793 hrtimer_cancel(&cpuctx->hrtimer);
794 }
795
796 rcu_read_unlock();
797
798 local_irq_restore(flags);
799}
800
801static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
802{
803 struct hrtimer *hr = &cpuctx->hrtimer;
804 struct pmu *pmu = cpuctx->ctx.pmu;
62b85639 805 int timer;
9e630205
SE
806
807 /* no multiplexing needed for SW PMU */
808 if (pmu->task_ctx_nr == perf_sw_context)
809 return;
810
62b85639
SE
811 /*
812 * check default is sane, if not set then force to
813 * default interval (1/tick)
814 */
815 timer = pmu->hrtimer_interval_ms;
816 if (timer < 1)
817 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
818
819 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9e630205
SE
820
821 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
822 hr->function = perf_cpu_hrtimer_handler;
823}
824
825static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
826{
827 struct hrtimer *hr = &cpuctx->hrtimer;
828 struct pmu *pmu = cpuctx->ctx.pmu;
829
830 /* not for SW PMU */
831 if (pmu->task_ctx_nr == perf_sw_context)
832 return;
833
834 if (hrtimer_active(hr))
835 return;
836
837 if (!hrtimer_callback_running(hr))
838 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
839 0, HRTIMER_MODE_REL_PINNED, 0);
840}
841
33696fc0 842void perf_pmu_disable(struct pmu *pmu)
9e35ad38 843{
33696fc0
PZ
844 int *count = this_cpu_ptr(pmu->pmu_disable_count);
845 if (!(*count)++)
846 pmu->pmu_disable(pmu);
9e35ad38 847}
9e35ad38 848
33696fc0 849void perf_pmu_enable(struct pmu *pmu)
9e35ad38 850{
33696fc0
PZ
851 int *count = this_cpu_ptr(pmu->pmu_disable_count);
852 if (!--(*count))
853 pmu->pmu_enable(pmu);
9e35ad38 854}
9e35ad38 855
2fde4f94 856static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
857
858/*
2fde4f94
MR
859 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
860 * perf_event_task_tick() are fully serialized because they're strictly cpu
861 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
862 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 863 */
2fde4f94 864static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 865{
2fde4f94 866 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 867
e9d2b064 868 WARN_ON(!irqs_disabled());
b5ab4cd5 869
2fde4f94
MR
870 WARN_ON(!list_empty(&ctx->active_ctx_list));
871
872 list_add(&ctx->active_ctx_list, head);
873}
874
875static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
876{
877 WARN_ON(!irqs_disabled());
878
879 WARN_ON(list_empty(&ctx->active_ctx_list));
880
881 list_del_init(&ctx->active_ctx_list);
9e35ad38 882}
9e35ad38 883
cdd6c482 884static void get_ctx(struct perf_event_context *ctx)
a63eaf34 885{
e5289d4a 886 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
887}
888
4af57ef2
YZ
889static void free_ctx(struct rcu_head *head)
890{
891 struct perf_event_context *ctx;
892
893 ctx = container_of(head, struct perf_event_context, rcu_head);
894 kfree(ctx->task_ctx_data);
895 kfree(ctx);
896}
897
cdd6c482 898static void put_ctx(struct perf_event_context *ctx)
a63eaf34 899{
564c2b21
PM
900 if (atomic_dec_and_test(&ctx->refcount)) {
901 if (ctx->parent_ctx)
902 put_ctx(ctx->parent_ctx);
c93f7669
PM
903 if (ctx->task)
904 put_task_struct(ctx->task);
4af57ef2 905 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 906 }
a63eaf34
PM
907}
908
f63a8daa
PZ
909/*
910 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
911 * perf_pmu_migrate_context() we need some magic.
912 *
913 * Those places that change perf_event::ctx will hold both
914 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
915 *
916 * Lock ordering is by mutex address. There is one other site where
917 * perf_event_context::mutex nests and that is put_event(). But remember that
918 * that is a parent<->child context relation, and migration does not affect
919 * children, therefore these two orderings should not interact.
920 *
921 * The change in perf_event::ctx does not affect children (as claimed above)
922 * because the sys_perf_event_open() case will install a new event and break
923 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
924 * concerned with cpuctx and that doesn't have children.
925 *
926 * The places that change perf_event::ctx will issue:
927 *
928 * perf_remove_from_context();
929 * synchronize_rcu();
930 * perf_install_in_context();
931 *
932 * to affect the change. The remove_from_context() + synchronize_rcu() should
933 * quiesce the event, after which we can install it in the new location. This
934 * means that only external vectors (perf_fops, prctl) can perturb the event
935 * while in transit. Therefore all such accessors should also acquire
936 * perf_event_context::mutex to serialize against this.
937 *
938 * However; because event->ctx can change while we're waiting to acquire
939 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
940 * function.
941 *
942 * Lock order:
943 * task_struct::perf_event_mutex
944 * perf_event_context::mutex
945 * perf_event_context::lock
946 * perf_event::child_mutex;
947 * perf_event::mmap_mutex
948 * mmap_sem
949 */
a83fe28e
PZ
950static struct perf_event_context *
951perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
952{
953 struct perf_event_context *ctx;
954
955again:
956 rcu_read_lock();
957 ctx = ACCESS_ONCE(event->ctx);
958 if (!atomic_inc_not_zero(&ctx->refcount)) {
959 rcu_read_unlock();
960 goto again;
961 }
962 rcu_read_unlock();
963
a83fe28e 964 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
965 if (event->ctx != ctx) {
966 mutex_unlock(&ctx->mutex);
967 put_ctx(ctx);
968 goto again;
969 }
970
971 return ctx;
972}
973
a83fe28e
PZ
974static inline struct perf_event_context *
975perf_event_ctx_lock(struct perf_event *event)
976{
977 return perf_event_ctx_lock_nested(event, 0);
978}
979
f63a8daa
PZ
980static void perf_event_ctx_unlock(struct perf_event *event,
981 struct perf_event_context *ctx)
982{
983 mutex_unlock(&ctx->mutex);
984 put_ctx(ctx);
985}
986
211de6eb
PZ
987/*
988 * This must be done under the ctx->lock, such as to serialize against
989 * context_equiv(), therefore we cannot call put_ctx() since that might end up
990 * calling scheduler related locks and ctx->lock nests inside those.
991 */
992static __must_check struct perf_event_context *
993unclone_ctx(struct perf_event_context *ctx)
71a851b4 994{
211de6eb
PZ
995 struct perf_event_context *parent_ctx = ctx->parent_ctx;
996
997 lockdep_assert_held(&ctx->lock);
998
999 if (parent_ctx)
71a851b4 1000 ctx->parent_ctx = NULL;
5a3126d4 1001 ctx->generation++;
211de6eb
PZ
1002
1003 return parent_ctx;
71a851b4
PZ
1004}
1005
6844c09d
ACM
1006static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1007{
1008 /*
1009 * only top level events have the pid namespace they were created in
1010 */
1011 if (event->parent)
1012 event = event->parent;
1013
1014 return task_tgid_nr_ns(p, event->ns);
1015}
1016
1017static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1018{
1019 /*
1020 * only top level events have the pid namespace they were created in
1021 */
1022 if (event->parent)
1023 event = event->parent;
1024
1025 return task_pid_nr_ns(p, event->ns);
1026}
1027
7f453c24 1028/*
cdd6c482 1029 * If we inherit events we want to return the parent event id
7f453c24
PZ
1030 * to userspace.
1031 */
cdd6c482 1032static u64 primary_event_id(struct perf_event *event)
7f453c24 1033{
cdd6c482 1034 u64 id = event->id;
7f453c24 1035
cdd6c482
IM
1036 if (event->parent)
1037 id = event->parent->id;
7f453c24
PZ
1038
1039 return id;
1040}
1041
25346b93 1042/*
cdd6c482 1043 * Get the perf_event_context for a task and lock it.
25346b93
PM
1044 * This has to cope with with the fact that until it is locked,
1045 * the context could get moved to another task.
1046 */
cdd6c482 1047static struct perf_event_context *
8dc85d54 1048perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1049{
cdd6c482 1050 struct perf_event_context *ctx;
25346b93 1051
9ed6060d 1052retry:
058ebd0e
PZ
1053 /*
1054 * One of the few rules of preemptible RCU is that one cannot do
1055 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1056 * part of the read side critical section was preemptible -- see
1057 * rcu_read_unlock_special().
1058 *
1059 * Since ctx->lock nests under rq->lock we must ensure the entire read
1060 * side critical section is non-preemptible.
1061 */
1062 preempt_disable();
1063 rcu_read_lock();
8dc85d54 1064 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1065 if (ctx) {
1066 /*
1067 * If this context is a clone of another, it might
1068 * get swapped for another underneath us by
cdd6c482 1069 * perf_event_task_sched_out, though the
25346b93
PM
1070 * rcu_read_lock() protects us from any context
1071 * getting freed. Lock the context and check if it
1072 * got swapped before we could get the lock, and retry
1073 * if so. If we locked the right context, then it
1074 * can't get swapped on us any more.
1075 */
e625cce1 1076 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 1077 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 1078 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
058ebd0e
PZ
1079 rcu_read_unlock();
1080 preempt_enable();
25346b93
PM
1081 goto retry;
1082 }
b49a9e7e
PZ
1083
1084 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 1085 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
1086 ctx = NULL;
1087 }
25346b93
PM
1088 }
1089 rcu_read_unlock();
058ebd0e 1090 preempt_enable();
25346b93
PM
1091 return ctx;
1092}
1093
1094/*
1095 * Get the context for a task and increment its pin_count so it
1096 * can't get swapped to another task. This also increments its
1097 * reference count so that the context can't get freed.
1098 */
8dc85d54
PZ
1099static struct perf_event_context *
1100perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1101{
cdd6c482 1102 struct perf_event_context *ctx;
25346b93
PM
1103 unsigned long flags;
1104
8dc85d54 1105 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1106 if (ctx) {
1107 ++ctx->pin_count;
e625cce1 1108 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1109 }
1110 return ctx;
1111}
1112
cdd6c482 1113static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1114{
1115 unsigned long flags;
1116
e625cce1 1117 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1118 --ctx->pin_count;
e625cce1 1119 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1120}
1121
f67218c3
PZ
1122/*
1123 * Update the record of the current time in a context.
1124 */
1125static void update_context_time(struct perf_event_context *ctx)
1126{
1127 u64 now = perf_clock();
1128
1129 ctx->time += now - ctx->timestamp;
1130 ctx->timestamp = now;
1131}
1132
4158755d
SE
1133static u64 perf_event_time(struct perf_event *event)
1134{
1135 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1136
1137 if (is_cgroup_event(event))
1138 return perf_cgroup_event_time(event);
1139
4158755d
SE
1140 return ctx ? ctx->time : 0;
1141}
1142
f67218c3
PZ
1143/*
1144 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1145 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1146 */
1147static void update_event_times(struct perf_event *event)
1148{
1149 struct perf_event_context *ctx = event->ctx;
1150 u64 run_end;
1151
1152 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1153 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1154 return;
e5d1367f
SE
1155 /*
1156 * in cgroup mode, time_enabled represents
1157 * the time the event was enabled AND active
1158 * tasks were in the monitored cgroup. This is
1159 * independent of the activity of the context as
1160 * there may be a mix of cgroup and non-cgroup events.
1161 *
1162 * That is why we treat cgroup events differently
1163 * here.
1164 */
1165 if (is_cgroup_event(event))
46cd6a7f 1166 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1167 else if (ctx->is_active)
1168 run_end = ctx->time;
acd1d7c1
PZ
1169 else
1170 run_end = event->tstamp_stopped;
1171
1172 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1173
1174 if (event->state == PERF_EVENT_STATE_INACTIVE)
1175 run_end = event->tstamp_stopped;
1176 else
4158755d 1177 run_end = perf_event_time(event);
f67218c3
PZ
1178
1179 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1180
f67218c3
PZ
1181}
1182
96c21a46
PZ
1183/*
1184 * Update total_time_enabled and total_time_running for all events in a group.
1185 */
1186static void update_group_times(struct perf_event *leader)
1187{
1188 struct perf_event *event;
1189
1190 update_event_times(leader);
1191 list_for_each_entry(event, &leader->sibling_list, group_entry)
1192 update_event_times(event);
1193}
1194
889ff015
FW
1195static struct list_head *
1196ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1197{
1198 if (event->attr.pinned)
1199 return &ctx->pinned_groups;
1200 else
1201 return &ctx->flexible_groups;
1202}
1203
fccc714b 1204/*
cdd6c482 1205 * Add a event from the lists for its context.
fccc714b
PZ
1206 * Must be called with ctx->mutex and ctx->lock held.
1207 */
04289bb9 1208static void
cdd6c482 1209list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1210{
8a49542c
PZ
1211 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1212 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1213
1214 /*
8a49542c
PZ
1215 * If we're a stand alone event or group leader, we go to the context
1216 * list, group events are kept attached to the group so that
1217 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1218 */
8a49542c 1219 if (event->group_leader == event) {
889ff015
FW
1220 struct list_head *list;
1221
d6f962b5
FW
1222 if (is_software_event(event))
1223 event->group_flags |= PERF_GROUP_SOFTWARE;
1224
889ff015
FW
1225 list = ctx_group_list(event, ctx);
1226 list_add_tail(&event->group_entry, list);
5c148194 1227 }
592903cd 1228
08309379 1229 if (is_cgroup_event(event))
e5d1367f 1230 ctx->nr_cgroups++;
e5d1367f 1231
cdd6c482
IM
1232 list_add_rcu(&event->event_entry, &ctx->event_list);
1233 ctx->nr_events++;
1234 if (event->attr.inherit_stat)
bfbd3381 1235 ctx->nr_stat++;
5a3126d4
PZ
1236
1237 ctx->generation++;
04289bb9
IM
1238}
1239
0231bb53
JO
1240/*
1241 * Initialize event state based on the perf_event_attr::disabled.
1242 */
1243static inline void perf_event__state_init(struct perf_event *event)
1244{
1245 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1246 PERF_EVENT_STATE_INACTIVE;
1247}
1248
c320c7b7
ACM
1249/*
1250 * Called at perf_event creation and when events are attached/detached from a
1251 * group.
1252 */
1253static void perf_event__read_size(struct perf_event *event)
1254{
1255 int entry = sizeof(u64); /* value */
1256 int size = 0;
1257 int nr = 1;
1258
1259 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1260 size += sizeof(u64);
1261
1262 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1263 size += sizeof(u64);
1264
1265 if (event->attr.read_format & PERF_FORMAT_ID)
1266 entry += sizeof(u64);
1267
1268 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1269 nr += event->group_leader->nr_siblings;
1270 size += sizeof(u64);
1271 }
1272
1273 size += entry * nr;
1274 event->read_size = size;
1275}
1276
1277static void perf_event__header_size(struct perf_event *event)
1278{
1279 struct perf_sample_data *data;
1280 u64 sample_type = event->attr.sample_type;
1281 u16 size = 0;
1282
1283 perf_event__read_size(event);
1284
1285 if (sample_type & PERF_SAMPLE_IP)
1286 size += sizeof(data->ip);
1287
6844c09d
ACM
1288 if (sample_type & PERF_SAMPLE_ADDR)
1289 size += sizeof(data->addr);
1290
1291 if (sample_type & PERF_SAMPLE_PERIOD)
1292 size += sizeof(data->period);
1293
c3feedf2
AK
1294 if (sample_type & PERF_SAMPLE_WEIGHT)
1295 size += sizeof(data->weight);
1296
6844c09d
ACM
1297 if (sample_type & PERF_SAMPLE_READ)
1298 size += event->read_size;
1299
d6be9ad6
SE
1300 if (sample_type & PERF_SAMPLE_DATA_SRC)
1301 size += sizeof(data->data_src.val);
1302
fdfbbd07
AK
1303 if (sample_type & PERF_SAMPLE_TRANSACTION)
1304 size += sizeof(data->txn);
1305
6844c09d
ACM
1306 event->header_size = size;
1307}
1308
1309static void perf_event__id_header_size(struct perf_event *event)
1310{
1311 struct perf_sample_data *data;
1312 u64 sample_type = event->attr.sample_type;
1313 u16 size = 0;
1314
c320c7b7
ACM
1315 if (sample_type & PERF_SAMPLE_TID)
1316 size += sizeof(data->tid_entry);
1317
1318 if (sample_type & PERF_SAMPLE_TIME)
1319 size += sizeof(data->time);
1320
ff3d527c
AH
1321 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1322 size += sizeof(data->id);
1323
c320c7b7
ACM
1324 if (sample_type & PERF_SAMPLE_ID)
1325 size += sizeof(data->id);
1326
1327 if (sample_type & PERF_SAMPLE_STREAM_ID)
1328 size += sizeof(data->stream_id);
1329
1330 if (sample_type & PERF_SAMPLE_CPU)
1331 size += sizeof(data->cpu_entry);
1332
6844c09d 1333 event->id_header_size = size;
c320c7b7
ACM
1334}
1335
8a49542c
PZ
1336static void perf_group_attach(struct perf_event *event)
1337{
c320c7b7 1338 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1339
74c3337c
PZ
1340 /*
1341 * We can have double attach due to group movement in perf_event_open.
1342 */
1343 if (event->attach_state & PERF_ATTACH_GROUP)
1344 return;
1345
8a49542c
PZ
1346 event->attach_state |= PERF_ATTACH_GROUP;
1347
1348 if (group_leader == event)
1349 return;
1350
652884fe
PZ
1351 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1352
8a49542c
PZ
1353 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1354 !is_software_event(event))
1355 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1356
1357 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1358 group_leader->nr_siblings++;
c320c7b7
ACM
1359
1360 perf_event__header_size(group_leader);
1361
1362 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1363 perf_event__header_size(pos);
8a49542c
PZ
1364}
1365
a63eaf34 1366/*
cdd6c482 1367 * Remove a event from the lists for its context.
fccc714b 1368 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1369 */
04289bb9 1370static void
cdd6c482 1371list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1372{
68cacd29 1373 struct perf_cpu_context *cpuctx;
652884fe
PZ
1374
1375 WARN_ON_ONCE(event->ctx != ctx);
1376 lockdep_assert_held(&ctx->lock);
1377
8a49542c
PZ
1378 /*
1379 * We can have double detach due to exit/hot-unplug + close.
1380 */
1381 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1382 return;
8a49542c
PZ
1383
1384 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1385
68cacd29 1386 if (is_cgroup_event(event)) {
e5d1367f 1387 ctx->nr_cgroups--;
68cacd29
SE
1388 cpuctx = __get_cpu_context(ctx);
1389 /*
1390 * if there are no more cgroup events
1391 * then cler cgrp to avoid stale pointer
1392 * in update_cgrp_time_from_cpuctx()
1393 */
1394 if (!ctx->nr_cgroups)
1395 cpuctx->cgrp = NULL;
1396 }
e5d1367f 1397
cdd6c482
IM
1398 ctx->nr_events--;
1399 if (event->attr.inherit_stat)
bfbd3381 1400 ctx->nr_stat--;
8bc20959 1401
cdd6c482 1402 list_del_rcu(&event->event_entry);
04289bb9 1403
8a49542c
PZ
1404 if (event->group_leader == event)
1405 list_del_init(&event->group_entry);
5c148194 1406
96c21a46 1407 update_group_times(event);
b2e74a26
SE
1408
1409 /*
1410 * If event was in error state, then keep it
1411 * that way, otherwise bogus counts will be
1412 * returned on read(). The only way to get out
1413 * of error state is by explicit re-enabling
1414 * of the event
1415 */
1416 if (event->state > PERF_EVENT_STATE_OFF)
1417 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1418
1419 ctx->generation++;
050735b0
PZ
1420}
1421
8a49542c 1422static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1423{
1424 struct perf_event *sibling, *tmp;
8a49542c
PZ
1425 struct list_head *list = NULL;
1426
1427 /*
1428 * We can have double detach due to exit/hot-unplug + close.
1429 */
1430 if (!(event->attach_state & PERF_ATTACH_GROUP))
1431 return;
1432
1433 event->attach_state &= ~PERF_ATTACH_GROUP;
1434
1435 /*
1436 * If this is a sibling, remove it from its group.
1437 */
1438 if (event->group_leader != event) {
1439 list_del_init(&event->group_entry);
1440 event->group_leader->nr_siblings--;
c320c7b7 1441 goto out;
8a49542c
PZ
1442 }
1443
1444 if (!list_empty(&event->group_entry))
1445 list = &event->group_entry;
2e2af50b 1446
04289bb9 1447 /*
cdd6c482
IM
1448 * If this was a group event with sibling events then
1449 * upgrade the siblings to singleton events by adding them
8a49542c 1450 * to whatever list we are on.
04289bb9 1451 */
cdd6c482 1452 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1453 if (list)
1454 list_move_tail(&sibling->group_entry, list);
04289bb9 1455 sibling->group_leader = sibling;
d6f962b5
FW
1456
1457 /* Inherit group flags from the previous leader */
1458 sibling->group_flags = event->group_flags;
652884fe
PZ
1459
1460 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1461 }
c320c7b7
ACM
1462
1463out:
1464 perf_event__header_size(event->group_leader);
1465
1466 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1467 perf_event__header_size(tmp);
04289bb9
IM
1468}
1469
fadfe7be
JO
1470/*
1471 * User event without the task.
1472 */
1473static bool is_orphaned_event(struct perf_event *event)
1474{
1475 return event && !is_kernel_event(event) && !event->owner;
1476}
1477
1478/*
1479 * Event has a parent but parent's task finished and it's
1480 * alive only because of children holding refference.
1481 */
1482static bool is_orphaned_child(struct perf_event *event)
1483{
1484 return is_orphaned_event(event->parent);
1485}
1486
1487static void orphans_remove_work(struct work_struct *work);
1488
1489static void schedule_orphans_remove(struct perf_event_context *ctx)
1490{
1491 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1492 return;
1493
1494 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1495 get_ctx(ctx);
1496 ctx->orphans_remove_sched = true;
1497 }
1498}
1499
1500static int __init perf_workqueue_init(void)
1501{
1502 perf_wq = create_singlethread_workqueue("perf");
1503 WARN(!perf_wq, "failed to create perf workqueue\n");
1504 return perf_wq ? 0 : -1;
1505}
1506
1507core_initcall(perf_workqueue_init);
1508
fa66f07a
SE
1509static inline int
1510event_filter_match(struct perf_event *event)
1511{
e5d1367f
SE
1512 return (event->cpu == -1 || event->cpu == smp_processor_id())
1513 && perf_cgroup_match(event);
fa66f07a
SE
1514}
1515
9ffcfa6f
SE
1516static void
1517event_sched_out(struct perf_event *event,
3b6f9e5c 1518 struct perf_cpu_context *cpuctx,
cdd6c482 1519 struct perf_event_context *ctx)
3b6f9e5c 1520{
4158755d 1521 u64 tstamp = perf_event_time(event);
fa66f07a 1522 u64 delta;
652884fe
PZ
1523
1524 WARN_ON_ONCE(event->ctx != ctx);
1525 lockdep_assert_held(&ctx->lock);
1526
fa66f07a
SE
1527 /*
1528 * An event which could not be activated because of
1529 * filter mismatch still needs to have its timings
1530 * maintained, otherwise bogus information is return
1531 * via read() for time_enabled, time_running:
1532 */
1533 if (event->state == PERF_EVENT_STATE_INACTIVE
1534 && !event_filter_match(event)) {
e5d1367f 1535 delta = tstamp - event->tstamp_stopped;
fa66f07a 1536 event->tstamp_running += delta;
4158755d 1537 event->tstamp_stopped = tstamp;
fa66f07a
SE
1538 }
1539
cdd6c482 1540 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1541 return;
3b6f9e5c 1542
44377277
AS
1543 perf_pmu_disable(event->pmu);
1544
cdd6c482
IM
1545 event->state = PERF_EVENT_STATE_INACTIVE;
1546 if (event->pending_disable) {
1547 event->pending_disable = 0;
1548 event->state = PERF_EVENT_STATE_OFF;
970892a9 1549 }
4158755d 1550 event->tstamp_stopped = tstamp;
a4eaf7f1 1551 event->pmu->del(event, 0);
cdd6c482 1552 event->oncpu = -1;
3b6f9e5c 1553
cdd6c482 1554 if (!is_software_event(event))
3b6f9e5c 1555 cpuctx->active_oncpu--;
2fde4f94
MR
1556 if (!--ctx->nr_active)
1557 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1558 if (event->attr.freq && event->attr.sample_freq)
1559 ctx->nr_freq--;
cdd6c482 1560 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1561 cpuctx->exclusive = 0;
44377277 1562
fadfe7be
JO
1563 if (is_orphaned_child(event))
1564 schedule_orphans_remove(ctx);
1565
44377277 1566 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1567}
1568
d859e29f 1569static void
cdd6c482 1570group_sched_out(struct perf_event *group_event,
d859e29f 1571 struct perf_cpu_context *cpuctx,
cdd6c482 1572 struct perf_event_context *ctx)
d859e29f 1573{
cdd6c482 1574 struct perf_event *event;
fa66f07a 1575 int state = group_event->state;
d859e29f 1576
cdd6c482 1577 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1578
1579 /*
1580 * Schedule out siblings (if any):
1581 */
cdd6c482
IM
1582 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1583 event_sched_out(event, cpuctx, ctx);
d859e29f 1584
fa66f07a 1585 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1586 cpuctx->exclusive = 0;
1587}
1588
46ce0fe9
PZ
1589struct remove_event {
1590 struct perf_event *event;
1591 bool detach_group;
1592};
1593
0793a61d 1594/*
cdd6c482 1595 * Cross CPU call to remove a performance event
0793a61d 1596 *
cdd6c482 1597 * We disable the event on the hardware level first. After that we
0793a61d
TG
1598 * remove it from the context list.
1599 */
fe4b04fa 1600static int __perf_remove_from_context(void *info)
0793a61d 1601{
46ce0fe9
PZ
1602 struct remove_event *re = info;
1603 struct perf_event *event = re->event;
cdd6c482 1604 struct perf_event_context *ctx = event->ctx;
108b02cf 1605 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1606
e625cce1 1607 raw_spin_lock(&ctx->lock);
cdd6c482 1608 event_sched_out(event, cpuctx, ctx);
46ce0fe9
PZ
1609 if (re->detach_group)
1610 perf_group_detach(event);
cdd6c482 1611 list_del_event(event, ctx);
64ce3126
PZ
1612 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1613 ctx->is_active = 0;
1614 cpuctx->task_ctx = NULL;
1615 }
e625cce1 1616 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1617
1618 return 0;
0793a61d
TG
1619}
1620
1621
1622/*
cdd6c482 1623 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1624 *
cdd6c482 1625 * CPU events are removed with a smp call. For task events we only
0793a61d 1626 * call when the task is on a CPU.
c93f7669 1627 *
cdd6c482
IM
1628 * If event->ctx is a cloned context, callers must make sure that
1629 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1630 * remains valid. This is OK when called from perf_release since
1631 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1632 * When called from perf_event_exit_task, it's OK because the
c93f7669 1633 * context has been detached from its task.
0793a61d 1634 */
46ce0fe9 1635static void perf_remove_from_context(struct perf_event *event, bool detach_group)
0793a61d 1636{
cdd6c482 1637 struct perf_event_context *ctx = event->ctx;
0793a61d 1638 struct task_struct *task = ctx->task;
46ce0fe9
PZ
1639 struct remove_event re = {
1640 .event = event,
1641 .detach_group = detach_group,
1642 };
0793a61d 1643
fe4b04fa
PZ
1644 lockdep_assert_held(&ctx->mutex);
1645
0793a61d
TG
1646 if (!task) {
1647 /*
226424ee
MR
1648 * Per cpu events are removed via an smp call. The removal can
1649 * fail if the CPU is currently offline, but in that case we
1650 * already called __perf_remove_from_context from
1651 * perf_event_exit_cpu.
0793a61d 1652 */
46ce0fe9 1653 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
0793a61d
TG
1654 return;
1655 }
1656
1657retry:
46ce0fe9 1658 if (!task_function_call(task, __perf_remove_from_context, &re))
fe4b04fa 1659 return;
0793a61d 1660
e625cce1 1661 raw_spin_lock_irq(&ctx->lock);
0793a61d 1662 /*
fe4b04fa
PZ
1663 * If we failed to find a running task, but find the context active now
1664 * that we've acquired the ctx->lock, retry.
0793a61d 1665 */
fe4b04fa 1666 if (ctx->is_active) {
e625cce1 1667 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
1668 /*
1669 * Reload the task pointer, it might have been changed by
1670 * a concurrent perf_event_context_sched_out().
1671 */
1672 task = ctx->task;
0793a61d
TG
1673 goto retry;
1674 }
1675
1676 /*
fe4b04fa
PZ
1677 * Since the task isn't running, its safe to remove the event, us
1678 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1679 */
46ce0fe9
PZ
1680 if (detach_group)
1681 perf_group_detach(event);
fe4b04fa 1682 list_del_event(event, ctx);
e625cce1 1683 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1684}
1685
d859e29f 1686/*
cdd6c482 1687 * Cross CPU call to disable a performance event
d859e29f 1688 */
500ad2d8 1689int __perf_event_disable(void *info)
d859e29f 1690{
cdd6c482 1691 struct perf_event *event = info;
cdd6c482 1692 struct perf_event_context *ctx = event->ctx;
108b02cf 1693 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1694
1695 /*
cdd6c482
IM
1696 * If this is a per-task event, need to check whether this
1697 * event's task is the current task on this cpu.
fe4b04fa
PZ
1698 *
1699 * Can trigger due to concurrent perf_event_context_sched_out()
1700 * flipping contexts around.
d859e29f 1701 */
665c2142 1702 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1703 return -EINVAL;
d859e29f 1704
e625cce1 1705 raw_spin_lock(&ctx->lock);
d859e29f
PM
1706
1707 /*
cdd6c482 1708 * If the event is on, turn it off.
d859e29f
PM
1709 * If it is in error state, leave it in error state.
1710 */
cdd6c482 1711 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1712 update_context_time(ctx);
e5d1367f 1713 update_cgrp_time_from_event(event);
cdd6c482
IM
1714 update_group_times(event);
1715 if (event == event->group_leader)
1716 group_sched_out(event, cpuctx, ctx);
d859e29f 1717 else
cdd6c482
IM
1718 event_sched_out(event, cpuctx, ctx);
1719 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1720 }
1721
e625cce1 1722 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1723
1724 return 0;
d859e29f
PM
1725}
1726
1727/*
cdd6c482 1728 * Disable a event.
c93f7669 1729 *
cdd6c482
IM
1730 * If event->ctx is a cloned context, callers must make sure that
1731 * every task struct that event->ctx->task could possibly point to
c93f7669 1732 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1733 * perf_event_for_each_child or perf_event_for_each because they
1734 * hold the top-level event's child_mutex, so any descendant that
1735 * goes to exit will block in sync_child_event.
1736 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1737 * is the current context on this CPU and preemption is disabled,
cdd6c482 1738 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1739 */
f63a8daa 1740static void _perf_event_disable(struct perf_event *event)
d859e29f 1741{
cdd6c482 1742 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1743 struct task_struct *task = ctx->task;
1744
1745 if (!task) {
1746 /*
cdd6c482 1747 * Disable the event on the cpu that it's on
d859e29f 1748 */
fe4b04fa 1749 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1750 return;
1751 }
1752
9ed6060d 1753retry:
fe4b04fa
PZ
1754 if (!task_function_call(task, __perf_event_disable, event))
1755 return;
d859e29f 1756
e625cce1 1757 raw_spin_lock_irq(&ctx->lock);
d859e29f 1758 /*
cdd6c482 1759 * If the event is still active, we need to retry the cross-call.
d859e29f 1760 */
cdd6c482 1761 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1762 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1763 /*
1764 * Reload the task pointer, it might have been changed by
1765 * a concurrent perf_event_context_sched_out().
1766 */
1767 task = ctx->task;
d859e29f
PM
1768 goto retry;
1769 }
1770
1771 /*
1772 * Since we have the lock this context can't be scheduled
1773 * in, so we can change the state safely.
1774 */
cdd6c482
IM
1775 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1776 update_group_times(event);
1777 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1778 }
e625cce1 1779 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1780}
f63a8daa
PZ
1781
1782/*
1783 * Strictly speaking kernel users cannot create groups and therefore this
1784 * interface does not need the perf_event_ctx_lock() magic.
1785 */
1786void perf_event_disable(struct perf_event *event)
1787{
1788 struct perf_event_context *ctx;
1789
1790 ctx = perf_event_ctx_lock(event);
1791 _perf_event_disable(event);
1792 perf_event_ctx_unlock(event, ctx);
1793}
dcfce4a0 1794EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1795
e5d1367f
SE
1796static void perf_set_shadow_time(struct perf_event *event,
1797 struct perf_event_context *ctx,
1798 u64 tstamp)
1799{
1800 /*
1801 * use the correct time source for the time snapshot
1802 *
1803 * We could get by without this by leveraging the
1804 * fact that to get to this function, the caller
1805 * has most likely already called update_context_time()
1806 * and update_cgrp_time_xx() and thus both timestamp
1807 * are identical (or very close). Given that tstamp is,
1808 * already adjusted for cgroup, we could say that:
1809 * tstamp - ctx->timestamp
1810 * is equivalent to
1811 * tstamp - cgrp->timestamp.
1812 *
1813 * Then, in perf_output_read(), the calculation would
1814 * work with no changes because:
1815 * - event is guaranteed scheduled in
1816 * - no scheduled out in between
1817 * - thus the timestamp would be the same
1818 *
1819 * But this is a bit hairy.
1820 *
1821 * So instead, we have an explicit cgroup call to remain
1822 * within the time time source all along. We believe it
1823 * is cleaner and simpler to understand.
1824 */
1825 if (is_cgroup_event(event))
1826 perf_cgroup_set_shadow_time(event, tstamp);
1827 else
1828 event->shadow_ctx_time = tstamp - ctx->timestamp;
1829}
1830
4fe757dd
PZ
1831#define MAX_INTERRUPTS (~0ULL)
1832
1833static void perf_log_throttle(struct perf_event *event, int enable);
1834
235c7fc7 1835static int
9ffcfa6f 1836event_sched_in(struct perf_event *event,
235c7fc7 1837 struct perf_cpu_context *cpuctx,
6e37738a 1838 struct perf_event_context *ctx)
235c7fc7 1839{
4158755d 1840 u64 tstamp = perf_event_time(event);
44377277 1841 int ret = 0;
4158755d 1842
63342411
PZ
1843 lockdep_assert_held(&ctx->lock);
1844
cdd6c482 1845 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1846 return 0;
1847
cdd6c482 1848 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1849 event->oncpu = smp_processor_id();
4fe757dd
PZ
1850
1851 /*
1852 * Unthrottle events, since we scheduled we might have missed several
1853 * ticks already, also for a heavily scheduling task there is little
1854 * guarantee it'll get a tick in a timely manner.
1855 */
1856 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1857 perf_log_throttle(event, 1);
1858 event->hw.interrupts = 0;
1859 }
1860
235c7fc7
IM
1861 /*
1862 * The new state must be visible before we turn it on in the hardware:
1863 */
1864 smp_wmb();
1865
44377277
AS
1866 perf_pmu_disable(event->pmu);
1867
72f669c0
SL
1868 event->tstamp_running += tstamp - event->tstamp_stopped;
1869
1870 perf_set_shadow_time(event, ctx, tstamp);
1871
a4eaf7f1 1872 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1873 event->state = PERF_EVENT_STATE_INACTIVE;
1874 event->oncpu = -1;
44377277
AS
1875 ret = -EAGAIN;
1876 goto out;
235c7fc7
IM
1877 }
1878
cdd6c482 1879 if (!is_software_event(event))
3b6f9e5c 1880 cpuctx->active_oncpu++;
2fde4f94
MR
1881 if (!ctx->nr_active++)
1882 perf_event_ctx_activate(ctx);
0f5a2601
PZ
1883 if (event->attr.freq && event->attr.sample_freq)
1884 ctx->nr_freq++;
235c7fc7 1885
cdd6c482 1886 if (event->attr.exclusive)
3b6f9e5c
PM
1887 cpuctx->exclusive = 1;
1888
fadfe7be
JO
1889 if (is_orphaned_child(event))
1890 schedule_orphans_remove(ctx);
1891
44377277
AS
1892out:
1893 perf_pmu_enable(event->pmu);
1894
1895 return ret;
235c7fc7
IM
1896}
1897
6751b71e 1898static int
cdd6c482 1899group_sched_in(struct perf_event *group_event,
6751b71e 1900 struct perf_cpu_context *cpuctx,
6e37738a 1901 struct perf_event_context *ctx)
6751b71e 1902{
6bde9b6c 1903 struct perf_event *event, *partial_group = NULL;
4a234593 1904 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1905 u64 now = ctx->time;
1906 bool simulate = false;
6751b71e 1907
cdd6c482 1908 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1909 return 0;
1910
ad5133b7 1911 pmu->start_txn(pmu);
6bde9b6c 1912
9ffcfa6f 1913 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1914 pmu->cancel_txn(pmu);
9e630205 1915 perf_cpu_hrtimer_restart(cpuctx);
6751b71e 1916 return -EAGAIN;
90151c35 1917 }
6751b71e
PM
1918
1919 /*
1920 * Schedule in siblings as one group (if any):
1921 */
cdd6c482 1922 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1923 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1924 partial_group = event;
6751b71e
PM
1925 goto group_error;
1926 }
1927 }
1928
9ffcfa6f 1929 if (!pmu->commit_txn(pmu))
6e85158c 1930 return 0;
9ffcfa6f 1931
6751b71e
PM
1932group_error:
1933 /*
1934 * Groups can be scheduled in as one unit only, so undo any
1935 * partial group before returning:
d7842da4
SE
1936 * The events up to the failed event are scheduled out normally,
1937 * tstamp_stopped will be updated.
1938 *
1939 * The failed events and the remaining siblings need to have
1940 * their timings updated as if they had gone thru event_sched_in()
1941 * and event_sched_out(). This is required to get consistent timings
1942 * across the group. This also takes care of the case where the group
1943 * could never be scheduled by ensuring tstamp_stopped is set to mark
1944 * the time the event was actually stopped, such that time delta
1945 * calculation in update_event_times() is correct.
6751b71e 1946 */
cdd6c482
IM
1947 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1948 if (event == partial_group)
d7842da4
SE
1949 simulate = true;
1950
1951 if (simulate) {
1952 event->tstamp_running += now - event->tstamp_stopped;
1953 event->tstamp_stopped = now;
1954 } else {
1955 event_sched_out(event, cpuctx, ctx);
1956 }
6751b71e 1957 }
9ffcfa6f 1958 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1959
ad5133b7 1960 pmu->cancel_txn(pmu);
90151c35 1961
9e630205
SE
1962 perf_cpu_hrtimer_restart(cpuctx);
1963
6751b71e
PM
1964 return -EAGAIN;
1965}
1966
3b6f9e5c 1967/*
cdd6c482 1968 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1969 */
cdd6c482 1970static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1971 struct perf_cpu_context *cpuctx,
1972 int can_add_hw)
1973{
1974 /*
cdd6c482 1975 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1976 */
d6f962b5 1977 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1978 return 1;
1979 /*
1980 * If an exclusive group is already on, no other hardware
cdd6c482 1981 * events can go on.
3b6f9e5c
PM
1982 */
1983 if (cpuctx->exclusive)
1984 return 0;
1985 /*
1986 * If this group is exclusive and there are already
cdd6c482 1987 * events on the CPU, it can't go on.
3b6f9e5c 1988 */
cdd6c482 1989 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1990 return 0;
1991 /*
1992 * Otherwise, try to add it if all previous groups were able
1993 * to go on.
1994 */
1995 return can_add_hw;
1996}
1997
cdd6c482
IM
1998static void add_event_to_ctx(struct perf_event *event,
1999 struct perf_event_context *ctx)
53cfbf59 2000{
4158755d
SE
2001 u64 tstamp = perf_event_time(event);
2002
cdd6c482 2003 list_add_event(event, ctx);
8a49542c 2004 perf_group_attach(event);
4158755d
SE
2005 event->tstamp_enabled = tstamp;
2006 event->tstamp_running = tstamp;
2007 event->tstamp_stopped = tstamp;
53cfbf59
PM
2008}
2009
2c29ef0f
PZ
2010static void task_ctx_sched_out(struct perf_event_context *ctx);
2011static void
2012ctx_sched_in(struct perf_event_context *ctx,
2013 struct perf_cpu_context *cpuctx,
2014 enum event_type_t event_type,
2015 struct task_struct *task);
fe4b04fa 2016
dce5855b
PZ
2017static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2018 struct perf_event_context *ctx,
2019 struct task_struct *task)
2020{
2021 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2022 if (ctx)
2023 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2024 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2025 if (ctx)
2026 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2027}
2028
0793a61d 2029/*
cdd6c482 2030 * Cross CPU call to install and enable a performance event
682076ae
PZ
2031 *
2032 * Must be called with ctx->mutex held
0793a61d 2033 */
fe4b04fa 2034static int __perf_install_in_context(void *info)
0793a61d 2035{
cdd6c482
IM
2036 struct perf_event *event = info;
2037 struct perf_event_context *ctx = event->ctx;
108b02cf 2038 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
2039 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2040 struct task_struct *task = current;
2041
b58f6b0d 2042 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 2043 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
2044
2045 /*
2c29ef0f 2046 * If there was an active task_ctx schedule it out.
0793a61d 2047 */
b58f6b0d 2048 if (task_ctx)
2c29ef0f 2049 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
2050
2051 /*
2052 * If the context we're installing events in is not the
2053 * active task_ctx, flip them.
2054 */
2055 if (ctx->task && task_ctx != ctx) {
2056 if (task_ctx)
2057 raw_spin_unlock(&task_ctx->lock);
2058 raw_spin_lock(&ctx->lock);
2059 task_ctx = ctx;
2060 }
2061
2062 if (task_ctx) {
2063 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
2064 task = task_ctx->task;
2065 }
b58f6b0d 2066
2c29ef0f 2067 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 2068
4af4998b 2069 update_context_time(ctx);
e5d1367f
SE
2070 /*
2071 * update cgrp time only if current cgrp
2072 * matches event->cgrp. Must be done before
2073 * calling add_event_to_ctx()
2074 */
2075 update_cgrp_time_from_event(event);
0793a61d 2076
cdd6c482 2077 add_event_to_ctx(event, ctx);
0793a61d 2078
d859e29f 2079 /*
2c29ef0f 2080 * Schedule everything back in
d859e29f 2081 */
dce5855b 2082 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
2083
2084 perf_pmu_enable(cpuctx->ctx.pmu);
2085 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
2086
2087 return 0;
0793a61d
TG
2088}
2089
2090/*
cdd6c482 2091 * Attach a performance event to a context
0793a61d 2092 *
cdd6c482
IM
2093 * First we add the event to the list with the hardware enable bit
2094 * in event->hw_config cleared.
0793a61d 2095 *
cdd6c482 2096 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
2097 * call to enable it in the task context. The task might have been
2098 * scheduled away, but we check this in the smp call again.
2099 */
2100static void
cdd6c482
IM
2101perf_install_in_context(struct perf_event_context *ctx,
2102 struct perf_event *event,
0793a61d
TG
2103 int cpu)
2104{
2105 struct task_struct *task = ctx->task;
2106
fe4b04fa
PZ
2107 lockdep_assert_held(&ctx->mutex);
2108
c3f00c70 2109 event->ctx = ctx;
0cda4c02
YZ
2110 if (event->cpu != -1)
2111 event->cpu = cpu;
c3f00c70 2112
0793a61d
TG
2113 if (!task) {
2114 /*
cdd6c482 2115 * Per cpu events are installed via an smp call and
af901ca1 2116 * the install is always successful.
0793a61d 2117 */
fe4b04fa 2118 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
2119 return;
2120 }
2121
0793a61d 2122retry:
fe4b04fa
PZ
2123 if (!task_function_call(task, __perf_install_in_context, event))
2124 return;
0793a61d 2125
e625cce1 2126 raw_spin_lock_irq(&ctx->lock);
0793a61d 2127 /*
fe4b04fa
PZ
2128 * If we failed to find a running task, but find the context active now
2129 * that we've acquired the ctx->lock, retry.
0793a61d 2130 */
fe4b04fa 2131 if (ctx->is_active) {
e625cce1 2132 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
2133 /*
2134 * Reload the task pointer, it might have been changed by
2135 * a concurrent perf_event_context_sched_out().
2136 */
2137 task = ctx->task;
0793a61d
TG
2138 goto retry;
2139 }
2140
2141 /*
fe4b04fa
PZ
2142 * Since the task isn't running, its safe to add the event, us holding
2143 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 2144 */
fe4b04fa 2145 add_event_to_ctx(event, ctx);
e625cce1 2146 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2147}
2148
fa289bec 2149/*
cdd6c482 2150 * Put a event into inactive state and update time fields.
fa289bec
PM
2151 * Enabling the leader of a group effectively enables all
2152 * the group members that aren't explicitly disabled, so we
2153 * have to update their ->tstamp_enabled also.
2154 * Note: this works for group members as well as group leaders
2155 * since the non-leader members' sibling_lists will be empty.
2156 */
1d9b482e 2157static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2158{
cdd6c482 2159 struct perf_event *sub;
4158755d 2160 u64 tstamp = perf_event_time(event);
fa289bec 2161
cdd6c482 2162 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2163 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2164 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2165 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2166 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2167 }
fa289bec
PM
2168}
2169
d859e29f 2170/*
cdd6c482 2171 * Cross CPU call to enable a performance event
d859e29f 2172 */
fe4b04fa 2173static int __perf_event_enable(void *info)
04289bb9 2174{
cdd6c482 2175 struct perf_event *event = info;
cdd6c482
IM
2176 struct perf_event_context *ctx = event->ctx;
2177 struct perf_event *leader = event->group_leader;
108b02cf 2178 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 2179 int err;
04289bb9 2180
06f41796
JO
2181 /*
2182 * There's a time window between 'ctx->is_active' check
2183 * in perf_event_enable function and this place having:
2184 * - IRQs on
2185 * - ctx->lock unlocked
2186 *
2187 * where the task could be killed and 'ctx' deactivated
2188 * by perf_event_exit_task.
2189 */
2190 if (!ctx->is_active)
fe4b04fa 2191 return -EINVAL;
3cbed429 2192
e625cce1 2193 raw_spin_lock(&ctx->lock);
4af4998b 2194 update_context_time(ctx);
d859e29f 2195
cdd6c482 2196 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 2197 goto unlock;
e5d1367f
SE
2198
2199 /*
2200 * set current task's cgroup time reference point
2201 */
3f7cce3c 2202 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 2203
1d9b482e 2204 __perf_event_mark_enabled(event);
04289bb9 2205
e5d1367f
SE
2206 if (!event_filter_match(event)) {
2207 if (is_cgroup_event(event))
2208 perf_cgroup_defer_enabled(event);
f4c4176f 2209 goto unlock;
e5d1367f 2210 }
f4c4176f 2211
04289bb9 2212 /*
cdd6c482 2213 * If the event is in a group and isn't the group leader,
d859e29f 2214 * then don't put it on unless the group is on.
04289bb9 2215 */
cdd6c482 2216 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 2217 goto unlock;
3b6f9e5c 2218
cdd6c482 2219 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 2220 err = -EEXIST;
e758a33d 2221 } else {
cdd6c482 2222 if (event == leader)
6e37738a 2223 err = group_sched_in(event, cpuctx, ctx);
e758a33d 2224 else
6e37738a 2225 err = event_sched_in(event, cpuctx, ctx);
e758a33d 2226 }
d859e29f
PM
2227
2228 if (err) {
2229 /*
cdd6c482 2230 * If this event can't go on and it's part of a
d859e29f
PM
2231 * group, then the whole group has to come off.
2232 */
9e630205 2233 if (leader != event) {
d859e29f 2234 group_sched_out(leader, cpuctx, ctx);
9e630205
SE
2235 perf_cpu_hrtimer_restart(cpuctx);
2236 }
0d48696f 2237 if (leader->attr.pinned) {
53cfbf59 2238 update_group_times(leader);
cdd6c482 2239 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2240 }
d859e29f
PM
2241 }
2242
9ed6060d 2243unlock:
e625cce1 2244 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
2245
2246 return 0;
d859e29f
PM
2247}
2248
2249/*
cdd6c482 2250 * Enable a event.
c93f7669 2251 *
cdd6c482
IM
2252 * If event->ctx is a cloned context, callers must make sure that
2253 * every task struct that event->ctx->task could possibly point to
c93f7669 2254 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2255 * perf_event_for_each_child or perf_event_for_each as described
2256 * for perf_event_disable.
d859e29f 2257 */
f63a8daa 2258static void _perf_event_enable(struct perf_event *event)
d859e29f 2259{
cdd6c482 2260 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
2261 struct task_struct *task = ctx->task;
2262
2263 if (!task) {
2264 /*
cdd6c482 2265 * Enable the event on the cpu that it's on
d859e29f 2266 */
fe4b04fa 2267 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
2268 return;
2269 }
2270
e625cce1 2271 raw_spin_lock_irq(&ctx->lock);
cdd6c482 2272 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
2273 goto out;
2274
2275 /*
cdd6c482
IM
2276 * If the event is in error state, clear that first.
2277 * That way, if we see the event in error state below, we
d859e29f
PM
2278 * know that it has gone back into error state, as distinct
2279 * from the task having been scheduled away before the
2280 * cross-call arrived.
2281 */
cdd6c482
IM
2282 if (event->state == PERF_EVENT_STATE_ERROR)
2283 event->state = PERF_EVENT_STATE_OFF;
d859e29f 2284
9ed6060d 2285retry:
fe4b04fa 2286 if (!ctx->is_active) {
1d9b482e 2287 __perf_event_mark_enabled(event);
fe4b04fa
PZ
2288 goto out;
2289 }
2290
e625cce1 2291 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
2292
2293 if (!task_function_call(task, __perf_event_enable, event))
2294 return;
d859e29f 2295
e625cce1 2296 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
2297
2298 /*
cdd6c482 2299 * If the context is active and the event is still off,
d859e29f
PM
2300 * we need to retry the cross-call.
2301 */
fe4b04fa
PZ
2302 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2303 /*
2304 * task could have been flipped by a concurrent
2305 * perf_event_context_sched_out()
2306 */
2307 task = ctx->task;
d859e29f 2308 goto retry;
fe4b04fa 2309 }
fa289bec 2310
9ed6060d 2311out:
e625cce1 2312 raw_spin_unlock_irq(&ctx->lock);
d859e29f 2313}
f63a8daa
PZ
2314
2315/*
2316 * See perf_event_disable();
2317 */
2318void perf_event_enable(struct perf_event *event)
2319{
2320 struct perf_event_context *ctx;
2321
2322 ctx = perf_event_ctx_lock(event);
2323 _perf_event_enable(event);
2324 perf_event_ctx_unlock(event, ctx);
2325}
dcfce4a0 2326EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2327
f63a8daa 2328static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2329{
2023b359 2330 /*
cdd6c482 2331 * not supported on inherited events
2023b359 2332 */
2e939d1d 2333 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2334 return -EINVAL;
2335
cdd6c482 2336 atomic_add(refresh, &event->event_limit);
f63a8daa 2337 _perf_event_enable(event);
2023b359
PZ
2338
2339 return 0;
79f14641 2340}
f63a8daa
PZ
2341
2342/*
2343 * See perf_event_disable()
2344 */
2345int perf_event_refresh(struct perf_event *event, int refresh)
2346{
2347 struct perf_event_context *ctx;
2348 int ret;
2349
2350 ctx = perf_event_ctx_lock(event);
2351 ret = _perf_event_refresh(event, refresh);
2352 perf_event_ctx_unlock(event, ctx);
2353
2354 return ret;
2355}
26ca5c11 2356EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2357
5b0311e1
FW
2358static void ctx_sched_out(struct perf_event_context *ctx,
2359 struct perf_cpu_context *cpuctx,
2360 enum event_type_t event_type)
235c7fc7 2361{
cdd6c482 2362 struct perf_event *event;
db24d33e 2363 int is_active = ctx->is_active;
235c7fc7 2364
db24d33e 2365 ctx->is_active &= ~event_type;
cdd6c482 2366 if (likely(!ctx->nr_events))
facc4307
PZ
2367 return;
2368
4af4998b 2369 update_context_time(ctx);
e5d1367f 2370 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2371 if (!ctx->nr_active)
facc4307 2372 return;
5b0311e1 2373
075e0b00 2374 perf_pmu_disable(ctx->pmu);
db24d33e 2375 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2376 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2377 group_sched_out(event, cpuctx, ctx);
9ed6060d 2378 }
889ff015 2379
db24d33e 2380 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2381 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2382 group_sched_out(event, cpuctx, ctx);
9ed6060d 2383 }
1b9a644f 2384 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2385}
2386
564c2b21 2387/*
5a3126d4
PZ
2388 * Test whether two contexts are equivalent, i.e. whether they have both been
2389 * cloned from the same version of the same context.
2390 *
2391 * Equivalence is measured using a generation number in the context that is
2392 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2393 * and list_del_event().
564c2b21 2394 */
cdd6c482
IM
2395static int context_equiv(struct perf_event_context *ctx1,
2396 struct perf_event_context *ctx2)
564c2b21 2397{
211de6eb
PZ
2398 lockdep_assert_held(&ctx1->lock);
2399 lockdep_assert_held(&ctx2->lock);
2400
5a3126d4
PZ
2401 /* Pinning disables the swap optimization */
2402 if (ctx1->pin_count || ctx2->pin_count)
2403 return 0;
2404
2405 /* If ctx1 is the parent of ctx2 */
2406 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2407 return 1;
2408
2409 /* If ctx2 is the parent of ctx1 */
2410 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2411 return 1;
2412
2413 /*
2414 * If ctx1 and ctx2 have the same parent; we flatten the parent
2415 * hierarchy, see perf_event_init_context().
2416 */
2417 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2418 ctx1->parent_gen == ctx2->parent_gen)
2419 return 1;
2420
2421 /* Unmatched */
2422 return 0;
564c2b21
PM
2423}
2424
cdd6c482
IM
2425static void __perf_event_sync_stat(struct perf_event *event,
2426 struct perf_event *next_event)
bfbd3381
PZ
2427{
2428 u64 value;
2429
cdd6c482 2430 if (!event->attr.inherit_stat)
bfbd3381
PZ
2431 return;
2432
2433 /*
cdd6c482 2434 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2435 * because we're in the middle of a context switch and have IRQs
2436 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2437 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2438 * don't need to use it.
2439 */
cdd6c482
IM
2440 switch (event->state) {
2441 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2442 event->pmu->read(event);
2443 /* fall-through */
bfbd3381 2444
cdd6c482
IM
2445 case PERF_EVENT_STATE_INACTIVE:
2446 update_event_times(event);
bfbd3381
PZ
2447 break;
2448
2449 default:
2450 break;
2451 }
2452
2453 /*
cdd6c482 2454 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2455 * values when we flip the contexts.
2456 */
e7850595
PZ
2457 value = local64_read(&next_event->count);
2458 value = local64_xchg(&event->count, value);
2459 local64_set(&next_event->count, value);
bfbd3381 2460
cdd6c482
IM
2461 swap(event->total_time_enabled, next_event->total_time_enabled);
2462 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2463
bfbd3381 2464 /*
19d2e755 2465 * Since we swizzled the values, update the user visible data too.
bfbd3381 2466 */
cdd6c482
IM
2467 perf_event_update_userpage(event);
2468 perf_event_update_userpage(next_event);
bfbd3381
PZ
2469}
2470
cdd6c482
IM
2471static void perf_event_sync_stat(struct perf_event_context *ctx,
2472 struct perf_event_context *next_ctx)
bfbd3381 2473{
cdd6c482 2474 struct perf_event *event, *next_event;
bfbd3381
PZ
2475
2476 if (!ctx->nr_stat)
2477 return;
2478
02ffdbc8
PZ
2479 update_context_time(ctx);
2480
cdd6c482
IM
2481 event = list_first_entry(&ctx->event_list,
2482 struct perf_event, event_entry);
bfbd3381 2483
cdd6c482
IM
2484 next_event = list_first_entry(&next_ctx->event_list,
2485 struct perf_event, event_entry);
bfbd3381 2486
cdd6c482
IM
2487 while (&event->event_entry != &ctx->event_list &&
2488 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2489
cdd6c482 2490 __perf_event_sync_stat(event, next_event);
bfbd3381 2491
cdd6c482
IM
2492 event = list_next_entry(event, event_entry);
2493 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2494 }
2495}
2496
fe4b04fa
PZ
2497static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2498 struct task_struct *next)
0793a61d 2499{
8dc85d54 2500 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2501 struct perf_event_context *next_ctx;
5a3126d4 2502 struct perf_event_context *parent, *next_parent;
108b02cf 2503 struct perf_cpu_context *cpuctx;
c93f7669 2504 int do_switch = 1;
0793a61d 2505
108b02cf
PZ
2506 if (likely(!ctx))
2507 return;
10989fb2 2508
108b02cf
PZ
2509 cpuctx = __get_cpu_context(ctx);
2510 if (!cpuctx->task_ctx)
0793a61d
TG
2511 return;
2512
c93f7669 2513 rcu_read_lock();
8dc85d54 2514 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2515 if (!next_ctx)
2516 goto unlock;
2517
2518 parent = rcu_dereference(ctx->parent_ctx);
2519 next_parent = rcu_dereference(next_ctx->parent_ctx);
2520
2521 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2522 if (!parent && !next_parent)
5a3126d4
PZ
2523 goto unlock;
2524
2525 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2526 /*
2527 * Looks like the two contexts are clones, so we might be
2528 * able to optimize the context switch. We lock both
2529 * contexts and check that they are clones under the
2530 * lock (including re-checking that neither has been
2531 * uncloned in the meantime). It doesn't matter which
2532 * order we take the locks because no other cpu could
2533 * be trying to lock both of these tasks.
2534 */
e625cce1
TG
2535 raw_spin_lock(&ctx->lock);
2536 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2537 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2538 /*
2539 * XXX do we need a memory barrier of sorts
cdd6c482 2540 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2541 */
8dc85d54
PZ
2542 task->perf_event_ctxp[ctxn] = next_ctx;
2543 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2544 ctx->task = next;
2545 next_ctx->task = task;
5a158c3c
YZ
2546
2547 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2548
c93f7669 2549 do_switch = 0;
bfbd3381 2550
cdd6c482 2551 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2552 }
e625cce1
TG
2553 raw_spin_unlock(&next_ctx->lock);
2554 raw_spin_unlock(&ctx->lock);
564c2b21 2555 }
5a3126d4 2556unlock:
c93f7669 2557 rcu_read_unlock();
564c2b21 2558
c93f7669 2559 if (do_switch) {
facc4307 2560 raw_spin_lock(&ctx->lock);
5b0311e1 2561 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2562 cpuctx->task_ctx = NULL;
facc4307 2563 raw_spin_unlock(&ctx->lock);
c93f7669 2564 }
0793a61d
TG
2565}
2566
ba532500
YZ
2567void perf_sched_cb_dec(struct pmu *pmu)
2568{
2569 this_cpu_dec(perf_sched_cb_usages);
2570}
2571
2572void perf_sched_cb_inc(struct pmu *pmu)
2573{
2574 this_cpu_inc(perf_sched_cb_usages);
2575}
2576
2577/*
2578 * This function provides the context switch callback to the lower code
2579 * layer. It is invoked ONLY when the context switch callback is enabled.
2580 */
2581static void perf_pmu_sched_task(struct task_struct *prev,
2582 struct task_struct *next,
2583 bool sched_in)
2584{
2585 struct perf_cpu_context *cpuctx;
2586 struct pmu *pmu;
2587 unsigned long flags;
2588
2589 if (prev == next)
2590 return;
2591
2592 local_irq_save(flags);
2593
2594 rcu_read_lock();
2595
2596 list_for_each_entry_rcu(pmu, &pmus, entry) {
2597 if (pmu->sched_task) {
2598 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2599
2600 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2601
2602 perf_pmu_disable(pmu);
2603
2604 pmu->sched_task(cpuctx->task_ctx, sched_in);
2605
2606 perf_pmu_enable(pmu);
2607
2608 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2609 }
2610 }
2611
2612 rcu_read_unlock();
2613
2614 local_irq_restore(flags);
2615}
2616
8dc85d54
PZ
2617#define for_each_task_context_nr(ctxn) \
2618 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2619
2620/*
2621 * Called from scheduler to remove the events of the current task,
2622 * with interrupts disabled.
2623 *
2624 * We stop each event and update the event value in event->count.
2625 *
2626 * This does not protect us against NMI, but disable()
2627 * sets the disabled bit in the control field of event _before_
2628 * accessing the event control register. If a NMI hits, then it will
2629 * not restart the event.
2630 */
ab0cce56
JO
2631void __perf_event_task_sched_out(struct task_struct *task,
2632 struct task_struct *next)
8dc85d54
PZ
2633{
2634 int ctxn;
2635
ba532500
YZ
2636 if (__this_cpu_read(perf_sched_cb_usages))
2637 perf_pmu_sched_task(task, next, false);
2638
8dc85d54
PZ
2639 for_each_task_context_nr(ctxn)
2640 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2641
2642 /*
2643 * if cgroup events exist on this CPU, then we need
2644 * to check if we have to switch out PMU state.
2645 * cgroup event are system-wide mode only
2646 */
4a32fea9 2647 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2648 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2649}
2650
04dc2dbb 2651static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2652{
108b02cf 2653 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2654
a63eaf34
PM
2655 if (!cpuctx->task_ctx)
2656 return;
012b84da
IM
2657
2658 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2659 return;
2660
04dc2dbb 2661 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2662 cpuctx->task_ctx = NULL;
2663}
2664
5b0311e1
FW
2665/*
2666 * Called with IRQs disabled
2667 */
2668static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2669 enum event_type_t event_type)
2670{
2671 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2672}
2673
235c7fc7 2674static void
5b0311e1 2675ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2676 struct perf_cpu_context *cpuctx)
0793a61d 2677{
cdd6c482 2678 struct perf_event *event;
0793a61d 2679
889ff015
FW
2680 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2681 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2682 continue;
5632ab12 2683 if (!event_filter_match(event))
3b6f9e5c
PM
2684 continue;
2685
e5d1367f
SE
2686 /* may need to reset tstamp_enabled */
2687 if (is_cgroup_event(event))
2688 perf_cgroup_mark_enabled(event, ctx);
2689
8c9ed8e1 2690 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2691 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2692
2693 /*
2694 * If this pinned group hasn't been scheduled,
2695 * put it in error state.
2696 */
cdd6c482
IM
2697 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2698 update_group_times(event);
2699 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2700 }
3b6f9e5c 2701 }
5b0311e1
FW
2702}
2703
2704static void
2705ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2706 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2707{
2708 struct perf_event *event;
2709 int can_add_hw = 1;
3b6f9e5c 2710
889ff015
FW
2711 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2712 /* Ignore events in OFF or ERROR state */
2713 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2714 continue;
04289bb9
IM
2715 /*
2716 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2717 * of events:
04289bb9 2718 */
5632ab12 2719 if (!event_filter_match(event))
0793a61d
TG
2720 continue;
2721
e5d1367f
SE
2722 /* may need to reset tstamp_enabled */
2723 if (is_cgroup_event(event))
2724 perf_cgroup_mark_enabled(event, ctx);
2725
9ed6060d 2726 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2727 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2728 can_add_hw = 0;
9ed6060d 2729 }
0793a61d 2730 }
5b0311e1
FW
2731}
2732
2733static void
2734ctx_sched_in(struct perf_event_context *ctx,
2735 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2736 enum event_type_t event_type,
2737 struct task_struct *task)
5b0311e1 2738{
e5d1367f 2739 u64 now;
db24d33e 2740 int is_active = ctx->is_active;
e5d1367f 2741
db24d33e 2742 ctx->is_active |= event_type;
5b0311e1 2743 if (likely(!ctx->nr_events))
facc4307 2744 return;
5b0311e1 2745
e5d1367f
SE
2746 now = perf_clock();
2747 ctx->timestamp = now;
3f7cce3c 2748 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2749 /*
2750 * First go through the list and put on any pinned groups
2751 * in order to give them the best chance of going on.
2752 */
db24d33e 2753 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2754 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2755
2756 /* Then walk through the lower prio flexible groups */
db24d33e 2757 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2758 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2759}
2760
329c0e01 2761static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2762 enum event_type_t event_type,
2763 struct task_struct *task)
329c0e01
FW
2764{
2765 struct perf_event_context *ctx = &cpuctx->ctx;
2766
e5d1367f 2767 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2768}
2769
e5d1367f
SE
2770static void perf_event_context_sched_in(struct perf_event_context *ctx,
2771 struct task_struct *task)
235c7fc7 2772{
108b02cf 2773 struct perf_cpu_context *cpuctx;
235c7fc7 2774
108b02cf 2775 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2776 if (cpuctx->task_ctx == ctx)
2777 return;
2778
facc4307 2779 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2780 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2781 /*
2782 * We want to keep the following priority order:
2783 * cpu pinned (that don't need to move), task pinned,
2784 * cpu flexible, task flexible.
2785 */
2786 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2787
1d5f003f
GN
2788 if (ctx->nr_events)
2789 cpuctx->task_ctx = ctx;
9b33fa6b 2790
86b47c25
GN
2791 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2792
facc4307
PZ
2793 perf_pmu_enable(ctx->pmu);
2794 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
2795}
2796
8dc85d54
PZ
2797/*
2798 * Called from scheduler to add the events of the current task
2799 * with interrupts disabled.
2800 *
2801 * We restore the event value and then enable it.
2802 *
2803 * This does not protect us against NMI, but enable()
2804 * sets the enabled bit in the control field of event _before_
2805 * accessing the event control register. If a NMI hits, then it will
2806 * keep the event running.
2807 */
ab0cce56
JO
2808void __perf_event_task_sched_in(struct task_struct *prev,
2809 struct task_struct *task)
8dc85d54
PZ
2810{
2811 struct perf_event_context *ctx;
2812 int ctxn;
2813
2814 for_each_task_context_nr(ctxn) {
2815 ctx = task->perf_event_ctxp[ctxn];
2816 if (likely(!ctx))
2817 continue;
2818
e5d1367f 2819 perf_event_context_sched_in(ctx, task);
8dc85d54 2820 }
e5d1367f
SE
2821 /*
2822 * if cgroup events exist on this CPU, then we need
2823 * to check if we have to switch in PMU state.
2824 * cgroup event are system-wide mode only
2825 */
4a32fea9 2826 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2827 perf_cgroup_sched_in(prev, task);
d010b332 2828
ba532500
YZ
2829 if (__this_cpu_read(perf_sched_cb_usages))
2830 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
2831}
2832
abd50713
PZ
2833static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2834{
2835 u64 frequency = event->attr.sample_freq;
2836 u64 sec = NSEC_PER_SEC;
2837 u64 divisor, dividend;
2838
2839 int count_fls, nsec_fls, frequency_fls, sec_fls;
2840
2841 count_fls = fls64(count);
2842 nsec_fls = fls64(nsec);
2843 frequency_fls = fls64(frequency);
2844 sec_fls = 30;
2845
2846 /*
2847 * We got @count in @nsec, with a target of sample_freq HZ
2848 * the target period becomes:
2849 *
2850 * @count * 10^9
2851 * period = -------------------
2852 * @nsec * sample_freq
2853 *
2854 */
2855
2856 /*
2857 * Reduce accuracy by one bit such that @a and @b converge
2858 * to a similar magnitude.
2859 */
fe4b04fa 2860#define REDUCE_FLS(a, b) \
abd50713
PZ
2861do { \
2862 if (a##_fls > b##_fls) { \
2863 a >>= 1; \
2864 a##_fls--; \
2865 } else { \
2866 b >>= 1; \
2867 b##_fls--; \
2868 } \
2869} while (0)
2870
2871 /*
2872 * Reduce accuracy until either term fits in a u64, then proceed with
2873 * the other, so that finally we can do a u64/u64 division.
2874 */
2875 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2876 REDUCE_FLS(nsec, frequency);
2877 REDUCE_FLS(sec, count);
2878 }
2879
2880 if (count_fls + sec_fls > 64) {
2881 divisor = nsec * frequency;
2882
2883 while (count_fls + sec_fls > 64) {
2884 REDUCE_FLS(count, sec);
2885 divisor >>= 1;
2886 }
2887
2888 dividend = count * sec;
2889 } else {
2890 dividend = count * sec;
2891
2892 while (nsec_fls + frequency_fls > 64) {
2893 REDUCE_FLS(nsec, frequency);
2894 dividend >>= 1;
2895 }
2896
2897 divisor = nsec * frequency;
2898 }
2899
f6ab91ad
PZ
2900 if (!divisor)
2901 return dividend;
2902
abd50713
PZ
2903 return div64_u64(dividend, divisor);
2904}
2905
e050e3f0
SE
2906static DEFINE_PER_CPU(int, perf_throttled_count);
2907static DEFINE_PER_CPU(u64, perf_throttled_seq);
2908
f39d47ff 2909static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2910{
cdd6c482 2911 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2912 s64 period, sample_period;
bd2b5b12
PZ
2913 s64 delta;
2914
abd50713 2915 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2916
2917 delta = (s64)(period - hwc->sample_period);
2918 delta = (delta + 7) / 8; /* low pass filter */
2919
2920 sample_period = hwc->sample_period + delta;
2921
2922 if (!sample_period)
2923 sample_period = 1;
2924
bd2b5b12 2925 hwc->sample_period = sample_period;
abd50713 2926
e7850595 2927 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2928 if (disable)
2929 event->pmu->stop(event, PERF_EF_UPDATE);
2930
e7850595 2931 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2932
2933 if (disable)
2934 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2935 }
bd2b5b12
PZ
2936}
2937
e050e3f0
SE
2938/*
2939 * combine freq adjustment with unthrottling to avoid two passes over the
2940 * events. At the same time, make sure, having freq events does not change
2941 * the rate of unthrottling as that would introduce bias.
2942 */
2943static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2944 int needs_unthr)
60db5e09 2945{
cdd6c482
IM
2946 struct perf_event *event;
2947 struct hw_perf_event *hwc;
e050e3f0 2948 u64 now, period = TICK_NSEC;
abd50713 2949 s64 delta;
60db5e09 2950
e050e3f0
SE
2951 /*
2952 * only need to iterate over all events iff:
2953 * - context have events in frequency mode (needs freq adjust)
2954 * - there are events to unthrottle on this cpu
2955 */
2956 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2957 return;
2958
e050e3f0 2959 raw_spin_lock(&ctx->lock);
f39d47ff 2960 perf_pmu_disable(ctx->pmu);
e050e3f0 2961
03541f8b 2962 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2963 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2964 continue;
2965
5632ab12 2966 if (!event_filter_match(event))
5d27c23d
PZ
2967 continue;
2968
44377277
AS
2969 perf_pmu_disable(event->pmu);
2970
cdd6c482 2971 hwc = &event->hw;
6a24ed6c 2972
ae23bff1 2973 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 2974 hwc->interrupts = 0;
cdd6c482 2975 perf_log_throttle(event, 1);
a4eaf7f1 2976 event->pmu->start(event, 0);
a78ac325
PZ
2977 }
2978
cdd6c482 2979 if (!event->attr.freq || !event->attr.sample_freq)
44377277 2980 goto next;
60db5e09 2981
e050e3f0
SE
2982 /*
2983 * stop the event and update event->count
2984 */
2985 event->pmu->stop(event, PERF_EF_UPDATE);
2986
e7850595 2987 now = local64_read(&event->count);
abd50713
PZ
2988 delta = now - hwc->freq_count_stamp;
2989 hwc->freq_count_stamp = now;
60db5e09 2990
e050e3f0
SE
2991 /*
2992 * restart the event
2993 * reload only if value has changed
f39d47ff
SE
2994 * we have stopped the event so tell that
2995 * to perf_adjust_period() to avoid stopping it
2996 * twice.
e050e3f0 2997 */
abd50713 2998 if (delta > 0)
f39d47ff 2999 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3000
3001 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3002 next:
3003 perf_pmu_enable(event->pmu);
60db5e09 3004 }
e050e3f0 3005
f39d47ff 3006 perf_pmu_enable(ctx->pmu);
e050e3f0 3007 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3008}
3009
235c7fc7 3010/*
cdd6c482 3011 * Round-robin a context's events:
235c7fc7 3012 */
cdd6c482 3013static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3014{
dddd3379
TG
3015 /*
3016 * Rotate the first entry last of non-pinned groups. Rotation might be
3017 * disabled by the inheritance code.
3018 */
3019 if (!ctx->rotate_disable)
3020 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3021}
3022
9e630205 3023static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3024{
8dc85d54 3025 struct perf_event_context *ctx = NULL;
2fde4f94 3026 int rotate = 0;
7fc23a53 3027
b5ab4cd5 3028 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3029 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3030 rotate = 1;
3031 }
235c7fc7 3032
8dc85d54 3033 ctx = cpuctx->task_ctx;
b5ab4cd5 3034 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3035 if (ctx->nr_events != ctx->nr_active)
3036 rotate = 1;
3037 }
9717e6cd 3038
e050e3f0 3039 if (!rotate)
0f5a2601
PZ
3040 goto done;
3041
facc4307 3042 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3043 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3044
e050e3f0
SE
3045 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3046 if (ctx)
3047 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3048
e050e3f0
SE
3049 rotate_ctx(&cpuctx->ctx);
3050 if (ctx)
3051 rotate_ctx(ctx);
235c7fc7 3052
e050e3f0 3053 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3054
0f5a2601
PZ
3055 perf_pmu_enable(cpuctx->ctx.pmu);
3056 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3057done:
9e630205
SE
3058
3059 return rotate;
e9d2b064
PZ
3060}
3061
026249ef
FW
3062#ifdef CONFIG_NO_HZ_FULL
3063bool perf_event_can_stop_tick(void)
3064{
948b26b6 3065 if (atomic_read(&nr_freq_events) ||
d84153d6 3066 __this_cpu_read(perf_throttled_count))
026249ef 3067 return false;
d84153d6
FW
3068 else
3069 return true;
026249ef
FW
3070}
3071#endif
3072
e9d2b064
PZ
3073void perf_event_task_tick(void)
3074{
2fde4f94
MR
3075 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3076 struct perf_event_context *ctx, *tmp;
e050e3f0 3077 int throttled;
b5ab4cd5 3078
e9d2b064
PZ
3079 WARN_ON(!irqs_disabled());
3080
e050e3f0
SE
3081 __this_cpu_inc(perf_throttled_seq);
3082 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3083
2fde4f94 3084 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3085 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3086}
3087
889ff015
FW
3088static int event_enable_on_exec(struct perf_event *event,
3089 struct perf_event_context *ctx)
3090{
3091 if (!event->attr.enable_on_exec)
3092 return 0;
3093
3094 event->attr.enable_on_exec = 0;
3095 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3096 return 0;
3097
1d9b482e 3098 __perf_event_mark_enabled(event);
889ff015
FW
3099
3100 return 1;
3101}
3102
57e7986e 3103/*
cdd6c482 3104 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3105 * This expects task == current.
3106 */
8dc85d54 3107static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 3108{
211de6eb 3109 struct perf_event_context *clone_ctx = NULL;
cdd6c482 3110 struct perf_event *event;
57e7986e
PM
3111 unsigned long flags;
3112 int enabled = 0;
889ff015 3113 int ret;
57e7986e
PM
3114
3115 local_irq_save(flags);
cdd6c482 3116 if (!ctx || !ctx->nr_events)
57e7986e
PM
3117 goto out;
3118
e566b76e
SE
3119 /*
3120 * We must ctxsw out cgroup events to avoid conflict
3121 * when invoking perf_task_event_sched_in() later on
3122 * in this function. Otherwise we end up trying to
3123 * ctxswin cgroup events which are already scheduled
3124 * in.
3125 */
a8d757ef 3126 perf_cgroup_sched_out(current, NULL);
57e7986e 3127
e625cce1 3128 raw_spin_lock(&ctx->lock);
04dc2dbb 3129 task_ctx_sched_out(ctx);
57e7986e 3130
b79387ef 3131 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
3132 ret = event_enable_on_exec(event, ctx);
3133 if (ret)
3134 enabled = 1;
57e7986e
PM
3135 }
3136
3137 /*
cdd6c482 3138 * Unclone this context if we enabled any event.
57e7986e 3139 */
71a851b4 3140 if (enabled)
211de6eb 3141 clone_ctx = unclone_ctx(ctx);
57e7986e 3142
e625cce1 3143 raw_spin_unlock(&ctx->lock);
57e7986e 3144
e566b76e
SE
3145 /*
3146 * Also calls ctxswin for cgroup events, if any:
3147 */
e5d1367f 3148 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 3149out:
57e7986e 3150 local_irq_restore(flags);
211de6eb
PZ
3151
3152 if (clone_ctx)
3153 put_ctx(clone_ctx);
57e7986e
PM
3154}
3155
e041e328
PZ
3156void perf_event_exec(void)
3157{
3158 struct perf_event_context *ctx;
3159 int ctxn;
3160
3161 rcu_read_lock();
3162 for_each_task_context_nr(ctxn) {
3163 ctx = current->perf_event_ctxp[ctxn];
3164 if (!ctx)
3165 continue;
3166
3167 perf_event_enable_on_exec(ctx);
3168 }
3169 rcu_read_unlock();
3170}
3171
0793a61d 3172/*
cdd6c482 3173 * Cross CPU call to read the hardware event
0793a61d 3174 */
cdd6c482 3175static void __perf_event_read(void *info)
0793a61d 3176{
cdd6c482
IM
3177 struct perf_event *event = info;
3178 struct perf_event_context *ctx = event->ctx;
108b02cf 3179 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 3180
e1ac3614
PM
3181 /*
3182 * If this is a task context, we need to check whether it is
3183 * the current task context of this cpu. If not it has been
3184 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3185 * event->count would have been updated to a recent sample
3186 * when the event was scheduled out.
e1ac3614
PM
3187 */
3188 if (ctx->task && cpuctx->task_ctx != ctx)
3189 return;
3190
e625cce1 3191 raw_spin_lock(&ctx->lock);
e5d1367f 3192 if (ctx->is_active) {
542e72fc 3193 update_context_time(ctx);
e5d1367f
SE
3194 update_cgrp_time_from_event(event);
3195 }
cdd6c482 3196 update_event_times(event);
542e72fc
PZ
3197 if (event->state == PERF_EVENT_STATE_ACTIVE)
3198 event->pmu->read(event);
e625cce1 3199 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3200}
3201
b5e58793
PZ
3202static inline u64 perf_event_count(struct perf_event *event)
3203{
eacd3ecc
MF
3204 if (event->pmu->count)
3205 return event->pmu->count(event);
3206
3207 return __perf_event_count(event);
b5e58793
PZ
3208}
3209
cdd6c482 3210static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
3211{
3212 /*
cdd6c482
IM
3213 * If event is enabled and currently active on a CPU, update the
3214 * value in the event structure:
0793a61d 3215 */
cdd6c482
IM
3216 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3217 smp_call_function_single(event->oncpu,
3218 __perf_event_read, event, 1);
3219 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3220 struct perf_event_context *ctx = event->ctx;
3221 unsigned long flags;
3222
e625cce1 3223 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3224 /*
3225 * may read while context is not active
3226 * (e.g., thread is blocked), in that case
3227 * we cannot update context time
3228 */
e5d1367f 3229 if (ctx->is_active) {
c530ccd9 3230 update_context_time(ctx);
e5d1367f
SE
3231 update_cgrp_time_from_event(event);
3232 }
cdd6c482 3233 update_event_times(event);
e625cce1 3234 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
3235 }
3236
b5e58793 3237 return perf_event_count(event);
0793a61d
TG
3238}
3239
a63eaf34 3240/*
cdd6c482 3241 * Initialize the perf_event context in a task_struct:
a63eaf34 3242 */
eb184479 3243static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3244{
e625cce1 3245 raw_spin_lock_init(&ctx->lock);
a63eaf34 3246 mutex_init(&ctx->mutex);
2fde4f94 3247 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3248 INIT_LIST_HEAD(&ctx->pinned_groups);
3249 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3250 INIT_LIST_HEAD(&ctx->event_list);
3251 atomic_set(&ctx->refcount, 1);
fadfe7be 3252 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
eb184479
PZ
3253}
3254
3255static struct perf_event_context *
3256alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3257{
3258 struct perf_event_context *ctx;
3259
3260 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3261 if (!ctx)
3262 return NULL;
3263
3264 __perf_event_init_context(ctx);
3265 if (task) {
3266 ctx->task = task;
3267 get_task_struct(task);
0793a61d 3268 }
eb184479
PZ
3269 ctx->pmu = pmu;
3270
3271 return ctx;
a63eaf34
PM
3272}
3273
2ebd4ffb
MH
3274static struct task_struct *
3275find_lively_task_by_vpid(pid_t vpid)
3276{
3277 struct task_struct *task;
3278 int err;
0793a61d
TG
3279
3280 rcu_read_lock();
2ebd4ffb 3281 if (!vpid)
0793a61d
TG
3282 task = current;
3283 else
2ebd4ffb 3284 task = find_task_by_vpid(vpid);
0793a61d
TG
3285 if (task)
3286 get_task_struct(task);
3287 rcu_read_unlock();
3288
3289 if (!task)
3290 return ERR_PTR(-ESRCH);
3291
0793a61d 3292 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3293 err = -EACCES;
3294 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3295 goto errout;
3296
2ebd4ffb
MH
3297 return task;
3298errout:
3299 put_task_struct(task);
3300 return ERR_PTR(err);
3301
3302}
3303
fe4b04fa
PZ
3304/*
3305 * Returns a matching context with refcount and pincount.
3306 */
108b02cf 3307static struct perf_event_context *
4af57ef2
YZ
3308find_get_context(struct pmu *pmu, struct task_struct *task,
3309 struct perf_event *event)
0793a61d 3310{
211de6eb 3311 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3312 struct perf_cpu_context *cpuctx;
4af57ef2 3313 void *task_ctx_data = NULL;
25346b93 3314 unsigned long flags;
8dc85d54 3315 int ctxn, err;
4af57ef2 3316 int cpu = event->cpu;
0793a61d 3317
22a4ec72 3318 if (!task) {
cdd6c482 3319 /* Must be root to operate on a CPU event: */
0764771d 3320 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3321 return ERR_PTR(-EACCES);
3322
0793a61d 3323 /*
cdd6c482 3324 * We could be clever and allow to attach a event to an
0793a61d
TG
3325 * offline CPU and activate it when the CPU comes up, but
3326 * that's for later.
3327 */
f6325e30 3328 if (!cpu_online(cpu))
0793a61d
TG
3329 return ERR_PTR(-ENODEV);
3330
108b02cf 3331 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3332 ctx = &cpuctx->ctx;
c93f7669 3333 get_ctx(ctx);
fe4b04fa 3334 ++ctx->pin_count;
0793a61d 3335
0793a61d
TG
3336 return ctx;
3337 }
3338
8dc85d54
PZ
3339 err = -EINVAL;
3340 ctxn = pmu->task_ctx_nr;
3341 if (ctxn < 0)
3342 goto errout;
3343
4af57ef2
YZ
3344 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3345 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3346 if (!task_ctx_data) {
3347 err = -ENOMEM;
3348 goto errout;
3349 }
3350 }
3351
9ed6060d 3352retry:
8dc85d54 3353 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3354 if (ctx) {
211de6eb 3355 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3356 ++ctx->pin_count;
4af57ef2
YZ
3357
3358 if (task_ctx_data && !ctx->task_ctx_data) {
3359 ctx->task_ctx_data = task_ctx_data;
3360 task_ctx_data = NULL;
3361 }
e625cce1 3362 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3363
3364 if (clone_ctx)
3365 put_ctx(clone_ctx);
9137fb28 3366 } else {
eb184479 3367 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3368 err = -ENOMEM;
3369 if (!ctx)
3370 goto errout;
eb184479 3371
4af57ef2
YZ
3372 if (task_ctx_data) {
3373 ctx->task_ctx_data = task_ctx_data;
3374 task_ctx_data = NULL;
3375 }
3376
dbe08d82
ON
3377 err = 0;
3378 mutex_lock(&task->perf_event_mutex);
3379 /*
3380 * If it has already passed perf_event_exit_task().
3381 * we must see PF_EXITING, it takes this mutex too.
3382 */
3383 if (task->flags & PF_EXITING)
3384 err = -ESRCH;
3385 else if (task->perf_event_ctxp[ctxn])
3386 err = -EAGAIN;
fe4b04fa 3387 else {
9137fb28 3388 get_ctx(ctx);
fe4b04fa 3389 ++ctx->pin_count;
dbe08d82 3390 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3391 }
dbe08d82
ON
3392 mutex_unlock(&task->perf_event_mutex);
3393
3394 if (unlikely(err)) {
9137fb28 3395 put_ctx(ctx);
dbe08d82
ON
3396
3397 if (err == -EAGAIN)
3398 goto retry;
3399 goto errout;
a63eaf34
PM
3400 }
3401 }
3402
4af57ef2 3403 kfree(task_ctx_data);
0793a61d 3404 return ctx;
c93f7669 3405
9ed6060d 3406errout:
4af57ef2 3407 kfree(task_ctx_data);
c93f7669 3408 return ERR_PTR(err);
0793a61d
TG
3409}
3410
6fb2915d 3411static void perf_event_free_filter(struct perf_event *event);
2541517c 3412static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3413
cdd6c482 3414static void free_event_rcu(struct rcu_head *head)
592903cd 3415{
cdd6c482 3416 struct perf_event *event;
592903cd 3417
cdd6c482
IM
3418 event = container_of(head, struct perf_event, rcu_head);
3419 if (event->ns)
3420 put_pid_ns(event->ns);
6fb2915d 3421 perf_event_free_filter(event);
2541517c 3422 perf_event_free_bpf_prog(event);
cdd6c482 3423 kfree(event);
592903cd
PZ
3424}
3425
76369139 3426static void ring_buffer_put(struct ring_buffer *rb);
b69cf536
PZ
3427static void ring_buffer_attach(struct perf_event *event,
3428 struct ring_buffer *rb);
925d519a 3429
4beb31f3 3430static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3431{
4beb31f3
FW
3432 if (event->parent)
3433 return;
3434
4beb31f3
FW
3435 if (is_cgroup_event(event))
3436 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3437}
925d519a 3438
4beb31f3
FW
3439static void unaccount_event(struct perf_event *event)
3440{
3441 if (event->parent)
3442 return;
3443
3444 if (event->attach_state & PERF_ATTACH_TASK)
3445 static_key_slow_dec_deferred(&perf_sched_events);
3446 if (event->attr.mmap || event->attr.mmap_data)
3447 atomic_dec(&nr_mmap_events);
3448 if (event->attr.comm)
3449 atomic_dec(&nr_comm_events);
3450 if (event->attr.task)
3451 atomic_dec(&nr_task_events);
948b26b6
FW
3452 if (event->attr.freq)
3453 atomic_dec(&nr_freq_events);
4beb31f3
FW
3454 if (is_cgroup_event(event))
3455 static_key_slow_dec_deferred(&perf_sched_events);
3456 if (has_branch_stack(event))
3457 static_key_slow_dec_deferred(&perf_sched_events);
3458
3459 unaccount_event_cpu(event, event->cpu);
3460}
925d519a 3461
766d6c07
FW
3462static void __free_event(struct perf_event *event)
3463{
cdd6c482 3464 if (!event->parent) {
927c7a9e
FW
3465 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3466 put_callchain_buffers();
f344011c 3467 }
9ee318a7 3468
766d6c07
FW
3469 if (event->destroy)
3470 event->destroy(event);
3471
3472 if (event->ctx)
3473 put_ctx(event->ctx);
3474
c464c76e
YZ
3475 if (event->pmu)
3476 module_put(event->pmu->module);
3477
766d6c07
FW
3478 call_rcu(&event->rcu_head, free_event_rcu);
3479}
683ede43
PZ
3480
3481static void _free_event(struct perf_event *event)
f1600952 3482{
e360adbe 3483 irq_work_sync(&event->pending);
925d519a 3484
4beb31f3 3485 unaccount_event(event);
9ee318a7 3486
76369139 3487 if (event->rb) {
9bb5d40c
PZ
3488 /*
3489 * Can happen when we close an event with re-directed output.
3490 *
3491 * Since we have a 0 refcount, perf_mmap_close() will skip
3492 * over us; possibly making our ring_buffer_put() the last.
3493 */
3494 mutex_lock(&event->mmap_mutex);
b69cf536 3495 ring_buffer_attach(event, NULL);
9bb5d40c 3496 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3497 }
3498
e5d1367f
SE
3499 if (is_cgroup_event(event))
3500 perf_detach_cgroup(event);
3501
766d6c07 3502 __free_event(event);
f1600952
PZ
3503}
3504
683ede43
PZ
3505/*
3506 * Used to free events which have a known refcount of 1, such as in error paths
3507 * where the event isn't exposed yet and inherited events.
3508 */
3509static void free_event(struct perf_event *event)
0793a61d 3510{
683ede43
PZ
3511 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3512 "unexpected event refcount: %ld; ptr=%p\n",
3513 atomic_long_read(&event->refcount), event)) {
3514 /* leak to avoid use-after-free */
3515 return;
3516 }
0793a61d 3517
683ede43 3518 _free_event(event);
0793a61d
TG
3519}
3520
a66a3052 3521/*
f8697762 3522 * Remove user event from the owner task.
a66a3052 3523 */
f8697762 3524static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3525{
8882135b 3526 struct task_struct *owner;
fb0459d7 3527
8882135b
PZ
3528 rcu_read_lock();
3529 owner = ACCESS_ONCE(event->owner);
3530 /*
3531 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3532 * !owner it means the list deletion is complete and we can indeed
3533 * free this event, otherwise we need to serialize on
3534 * owner->perf_event_mutex.
3535 */
3536 smp_read_barrier_depends();
3537 if (owner) {
3538 /*
3539 * Since delayed_put_task_struct() also drops the last
3540 * task reference we can safely take a new reference
3541 * while holding the rcu_read_lock().
3542 */
3543 get_task_struct(owner);
3544 }
3545 rcu_read_unlock();
3546
3547 if (owner) {
f63a8daa
PZ
3548 /*
3549 * If we're here through perf_event_exit_task() we're already
3550 * holding ctx->mutex which would be an inversion wrt. the
3551 * normal lock order.
3552 *
3553 * However we can safely take this lock because its the child
3554 * ctx->mutex.
3555 */
3556 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3557
8882135b
PZ
3558 /*
3559 * We have to re-check the event->owner field, if it is cleared
3560 * we raced with perf_event_exit_task(), acquiring the mutex
3561 * ensured they're done, and we can proceed with freeing the
3562 * event.
3563 */
3564 if (event->owner)
3565 list_del_init(&event->owner_entry);
3566 mutex_unlock(&owner->perf_event_mutex);
3567 put_task_struct(owner);
3568 }
f8697762
JO
3569}
3570
3571/*
3572 * Called when the last reference to the file is gone.
3573 */
3574static void put_event(struct perf_event *event)
3575{
a83fe28e 3576 struct perf_event_context *ctx;
f8697762
JO
3577
3578 if (!atomic_long_dec_and_test(&event->refcount))
3579 return;
3580
3581 if (!is_kernel_event(event))
3582 perf_remove_from_owner(event);
8882135b 3583
683ede43
PZ
3584 /*
3585 * There are two ways this annotation is useful:
3586 *
3587 * 1) there is a lock recursion from perf_event_exit_task
3588 * see the comment there.
3589 *
3590 * 2) there is a lock-inversion with mmap_sem through
3591 * perf_event_read_group(), which takes faults while
3592 * holding ctx->mutex, however this is called after
3593 * the last filedesc died, so there is no possibility
3594 * to trigger the AB-BA case.
3595 */
a83fe28e
PZ
3596 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3597 WARN_ON_ONCE(ctx->parent_ctx);
683ede43 3598 perf_remove_from_context(event, true);
d415a7f1 3599 perf_event_ctx_unlock(event, ctx);
683ede43
PZ
3600
3601 _free_event(event);
a6fa941d
AV
3602}
3603
683ede43
PZ
3604int perf_event_release_kernel(struct perf_event *event)
3605{
3606 put_event(event);
3607 return 0;
3608}
3609EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3610
a6fa941d
AV
3611static int perf_release(struct inode *inode, struct file *file)
3612{
3613 put_event(file->private_data);
3614 return 0;
fb0459d7 3615}
fb0459d7 3616
fadfe7be
JO
3617/*
3618 * Remove all orphanes events from the context.
3619 */
3620static void orphans_remove_work(struct work_struct *work)
3621{
3622 struct perf_event_context *ctx;
3623 struct perf_event *event, *tmp;
3624
3625 ctx = container_of(work, struct perf_event_context,
3626 orphans_remove.work);
3627
3628 mutex_lock(&ctx->mutex);
3629 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3630 struct perf_event *parent_event = event->parent;
3631
3632 if (!is_orphaned_child(event))
3633 continue;
3634
3635 perf_remove_from_context(event, true);
3636
3637 mutex_lock(&parent_event->child_mutex);
3638 list_del_init(&event->child_list);
3639 mutex_unlock(&parent_event->child_mutex);
3640
3641 free_event(event);
3642 put_event(parent_event);
3643 }
3644
3645 raw_spin_lock_irq(&ctx->lock);
3646 ctx->orphans_remove_sched = false;
3647 raw_spin_unlock_irq(&ctx->lock);
3648 mutex_unlock(&ctx->mutex);
3649
3650 put_ctx(ctx);
3651}
3652
59ed446f 3653u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3654{
cdd6c482 3655 struct perf_event *child;
e53c0994
PZ
3656 u64 total = 0;
3657
59ed446f
PZ
3658 *enabled = 0;
3659 *running = 0;
3660
6f10581a 3661 mutex_lock(&event->child_mutex);
cdd6c482 3662 total += perf_event_read(event);
59ed446f
PZ
3663 *enabled += event->total_time_enabled +
3664 atomic64_read(&event->child_total_time_enabled);
3665 *running += event->total_time_running +
3666 atomic64_read(&event->child_total_time_running);
3667
3668 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 3669 total += perf_event_read(child);
59ed446f
PZ
3670 *enabled += child->total_time_enabled;
3671 *running += child->total_time_running;
3672 }
6f10581a 3673 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3674
3675 return total;
3676}
fb0459d7 3677EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3678
cdd6c482 3679static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
3680 u64 read_format, char __user *buf)
3681{
cdd6c482 3682 struct perf_event *leader = event->group_leader, *sub;
6f10581a 3683 struct perf_event_context *ctx = leader->ctx;
f63a8daa 3684 int n = 0, size = 0, ret;
59ed446f 3685 u64 count, enabled, running;
f63a8daa
PZ
3686 u64 values[5];
3687
3688 lockdep_assert_held(&ctx->mutex);
abf4868b 3689
59ed446f 3690 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
3691
3692 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
3693 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3694 values[n++] = enabled;
3695 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3696 values[n++] = running;
abf4868b
PZ
3697 values[n++] = count;
3698 if (read_format & PERF_FORMAT_ID)
3699 values[n++] = primary_event_id(leader);
3dab77fb
PZ
3700
3701 size = n * sizeof(u64);
3702
3703 if (copy_to_user(buf, values, size))
f63a8daa 3704 return -EFAULT;
3dab77fb 3705
6f10581a 3706 ret = size;
3dab77fb 3707
65abc865 3708 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 3709 n = 0;
3dab77fb 3710
59ed446f 3711 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
3712 if (read_format & PERF_FORMAT_ID)
3713 values[n++] = primary_event_id(sub);
3714
3715 size = n * sizeof(u64);
3716
184d3da8 3717 if (copy_to_user(buf + ret, values, size)) {
f63a8daa 3718 return -EFAULT;
6f10581a 3719 }
abf4868b
PZ
3720
3721 ret += size;
3dab77fb
PZ
3722 }
3723
abf4868b 3724 return ret;
3dab77fb
PZ
3725}
3726
cdd6c482 3727static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
3728 u64 read_format, char __user *buf)
3729{
59ed446f 3730 u64 enabled, running;
3dab77fb
PZ
3731 u64 values[4];
3732 int n = 0;
3733
59ed446f
PZ
3734 values[n++] = perf_event_read_value(event, &enabled, &running);
3735 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3736 values[n++] = enabled;
3737 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3738 values[n++] = running;
3dab77fb 3739 if (read_format & PERF_FORMAT_ID)
cdd6c482 3740 values[n++] = primary_event_id(event);
3dab77fb
PZ
3741
3742 if (copy_to_user(buf, values, n * sizeof(u64)))
3743 return -EFAULT;
3744
3745 return n * sizeof(u64);
3746}
3747
dc633982
JO
3748static bool is_event_hup(struct perf_event *event)
3749{
3750 bool no_children;
3751
3752 if (event->state != PERF_EVENT_STATE_EXIT)
3753 return false;
3754
3755 mutex_lock(&event->child_mutex);
3756 no_children = list_empty(&event->child_list);
3757 mutex_unlock(&event->child_mutex);
3758 return no_children;
3759}
3760
0793a61d 3761/*
cdd6c482 3762 * Read the performance event - simple non blocking version for now
0793a61d
TG
3763 */
3764static ssize_t
cdd6c482 3765perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3766{
cdd6c482 3767 u64 read_format = event->attr.read_format;
3dab77fb 3768 int ret;
0793a61d 3769
3b6f9e5c 3770 /*
cdd6c482 3771 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3772 * error state (i.e. because it was pinned but it couldn't be
3773 * scheduled on to the CPU at some point).
3774 */
cdd6c482 3775 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3776 return 0;
3777
c320c7b7 3778 if (count < event->read_size)
3dab77fb
PZ
3779 return -ENOSPC;
3780
cdd6c482 3781 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3782 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3783 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3784 else
cdd6c482 3785 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3786
3dab77fb 3787 return ret;
0793a61d
TG
3788}
3789
0793a61d
TG
3790static ssize_t
3791perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3792{
cdd6c482 3793 struct perf_event *event = file->private_data;
f63a8daa
PZ
3794 struct perf_event_context *ctx;
3795 int ret;
0793a61d 3796
f63a8daa
PZ
3797 ctx = perf_event_ctx_lock(event);
3798 ret = perf_read_hw(event, buf, count);
3799 perf_event_ctx_unlock(event, ctx);
3800
3801 return ret;
0793a61d
TG
3802}
3803
3804static unsigned int perf_poll(struct file *file, poll_table *wait)
3805{
cdd6c482 3806 struct perf_event *event = file->private_data;
76369139 3807 struct ring_buffer *rb;
61b67684 3808 unsigned int events = POLLHUP;
c7138f37 3809
e708d7ad 3810 poll_wait(file, &event->waitq, wait);
179033b3 3811
dc633982 3812 if (is_event_hup(event))
179033b3 3813 return events;
c7138f37 3814
10c6db11 3815 /*
9bb5d40c
PZ
3816 * Pin the event->rb by taking event->mmap_mutex; otherwise
3817 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
3818 */
3819 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
3820 rb = event->rb;
3821 if (rb)
76369139 3822 events = atomic_xchg(&rb->poll, 0);
10c6db11 3823 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
3824 return events;
3825}
3826
f63a8daa 3827static void _perf_event_reset(struct perf_event *event)
6de6a7b9 3828{
cdd6c482 3829 (void)perf_event_read(event);
e7850595 3830 local64_set(&event->count, 0);
cdd6c482 3831 perf_event_update_userpage(event);
3df5edad
PZ
3832}
3833
c93f7669 3834/*
cdd6c482
IM
3835 * Holding the top-level event's child_mutex means that any
3836 * descendant process that has inherited this event will block
3837 * in sync_child_event if it goes to exit, thus satisfying the
3838 * task existence requirements of perf_event_enable/disable.
c93f7669 3839 */
cdd6c482
IM
3840static void perf_event_for_each_child(struct perf_event *event,
3841 void (*func)(struct perf_event *))
3df5edad 3842{
cdd6c482 3843 struct perf_event *child;
3df5edad 3844
cdd6c482 3845 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 3846
cdd6c482
IM
3847 mutex_lock(&event->child_mutex);
3848 func(event);
3849 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 3850 func(child);
cdd6c482 3851 mutex_unlock(&event->child_mutex);
3df5edad
PZ
3852}
3853
cdd6c482
IM
3854static void perf_event_for_each(struct perf_event *event,
3855 void (*func)(struct perf_event *))
3df5edad 3856{
cdd6c482
IM
3857 struct perf_event_context *ctx = event->ctx;
3858 struct perf_event *sibling;
3df5edad 3859
f63a8daa
PZ
3860 lockdep_assert_held(&ctx->mutex);
3861
cdd6c482 3862 event = event->group_leader;
75f937f2 3863
cdd6c482 3864 perf_event_for_each_child(event, func);
cdd6c482 3865 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 3866 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
3867}
3868
cdd6c482 3869static int perf_event_period(struct perf_event *event, u64 __user *arg)
08247e31 3870{
cdd6c482 3871 struct perf_event_context *ctx = event->ctx;
bad7192b 3872 int ret = 0, active;
08247e31
PZ
3873 u64 value;
3874
6c7e550f 3875 if (!is_sampling_event(event))
08247e31
PZ
3876 return -EINVAL;
3877
ad0cf347 3878 if (copy_from_user(&value, arg, sizeof(value)))
08247e31
PZ
3879 return -EFAULT;
3880
3881 if (!value)
3882 return -EINVAL;
3883
e625cce1 3884 raw_spin_lock_irq(&ctx->lock);
cdd6c482
IM
3885 if (event->attr.freq) {
3886 if (value > sysctl_perf_event_sample_rate) {
08247e31
PZ
3887 ret = -EINVAL;
3888 goto unlock;
3889 }
3890
cdd6c482 3891 event->attr.sample_freq = value;
08247e31 3892 } else {
cdd6c482
IM
3893 event->attr.sample_period = value;
3894 event->hw.sample_period = value;
08247e31 3895 }
bad7192b
PZ
3896
3897 active = (event->state == PERF_EVENT_STATE_ACTIVE);
3898 if (active) {
3899 perf_pmu_disable(ctx->pmu);
3900 event->pmu->stop(event, PERF_EF_UPDATE);
3901 }
3902
3903 local64_set(&event->hw.period_left, 0);
3904
3905 if (active) {
3906 event->pmu->start(event, PERF_EF_RELOAD);
3907 perf_pmu_enable(ctx->pmu);
3908 }
3909
08247e31 3910unlock:
e625cce1 3911 raw_spin_unlock_irq(&ctx->lock);
08247e31
PZ
3912
3913 return ret;
3914}
3915
ac9721f3
PZ
3916static const struct file_operations perf_fops;
3917
2903ff01 3918static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 3919{
2903ff01
AV
3920 struct fd f = fdget(fd);
3921 if (!f.file)
3922 return -EBADF;
ac9721f3 3923
2903ff01
AV
3924 if (f.file->f_op != &perf_fops) {
3925 fdput(f);
3926 return -EBADF;
ac9721f3 3927 }
2903ff01
AV
3928 *p = f;
3929 return 0;
ac9721f3
PZ
3930}
3931
3932static int perf_event_set_output(struct perf_event *event,
3933 struct perf_event *output_event);
6fb2915d 3934static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 3935static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 3936
f63a8daa 3937static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 3938{
cdd6c482 3939 void (*func)(struct perf_event *);
3df5edad 3940 u32 flags = arg;
d859e29f
PM
3941
3942 switch (cmd) {
cdd6c482 3943 case PERF_EVENT_IOC_ENABLE:
f63a8daa 3944 func = _perf_event_enable;
d859e29f 3945 break;
cdd6c482 3946 case PERF_EVENT_IOC_DISABLE:
f63a8daa 3947 func = _perf_event_disable;
79f14641 3948 break;
cdd6c482 3949 case PERF_EVENT_IOC_RESET:
f63a8daa 3950 func = _perf_event_reset;
6de6a7b9 3951 break;
3df5edad 3952
cdd6c482 3953 case PERF_EVENT_IOC_REFRESH:
f63a8daa 3954 return _perf_event_refresh(event, arg);
08247e31 3955
cdd6c482
IM
3956 case PERF_EVENT_IOC_PERIOD:
3957 return perf_event_period(event, (u64 __user *)arg);
08247e31 3958
cf4957f1
JO
3959 case PERF_EVENT_IOC_ID:
3960 {
3961 u64 id = primary_event_id(event);
3962
3963 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3964 return -EFAULT;
3965 return 0;
3966 }
3967
cdd6c482 3968 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 3969 {
ac9721f3 3970 int ret;
ac9721f3 3971 if (arg != -1) {
2903ff01
AV
3972 struct perf_event *output_event;
3973 struct fd output;
3974 ret = perf_fget_light(arg, &output);
3975 if (ret)
3976 return ret;
3977 output_event = output.file->private_data;
3978 ret = perf_event_set_output(event, output_event);
3979 fdput(output);
3980 } else {
3981 ret = perf_event_set_output(event, NULL);
ac9721f3 3982 }
ac9721f3
PZ
3983 return ret;
3984 }
a4be7c27 3985
6fb2915d
LZ
3986 case PERF_EVENT_IOC_SET_FILTER:
3987 return perf_event_set_filter(event, (void __user *)arg);
3988
2541517c
AS
3989 case PERF_EVENT_IOC_SET_BPF:
3990 return perf_event_set_bpf_prog(event, arg);
3991
d859e29f 3992 default:
3df5edad 3993 return -ENOTTY;
d859e29f 3994 }
3df5edad
PZ
3995
3996 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 3997 perf_event_for_each(event, func);
3df5edad 3998 else
cdd6c482 3999 perf_event_for_each_child(event, func);
3df5edad
PZ
4000
4001 return 0;
d859e29f
PM
4002}
4003
f63a8daa
PZ
4004static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4005{
4006 struct perf_event *event = file->private_data;
4007 struct perf_event_context *ctx;
4008 long ret;
4009
4010 ctx = perf_event_ctx_lock(event);
4011 ret = _perf_ioctl(event, cmd, arg);
4012 perf_event_ctx_unlock(event, ctx);
4013
4014 return ret;
4015}
4016
b3f20785
PM
4017#ifdef CONFIG_COMPAT
4018static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4019 unsigned long arg)
4020{
4021 switch (_IOC_NR(cmd)) {
4022 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4023 case _IOC_NR(PERF_EVENT_IOC_ID):
4024 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4025 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4026 cmd &= ~IOCSIZE_MASK;
4027 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4028 }
4029 break;
4030 }
4031 return perf_ioctl(file, cmd, arg);
4032}
4033#else
4034# define perf_compat_ioctl NULL
4035#endif
4036
cdd6c482 4037int perf_event_task_enable(void)
771d7cde 4038{
f63a8daa 4039 struct perf_event_context *ctx;
cdd6c482 4040 struct perf_event *event;
771d7cde 4041
cdd6c482 4042 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4043 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4044 ctx = perf_event_ctx_lock(event);
4045 perf_event_for_each_child(event, _perf_event_enable);
4046 perf_event_ctx_unlock(event, ctx);
4047 }
cdd6c482 4048 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4049
4050 return 0;
4051}
4052
cdd6c482 4053int perf_event_task_disable(void)
771d7cde 4054{
f63a8daa 4055 struct perf_event_context *ctx;
cdd6c482 4056 struct perf_event *event;
771d7cde 4057
cdd6c482 4058 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4059 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4060 ctx = perf_event_ctx_lock(event);
4061 perf_event_for_each_child(event, _perf_event_disable);
4062 perf_event_ctx_unlock(event, ctx);
4063 }
cdd6c482 4064 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4065
4066 return 0;
4067}
4068
cdd6c482 4069static int perf_event_index(struct perf_event *event)
194002b2 4070{
a4eaf7f1
PZ
4071 if (event->hw.state & PERF_HES_STOPPED)
4072 return 0;
4073
cdd6c482 4074 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4075 return 0;
4076
35edc2a5 4077 return event->pmu->event_idx(event);
194002b2
PZ
4078}
4079
c4794295 4080static void calc_timer_values(struct perf_event *event,
e3f3541c 4081 u64 *now,
7f310a5d
EM
4082 u64 *enabled,
4083 u64 *running)
c4794295 4084{
e3f3541c 4085 u64 ctx_time;
c4794295 4086
e3f3541c
PZ
4087 *now = perf_clock();
4088 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4089 *enabled = ctx_time - event->tstamp_enabled;
4090 *running = ctx_time - event->tstamp_running;
4091}
4092
fa731587
PZ
4093static void perf_event_init_userpage(struct perf_event *event)
4094{
4095 struct perf_event_mmap_page *userpg;
4096 struct ring_buffer *rb;
4097
4098 rcu_read_lock();
4099 rb = rcu_dereference(event->rb);
4100 if (!rb)
4101 goto unlock;
4102
4103 userpg = rb->user_page;
4104
4105 /* Allow new userspace to detect that bit 0 is deprecated */
4106 userpg->cap_bit0_is_deprecated = 1;
4107 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4108 userpg->data_offset = PAGE_SIZE;
4109 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4110
4111unlock:
4112 rcu_read_unlock();
4113}
4114
c1317ec2
AL
4115void __weak arch_perf_update_userpage(
4116 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4117{
4118}
4119
38ff667b
PZ
4120/*
4121 * Callers need to ensure there can be no nesting of this function, otherwise
4122 * the seqlock logic goes bad. We can not serialize this because the arch
4123 * code calls this from NMI context.
4124 */
cdd6c482 4125void perf_event_update_userpage(struct perf_event *event)
37d81828 4126{
cdd6c482 4127 struct perf_event_mmap_page *userpg;
76369139 4128 struct ring_buffer *rb;
e3f3541c 4129 u64 enabled, running, now;
38ff667b
PZ
4130
4131 rcu_read_lock();
5ec4c599
PZ
4132 rb = rcu_dereference(event->rb);
4133 if (!rb)
4134 goto unlock;
4135
0d641208
EM
4136 /*
4137 * compute total_time_enabled, total_time_running
4138 * based on snapshot values taken when the event
4139 * was last scheduled in.
4140 *
4141 * we cannot simply called update_context_time()
4142 * because of locking issue as we can be called in
4143 * NMI context
4144 */
e3f3541c 4145 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4146
76369139 4147 userpg = rb->user_page;
7b732a75
PZ
4148 /*
4149 * Disable preemption so as to not let the corresponding user-space
4150 * spin too long if we get preempted.
4151 */
4152 preempt_disable();
37d81828 4153 ++userpg->lock;
92f22a38 4154 barrier();
cdd6c482 4155 userpg->index = perf_event_index(event);
b5e58793 4156 userpg->offset = perf_event_count(event);
365a4038 4157 if (userpg->index)
e7850595 4158 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4159
0d641208 4160 userpg->time_enabled = enabled +
cdd6c482 4161 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4162
0d641208 4163 userpg->time_running = running +
cdd6c482 4164 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4165
c1317ec2 4166 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4167
92f22a38 4168 barrier();
37d81828 4169 ++userpg->lock;
7b732a75 4170 preempt_enable();
38ff667b 4171unlock:
7b732a75 4172 rcu_read_unlock();
37d81828
PM
4173}
4174
906010b2
PZ
4175static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4176{
4177 struct perf_event *event = vma->vm_file->private_data;
76369139 4178 struct ring_buffer *rb;
906010b2
PZ
4179 int ret = VM_FAULT_SIGBUS;
4180
4181 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4182 if (vmf->pgoff == 0)
4183 ret = 0;
4184 return ret;
4185 }
4186
4187 rcu_read_lock();
76369139
FW
4188 rb = rcu_dereference(event->rb);
4189 if (!rb)
906010b2
PZ
4190 goto unlock;
4191
4192 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4193 goto unlock;
4194
76369139 4195 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4196 if (!vmf->page)
4197 goto unlock;
4198
4199 get_page(vmf->page);
4200 vmf->page->mapping = vma->vm_file->f_mapping;
4201 vmf->page->index = vmf->pgoff;
4202
4203 ret = 0;
4204unlock:
4205 rcu_read_unlock();
4206
4207 return ret;
4208}
4209
10c6db11
PZ
4210static void ring_buffer_attach(struct perf_event *event,
4211 struct ring_buffer *rb)
4212{
b69cf536 4213 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4214 unsigned long flags;
4215
b69cf536
PZ
4216 if (event->rb) {
4217 /*
4218 * Should be impossible, we set this when removing
4219 * event->rb_entry and wait/clear when adding event->rb_entry.
4220 */
4221 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4222
b69cf536
PZ
4223 old_rb = event->rb;
4224 event->rcu_batches = get_state_synchronize_rcu();
4225 event->rcu_pending = 1;
10c6db11 4226
b69cf536
PZ
4227 spin_lock_irqsave(&old_rb->event_lock, flags);
4228 list_del_rcu(&event->rb_entry);
4229 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4230 }
10c6db11 4231
b69cf536
PZ
4232 if (event->rcu_pending && rb) {
4233 cond_synchronize_rcu(event->rcu_batches);
4234 event->rcu_pending = 0;
4235 }
10c6db11 4236
b69cf536
PZ
4237 if (rb) {
4238 spin_lock_irqsave(&rb->event_lock, flags);
4239 list_add_rcu(&event->rb_entry, &rb->event_list);
4240 spin_unlock_irqrestore(&rb->event_lock, flags);
4241 }
4242
4243 rcu_assign_pointer(event->rb, rb);
4244
4245 if (old_rb) {
4246 ring_buffer_put(old_rb);
4247 /*
4248 * Since we detached before setting the new rb, so that we
4249 * could attach the new rb, we could have missed a wakeup.
4250 * Provide it now.
4251 */
4252 wake_up_all(&event->waitq);
4253 }
10c6db11
PZ
4254}
4255
4256static void ring_buffer_wakeup(struct perf_event *event)
4257{
4258 struct ring_buffer *rb;
4259
4260 rcu_read_lock();
4261 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4262 if (rb) {
4263 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4264 wake_up_all(&event->waitq);
4265 }
10c6db11
PZ
4266 rcu_read_unlock();
4267}
4268
76369139 4269static void rb_free_rcu(struct rcu_head *rcu_head)
906010b2 4270{
76369139 4271 struct ring_buffer *rb;
906010b2 4272
76369139
FW
4273 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
4274 rb_free(rb);
7b732a75
PZ
4275}
4276
76369139 4277static struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4278{
76369139 4279 struct ring_buffer *rb;
7b732a75 4280
ac9721f3 4281 rcu_read_lock();
76369139
FW
4282 rb = rcu_dereference(event->rb);
4283 if (rb) {
4284 if (!atomic_inc_not_zero(&rb->refcount))
4285 rb = NULL;
ac9721f3
PZ
4286 }
4287 rcu_read_unlock();
4288
76369139 4289 return rb;
ac9721f3
PZ
4290}
4291
76369139 4292static void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4293{
76369139 4294 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4295 return;
7b732a75 4296
9bb5d40c 4297 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4298
76369139 4299 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4300}
4301
4302static void perf_mmap_open(struct vm_area_struct *vma)
4303{
cdd6c482 4304 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4305
cdd6c482 4306 atomic_inc(&event->mmap_count);
9bb5d40c 4307 atomic_inc(&event->rb->mmap_count);
1e0fb9ec
AL
4308
4309 if (event->pmu->event_mapped)
4310 event->pmu->event_mapped(event);
7b732a75
PZ
4311}
4312
9bb5d40c
PZ
4313/*
4314 * A buffer can be mmap()ed multiple times; either directly through the same
4315 * event, or through other events by use of perf_event_set_output().
4316 *
4317 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4318 * the buffer here, where we still have a VM context. This means we need
4319 * to detach all events redirecting to us.
4320 */
7b732a75
PZ
4321static void perf_mmap_close(struct vm_area_struct *vma)
4322{
cdd6c482 4323 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4324
b69cf536 4325 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4326 struct user_struct *mmap_user = rb->mmap_user;
4327 int mmap_locked = rb->mmap_locked;
4328 unsigned long size = perf_data_size(rb);
789f90fc 4329
1e0fb9ec
AL
4330 if (event->pmu->event_unmapped)
4331 event->pmu->event_unmapped(event);
4332
9bb5d40c
PZ
4333 atomic_dec(&rb->mmap_count);
4334
4335 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4336 goto out_put;
9bb5d40c 4337
b69cf536 4338 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4339 mutex_unlock(&event->mmap_mutex);
4340
4341 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4342 if (atomic_read(&rb->mmap_count))
4343 goto out_put;
ac9721f3 4344
9bb5d40c
PZ
4345 /*
4346 * No other mmap()s, detach from all other events that might redirect
4347 * into the now unreachable buffer. Somewhat complicated by the
4348 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4349 */
4350again:
4351 rcu_read_lock();
4352 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4353 if (!atomic_long_inc_not_zero(&event->refcount)) {
4354 /*
4355 * This event is en-route to free_event() which will
4356 * detach it and remove it from the list.
4357 */
4358 continue;
4359 }
4360 rcu_read_unlock();
789f90fc 4361
9bb5d40c
PZ
4362 mutex_lock(&event->mmap_mutex);
4363 /*
4364 * Check we didn't race with perf_event_set_output() which can
4365 * swizzle the rb from under us while we were waiting to
4366 * acquire mmap_mutex.
4367 *
4368 * If we find a different rb; ignore this event, a next
4369 * iteration will no longer find it on the list. We have to
4370 * still restart the iteration to make sure we're not now
4371 * iterating the wrong list.
4372 */
b69cf536
PZ
4373 if (event->rb == rb)
4374 ring_buffer_attach(event, NULL);
4375
cdd6c482 4376 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4377 put_event(event);
ac9721f3 4378
9bb5d40c
PZ
4379 /*
4380 * Restart the iteration; either we're on the wrong list or
4381 * destroyed its integrity by doing a deletion.
4382 */
4383 goto again;
7b732a75 4384 }
9bb5d40c
PZ
4385 rcu_read_unlock();
4386
4387 /*
4388 * It could be there's still a few 0-ref events on the list; they'll
4389 * get cleaned up by free_event() -- they'll also still have their
4390 * ref on the rb and will free it whenever they are done with it.
4391 *
4392 * Aside from that, this buffer is 'fully' detached and unmapped,
4393 * undo the VM accounting.
4394 */
4395
4396 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4397 vma->vm_mm->pinned_vm -= mmap_locked;
4398 free_uid(mmap_user);
4399
b69cf536 4400out_put:
9bb5d40c 4401 ring_buffer_put(rb); /* could be last */
37d81828
PM
4402}
4403
f0f37e2f 4404static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8
PZ
4405 .open = perf_mmap_open,
4406 .close = perf_mmap_close,
4407 .fault = perf_mmap_fault,
4408 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4409};
4410
4411static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4412{
cdd6c482 4413 struct perf_event *event = file->private_data;
22a4f650 4414 unsigned long user_locked, user_lock_limit;
789f90fc 4415 struct user_struct *user = current_user();
22a4f650 4416 unsigned long locked, lock_limit;
76369139 4417 struct ring_buffer *rb;
7b732a75
PZ
4418 unsigned long vma_size;
4419 unsigned long nr_pages;
789f90fc 4420 long user_extra, extra;
d57e34fd 4421 int ret = 0, flags = 0;
37d81828 4422
c7920614
PZ
4423 /*
4424 * Don't allow mmap() of inherited per-task counters. This would
4425 * create a performance issue due to all children writing to the
76369139 4426 * same rb.
c7920614
PZ
4427 */
4428 if (event->cpu == -1 && event->attr.inherit)
4429 return -EINVAL;
4430
43a21ea8 4431 if (!(vma->vm_flags & VM_SHARED))
37d81828 4432 return -EINVAL;
7b732a75
PZ
4433
4434 vma_size = vma->vm_end - vma->vm_start;
4435 nr_pages = (vma_size / PAGE_SIZE) - 1;
4436
7730d865 4437 /*
76369139 4438 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4439 * can do bitmasks instead of modulo.
4440 */
2ed11312 4441 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4442 return -EINVAL;
4443
7b732a75 4444 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4445 return -EINVAL;
4446
7b732a75
PZ
4447 if (vma->vm_pgoff != 0)
4448 return -EINVAL;
37d81828 4449
cdd6c482 4450 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4451again:
cdd6c482 4452 mutex_lock(&event->mmap_mutex);
76369139 4453 if (event->rb) {
9bb5d40c 4454 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4455 ret = -EINVAL;
9bb5d40c
PZ
4456 goto unlock;
4457 }
4458
4459 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4460 /*
4461 * Raced against perf_mmap_close() through
4462 * perf_event_set_output(). Try again, hope for better
4463 * luck.
4464 */
4465 mutex_unlock(&event->mmap_mutex);
4466 goto again;
4467 }
4468
ebb3c4c4
PZ
4469 goto unlock;
4470 }
4471
789f90fc 4472 user_extra = nr_pages + 1;
cdd6c482 4473 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4474
4475 /*
4476 * Increase the limit linearly with more CPUs:
4477 */
4478 user_lock_limit *= num_online_cpus();
4479
789f90fc 4480 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4481
789f90fc
PZ
4482 extra = 0;
4483 if (user_locked > user_lock_limit)
4484 extra = user_locked - user_lock_limit;
7b732a75 4485
78d7d407 4486 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4487 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4488 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4489
459ec28a
IM
4490 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4491 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4492 ret = -EPERM;
4493 goto unlock;
4494 }
7b732a75 4495
76369139 4496 WARN_ON(event->rb);
906010b2 4497
d57e34fd 4498 if (vma->vm_flags & VM_WRITE)
76369139 4499 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4500
4ec8363d
VW
4501 rb = rb_alloc(nr_pages,
4502 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4503 event->cpu, flags);
4504
76369139 4505 if (!rb) {
ac9721f3 4506 ret = -ENOMEM;
ebb3c4c4 4507 goto unlock;
ac9721f3 4508 }
26cb63ad 4509
9bb5d40c 4510 atomic_set(&rb->mmap_count, 1);
26cb63ad
PZ
4511 rb->mmap_locked = extra;
4512 rb->mmap_user = get_current_user();
43a21ea8 4513
ac9721f3 4514 atomic_long_add(user_extra, &user->locked_vm);
26cb63ad
PZ
4515 vma->vm_mm->pinned_vm += extra;
4516
9bb5d40c 4517 ring_buffer_attach(event, rb);
ac9721f3 4518
fa731587 4519 perf_event_init_userpage(event);
9a0f05cb
PZ
4520 perf_event_update_userpage(event);
4521
ebb3c4c4 4522unlock:
ac9721f3
PZ
4523 if (!ret)
4524 atomic_inc(&event->mmap_count);
cdd6c482 4525 mutex_unlock(&event->mmap_mutex);
37d81828 4526
9bb5d40c
PZ
4527 /*
4528 * Since pinned accounting is per vm we cannot allow fork() to copy our
4529 * vma.
4530 */
26cb63ad 4531 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4532 vma->vm_ops = &perf_mmap_vmops;
7b732a75 4533
1e0fb9ec
AL
4534 if (event->pmu->event_mapped)
4535 event->pmu->event_mapped(event);
4536
7b732a75 4537 return ret;
37d81828
PM
4538}
4539
3c446b3d
PZ
4540static int perf_fasync(int fd, struct file *filp, int on)
4541{
496ad9aa 4542 struct inode *inode = file_inode(filp);
cdd6c482 4543 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4544 int retval;
4545
4546 mutex_lock(&inode->i_mutex);
cdd6c482 4547 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4548 mutex_unlock(&inode->i_mutex);
4549
4550 if (retval < 0)
4551 return retval;
4552
4553 return 0;
4554}
4555
0793a61d 4556static const struct file_operations perf_fops = {
3326c1ce 4557 .llseek = no_llseek,
0793a61d
TG
4558 .release = perf_release,
4559 .read = perf_read,
4560 .poll = perf_poll,
d859e29f 4561 .unlocked_ioctl = perf_ioctl,
b3f20785 4562 .compat_ioctl = perf_compat_ioctl,
37d81828 4563 .mmap = perf_mmap,
3c446b3d 4564 .fasync = perf_fasync,
0793a61d
TG
4565};
4566
925d519a 4567/*
cdd6c482 4568 * Perf event wakeup
925d519a
PZ
4569 *
4570 * If there's data, ensure we set the poll() state and publish everything
4571 * to user-space before waking everybody up.
4572 */
4573
cdd6c482 4574void perf_event_wakeup(struct perf_event *event)
925d519a 4575{
10c6db11 4576 ring_buffer_wakeup(event);
4c9e2542 4577
cdd6c482
IM
4578 if (event->pending_kill) {
4579 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4580 event->pending_kill = 0;
4c9e2542 4581 }
925d519a
PZ
4582}
4583
e360adbe 4584static void perf_pending_event(struct irq_work *entry)
79f14641 4585{
cdd6c482
IM
4586 struct perf_event *event = container_of(entry,
4587 struct perf_event, pending);
d525211f
PZ
4588 int rctx;
4589
4590 rctx = perf_swevent_get_recursion_context();
4591 /*
4592 * If we 'fail' here, that's OK, it means recursion is already disabled
4593 * and we won't recurse 'further'.
4594 */
79f14641 4595
cdd6c482
IM
4596 if (event->pending_disable) {
4597 event->pending_disable = 0;
4598 __perf_event_disable(event);
79f14641
PZ
4599 }
4600
cdd6c482
IM
4601 if (event->pending_wakeup) {
4602 event->pending_wakeup = 0;
4603 perf_event_wakeup(event);
79f14641 4604 }
d525211f
PZ
4605
4606 if (rctx >= 0)
4607 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
4608}
4609
39447b38
ZY
4610/*
4611 * We assume there is only KVM supporting the callbacks.
4612 * Later on, we might change it to a list if there is
4613 * another virtualization implementation supporting the callbacks.
4614 */
4615struct perf_guest_info_callbacks *perf_guest_cbs;
4616
4617int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4618{
4619 perf_guest_cbs = cbs;
4620 return 0;
4621}
4622EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4623
4624int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4625{
4626 perf_guest_cbs = NULL;
4627 return 0;
4628}
4629EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4630
4018994f
JO
4631static void
4632perf_output_sample_regs(struct perf_output_handle *handle,
4633 struct pt_regs *regs, u64 mask)
4634{
4635 int bit;
4636
4637 for_each_set_bit(bit, (const unsigned long *) &mask,
4638 sizeof(mask) * BITS_PER_BYTE) {
4639 u64 val;
4640
4641 val = perf_reg_value(regs, bit);
4642 perf_output_put(handle, val);
4643 }
4644}
4645
60e2364e 4646static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
4647 struct pt_regs *regs,
4648 struct pt_regs *regs_user_copy)
4018994f 4649{
88a7c26a
AL
4650 if (user_mode(regs)) {
4651 regs_user->abi = perf_reg_abi(current);
2565711f 4652 regs_user->regs = regs;
88a7c26a
AL
4653 } else if (current->mm) {
4654 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
4655 } else {
4656 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4657 regs_user->regs = NULL;
4018994f
JO
4658 }
4659}
4660
60e2364e
SE
4661static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4662 struct pt_regs *regs)
4663{
4664 regs_intr->regs = regs;
4665 regs_intr->abi = perf_reg_abi(current);
4666}
4667
4668
c5ebcedb
JO
4669/*
4670 * Get remaining task size from user stack pointer.
4671 *
4672 * It'd be better to take stack vma map and limit this more
4673 * precisly, but there's no way to get it safely under interrupt,
4674 * so using TASK_SIZE as limit.
4675 */
4676static u64 perf_ustack_task_size(struct pt_regs *regs)
4677{
4678 unsigned long addr = perf_user_stack_pointer(regs);
4679
4680 if (!addr || addr >= TASK_SIZE)
4681 return 0;
4682
4683 return TASK_SIZE - addr;
4684}
4685
4686static u16
4687perf_sample_ustack_size(u16 stack_size, u16 header_size,
4688 struct pt_regs *regs)
4689{
4690 u64 task_size;
4691
4692 /* No regs, no stack pointer, no dump. */
4693 if (!regs)
4694 return 0;
4695
4696 /*
4697 * Check if we fit in with the requested stack size into the:
4698 * - TASK_SIZE
4699 * If we don't, we limit the size to the TASK_SIZE.
4700 *
4701 * - remaining sample size
4702 * If we don't, we customize the stack size to
4703 * fit in to the remaining sample size.
4704 */
4705
4706 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4707 stack_size = min(stack_size, (u16) task_size);
4708
4709 /* Current header size plus static size and dynamic size. */
4710 header_size += 2 * sizeof(u64);
4711
4712 /* Do we fit in with the current stack dump size? */
4713 if ((u16) (header_size + stack_size) < header_size) {
4714 /*
4715 * If we overflow the maximum size for the sample,
4716 * we customize the stack dump size to fit in.
4717 */
4718 stack_size = USHRT_MAX - header_size - sizeof(u64);
4719 stack_size = round_up(stack_size, sizeof(u64));
4720 }
4721
4722 return stack_size;
4723}
4724
4725static void
4726perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4727 struct pt_regs *regs)
4728{
4729 /* Case of a kernel thread, nothing to dump */
4730 if (!regs) {
4731 u64 size = 0;
4732 perf_output_put(handle, size);
4733 } else {
4734 unsigned long sp;
4735 unsigned int rem;
4736 u64 dyn_size;
4737
4738 /*
4739 * We dump:
4740 * static size
4741 * - the size requested by user or the best one we can fit
4742 * in to the sample max size
4743 * data
4744 * - user stack dump data
4745 * dynamic size
4746 * - the actual dumped size
4747 */
4748
4749 /* Static size. */
4750 perf_output_put(handle, dump_size);
4751
4752 /* Data. */
4753 sp = perf_user_stack_pointer(regs);
4754 rem = __output_copy_user(handle, (void *) sp, dump_size);
4755 dyn_size = dump_size - rem;
4756
4757 perf_output_skip(handle, rem);
4758
4759 /* Dynamic size. */
4760 perf_output_put(handle, dyn_size);
4761 }
4762}
4763
c980d109
ACM
4764static void __perf_event_header__init_id(struct perf_event_header *header,
4765 struct perf_sample_data *data,
4766 struct perf_event *event)
6844c09d
ACM
4767{
4768 u64 sample_type = event->attr.sample_type;
4769
4770 data->type = sample_type;
4771 header->size += event->id_header_size;
4772
4773 if (sample_type & PERF_SAMPLE_TID) {
4774 /* namespace issues */
4775 data->tid_entry.pid = perf_event_pid(event, current);
4776 data->tid_entry.tid = perf_event_tid(event, current);
4777 }
4778
4779 if (sample_type & PERF_SAMPLE_TIME)
34f43927 4780 data->time = perf_event_clock(event);
6844c09d 4781
ff3d527c 4782 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
4783 data->id = primary_event_id(event);
4784
4785 if (sample_type & PERF_SAMPLE_STREAM_ID)
4786 data->stream_id = event->id;
4787
4788 if (sample_type & PERF_SAMPLE_CPU) {
4789 data->cpu_entry.cpu = raw_smp_processor_id();
4790 data->cpu_entry.reserved = 0;
4791 }
4792}
4793
76369139
FW
4794void perf_event_header__init_id(struct perf_event_header *header,
4795 struct perf_sample_data *data,
4796 struct perf_event *event)
c980d109
ACM
4797{
4798 if (event->attr.sample_id_all)
4799 __perf_event_header__init_id(header, data, event);
4800}
4801
4802static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4803 struct perf_sample_data *data)
4804{
4805 u64 sample_type = data->type;
4806
4807 if (sample_type & PERF_SAMPLE_TID)
4808 perf_output_put(handle, data->tid_entry);
4809
4810 if (sample_type & PERF_SAMPLE_TIME)
4811 perf_output_put(handle, data->time);
4812
4813 if (sample_type & PERF_SAMPLE_ID)
4814 perf_output_put(handle, data->id);
4815
4816 if (sample_type & PERF_SAMPLE_STREAM_ID)
4817 perf_output_put(handle, data->stream_id);
4818
4819 if (sample_type & PERF_SAMPLE_CPU)
4820 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
4821
4822 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4823 perf_output_put(handle, data->id);
c980d109
ACM
4824}
4825
76369139
FW
4826void perf_event__output_id_sample(struct perf_event *event,
4827 struct perf_output_handle *handle,
4828 struct perf_sample_data *sample)
c980d109
ACM
4829{
4830 if (event->attr.sample_id_all)
4831 __perf_event__output_id_sample(handle, sample);
4832}
4833
3dab77fb 4834static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
4835 struct perf_event *event,
4836 u64 enabled, u64 running)
3dab77fb 4837{
cdd6c482 4838 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4839 u64 values[4];
4840 int n = 0;
4841
b5e58793 4842 values[n++] = perf_event_count(event);
3dab77fb 4843 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 4844 values[n++] = enabled +
cdd6c482 4845 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
4846 }
4847 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 4848 values[n++] = running +
cdd6c482 4849 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
4850 }
4851 if (read_format & PERF_FORMAT_ID)
cdd6c482 4852 values[n++] = primary_event_id(event);
3dab77fb 4853
76369139 4854 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4855}
4856
4857/*
cdd6c482 4858 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
4859 */
4860static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
4861 struct perf_event *event,
4862 u64 enabled, u64 running)
3dab77fb 4863{
cdd6c482
IM
4864 struct perf_event *leader = event->group_leader, *sub;
4865 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4866 u64 values[5];
4867 int n = 0;
4868
4869 values[n++] = 1 + leader->nr_siblings;
4870
4871 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 4872 values[n++] = enabled;
3dab77fb
PZ
4873
4874 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 4875 values[n++] = running;
3dab77fb 4876
cdd6c482 4877 if (leader != event)
3dab77fb
PZ
4878 leader->pmu->read(leader);
4879
b5e58793 4880 values[n++] = perf_event_count(leader);
3dab77fb 4881 if (read_format & PERF_FORMAT_ID)
cdd6c482 4882 values[n++] = primary_event_id(leader);
3dab77fb 4883
76369139 4884 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 4885
65abc865 4886 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
4887 n = 0;
4888
6f5ab001
JO
4889 if ((sub != event) &&
4890 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
4891 sub->pmu->read(sub);
4892
b5e58793 4893 values[n++] = perf_event_count(sub);
3dab77fb 4894 if (read_format & PERF_FORMAT_ID)
cdd6c482 4895 values[n++] = primary_event_id(sub);
3dab77fb 4896
76369139 4897 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4898 }
4899}
4900
eed01528
SE
4901#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4902 PERF_FORMAT_TOTAL_TIME_RUNNING)
4903
3dab77fb 4904static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 4905 struct perf_event *event)
3dab77fb 4906{
e3f3541c 4907 u64 enabled = 0, running = 0, now;
eed01528
SE
4908 u64 read_format = event->attr.read_format;
4909
4910 /*
4911 * compute total_time_enabled, total_time_running
4912 * based on snapshot values taken when the event
4913 * was last scheduled in.
4914 *
4915 * we cannot simply called update_context_time()
4916 * because of locking issue as we are called in
4917 * NMI context
4918 */
c4794295 4919 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 4920 calc_timer_values(event, &now, &enabled, &running);
eed01528 4921
cdd6c482 4922 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 4923 perf_output_read_group(handle, event, enabled, running);
3dab77fb 4924 else
eed01528 4925 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
4926}
4927
5622f295
MM
4928void perf_output_sample(struct perf_output_handle *handle,
4929 struct perf_event_header *header,
4930 struct perf_sample_data *data,
cdd6c482 4931 struct perf_event *event)
5622f295
MM
4932{
4933 u64 sample_type = data->type;
4934
4935 perf_output_put(handle, *header);
4936
ff3d527c
AH
4937 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4938 perf_output_put(handle, data->id);
4939
5622f295
MM
4940 if (sample_type & PERF_SAMPLE_IP)
4941 perf_output_put(handle, data->ip);
4942
4943 if (sample_type & PERF_SAMPLE_TID)
4944 perf_output_put(handle, data->tid_entry);
4945
4946 if (sample_type & PERF_SAMPLE_TIME)
4947 perf_output_put(handle, data->time);
4948
4949 if (sample_type & PERF_SAMPLE_ADDR)
4950 perf_output_put(handle, data->addr);
4951
4952 if (sample_type & PERF_SAMPLE_ID)
4953 perf_output_put(handle, data->id);
4954
4955 if (sample_type & PERF_SAMPLE_STREAM_ID)
4956 perf_output_put(handle, data->stream_id);
4957
4958 if (sample_type & PERF_SAMPLE_CPU)
4959 perf_output_put(handle, data->cpu_entry);
4960
4961 if (sample_type & PERF_SAMPLE_PERIOD)
4962 perf_output_put(handle, data->period);
4963
4964 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 4965 perf_output_read(handle, event);
5622f295
MM
4966
4967 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4968 if (data->callchain) {
4969 int size = 1;
4970
4971 if (data->callchain)
4972 size += data->callchain->nr;
4973
4974 size *= sizeof(u64);
4975
76369139 4976 __output_copy(handle, data->callchain, size);
5622f295
MM
4977 } else {
4978 u64 nr = 0;
4979 perf_output_put(handle, nr);
4980 }
4981 }
4982
4983 if (sample_type & PERF_SAMPLE_RAW) {
4984 if (data->raw) {
4985 perf_output_put(handle, data->raw->size);
76369139
FW
4986 __output_copy(handle, data->raw->data,
4987 data->raw->size);
5622f295
MM
4988 } else {
4989 struct {
4990 u32 size;
4991 u32 data;
4992 } raw = {
4993 .size = sizeof(u32),
4994 .data = 0,
4995 };
4996 perf_output_put(handle, raw);
4997 }
4998 }
a7ac67ea 4999
bce38cd5
SE
5000 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5001 if (data->br_stack) {
5002 size_t size;
5003
5004 size = data->br_stack->nr
5005 * sizeof(struct perf_branch_entry);
5006
5007 perf_output_put(handle, data->br_stack->nr);
5008 perf_output_copy(handle, data->br_stack->entries, size);
5009 } else {
5010 /*
5011 * we always store at least the value of nr
5012 */
5013 u64 nr = 0;
5014 perf_output_put(handle, nr);
5015 }
5016 }
4018994f
JO
5017
5018 if (sample_type & PERF_SAMPLE_REGS_USER) {
5019 u64 abi = data->regs_user.abi;
5020
5021 /*
5022 * If there are no regs to dump, notice it through
5023 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5024 */
5025 perf_output_put(handle, abi);
5026
5027 if (abi) {
5028 u64 mask = event->attr.sample_regs_user;
5029 perf_output_sample_regs(handle,
5030 data->regs_user.regs,
5031 mask);
5032 }
5033 }
c5ebcedb 5034
a5cdd40c 5035 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5036 perf_output_sample_ustack(handle,
5037 data->stack_user_size,
5038 data->regs_user.regs);
a5cdd40c 5039 }
c3feedf2
AK
5040
5041 if (sample_type & PERF_SAMPLE_WEIGHT)
5042 perf_output_put(handle, data->weight);
d6be9ad6
SE
5043
5044 if (sample_type & PERF_SAMPLE_DATA_SRC)
5045 perf_output_put(handle, data->data_src.val);
a5cdd40c 5046
fdfbbd07
AK
5047 if (sample_type & PERF_SAMPLE_TRANSACTION)
5048 perf_output_put(handle, data->txn);
5049
60e2364e
SE
5050 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5051 u64 abi = data->regs_intr.abi;
5052 /*
5053 * If there are no regs to dump, notice it through
5054 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5055 */
5056 perf_output_put(handle, abi);
5057
5058 if (abi) {
5059 u64 mask = event->attr.sample_regs_intr;
5060
5061 perf_output_sample_regs(handle,
5062 data->regs_intr.regs,
5063 mask);
5064 }
5065 }
5066
a5cdd40c
PZ
5067 if (!event->attr.watermark) {
5068 int wakeup_events = event->attr.wakeup_events;
5069
5070 if (wakeup_events) {
5071 struct ring_buffer *rb = handle->rb;
5072 int events = local_inc_return(&rb->events);
5073
5074 if (events >= wakeup_events) {
5075 local_sub(wakeup_events, &rb->events);
5076 local_inc(&rb->wakeup);
5077 }
5078 }
5079 }
5622f295
MM
5080}
5081
5082void perf_prepare_sample(struct perf_event_header *header,
5083 struct perf_sample_data *data,
cdd6c482 5084 struct perf_event *event,
5622f295 5085 struct pt_regs *regs)
7b732a75 5086{
cdd6c482 5087 u64 sample_type = event->attr.sample_type;
7b732a75 5088
cdd6c482 5089 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5090 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5091
5092 header->misc = 0;
5093 header->misc |= perf_misc_flags(regs);
6fab0192 5094
c980d109 5095 __perf_event_header__init_id(header, data, event);
6844c09d 5096
c320c7b7 5097 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5098 data->ip = perf_instruction_pointer(regs);
5099
b23f3325 5100 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5101 int size = 1;
394ee076 5102
e6dab5ff 5103 data->callchain = perf_callchain(event, regs);
5622f295
MM
5104
5105 if (data->callchain)
5106 size += data->callchain->nr;
5107
5108 header->size += size * sizeof(u64);
394ee076
PZ
5109 }
5110
3a43ce68 5111 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
5112 int size = sizeof(u32);
5113
5114 if (data->raw)
5115 size += data->raw->size;
5116 else
5117 size += sizeof(u32);
5118
5119 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 5120 header->size += size;
7f453c24 5121 }
bce38cd5
SE
5122
5123 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5124 int size = sizeof(u64); /* nr */
5125 if (data->br_stack) {
5126 size += data->br_stack->nr
5127 * sizeof(struct perf_branch_entry);
5128 }
5129 header->size += size;
5130 }
4018994f 5131
2565711f 5132 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5133 perf_sample_regs_user(&data->regs_user, regs,
5134 &data->regs_user_copy);
2565711f 5135
4018994f
JO
5136 if (sample_type & PERF_SAMPLE_REGS_USER) {
5137 /* regs dump ABI info */
5138 int size = sizeof(u64);
5139
4018994f
JO
5140 if (data->regs_user.regs) {
5141 u64 mask = event->attr.sample_regs_user;
5142 size += hweight64(mask) * sizeof(u64);
5143 }
5144
5145 header->size += size;
5146 }
c5ebcedb
JO
5147
5148 if (sample_type & PERF_SAMPLE_STACK_USER) {
5149 /*
5150 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5151 * processed as the last one or have additional check added
5152 * in case new sample type is added, because we could eat
5153 * up the rest of the sample size.
5154 */
c5ebcedb
JO
5155 u16 stack_size = event->attr.sample_stack_user;
5156 u16 size = sizeof(u64);
5157
c5ebcedb 5158 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5159 data->regs_user.regs);
c5ebcedb
JO
5160
5161 /*
5162 * If there is something to dump, add space for the dump
5163 * itself and for the field that tells the dynamic size,
5164 * which is how many have been actually dumped.
5165 */
5166 if (stack_size)
5167 size += sizeof(u64) + stack_size;
5168
5169 data->stack_user_size = stack_size;
5170 header->size += size;
5171 }
60e2364e
SE
5172
5173 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5174 /* regs dump ABI info */
5175 int size = sizeof(u64);
5176
5177 perf_sample_regs_intr(&data->regs_intr, regs);
5178
5179 if (data->regs_intr.regs) {
5180 u64 mask = event->attr.sample_regs_intr;
5181
5182 size += hweight64(mask) * sizeof(u64);
5183 }
5184
5185 header->size += size;
5186 }
5622f295 5187}
7f453c24 5188
a8b0ca17 5189static void perf_event_output(struct perf_event *event,
5622f295
MM
5190 struct perf_sample_data *data,
5191 struct pt_regs *regs)
5192{
5193 struct perf_output_handle handle;
5194 struct perf_event_header header;
689802b2 5195
927c7a9e
FW
5196 /* protect the callchain buffers */
5197 rcu_read_lock();
5198
cdd6c482 5199 perf_prepare_sample(&header, data, event, regs);
5c148194 5200
a7ac67ea 5201 if (perf_output_begin(&handle, event, header.size))
927c7a9e 5202 goto exit;
0322cd6e 5203
cdd6c482 5204 perf_output_sample(&handle, &header, data, event);
f413cdb8 5205
8a057d84 5206 perf_output_end(&handle);
927c7a9e
FW
5207
5208exit:
5209 rcu_read_unlock();
0322cd6e
PZ
5210}
5211
38b200d6 5212/*
cdd6c482 5213 * read event_id
38b200d6
PZ
5214 */
5215
5216struct perf_read_event {
5217 struct perf_event_header header;
5218
5219 u32 pid;
5220 u32 tid;
38b200d6
PZ
5221};
5222
5223static void
cdd6c482 5224perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5225 struct task_struct *task)
5226{
5227 struct perf_output_handle handle;
c980d109 5228 struct perf_sample_data sample;
dfc65094 5229 struct perf_read_event read_event = {
38b200d6 5230 .header = {
cdd6c482 5231 .type = PERF_RECORD_READ,
38b200d6 5232 .misc = 0,
c320c7b7 5233 .size = sizeof(read_event) + event->read_size,
38b200d6 5234 },
cdd6c482
IM
5235 .pid = perf_event_pid(event, task),
5236 .tid = perf_event_tid(event, task),
38b200d6 5237 };
3dab77fb 5238 int ret;
38b200d6 5239
c980d109 5240 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 5241 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
5242 if (ret)
5243 return;
5244
dfc65094 5245 perf_output_put(&handle, read_event);
cdd6c482 5246 perf_output_read(&handle, event);
c980d109 5247 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5248
38b200d6
PZ
5249 perf_output_end(&handle);
5250}
5251
52d857a8
JO
5252typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5253
5254static void
5255perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
5256 perf_event_aux_output_cb output,
5257 void *data)
5258{
5259 struct perf_event *event;
5260
5261 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5262 if (event->state < PERF_EVENT_STATE_INACTIVE)
5263 continue;
5264 if (!event_filter_match(event))
5265 continue;
67516844 5266 output(event, data);
52d857a8
JO
5267 }
5268}
5269
5270static void
67516844 5271perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
5272 struct perf_event_context *task_ctx)
5273{
5274 struct perf_cpu_context *cpuctx;
5275 struct perf_event_context *ctx;
5276 struct pmu *pmu;
5277 int ctxn;
5278
5279 rcu_read_lock();
5280 list_for_each_entry_rcu(pmu, &pmus, entry) {
5281 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5282 if (cpuctx->unique_pmu != pmu)
5283 goto next;
67516844 5284 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
5285 if (task_ctx)
5286 goto next;
5287 ctxn = pmu->task_ctx_nr;
5288 if (ctxn < 0)
5289 goto next;
5290 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5291 if (ctx)
67516844 5292 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
5293next:
5294 put_cpu_ptr(pmu->pmu_cpu_context);
5295 }
5296
5297 if (task_ctx) {
5298 preempt_disable();
67516844 5299 perf_event_aux_ctx(task_ctx, output, data);
52d857a8
JO
5300 preempt_enable();
5301 }
5302 rcu_read_unlock();
5303}
5304
60313ebe 5305/*
9f498cc5
PZ
5306 * task tracking -- fork/exit
5307 *
13d7a241 5308 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
5309 */
5310
9f498cc5 5311struct perf_task_event {
3a80b4a3 5312 struct task_struct *task;
cdd6c482 5313 struct perf_event_context *task_ctx;
60313ebe
PZ
5314
5315 struct {
5316 struct perf_event_header header;
5317
5318 u32 pid;
5319 u32 ppid;
9f498cc5
PZ
5320 u32 tid;
5321 u32 ptid;
393b2ad8 5322 u64 time;
cdd6c482 5323 } event_id;
60313ebe
PZ
5324};
5325
67516844
JO
5326static int perf_event_task_match(struct perf_event *event)
5327{
13d7a241
SE
5328 return event->attr.comm || event->attr.mmap ||
5329 event->attr.mmap2 || event->attr.mmap_data ||
5330 event->attr.task;
67516844
JO
5331}
5332
cdd6c482 5333static void perf_event_task_output(struct perf_event *event,
52d857a8 5334 void *data)
60313ebe 5335{
52d857a8 5336 struct perf_task_event *task_event = data;
60313ebe 5337 struct perf_output_handle handle;
c980d109 5338 struct perf_sample_data sample;
9f498cc5 5339 struct task_struct *task = task_event->task;
c980d109 5340 int ret, size = task_event->event_id.header.size;
8bb39f9a 5341
67516844
JO
5342 if (!perf_event_task_match(event))
5343 return;
5344
c980d109 5345 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 5346
c980d109 5347 ret = perf_output_begin(&handle, event,
a7ac67ea 5348 task_event->event_id.header.size);
ef60777c 5349 if (ret)
c980d109 5350 goto out;
60313ebe 5351
cdd6c482
IM
5352 task_event->event_id.pid = perf_event_pid(event, task);
5353 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 5354
cdd6c482
IM
5355 task_event->event_id.tid = perf_event_tid(event, task);
5356 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 5357
34f43927
PZ
5358 task_event->event_id.time = perf_event_clock(event);
5359
cdd6c482 5360 perf_output_put(&handle, task_event->event_id);
393b2ad8 5361
c980d109
ACM
5362 perf_event__output_id_sample(event, &handle, &sample);
5363
60313ebe 5364 perf_output_end(&handle);
c980d109
ACM
5365out:
5366 task_event->event_id.header.size = size;
60313ebe
PZ
5367}
5368
cdd6c482
IM
5369static void perf_event_task(struct task_struct *task,
5370 struct perf_event_context *task_ctx,
3a80b4a3 5371 int new)
60313ebe 5372{
9f498cc5 5373 struct perf_task_event task_event;
60313ebe 5374
cdd6c482
IM
5375 if (!atomic_read(&nr_comm_events) &&
5376 !atomic_read(&nr_mmap_events) &&
5377 !atomic_read(&nr_task_events))
60313ebe
PZ
5378 return;
5379
9f498cc5 5380 task_event = (struct perf_task_event){
3a80b4a3
PZ
5381 .task = task,
5382 .task_ctx = task_ctx,
cdd6c482 5383 .event_id = {
60313ebe 5384 .header = {
cdd6c482 5385 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 5386 .misc = 0,
cdd6c482 5387 .size = sizeof(task_event.event_id),
60313ebe 5388 },
573402db
PZ
5389 /* .pid */
5390 /* .ppid */
9f498cc5
PZ
5391 /* .tid */
5392 /* .ptid */
34f43927 5393 /* .time */
60313ebe
PZ
5394 },
5395 };
5396
67516844 5397 perf_event_aux(perf_event_task_output,
52d857a8
JO
5398 &task_event,
5399 task_ctx);
9f498cc5
PZ
5400}
5401
cdd6c482 5402void perf_event_fork(struct task_struct *task)
9f498cc5 5403{
cdd6c482 5404 perf_event_task(task, NULL, 1);
60313ebe
PZ
5405}
5406
8d1b2d93
PZ
5407/*
5408 * comm tracking
5409 */
5410
5411struct perf_comm_event {
22a4f650
IM
5412 struct task_struct *task;
5413 char *comm;
8d1b2d93
PZ
5414 int comm_size;
5415
5416 struct {
5417 struct perf_event_header header;
5418
5419 u32 pid;
5420 u32 tid;
cdd6c482 5421 } event_id;
8d1b2d93
PZ
5422};
5423
67516844
JO
5424static int perf_event_comm_match(struct perf_event *event)
5425{
5426 return event->attr.comm;
5427}
5428
cdd6c482 5429static void perf_event_comm_output(struct perf_event *event,
52d857a8 5430 void *data)
8d1b2d93 5431{
52d857a8 5432 struct perf_comm_event *comm_event = data;
8d1b2d93 5433 struct perf_output_handle handle;
c980d109 5434 struct perf_sample_data sample;
cdd6c482 5435 int size = comm_event->event_id.header.size;
c980d109
ACM
5436 int ret;
5437
67516844
JO
5438 if (!perf_event_comm_match(event))
5439 return;
5440
c980d109
ACM
5441 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5442 ret = perf_output_begin(&handle, event,
a7ac67ea 5443 comm_event->event_id.header.size);
8d1b2d93
PZ
5444
5445 if (ret)
c980d109 5446 goto out;
8d1b2d93 5447
cdd6c482
IM
5448 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5449 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 5450
cdd6c482 5451 perf_output_put(&handle, comm_event->event_id);
76369139 5452 __output_copy(&handle, comm_event->comm,
8d1b2d93 5453 comm_event->comm_size);
c980d109
ACM
5454
5455 perf_event__output_id_sample(event, &handle, &sample);
5456
8d1b2d93 5457 perf_output_end(&handle);
c980d109
ACM
5458out:
5459 comm_event->event_id.header.size = size;
8d1b2d93
PZ
5460}
5461
cdd6c482 5462static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 5463{
413ee3b4 5464 char comm[TASK_COMM_LEN];
8d1b2d93 5465 unsigned int size;
8d1b2d93 5466
413ee3b4 5467 memset(comm, 0, sizeof(comm));
96b02d78 5468 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 5469 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
5470
5471 comm_event->comm = comm;
5472 comm_event->comm_size = size;
5473
cdd6c482 5474 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5475
67516844 5476 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5477 comm_event,
5478 NULL);
8d1b2d93
PZ
5479}
5480
82b89778 5481void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 5482{
9ee318a7
PZ
5483 struct perf_comm_event comm_event;
5484
cdd6c482 5485 if (!atomic_read(&nr_comm_events))
9ee318a7 5486 return;
a63eaf34 5487
9ee318a7 5488 comm_event = (struct perf_comm_event){
8d1b2d93 5489 .task = task,
573402db
PZ
5490 /* .comm */
5491 /* .comm_size */
cdd6c482 5492 .event_id = {
573402db 5493 .header = {
cdd6c482 5494 .type = PERF_RECORD_COMM,
82b89778 5495 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
5496 /* .size */
5497 },
5498 /* .pid */
5499 /* .tid */
8d1b2d93
PZ
5500 },
5501 };
5502
cdd6c482 5503 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5504}
5505
0a4a9391
PZ
5506/*
5507 * mmap tracking
5508 */
5509
5510struct perf_mmap_event {
089dd79d
PZ
5511 struct vm_area_struct *vma;
5512
5513 const char *file_name;
5514 int file_size;
13d7a241
SE
5515 int maj, min;
5516 u64 ino;
5517 u64 ino_generation;
f972eb63 5518 u32 prot, flags;
0a4a9391
PZ
5519
5520 struct {
5521 struct perf_event_header header;
5522
5523 u32 pid;
5524 u32 tid;
5525 u64 start;
5526 u64 len;
5527 u64 pgoff;
cdd6c482 5528 } event_id;
0a4a9391
PZ
5529};
5530
67516844
JO
5531static int perf_event_mmap_match(struct perf_event *event,
5532 void *data)
5533{
5534 struct perf_mmap_event *mmap_event = data;
5535 struct vm_area_struct *vma = mmap_event->vma;
5536 int executable = vma->vm_flags & VM_EXEC;
5537
5538 return (!executable && event->attr.mmap_data) ||
13d7a241 5539 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5540}
5541
cdd6c482 5542static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5543 void *data)
0a4a9391 5544{
52d857a8 5545 struct perf_mmap_event *mmap_event = data;
0a4a9391 5546 struct perf_output_handle handle;
c980d109 5547 struct perf_sample_data sample;
cdd6c482 5548 int size = mmap_event->event_id.header.size;
c980d109 5549 int ret;
0a4a9391 5550
67516844
JO
5551 if (!perf_event_mmap_match(event, data))
5552 return;
5553
13d7a241
SE
5554 if (event->attr.mmap2) {
5555 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5556 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5557 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5558 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5559 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
5560 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5561 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
5562 }
5563
c980d109
ACM
5564 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5565 ret = perf_output_begin(&handle, event,
a7ac67ea 5566 mmap_event->event_id.header.size);
0a4a9391 5567 if (ret)
c980d109 5568 goto out;
0a4a9391 5569
cdd6c482
IM
5570 mmap_event->event_id.pid = perf_event_pid(event, current);
5571 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5572
cdd6c482 5573 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
5574
5575 if (event->attr.mmap2) {
5576 perf_output_put(&handle, mmap_event->maj);
5577 perf_output_put(&handle, mmap_event->min);
5578 perf_output_put(&handle, mmap_event->ino);
5579 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
5580 perf_output_put(&handle, mmap_event->prot);
5581 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
5582 }
5583
76369139 5584 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5585 mmap_event->file_size);
c980d109
ACM
5586
5587 perf_event__output_id_sample(event, &handle, &sample);
5588
78d613eb 5589 perf_output_end(&handle);
c980d109
ACM
5590out:
5591 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5592}
5593
cdd6c482 5594static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5595{
089dd79d
PZ
5596 struct vm_area_struct *vma = mmap_event->vma;
5597 struct file *file = vma->vm_file;
13d7a241
SE
5598 int maj = 0, min = 0;
5599 u64 ino = 0, gen = 0;
f972eb63 5600 u32 prot = 0, flags = 0;
0a4a9391
PZ
5601 unsigned int size;
5602 char tmp[16];
5603 char *buf = NULL;
2c42cfbf 5604 char *name;
413ee3b4 5605
0a4a9391 5606 if (file) {
13d7a241
SE
5607 struct inode *inode;
5608 dev_t dev;
3ea2f2b9 5609
2c42cfbf 5610 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 5611 if (!buf) {
c7e548b4
ON
5612 name = "//enomem";
5613 goto cpy_name;
0a4a9391 5614 }
413ee3b4 5615 /*
3ea2f2b9 5616 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
5617 * need to add enough zero bytes after the string to handle
5618 * the 64bit alignment we do later.
5619 */
3ea2f2b9 5620 name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
0a4a9391 5621 if (IS_ERR(name)) {
c7e548b4
ON
5622 name = "//toolong";
5623 goto cpy_name;
0a4a9391 5624 }
13d7a241
SE
5625 inode = file_inode(vma->vm_file);
5626 dev = inode->i_sb->s_dev;
5627 ino = inode->i_ino;
5628 gen = inode->i_generation;
5629 maj = MAJOR(dev);
5630 min = MINOR(dev);
f972eb63
PZ
5631
5632 if (vma->vm_flags & VM_READ)
5633 prot |= PROT_READ;
5634 if (vma->vm_flags & VM_WRITE)
5635 prot |= PROT_WRITE;
5636 if (vma->vm_flags & VM_EXEC)
5637 prot |= PROT_EXEC;
5638
5639 if (vma->vm_flags & VM_MAYSHARE)
5640 flags = MAP_SHARED;
5641 else
5642 flags = MAP_PRIVATE;
5643
5644 if (vma->vm_flags & VM_DENYWRITE)
5645 flags |= MAP_DENYWRITE;
5646 if (vma->vm_flags & VM_MAYEXEC)
5647 flags |= MAP_EXECUTABLE;
5648 if (vma->vm_flags & VM_LOCKED)
5649 flags |= MAP_LOCKED;
5650 if (vma->vm_flags & VM_HUGETLB)
5651 flags |= MAP_HUGETLB;
5652
c7e548b4 5653 goto got_name;
0a4a9391 5654 } else {
fbe26abe
JO
5655 if (vma->vm_ops && vma->vm_ops->name) {
5656 name = (char *) vma->vm_ops->name(vma);
5657 if (name)
5658 goto cpy_name;
5659 }
5660
2c42cfbf 5661 name = (char *)arch_vma_name(vma);
c7e548b4
ON
5662 if (name)
5663 goto cpy_name;
089dd79d 5664
32c5fb7e 5665 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 5666 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
5667 name = "[heap]";
5668 goto cpy_name;
32c5fb7e
ON
5669 }
5670 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 5671 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
5672 name = "[stack]";
5673 goto cpy_name;
089dd79d
PZ
5674 }
5675
c7e548b4
ON
5676 name = "//anon";
5677 goto cpy_name;
0a4a9391
PZ
5678 }
5679
c7e548b4
ON
5680cpy_name:
5681 strlcpy(tmp, name, sizeof(tmp));
5682 name = tmp;
0a4a9391 5683got_name:
2c42cfbf
PZ
5684 /*
5685 * Since our buffer works in 8 byte units we need to align our string
5686 * size to a multiple of 8. However, we must guarantee the tail end is
5687 * zero'd out to avoid leaking random bits to userspace.
5688 */
5689 size = strlen(name)+1;
5690 while (!IS_ALIGNED(size, sizeof(u64)))
5691 name[size++] = '\0';
0a4a9391
PZ
5692
5693 mmap_event->file_name = name;
5694 mmap_event->file_size = size;
13d7a241
SE
5695 mmap_event->maj = maj;
5696 mmap_event->min = min;
5697 mmap_event->ino = ino;
5698 mmap_event->ino_generation = gen;
f972eb63
PZ
5699 mmap_event->prot = prot;
5700 mmap_event->flags = flags;
0a4a9391 5701
2fe85427
SE
5702 if (!(vma->vm_flags & VM_EXEC))
5703 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5704
cdd6c482 5705 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 5706
67516844 5707 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
5708 mmap_event,
5709 NULL);
665c2142 5710
0a4a9391
PZ
5711 kfree(buf);
5712}
5713
3af9e859 5714void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 5715{
9ee318a7
PZ
5716 struct perf_mmap_event mmap_event;
5717
cdd6c482 5718 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
5719 return;
5720
5721 mmap_event = (struct perf_mmap_event){
089dd79d 5722 .vma = vma,
573402db
PZ
5723 /* .file_name */
5724 /* .file_size */
cdd6c482 5725 .event_id = {
573402db 5726 .header = {
cdd6c482 5727 .type = PERF_RECORD_MMAP,
39447b38 5728 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
5729 /* .size */
5730 },
5731 /* .pid */
5732 /* .tid */
089dd79d
PZ
5733 .start = vma->vm_start,
5734 .len = vma->vm_end - vma->vm_start,
3a0304e9 5735 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 5736 },
13d7a241
SE
5737 /* .maj (attr_mmap2 only) */
5738 /* .min (attr_mmap2 only) */
5739 /* .ino (attr_mmap2 only) */
5740 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
5741 /* .prot (attr_mmap2 only) */
5742 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
5743 };
5744
cdd6c482 5745 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
5746}
5747
a78ac325
PZ
5748/*
5749 * IRQ throttle logging
5750 */
5751
cdd6c482 5752static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
5753{
5754 struct perf_output_handle handle;
c980d109 5755 struct perf_sample_data sample;
a78ac325
PZ
5756 int ret;
5757
5758 struct {
5759 struct perf_event_header header;
5760 u64 time;
cca3f454 5761 u64 id;
7f453c24 5762 u64 stream_id;
a78ac325
PZ
5763 } throttle_event = {
5764 .header = {
cdd6c482 5765 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
5766 .misc = 0,
5767 .size = sizeof(throttle_event),
5768 },
34f43927 5769 .time = perf_event_clock(event),
cdd6c482
IM
5770 .id = primary_event_id(event),
5771 .stream_id = event->id,
a78ac325
PZ
5772 };
5773
966ee4d6 5774 if (enable)
cdd6c482 5775 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 5776
c980d109
ACM
5777 perf_event_header__init_id(&throttle_event.header, &sample, event);
5778
5779 ret = perf_output_begin(&handle, event,
a7ac67ea 5780 throttle_event.header.size);
a78ac325
PZ
5781 if (ret)
5782 return;
5783
5784 perf_output_put(&handle, throttle_event);
c980d109 5785 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
5786 perf_output_end(&handle);
5787}
5788
f6c7d5fe 5789/*
cdd6c482 5790 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
5791 */
5792
a8b0ca17 5793static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
5794 int throttle, struct perf_sample_data *data,
5795 struct pt_regs *regs)
f6c7d5fe 5796{
cdd6c482
IM
5797 int events = atomic_read(&event->event_limit);
5798 struct hw_perf_event *hwc = &event->hw;
e050e3f0 5799 u64 seq;
79f14641
PZ
5800 int ret = 0;
5801
96398826
PZ
5802 /*
5803 * Non-sampling counters might still use the PMI to fold short
5804 * hardware counters, ignore those.
5805 */
5806 if (unlikely(!is_sampling_event(event)))
5807 return 0;
5808
e050e3f0
SE
5809 seq = __this_cpu_read(perf_throttled_seq);
5810 if (seq != hwc->interrupts_seq) {
5811 hwc->interrupts_seq = seq;
5812 hwc->interrupts = 1;
5813 } else {
5814 hwc->interrupts++;
5815 if (unlikely(throttle
5816 && hwc->interrupts >= max_samples_per_tick)) {
5817 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
5818 hwc->interrupts = MAX_INTERRUPTS;
5819 perf_log_throttle(event, 0);
d84153d6 5820 tick_nohz_full_kick();
a78ac325
PZ
5821 ret = 1;
5822 }
e050e3f0 5823 }
60db5e09 5824
cdd6c482 5825 if (event->attr.freq) {
def0a9b2 5826 u64 now = perf_clock();
abd50713 5827 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 5828
abd50713 5829 hwc->freq_time_stamp = now;
bd2b5b12 5830
abd50713 5831 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 5832 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
5833 }
5834
2023b359
PZ
5835 /*
5836 * XXX event_limit might not quite work as expected on inherited
cdd6c482 5837 * events
2023b359
PZ
5838 */
5839
cdd6c482
IM
5840 event->pending_kill = POLL_IN;
5841 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 5842 ret = 1;
cdd6c482 5843 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
5844 event->pending_disable = 1;
5845 irq_work_queue(&event->pending);
79f14641
PZ
5846 }
5847
453f19ee 5848 if (event->overflow_handler)
a8b0ca17 5849 event->overflow_handler(event, data, regs);
453f19ee 5850 else
a8b0ca17 5851 perf_event_output(event, data, regs);
453f19ee 5852
f506b3dc 5853 if (event->fasync && event->pending_kill) {
a8b0ca17
PZ
5854 event->pending_wakeup = 1;
5855 irq_work_queue(&event->pending);
f506b3dc
PZ
5856 }
5857
79f14641 5858 return ret;
f6c7d5fe
PZ
5859}
5860
a8b0ca17 5861int perf_event_overflow(struct perf_event *event,
5622f295
MM
5862 struct perf_sample_data *data,
5863 struct pt_regs *regs)
850bc73f 5864{
a8b0ca17 5865 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
5866}
5867
15dbf27c 5868/*
cdd6c482 5869 * Generic software event infrastructure
15dbf27c
PZ
5870 */
5871
b28ab83c
PZ
5872struct swevent_htable {
5873 struct swevent_hlist *swevent_hlist;
5874 struct mutex hlist_mutex;
5875 int hlist_refcount;
5876
5877 /* Recursion avoidance in each contexts */
5878 int recursion[PERF_NR_CONTEXTS];
39af6b16
JO
5879
5880 /* Keeps track of cpu being initialized/exited */
5881 bool online;
b28ab83c
PZ
5882};
5883
5884static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5885
7b4b6658 5886/*
cdd6c482
IM
5887 * We directly increment event->count and keep a second value in
5888 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
5889 * is kept in the range [-sample_period, 0] so that we can use the
5890 * sign as trigger.
5891 */
5892
ab573844 5893u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 5894{
cdd6c482 5895 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
5896 u64 period = hwc->last_period;
5897 u64 nr, offset;
5898 s64 old, val;
5899
5900 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
5901
5902again:
e7850595 5903 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
5904 if (val < 0)
5905 return 0;
15dbf27c 5906
7b4b6658
PZ
5907 nr = div64_u64(period + val, period);
5908 offset = nr * period;
5909 val -= offset;
e7850595 5910 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 5911 goto again;
15dbf27c 5912
7b4b6658 5913 return nr;
15dbf27c
PZ
5914}
5915
0cff784a 5916static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 5917 struct perf_sample_data *data,
5622f295 5918 struct pt_regs *regs)
15dbf27c 5919{
cdd6c482 5920 struct hw_perf_event *hwc = &event->hw;
850bc73f 5921 int throttle = 0;
15dbf27c 5922
0cff784a
PZ
5923 if (!overflow)
5924 overflow = perf_swevent_set_period(event);
15dbf27c 5925
7b4b6658
PZ
5926 if (hwc->interrupts == MAX_INTERRUPTS)
5927 return;
15dbf27c 5928
7b4b6658 5929 for (; overflow; overflow--) {
a8b0ca17 5930 if (__perf_event_overflow(event, throttle,
5622f295 5931 data, regs)) {
7b4b6658
PZ
5932 /*
5933 * We inhibit the overflow from happening when
5934 * hwc->interrupts == MAX_INTERRUPTS.
5935 */
5936 break;
5937 }
cf450a73 5938 throttle = 1;
7b4b6658 5939 }
15dbf27c
PZ
5940}
5941
a4eaf7f1 5942static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 5943 struct perf_sample_data *data,
5622f295 5944 struct pt_regs *regs)
7b4b6658 5945{
cdd6c482 5946 struct hw_perf_event *hwc = &event->hw;
d6d020e9 5947
e7850595 5948 local64_add(nr, &event->count);
d6d020e9 5949
0cff784a
PZ
5950 if (!regs)
5951 return;
5952
6c7e550f 5953 if (!is_sampling_event(event))
7b4b6658 5954 return;
d6d020e9 5955
5d81e5cf
AV
5956 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5957 data->period = nr;
5958 return perf_swevent_overflow(event, 1, data, regs);
5959 } else
5960 data->period = event->hw.last_period;
5961
0cff784a 5962 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 5963 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 5964
e7850595 5965 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 5966 return;
df1a132b 5967
a8b0ca17 5968 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
5969}
5970
f5ffe02e
FW
5971static int perf_exclude_event(struct perf_event *event,
5972 struct pt_regs *regs)
5973{
a4eaf7f1 5974 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 5975 return 1;
a4eaf7f1 5976
f5ffe02e
FW
5977 if (regs) {
5978 if (event->attr.exclude_user && user_mode(regs))
5979 return 1;
5980
5981 if (event->attr.exclude_kernel && !user_mode(regs))
5982 return 1;
5983 }
5984
5985 return 0;
5986}
5987
cdd6c482 5988static int perf_swevent_match(struct perf_event *event,
1c432d89 5989 enum perf_type_id type,
6fb2915d
LZ
5990 u32 event_id,
5991 struct perf_sample_data *data,
5992 struct pt_regs *regs)
15dbf27c 5993{
cdd6c482 5994 if (event->attr.type != type)
a21ca2ca 5995 return 0;
f5ffe02e 5996
cdd6c482 5997 if (event->attr.config != event_id)
15dbf27c
PZ
5998 return 0;
5999
f5ffe02e
FW
6000 if (perf_exclude_event(event, regs))
6001 return 0;
15dbf27c
PZ
6002
6003 return 1;
6004}
6005
76e1d904
FW
6006static inline u64 swevent_hash(u64 type, u32 event_id)
6007{
6008 u64 val = event_id | (type << 32);
6009
6010 return hash_64(val, SWEVENT_HLIST_BITS);
6011}
6012
49f135ed
FW
6013static inline struct hlist_head *
6014__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 6015{
49f135ed
FW
6016 u64 hash = swevent_hash(type, event_id);
6017
6018 return &hlist->heads[hash];
6019}
76e1d904 6020
49f135ed
FW
6021/* For the read side: events when they trigger */
6022static inline struct hlist_head *
b28ab83c 6023find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
6024{
6025 struct swevent_hlist *hlist;
76e1d904 6026
b28ab83c 6027 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
6028 if (!hlist)
6029 return NULL;
6030
49f135ed
FW
6031 return __find_swevent_head(hlist, type, event_id);
6032}
6033
6034/* For the event head insertion and removal in the hlist */
6035static inline struct hlist_head *
b28ab83c 6036find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
6037{
6038 struct swevent_hlist *hlist;
6039 u32 event_id = event->attr.config;
6040 u64 type = event->attr.type;
6041
6042 /*
6043 * Event scheduling is always serialized against hlist allocation
6044 * and release. Which makes the protected version suitable here.
6045 * The context lock guarantees that.
6046 */
b28ab83c 6047 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
6048 lockdep_is_held(&event->ctx->lock));
6049 if (!hlist)
6050 return NULL;
6051
6052 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
6053}
6054
6055static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 6056 u64 nr,
76e1d904
FW
6057 struct perf_sample_data *data,
6058 struct pt_regs *regs)
15dbf27c 6059{
4a32fea9 6060 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6061 struct perf_event *event;
76e1d904 6062 struct hlist_head *head;
15dbf27c 6063
76e1d904 6064 rcu_read_lock();
b28ab83c 6065 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
6066 if (!head)
6067 goto end;
6068
b67bfe0d 6069 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 6070 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 6071 perf_swevent_event(event, nr, data, regs);
15dbf27c 6072 }
76e1d904
FW
6073end:
6074 rcu_read_unlock();
15dbf27c
PZ
6075}
6076
86038c5e
PZI
6077DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6078
4ed7c92d 6079int perf_swevent_get_recursion_context(void)
96f6d444 6080{
4a32fea9 6081 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 6082
b28ab83c 6083 return get_recursion_context(swhash->recursion);
96f6d444 6084}
645e8cc0 6085EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 6086
fa9f90be 6087inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 6088{
4a32fea9 6089 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 6090
b28ab83c 6091 put_recursion_context(swhash->recursion, rctx);
ce71b9df 6092}
15dbf27c 6093
86038c5e 6094void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 6095{
a4234bfc 6096 struct perf_sample_data data;
4ed7c92d 6097
86038c5e 6098 if (WARN_ON_ONCE(!regs))
4ed7c92d 6099 return;
a4234bfc 6100
fd0d000b 6101 perf_sample_data_init(&data, addr, 0);
a8b0ca17 6102 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
6103}
6104
6105void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6106{
6107 int rctx;
6108
6109 preempt_disable_notrace();
6110 rctx = perf_swevent_get_recursion_context();
6111 if (unlikely(rctx < 0))
6112 goto fail;
6113
6114 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
6115
6116 perf_swevent_put_recursion_context(rctx);
86038c5e 6117fail:
1c024eca 6118 preempt_enable_notrace();
b8e83514
PZ
6119}
6120
cdd6c482 6121static void perf_swevent_read(struct perf_event *event)
15dbf27c 6122{
15dbf27c
PZ
6123}
6124
a4eaf7f1 6125static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 6126{
4a32fea9 6127 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6128 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
6129 struct hlist_head *head;
6130
6c7e550f 6131 if (is_sampling_event(event)) {
7b4b6658 6132 hwc->last_period = hwc->sample_period;
cdd6c482 6133 perf_swevent_set_period(event);
7b4b6658 6134 }
76e1d904 6135
a4eaf7f1
PZ
6136 hwc->state = !(flags & PERF_EF_START);
6137
b28ab83c 6138 head = find_swevent_head(swhash, event);
39af6b16
JO
6139 if (!head) {
6140 /*
6141 * We can race with cpu hotplug code. Do not
6142 * WARN if the cpu just got unplugged.
6143 */
6144 WARN_ON_ONCE(swhash->online);
76e1d904 6145 return -EINVAL;
39af6b16 6146 }
76e1d904
FW
6147
6148 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 6149 perf_event_update_userpage(event);
76e1d904 6150
15dbf27c
PZ
6151 return 0;
6152}
6153
a4eaf7f1 6154static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 6155{
76e1d904 6156 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
6157}
6158
a4eaf7f1 6159static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 6160{
a4eaf7f1 6161 event->hw.state = 0;
d6d020e9 6162}
aa9c4c0f 6163
a4eaf7f1 6164static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 6165{
a4eaf7f1 6166 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
6167}
6168
49f135ed
FW
6169/* Deref the hlist from the update side */
6170static inline struct swevent_hlist *
b28ab83c 6171swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 6172{
b28ab83c
PZ
6173 return rcu_dereference_protected(swhash->swevent_hlist,
6174 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
6175}
6176
b28ab83c 6177static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 6178{
b28ab83c 6179 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 6180
49f135ed 6181 if (!hlist)
76e1d904
FW
6182 return;
6183
70691d4a 6184 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 6185 kfree_rcu(hlist, rcu_head);
76e1d904
FW
6186}
6187
6188static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6189{
b28ab83c 6190 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 6191
b28ab83c 6192 mutex_lock(&swhash->hlist_mutex);
76e1d904 6193
b28ab83c
PZ
6194 if (!--swhash->hlist_refcount)
6195 swevent_hlist_release(swhash);
76e1d904 6196
b28ab83c 6197 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6198}
6199
6200static void swevent_hlist_put(struct perf_event *event)
6201{
6202 int cpu;
6203
76e1d904
FW
6204 for_each_possible_cpu(cpu)
6205 swevent_hlist_put_cpu(event, cpu);
6206}
6207
6208static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6209{
b28ab83c 6210 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
6211 int err = 0;
6212
b28ab83c 6213 mutex_lock(&swhash->hlist_mutex);
76e1d904 6214
b28ab83c 6215 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
6216 struct swevent_hlist *hlist;
6217
6218 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6219 if (!hlist) {
6220 err = -ENOMEM;
6221 goto exit;
6222 }
b28ab83c 6223 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 6224 }
b28ab83c 6225 swhash->hlist_refcount++;
9ed6060d 6226exit:
b28ab83c 6227 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6228
6229 return err;
6230}
6231
6232static int swevent_hlist_get(struct perf_event *event)
6233{
6234 int err;
6235 int cpu, failed_cpu;
6236
76e1d904
FW
6237 get_online_cpus();
6238 for_each_possible_cpu(cpu) {
6239 err = swevent_hlist_get_cpu(event, cpu);
6240 if (err) {
6241 failed_cpu = cpu;
6242 goto fail;
6243 }
6244 }
6245 put_online_cpus();
6246
6247 return 0;
9ed6060d 6248fail:
76e1d904
FW
6249 for_each_possible_cpu(cpu) {
6250 if (cpu == failed_cpu)
6251 break;
6252 swevent_hlist_put_cpu(event, cpu);
6253 }
6254
6255 put_online_cpus();
6256 return err;
6257}
6258
c5905afb 6259struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 6260
b0a873eb
PZ
6261static void sw_perf_event_destroy(struct perf_event *event)
6262{
6263 u64 event_id = event->attr.config;
95476b64 6264
b0a873eb
PZ
6265 WARN_ON(event->parent);
6266
c5905afb 6267 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6268 swevent_hlist_put(event);
6269}
6270
6271static int perf_swevent_init(struct perf_event *event)
6272{
8176cced 6273 u64 event_id = event->attr.config;
b0a873eb
PZ
6274
6275 if (event->attr.type != PERF_TYPE_SOFTWARE)
6276 return -ENOENT;
6277
2481c5fa
SE
6278 /*
6279 * no branch sampling for software events
6280 */
6281 if (has_branch_stack(event))
6282 return -EOPNOTSUPP;
6283
b0a873eb
PZ
6284 switch (event_id) {
6285 case PERF_COUNT_SW_CPU_CLOCK:
6286 case PERF_COUNT_SW_TASK_CLOCK:
6287 return -ENOENT;
6288
6289 default:
6290 break;
6291 }
6292
ce677831 6293 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
6294 return -ENOENT;
6295
6296 if (!event->parent) {
6297 int err;
6298
6299 err = swevent_hlist_get(event);
6300 if (err)
6301 return err;
6302
c5905afb 6303 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6304 event->destroy = sw_perf_event_destroy;
6305 }
6306
6307 return 0;
6308}
6309
6310static struct pmu perf_swevent = {
89a1e187 6311 .task_ctx_nr = perf_sw_context,
95476b64 6312
34f43927
PZ
6313 .capabilities = PERF_PMU_CAP_NO_NMI,
6314
b0a873eb 6315 .event_init = perf_swevent_init,
a4eaf7f1
PZ
6316 .add = perf_swevent_add,
6317 .del = perf_swevent_del,
6318 .start = perf_swevent_start,
6319 .stop = perf_swevent_stop,
1c024eca 6320 .read = perf_swevent_read,
1c024eca
PZ
6321};
6322
b0a873eb
PZ
6323#ifdef CONFIG_EVENT_TRACING
6324
1c024eca
PZ
6325static int perf_tp_filter_match(struct perf_event *event,
6326 struct perf_sample_data *data)
6327{
6328 void *record = data->raw->data;
6329
6330 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6331 return 1;
6332 return 0;
6333}
6334
6335static int perf_tp_event_match(struct perf_event *event,
6336 struct perf_sample_data *data,
6337 struct pt_regs *regs)
6338{
a0f7d0f7
FW
6339 if (event->hw.state & PERF_HES_STOPPED)
6340 return 0;
580d607c
PZ
6341 /*
6342 * All tracepoints are from kernel-space.
6343 */
6344 if (event->attr.exclude_kernel)
1c024eca
PZ
6345 return 0;
6346
6347 if (!perf_tp_filter_match(event, data))
6348 return 0;
6349
6350 return 1;
6351}
6352
6353void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
6354 struct pt_regs *regs, struct hlist_head *head, int rctx,
6355 struct task_struct *task)
95476b64
FW
6356{
6357 struct perf_sample_data data;
1c024eca 6358 struct perf_event *event;
1c024eca 6359
95476b64
FW
6360 struct perf_raw_record raw = {
6361 .size = entry_size,
6362 .data = record,
6363 };
6364
fd0d000b 6365 perf_sample_data_init(&data, addr, 0);
95476b64
FW
6366 data.raw = &raw;
6367
b67bfe0d 6368 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 6369 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 6370 perf_swevent_event(event, count, &data, regs);
4f41c013 6371 }
ecc55f84 6372
e6dab5ff
AV
6373 /*
6374 * If we got specified a target task, also iterate its context and
6375 * deliver this event there too.
6376 */
6377 if (task && task != current) {
6378 struct perf_event_context *ctx;
6379 struct trace_entry *entry = record;
6380
6381 rcu_read_lock();
6382 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6383 if (!ctx)
6384 goto unlock;
6385
6386 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6387 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6388 continue;
6389 if (event->attr.config != entry->type)
6390 continue;
6391 if (perf_tp_event_match(event, &data, regs))
6392 perf_swevent_event(event, count, &data, regs);
6393 }
6394unlock:
6395 rcu_read_unlock();
6396 }
6397
ecc55f84 6398 perf_swevent_put_recursion_context(rctx);
95476b64
FW
6399}
6400EXPORT_SYMBOL_GPL(perf_tp_event);
6401
cdd6c482 6402static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 6403{
1c024eca 6404 perf_trace_destroy(event);
e077df4f
PZ
6405}
6406
b0a873eb 6407static int perf_tp_event_init(struct perf_event *event)
e077df4f 6408{
76e1d904
FW
6409 int err;
6410
b0a873eb
PZ
6411 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6412 return -ENOENT;
6413
2481c5fa
SE
6414 /*
6415 * no branch sampling for tracepoint events
6416 */
6417 if (has_branch_stack(event))
6418 return -EOPNOTSUPP;
6419
1c024eca
PZ
6420 err = perf_trace_init(event);
6421 if (err)
b0a873eb 6422 return err;
e077df4f 6423
cdd6c482 6424 event->destroy = tp_perf_event_destroy;
e077df4f 6425
b0a873eb
PZ
6426 return 0;
6427}
6428
6429static struct pmu perf_tracepoint = {
89a1e187
PZ
6430 .task_ctx_nr = perf_sw_context,
6431
b0a873eb 6432 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
6433 .add = perf_trace_add,
6434 .del = perf_trace_del,
6435 .start = perf_swevent_start,
6436 .stop = perf_swevent_stop,
b0a873eb 6437 .read = perf_swevent_read,
b0a873eb
PZ
6438};
6439
6440static inline void perf_tp_register(void)
6441{
2e80a82a 6442 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 6443}
6fb2915d
LZ
6444
6445static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6446{
6447 char *filter_str;
6448 int ret;
6449
6450 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6451 return -EINVAL;
6452
6453 filter_str = strndup_user(arg, PAGE_SIZE);
6454 if (IS_ERR(filter_str))
6455 return PTR_ERR(filter_str);
6456
6457 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6458
6459 kfree(filter_str);
6460 return ret;
6461}
6462
6463static void perf_event_free_filter(struct perf_event *event)
6464{
6465 ftrace_profile_free_filter(event);
6466}
6467
2541517c
AS
6468static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6469{
6470 struct bpf_prog *prog;
6471
6472 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6473 return -EINVAL;
6474
6475 if (event->tp_event->prog)
6476 return -EEXIST;
6477
6478 if (!(event->tp_event->flags & TRACE_EVENT_FL_KPROBE))
6479 /* bpf programs can only be attached to kprobes */
6480 return -EINVAL;
6481
6482 prog = bpf_prog_get(prog_fd);
6483 if (IS_ERR(prog))
6484 return PTR_ERR(prog);
6485
6486 if (prog->aux->prog_type != BPF_PROG_TYPE_KPROBE) {
6487 /* valid fd, but invalid bpf program type */
6488 bpf_prog_put(prog);
6489 return -EINVAL;
6490 }
6491
6492 event->tp_event->prog = prog;
6493
6494 return 0;
6495}
6496
6497static void perf_event_free_bpf_prog(struct perf_event *event)
6498{
6499 struct bpf_prog *prog;
6500
6501 if (!event->tp_event)
6502 return;
6503
6504 prog = event->tp_event->prog;
6505 if (prog) {
6506 event->tp_event->prog = NULL;
6507 bpf_prog_put(prog);
6508 }
6509}
6510
e077df4f 6511#else
6fb2915d 6512
b0a873eb 6513static inline void perf_tp_register(void)
e077df4f 6514{
e077df4f 6515}
6fb2915d
LZ
6516
6517static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6518{
6519 return -ENOENT;
6520}
6521
6522static void perf_event_free_filter(struct perf_event *event)
6523{
6524}
6525
2541517c
AS
6526static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6527{
6528 return -ENOENT;
6529}
6530
6531static void perf_event_free_bpf_prog(struct perf_event *event)
6532{
6533}
07b139c8 6534#endif /* CONFIG_EVENT_TRACING */
e077df4f 6535
24f1e32c 6536#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 6537void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 6538{
f5ffe02e
FW
6539 struct perf_sample_data sample;
6540 struct pt_regs *regs = data;
6541
fd0d000b 6542 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 6543
a4eaf7f1 6544 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 6545 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
6546}
6547#endif
6548
b0a873eb
PZ
6549/*
6550 * hrtimer based swevent callback
6551 */
f29ac756 6552
b0a873eb 6553static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 6554{
b0a873eb
PZ
6555 enum hrtimer_restart ret = HRTIMER_RESTART;
6556 struct perf_sample_data data;
6557 struct pt_regs *regs;
6558 struct perf_event *event;
6559 u64 period;
f29ac756 6560
b0a873eb 6561 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
6562
6563 if (event->state != PERF_EVENT_STATE_ACTIVE)
6564 return HRTIMER_NORESTART;
6565
b0a873eb 6566 event->pmu->read(event);
f344011c 6567
fd0d000b 6568 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
6569 regs = get_irq_regs();
6570
6571 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 6572 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 6573 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
6574 ret = HRTIMER_NORESTART;
6575 }
24f1e32c 6576
b0a873eb
PZ
6577 period = max_t(u64, 10000, event->hw.sample_period);
6578 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 6579
b0a873eb 6580 return ret;
f29ac756
PZ
6581}
6582
b0a873eb 6583static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 6584{
b0a873eb 6585 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
6586 s64 period;
6587
6588 if (!is_sampling_event(event))
6589 return;
f5ffe02e 6590
5d508e82
FBH
6591 period = local64_read(&hwc->period_left);
6592 if (period) {
6593 if (period < 0)
6594 period = 10000;
fa407f35 6595
5d508e82
FBH
6596 local64_set(&hwc->period_left, 0);
6597 } else {
6598 period = max_t(u64, 10000, hwc->sample_period);
6599 }
6600 __hrtimer_start_range_ns(&hwc->hrtimer,
b0a873eb 6601 ns_to_ktime(period), 0,
b5ab4cd5 6602 HRTIMER_MODE_REL_PINNED, 0);
24f1e32c 6603}
b0a873eb
PZ
6604
6605static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 6606{
b0a873eb
PZ
6607 struct hw_perf_event *hwc = &event->hw;
6608
6c7e550f 6609 if (is_sampling_event(event)) {
b0a873eb 6610 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 6611 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
6612
6613 hrtimer_cancel(&hwc->hrtimer);
6614 }
24f1e32c
FW
6615}
6616
ba3dd36c
PZ
6617static void perf_swevent_init_hrtimer(struct perf_event *event)
6618{
6619 struct hw_perf_event *hwc = &event->hw;
6620
6621 if (!is_sampling_event(event))
6622 return;
6623
6624 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6625 hwc->hrtimer.function = perf_swevent_hrtimer;
6626
6627 /*
6628 * Since hrtimers have a fixed rate, we can do a static freq->period
6629 * mapping and avoid the whole period adjust feedback stuff.
6630 */
6631 if (event->attr.freq) {
6632 long freq = event->attr.sample_freq;
6633
6634 event->attr.sample_period = NSEC_PER_SEC / freq;
6635 hwc->sample_period = event->attr.sample_period;
6636 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 6637 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
6638 event->attr.freq = 0;
6639 }
6640}
6641
b0a873eb
PZ
6642/*
6643 * Software event: cpu wall time clock
6644 */
6645
6646static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 6647{
b0a873eb
PZ
6648 s64 prev;
6649 u64 now;
6650
a4eaf7f1 6651 now = local_clock();
b0a873eb
PZ
6652 prev = local64_xchg(&event->hw.prev_count, now);
6653 local64_add(now - prev, &event->count);
24f1e32c 6654}
24f1e32c 6655
a4eaf7f1 6656static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6657{
a4eaf7f1 6658 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 6659 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6660}
6661
a4eaf7f1 6662static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 6663{
b0a873eb
PZ
6664 perf_swevent_cancel_hrtimer(event);
6665 cpu_clock_event_update(event);
6666}
f29ac756 6667
a4eaf7f1
PZ
6668static int cpu_clock_event_add(struct perf_event *event, int flags)
6669{
6670 if (flags & PERF_EF_START)
6671 cpu_clock_event_start(event, flags);
6a694a60 6672 perf_event_update_userpage(event);
a4eaf7f1
PZ
6673
6674 return 0;
6675}
6676
6677static void cpu_clock_event_del(struct perf_event *event, int flags)
6678{
6679 cpu_clock_event_stop(event, flags);
6680}
6681
b0a873eb
PZ
6682static void cpu_clock_event_read(struct perf_event *event)
6683{
6684 cpu_clock_event_update(event);
6685}
f344011c 6686
b0a873eb
PZ
6687static int cpu_clock_event_init(struct perf_event *event)
6688{
6689 if (event->attr.type != PERF_TYPE_SOFTWARE)
6690 return -ENOENT;
6691
6692 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6693 return -ENOENT;
6694
2481c5fa
SE
6695 /*
6696 * no branch sampling for software events
6697 */
6698 if (has_branch_stack(event))
6699 return -EOPNOTSUPP;
6700
ba3dd36c
PZ
6701 perf_swevent_init_hrtimer(event);
6702
b0a873eb 6703 return 0;
f29ac756
PZ
6704}
6705
b0a873eb 6706static struct pmu perf_cpu_clock = {
89a1e187
PZ
6707 .task_ctx_nr = perf_sw_context,
6708
34f43927
PZ
6709 .capabilities = PERF_PMU_CAP_NO_NMI,
6710
b0a873eb 6711 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
6712 .add = cpu_clock_event_add,
6713 .del = cpu_clock_event_del,
6714 .start = cpu_clock_event_start,
6715 .stop = cpu_clock_event_stop,
b0a873eb
PZ
6716 .read = cpu_clock_event_read,
6717};
6718
6719/*
6720 * Software event: task time clock
6721 */
6722
6723static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 6724{
b0a873eb
PZ
6725 u64 prev;
6726 s64 delta;
5c92d124 6727
b0a873eb
PZ
6728 prev = local64_xchg(&event->hw.prev_count, now);
6729 delta = now - prev;
6730 local64_add(delta, &event->count);
6731}
5c92d124 6732
a4eaf7f1 6733static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6734{
a4eaf7f1 6735 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 6736 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6737}
6738
a4eaf7f1 6739static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
6740{
6741 perf_swevent_cancel_hrtimer(event);
6742 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
6743}
6744
6745static int task_clock_event_add(struct perf_event *event, int flags)
6746{
6747 if (flags & PERF_EF_START)
6748 task_clock_event_start(event, flags);
6a694a60 6749 perf_event_update_userpage(event);
b0a873eb 6750
a4eaf7f1
PZ
6751 return 0;
6752}
6753
6754static void task_clock_event_del(struct perf_event *event, int flags)
6755{
6756 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
6757}
6758
6759static void task_clock_event_read(struct perf_event *event)
6760{
768a06e2
PZ
6761 u64 now = perf_clock();
6762 u64 delta = now - event->ctx->timestamp;
6763 u64 time = event->ctx->time + delta;
b0a873eb
PZ
6764
6765 task_clock_event_update(event, time);
6766}
6767
6768static int task_clock_event_init(struct perf_event *event)
6fb2915d 6769{
b0a873eb
PZ
6770 if (event->attr.type != PERF_TYPE_SOFTWARE)
6771 return -ENOENT;
6772
6773 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6774 return -ENOENT;
6775
2481c5fa
SE
6776 /*
6777 * no branch sampling for software events
6778 */
6779 if (has_branch_stack(event))
6780 return -EOPNOTSUPP;
6781
ba3dd36c
PZ
6782 perf_swevent_init_hrtimer(event);
6783
b0a873eb 6784 return 0;
6fb2915d
LZ
6785}
6786
b0a873eb 6787static struct pmu perf_task_clock = {
89a1e187
PZ
6788 .task_ctx_nr = perf_sw_context,
6789
34f43927
PZ
6790 .capabilities = PERF_PMU_CAP_NO_NMI,
6791
b0a873eb 6792 .event_init = task_clock_event_init,
a4eaf7f1
PZ
6793 .add = task_clock_event_add,
6794 .del = task_clock_event_del,
6795 .start = task_clock_event_start,
6796 .stop = task_clock_event_stop,
b0a873eb
PZ
6797 .read = task_clock_event_read,
6798};
6fb2915d 6799
ad5133b7 6800static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 6801{
e077df4f 6802}
6fb2915d 6803
ad5133b7 6804static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 6805{
ad5133b7 6806 return 0;
6fb2915d
LZ
6807}
6808
ad5133b7 6809static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 6810{
ad5133b7 6811 perf_pmu_disable(pmu);
6fb2915d
LZ
6812}
6813
ad5133b7
PZ
6814static int perf_pmu_commit_txn(struct pmu *pmu)
6815{
6816 perf_pmu_enable(pmu);
6817 return 0;
6818}
e077df4f 6819
ad5133b7 6820static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 6821{
ad5133b7 6822 perf_pmu_enable(pmu);
24f1e32c
FW
6823}
6824
35edc2a5
PZ
6825static int perf_event_idx_default(struct perf_event *event)
6826{
c719f560 6827 return 0;
35edc2a5
PZ
6828}
6829
8dc85d54
PZ
6830/*
6831 * Ensures all contexts with the same task_ctx_nr have the same
6832 * pmu_cpu_context too.
6833 */
9e317041 6834static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 6835{
8dc85d54 6836 struct pmu *pmu;
b326e956 6837
8dc85d54
PZ
6838 if (ctxn < 0)
6839 return NULL;
24f1e32c 6840
8dc85d54
PZ
6841 list_for_each_entry(pmu, &pmus, entry) {
6842 if (pmu->task_ctx_nr == ctxn)
6843 return pmu->pmu_cpu_context;
6844 }
24f1e32c 6845
8dc85d54 6846 return NULL;
24f1e32c
FW
6847}
6848
51676957 6849static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 6850{
51676957
PZ
6851 int cpu;
6852
6853 for_each_possible_cpu(cpu) {
6854 struct perf_cpu_context *cpuctx;
6855
6856 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6857
3f1f3320
PZ
6858 if (cpuctx->unique_pmu == old_pmu)
6859 cpuctx->unique_pmu = pmu;
51676957
PZ
6860 }
6861}
6862
6863static void free_pmu_context(struct pmu *pmu)
6864{
6865 struct pmu *i;
f5ffe02e 6866
8dc85d54 6867 mutex_lock(&pmus_lock);
0475f9ea 6868 /*
8dc85d54 6869 * Like a real lame refcount.
0475f9ea 6870 */
51676957
PZ
6871 list_for_each_entry(i, &pmus, entry) {
6872 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6873 update_pmu_context(i, pmu);
8dc85d54 6874 goto out;
51676957 6875 }
8dc85d54 6876 }
d6d020e9 6877
51676957 6878 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
6879out:
6880 mutex_unlock(&pmus_lock);
24f1e32c 6881}
2e80a82a 6882static struct idr pmu_idr;
d6d020e9 6883
abe43400
PZ
6884static ssize_t
6885type_show(struct device *dev, struct device_attribute *attr, char *page)
6886{
6887 struct pmu *pmu = dev_get_drvdata(dev);
6888
6889 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6890}
90826ca7 6891static DEVICE_ATTR_RO(type);
abe43400 6892
62b85639
SE
6893static ssize_t
6894perf_event_mux_interval_ms_show(struct device *dev,
6895 struct device_attribute *attr,
6896 char *page)
6897{
6898 struct pmu *pmu = dev_get_drvdata(dev);
6899
6900 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6901}
6902
6903static ssize_t
6904perf_event_mux_interval_ms_store(struct device *dev,
6905 struct device_attribute *attr,
6906 const char *buf, size_t count)
6907{
6908 struct pmu *pmu = dev_get_drvdata(dev);
6909 int timer, cpu, ret;
6910
6911 ret = kstrtoint(buf, 0, &timer);
6912 if (ret)
6913 return ret;
6914
6915 if (timer < 1)
6916 return -EINVAL;
6917
6918 /* same value, noting to do */
6919 if (timer == pmu->hrtimer_interval_ms)
6920 return count;
6921
6922 pmu->hrtimer_interval_ms = timer;
6923
6924 /* update all cpuctx for this PMU */
6925 for_each_possible_cpu(cpu) {
6926 struct perf_cpu_context *cpuctx;
6927 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6928 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6929
6930 if (hrtimer_active(&cpuctx->hrtimer))
6931 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6932 }
6933
6934 return count;
6935}
90826ca7 6936static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 6937
90826ca7
GKH
6938static struct attribute *pmu_dev_attrs[] = {
6939 &dev_attr_type.attr,
6940 &dev_attr_perf_event_mux_interval_ms.attr,
6941 NULL,
abe43400 6942};
90826ca7 6943ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
6944
6945static int pmu_bus_running;
6946static struct bus_type pmu_bus = {
6947 .name = "event_source",
90826ca7 6948 .dev_groups = pmu_dev_groups,
abe43400
PZ
6949};
6950
6951static void pmu_dev_release(struct device *dev)
6952{
6953 kfree(dev);
6954}
6955
6956static int pmu_dev_alloc(struct pmu *pmu)
6957{
6958 int ret = -ENOMEM;
6959
6960 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6961 if (!pmu->dev)
6962 goto out;
6963
0c9d42ed 6964 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
6965 device_initialize(pmu->dev);
6966 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6967 if (ret)
6968 goto free_dev;
6969
6970 dev_set_drvdata(pmu->dev, pmu);
6971 pmu->dev->bus = &pmu_bus;
6972 pmu->dev->release = pmu_dev_release;
6973 ret = device_add(pmu->dev);
6974 if (ret)
6975 goto free_dev;
6976
6977out:
6978 return ret;
6979
6980free_dev:
6981 put_device(pmu->dev);
6982 goto out;
6983}
6984
547e9fd7 6985static struct lock_class_key cpuctx_mutex;
facc4307 6986static struct lock_class_key cpuctx_lock;
547e9fd7 6987
03d8e80b 6988int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 6989{
108b02cf 6990 int cpu, ret;
24f1e32c 6991
b0a873eb 6992 mutex_lock(&pmus_lock);
33696fc0
PZ
6993 ret = -ENOMEM;
6994 pmu->pmu_disable_count = alloc_percpu(int);
6995 if (!pmu->pmu_disable_count)
6996 goto unlock;
f29ac756 6997
2e80a82a
PZ
6998 pmu->type = -1;
6999 if (!name)
7000 goto skip_type;
7001 pmu->name = name;
7002
7003 if (type < 0) {
0e9c3be2
TH
7004 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7005 if (type < 0) {
7006 ret = type;
2e80a82a
PZ
7007 goto free_pdc;
7008 }
7009 }
7010 pmu->type = type;
7011
abe43400
PZ
7012 if (pmu_bus_running) {
7013 ret = pmu_dev_alloc(pmu);
7014 if (ret)
7015 goto free_idr;
7016 }
7017
2e80a82a 7018skip_type:
8dc85d54
PZ
7019 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7020 if (pmu->pmu_cpu_context)
7021 goto got_cpu_context;
f29ac756 7022
c4814202 7023 ret = -ENOMEM;
108b02cf
PZ
7024 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7025 if (!pmu->pmu_cpu_context)
abe43400 7026 goto free_dev;
f344011c 7027
108b02cf
PZ
7028 for_each_possible_cpu(cpu) {
7029 struct perf_cpu_context *cpuctx;
7030
7031 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 7032 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 7033 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 7034 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 7035 cpuctx->ctx.pmu = pmu;
9e630205
SE
7036
7037 __perf_cpu_hrtimer_init(cpuctx, cpu);
7038
3f1f3320 7039 cpuctx->unique_pmu = pmu;
108b02cf 7040 }
76e1d904 7041
8dc85d54 7042got_cpu_context:
ad5133b7
PZ
7043 if (!pmu->start_txn) {
7044 if (pmu->pmu_enable) {
7045 /*
7046 * If we have pmu_enable/pmu_disable calls, install
7047 * transaction stubs that use that to try and batch
7048 * hardware accesses.
7049 */
7050 pmu->start_txn = perf_pmu_start_txn;
7051 pmu->commit_txn = perf_pmu_commit_txn;
7052 pmu->cancel_txn = perf_pmu_cancel_txn;
7053 } else {
7054 pmu->start_txn = perf_pmu_nop_void;
7055 pmu->commit_txn = perf_pmu_nop_int;
7056 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 7057 }
5c92d124 7058 }
15dbf27c 7059
ad5133b7
PZ
7060 if (!pmu->pmu_enable) {
7061 pmu->pmu_enable = perf_pmu_nop_void;
7062 pmu->pmu_disable = perf_pmu_nop_void;
7063 }
7064
35edc2a5
PZ
7065 if (!pmu->event_idx)
7066 pmu->event_idx = perf_event_idx_default;
7067
b0a873eb 7068 list_add_rcu(&pmu->entry, &pmus);
33696fc0
PZ
7069 ret = 0;
7070unlock:
b0a873eb
PZ
7071 mutex_unlock(&pmus_lock);
7072
33696fc0 7073 return ret;
108b02cf 7074
abe43400
PZ
7075free_dev:
7076 device_del(pmu->dev);
7077 put_device(pmu->dev);
7078
2e80a82a
PZ
7079free_idr:
7080 if (pmu->type >= PERF_TYPE_MAX)
7081 idr_remove(&pmu_idr, pmu->type);
7082
108b02cf
PZ
7083free_pdc:
7084 free_percpu(pmu->pmu_disable_count);
7085 goto unlock;
f29ac756 7086}
c464c76e 7087EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 7088
b0a873eb 7089void perf_pmu_unregister(struct pmu *pmu)
5c92d124 7090{
b0a873eb
PZ
7091 mutex_lock(&pmus_lock);
7092 list_del_rcu(&pmu->entry);
7093 mutex_unlock(&pmus_lock);
5c92d124 7094
0475f9ea 7095 /*
cde8e884
PZ
7096 * We dereference the pmu list under both SRCU and regular RCU, so
7097 * synchronize against both of those.
0475f9ea 7098 */
b0a873eb 7099 synchronize_srcu(&pmus_srcu);
cde8e884 7100 synchronize_rcu();
d6d020e9 7101
33696fc0 7102 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
7103 if (pmu->type >= PERF_TYPE_MAX)
7104 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
7105 device_del(pmu->dev);
7106 put_device(pmu->dev);
51676957 7107 free_pmu_context(pmu);
b0a873eb 7108}
c464c76e 7109EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 7110
cc34b98b
MR
7111static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7112{
ccd41c86 7113 struct perf_event_context *ctx = NULL;
cc34b98b
MR
7114 int ret;
7115
7116 if (!try_module_get(pmu->module))
7117 return -ENODEV;
ccd41c86
PZ
7118
7119 if (event->group_leader != event) {
7120 ctx = perf_event_ctx_lock(event->group_leader);
7121 BUG_ON(!ctx);
7122 }
7123
cc34b98b
MR
7124 event->pmu = pmu;
7125 ret = pmu->event_init(event);
ccd41c86
PZ
7126
7127 if (ctx)
7128 perf_event_ctx_unlock(event->group_leader, ctx);
7129
cc34b98b
MR
7130 if (ret)
7131 module_put(pmu->module);
7132
7133 return ret;
7134}
7135
b0a873eb
PZ
7136struct pmu *perf_init_event(struct perf_event *event)
7137{
7138 struct pmu *pmu = NULL;
7139 int idx;
940c5b29 7140 int ret;
b0a873eb
PZ
7141
7142 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
7143
7144 rcu_read_lock();
7145 pmu = idr_find(&pmu_idr, event->attr.type);
7146 rcu_read_unlock();
940c5b29 7147 if (pmu) {
cc34b98b 7148 ret = perf_try_init_event(pmu, event);
940c5b29
LM
7149 if (ret)
7150 pmu = ERR_PTR(ret);
2e80a82a 7151 goto unlock;
940c5b29 7152 }
2e80a82a 7153
b0a873eb 7154 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 7155 ret = perf_try_init_event(pmu, event);
b0a873eb 7156 if (!ret)
e5f4d339 7157 goto unlock;
76e1d904 7158
b0a873eb
PZ
7159 if (ret != -ENOENT) {
7160 pmu = ERR_PTR(ret);
e5f4d339 7161 goto unlock;
f344011c 7162 }
5c92d124 7163 }
e5f4d339
PZ
7164 pmu = ERR_PTR(-ENOENT);
7165unlock:
b0a873eb 7166 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 7167
4aeb0b42 7168 return pmu;
5c92d124
IM
7169}
7170
4beb31f3
FW
7171static void account_event_cpu(struct perf_event *event, int cpu)
7172{
7173 if (event->parent)
7174 return;
7175
4beb31f3
FW
7176 if (is_cgroup_event(event))
7177 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7178}
7179
766d6c07
FW
7180static void account_event(struct perf_event *event)
7181{
4beb31f3
FW
7182 if (event->parent)
7183 return;
7184
766d6c07
FW
7185 if (event->attach_state & PERF_ATTACH_TASK)
7186 static_key_slow_inc(&perf_sched_events.key);
7187 if (event->attr.mmap || event->attr.mmap_data)
7188 atomic_inc(&nr_mmap_events);
7189 if (event->attr.comm)
7190 atomic_inc(&nr_comm_events);
7191 if (event->attr.task)
7192 atomic_inc(&nr_task_events);
948b26b6
FW
7193 if (event->attr.freq) {
7194 if (atomic_inc_return(&nr_freq_events) == 1)
7195 tick_nohz_full_kick_all();
7196 }
4beb31f3 7197 if (has_branch_stack(event))
766d6c07 7198 static_key_slow_inc(&perf_sched_events.key);
4beb31f3 7199 if (is_cgroup_event(event))
766d6c07 7200 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
7201
7202 account_event_cpu(event, event->cpu);
766d6c07
FW
7203}
7204
0793a61d 7205/*
cdd6c482 7206 * Allocate and initialize a event structure
0793a61d 7207 */
cdd6c482 7208static struct perf_event *
c3f00c70 7209perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
7210 struct task_struct *task,
7211 struct perf_event *group_leader,
7212 struct perf_event *parent_event,
4dc0da86 7213 perf_overflow_handler_t overflow_handler,
79dff51e 7214 void *context, int cgroup_fd)
0793a61d 7215{
51b0fe39 7216 struct pmu *pmu;
cdd6c482
IM
7217 struct perf_event *event;
7218 struct hw_perf_event *hwc;
90983b16 7219 long err = -EINVAL;
0793a61d 7220
66832eb4
ON
7221 if ((unsigned)cpu >= nr_cpu_ids) {
7222 if (!task || cpu != -1)
7223 return ERR_PTR(-EINVAL);
7224 }
7225
c3f00c70 7226 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 7227 if (!event)
d5d2bc0d 7228 return ERR_PTR(-ENOMEM);
0793a61d 7229
04289bb9 7230 /*
cdd6c482 7231 * Single events are their own group leaders, with an
04289bb9
IM
7232 * empty sibling list:
7233 */
7234 if (!group_leader)
cdd6c482 7235 group_leader = event;
04289bb9 7236
cdd6c482
IM
7237 mutex_init(&event->child_mutex);
7238 INIT_LIST_HEAD(&event->child_list);
fccc714b 7239
cdd6c482
IM
7240 INIT_LIST_HEAD(&event->group_entry);
7241 INIT_LIST_HEAD(&event->event_entry);
7242 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 7243 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 7244 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
7245 INIT_HLIST_NODE(&event->hlist_entry);
7246
10c6db11 7247
cdd6c482 7248 init_waitqueue_head(&event->waitq);
e360adbe 7249 init_irq_work(&event->pending, perf_pending_event);
0793a61d 7250
cdd6c482 7251 mutex_init(&event->mmap_mutex);
7b732a75 7252
a6fa941d 7253 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
7254 event->cpu = cpu;
7255 event->attr = *attr;
7256 event->group_leader = group_leader;
7257 event->pmu = NULL;
cdd6c482 7258 event->oncpu = -1;
a96bbc16 7259
cdd6c482 7260 event->parent = parent_event;
b84fbc9f 7261
17cf22c3 7262 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 7263 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 7264
cdd6c482 7265 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 7266
d580ff86
PZ
7267 if (task) {
7268 event->attach_state = PERF_ATTACH_TASK;
d580ff86 7269 /*
50f16a8b
PZ
7270 * XXX pmu::event_init needs to know what task to account to
7271 * and we cannot use the ctx information because we need the
7272 * pmu before we get a ctx.
d580ff86 7273 */
50f16a8b 7274 event->hw.target = task;
d580ff86
PZ
7275 }
7276
34f43927
PZ
7277 event->clock = &local_clock;
7278 if (parent_event)
7279 event->clock = parent_event->clock;
7280
4dc0da86 7281 if (!overflow_handler && parent_event) {
b326e956 7282 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7283 context = parent_event->overflow_handler_context;
7284 }
66832eb4 7285
b326e956 7286 event->overflow_handler = overflow_handler;
4dc0da86 7287 event->overflow_handler_context = context;
97eaf530 7288
0231bb53 7289 perf_event__state_init(event);
a86ed508 7290
4aeb0b42 7291 pmu = NULL;
b8e83514 7292
cdd6c482 7293 hwc = &event->hw;
bd2b5b12 7294 hwc->sample_period = attr->sample_period;
0d48696f 7295 if (attr->freq && attr->sample_freq)
bd2b5b12 7296 hwc->sample_period = 1;
eced1dfc 7297 hwc->last_period = hwc->sample_period;
bd2b5b12 7298
e7850595 7299 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 7300
2023b359 7301 /*
cdd6c482 7302 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 7303 */
3dab77fb 7304 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 7305 goto err_ns;
a46a2300
YZ
7306
7307 if (!has_branch_stack(event))
7308 event->attr.branch_sample_type = 0;
2023b359 7309
79dff51e
MF
7310 if (cgroup_fd != -1) {
7311 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7312 if (err)
7313 goto err_ns;
7314 }
7315
b0a873eb 7316 pmu = perf_init_event(event);
4aeb0b42 7317 if (!pmu)
90983b16
FW
7318 goto err_ns;
7319 else if (IS_ERR(pmu)) {
4aeb0b42 7320 err = PTR_ERR(pmu);
90983b16 7321 goto err_ns;
621a01ea 7322 }
d5d2bc0d 7323
cdd6c482 7324 if (!event->parent) {
927c7a9e
FW
7325 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7326 err = get_callchain_buffers();
90983b16
FW
7327 if (err)
7328 goto err_pmu;
d010b332 7329 }
f344011c 7330 }
9ee318a7 7331
cdd6c482 7332 return event;
90983b16
FW
7333
7334err_pmu:
7335 if (event->destroy)
7336 event->destroy(event);
c464c76e 7337 module_put(pmu->module);
90983b16 7338err_ns:
79dff51e
MF
7339 if (is_cgroup_event(event))
7340 perf_detach_cgroup(event);
90983b16
FW
7341 if (event->ns)
7342 put_pid_ns(event->ns);
7343 kfree(event);
7344
7345 return ERR_PTR(err);
0793a61d
TG
7346}
7347
cdd6c482
IM
7348static int perf_copy_attr(struct perf_event_attr __user *uattr,
7349 struct perf_event_attr *attr)
974802ea 7350{
974802ea 7351 u32 size;
cdf8073d 7352 int ret;
974802ea
PZ
7353
7354 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7355 return -EFAULT;
7356
7357 /*
7358 * zero the full structure, so that a short copy will be nice.
7359 */
7360 memset(attr, 0, sizeof(*attr));
7361
7362 ret = get_user(size, &uattr->size);
7363 if (ret)
7364 return ret;
7365
7366 if (size > PAGE_SIZE) /* silly large */
7367 goto err_size;
7368
7369 if (!size) /* abi compat */
7370 size = PERF_ATTR_SIZE_VER0;
7371
7372 if (size < PERF_ATTR_SIZE_VER0)
7373 goto err_size;
7374
7375 /*
7376 * If we're handed a bigger struct than we know of,
cdf8073d
IS
7377 * ensure all the unknown bits are 0 - i.e. new
7378 * user-space does not rely on any kernel feature
7379 * extensions we dont know about yet.
974802ea
PZ
7380 */
7381 if (size > sizeof(*attr)) {
cdf8073d
IS
7382 unsigned char __user *addr;
7383 unsigned char __user *end;
7384 unsigned char val;
974802ea 7385
cdf8073d
IS
7386 addr = (void __user *)uattr + sizeof(*attr);
7387 end = (void __user *)uattr + size;
974802ea 7388
cdf8073d 7389 for (; addr < end; addr++) {
974802ea
PZ
7390 ret = get_user(val, addr);
7391 if (ret)
7392 return ret;
7393 if (val)
7394 goto err_size;
7395 }
b3e62e35 7396 size = sizeof(*attr);
974802ea
PZ
7397 }
7398
7399 ret = copy_from_user(attr, uattr, size);
7400 if (ret)
7401 return -EFAULT;
7402
cd757645 7403 if (attr->__reserved_1)
974802ea
PZ
7404 return -EINVAL;
7405
7406 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7407 return -EINVAL;
7408
7409 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7410 return -EINVAL;
7411
bce38cd5
SE
7412 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7413 u64 mask = attr->branch_sample_type;
7414
7415 /* only using defined bits */
7416 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7417 return -EINVAL;
7418
7419 /* at least one branch bit must be set */
7420 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7421 return -EINVAL;
7422
bce38cd5
SE
7423 /* propagate priv level, when not set for branch */
7424 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7425
7426 /* exclude_kernel checked on syscall entry */
7427 if (!attr->exclude_kernel)
7428 mask |= PERF_SAMPLE_BRANCH_KERNEL;
7429
7430 if (!attr->exclude_user)
7431 mask |= PERF_SAMPLE_BRANCH_USER;
7432
7433 if (!attr->exclude_hv)
7434 mask |= PERF_SAMPLE_BRANCH_HV;
7435 /*
7436 * adjust user setting (for HW filter setup)
7437 */
7438 attr->branch_sample_type = mask;
7439 }
e712209a
SE
7440 /* privileged levels capture (kernel, hv): check permissions */
7441 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
7442 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7443 return -EACCES;
bce38cd5 7444 }
4018994f 7445
c5ebcedb 7446 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 7447 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
7448 if (ret)
7449 return ret;
7450 }
7451
7452 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7453 if (!arch_perf_have_user_stack_dump())
7454 return -ENOSYS;
7455
7456 /*
7457 * We have __u32 type for the size, but so far
7458 * we can only use __u16 as maximum due to the
7459 * __u16 sample size limit.
7460 */
7461 if (attr->sample_stack_user >= USHRT_MAX)
7462 ret = -EINVAL;
7463 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7464 ret = -EINVAL;
7465 }
4018994f 7466
60e2364e
SE
7467 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
7468 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
7469out:
7470 return ret;
7471
7472err_size:
7473 put_user(sizeof(*attr), &uattr->size);
7474 ret = -E2BIG;
7475 goto out;
7476}
7477
ac9721f3
PZ
7478static int
7479perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 7480{
b69cf536 7481 struct ring_buffer *rb = NULL;
a4be7c27
PZ
7482 int ret = -EINVAL;
7483
ac9721f3 7484 if (!output_event)
a4be7c27
PZ
7485 goto set;
7486
ac9721f3
PZ
7487 /* don't allow circular references */
7488 if (event == output_event)
a4be7c27
PZ
7489 goto out;
7490
0f139300
PZ
7491 /*
7492 * Don't allow cross-cpu buffers
7493 */
7494 if (output_event->cpu != event->cpu)
7495 goto out;
7496
7497 /*
76369139 7498 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
7499 */
7500 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7501 goto out;
7502
34f43927
PZ
7503 /*
7504 * Mixing clocks in the same buffer is trouble you don't need.
7505 */
7506 if (output_event->clock != event->clock)
7507 goto out;
7508
a4be7c27 7509set:
cdd6c482 7510 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
7511 /* Can't redirect output if we've got an active mmap() */
7512 if (atomic_read(&event->mmap_count))
7513 goto unlock;
a4be7c27 7514
ac9721f3 7515 if (output_event) {
76369139
FW
7516 /* get the rb we want to redirect to */
7517 rb = ring_buffer_get(output_event);
7518 if (!rb)
ac9721f3 7519 goto unlock;
a4be7c27
PZ
7520 }
7521
b69cf536 7522 ring_buffer_attach(event, rb);
9bb5d40c 7523
a4be7c27 7524 ret = 0;
ac9721f3
PZ
7525unlock:
7526 mutex_unlock(&event->mmap_mutex);
7527
a4be7c27 7528out:
a4be7c27
PZ
7529 return ret;
7530}
7531
f63a8daa
PZ
7532static void mutex_lock_double(struct mutex *a, struct mutex *b)
7533{
7534 if (b < a)
7535 swap(a, b);
7536
7537 mutex_lock(a);
7538 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
7539}
7540
34f43927
PZ
7541static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
7542{
7543 bool nmi_safe = false;
7544
7545 switch (clk_id) {
7546 case CLOCK_MONOTONIC:
7547 event->clock = &ktime_get_mono_fast_ns;
7548 nmi_safe = true;
7549 break;
7550
7551 case CLOCK_MONOTONIC_RAW:
7552 event->clock = &ktime_get_raw_fast_ns;
7553 nmi_safe = true;
7554 break;
7555
7556 case CLOCK_REALTIME:
7557 event->clock = &ktime_get_real_ns;
7558 break;
7559
7560 case CLOCK_BOOTTIME:
7561 event->clock = &ktime_get_boot_ns;
7562 break;
7563
7564 case CLOCK_TAI:
7565 event->clock = &ktime_get_tai_ns;
7566 break;
7567
7568 default:
7569 return -EINVAL;
7570 }
7571
7572 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
7573 return -EINVAL;
7574
7575 return 0;
7576}
7577
0793a61d 7578/**
cdd6c482 7579 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 7580 *
cdd6c482 7581 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 7582 * @pid: target pid
9f66a381 7583 * @cpu: target cpu
cdd6c482 7584 * @group_fd: group leader event fd
0793a61d 7585 */
cdd6c482
IM
7586SYSCALL_DEFINE5(perf_event_open,
7587 struct perf_event_attr __user *, attr_uptr,
2743a5b0 7588 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 7589{
b04243ef
PZ
7590 struct perf_event *group_leader = NULL, *output_event = NULL;
7591 struct perf_event *event, *sibling;
cdd6c482 7592 struct perf_event_attr attr;
f63a8daa 7593 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 7594 struct file *event_file = NULL;
2903ff01 7595 struct fd group = {NULL, 0};
38a81da2 7596 struct task_struct *task = NULL;
89a1e187 7597 struct pmu *pmu;
ea635c64 7598 int event_fd;
b04243ef 7599 int move_group = 0;
dc86cabe 7600 int err;
a21b0b35 7601 int f_flags = O_RDWR;
79dff51e 7602 int cgroup_fd = -1;
0793a61d 7603
2743a5b0 7604 /* for future expandability... */
e5d1367f 7605 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
7606 return -EINVAL;
7607
dc86cabe
IM
7608 err = perf_copy_attr(attr_uptr, &attr);
7609 if (err)
7610 return err;
eab656ae 7611
0764771d
PZ
7612 if (!attr.exclude_kernel) {
7613 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7614 return -EACCES;
7615 }
7616
df58ab24 7617 if (attr.freq) {
cdd6c482 7618 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 7619 return -EINVAL;
0819b2e3
PZ
7620 } else {
7621 if (attr.sample_period & (1ULL << 63))
7622 return -EINVAL;
df58ab24
PZ
7623 }
7624
e5d1367f
SE
7625 /*
7626 * In cgroup mode, the pid argument is used to pass the fd
7627 * opened to the cgroup directory in cgroupfs. The cpu argument
7628 * designates the cpu on which to monitor threads from that
7629 * cgroup.
7630 */
7631 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7632 return -EINVAL;
7633
a21b0b35
YD
7634 if (flags & PERF_FLAG_FD_CLOEXEC)
7635 f_flags |= O_CLOEXEC;
7636
7637 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
7638 if (event_fd < 0)
7639 return event_fd;
7640
ac9721f3 7641 if (group_fd != -1) {
2903ff01
AV
7642 err = perf_fget_light(group_fd, &group);
7643 if (err)
d14b12d7 7644 goto err_fd;
2903ff01 7645 group_leader = group.file->private_data;
ac9721f3
PZ
7646 if (flags & PERF_FLAG_FD_OUTPUT)
7647 output_event = group_leader;
7648 if (flags & PERF_FLAG_FD_NO_GROUP)
7649 group_leader = NULL;
7650 }
7651
e5d1367f 7652 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
7653 task = find_lively_task_by_vpid(pid);
7654 if (IS_ERR(task)) {
7655 err = PTR_ERR(task);
7656 goto err_group_fd;
7657 }
7658 }
7659
1f4ee503
PZ
7660 if (task && group_leader &&
7661 group_leader->attr.inherit != attr.inherit) {
7662 err = -EINVAL;
7663 goto err_task;
7664 }
7665
fbfc623f
YZ
7666 get_online_cpus();
7667
79dff51e
MF
7668 if (flags & PERF_FLAG_PID_CGROUP)
7669 cgroup_fd = pid;
7670
4dc0da86 7671 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 7672 NULL, NULL, cgroup_fd);
d14b12d7
SE
7673 if (IS_ERR(event)) {
7674 err = PTR_ERR(event);
1f4ee503 7675 goto err_cpus;
d14b12d7
SE
7676 }
7677
53b25335
VW
7678 if (is_sampling_event(event)) {
7679 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
7680 err = -ENOTSUPP;
7681 goto err_alloc;
7682 }
7683 }
7684
766d6c07
FW
7685 account_event(event);
7686
89a1e187
PZ
7687 /*
7688 * Special case software events and allow them to be part of
7689 * any hardware group.
7690 */
7691 pmu = event->pmu;
b04243ef 7692
34f43927
PZ
7693 if (attr.use_clockid) {
7694 err = perf_event_set_clock(event, attr.clockid);
7695 if (err)
7696 goto err_alloc;
7697 }
7698
b04243ef
PZ
7699 if (group_leader &&
7700 (is_software_event(event) != is_software_event(group_leader))) {
7701 if (is_software_event(event)) {
7702 /*
7703 * If event and group_leader are not both a software
7704 * event, and event is, then group leader is not.
7705 *
7706 * Allow the addition of software events to !software
7707 * groups, this is safe because software events never
7708 * fail to schedule.
7709 */
7710 pmu = group_leader->pmu;
7711 } else if (is_software_event(group_leader) &&
7712 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7713 /*
7714 * In case the group is a pure software group, and we
7715 * try to add a hardware event, move the whole group to
7716 * the hardware context.
7717 */
7718 move_group = 1;
7719 }
7720 }
89a1e187
PZ
7721
7722 /*
7723 * Get the target context (task or percpu):
7724 */
4af57ef2 7725 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
7726 if (IS_ERR(ctx)) {
7727 err = PTR_ERR(ctx);
c6be5a5c 7728 goto err_alloc;
89a1e187
PZ
7729 }
7730
fd1edb3a
PZ
7731 if (task) {
7732 put_task_struct(task);
7733 task = NULL;
7734 }
7735
ccff286d 7736 /*
cdd6c482 7737 * Look up the group leader (we will attach this event to it):
04289bb9 7738 */
ac9721f3 7739 if (group_leader) {
dc86cabe 7740 err = -EINVAL;
04289bb9 7741
04289bb9 7742 /*
ccff286d
IM
7743 * Do not allow a recursive hierarchy (this new sibling
7744 * becoming part of another group-sibling):
7745 */
7746 if (group_leader->group_leader != group_leader)
c3f00c70 7747 goto err_context;
34f43927
PZ
7748
7749 /* All events in a group should have the same clock */
7750 if (group_leader->clock != event->clock)
7751 goto err_context;
7752
ccff286d
IM
7753 /*
7754 * Do not allow to attach to a group in a different
7755 * task or CPU context:
04289bb9 7756 */
b04243ef 7757 if (move_group) {
c3c87e77
PZ
7758 /*
7759 * Make sure we're both on the same task, or both
7760 * per-cpu events.
7761 */
7762 if (group_leader->ctx->task != ctx->task)
7763 goto err_context;
7764
7765 /*
7766 * Make sure we're both events for the same CPU;
7767 * grouping events for different CPUs is broken; since
7768 * you can never concurrently schedule them anyhow.
7769 */
7770 if (group_leader->cpu != event->cpu)
b04243ef
PZ
7771 goto err_context;
7772 } else {
7773 if (group_leader->ctx != ctx)
7774 goto err_context;
7775 }
7776
3b6f9e5c
PM
7777 /*
7778 * Only a group leader can be exclusive or pinned
7779 */
0d48696f 7780 if (attr.exclusive || attr.pinned)
c3f00c70 7781 goto err_context;
ac9721f3
PZ
7782 }
7783
7784 if (output_event) {
7785 err = perf_event_set_output(event, output_event);
7786 if (err)
c3f00c70 7787 goto err_context;
ac9721f3 7788 }
0793a61d 7789
a21b0b35
YD
7790 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
7791 f_flags);
ea635c64
AV
7792 if (IS_ERR(event_file)) {
7793 err = PTR_ERR(event_file);
c3f00c70 7794 goto err_context;
ea635c64 7795 }
9b51f66d 7796
b04243ef 7797 if (move_group) {
f63a8daa
PZ
7798 gctx = group_leader->ctx;
7799
7800 /*
7801 * See perf_event_ctx_lock() for comments on the details
7802 * of swizzling perf_event::ctx.
7803 */
7804 mutex_lock_double(&gctx->mutex, &ctx->mutex);
b04243ef 7805
46ce0fe9 7806 perf_remove_from_context(group_leader, false);
0231bb53 7807
b04243ef
PZ
7808 list_for_each_entry(sibling, &group_leader->sibling_list,
7809 group_entry) {
46ce0fe9 7810 perf_remove_from_context(sibling, false);
b04243ef
PZ
7811 put_ctx(gctx);
7812 }
f63a8daa
PZ
7813 } else {
7814 mutex_lock(&ctx->mutex);
ea635c64 7815 }
9b51f66d 7816
ad3a37de 7817 WARN_ON_ONCE(ctx->parent_ctx);
b04243ef
PZ
7818
7819 if (move_group) {
f63a8daa
PZ
7820 /*
7821 * Wait for everybody to stop referencing the events through
7822 * the old lists, before installing it on new lists.
7823 */
0cda4c02 7824 synchronize_rcu();
f63a8daa 7825
8f95b435
PZI
7826 /*
7827 * Install the group siblings before the group leader.
7828 *
7829 * Because a group leader will try and install the entire group
7830 * (through the sibling list, which is still in-tact), we can
7831 * end up with siblings installed in the wrong context.
7832 *
7833 * By installing siblings first we NO-OP because they're not
7834 * reachable through the group lists.
7835 */
b04243ef
PZ
7836 list_for_each_entry(sibling, &group_leader->sibling_list,
7837 group_entry) {
8f95b435 7838 perf_event__state_init(sibling);
9fc81d87 7839 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
7840 get_ctx(ctx);
7841 }
8f95b435
PZI
7842
7843 /*
7844 * Removing from the context ends up with disabled
7845 * event. What we want here is event in the initial
7846 * startup state, ready to be add into new context.
7847 */
7848 perf_event__state_init(group_leader);
7849 perf_install_in_context(ctx, group_leader, group_leader->cpu);
7850 get_ctx(ctx);
b04243ef
PZ
7851 }
7852
e2d37cd2 7853 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 7854 perf_unpin_context(ctx);
f63a8daa
PZ
7855
7856 if (move_group) {
7857 mutex_unlock(&gctx->mutex);
7858 put_ctx(gctx);
7859 }
d859e29f 7860 mutex_unlock(&ctx->mutex);
9b51f66d 7861
fbfc623f
YZ
7862 put_online_cpus();
7863
cdd6c482 7864 event->owner = current;
8882135b 7865
cdd6c482
IM
7866 mutex_lock(&current->perf_event_mutex);
7867 list_add_tail(&event->owner_entry, &current->perf_event_list);
7868 mutex_unlock(&current->perf_event_mutex);
082ff5a2 7869
c320c7b7
ACM
7870 /*
7871 * Precalculate sample_data sizes
7872 */
7873 perf_event__header_size(event);
6844c09d 7874 perf_event__id_header_size(event);
c320c7b7 7875
8a49542c
PZ
7876 /*
7877 * Drop the reference on the group_event after placing the
7878 * new event on the sibling_list. This ensures destruction
7879 * of the group leader will find the pointer to itself in
7880 * perf_group_detach().
7881 */
2903ff01 7882 fdput(group);
ea635c64
AV
7883 fd_install(event_fd, event_file);
7884 return event_fd;
0793a61d 7885
c3f00c70 7886err_context:
fe4b04fa 7887 perf_unpin_context(ctx);
ea635c64 7888 put_ctx(ctx);
c6be5a5c 7889err_alloc:
ea635c64 7890 free_event(event);
1f4ee503 7891err_cpus:
fbfc623f 7892 put_online_cpus();
1f4ee503 7893err_task:
e7d0bc04
PZ
7894 if (task)
7895 put_task_struct(task);
89a1e187 7896err_group_fd:
2903ff01 7897 fdput(group);
ea635c64
AV
7898err_fd:
7899 put_unused_fd(event_fd);
dc86cabe 7900 return err;
0793a61d
TG
7901}
7902
fb0459d7
AV
7903/**
7904 * perf_event_create_kernel_counter
7905 *
7906 * @attr: attributes of the counter to create
7907 * @cpu: cpu in which the counter is bound
38a81da2 7908 * @task: task to profile (NULL for percpu)
fb0459d7
AV
7909 */
7910struct perf_event *
7911perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 7912 struct task_struct *task,
4dc0da86
AK
7913 perf_overflow_handler_t overflow_handler,
7914 void *context)
fb0459d7 7915{
fb0459d7 7916 struct perf_event_context *ctx;
c3f00c70 7917 struct perf_event *event;
fb0459d7 7918 int err;
d859e29f 7919
fb0459d7
AV
7920 /*
7921 * Get the target context (task or percpu):
7922 */
d859e29f 7923
4dc0da86 7924 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 7925 overflow_handler, context, -1);
c3f00c70
PZ
7926 if (IS_ERR(event)) {
7927 err = PTR_ERR(event);
7928 goto err;
7929 }
d859e29f 7930
f8697762
JO
7931 /* Mark owner so we could distinguish it from user events. */
7932 event->owner = EVENT_OWNER_KERNEL;
7933
766d6c07
FW
7934 account_event(event);
7935
4af57ef2 7936 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
7937 if (IS_ERR(ctx)) {
7938 err = PTR_ERR(ctx);
c3f00c70 7939 goto err_free;
d859e29f 7940 }
fb0459d7 7941
fb0459d7
AV
7942 WARN_ON_ONCE(ctx->parent_ctx);
7943 mutex_lock(&ctx->mutex);
7944 perf_install_in_context(ctx, event, cpu);
fe4b04fa 7945 perf_unpin_context(ctx);
fb0459d7
AV
7946 mutex_unlock(&ctx->mutex);
7947
fb0459d7
AV
7948 return event;
7949
c3f00c70
PZ
7950err_free:
7951 free_event(event);
7952err:
c6567f64 7953 return ERR_PTR(err);
9b51f66d 7954}
fb0459d7 7955EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 7956
0cda4c02
YZ
7957void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7958{
7959 struct perf_event_context *src_ctx;
7960 struct perf_event_context *dst_ctx;
7961 struct perf_event *event, *tmp;
7962 LIST_HEAD(events);
7963
7964 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7965 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7966
f63a8daa
PZ
7967 /*
7968 * See perf_event_ctx_lock() for comments on the details
7969 * of swizzling perf_event::ctx.
7970 */
7971 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
7972 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7973 event_entry) {
46ce0fe9 7974 perf_remove_from_context(event, false);
9a545de0 7975 unaccount_event_cpu(event, src_cpu);
0cda4c02 7976 put_ctx(src_ctx);
9886167d 7977 list_add(&event->migrate_entry, &events);
0cda4c02 7978 }
0cda4c02 7979
8f95b435
PZI
7980 /*
7981 * Wait for the events to quiesce before re-instating them.
7982 */
0cda4c02
YZ
7983 synchronize_rcu();
7984
8f95b435
PZI
7985 /*
7986 * Re-instate events in 2 passes.
7987 *
7988 * Skip over group leaders and only install siblings on this first
7989 * pass, siblings will not get enabled without a leader, however a
7990 * leader will enable its siblings, even if those are still on the old
7991 * context.
7992 */
7993 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7994 if (event->group_leader == event)
7995 continue;
7996
7997 list_del(&event->migrate_entry);
7998 if (event->state >= PERF_EVENT_STATE_OFF)
7999 event->state = PERF_EVENT_STATE_INACTIVE;
8000 account_event_cpu(event, dst_cpu);
8001 perf_install_in_context(dst_ctx, event, dst_cpu);
8002 get_ctx(dst_ctx);
8003 }
8004
8005 /*
8006 * Once all the siblings are setup properly, install the group leaders
8007 * to make it go.
8008 */
9886167d
PZ
8009 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8010 list_del(&event->migrate_entry);
0cda4c02
YZ
8011 if (event->state >= PERF_EVENT_STATE_OFF)
8012 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 8013 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
8014 perf_install_in_context(dst_ctx, event, dst_cpu);
8015 get_ctx(dst_ctx);
8016 }
8017 mutex_unlock(&dst_ctx->mutex);
f63a8daa 8018 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
8019}
8020EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8021
cdd6c482 8022static void sync_child_event(struct perf_event *child_event,
38b200d6 8023 struct task_struct *child)
d859e29f 8024{
cdd6c482 8025 struct perf_event *parent_event = child_event->parent;
8bc20959 8026 u64 child_val;
d859e29f 8027
cdd6c482
IM
8028 if (child_event->attr.inherit_stat)
8029 perf_event_read_event(child_event, child);
38b200d6 8030
b5e58793 8031 child_val = perf_event_count(child_event);
d859e29f
PM
8032
8033 /*
8034 * Add back the child's count to the parent's count:
8035 */
a6e6dea6 8036 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
8037 atomic64_add(child_event->total_time_enabled,
8038 &parent_event->child_total_time_enabled);
8039 atomic64_add(child_event->total_time_running,
8040 &parent_event->child_total_time_running);
d859e29f
PM
8041
8042 /*
cdd6c482 8043 * Remove this event from the parent's list
d859e29f 8044 */
cdd6c482
IM
8045 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8046 mutex_lock(&parent_event->child_mutex);
8047 list_del_init(&child_event->child_list);
8048 mutex_unlock(&parent_event->child_mutex);
d859e29f 8049
dc633982
JO
8050 /*
8051 * Make sure user/parent get notified, that we just
8052 * lost one event.
8053 */
8054 perf_event_wakeup(parent_event);
8055
d859e29f 8056 /*
cdd6c482 8057 * Release the parent event, if this was the last
d859e29f
PM
8058 * reference to it.
8059 */
a6fa941d 8060 put_event(parent_event);
d859e29f
PM
8061}
8062
9b51f66d 8063static void
cdd6c482
IM
8064__perf_event_exit_task(struct perf_event *child_event,
8065 struct perf_event_context *child_ctx,
38b200d6 8066 struct task_struct *child)
9b51f66d 8067{
1903d50c
PZ
8068 /*
8069 * Do not destroy the 'original' grouping; because of the context
8070 * switch optimization the original events could've ended up in a
8071 * random child task.
8072 *
8073 * If we were to destroy the original group, all group related
8074 * operations would cease to function properly after this random
8075 * child dies.
8076 *
8077 * Do destroy all inherited groups, we don't care about those
8078 * and being thorough is better.
8079 */
8080 perf_remove_from_context(child_event, !!child_event->parent);
0cc0c027 8081
9b51f66d 8082 /*
38b435b1 8083 * It can happen that the parent exits first, and has events
9b51f66d 8084 * that are still around due to the child reference. These
38b435b1 8085 * events need to be zapped.
9b51f66d 8086 */
38b435b1 8087 if (child_event->parent) {
cdd6c482
IM
8088 sync_child_event(child_event, child);
8089 free_event(child_event);
179033b3
JO
8090 } else {
8091 child_event->state = PERF_EVENT_STATE_EXIT;
8092 perf_event_wakeup(child_event);
4bcf349a 8093 }
9b51f66d
IM
8094}
8095
8dc85d54 8096static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 8097{
ebf905fc 8098 struct perf_event *child_event, *next;
211de6eb 8099 struct perf_event_context *child_ctx, *clone_ctx = NULL;
a63eaf34 8100 unsigned long flags;
9b51f66d 8101
8dc85d54 8102 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 8103 perf_event_task(child, NULL, 0);
9b51f66d 8104 return;
9f498cc5 8105 }
9b51f66d 8106
a63eaf34 8107 local_irq_save(flags);
ad3a37de
PM
8108 /*
8109 * We can't reschedule here because interrupts are disabled,
8110 * and either child is current or it is a task that can't be
8111 * scheduled, so we are now safe from rescheduling changing
8112 * our context.
8113 */
806839b2 8114 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
8115
8116 /*
8117 * Take the context lock here so that if find_get_context is
cdd6c482 8118 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
8119 * incremented the context's refcount before we do put_ctx below.
8120 */
e625cce1 8121 raw_spin_lock(&child_ctx->lock);
04dc2dbb 8122 task_ctx_sched_out(child_ctx);
8dc85d54 8123 child->perf_event_ctxp[ctxn] = NULL;
4a1c0f26 8124
71a851b4
PZ
8125 /*
8126 * If this context is a clone; unclone it so it can't get
8127 * swapped to another process while we're removing all
cdd6c482 8128 * the events from it.
71a851b4 8129 */
211de6eb 8130 clone_ctx = unclone_ctx(child_ctx);
5e942bb3 8131 update_context_time(child_ctx);
e625cce1 8132 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5 8133
211de6eb
PZ
8134 if (clone_ctx)
8135 put_ctx(clone_ctx);
4a1c0f26 8136
9f498cc5 8137 /*
cdd6c482
IM
8138 * Report the task dead after unscheduling the events so that we
8139 * won't get any samples after PERF_RECORD_EXIT. We can however still
8140 * get a few PERF_RECORD_READ events.
9f498cc5 8141 */
cdd6c482 8142 perf_event_task(child, child_ctx, 0);
a63eaf34 8143
66fff224
PZ
8144 /*
8145 * We can recurse on the same lock type through:
8146 *
cdd6c482
IM
8147 * __perf_event_exit_task()
8148 * sync_child_event()
a6fa941d
AV
8149 * put_event()
8150 * mutex_lock(&ctx->mutex)
66fff224
PZ
8151 *
8152 * But since its the parent context it won't be the same instance.
8153 */
a0507c84 8154 mutex_lock(&child_ctx->mutex);
a63eaf34 8155
ebf905fc 8156 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
cdd6c482 8157 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959 8158
a63eaf34
PM
8159 mutex_unlock(&child_ctx->mutex);
8160
8161 put_ctx(child_ctx);
9b51f66d
IM
8162}
8163
8dc85d54
PZ
8164/*
8165 * When a child task exits, feed back event values to parent events.
8166 */
8167void perf_event_exit_task(struct task_struct *child)
8168{
8882135b 8169 struct perf_event *event, *tmp;
8dc85d54
PZ
8170 int ctxn;
8171
8882135b
PZ
8172 mutex_lock(&child->perf_event_mutex);
8173 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8174 owner_entry) {
8175 list_del_init(&event->owner_entry);
8176
8177 /*
8178 * Ensure the list deletion is visible before we clear
8179 * the owner, closes a race against perf_release() where
8180 * we need to serialize on the owner->perf_event_mutex.
8181 */
8182 smp_wmb();
8183 event->owner = NULL;
8184 }
8185 mutex_unlock(&child->perf_event_mutex);
8186
8dc85d54
PZ
8187 for_each_task_context_nr(ctxn)
8188 perf_event_exit_task_context(child, ctxn);
8189}
8190
889ff015
FW
8191static void perf_free_event(struct perf_event *event,
8192 struct perf_event_context *ctx)
8193{
8194 struct perf_event *parent = event->parent;
8195
8196 if (WARN_ON_ONCE(!parent))
8197 return;
8198
8199 mutex_lock(&parent->child_mutex);
8200 list_del_init(&event->child_list);
8201 mutex_unlock(&parent->child_mutex);
8202
a6fa941d 8203 put_event(parent);
889ff015 8204
652884fe 8205 raw_spin_lock_irq(&ctx->lock);
8a49542c 8206 perf_group_detach(event);
889ff015 8207 list_del_event(event, ctx);
652884fe 8208 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
8209 free_event(event);
8210}
8211
bbbee908 8212/*
652884fe 8213 * Free an unexposed, unused context as created by inheritance by
8dc85d54 8214 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
8215 *
8216 * Not all locks are strictly required, but take them anyway to be nice and
8217 * help out with the lockdep assertions.
bbbee908 8218 */
cdd6c482 8219void perf_event_free_task(struct task_struct *task)
bbbee908 8220{
8dc85d54 8221 struct perf_event_context *ctx;
cdd6c482 8222 struct perf_event *event, *tmp;
8dc85d54 8223 int ctxn;
bbbee908 8224
8dc85d54
PZ
8225 for_each_task_context_nr(ctxn) {
8226 ctx = task->perf_event_ctxp[ctxn];
8227 if (!ctx)
8228 continue;
bbbee908 8229
8dc85d54 8230 mutex_lock(&ctx->mutex);
bbbee908 8231again:
8dc85d54
PZ
8232 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8233 group_entry)
8234 perf_free_event(event, ctx);
bbbee908 8235
8dc85d54
PZ
8236 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8237 group_entry)
8238 perf_free_event(event, ctx);
bbbee908 8239
8dc85d54
PZ
8240 if (!list_empty(&ctx->pinned_groups) ||
8241 !list_empty(&ctx->flexible_groups))
8242 goto again;
bbbee908 8243
8dc85d54 8244 mutex_unlock(&ctx->mutex);
bbbee908 8245
8dc85d54
PZ
8246 put_ctx(ctx);
8247 }
889ff015
FW
8248}
8249
4e231c79
PZ
8250void perf_event_delayed_put(struct task_struct *task)
8251{
8252 int ctxn;
8253
8254 for_each_task_context_nr(ctxn)
8255 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8256}
8257
97dee4f3
PZ
8258/*
8259 * inherit a event from parent task to child task:
8260 */
8261static struct perf_event *
8262inherit_event(struct perf_event *parent_event,
8263 struct task_struct *parent,
8264 struct perf_event_context *parent_ctx,
8265 struct task_struct *child,
8266 struct perf_event *group_leader,
8267 struct perf_event_context *child_ctx)
8268{
1929def9 8269 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 8270 struct perf_event *child_event;
cee010ec 8271 unsigned long flags;
97dee4f3
PZ
8272
8273 /*
8274 * Instead of creating recursive hierarchies of events,
8275 * we link inherited events back to the original parent,
8276 * which has a filp for sure, which we use as the reference
8277 * count:
8278 */
8279 if (parent_event->parent)
8280 parent_event = parent_event->parent;
8281
8282 child_event = perf_event_alloc(&parent_event->attr,
8283 parent_event->cpu,
d580ff86 8284 child,
97dee4f3 8285 group_leader, parent_event,
79dff51e 8286 NULL, NULL, -1);
97dee4f3
PZ
8287 if (IS_ERR(child_event))
8288 return child_event;
a6fa941d 8289
fadfe7be
JO
8290 if (is_orphaned_event(parent_event) ||
8291 !atomic_long_inc_not_zero(&parent_event->refcount)) {
a6fa941d
AV
8292 free_event(child_event);
8293 return NULL;
8294 }
8295
97dee4f3
PZ
8296 get_ctx(child_ctx);
8297
8298 /*
8299 * Make the child state follow the state of the parent event,
8300 * not its attr.disabled bit. We hold the parent's mutex,
8301 * so we won't race with perf_event_{en, dis}able_family.
8302 */
1929def9 8303 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
8304 child_event->state = PERF_EVENT_STATE_INACTIVE;
8305 else
8306 child_event->state = PERF_EVENT_STATE_OFF;
8307
8308 if (parent_event->attr.freq) {
8309 u64 sample_period = parent_event->hw.sample_period;
8310 struct hw_perf_event *hwc = &child_event->hw;
8311
8312 hwc->sample_period = sample_period;
8313 hwc->last_period = sample_period;
8314
8315 local64_set(&hwc->period_left, sample_period);
8316 }
8317
8318 child_event->ctx = child_ctx;
8319 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
8320 child_event->overflow_handler_context
8321 = parent_event->overflow_handler_context;
97dee4f3 8322
614b6780
TG
8323 /*
8324 * Precalculate sample_data sizes
8325 */
8326 perf_event__header_size(child_event);
6844c09d 8327 perf_event__id_header_size(child_event);
614b6780 8328
97dee4f3
PZ
8329 /*
8330 * Link it up in the child's context:
8331 */
cee010ec 8332 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 8333 add_event_to_ctx(child_event, child_ctx);
cee010ec 8334 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 8335
97dee4f3
PZ
8336 /*
8337 * Link this into the parent event's child list
8338 */
8339 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8340 mutex_lock(&parent_event->child_mutex);
8341 list_add_tail(&child_event->child_list, &parent_event->child_list);
8342 mutex_unlock(&parent_event->child_mutex);
8343
8344 return child_event;
8345}
8346
8347static int inherit_group(struct perf_event *parent_event,
8348 struct task_struct *parent,
8349 struct perf_event_context *parent_ctx,
8350 struct task_struct *child,
8351 struct perf_event_context *child_ctx)
8352{
8353 struct perf_event *leader;
8354 struct perf_event *sub;
8355 struct perf_event *child_ctr;
8356
8357 leader = inherit_event(parent_event, parent, parent_ctx,
8358 child, NULL, child_ctx);
8359 if (IS_ERR(leader))
8360 return PTR_ERR(leader);
8361 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
8362 child_ctr = inherit_event(sub, parent, parent_ctx,
8363 child, leader, child_ctx);
8364 if (IS_ERR(child_ctr))
8365 return PTR_ERR(child_ctr);
8366 }
8367 return 0;
889ff015
FW
8368}
8369
8370static int
8371inherit_task_group(struct perf_event *event, struct task_struct *parent,
8372 struct perf_event_context *parent_ctx,
8dc85d54 8373 struct task_struct *child, int ctxn,
889ff015
FW
8374 int *inherited_all)
8375{
8376 int ret;
8dc85d54 8377 struct perf_event_context *child_ctx;
889ff015
FW
8378
8379 if (!event->attr.inherit) {
8380 *inherited_all = 0;
8381 return 0;
bbbee908
PZ
8382 }
8383
fe4b04fa 8384 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
8385 if (!child_ctx) {
8386 /*
8387 * This is executed from the parent task context, so
8388 * inherit events that have been marked for cloning.
8389 * First allocate and initialize a context for the
8390 * child.
8391 */
bbbee908 8392
734df5ab 8393 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
8394 if (!child_ctx)
8395 return -ENOMEM;
bbbee908 8396
8dc85d54 8397 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
8398 }
8399
8400 ret = inherit_group(event, parent, parent_ctx,
8401 child, child_ctx);
8402
8403 if (ret)
8404 *inherited_all = 0;
8405
8406 return ret;
bbbee908
PZ
8407}
8408
9b51f66d 8409/*
cdd6c482 8410 * Initialize the perf_event context in task_struct
9b51f66d 8411 */
985c8dcb 8412static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 8413{
889ff015 8414 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
8415 struct perf_event_context *cloned_ctx;
8416 struct perf_event *event;
9b51f66d 8417 struct task_struct *parent = current;
564c2b21 8418 int inherited_all = 1;
dddd3379 8419 unsigned long flags;
6ab423e0 8420 int ret = 0;
9b51f66d 8421
8dc85d54 8422 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
8423 return 0;
8424
ad3a37de 8425 /*
25346b93
PM
8426 * If the parent's context is a clone, pin it so it won't get
8427 * swapped under us.
ad3a37de 8428 */
8dc85d54 8429 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
8430 if (!parent_ctx)
8431 return 0;
25346b93 8432
ad3a37de
PM
8433 /*
8434 * No need to check if parent_ctx != NULL here; since we saw
8435 * it non-NULL earlier, the only reason for it to become NULL
8436 * is if we exit, and since we're currently in the middle of
8437 * a fork we can't be exiting at the same time.
8438 */
ad3a37de 8439
9b51f66d
IM
8440 /*
8441 * Lock the parent list. No need to lock the child - not PID
8442 * hashed yet and not running, so nobody can access it.
8443 */
d859e29f 8444 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
8445
8446 /*
8447 * We dont have to disable NMIs - we are only looking at
8448 * the list, not manipulating it:
8449 */
889ff015 8450 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
8451 ret = inherit_task_group(event, parent, parent_ctx,
8452 child, ctxn, &inherited_all);
889ff015
FW
8453 if (ret)
8454 break;
8455 }
b93f7978 8456
dddd3379
TG
8457 /*
8458 * We can't hold ctx->lock when iterating the ->flexible_group list due
8459 * to allocations, but we need to prevent rotation because
8460 * rotate_ctx() will change the list from interrupt context.
8461 */
8462 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8463 parent_ctx->rotate_disable = 1;
8464 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8465
889ff015 8466 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
8467 ret = inherit_task_group(event, parent, parent_ctx,
8468 child, ctxn, &inherited_all);
889ff015 8469 if (ret)
9b51f66d 8470 break;
564c2b21
PM
8471 }
8472
dddd3379
TG
8473 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8474 parent_ctx->rotate_disable = 0;
dddd3379 8475
8dc85d54 8476 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 8477
05cbaa28 8478 if (child_ctx && inherited_all) {
564c2b21
PM
8479 /*
8480 * Mark the child context as a clone of the parent
8481 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
8482 *
8483 * Note that if the parent is a clone, the holding of
8484 * parent_ctx->lock avoids it from being uncloned.
564c2b21 8485 */
c5ed5145 8486 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
8487 if (cloned_ctx) {
8488 child_ctx->parent_ctx = cloned_ctx;
25346b93 8489 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
8490 } else {
8491 child_ctx->parent_ctx = parent_ctx;
8492 child_ctx->parent_gen = parent_ctx->generation;
8493 }
8494 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
8495 }
8496
c5ed5145 8497 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 8498 mutex_unlock(&parent_ctx->mutex);
6ab423e0 8499
25346b93 8500 perf_unpin_context(parent_ctx);
fe4b04fa 8501 put_ctx(parent_ctx);
ad3a37de 8502
6ab423e0 8503 return ret;
9b51f66d
IM
8504}
8505
8dc85d54
PZ
8506/*
8507 * Initialize the perf_event context in task_struct
8508 */
8509int perf_event_init_task(struct task_struct *child)
8510{
8511 int ctxn, ret;
8512
8550d7cb
ON
8513 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
8514 mutex_init(&child->perf_event_mutex);
8515 INIT_LIST_HEAD(&child->perf_event_list);
8516
8dc85d54
PZ
8517 for_each_task_context_nr(ctxn) {
8518 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
8519 if (ret) {
8520 perf_event_free_task(child);
8dc85d54 8521 return ret;
6c72e350 8522 }
8dc85d54
PZ
8523 }
8524
8525 return 0;
8526}
8527
220b140b
PM
8528static void __init perf_event_init_all_cpus(void)
8529{
b28ab83c 8530 struct swevent_htable *swhash;
220b140b 8531 int cpu;
220b140b
PM
8532
8533 for_each_possible_cpu(cpu) {
b28ab83c
PZ
8534 swhash = &per_cpu(swevent_htable, cpu);
8535 mutex_init(&swhash->hlist_mutex);
2fde4f94 8536 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
220b140b
PM
8537 }
8538}
8539
0db0628d 8540static void perf_event_init_cpu(int cpu)
0793a61d 8541{
108b02cf 8542 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 8543
b28ab83c 8544 mutex_lock(&swhash->hlist_mutex);
39af6b16 8545 swhash->online = true;
4536e4d1 8546 if (swhash->hlist_refcount > 0) {
76e1d904
FW
8547 struct swevent_hlist *hlist;
8548
b28ab83c
PZ
8549 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
8550 WARN_ON(!hlist);
8551 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 8552 }
b28ab83c 8553 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
8554}
8555
c277443c 8556#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
108b02cf 8557static void __perf_event_exit_context(void *__info)
0793a61d 8558{
226424ee 8559 struct remove_event re = { .detach_group = true };
108b02cf 8560 struct perf_event_context *ctx = __info;
0793a61d 8561
e3703f8c 8562 rcu_read_lock();
46ce0fe9
PZ
8563 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
8564 __perf_remove_from_context(&re);
e3703f8c 8565 rcu_read_unlock();
0793a61d 8566}
108b02cf
PZ
8567
8568static void perf_event_exit_cpu_context(int cpu)
8569{
8570 struct perf_event_context *ctx;
8571 struct pmu *pmu;
8572 int idx;
8573
8574 idx = srcu_read_lock(&pmus_srcu);
8575 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 8576 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
8577
8578 mutex_lock(&ctx->mutex);
8579 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
8580 mutex_unlock(&ctx->mutex);
8581 }
8582 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
8583}
8584
cdd6c482 8585static void perf_event_exit_cpu(int cpu)
0793a61d 8586{
b28ab83c 8587 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 8588
e3703f8c
PZ
8589 perf_event_exit_cpu_context(cpu);
8590
b28ab83c 8591 mutex_lock(&swhash->hlist_mutex);
39af6b16 8592 swhash->online = false;
b28ab83c
PZ
8593 swevent_hlist_release(swhash);
8594 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
8595}
8596#else
cdd6c482 8597static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
8598#endif
8599
c277443c
PZ
8600static int
8601perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
8602{
8603 int cpu;
8604
8605 for_each_online_cpu(cpu)
8606 perf_event_exit_cpu(cpu);
8607
8608 return NOTIFY_OK;
8609}
8610
8611/*
8612 * Run the perf reboot notifier at the very last possible moment so that
8613 * the generic watchdog code runs as long as possible.
8614 */
8615static struct notifier_block perf_reboot_notifier = {
8616 .notifier_call = perf_reboot,
8617 .priority = INT_MIN,
8618};
8619
0db0628d 8620static int
0793a61d
TG
8621perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
8622{
8623 unsigned int cpu = (long)hcpu;
8624
4536e4d1 8625 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
8626
8627 case CPU_UP_PREPARE:
5e11637e 8628 case CPU_DOWN_FAILED:
cdd6c482 8629 perf_event_init_cpu(cpu);
0793a61d
TG
8630 break;
8631
5e11637e 8632 case CPU_UP_CANCELED:
0793a61d 8633 case CPU_DOWN_PREPARE:
cdd6c482 8634 perf_event_exit_cpu(cpu);
0793a61d 8635 break;
0793a61d
TG
8636 default:
8637 break;
8638 }
8639
8640 return NOTIFY_OK;
8641}
8642
cdd6c482 8643void __init perf_event_init(void)
0793a61d 8644{
3c502e7a
JW
8645 int ret;
8646
2e80a82a
PZ
8647 idr_init(&pmu_idr);
8648
220b140b 8649 perf_event_init_all_cpus();
b0a873eb 8650 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
8651 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
8652 perf_pmu_register(&perf_cpu_clock, NULL, -1);
8653 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
8654 perf_tp_register();
8655 perf_cpu_notifier(perf_cpu_notify);
c277443c 8656 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
8657
8658 ret = init_hw_breakpoint();
8659 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
8660
8661 /* do not patch jump label more than once per second */
8662 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
8663
8664 /*
8665 * Build time assertion that we keep the data_head at the intended
8666 * location. IOW, validation we got the __reserved[] size right.
8667 */
8668 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
8669 != 1024);
0793a61d 8670}
abe43400 8671
fd979c01
CS
8672ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
8673 char *page)
8674{
8675 struct perf_pmu_events_attr *pmu_attr =
8676 container_of(attr, struct perf_pmu_events_attr, attr);
8677
8678 if (pmu_attr->event_str)
8679 return sprintf(page, "%s\n", pmu_attr->event_str);
8680
8681 return 0;
8682}
8683
abe43400
PZ
8684static int __init perf_event_sysfs_init(void)
8685{
8686 struct pmu *pmu;
8687 int ret;
8688
8689 mutex_lock(&pmus_lock);
8690
8691 ret = bus_register(&pmu_bus);
8692 if (ret)
8693 goto unlock;
8694
8695 list_for_each_entry(pmu, &pmus, entry) {
8696 if (!pmu->name || pmu->type < 0)
8697 continue;
8698
8699 ret = pmu_dev_alloc(pmu);
8700 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
8701 }
8702 pmu_bus_running = 1;
8703 ret = 0;
8704
8705unlock:
8706 mutex_unlock(&pmus_lock);
8707
8708 return ret;
8709}
8710device_initcall(perf_event_sysfs_init);
e5d1367f
SE
8711
8712#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
8713static struct cgroup_subsys_state *
8714perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
8715{
8716 struct perf_cgroup *jc;
e5d1367f 8717
1b15d055 8718 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
8719 if (!jc)
8720 return ERR_PTR(-ENOMEM);
8721
e5d1367f
SE
8722 jc->info = alloc_percpu(struct perf_cgroup_info);
8723 if (!jc->info) {
8724 kfree(jc);
8725 return ERR_PTR(-ENOMEM);
8726 }
8727
e5d1367f
SE
8728 return &jc->css;
8729}
8730
eb95419b 8731static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 8732{
eb95419b
TH
8733 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
8734
e5d1367f
SE
8735 free_percpu(jc->info);
8736 kfree(jc);
8737}
8738
8739static int __perf_cgroup_move(void *info)
8740{
8741 struct task_struct *task = info;
8742 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
8743 return 0;
8744}
8745
eb95419b
TH
8746static void perf_cgroup_attach(struct cgroup_subsys_state *css,
8747 struct cgroup_taskset *tset)
e5d1367f 8748{
bb9d97b6
TH
8749 struct task_struct *task;
8750
924f0d9a 8751 cgroup_taskset_for_each(task, tset)
bb9d97b6 8752 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
8753}
8754
eb95419b
TH
8755static void perf_cgroup_exit(struct cgroup_subsys_state *css,
8756 struct cgroup_subsys_state *old_css,
761b3ef5 8757 struct task_struct *task)
e5d1367f
SE
8758{
8759 /*
8760 * cgroup_exit() is called in the copy_process() failure path.
8761 * Ignore this case since the task hasn't ran yet, this avoids
8762 * trying to poke a half freed task state from generic code.
8763 */
8764 if (!(task->flags & PF_EXITING))
8765 return;
8766
bb9d97b6 8767 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
8768}
8769
073219e9 8770struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
8771 .css_alloc = perf_cgroup_css_alloc,
8772 .css_free = perf_cgroup_css_free,
e7e7ee2e 8773 .exit = perf_cgroup_exit,
bb9d97b6 8774 .attach = perf_cgroup_attach,
e5d1367f
SE
8775};
8776#endif /* CONFIG_CGROUP_PERF */