perf top: Ignore kptr_restrict when not sampling the kernel
[linux-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
375637bc
AS
47#include <linux/namei.h>
48#include <linux/parser.h>
e6017571 49#include <linux/sched/clock.h>
6e84f315 50#include <linux/sched/mm.h>
e4222673
HB
51#include <linux/proc_ns.h>
52#include <linux/mount.h>
0793a61d 53
76369139
FW
54#include "internal.h"
55
4e193bd4
TB
56#include <asm/irq_regs.h>
57
272325c4
PZ
58typedef int (*remote_function_f)(void *);
59
fe4b04fa 60struct remote_function_call {
e7e7ee2e 61 struct task_struct *p;
272325c4 62 remote_function_f func;
e7e7ee2e
IM
63 void *info;
64 int ret;
fe4b04fa
PZ
65};
66
67static void remote_function(void *data)
68{
69 struct remote_function_call *tfc = data;
70 struct task_struct *p = tfc->p;
71
72 if (p) {
0da4cf3e
PZ
73 /* -EAGAIN */
74 if (task_cpu(p) != smp_processor_id())
75 return;
76
77 /*
78 * Now that we're on right CPU with IRQs disabled, we can test
79 * if we hit the right task without races.
80 */
81
82 tfc->ret = -ESRCH; /* No such (running) process */
83 if (p != current)
fe4b04fa
PZ
84 return;
85 }
86
87 tfc->ret = tfc->func(tfc->info);
88}
89
90/**
91 * task_function_call - call a function on the cpu on which a task runs
92 * @p: the task to evaluate
93 * @func: the function to be called
94 * @info: the function call argument
95 *
96 * Calls the function @func when the task is currently running. This might
97 * be on the current CPU, which just calls the function directly
98 *
99 * returns: @func return value, or
100 * -ESRCH - when the process isn't running
101 * -EAGAIN - when the process moved away
102 */
103static int
272325c4 104task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
105{
106 struct remote_function_call data = {
e7e7ee2e
IM
107 .p = p,
108 .func = func,
109 .info = info,
0da4cf3e 110 .ret = -EAGAIN,
fe4b04fa 111 };
0da4cf3e 112 int ret;
fe4b04fa 113
0da4cf3e
PZ
114 do {
115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 if (!ret)
117 ret = data.ret;
118 } while (ret == -EAGAIN);
fe4b04fa 119
0da4cf3e 120 return ret;
fe4b04fa
PZ
121}
122
123/**
124 * cpu_function_call - call a function on the cpu
125 * @func: the function to be called
126 * @info: the function call argument
127 *
128 * Calls the function @func on the remote cpu.
129 *
130 * returns: @func return value or -ENXIO when the cpu is offline
131 */
272325c4 132static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
133{
134 struct remote_function_call data = {
e7e7ee2e
IM
135 .p = NULL,
136 .func = func,
137 .info = info,
138 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
139 };
140
141 smp_call_function_single(cpu, remote_function, &data, 1);
142
143 return data.ret;
144}
145
fae3fde6
PZ
146static inline struct perf_cpu_context *
147__get_cpu_context(struct perf_event_context *ctx)
148{
149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150}
151
152static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 struct perf_event_context *ctx)
0017960f 154{
fae3fde6
PZ
155 raw_spin_lock(&cpuctx->ctx.lock);
156 if (ctx)
157 raw_spin_lock(&ctx->lock);
158}
159
160static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 struct perf_event_context *ctx)
162{
163 if (ctx)
164 raw_spin_unlock(&ctx->lock);
165 raw_spin_unlock(&cpuctx->ctx.lock);
166}
167
63b6da39
PZ
168#define TASK_TOMBSTONE ((void *)-1L)
169
170static bool is_kernel_event(struct perf_event *event)
171{
f47c02c0 172 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
173}
174
39a43640
PZ
175/*
176 * On task ctx scheduling...
177 *
178 * When !ctx->nr_events a task context will not be scheduled. This means
179 * we can disable the scheduler hooks (for performance) without leaving
180 * pending task ctx state.
181 *
182 * This however results in two special cases:
183 *
184 * - removing the last event from a task ctx; this is relatively straight
185 * forward and is done in __perf_remove_from_context.
186 *
187 * - adding the first event to a task ctx; this is tricky because we cannot
188 * rely on ctx->is_active and therefore cannot use event_function_call().
189 * See perf_install_in_context().
190 *
39a43640
PZ
191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192 */
193
fae3fde6
PZ
194typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 struct perf_event_context *, void *);
196
197struct event_function_struct {
198 struct perf_event *event;
199 event_f func;
200 void *data;
201};
202
203static int event_function(void *info)
204{
205 struct event_function_struct *efs = info;
206 struct perf_event *event = efs->event;
0017960f 207 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 210 int ret = 0;
fae3fde6 211
16444645 212 lockdep_assert_irqs_disabled();
fae3fde6 213
63b6da39 214 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
215 /*
216 * Since we do the IPI call without holding ctx->lock things can have
217 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
218 */
219 if (ctx->task) {
63b6da39 220 if (ctx->task != current) {
0da4cf3e 221 ret = -ESRCH;
63b6da39
PZ
222 goto unlock;
223 }
fae3fde6 224
fae3fde6
PZ
225 /*
226 * We only use event_function_call() on established contexts,
227 * and event_function() is only ever called when active (or
228 * rather, we'll have bailed in task_function_call() or the
229 * above ctx->task != current test), therefore we must have
230 * ctx->is_active here.
231 */
232 WARN_ON_ONCE(!ctx->is_active);
233 /*
234 * And since we have ctx->is_active, cpuctx->task_ctx must
235 * match.
236 */
63b6da39
PZ
237 WARN_ON_ONCE(task_ctx != ctx);
238 } else {
239 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 240 }
63b6da39 241
fae3fde6 242 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 243unlock:
fae3fde6
PZ
244 perf_ctx_unlock(cpuctx, task_ctx);
245
63b6da39 246 return ret;
fae3fde6
PZ
247}
248
fae3fde6 249static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
250{
251 struct perf_event_context *ctx = event->ctx;
63b6da39 252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
253 struct event_function_struct efs = {
254 .event = event,
255 .func = func,
256 .data = data,
257 };
0017960f 258
c97f4736
PZ
259 if (!event->parent) {
260 /*
261 * If this is a !child event, we must hold ctx::mutex to
262 * stabilize the the event->ctx relation. See
263 * perf_event_ctx_lock().
264 */
265 lockdep_assert_held(&ctx->mutex);
266 }
0017960f
PZ
267
268 if (!task) {
fae3fde6 269 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
270 return;
271 }
272
63b6da39
PZ
273 if (task == TASK_TOMBSTONE)
274 return;
275
a096309b 276again:
fae3fde6 277 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
278 return;
279
280 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
281 /*
282 * Reload the task pointer, it might have been changed by
283 * a concurrent perf_event_context_sched_out().
284 */
285 task = ctx->task;
a096309b
PZ
286 if (task == TASK_TOMBSTONE) {
287 raw_spin_unlock_irq(&ctx->lock);
288 return;
0017960f 289 }
a096309b
PZ
290 if (ctx->is_active) {
291 raw_spin_unlock_irq(&ctx->lock);
292 goto again;
293 }
294 func(event, NULL, ctx, data);
0017960f
PZ
295 raw_spin_unlock_irq(&ctx->lock);
296}
297
cca20946
PZ
298/*
299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
300 * are already disabled and we're on the right CPU.
301 */
302static void event_function_local(struct perf_event *event, event_f func, void *data)
303{
304 struct perf_event_context *ctx = event->ctx;
305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 struct task_struct *task = READ_ONCE(ctx->task);
307 struct perf_event_context *task_ctx = NULL;
308
16444645 309 lockdep_assert_irqs_disabled();
cca20946
PZ
310
311 if (task) {
312 if (task == TASK_TOMBSTONE)
313 return;
314
315 task_ctx = ctx;
316 }
317
318 perf_ctx_lock(cpuctx, task_ctx);
319
320 task = ctx->task;
321 if (task == TASK_TOMBSTONE)
322 goto unlock;
323
324 if (task) {
325 /*
326 * We must be either inactive or active and the right task,
327 * otherwise we're screwed, since we cannot IPI to somewhere
328 * else.
329 */
330 if (ctx->is_active) {
331 if (WARN_ON_ONCE(task != current))
332 goto unlock;
333
334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 goto unlock;
336 }
337 } else {
338 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 }
340
341 func(event, cpuctx, ctx, data);
342unlock:
343 perf_ctx_unlock(cpuctx, task_ctx);
344}
345
e5d1367f
SE
346#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
348 PERF_FLAG_PID_CGROUP |\
349 PERF_FLAG_FD_CLOEXEC)
e5d1367f 350
bce38cd5
SE
351/*
352 * branch priv levels that need permission checks
353 */
354#define PERF_SAMPLE_BRANCH_PERM_PLM \
355 (PERF_SAMPLE_BRANCH_KERNEL |\
356 PERF_SAMPLE_BRANCH_HV)
357
0b3fcf17
SE
358enum event_type_t {
359 EVENT_FLEXIBLE = 0x1,
360 EVENT_PINNED = 0x2,
3cbaa590 361 EVENT_TIME = 0x4,
487f05e1
AS
362 /* see ctx_resched() for details */
363 EVENT_CPU = 0x8,
0b3fcf17
SE
364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365};
366
e5d1367f
SE
367/*
368 * perf_sched_events : >0 events exist
369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370 */
9107c89e
PZ
371
372static void perf_sched_delayed(struct work_struct *work);
373DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375static DEFINE_MUTEX(perf_sched_mutex);
376static atomic_t perf_sched_count;
377
e5d1367f 378static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 379static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 380static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 381
cdd6c482
IM
382static atomic_t nr_mmap_events __read_mostly;
383static atomic_t nr_comm_events __read_mostly;
e4222673 384static atomic_t nr_namespaces_events __read_mostly;
cdd6c482 385static atomic_t nr_task_events __read_mostly;
948b26b6 386static atomic_t nr_freq_events __read_mostly;
45ac1403 387static atomic_t nr_switch_events __read_mostly;
9ee318a7 388
108b02cf
PZ
389static LIST_HEAD(pmus);
390static DEFINE_MUTEX(pmus_lock);
391static struct srcu_struct pmus_srcu;
a63fbed7 392static cpumask_var_t perf_online_mask;
108b02cf 393
0764771d 394/*
cdd6c482 395 * perf event paranoia level:
0fbdea19
IM
396 * -1 - not paranoid at all
397 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 398 * 1 - disallow cpu events for unpriv
0fbdea19 399 * 2 - disallow kernel profiling for unpriv
0764771d 400 */
0161028b 401int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 402
20443384
FW
403/* Minimum for 512 kiB + 1 user control page */
404int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
405
406/*
cdd6c482 407 * max perf event sample rate
df58ab24 408 */
14c63f17
DH
409#define DEFAULT_MAX_SAMPLE_RATE 100000
410#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411#define DEFAULT_CPU_TIME_MAX_PERCENT 25
412
413int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
417
d9494cb4
PZ
418static int perf_sample_allowed_ns __read_mostly =
419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 420
18ab2cd3 421static void update_perf_cpu_limits(void)
14c63f17
DH
422{
423 u64 tmp = perf_sample_period_ns;
424
425 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
426 tmp = div_u64(tmp, 100);
427 if (!tmp)
428 tmp = 1;
429
430 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 431}
163ec435 432
9e630205
SE
433static int perf_rotate_context(struct perf_cpu_context *cpuctx);
434
163ec435
PZ
435int perf_proc_update_handler(struct ctl_table *table, int write,
436 void __user *buffer, size_t *lenp,
437 loff_t *ppos)
438{
723478c8 439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
440
441 if (ret || !write)
442 return ret;
443
ab7fdefb
KL
444 /*
445 * If throttling is disabled don't allow the write:
446 */
447 if (sysctl_perf_cpu_time_max_percent == 100 ||
448 sysctl_perf_cpu_time_max_percent == 0)
449 return -EINVAL;
450
163ec435 451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 update_perf_cpu_limits();
454
455 return 0;
456}
457
458int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 void __user *buffer, size_t *lenp,
462 loff_t *ppos)
463{
1572e45a 464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
14c63f17
DH
465
466 if (ret || !write)
467 return ret;
468
b303e7c1
PZ
469 if (sysctl_perf_cpu_time_max_percent == 100 ||
470 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
471 printk(KERN_WARNING
472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 WRITE_ONCE(perf_sample_allowed_ns, 0);
474 } else {
475 update_perf_cpu_limits();
476 }
163ec435
PZ
477
478 return 0;
479}
1ccd1549 480
14c63f17
DH
481/*
482 * perf samples are done in some very critical code paths (NMIs).
483 * If they take too much CPU time, the system can lock up and not
484 * get any real work done. This will drop the sample rate when
485 * we detect that events are taking too long.
486 */
487#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 488static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 489
91a612ee
PZ
490static u64 __report_avg;
491static u64 __report_allowed;
492
6a02ad66 493static void perf_duration_warn(struct irq_work *w)
14c63f17 494{
0d87d7ec 495 printk_ratelimited(KERN_INFO
91a612ee
PZ
496 "perf: interrupt took too long (%lld > %lld), lowering "
497 "kernel.perf_event_max_sample_rate to %d\n",
498 __report_avg, __report_allowed,
499 sysctl_perf_event_sample_rate);
6a02ad66
PZ
500}
501
502static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504void perf_sample_event_took(u64 sample_len_ns)
505{
91a612ee
PZ
506 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 u64 running_len;
508 u64 avg_len;
509 u32 max;
14c63f17 510
91a612ee 511 if (max_len == 0)
14c63f17
DH
512 return;
513
91a612ee
PZ
514 /* Decay the counter by 1 average sample. */
515 running_len = __this_cpu_read(running_sample_length);
516 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 running_len += sample_len_ns;
518 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
519
520 /*
91a612ee
PZ
521 * Note: this will be biased artifically low until we have
522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
523 * from having to maintain a count.
524 */
91a612ee
PZ
525 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 if (avg_len <= max_len)
14c63f17
DH
527 return;
528
91a612ee
PZ
529 __report_avg = avg_len;
530 __report_allowed = max_len;
14c63f17 531
91a612ee
PZ
532 /*
533 * Compute a throttle threshold 25% below the current duration.
534 */
535 avg_len += avg_len / 4;
536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 if (avg_len < max)
538 max /= (u32)avg_len;
539 else
540 max = 1;
14c63f17 541
91a612ee
PZ
542 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 WRITE_ONCE(max_samples_per_tick, max);
544
545 sysctl_perf_event_sample_rate = max * HZ;
546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 547
cd578abb 548 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 549 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 550 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 551 __report_avg, __report_allowed,
cd578abb
PZ
552 sysctl_perf_event_sample_rate);
553 }
14c63f17
DH
554}
555
cdd6c482 556static atomic64_t perf_event_id;
a96bbc16 557
0b3fcf17
SE
558static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 enum event_type_t event_type);
560
561static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
562 enum event_type_t event_type,
563 struct task_struct *task);
564
565static void update_context_time(struct perf_event_context *ctx);
566static u64 perf_event_time(struct perf_event *event);
0b3fcf17 567
cdd6c482 568void __weak perf_event_print_debug(void) { }
0793a61d 569
84c79910 570extern __weak const char *perf_pmu_name(void)
0793a61d 571{
84c79910 572 return "pmu";
0793a61d
TG
573}
574
0b3fcf17
SE
575static inline u64 perf_clock(void)
576{
577 return local_clock();
578}
579
34f43927
PZ
580static inline u64 perf_event_clock(struct perf_event *event)
581{
582 return event->clock();
583}
584
0d3d73aa
PZ
585/*
586 * State based event timekeeping...
587 *
588 * The basic idea is to use event->state to determine which (if any) time
589 * fields to increment with the current delta. This means we only need to
590 * update timestamps when we change state or when they are explicitly requested
591 * (read).
592 *
593 * Event groups make things a little more complicated, but not terribly so. The
594 * rules for a group are that if the group leader is OFF the entire group is
595 * OFF, irrespecive of what the group member states are. This results in
596 * __perf_effective_state().
597 *
598 * A futher ramification is that when a group leader flips between OFF and
599 * !OFF, we need to update all group member times.
600 *
601 *
602 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
603 * need to make sure the relevant context time is updated before we try and
604 * update our timestamps.
605 */
606
607static __always_inline enum perf_event_state
608__perf_effective_state(struct perf_event *event)
609{
610 struct perf_event *leader = event->group_leader;
611
612 if (leader->state <= PERF_EVENT_STATE_OFF)
613 return leader->state;
614
615 return event->state;
616}
617
618static __always_inline void
619__perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
620{
621 enum perf_event_state state = __perf_effective_state(event);
622 u64 delta = now - event->tstamp;
623
624 *enabled = event->total_time_enabled;
625 if (state >= PERF_EVENT_STATE_INACTIVE)
626 *enabled += delta;
627
628 *running = event->total_time_running;
629 if (state >= PERF_EVENT_STATE_ACTIVE)
630 *running += delta;
631}
632
633static void perf_event_update_time(struct perf_event *event)
634{
635 u64 now = perf_event_time(event);
636
637 __perf_update_times(event, now, &event->total_time_enabled,
638 &event->total_time_running);
639 event->tstamp = now;
640}
641
642static void perf_event_update_sibling_time(struct perf_event *leader)
643{
644 struct perf_event *sibling;
645
646 list_for_each_entry(sibling, &leader->sibling_list, group_entry)
647 perf_event_update_time(sibling);
648}
649
650static void
651perf_event_set_state(struct perf_event *event, enum perf_event_state state)
652{
653 if (event->state == state)
654 return;
655
656 perf_event_update_time(event);
657 /*
658 * If a group leader gets enabled/disabled all its siblings
659 * are affected too.
660 */
661 if ((event->state < 0) ^ (state < 0))
662 perf_event_update_sibling_time(event);
663
664 WRITE_ONCE(event->state, state);
665}
666
e5d1367f
SE
667#ifdef CONFIG_CGROUP_PERF
668
e5d1367f
SE
669static inline bool
670perf_cgroup_match(struct perf_event *event)
671{
672 struct perf_event_context *ctx = event->ctx;
673 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
674
ef824fa1
TH
675 /* @event doesn't care about cgroup */
676 if (!event->cgrp)
677 return true;
678
679 /* wants specific cgroup scope but @cpuctx isn't associated with any */
680 if (!cpuctx->cgrp)
681 return false;
682
683 /*
684 * Cgroup scoping is recursive. An event enabled for a cgroup is
685 * also enabled for all its descendant cgroups. If @cpuctx's
686 * cgroup is a descendant of @event's (the test covers identity
687 * case), it's a match.
688 */
689 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
690 event->cgrp->css.cgroup);
e5d1367f
SE
691}
692
e5d1367f
SE
693static inline void perf_detach_cgroup(struct perf_event *event)
694{
4e2ba650 695 css_put(&event->cgrp->css);
e5d1367f
SE
696 event->cgrp = NULL;
697}
698
699static inline int is_cgroup_event(struct perf_event *event)
700{
701 return event->cgrp != NULL;
702}
703
704static inline u64 perf_cgroup_event_time(struct perf_event *event)
705{
706 struct perf_cgroup_info *t;
707
708 t = per_cpu_ptr(event->cgrp->info, event->cpu);
709 return t->time;
710}
711
712static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
713{
714 struct perf_cgroup_info *info;
715 u64 now;
716
717 now = perf_clock();
718
719 info = this_cpu_ptr(cgrp->info);
720
721 info->time += now - info->timestamp;
722 info->timestamp = now;
723}
724
725static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
726{
727 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
728 if (cgrp_out)
729 __update_cgrp_time(cgrp_out);
730}
731
732static inline void update_cgrp_time_from_event(struct perf_event *event)
733{
3f7cce3c
SE
734 struct perf_cgroup *cgrp;
735
e5d1367f 736 /*
3f7cce3c
SE
737 * ensure we access cgroup data only when needed and
738 * when we know the cgroup is pinned (css_get)
e5d1367f 739 */
3f7cce3c 740 if (!is_cgroup_event(event))
e5d1367f
SE
741 return;
742
614e4c4e 743 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
744 /*
745 * Do not update time when cgroup is not active
746 */
e6a52033 747 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
3f7cce3c 748 __update_cgrp_time(event->cgrp);
e5d1367f
SE
749}
750
751static inline void
3f7cce3c
SE
752perf_cgroup_set_timestamp(struct task_struct *task,
753 struct perf_event_context *ctx)
e5d1367f
SE
754{
755 struct perf_cgroup *cgrp;
756 struct perf_cgroup_info *info;
757
3f7cce3c
SE
758 /*
759 * ctx->lock held by caller
760 * ensure we do not access cgroup data
761 * unless we have the cgroup pinned (css_get)
762 */
763 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
764 return;
765
614e4c4e 766 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 767 info = this_cpu_ptr(cgrp->info);
3f7cce3c 768 info->timestamp = ctx->timestamp;
e5d1367f
SE
769}
770
058fe1c0
DCC
771static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
772
e5d1367f
SE
773#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
774#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
775
776/*
777 * reschedule events based on the cgroup constraint of task.
778 *
779 * mode SWOUT : schedule out everything
780 * mode SWIN : schedule in based on cgroup for next
781 */
18ab2cd3 782static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
783{
784 struct perf_cpu_context *cpuctx;
058fe1c0 785 struct list_head *list;
e5d1367f
SE
786 unsigned long flags;
787
788 /*
058fe1c0
DCC
789 * Disable interrupts and preemption to avoid this CPU's
790 * cgrp_cpuctx_entry to change under us.
e5d1367f
SE
791 */
792 local_irq_save(flags);
793
058fe1c0
DCC
794 list = this_cpu_ptr(&cgrp_cpuctx_list);
795 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
796 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
e5d1367f 797
058fe1c0
DCC
798 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
799 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f 800
058fe1c0
DCC
801 if (mode & PERF_CGROUP_SWOUT) {
802 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
803 /*
804 * must not be done before ctxswout due
805 * to event_filter_match() in event_sched_out()
806 */
807 cpuctx->cgrp = NULL;
808 }
e5d1367f 809
058fe1c0
DCC
810 if (mode & PERF_CGROUP_SWIN) {
811 WARN_ON_ONCE(cpuctx->cgrp);
812 /*
813 * set cgrp before ctxsw in to allow
814 * event_filter_match() to not have to pass
815 * task around
816 * we pass the cpuctx->ctx to perf_cgroup_from_task()
817 * because cgorup events are only per-cpu
818 */
819 cpuctx->cgrp = perf_cgroup_from_task(task,
820 &cpuctx->ctx);
821 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
e5d1367f 822 }
058fe1c0
DCC
823 perf_pmu_enable(cpuctx->ctx.pmu);
824 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f
SE
825 }
826
e5d1367f
SE
827 local_irq_restore(flags);
828}
829
a8d757ef
SE
830static inline void perf_cgroup_sched_out(struct task_struct *task,
831 struct task_struct *next)
e5d1367f 832{
a8d757ef
SE
833 struct perf_cgroup *cgrp1;
834 struct perf_cgroup *cgrp2 = NULL;
835
ddaaf4e2 836 rcu_read_lock();
a8d757ef
SE
837 /*
838 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
839 * we do not need to pass the ctx here because we know
840 * we are holding the rcu lock
a8d757ef 841 */
614e4c4e 842 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 843 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
844
845 /*
846 * only schedule out current cgroup events if we know
847 * that we are switching to a different cgroup. Otherwise,
848 * do no touch the cgroup events.
849 */
850 if (cgrp1 != cgrp2)
851 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
852
853 rcu_read_unlock();
e5d1367f
SE
854}
855
a8d757ef
SE
856static inline void perf_cgroup_sched_in(struct task_struct *prev,
857 struct task_struct *task)
e5d1367f 858{
a8d757ef
SE
859 struct perf_cgroup *cgrp1;
860 struct perf_cgroup *cgrp2 = NULL;
861
ddaaf4e2 862 rcu_read_lock();
a8d757ef
SE
863 /*
864 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
865 * we do not need to pass the ctx here because we know
866 * we are holding the rcu lock
a8d757ef 867 */
614e4c4e 868 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 869 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
870
871 /*
872 * only need to schedule in cgroup events if we are changing
873 * cgroup during ctxsw. Cgroup events were not scheduled
874 * out of ctxsw out if that was not the case.
875 */
876 if (cgrp1 != cgrp2)
877 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
878
879 rcu_read_unlock();
e5d1367f
SE
880}
881
882static inline int perf_cgroup_connect(int fd, struct perf_event *event,
883 struct perf_event_attr *attr,
884 struct perf_event *group_leader)
885{
886 struct perf_cgroup *cgrp;
887 struct cgroup_subsys_state *css;
2903ff01
AV
888 struct fd f = fdget(fd);
889 int ret = 0;
e5d1367f 890
2903ff01 891 if (!f.file)
e5d1367f
SE
892 return -EBADF;
893
b583043e 894 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 895 &perf_event_cgrp_subsys);
3db272c0
LZ
896 if (IS_ERR(css)) {
897 ret = PTR_ERR(css);
898 goto out;
899 }
e5d1367f
SE
900
901 cgrp = container_of(css, struct perf_cgroup, css);
902 event->cgrp = cgrp;
903
904 /*
905 * all events in a group must monitor
906 * the same cgroup because a task belongs
907 * to only one perf cgroup at a time
908 */
909 if (group_leader && group_leader->cgrp != cgrp) {
910 perf_detach_cgroup(event);
911 ret = -EINVAL;
e5d1367f 912 }
3db272c0 913out:
2903ff01 914 fdput(f);
e5d1367f
SE
915 return ret;
916}
917
918static inline void
919perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
920{
921 struct perf_cgroup_info *t;
922 t = per_cpu_ptr(event->cgrp->info, event->cpu);
923 event->shadow_ctx_time = now - t->timestamp;
924}
925
db4a8356
DCC
926/*
927 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
928 * cleared when last cgroup event is removed.
929 */
930static inline void
931list_update_cgroup_event(struct perf_event *event,
932 struct perf_event_context *ctx, bool add)
933{
934 struct perf_cpu_context *cpuctx;
058fe1c0 935 struct list_head *cpuctx_entry;
db4a8356
DCC
936
937 if (!is_cgroup_event(event))
938 return;
939
940 if (add && ctx->nr_cgroups++)
941 return;
942 else if (!add && --ctx->nr_cgroups)
943 return;
944 /*
945 * Because cgroup events are always per-cpu events,
946 * this will always be called from the right CPU.
947 */
948 cpuctx = __get_cpu_context(ctx);
058fe1c0
DCC
949 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
950 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
951 if (add) {
be96b316
TH
952 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
953
058fe1c0 954 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
be96b316
TH
955 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
956 cpuctx->cgrp = cgrp;
058fe1c0
DCC
957 } else {
958 list_del(cpuctx_entry);
8fc31ce8 959 cpuctx->cgrp = NULL;
058fe1c0 960 }
db4a8356
DCC
961}
962
e5d1367f
SE
963#else /* !CONFIG_CGROUP_PERF */
964
965static inline bool
966perf_cgroup_match(struct perf_event *event)
967{
968 return true;
969}
970
971static inline void perf_detach_cgroup(struct perf_event *event)
972{}
973
974static inline int is_cgroup_event(struct perf_event *event)
975{
976 return 0;
977}
978
e5d1367f
SE
979static inline void update_cgrp_time_from_event(struct perf_event *event)
980{
981}
982
983static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
984{
985}
986
a8d757ef
SE
987static inline void perf_cgroup_sched_out(struct task_struct *task,
988 struct task_struct *next)
e5d1367f
SE
989{
990}
991
a8d757ef
SE
992static inline void perf_cgroup_sched_in(struct task_struct *prev,
993 struct task_struct *task)
e5d1367f
SE
994{
995}
996
997static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
998 struct perf_event_attr *attr,
999 struct perf_event *group_leader)
1000{
1001 return -EINVAL;
1002}
1003
1004static inline void
3f7cce3c
SE
1005perf_cgroup_set_timestamp(struct task_struct *task,
1006 struct perf_event_context *ctx)
e5d1367f
SE
1007{
1008}
1009
1010void
1011perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1012{
1013}
1014
1015static inline void
1016perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1017{
1018}
1019
1020static inline u64 perf_cgroup_event_time(struct perf_event *event)
1021{
1022 return 0;
1023}
1024
db4a8356
DCC
1025static inline void
1026list_update_cgroup_event(struct perf_event *event,
1027 struct perf_event_context *ctx, bool add)
1028{
1029}
1030
e5d1367f
SE
1031#endif
1032
9e630205
SE
1033/*
1034 * set default to be dependent on timer tick just
1035 * like original code
1036 */
1037#define PERF_CPU_HRTIMER (1000 / HZ)
1038/*
8a1115ff 1039 * function must be called with interrupts disabled
9e630205 1040 */
272325c4 1041static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1042{
1043 struct perf_cpu_context *cpuctx;
9e630205
SE
1044 int rotations = 0;
1045
16444645 1046 lockdep_assert_irqs_disabled();
9e630205
SE
1047
1048 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1049 rotations = perf_rotate_context(cpuctx);
1050
4cfafd30
PZ
1051 raw_spin_lock(&cpuctx->hrtimer_lock);
1052 if (rotations)
9e630205 1053 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1054 else
1055 cpuctx->hrtimer_active = 0;
1056 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1057
4cfafd30 1058 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1059}
1060
272325c4 1061static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1062{
272325c4 1063 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1064 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1065 u64 interval;
9e630205
SE
1066
1067 /* no multiplexing needed for SW PMU */
1068 if (pmu->task_ctx_nr == perf_sw_context)
1069 return;
1070
62b85639
SE
1071 /*
1072 * check default is sane, if not set then force to
1073 * default interval (1/tick)
1074 */
272325c4
PZ
1075 interval = pmu->hrtimer_interval_ms;
1076 if (interval < 1)
1077 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1078
272325c4 1079 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1080
4cfafd30
PZ
1081 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1082 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 1083 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1084}
1085
272325c4 1086static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1087{
272325c4 1088 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1089 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1090 unsigned long flags;
9e630205
SE
1091
1092 /* not for SW PMU */
1093 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1094 return 0;
9e630205 1095
4cfafd30
PZ
1096 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1097 if (!cpuctx->hrtimer_active) {
1098 cpuctx->hrtimer_active = 1;
1099 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1100 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1101 }
1102 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1103
272325c4 1104 return 0;
9e630205
SE
1105}
1106
33696fc0 1107void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1108{
33696fc0
PZ
1109 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1110 if (!(*count)++)
1111 pmu->pmu_disable(pmu);
9e35ad38 1112}
9e35ad38 1113
33696fc0 1114void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1115{
33696fc0
PZ
1116 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1117 if (!--(*count))
1118 pmu->pmu_enable(pmu);
9e35ad38 1119}
9e35ad38 1120
2fde4f94 1121static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1122
1123/*
2fde4f94
MR
1124 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1125 * perf_event_task_tick() are fully serialized because they're strictly cpu
1126 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1127 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1128 */
2fde4f94 1129static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1130{
2fde4f94 1131 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1132
16444645 1133 lockdep_assert_irqs_disabled();
b5ab4cd5 1134
2fde4f94
MR
1135 WARN_ON(!list_empty(&ctx->active_ctx_list));
1136
1137 list_add(&ctx->active_ctx_list, head);
1138}
1139
1140static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1141{
16444645 1142 lockdep_assert_irqs_disabled();
2fde4f94
MR
1143
1144 WARN_ON(list_empty(&ctx->active_ctx_list));
1145
1146 list_del_init(&ctx->active_ctx_list);
9e35ad38 1147}
9e35ad38 1148
cdd6c482 1149static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1150{
e5289d4a 1151 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1152}
1153
4af57ef2
YZ
1154static void free_ctx(struct rcu_head *head)
1155{
1156 struct perf_event_context *ctx;
1157
1158 ctx = container_of(head, struct perf_event_context, rcu_head);
1159 kfree(ctx->task_ctx_data);
1160 kfree(ctx);
1161}
1162
cdd6c482 1163static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1164{
564c2b21
PM
1165 if (atomic_dec_and_test(&ctx->refcount)) {
1166 if (ctx->parent_ctx)
1167 put_ctx(ctx->parent_ctx);
63b6da39 1168 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1169 put_task_struct(ctx->task);
4af57ef2 1170 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1171 }
a63eaf34
PM
1172}
1173
f63a8daa
PZ
1174/*
1175 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1176 * perf_pmu_migrate_context() we need some magic.
1177 *
1178 * Those places that change perf_event::ctx will hold both
1179 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1180 *
8b10c5e2
PZ
1181 * Lock ordering is by mutex address. There are two other sites where
1182 * perf_event_context::mutex nests and those are:
1183 *
1184 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1185 * perf_event_exit_event()
1186 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1187 *
1188 * - perf_event_init_context() [ parent, 0 ]
1189 * inherit_task_group()
1190 * inherit_group()
1191 * inherit_event()
1192 * perf_event_alloc()
1193 * perf_init_event()
1194 * perf_try_init_event() [ child , 1 ]
1195 *
1196 * While it appears there is an obvious deadlock here -- the parent and child
1197 * nesting levels are inverted between the two. This is in fact safe because
1198 * life-time rules separate them. That is an exiting task cannot fork, and a
1199 * spawning task cannot (yet) exit.
1200 *
1201 * But remember that that these are parent<->child context relations, and
1202 * migration does not affect children, therefore these two orderings should not
1203 * interact.
f63a8daa
PZ
1204 *
1205 * The change in perf_event::ctx does not affect children (as claimed above)
1206 * because the sys_perf_event_open() case will install a new event and break
1207 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1208 * concerned with cpuctx and that doesn't have children.
1209 *
1210 * The places that change perf_event::ctx will issue:
1211 *
1212 * perf_remove_from_context();
1213 * synchronize_rcu();
1214 * perf_install_in_context();
1215 *
1216 * to affect the change. The remove_from_context() + synchronize_rcu() should
1217 * quiesce the event, after which we can install it in the new location. This
1218 * means that only external vectors (perf_fops, prctl) can perturb the event
1219 * while in transit. Therefore all such accessors should also acquire
1220 * perf_event_context::mutex to serialize against this.
1221 *
1222 * However; because event->ctx can change while we're waiting to acquire
1223 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1224 * function.
1225 *
1226 * Lock order:
79c9ce57 1227 * cred_guard_mutex
f63a8daa
PZ
1228 * task_struct::perf_event_mutex
1229 * perf_event_context::mutex
f63a8daa 1230 * perf_event::child_mutex;
07c4a776 1231 * perf_event_context::lock
f63a8daa
PZ
1232 * perf_event::mmap_mutex
1233 * mmap_sem
1234 */
a83fe28e
PZ
1235static struct perf_event_context *
1236perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1237{
1238 struct perf_event_context *ctx;
1239
1240again:
1241 rcu_read_lock();
6aa7de05 1242 ctx = READ_ONCE(event->ctx);
f63a8daa
PZ
1243 if (!atomic_inc_not_zero(&ctx->refcount)) {
1244 rcu_read_unlock();
1245 goto again;
1246 }
1247 rcu_read_unlock();
1248
a83fe28e 1249 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1250 if (event->ctx != ctx) {
1251 mutex_unlock(&ctx->mutex);
1252 put_ctx(ctx);
1253 goto again;
1254 }
1255
1256 return ctx;
1257}
1258
a83fe28e
PZ
1259static inline struct perf_event_context *
1260perf_event_ctx_lock(struct perf_event *event)
1261{
1262 return perf_event_ctx_lock_nested(event, 0);
1263}
1264
f63a8daa
PZ
1265static void perf_event_ctx_unlock(struct perf_event *event,
1266 struct perf_event_context *ctx)
1267{
1268 mutex_unlock(&ctx->mutex);
1269 put_ctx(ctx);
1270}
1271
211de6eb
PZ
1272/*
1273 * This must be done under the ctx->lock, such as to serialize against
1274 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1275 * calling scheduler related locks and ctx->lock nests inside those.
1276 */
1277static __must_check struct perf_event_context *
1278unclone_ctx(struct perf_event_context *ctx)
71a851b4 1279{
211de6eb
PZ
1280 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1281
1282 lockdep_assert_held(&ctx->lock);
1283
1284 if (parent_ctx)
71a851b4 1285 ctx->parent_ctx = NULL;
5a3126d4 1286 ctx->generation++;
211de6eb
PZ
1287
1288 return parent_ctx;
71a851b4
PZ
1289}
1290
1d953111
ON
1291static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1292 enum pid_type type)
6844c09d 1293{
1d953111 1294 u32 nr;
6844c09d
ACM
1295 /*
1296 * only top level events have the pid namespace they were created in
1297 */
1298 if (event->parent)
1299 event = event->parent;
1300
1d953111
ON
1301 nr = __task_pid_nr_ns(p, type, event->ns);
1302 /* avoid -1 if it is idle thread or runs in another ns */
1303 if (!nr && !pid_alive(p))
1304 nr = -1;
1305 return nr;
6844c09d
ACM
1306}
1307
1d953111 1308static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
6844c09d 1309{
1d953111
ON
1310 return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1311}
6844c09d 1312
1d953111
ON
1313static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1314{
1315 return perf_event_pid_type(event, p, PIDTYPE_PID);
6844c09d
ACM
1316}
1317
7f453c24 1318/*
cdd6c482 1319 * If we inherit events we want to return the parent event id
7f453c24
PZ
1320 * to userspace.
1321 */
cdd6c482 1322static u64 primary_event_id(struct perf_event *event)
7f453c24 1323{
cdd6c482 1324 u64 id = event->id;
7f453c24 1325
cdd6c482
IM
1326 if (event->parent)
1327 id = event->parent->id;
7f453c24
PZ
1328
1329 return id;
1330}
1331
25346b93 1332/*
cdd6c482 1333 * Get the perf_event_context for a task and lock it.
63b6da39 1334 *
25346b93
PM
1335 * This has to cope with with the fact that until it is locked,
1336 * the context could get moved to another task.
1337 */
cdd6c482 1338static struct perf_event_context *
8dc85d54 1339perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1340{
cdd6c482 1341 struct perf_event_context *ctx;
25346b93 1342
9ed6060d 1343retry:
058ebd0e
PZ
1344 /*
1345 * One of the few rules of preemptible RCU is that one cannot do
1346 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1347 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1348 * rcu_read_unlock_special().
1349 *
1350 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1351 * side critical section has interrupts disabled.
058ebd0e 1352 */
2fd59077 1353 local_irq_save(*flags);
058ebd0e 1354 rcu_read_lock();
8dc85d54 1355 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1356 if (ctx) {
1357 /*
1358 * If this context is a clone of another, it might
1359 * get swapped for another underneath us by
cdd6c482 1360 * perf_event_task_sched_out, though the
25346b93
PM
1361 * rcu_read_lock() protects us from any context
1362 * getting freed. Lock the context and check if it
1363 * got swapped before we could get the lock, and retry
1364 * if so. If we locked the right context, then it
1365 * can't get swapped on us any more.
1366 */
2fd59077 1367 raw_spin_lock(&ctx->lock);
8dc85d54 1368 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1369 raw_spin_unlock(&ctx->lock);
058ebd0e 1370 rcu_read_unlock();
2fd59077 1371 local_irq_restore(*flags);
25346b93
PM
1372 goto retry;
1373 }
b49a9e7e 1374
63b6da39
PZ
1375 if (ctx->task == TASK_TOMBSTONE ||
1376 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1377 raw_spin_unlock(&ctx->lock);
b49a9e7e 1378 ctx = NULL;
828b6f0e
PZ
1379 } else {
1380 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1381 }
25346b93
PM
1382 }
1383 rcu_read_unlock();
2fd59077
PM
1384 if (!ctx)
1385 local_irq_restore(*flags);
25346b93
PM
1386 return ctx;
1387}
1388
1389/*
1390 * Get the context for a task and increment its pin_count so it
1391 * can't get swapped to another task. This also increments its
1392 * reference count so that the context can't get freed.
1393 */
8dc85d54
PZ
1394static struct perf_event_context *
1395perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1396{
cdd6c482 1397 struct perf_event_context *ctx;
25346b93
PM
1398 unsigned long flags;
1399
8dc85d54 1400 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1401 if (ctx) {
1402 ++ctx->pin_count;
e625cce1 1403 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1404 }
1405 return ctx;
1406}
1407
cdd6c482 1408static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1409{
1410 unsigned long flags;
1411
e625cce1 1412 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1413 --ctx->pin_count;
e625cce1 1414 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1415}
1416
f67218c3
PZ
1417/*
1418 * Update the record of the current time in a context.
1419 */
1420static void update_context_time(struct perf_event_context *ctx)
1421{
1422 u64 now = perf_clock();
1423
1424 ctx->time += now - ctx->timestamp;
1425 ctx->timestamp = now;
1426}
1427
4158755d
SE
1428static u64 perf_event_time(struct perf_event *event)
1429{
1430 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1431
1432 if (is_cgroup_event(event))
1433 return perf_cgroup_event_time(event);
1434
4158755d
SE
1435 return ctx ? ctx->time : 0;
1436}
1437
487f05e1
AS
1438static enum event_type_t get_event_type(struct perf_event *event)
1439{
1440 struct perf_event_context *ctx = event->ctx;
1441 enum event_type_t event_type;
1442
1443 lockdep_assert_held(&ctx->lock);
1444
3bda69c1
AS
1445 /*
1446 * It's 'group type', really, because if our group leader is
1447 * pinned, so are we.
1448 */
1449 if (event->group_leader != event)
1450 event = event->group_leader;
1451
487f05e1
AS
1452 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1453 if (!ctx->task)
1454 event_type |= EVENT_CPU;
1455
1456 return event_type;
1457}
1458
889ff015
FW
1459static struct list_head *
1460ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1461{
1462 if (event->attr.pinned)
1463 return &ctx->pinned_groups;
1464 else
1465 return &ctx->flexible_groups;
1466}
1467
fccc714b 1468/*
cdd6c482 1469 * Add a event from the lists for its context.
fccc714b
PZ
1470 * Must be called with ctx->mutex and ctx->lock held.
1471 */
04289bb9 1472static void
cdd6c482 1473list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1474{
c994d613
PZ
1475 lockdep_assert_held(&ctx->lock);
1476
8a49542c
PZ
1477 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1478 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9 1479
0d3d73aa
PZ
1480 event->tstamp = perf_event_time(event);
1481
04289bb9 1482 /*
8a49542c
PZ
1483 * If we're a stand alone event or group leader, we go to the context
1484 * list, group events are kept attached to the group so that
1485 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1486 */
8a49542c 1487 if (event->group_leader == event) {
889ff015
FW
1488 struct list_head *list;
1489
4ff6a8de 1490 event->group_caps = event->event_caps;
d6f962b5 1491
889ff015
FW
1492 list = ctx_group_list(event, ctx);
1493 list_add_tail(&event->group_entry, list);
5c148194 1494 }
592903cd 1495
db4a8356 1496 list_update_cgroup_event(event, ctx, true);
e5d1367f 1497
cdd6c482
IM
1498 list_add_rcu(&event->event_entry, &ctx->event_list);
1499 ctx->nr_events++;
1500 if (event->attr.inherit_stat)
bfbd3381 1501 ctx->nr_stat++;
5a3126d4
PZ
1502
1503 ctx->generation++;
04289bb9
IM
1504}
1505
0231bb53
JO
1506/*
1507 * Initialize event state based on the perf_event_attr::disabled.
1508 */
1509static inline void perf_event__state_init(struct perf_event *event)
1510{
1511 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1512 PERF_EVENT_STATE_INACTIVE;
1513}
1514
a723968c 1515static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1516{
1517 int entry = sizeof(u64); /* value */
1518 int size = 0;
1519 int nr = 1;
1520
1521 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1522 size += sizeof(u64);
1523
1524 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1525 size += sizeof(u64);
1526
1527 if (event->attr.read_format & PERF_FORMAT_ID)
1528 entry += sizeof(u64);
1529
1530 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1531 nr += nr_siblings;
c320c7b7
ACM
1532 size += sizeof(u64);
1533 }
1534
1535 size += entry * nr;
1536 event->read_size = size;
1537}
1538
a723968c 1539static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1540{
1541 struct perf_sample_data *data;
c320c7b7
ACM
1542 u16 size = 0;
1543
c320c7b7
ACM
1544 if (sample_type & PERF_SAMPLE_IP)
1545 size += sizeof(data->ip);
1546
6844c09d
ACM
1547 if (sample_type & PERF_SAMPLE_ADDR)
1548 size += sizeof(data->addr);
1549
1550 if (sample_type & PERF_SAMPLE_PERIOD)
1551 size += sizeof(data->period);
1552
c3feedf2
AK
1553 if (sample_type & PERF_SAMPLE_WEIGHT)
1554 size += sizeof(data->weight);
1555
6844c09d
ACM
1556 if (sample_type & PERF_SAMPLE_READ)
1557 size += event->read_size;
1558
d6be9ad6
SE
1559 if (sample_type & PERF_SAMPLE_DATA_SRC)
1560 size += sizeof(data->data_src.val);
1561
fdfbbd07
AK
1562 if (sample_type & PERF_SAMPLE_TRANSACTION)
1563 size += sizeof(data->txn);
1564
fc7ce9c7
KL
1565 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1566 size += sizeof(data->phys_addr);
1567
6844c09d
ACM
1568 event->header_size = size;
1569}
1570
a723968c
PZ
1571/*
1572 * Called at perf_event creation and when events are attached/detached from a
1573 * group.
1574 */
1575static void perf_event__header_size(struct perf_event *event)
1576{
1577 __perf_event_read_size(event,
1578 event->group_leader->nr_siblings);
1579 __perf_event_header_size(event, event->attr.sample_type);
1580}
1581
6844c09d
ACM
1582static void perf_event__id_header_size(struct perf_event *event)
1583{
1584 struct perf_sample_data *data;
1585 u64 sample_type = event->attr.sample_type;
1586 u16 size = 0;
1587
c320c7b7
ACM
1588 if (sample_type & PERF_SAMPLE_TID)
1589 size += sizeof(data->tid_entry);
1590
1591 if (sample_type & PERF_SAMPLE_TIME)
1592 size += sizeof(data->time);
1593
ff3d527c
AH
1594 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1595 size += sizeof(data->id);
1596
c320c7b7
ACM
1597 if (sample_type & PERF_SAMPLE_ID)
1598 size += sizeof(data->id);
1599
1600 if (sample_type & PERF_SAMPLE_STREAM_ID)
1601 size += sizeof(data->stream_id);
1602
1603 if (sample_type & PERF_SAMPLE_CPU)
1604 size += sizeof(data->cpu_entry);
1605
6844c09d 1606 event->id_header_size = size;
c320c7b7
ACM
1607}
1608
a723968c
PZ
1609static bool perf_event_validate_size(struct perf_event *event)
1610{
1611 /*
1612 * The values computed here will be over-written when we actually
1613 * attach the event.
1614 */
1615 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1616 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1617 perf_event__id_header_size(event);
1618
1619 /*
1620 * Sum the lot; should not exceed the 64k limit we have on records.
1621 * Conservative limit to allow for callchains and other variable fields.
1622 */
1623 if (event->read_size + event->header_size +
1624 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1625 return false;
1626
1627 return true;
1628}
1629
8a49542c
PZ
1630static void perf_group_attach(struct perf_event *event)
1631{
c320c7b7 1632 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1633
a76a82a3
PZ
1634 lockdep_assert_held(&event->ctx->lock);
1635
74c3337c
PZ
1636 /*
1637 * We can have double attach due to group movement in perf_event_open.
1638 */
1639 if (event->attach_state & PERF_ATTACH_GROUP)
1640 return;
1641
8a49542c
PZ
1642 event->attach_state |= PERF_ATTACH_GROUP;
1643
1644 if (group_leader == event)
1645 return;
1646
652884fe
PZ
1647 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1648
4ff6a8de 1649 group_leader->group_caps &= event->event_caps;
8a49542c
PZ
1650
1651 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1652 group_leader->nr_siblings++;
c320c7b7
ACM
1653
1654 perf_event__header_size(group_leader);
1655
1656 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1657 perf_event__header_size(pos);
8a49542c
PZ
1658}
1659
a63eaf34 1660/*
cdd6c482 1661 * Remove a event from the lists for its context.
fccc714b 1662 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1663 */
04289bb9 1664static void
cdd6c482 1665list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1666{
652884fe
PZ
1667 WARN_ON_ONCE(event->ctx != ctx);
1668 lockdep_assert_held(&ctx->lock);
1669
8a49542c
PZ
1670 /*
1671 * We can have double detach due to exit/hot-unplug + close.
1672 */
1673 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1674 return;
8a49542c
PZ
1675
1676 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1677
db4a8356 1678 list_update_cgroup_event(event, ctx, false);
e5d1367f 1679
cdd6c482
IM
1680 ctx->nr_events--;
1681 if (event->attr.inherit_stat)
bfbd3381 1682 ctx->nr_stat--;
8bc20959 1683
cdd6c482 1684 list_del_rcu(&event->event_entry);
04289bb9 1685
8a49542c
PZ
1686 if (event->group_leader == event)
1687 list_del_init(&event->group_entry);
5c148194 1688
b2e74a26
SE
1689 /*
1690 * If event was in error state, then keep it
1691 * that way, otherwise bogus counts will be
1692 * returned on read(). The only way to get out
1693 * of error state is by explicit re-enabling
1694 * of the event
1695 */
1696 if (event->state > PERF_EVENT_STATE_OFF)
0d3d73aa 1697 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
5a3126d4
PZ
1698
1699 ctx->generation++;
050735b0
PZ
1700}
1701
8a49542c 1702static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1703{
1704 struct perf_event *sibling, *tmp;
8a49542c
PZ
1705 struct list_head *list = NULL;
1706
a76a82a3
PZ
1707 lockdep_assert_held(&event->ctx->lock);
1708
8a49542c
PZ
1709 /*
1710 * We can have double detach due to exit/hot-unplug + close.
1711 */
1712 if (!(event->attach_state & PERF_ATTACH_GROUP))
1713 return;
1714
1715 event->attach_state &= ~PERF_ATTACH_GROUP;
1716
1717 /*
1718 * If this is a sibling, remove it from its group.
1719 */
1720 if (event->group_leader != event) {
1721 list_del_init(&event->group_entry);
1722 event->group_leader->nr_siblings--;
c320c7b7 1723 goto out;
8a49542c
PZ
1724 }
1725
1726 if (!list_empty(&event->group_entry))
1727 list = &event->group_entry;
2e2af50b 1728
04289bb9 1729 /*
cdd6c482
IM
1730 * If this was a group event with sibling events then
1731 * upgrade the siblings to singleton events by adding them
8a49542c 1732 * to whatever list we are on.
04289bb9 1733 */
cdd6c482 1734 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1735 if (list)
1736 list_move_tail(&sibling->group_entry, list);
04289bb9 1737 sibling->group_leader = sibling;
d6f962b5
FW
1738
1739 /* Inherit group flags from the previous leader */
4ff6a8de 1740 sibling->group_caps = event->group_caps;
652884fe
PZ
1741
1742 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1743 }
c320c7b7
ACM
1744
1745out:
1746 perf_event__header_size(event->group_leader);
1747
1748 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1749 perf_event__header_size(tmp);
04289bb9
IM
1750}
1751
fadfe7be
JO
1752static bool is_orphaned_event(struct perf_event *event)
1753{
a69b0ca4 1754 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1755}
1756
2c81a647 1757static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
1758{
1759 struct pmu *pmu = event->pmu;
1760 return pmu->filter_match ? pmu->filter_match(event) : 1;
1761}
1762
2c81a647
MR
1763/*
1764 * Check whether we should attempt to schedule an event group based on
1765 * PMU-specific filtering. An event group can consist of HW and SW events,
1766 * potentially with a SW leader, so we must check all the filters, to
1767 * determine whether a group is schedulable:
1768 */
1769static inline int pmu_filter_match(struct perf_event *event)
1770{
1771 struct perf_event *child;
1772
1773 if (!__pmu_filter_match(event))
1774 return 0;
1775
1776 list_for_each_entry(child, &event->sibling_list, group_entry) {
1777 if (!__pmu_filter_match(child))
1778 return 0;
1779 }
1780
1781 return 1;
1782}
1783
fa66f07a
SE
1784static inline int
1785event_filter_match(struct perf_event *event)
1786{
0b8f1e2e
PZ
1787 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1788 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1789}
1790
9ffcfa6f
SE
1791static void
1792event_sched_out(struct perf_event *event,
3b6f9e5c 1793 struct perf_cpu_context *cpuctx,
cdd6c482 1794 struct perf_event_context *ctx)
3b6f9e5c 1795{
0d3d73aa 1796 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
652884fe
PZ
1797
1798 WARN_ON_ONCE(event->ctx != ctx);
1799 lockdep_assert_held(&ctx->lock);
1800
cdd6c482 1801 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1802 return;
3b6f9e5c 1803
44377277
AS
1804 perf_pmu_disable(event->pmu);
1805
28a967c3
PZ
1806 event->pmu->del(event, 0);
1807 event->oncpu = -1;
0d3d73aa 1808
cdd6c482
IM
1809 if (event->pending_disable) {
1810 event->pending_disable = 0;
0d3d73aa 1811 state = PERF_EVENT_STATE_OFF;
970892a9 1812 }
0d3d73aa 1813 perf_event_set_state(event, state);
3b6f9e5c 1814
cdd6c482 1815 if (!is_software_event(event))
3b6f9e5c 1816 cpuctx->active_oncpu--;
2fde4f94
MR
1817 if (!--ctx->nr_active)
1818 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1819 if (event->attr.freq && event->attr.sample_freq)
1820 ctx->nr_freq--;
cdd6c482 1821 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1822 cpuctx->exclusive = 0;
44377277
AS
1823
1824 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1825}
1826
d859e29f 1827static void
cdd6c482 1828group_sched_out(struct perf_event *group_event,
d859e29f 1829 struct perf_cpu_context *cpuctx,
cdd6c482 1830 struct perf_event_context *ctx)
d859e29f 1831{
cdd6c482 1832 struct perf_event *event;
0d3d73aa
PZ
1833
1834 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
1835 return;
d859e29f 1836
3f005e7d
MR
1837 perf_pmu_disable(ctx->pmu);
1838
cdd6c482 1839 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1840
1841 /*
1842 * Schedule out siblings (if any):
1843 */
cdd6c482
IM
1844 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1845 event_sched_out(event, cpuctx, ctx);
d859e29f 1846
3f005e7d
MR
1847 perf_pmu_enable(ctx->pmu);
1848
0d3d73aa 1849 if (group_event->attr.exclusive)
d859e29f
PM
1850 cpuctx->exclusive = 0;
1851}
1852
45a0e07a 1853#define DETACH_GROUP 0x01UL
0017960f 1854
0793a61d 1855/*
cdd6c482 1856 * Cross CPU call to remove a performance event
0793a61d 1857 *
cdd6c482 1858 * We disable the event on the hardware level first. After that we
0793a61d
TG
1859 * remove it from the context list.
1860 */
fae3fde6
PZ
1861static void
1862__perf_remove_from_context(struct perf_event *event,
1863 struct perf_cpu_context *cpuctx,
1864 struct perf_event_context *ctx,
1865 void *info)
0793a61d 1866{
45a0e07a 1867 unsigned long flags = (unsigned long)info;
0793a61d 1868
3c5c8711
PZ
1869 if (ctx->is_active & EVENT_TIME) {
1870 update_context_time(ctx);
1871 update_cgrp_time_from_cpuctx(cpuctx);
1872 }
1873
cdd6c482 1874 event_sched_out(event, cpuctx, ctx);
45a0e07a 1875 if (flags & DETACH_GROUP)
46ce0fe9 1876 perf_group_detach(event);
cdd6c482 1877 list_del_event(event, ctx);
39a43640
PZ
1878
1879 if (!ctx->nr_events && ctx->is_active) {
64ce3126 1880 ctx->is_active = 0;
39a43640
PZ
1881 if (ctx->task) {
1882 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1883 cpuctx->task_ctx = NULL;
1884 }
64ce3126 1885 }
0793a61d
TG
1886}
1887
0793a61d 1888/*
cdd6c482 1889 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1890 *
cdd6c482
IM
1891 * If event->ctx is a cloned context, callers must make sure that
1892 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1893 * remains valid. This is OK when called from perf_release since
1894 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1895 * When called from perf_event_exit_task, it's OK because the
c93f7669 1896 * context has been detached from its task.
0793a61d 1897 */
45a0e07a 1898static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 1899{
a76a82a3
PZ
1900 struct perf_event_context *ctx = event->ctx;
1901
1902 lockdep_assert_held(&ctx->mutex);
0793a61d 1903
45a0e07a 1904 event_function_call(event, __perf_remove_from_context, (void *)flags);
a76a82a3
PZ
1905
1906 /*
1907 * The above event_function_call() can NO-OP when it hits
1908 * TASK_TOMBSTONE. In that case we must already have been detached
1909 * from the context (by perf_event_exit_event()) but the grouping
1910 * might still be in-tact.
1911 */
1912 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1913 if ((flags & DETACH_GROUP) &&
1914 (event->attach_state & PERF_ATTACH_GROUP)) {
1915 /*
1916 * Since in that case we cannot possibly be scheduled, simply
1917 * detach now.
1918 */
1919 raw_spin_lock_irq(&ctx->lock);
1920 perf_group_detach(event);
1921 raw_spin_unlock_irq(&ctx->lock);
1922 }
0793a61d
TG
1923}
1924
d859e29f 1925/*
cdd6c482 1926 * Cross CPU call to disable a performance event
d859e29f 1927 */
fae3fde6
PZ
1928static void __perf_event_disable(struct perf_event *event,
1929 struct perf_cpu_context *cpuctx,
1930 struct perf_event_context *ctx,
1931 void *info)
7b648018 1932{
fae3fde6
PZ
1933 if (event->state < PERF_EVENT_STATE_INACTIVE)
1934 return;
7b648018 1935
3c5c8711
PZ
1936 if (ctx->is_active & EVENT_TIME) {
1937 update_context_time(ctx);
1938 update_cgrp_time_from_event(event);
1939 }
1940
fae3fde6
PZ
1941 if (event == event->group_leader)
1942 group_sched_out(event, cpuctx, ctx);
1943 else
1944 event_sched_out(event, cpuctx, ctx);
0d3d73aa
PZ
1945
1946 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
7b648018
PZ
1947}
1948
d859e29f 1949/*
cdd6c482 1950 * Disable a event.
c93f7669 1951 *
cdd6c482
IM
1952 * If event->ctx is a cloned context, callers must make sure that
1953 * every task struct that event->ctx->task could possibly point to
c93f7669 1954 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1955 * perf_event_for_each_child or perf_event_for_each because they
1956 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
1957 * goes to exit will block in perf_event_exit_event().
1958 *
cdd6c482 1959 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1960 * is the current context on this CPU and preemption is disabled,
cdd6c482 1961 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1962 */
f63a8daa 1963static void _perf_event_disable(struct perf_event *event)
d859e29f 1964{
cdd6c482 1965 struct perf_event_context *ctx = event->ctx;
d859e29f 1966
e625cce1 1967 raw_spin_lock_irq(&ctx->lock);
7b648018 1968 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1969 raw_spin_unlock_irq(&ctx->lock);
7b648018 1970 return;
53cfbf59 1971 }
e625cce1 1972 raw_spin_unlock_irq(&ctx->lock);
7b648018 1973
fae3fde6
PZ
1974 event_function_call(event, __perf_event_disable, NULL);
1975}
1976
1977void perf_event_disable_local(struct perf_event *event)
1978{
1979 event_function_local(event, __perf_event_disable, NULL);
d859e29f 1980}
f63a8daa
PZ
1981
1982/*
1983 * Strictly speaking kernel users cannot create groups and therefore this
1984 * interface does not need the perf_event_ctx_lock() magic.
1985 */
1986void perf_event_disable(struct perf_event *event)
1987{
1988 struct perf_event_context *ctx;
1989
1990 ctx = perf_event_ctx_lock(event);
1991 _perf_event_disable(event);
1992 perf_event_ctx_unlock(event, ctx);
1993}
dcfce4a0 1994EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1995
5aab90ce
JO
1996void perf_event_disable_inatomic(struct perf_event *event)
1997{
1998 event->pending_disable = 1;
1999 irq_work_queue(&event->pending);
2000}
2001
e5d1367f 2002static void perf_set_shadow_time(struct perf_event *event,
0d3d73aa 2003 struct perf_event_context *ctx)
e5d1367f
SE
2004{
2005 /*
2006 * use the correct time source for the time snapshot
2007 *
2008 * We could get by without this by leveraging the
2009 * fact that to get to this function, the caller
2010 * has most likely already called update_context_time()
2011 * and update_cgrp_time_xx() and thus both timestamp
2012 * are identical (or very close). Given that tstamp is,
2013 * already adjusted for cgroup, we could say that:
2014 * tstamp - ctx->timestamp
2015 * is equivalent to
2016 * tstamp - cgrp->timestamp.
2017 *
2018 * Then, in perf_output_read(), the calculation would
2019 * work with no changes because:
2020 * - event is guaranteed scheduled in
2021 * - no scheduled out in between
2022 * - thus the timestamp would be the same
2023 *
2024 * But this is a bit hairy.
2025 *
2026 * So instead, we have an explicit cgroup call to remain
2027 * within the time time source all along. We believe it
2028 * is cleaner and simpler to understand.
2029 */
2030 if (is_cgroup_event(event))
0d3d73aa 2031 perf_cgroup_set_shadow_time(event, event->tstamp);
e5d1367f 2032 else
0d3d73aa 2033 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
e5d1367f
SE
2034}
2035
4fe757dd
PZ
2036#define MAX_INTERRUPTS (~0ULL)
2037
2038static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2039static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2040
235c7fc7 2041static int
9ffcfa6f 2042event_sched_in(struct perf_event *event,
235c7fc7 2043 struct perf_cpu_context *cpuctx,
6e37738a 2044 struct perf_event_context *ctx)
235c7fc7 2045{
44377277 2046 int ret = 0;
4158755d 2047
63342411
PZ
2048 lockdep_assert_held(&ctx->lock);
2049
cdd6c482 2050 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2051 return 0;
2052
95ff4ca2
AS
2053 WRITE_ONCE(event->oncpu, smp_processor_id());
2054 /*
0c1cbc18
PZ
2055 * Order event::oncpu write to happen before the ACTIVE state is
2056 * visible. This allows perf_event_{stop,read}() to observe the correct
2057 * ->oncpu if it sees ACTIVE.
95ff4ca2
AS
2058 */
2059 smp_wmb();
0d3d73aa 2060 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2061
2062 /*
2063 * Unthrottle events, since we scheduled we might have missed several
2064 * ticks already, also for a heavily scheduling task there is little
2065 * guarantee it'll get a tick in a timely manner.
2066 */
2067 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2068 perf_log_throttle(event, 1);
2069 event->hw.interrupts = 0;
2070 }
2071
44377277
AS
2072 perf_pmu_disable(event->pmu);
2073
0d3d73aa 2074 perf_set_shadow_time(event, ctx);
72f669c0 2075
ec0d7729
AS
2076 perf_log_itrace_start(event);
2077
a4eaf7f1 2078 if (event->pmu->add(event, PERF_EF_START)) {
0d3d73aa 2079 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
cdd6c482 2080 event->oncpu = -1;
44377277
AS
2081 ret = -EAGAIN;
2082 goto out;
235c7fc7
IM
2083 }
2084
cdd6c482 2085 if (!is_software_event(event))
3b6f9e5c 2086 cpuctx->active_oncpu++;
2fde4f94
MR
2087 if (!ctx->nr_active++)
2088 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2089 if (event->attr.freq && event->attr.sample_freq)
2090 ctx->nr_freq++;
235c7fc7 2091
cdd6c482 2092 if (event->attr.exclusive)
3b6f9e5c
PM
2093 cpuctx->exclusive = 1;
2094
44377277
AS
2095out:
2096 perf_pmu_enable(event->pmu);
2097
2098 return ret;
235c7fc7
IM
2099}
2100
6751b71e 2101static int
cdd6c482 2102group_sched_in(struct perf_event *group_event,
6751b71e 2103 struct perf_cpu_context *cpuctx,
6e37738a 2104 struct perf_event_context *ctx)
6751b71e 2105{
6bde9b6c 2106 struct perf_event *event, *partial_group = NULL;
4a234593 2107 struct pmu *pmu = ctx->pmu;
6751b71e 2108
cdd6c482 2109 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2110 return 0;
2111
fbbe0701 2112 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2113
9ffcfa6f 2114 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2115 pmu->cancel_txn(pmu);
272325c4 2116 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2117 return -EAGAIN;
90151c35 2118 }
6751b71e
PM
2119
2120 /*
2121 * Schedule in siblings as one group (if any):
2122 */
cdd6c482 2123 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 2124 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2125 partial_group = event;
6751b71e
PM
2126 goto group_error;
2127 }
2128 }
2129
9ffcfa6f 2130 if (!pmu->commit_txn(pmu))
6e85158c 2131 return 0;
9ffcfa6f 2132
6751b71e
PM
2133group_error:
2134 /*
2135 * Groups can be scheduled in as one unit only, so undo any
2136 * partial group before returning:
0d3d73aa 2137 * The events up to the failed event are scheduled out normally.
6751b71e 2138 */
cdd6c482
IM
2139 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2140 if (event == partial_group)
0d3d73aa 2141 break;
d7842da4 2142
0d3d73aa 2143 event_sched_out(event, cpuctx, ctx);
6751b71e 2144 }
9ffcfa6f 2145 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2146
ad5133b7 2147 pmu->cancel_txn(pmu);
90151c35 2148
272325c4 2149 perf_mux_hrtimer_restart(cpuctx);
9e630205 2150
6751b71e
PM
2151 return -EAGAIN;
2152}
2153
3b6f9e5c 2154/*
cdd6c482 2155 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2156 */
cdd6c482 2157static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2158 struct perf_cpu_context *cpuctx,
2159 int can_add_hw)
2160{
2161 /*
cdd6c482 2162 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2163 */
4ff6a8de 2164 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2165 return 1;
2166 /*
2167 * If an exclusive group is already on, no other hardware
cdd6c482 2168 * events can go on.
3b6f9e5c
PM
2169 */
2170 if (cpuctx->exclusive)
2171 return 0;
2172 /*
2173 * If this group is exclusive and there are already
cdd6c482 2174 * events on the CPU, it can't go on.
3b6f9e5c 2175 */
cdd6c482 2176 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2177 return 0;
2178 /*
2179 * Otherwise, try to add it if all previous groups were able
2180 * to go on.
2181 */
2182 return can_add_hw;
2183}
2184
cdd6c482
IM
2185static void add_event_to_ctx(struct perf_event *event,
2186 struct perf_event_context *ctx)
53cfbf59 2187{
cdd6c482 2188 list_add_event(event, ctx);
8a49542c 2189 perf_group_attach(event);
53cfbf59
PM
2190}
2191
bd2afa49
PZ
2192static void ctx_sched_out(struct perf_event_context *ctx,
2193 struct perf_cpu_context *cpuctx,
2194 enum event_type_t event_type);
2c29ef0f
PZ
2195static void
2196ctx_sched_in(struct perf_event_context *ctx,
2197 struct perf_cpu_context *cpuctx,
2198 enum event_type_t event_type,
2199 struct task_struct *task);
fe4b04fa 2200
bd2afa49 2201static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
487f05e1
AS
2202 struct perf_event_context *ctx,
2203 enum event_type_t event_type)
bd2afa49
PZ
2204{
2205 if (!cpuctx->task_ctx)
2206 return;
2207
2208 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2209 return;
2210
487f05e1 2211 ctx_sched_out(ctx, cpuctx, event_type);
bd2afa49
PZ
2212}
2213
dce5855b
PZ
2214static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2215 struct perf_event_context *ctx,
2216 struct task_struct *task)
2217{
2218 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2219 if (ctx)
2220 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2221 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2222 if (ctx)
2223 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2224}
2225
487f05e1
AS
2226/*
2227 * We want to maintain the following priority of scheduling:
2228 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2229 * - task pinned (EVENT_PINNED)
2230 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2231 * - task flexible (EVENT_FLEXIBLE).
2232 *
2233 * In order to avoid unscheduling and scheduling back in everything every
2234 * time an event is added, only do it for the groups of equal priority and
2235 * below.
2236 *
2237 * This can be called after a batch operation on task events, in which case
2238 * event_type is a bit mask of the types of events involved. For CPU events,
2239 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2240 */
3e349507 2241static void ctx_resched(struct perf_cpu_context *cpuctx,
487f05e1
AS
2242 struct perf_event_context *task_ctx,
2243 enum event_type_t event_type)
0017960f 2244{
487f05e1
AS
2245 enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2246 bool cpu_event = !!(event_type & EVENT_CPU);
2247
2248 /*
2249 * If pinned groups are involved, flexible groups also need to be
2250 * scheduled out.
2251 */
2252 if (event_type & EVENT_PINNED)
2253 event_type |= EVENT_FLEXIBLE;
2254
3e349507
PZ
2255 perf_pmu_disable(cpuctx->ctx.pmu);
2256 if (task_ctx)
487f05e1
AS
2257 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2258
2259 /*
2260 * Decide which cpu ctx groups to schedule out based on the types
2261 * of events that caused rescheduling:
2262 * - EVENT_CPU: schedule out corresponding groups;
2263 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2264 * - otherwise, do nothing more.
2265 */
2266 if (cpu_event)
2267 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2268 else if (ctx_event_type & EVENT_PINNED)
2269 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2270
3e349507
PZ
2271 perf_event_sched_in(cpuctx, task_ctx, current);
2272 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2273}
2274
0793a61d 2275/*
cdd6c482 2276 * Cross CPU call to install and enable a performance event
682076ae 2277 *
a096309b
PZ
2278 * Very similar to remote_function() + event_function() but cannot assume that
2279 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2280 */
fe4b04fa 2281static int __perf_install_in_context(void *info)
0793a61d 2282{
a096309b
PZ
2283 struct perf_event *event = info;
2284 struct perf_event_context *ctx = event->ctx;
108b02cf 2285 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2286 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2287 bool reprogram = true;
a096309b 2288 int ret = 0;
0793a61d 2289
63b6da39 2290 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2291 if (ctx->task) {
b58f6b0d
PZ
2292 raw_spin_lock(&ctx->lock);
2293 task_ctx = ctx;
a096309b 2294
63cae12b 2295 reprogram = (ctx->task == current);
b58f6b0d 2296
39a43640 2297 /*
63cae12b
PZ
2298 * If the task is running, it must be running on this CPU,
2299 * otherwise we cannot reprogram things.
2300 *
2301 * If its not running, we don't care, ctx->lock will
2302 * serialize against it becoming runnable.
39a43640 2303 */
63cae12b
PZ
2304 if (task_curr(ctx->task) && !reprogram) {
2305 ret = -ESRCH;
2306 goto unlock;
2307 }
a096309b 2308
63cae12b 2309 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2310 } else if (task_ctx) {
2311 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2312 }
b58f6b0d 2313
63cae12b 2314 if (reprogram) {
a096309b
PZ
2315 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2316 add_event_to_ctx(event, ctx);
487f05e1 2317 ctx_resched(cpuctx, task_ctx, get_event_type(event));
a096309b
PZ
2318 } else {
2319 add_event_to_ctx(event, ctx);
2320 }
2321
63b6da39 2322unlock:
2c29ef0f 2323 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2324
a096309b 2325 return ret;
0793a61d
TG
2326}
2327
2328/*
a096309b
PZ
2329 * Attach a performance event to a context.
2330 *
2331 * Very similar to event_function_call, see comment there.
0793a61d
TG
2332 */
2333static void
cdd6c482
IM
2334perf_install_in_context(struct perf_event_context *ctx,
2335 struct perf_event *event,
0793a61d
TG
2336 int cpu)
2337{
a096309b 2338 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2339
fe4b04fa
PZ
2340 lockdep_assert_held(&ctx->mutex);
2341
0cda4c02
YZ
2342 if (event->cpu != -1)
2343 event->cpu = cpu;
c3f00c70 2344
0b8f1e2e
PZ
2345 /*
2346 * Ensures that if we can observe event->ctx, both the event and ctx
2347 * will be 'complete'. See perf_iterate_sb_cpu().
2348 */
2349 smp_store_release(&event->ctx, ctx);
2350
a096309b
PZ
2351 if (!task) {
2352 cpu_function_call(cpu, __perf_install_in_context, event);
2353 return;
2354 }
2355
2356 /*
2357 * Should not happen, we validate the ctx is still alive before calling.
2358 */
2359 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2360 return;
2361
39a43640
PZ
2362 /*
2363 * Installing events is tricky because we cannot rely on ctx->is_active
2364 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2365 *
2366 * Instead we use task_curr(), which tells us if the task is running.
2367 * However, since we use task_curr() outside of rq::lock, we can race
2368 * against the actual state. This means the result can be wrong.
2369 *
2370 * If we get a false positive, we retry, this is harmless.
2371 *
2372 * If we get a false negative, things are complicated. If we are after
2373 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2374 * value must be correct. If we're before, it doesn't matter since
2375 * perf_event_context_sched_in() will program the counter.
2376 *
2377 * However, this hinges on the remote context switch having observed
2378 * our task->perf_event_ctxp[] store, such that it will in fact take
2379 * ctx::lock in perf_event_context_sched_in().
2380 *
2381 * We do this by task_function_call(), if the IPI fails to hit the task
2382 * we know any future context switch of task must see the
2383 * perf_event_ctpx[] store.
39a43640 2384 */
63cae12b 2385
63b6da39 2386 /*
63cae12b
PZ
2387 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2388 * task_cpu() load, such that if the IPI then does not find the task
2389 * running, a future context switch of that task must observe the
2390 * store.
63b6da39 2391 */
63cae12b
PZ
2392 smp_mb();
2393again:
2394 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2395 return;
2396
2397 raw_spin_lock_irq(&ctx->lock);
2398 task = ctx->task;
84c4e620 2399 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2400 /*
2401 * Cannot happen because we already checked above (which also
2402 * cannot happen), and we hold ctx->mutex, which serializes us
2403 * against perf_event_exit_task_context().
2404 */
63b6da39
PZ
2405 raw_spin_unlock_irq(&ctx->lock);
2406 return;
2407 }
39a43640 2408 /*
63cae12b
PZ
2409 * If the task is not running, ctx->lock will avoid it becoming so,
2410 * thus we can safely install the event.
39a43640 2411 */
63cae12b
PZ
2412 if (task_curr(task)) {
2413 raw_spin_unlock_irq(&ctx->lock);
2414 goto again;
2415 }
2416 add_event_to_ctx(event, ctx);
2417 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2418}
2419
d859e29f 2420/*
cdd6c482 2421 * Cross CPU call to enable a performance event
d859e29f 2422 */
fae3fde6
PZ
2423static void __perf_event_enable(struct perf_event *event,
2424 struct perf_cpu_context *cpuctx,
2425 struct perf_event_context *ctx,
2426 void *info)
04289bb9 2427{
cdd6c482 2428 struct perf_event *leader = event->group_leader;
fae3fde6 2429 struct perf_event_context *task_ctx;
04289bb9 2430
6e801e01
PZ
2431 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2432 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2433 return;
3cbed429 2434
bd2afa49
PZ
2435 if (ctx->is_active)
2436 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2437
0d3d73aa 2438 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
04289bb9 2439
fae3fde6
PZ
2440 if (!ctx->is_active)
2441 return;
2442
e5d1367f 2443 if (!event_filter_match(event)) {
bd2afa49 2444 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2445 return;
e5d1367f 2446 }
f4c4176f 2447
04289bb9 2448 /*
cdd6c482 2449 * If the event is in a group and isn't the group leader,
d859e29f 2450 * then don't put it on unless the group is on.
04289bb9 2451 */
bd2afa49
PZ
2452 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2453 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2454 return;
bd2afa49 2455 }
fe4b04fa 2456
fae3fde6
PZ
2457 task_ctx = cpuctx->task_ctx;
2458 if (ctx->task)
2459 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2460
487f05e1 2461 ctx_resched(cpuctx, task_ctx, get_event_type(event));
7b648018
PZ
2462}
2463
d859e29f 2464/*
cdd6c482 2465 * Enable a event.
c93f7669 2466 *
cdd6c482
IM
2467 * If event->ctx is a cloned context, callers must make sure that
2468 * every task struct that event->ctx->task could possibly point to
c93f7669 2469 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2470 * perf_event_for_each_child or perf_event_for_each as described
2471 * for perf_event_disable.
d859e29f 2472 */
f63a8daa 2473static void _perf_event_enable(struct perf_event *event)
d859e29f 2474{
cdd6c482 2475 struct perf_event_context *ctx = event->ctx;
d859e29f 2476
7b648018 2477 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2478 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2479 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2480 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2481 return;
2482 }
2483
d859e29f 2484 /*
cdd6c482 2485 * If the event is in error state, clear that first.
7b648018
PZ
2486 *
2487 * That way, if we see the event in error state below, we know that it
2488 * has gone back into error state, as distinct from the task having
2489 * been scheduled away before the cross-call arrived.
d859e29f 2490 */
cdd6c482
IM
2491 if (event->state == PERF_EVENT_STATE_ERROR)
2492 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2493 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2494
fae3fde6 2495 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2496}
f63a8daa
PZ
2497
2498/*
2499 * See perf_event_disable();
2500 */
2501void perf_event_enable(struct perf_event *event)
2502{
2503 struct perf_event_context *ctx;
2504
2505 ctx = perf_event_ctx_lock(event);
2506 _perf_event_enable(event);
2507 perf_event_ctx_unlock(event, ctx);
2508}
dcfce4a0 2509EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2510
375637bc
AS
2511struct stop_event_data {
2512 struct perf_event *event;
2513 unsigned int restart;
2514};
2515
95ff4ca2
AS
2516static int __perf_event_stop(void *info)
2517{
375637bc
AS
2518 struct stop_event_data *sd = info;
2519 struct perf_event *event = sd->event;
95ff4ca2 2520
375637bc 2521 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2522 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2523 return 0;
2524
2525 /* matches smp_wmb() in event_sched_in() */
2526 smp_rmb();
2527
2528 /*
2529 * There is a window with interrupts enabled before we get here,
2530 * so we need to check again lest we try to stop another CPU's event.
2531 */
2532 if (READ_ONCE(event->oncpu) != smp_processor_id())
2533 return -EAGAIN;
2534
2535 event->pmu->stop(event, PERF_EF_UPDATE);
2536
375637bc
AS
2537 /*
2538 * May race with the actual stop (through perf_pmu_output_stop()),
2539 * but it is only used for events with AUX ring buffer, and such
2540 * events will refuse to restart because of rb::aux_mmap_count==0,
2541 * see comments in perf_aux_output_begin().
2542 *
2543 * Since this is happening on a event-local CPU, no trace is lost
2544 * while restarting.
2545 */
2546 if (sd->restart)
c9bbdd48 2547 event->pmu->start(event, 0);
375637bc 2548
95ff4ca2
AS
2549 return 0;
2550}
2551
767ae086 2552static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
2553{
2554 struct stop_event_data sd = {
2555 .event = event,
767ae086 2556 .restart = restart,
375637bc
AS
2557 };
2558 int ret = 0;
2559
2560 do {
2561 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2562 return 0;
2563
2564 /* matches smp_wmb() in event_sched_in() */
2565 smp_rmb();
2566
2567 /*
2568 * We only want to restart ACTIVE events, so if the event goes
2569 * inactive here (event->oncpu==-1), there's nothing more to do;
2570 * fall through with ret==-ENXIO.
2571 */
2572 ret = cpu_function_call(READ_ONCE(event->oncpu),
2573 __perf_event_stop, &sd);
2574 } while (ret == -EAGAIN);
2575
2576 return ret;
2577}
2578
2579/*
2580 * In order to contain the amount of racy and tricky in the address filter
2581 * configuration management, it is a two part process:
2582 *
2583 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2584 * we update the addresses of corresponding vmas in
2585 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2586 * (p2) when an event is scheduled in (pmu::add), it calls
2587 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2588 * if the generation has changed since the previous call.
2589 *
2590 * If (p1) happens while the event is active, we restart it to force (p2).
2591 *
2592 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2593 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2594 * ioctl;
2595 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2596 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2597 * for reading;
2598 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2599 * of exec.
2600 */
2601void perf_event_addr_filters_sync(struct perf_event *event)
2602{
2603 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2604
2605 if (!has_addr_filter(event))
2606 return;
2607
2608 raw_spin_lock(&ifh->lock);
2609 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2610 event->pmu->addr_filters_sync(event);
2611 event->hw.addr_filters_gen = event->addr_filters_gen;
2612 }
2613 raw_spin_unlock(&ifh->lock);
2614}
2615EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2616
f63a8daa 2617static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2618{
2023b359 2619 /*
cdd6c482 2620 * not supported on inherited events
2023b359 2621 */
2e939d1d 2622 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2623 return -EINVAL;
2624
cdd6c482 2625 atomic_add(refresh, &event->event_limit);
f63a8daa 2626 _perf_event_enable(event);
2023b359
PZ
2627
2628 return 0;
79f14641 2629}
f63a8daa
PZ
2630
2631/*
2632 * See perf_event_disable()
2633 */
2634int perf_event_refresh(struct perf_event *event, int refresh)
2635{
2636 struct perf_event_context *ctx;
2637 int ret;
2638
2639 ctx = perf_event_ctx_lock(event);
2640 ret = _perf_event_refresh(event, refresh);
2641 perf_event_ctx_unlock(event, ctx);
2642
2643 return ret;
2644}
26ca5c11 2645EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2646
5b0311e1
FW
2647static void ctx_sched_out(struct perf_event_context *ctx,
2648 struct perf_cpu_context *cpuctx,
2649 enum event_type_t event_type)
235c7fc7 2650{
db24d33e 2651 int is_active = ctx->is_active;
c994d613 2652 struct perf_event *event;
235c7fc7 2653
c994d613 2654 lockdep_assert_held(&ctx->lock);
235c7fc7 2655
39a43640
PZ
2656 if (likely(!ctx->nr_events)) {
2657 /*
2658 * See __perf_remove_from_context().
2659 */
2660 WARN_ON_ONCE(ctx->is_active);
2661 if (ctx->task)
2662 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2663 return;
39a43640
PZ
2664 }
2665
db24d33e 2666 ctx->is_active &= ~event_type;
3cbaa590
PZ
2667 if (!(ctx->is_active & EVENT_ALL))
2668 ctx->is_active = 0;
2669
63e30d3e
PZ
2670 if (ctx->task) {
2671 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2672 if (!ctx->is_active)
2673 cpuctx->task_ctx = NULL;
2674 }
facc4307 2675
8fdc6539
PZ
2676 /*
2677 * Always update time if it was set; not only when it changes.
2678 * Otherwise we can 'forget' to update time for any but the last
2679 * context we sched out. For example:
2680 *
2681 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2682 * ctx_sched_out(.event_type = EVENT_PINNED)
2683 *
2684 * would only update time for the pinned events.
2685 */
3cbaa590
PZ
2686 if (is_active & EVENT_TIME) {
2687 /* update (and stop) ctx time */
2688 update_context_time(ctx);
2689 update_cgrp_time_from_cpuctx(cpuctx);
2690 }
2691
8fdc6539
PZ
2692 is_active ^= ctx->is_active; /* changed bits */
2693
3cbaa590 2694 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2695 return;
5b0311e1 2696
075e0b00 2697 perf_pmu_disable(ctx->pmu);
3cbaa590 2698 if (is_active & EVENT_PINNED) {
889ff015
FW
2699 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2700 group_sched_out(event, cpuctx, ctx);
9ed6060d 2701 }
889ff015 2702
3cbaa590 2703 if (is_active & EVENT_FLEXIBLE) {
889ff015 2704 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2705 group_sched_out(event, cpuctx, ctx);
9ed6060d 2706 }
1b9a644f 2707 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2708}
2709
564c2b21 2710/*
5a3126d4
PZ
2711 * Test whether two contexts are equivalent, i.e. whether they have both been
2712 * cloned from the same version of the same context.
2713 *
2714 * Equivalence is measured using a generation number in the context that is
2715 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2716 * and list_del_event().
564c2b21 2717 */
cdd6c482
IM
2718static int context_equiv(struct perf_event_context *ctx1,
2719 struct perf_event_context *ctx2)
564c2b21 2720{
211de6eb
PZ
2721 lockdep_assert_held(&ctx1->lock);
2722 lockdep_assert_held(&ctx2->lock);
2723
5a3126d4
PZ
2724 /* Pinning disables the swap optimization */
2725 if (ctx1->pin_count || ctx2->pin_count)
2726 return 0;
2727
2728 /* If ctx1 is the parent of ctx2 */
2729 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2730 return 1;
2731
2732 /* If ctx2 is the parent of ctx1 */
2733 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2734 return 1;
2735
2736 /*
2737 * If ctx1 and ctx2 have the same parent; we flatten the parent
2738 * hierarchy, see perf_event_init_context().
2739 */
2740 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2741 ctx1->parent_gen == ctx2->parent_gen)
2742 return 1;
2743
2744 /* Unmatched */
2745 return 0;
564c2b21
PM
2746}
2747
cdd6c482
IM
2748static void __perf_event_sync_stat(struct perf_event *event,
2749 struct perf_event *next_event)
bfbd3381
PZ
2750{
2751 u64 value;
2752
cdd6c482 2753 if (!event->attr.inherit_stat)
bfbd3381
PZ
2754 return;
2755
2756 /*
cdd6c482 2757 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2758 * because we're in the middle of a context switch and have IRQs
2759 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2760 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2761 * don't need to use it.
2762 */
0d3d73aa 2763 if (event->state == PERF_EVENT_STATE_ACTIVE)
3dbebf15 2764 event->pmu->read(event);
bfbd3381 2765
0d3d73aa 2766 perf_event_update_time(event);
bfbd3381
PZ
2767
2768 /*
cdd6c482 2769 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2770 * values when we flip the contexts.
2771 */
e7850595
PZ
2772 value = local64_read(&next_event->count);
2773 value = local64_xchg(&event->count, value);
2774 local64_set(&next_event->count, value);
bfbd3381 2775
cdd6c482
IM
2776 swap(event->total_time_enabled, next_event->total_time_enabled);
2777 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2778
bfbd3381 2779 /*
19d2e755 2780 * Since we swizzled the values, update the user visible data too.
bfbd3381 2781 */
cdd6c482
IM
2782 perf_event_update_userpage(event);
2783 perf_event_update_userpage(next_event);
bfbd3381
PZ
2784}
2785
cdd6c482
IM
2786static void perf_event_sync_stat(struct perf_event_context *ctx,
2787 struct perf_event_context *next_ctx)
bfbd3381 2788{
cdd6c482 2789 struct perf_event *event, *next_event;
bfbd3381
PZ
2790
2791 if (!ctx->nr_stat)
2792 return;
2793
02ffdbc8
PZ
2794 update_context_time(ctx);
2795
cdd6c482
IM
2796 event = list_first_entry(&ctx->event_list,
2797 struct perf_event, event_entry);
bfbd3381 2798
cdd6c482
IM
2799 next_event = list_first_entry(&next_ctx->event_list,
2800 struct perf_event, event_entry);
bfbd3381 2801
cdd6c482
IM
2802 while (&event->event_entry != &ctx->event_list &&
2803 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2804
cdd6c482 2805 __perf_event_sync_stat(event, next_event);
bfbd3381 2806
cdd6c482
IM
2807 event = list_next_entry(event, event_entry);
2808 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2809 }
2810}
2811
fe4b04fa
PZ
2812static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2813 struct task_struct *next)
0793a61d 2814{
8dc85d54 2815 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2816 struct perf_event_context *next_ctx;
5a3126d4 2817 struct perf_event_context *parent, *next_parent;
108b02cf 2818 struct perf_cpu_context *cpuctx;
c93f7669 2819 int do_switch = 1;
0793a61d 2820
108b02cf
PZ
2821 if (likely(!ctx))
2822 return;
10989fb2 2823
108b02cf
PZ
2824 cpuctx = __get_cpu_context(ctx);
2825 if (!cpuctx->task_ctx)
0793a61d
TG
2826 return;
2827
c93f7669 2828 rcu_read_lock();
8dc85d54 2829 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2830 if (!next_ctx)
2831 goto unlock;
2832
2833 parent = rcu_dereference(ctx->parent_ctx);
2834 next_parent = rcu_dereference(next_ctx->parent_ctx);
2835
2836 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2837 if (!parent && !next_parent)
5a3126d4
PZ
2838 goto unlock;
2839
2840 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2841 /*
2842 * Looks like the two contexts are clones, so we might be
2843 * able to optimize the context switch. We lock both
2844 * contexts and check that they are clones under the
2845 * lock (including re-checking that neither has been
2846 * uncloned in the meantime). It doesn't matter which
2847 * order we take the locks because no other cpu could
2848 * be trying to lock both of these tasks.
2849 */
e625cce1
TG
2850 raw_spin_lock(&ctx->lock);
2851 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2852 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
2853 WRITE_ONCE(ctx->task, next);
2854 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
2855
2856 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2857
63b6da39
PZ
2858 /*
2859 * RCU_INIT_POINTER here is safe because we've not
2860 * modified the ctx and the above modification of
2861 * ctx->task and ctx->task_ctx_data are immaterial
2862 * since those values are always verified under
2863 * ctx->lock which we're now holding.
2864 */
2865 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2866 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2867
c93f7669 2868 do_switch = 0;
bfbd3381 2869
cdd6c482 2870 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2871 }
e625cce1
TG
2872 raw_spin_unlock(&next_ctx->lock);
2873 raw_spin_unlock(&ctx->lock);
564c2b21 2874 }
5a3126d4 2875unlock:
c93f7669 2876 rcu_read_unlock();
564c2b21 2877
c93f7669 2878 if (do_switch) {
facc4307 2879 raw_spin_lock(&ctx->lock);
487f05e1 2880 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
facc4307 2881 raw_spin_unlock(&ctx->lock);
c93f7669 2882 }
0793a61d
TG
2883}
2884
e48c1788
PZ
2885static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2886
ba532500
YZ
2887void perf_sched_cb_dec(struct pmu *pmu)
2888{
e48c1788
PZ
2889 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2890
ba532500 2891 this_cpu_dec(perf_sched_cb_usages);
e48c1788
PZ
2892
2893 if (!--cpuctx->sched_cb_usage)
2894 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
2895}
2896
e48c1788 2897
ba532500
YZ
2898void perf_sched_cb_inc(struct pmu *pmu)
2899{
e48c1788
PZ
2900 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2901
2902 if (!cpuctx->sched_cb_usage++)
2903 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2904
ba532500
YZ
2905 this_cpu_inc(perf_sched_cb_usages);
2906}
2907
2908/*
2909 * This function provides the context switch callback to the lower code
2910 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
2911 *
2912 * This callback is relevant even to per-cpu events; for example multi event
2913 * PEBS requires this to provide PID/TID information. This requires we flush
2914 * all queued PEBS records before we context switch to a new task.
ba532500
YZ
2915 */
2916static void perf_pmu_sched_task(struct task_struct *prev,
2917 struct task_struct *next,
2918 bool sched_in)
2919{
2920 struct perf_cpu_context *cpuctx;
2921 struct pmu *pmu;
ba532500
YZ
2922
2923 if (prev == next)
2924 return;
2925
e48c1788 2926 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
1fd7e416 2927 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
ba532500 2928
e48c1788
PZ
2929 if (WARN_ON_ONCE(!pmu->sched_task))
2930 continue;
ba532500 2931
e48c1788
PZ
2932 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2933 perf_pmu_disable(pmu);
ba532500 2934
e48c1788 2935 pmu->sched_task(cpuctx->task_ctx, sched_in);
ba532500 2936
e48c1788
PZ
2937 perf_pmu_enable(pmu);
2938 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
ba532500 2939 }
ba532500
YZ
2940}
2941
45ac1403
AH
2942static void perf_event_switch(struct task_struct *task,
2943 struct task_struct *next_prev, bool sched_in);
2944
8dc85d54
PZ
2945#define for_each_task_context_nr(ctxn) \
2946 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2947
2948/*
2949 * Called from scheduler to remove the events of the current task,
2950 * with interrupts disabled.
2951 *
2952 * We stop each event and update the event value in event->count.
2953 *
2954 * This does not protect us against NMI, but disable()
2955 * sets the disabled bit in the control field of event _before_
2956 * accessing the event control register. If a NMI hits, then it will
2957 * not restart the event.
2958 */
ab0cce56
JO
2959void __perf_event_task_sched_out(struct task_struct *task,
2960 struct task_struct *next)
8dc85d54
PZ
2961{
2962 int ctxn;
2963
ba532500
YZ
2964 if (__this_cpu_read(perf_sched_cb_usages))
2965 perf_pmu_sched_task(task, next, false);
2966
45ac1403
AH
2967 if (atomic_read(&nr_switch_events))
2968 perf_event_switch(task, next, false);
2969
8dc85d54
PZ
2970 for_each_task_context_nr(ctxn)
2971 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2972
2973 /*
2974 * if cgroup events exist on this CPU, then we need
2975 * to check if we have to switch out PMU state.
2976 * cgroup event are system-wide mode only
2977 */
4a32fea9 2978 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2979 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2980}
2981
5b0311e1
FW
2982/*
2983 * Called with IRQs disabled
2984 */
2985static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2986 enum event_type_t event_type)
2987{
2988 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2989}
2990
235c7fc7 2991static void
5b0311e1 2992ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2993 struct perf_cpu_context *cpuctx)
0793a61d 2994{
cdd6c482 2995 struct perf_event *event;
0793a61d 2996
889ff015
FW
2997 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2998 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2999 continue;
5632ab12 3000 if (!event_filter_match(event))
3b6f9e5c
PM
3001 continue;
3002
8c9ed8e1 3003 if (group_can_go_on(event, cpuctx, 1))
6e37738a 3004 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
3005
3006 /*
3007 * If this pinned group hasn't been scheduled,
3008 * put it in error state.
3009 */
0d3d73aa
PZ
3010 if (event->state == PERF_EVENT_STATE_INACTIVE)
3011 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3b6f9e5c 3012 }
5b0311e1
FW
3013}
3014
3015static void
3016ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 3017 struct perf_cpu_context *cpuctx)
5b0311e1
FW
3018{
3019 struct perf_event *event;
3020 int can_add_hw = 1;
3b6f9e5c 3021
889ff015
FW
3022 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3023 /* Ignore events in OFF or ERROR state */
3024 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3025 continue;
04289bb9
IM
3026 /*
3027 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 3028 * of events:
04289bb9 3029 */
5632ab12 3030 if (!event_filter_match(event))
0793a61d
TG
3031 continue;
3032
9ed6060d 3033 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 3034 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 3035 can_add_hw = 0;
9ed6060d 3036 }
0793a61d 3037 }
5b0311e1
FW
3038}
3039
3040static void
3041ctx_sched_in(struct perf_event_context *ctx,
3042 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3043 enum event_type_t event_type,
3044 struct task_struct *task)
5b0311e1 3045{
db24d33e 3046 int is_active = ctx->is_active;
c994d613
PZ
3047 u64 now;
3048
3049 lockdep_assert_held(&ctx->lock);
e5d1367f 3050
5b0311e1 3051 if (likely(!ctx->nr_events))
facc4307 3052 return;
5b0311e1 3053
3cbaa590 3054 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3055 if (ctx->task) {
3056 if (!is_active)
3057 cpuctx->task_ctx = ctx;
3058 else
3059 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3060 }
3061
3cbaa590
PZ
3062 is_active ^= ctx->is_active; /* changed bits */
3063
3064 if (is_active & EVENT_TIME) {
3065 /* start ctx time */
3066 now = perf_clock();
3067 ctx->timestamp = now;
3068 perf_cgroup_set_timestamp(task, ctx);
3069 }
3070
5b0311e1
FW
3071 /*
3072 * First go through the list and put on any pinned groups
3073 * in order to give them the best chance of going on.
3074 */
3cbaa590 3075 if (is_active & EVENT_PINNED)
6e37738a 3076 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3077
3078 /* Then walk through the lower prio flexible groups */
3cbaa590 3079 if (is_active & EVENT_FLEXIBLE)
6e37738a 3080 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3081}
3082
329c0e01 3083static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3084 enum event_type_t event_type,
3085 struct task_struct *task)
329c0e01
FW
3086{
3087 struct perf_event_context *ctx = &cpuctx->ctx;
3088
e5d1367f 3089 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3090}
3091
e5d1367f
SE
3092static void perf_event_context_sched_in(struct perf_event_context *ctx,
3093 struct task_struct *task)
235c7fc7 3094{
108b02cf 3095 struct perf_cpu_context *cpuctx;
235c7fc7 3096
108b02cf 3097 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3098 if (cpuctx->task_ctx == ctx)
3099 return;
3100
facc4307 3101 perf_ctx_lock(cpuctx, ctx);
fdccc3fb 3102 /*
3103 * We must check ctx->nr_events while holding ctx->lock, such
3104 * that we serialize against perf_install_in_context().
3105 */
3106 if (!ctx->nr_events)
3107 goto unlock;
3108
1b9a644f 3109 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3110 /*
3111 * We want to keep the following priority order:
3112 * cpu pinned (that don't need to move), task pinned,
3113 * cpu flexible, task flexible.
fe45bafb
AS
3114 *
3115 * However, if task's ctx is not carrying any pinned
3116 * events, no need to flip the cpuctx's events around.
329c0e01 3117 */
fe45bafb
AS
3118 if (!list_empty(&ctx->pinned_groups))
3119 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3120 perf_event_sched_in(cpuctx, ctx, task);
facc4307 3121 perf_pmu_enable(ctx->pmu);
fdccc3fb 3122
3123unlock:
facc4307 3124 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3125}
3126
8dc85d54
PZ
3127/*
3128 * Called from scheduler to add the events of the current task
3129 * with interrupts disabled.
3130 *
3131 * We restore the event value and then enable it.
3132 *
3133 * This does not protect us against NMI, but enable()
3134 * sets the enabled bit in the control field of event _before_
3135 * accessing the event control register. If a NMI hits, then it will
3136 * keep the event running.
3137 */
ab0cce56
JO
3138void __perf_event_task_sched_in(struct task_struct *prev,
3139 struct task_struct *task)
8dc85d54
PZ
3140{
3141 struct perf_event_context *ctx;
3142 int ctxn;
3143
7e41d177
PZ
3144 /*
3145 * If cgroup events exist on this CPU, then we need to check if we have
3146 * to switch in PMU state; cgroup event are system-wide mode only.
3147 *
3148 * Since cgroup events are CPU events, we must schedule these in before
3149 * we schedule in the task events.
3150 */
3151 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3152 perf_cgroup_sched_in(prev, task);
3153
8dc85d54
PZ
3154 for_each_task_context_nr(ctxn) {
3155 ctx = task->perf_event_ctxp[ctxn];
3156 if (likely(!ctx))
3157 continue;
3158
e5d1367f 3159 perf_event_context_sched_in(ctx, task);
8dc85d54 3160 }
d010b332 3161
45ac1403
AH
3162 if (atomic_read(&nr_switch_events))
3163 perf_event_switch(task, prev, true);
3164
ba532500
YZ
3165 if (__this_cpu_read(perf_sched_cb_usages))
3166 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3167}
3168
abd50713
PZ
3169static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3170{
3171 u64 frequency = event->attr.sample_freq;
3172 u64 sec = NSEC_PER_SEC;
3173 u64 divisor, dividend;
3174
3175 int count_fls, nsec_fls, frequency_fls, sec_fls;
3176
3177 count_fls = fls64(count);
3178 nsec_fls = fls64(nsec);
3179 frequency_fls = fls64(frequency);
3180 sec_fls = 30;
3181
3182 /*
3183 * We got @count in @nsec, with a target of sample_freq HZ
3184 * the target period becomes:
3185 *
3186 * @count * 10^9
3187 * period = -------------------
3188 * @nsec * sample_freq
3189 *
3190 */
3191
3192 /*
3193 * Reduce accuracy by one bit such that @a and @b converge
3194 * to a similar magnitude.
3195 */
fe4b04fa 3196#define REDUCE_FLS(a, b) \
abd50713
PZ
3197do { \
3198 if (a##_fls > b##_fls) { \
3199 a >>= 1; \
3200 a##_fls--; \
3201 } else { \
3202 b >>= 1; \
3203 b##_fls--; \
3204 } \
3205} while (0)
3206
3207 /*
3208 * Reduce accuracy until either term fits in a u64, then proceed with
3209 * the other, so that finally we can do a u64/u64 division.
3210 */
3211 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3212 REDUCE_FLS(nsec, frequency);
3213 REDUCE_FLS(sec, count);
3214 }
3215
3216 if (count_fls + sec_fls > 64) {
3217 divisor = nsec * frequency;
3218
3219 while (count_fls + sec_fls > 64) {
3220 REDUCE_FLS(count, sec);
3221 divisor >>= 1;
3222 }
3223
3224 dividend = count * sec;
3225 } else {
3226 dividend = count * sec;
3227
3228 while (nsec_fls + frequency_fls > 64) {
3229 REDUCE_FLS(nsec, frequency);
3230 dividend >>= 1;
3231 }
3232
3233 divisor = nsec * frequency;
3234 }
3235
f6ab91ad
PZ
3236 if (!divisor)
3237 return dividend;
3238
abd50713
PZ
3239 return div64_u64(dividend, divisor);
3240}
3241
e050e3f0
SE
3242static DEFINE_PER_CPU(int, perf_throttled_count);
3243static DEFINE_PER_CPU(u64, perf_throttled_seq);
3244
f39d47ff 3245static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3246{
cdd6c482 3247 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3248 s64 period, sample_period;
bd2b5b12
PZ
3249 s64 delta;
3250
abd50713 3251 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3252
3253 delta = (s64)(period - hwc->sample_period);
3254 delta = (delta + 7) / 8; /* low pass filter */
3255
3256 sample_period = hwc->sample_period + delta;
3257
3258 if (!sample_period)
3259 sample_period = 1;
3260
bd2b5b12 3261 hwc->sample_period = sample_period;
abd50713 3262
e7850595 3263 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3264 if (disable)
3265 event->pmu->stop(event, PERF_EF_UPDATE);
3266
e7850595 3267 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3268
3269 if (disable)
3270 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3271 }
bd2b5b12
PZ
3272}
3273
e050e3f0
SE
3274/*
3275 * combine freq adjustment with unthrottling to avoid two passes over the
3276 * events. At the same time, make sure, having freq events does not change
3277 * the rate of unthrottling as that would introduce bias.
3278 */
3279static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3280 int needs_unthr)
60db5e09 3281{
cdd6c482
IM
3282 struct perf_event *event;
3283 struct hw_perf_event *hwc;
e050e3f0 3284 u64 now, period = TICK_NSEC;
abd50713 3285 s64 delta;
60db5e09 3286
e050e3f0
SE
3287 /*
3288 * only need to iterate over all events iff:
3289 * - context have events in frequency mode (needs freq adjust)
3290 * - there are events to unthrottle on this cpu
3291 */
3292 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3293 return;
3294
e050e3f0 3295 raw_spin_lock(&ctx->lock);
f39d47ff 3296 perf_pmu_disable(ctx->pmu);
e050e3f0 3297
03541f8b 3298 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3299 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3300 continue;
3301
5632ab12 3302 if (!event_filter_match(event))
5d27c23d
PZ
3303 continue;
3304
44377277
AS
3305 perf_pmu_disable(event->pmu);
3306
cdd6c482 3307 hwc = &event->hw;
6a24ed6c 3308
ae23bff1 3309 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3310 hwc->interrupts = 0;
cdd6c482 3311 perf_log_throttle(event, 1);
a4eaf7f1 3312 event->pmu->start(event, 0);
a78ac325
PZ
3313 }
3314
cdd6c482 3315 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3316 goto next;
60db5e09 3317
e050e3f0
SE
3318 /*
3319 * stop the event and update event->count
3320 */
3321 event->pmu->stop(event, PERF_EF_UPDATE);
3322
e7850595 3323 now = local64_read(&event->count);
abd50713
PZ
3324 delta = now - hwc->freq_count_stamp;
3325 hwc->freq_count_stamp = now;
60db5e09 3326
e050e3f0
SE
3327 /*
3328 * restart the event
3329 * reload only if value has changed
f39d47ff
SE
3330 * we have stopped the event so tell that
3331 * to perf_adjust_period() to avoid stopping it
3332 * twice.
e050e3f0 3333 */
abd50713 3334 if (delta > 0)
f39d47ff 3335 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3336
3337 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3338 next:
3339 perf_pmu_enable(event->pmu);
60db5e09 3340 }
e050e3f0 3341
f39d47ff 3342 perf_pmu_enable(ctx->pmu);
e050e3f0 3343 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3344}
3345
235c7fc7 3346/*
cdd6c482 3347 * Round-robin a context's events:
235c7fc7 3348 */
cdd6c482 3349static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3350{
dddd3379
TG
3351 /*
3352 * Rotate the first entry last of non-pinned groups. Rotation might be
3353 * disabled by the inheritance code.
3354 */
3355 if (!ctx->rotate_disable)
3356 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3357}
3358
9e630205 3359static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3360{
8dc85d54 3361 struct perf_event_context *ctx = NULL;
2fde4f94 3362 int rotate = 0;
7fc23a53 3363
b5ab4cd5 3364 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3365 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3366 rotate = 1;
3367 }
235c7fc7 3368
8dc85d54 3369 ctx = cpuctx->task_ctx;
b5ab4cd5 3370 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3371 if (ctx->nr_events != ctx->nr_active)
3372 rotate = 1;
3373 }
9717e6cd 3374
e050e3f0 3375 if (!rotate)
0f5a2601
PZ
3376 goto done;
3377
facc4307 3378 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3379 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3380
e050e3f0
SE
3381 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3382 if (ctx)
3383 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3384
e050e3f0
SE
3385 rotate_ctx(&cpuctx->ctx);
3386 if (ctx)
3387 rotate_ctx(ctx);
235c7fc7 3388
e050e3f0 3389 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3390
0f5a2601
PZ
3391 perf_pmu_enable(cpuctx->ctx.pmu);
3392 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3393done:
9e630205
SE
3394
3395 return rotate;
e9d2b064
PZ
3396}
3397
3398void perf_event_task_tick(void)
3399{
2fde4f94
MR
3400 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3401 struct perf_event_context *ctx, *tmp;
e050e3f0 3402 int throttled;
b5ab4cd5 3403
16444645 3404 lockdep_assert_irqs_disabled();
e9d2b064 3405
e050e3f0
SE
3406 __this_cpu_inc(perf_throttled_seq);
3407 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3408 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3409
2fde4f94 3410 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3411 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3412}
3413
889ff015
FW
3414static int event_enable_on_exec(struct perf_event *event,
3415 struct perf_event_context *ctx)
3416{
3417 if (!event->attr.enable_on_exec)
3418 return 0;
3419
3420 event->attr.enable_on_exec = 0;
3421 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3422 return 0;
3423
0d3d73aa 3424 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
889ff015
FW
3425
3426 return 1;
3427}
3428
57e7986e 3429/*
cdd6c482 3430 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3431 * This expects task == current.
3432 */
c1274499 3433static void perf_event_enable_on_exec(int ctxn)
57e7986e 3434{
c1274499 3435 struct perf_event_context *ctx, *clone_ctx = NULL;
487f05e1 3436 enum event_type_t event_type = 0;
3e349507 3437 struct perf_cpu_context *cpuctx;
cdd6c482 3438 struct perf_event *event;
57e7986e
PM
3439 unsigned long flags;
3440 int enabled = 0;
3441
3442 local_irq_save(flags);
c1274499 3443 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3444 if (!ctx || !ctx->nr_events)
57e7986e
PM
3445 goto out;
3446
3e349507
PZ
3447 cpuctx = __get_cpu_context(ctx);
3448 perf_ctx_lock(cpuctx, ctx);
7fce2509 3449 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
487f05e1 3450 list_for_each_entry(event, &ctx->event_list, event_entry) {
3e349507 3451 enabled |= event_enable_on_exec(event, ctx);
487f05e1
AS
3452 event_type |= get_event_type(event);
3453 }
57e7986e
PM
3454
3455 /*
3e349507 3456 * Unclone and reschedule this context if we enabled any event.
57e7986e 3457 */
3e349507 3458 if (enabled) {
211de6eb 3459 clone_ctx = unclone_ctx(ctx);
487f05e1 3460 ctx_resched(cpuctx, ctx, event_type);
7bbba0eb
PZ
3461 } else {
3462 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3e349507
PZ
3463 }
3464 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3465
9ed6060d 3466out:
57e7986e 3467 local_irq_restore(flags);
211de6eb
PZ
3468
3469 if (clone_ctx)
3470 put_ctx(clone_ctx);
57e7986e
PM
3471}
3472
0492d4c5
PZ
3473struct perf_read_data {
3474 struct perf_event *event;
3475 bool group;
7d88962e 3476 int ret;
0492d4c5
PZ
3477};
3478
451d24d1 3479static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
d6a2f903 3480{
d6a2f903
DCC
3481 u16 local_pkg, event_pkg;
3482
3483 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
451d24d1
PZ
3484 int local_cpu = smp_processor_id();
3485
3486 event_pkg = topology_physical_package_id(event_cpu);
3487 local_pkg = topology_physical_package_id(local_cpu);
d6a2f903
DCC
3488
3489 if (event_pkg == local_pkg)
3490 return local_cpu;
3491 }
3492
3493 return event_cpu;
3494}
3495
0793a61d 3496/*
cdd6c482 3497 * Cross CPU call to read the hardware event
0793a61d 3498 */
cdd6c482 3499static void __perf_event_read(void *info)
0793a61d 3500{
0492d4c5
PZ
3501 struct perf_read_data *data = info;
3502 struct perf_event *sub, *event = data->event;
cdd6c482 3503 struct perf_event_context *ctx = event->ctx;
108b02cf 3504 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3505 struct pmu *pmu = event->pmu;
621a01ea 3506
e1ac3614
PM
3507 /*
3508 * If this is a task context, we need to check whether it is
3509 * the current task context of this cpu. If not it has been
3510 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3511 * event->count would have been updated to a recent sample
3512 * when the event was scheduled out.
e1ac3614
PM
3513 */
3514 if (ctx->task && cpuctx->task_ctx != ctx)
3515 return;
3516
e625cce1 3517 raw_spin_lock(&ctx->lock);
0c1cbc18 3518 if (ctx->is_active & EVENT_TIME) {
542e72fc 3519 update_context_time(ctx);
e5d1367f
SE
3520 update_cgrp_time_from_event(event);
3521 }
0492d4c5 3522
0d3d73aa
PZ
3523 perf_event_update_time(event);
3524 if (data->group)
3525 perf_event_update_sibling_time(event);
0c1cbc18 3526
4a00c16e
SB
3527 if (event->state != PERF_EVENT_STATE_ACTIVE)
3528 goto unlock;
0492d4c5 3529
4a00c16e
SB
3530 if (!data->group) {
3531 pmu->read(event);
3532 data->ret = 0;
0492d4c5 3533 goto unlock;
4a00c16e
SB
3534 }
3535
3536 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3537
3538 pmu->read(event);
0492d4c5
PZ
3539
3540 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4a00c16e
SB
3541 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3542 /*
3543 * Use sibling's PMU rather than @event's since
3544 * sibling could be on different (eg: software) PMU.
3545 */
0492d4c5 3546 sub->pmu->read(sub);
4a00c16e 3547 }
0492d4c5 3548 }
4a00c16e
SB
3549
3550 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3551
3552unlock:
e625cce1 3553 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3554}
3555
b5e58793
PZ
3556static inline u64 perf_event_count(struct perf_event *event)
3557{
c39a0e2c 3558 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
3559}
3560
ffe8690c
KX
3561/*
3562 * NMI-safe method to read a local event, that is an event that
3563 * is:
3564 * - either for the current task, or for this CPU
3565 * - does not have inherit set, for inherited task events
3566 * will not be local and we cannot read them atomically
3567 * - must not have a pmu::count method
3568 */
7d9285e8
YS
3569int perf_event_read_local(struct perf_event *event, u64 *value,
3570 u64 *enabled, u64 *running)
ffe8690c
KX
3571{
3572 unsigned long flags;
f91840a3 3573 int ret = 0;
ffe8690c
KX
3574
3575 /*
3576 * Disabling interrupts avoids all counter scheduling (context
3577 * switches, timer based rotation and IPIs).
3578 */
3579 local_irq_save(flags);
3580
ffe8690c
KX
3581 /*
3582 * It must not be an event with inherit set, we cannot read
3583 * all child counters from atomic context.
3584 */
f91840a3
AS
3585 if (event->attr.inherit) {
3586 ret = -EOPNOTSUPP;
3587 goto out;
3588 }
ffe8690c 3589
f91840a3
AS
3590 /* If this is a per-task event, it must be for current */
3591 if ((event->attach_state & PERF_ATTACH_TASK) &&
3592 event->hw.target != current) {
3593 ret = -EINVAL;
3594 goto out;
3595 }
3596
3597 /* If this is a per-CPU event, it must be for this CPU */
3598 if (!(event->attach_state & PERF_ATTACH_TASK) &&
3599 event->cpu != smp_processor_id()) {
3600 ret = -EINVAL;
3601 goto out;
3602 }
ffe8690c 3603
0d3d73aa 3604
ffe8690c
KX
3605 /*
3606 * If the event is currently on this CPU, its either a per-task event,
3607 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3608 * oncpu == -1).
3609 */
3610 if (event->oncpu == smp_processor_id())
3611 event->pmu->read(event);
3612
f91840a3 3613 *value = local64_read(&event->count);
0d3d73aa
PZ
3614 if (enabled || running) {
3615 u64 now = event->shadow_ctx_time + perf_clock();
3616 u64 __enabled, __running;
3617
3618 __perf_update_times(event, now, &__enabled, &__running);
3619 if (enabled)
3620 *enabled = __enabled;
3621 if (running)
3622 *running = __running;
3623 }
f91840a3 3624out:
ffe8690c
KX
3625 local_irq_restore(flags);
3626
f91840a3 3627 return ret;
ffe8690c
KX
3628}
3629
7d88962e 3630static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3631{
0c1cbc18 3632 enum perf_event_state state = READ_ONCE(event->state);
451d24d1 3633 int event_cpu, ret = 0;
7d88962e 3634
0793a61d 3635 /*
cdd6c482
IM
3636 * If event is enabled and currently active on a CPU, update the
3637 * value in the event structure:
0793a61d 3638 */
0c1cbc18
PZ
3639again:
3640 if (state == PERF_EVENT_STATE_ACTIVE) {
3641 struct perf_read_data data;
3642
3643 /*
3644 * Orders the ->state and ->oncpu loads such that if we see
3645 * ACTIVE we must also see the right ->oncpu.
3646 *
3647 * Matches the smp_wmb() from event_sched_in().
3648 */
3649 smp_rmb();
d6a2f903 3650
451d24d1
PZ
3651 event_cpu = READ_ONCE(event->oncpu);
3652 if ((unsigned)event_cpu >= nr_cpu_ids)
3653 return 0;
3654
0c1cbc18
PZ
3655 data = (struct perf_read_data){
3656 .event = event,
3657 .group = group,
3658 .ret = 0,
3659 };
3660
451d24d1
PZ
3661 preempt_disable();
3662 event_cpu = __perf_event_read_cpu(event, event_cpu);
d6a2f903 3663
58763148
PZ
3664 /*
3665 * Purposely ignore the smp_call_function_single() return
3666 * value.
3667 *
451d24d1 3668 * If event_cpu isn't a valid CPU it means the event got
58763148
PZ
3669 * scheduled out and that will have updated the event count.
3670 *
3671 * Therefore, either way, we'll have an up-to-date event count
3672 * after this.
3673 */
451d24d1
PZ
3674 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3675 preempt_enable();
58763148 3676 ret = data.ret;
0c1cbc18
PZ
3677
3678 } else if (state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3679 struct perf_event_context *ctx = event->ctx;
3680 unsigned long flags;
3681
e625cce1 3682 raw_spin_lock_irqsave(&ctx->lock, flags);
0c1cbc18
PZ
3683 state = event->state;
3684 if (state != PERF_EVENT_STATE_INACTIVE) {
3685 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3686 goto again;
3687 }
3688
c530ccd9 3689 /*
0c1cbc18
PZ
3690 * May read while context is not active (e.g., thread is
3691 * blocked), in that case we cannot update context time
c530ccd9 3692 */
0c1cbc18 3693 if (ctx->is_active & EVENT_TIME) {
c530ccd9 3694 update_context_time(ctx);
e5d1367f
SE
3695 update_cgrp_time_from_event(event);
3696 }
0c1cbc18 3697
0d3d73aa 3698 perf_event_update_time(event);
0492d4c5 3699 if (group)
0d3d73aa 3700 perf_event_update_sibling_time(event);
e625cce1 3701 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3702 }
7d88962e
SB
3703
3704 return ret;
0793a61d
TG
3705}
3706
a63eaf34 3707/*
cdd6c482 3708 * Initialize the perf_event context in a task_struct:
a63eaf34 3709 */
eb184479 3710static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3711{
e625cce1 3712 raw_spin_lock_init(&ctx->lock);
a63eaf34 3713 mutex_init(&ctx->mutex);
2fde4f94 3714 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3715 INIT_LIST_HEAD(&ctx->pinned_groups);
3716 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3717 INIT_LIST_HEAD(&ctx->event_list);
3718 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3719}
3720
3721static struct perf_event_context *
3722alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3723{
3724 struct perf_event_context *ctx;
3725
3726 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3727 if (!ctx)
3728 return NULL;
3729
3730 __perf_event_init_context(ctx);
3731 if (task) {
3732 ctx->task = task;
3733 get_task_struct(task);
0793a61d 3734 }
eb184479
PZ
3735 ctx->pmu = pmu;
3736
3737 return ctx;
a63eaf34
PM
3738}
3739
2ebd4ffb
MH
3740static struct task_struct *
3741find_lively_task_by_vpid(pid_t vpid)
3742{
3743 struct task_struct *task;
0793a61d
TG
3744
3745 rcu_read_lock();
2ebd4ffb 3746 if (!vpid)
0793a61d
TG
3747 task = current;
3748 else
2ebd4ffb 3749 task = find_task_by_vpid(vpid);
0793a61d
TG
3750 if (task)
3751 get_task_struct(task);
3752 rcu_read_unlock();
3753
3754 if (!task)
3755 return ERR_PTR(-ESRCH);
3756
2ebd4ffb 3757 return task;
2ebd4ffb
MH
3758}
3759
fe4b04fa
PZ
3760/*
3761 * Returns a matching context with refcount and pincount.
3762 */
108b02cf 3763static struct perf_event_context *
4af57ef2
YZ
3764find_get_context(struct pmu *pmu, struct task_struct *task,
3765 struct perf_event *event)
0793a61d 3766{
211de6eb 3767 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3768 struct perf_cpu_context *cpuctx;
4af57ef2 3769 void *task_ctx_data = NULL;
25346b93 3770 unsigned long flags;
8dc85d54 3771 int ctxn, err;
4af57ef2 3772 int cpu = event->cpu;
0793a61d 3773
22a4ec72 3774 if (!task) {
cdd6c482 3775 /* Must be root to operate on a CPU event: */
0764771d 3776 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3777 return ERR_PTR(-EACCES);
3778
108b02cf 3779 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3780 ctx = &cpuctx->ctx;
c93f7669 3781 get_ctx(ctx);
fe4b04fa 3782 ++ctx->pin_count;
0793a61d 3783
0793a61d
TG
3784 return ctx;
3785 }
3786
8dc85d54
PZ
3787 err = -EINVAL;
3788 ctxn = pmu->task_ctx_nr;
3789 if (ctxn < 0)
3790 goto errout;
3791
4af57ef2
YZ
3792 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3793 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3794 if (!task_ctx_data) {
3795 err = -ENOMEM;
3796 goto errout;
3797 }
3798 }
3799
9ed6060d 3800retry:
8dc85d54 3801 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3802 if (ctx) {
211de6eb 3803 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3804 ++ctx->pin_count;
4af57ef2
YZ
3805
3806 if (task_ctx_data && !ctx->task_ctx_data) {
3807 ctx->task_ctx_data = task_ctx_data;
3808 task_ctx_data = NULL;
3809 }
e625cce1 3810 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3811
3812 if (clone_ctx)
3813 put_ctx(clone_ctx);
9137fb28 3814 } else {
eb184479 3815 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3816 err = -ENOMEM;
3817 if (!ctx)
3818 goto errout;
eb184479 3819
4af57ef2
YZ
3820 if (task_ctx_data) {
3821 ctx->task_ctx_data = task_ctx_data;
3822 task_ctx_data = NULL;
3823 }
3824
dbe08d82
ON
3825 err = 0;
3826 mutex_lock(&task->perf_event_mutex);
3827 /*
3828 * If it has already passed perf_event_exit_task().
3829 * we must see PF_EXITING, it takes this mutex too.
3830 */
3831 if (task->flags & PF_EXITING)
3832 err = -ESRCH;
3833 else if (task->perf_event_ctxp[ctxn])
3834 err = -EAGAIN;
fe4b04fa 3835 else {
9137fb28 3836 get_ctx(ctx);
fe4b04fa 3837 ++ctx->pin_count;
dbe08d82 3838 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3839 }
dbe08d82
ON
3840 mutex_unlock(&task->perf_event_mutex);
3841
3842 if (unlikely(err)) {
9137fb28 3843 put_ctx(ctx);
dbe08d82
ON
3844
3845 if (err == -EAGAIN)
3846 goto retry;
3847 goto errout;
a63eaf34
PM
3848 }
3849 }
3850
4af57ef2 3851 kfree(task_ctx_data);
0793a61d 3852 return ctx;
c93f7669 3853
9ed6060d 3854errout:
4af57ef2 3855 kfree(task_ctx_data);
c93f7669 3856 return ERR_PTR(err);
0793a61d
TG
3857}
3858
6fb2915d 3859static void perf_event_free_filter(struct perf_event *event);
2541517c 3860static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3861
cdd6c482 3862static void free_event_rcu(struct rcu_head *head)
592903cd 3863{
cdd6c482 3864 struct perf_event *event;
592903cd 3865
cdd6c482
IM
3866 event = container_of(head, struct perf_event, rcu_head);
3867 if (event->ns)
3868 put_pid_ns(event->ns);
6fb2915d 3869 perf_event_free_filter(event);
cdd6c482 3870 kfree(event);
592903cd
PZ
3871}
3872
b69cf536
PZ
3873static void ring_buffer_attach(struct perf_event *event,
3874 struct ring_buffer *rb);
925d519a 3875
f2fb6bef
KL
3876static void detach_sb_event(struct perf_event *event)
3877{
3878 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3879
3880 raw_spin_lock(&pel->lock);
3881 list_del_rcu(&event->sb_list);
3882 raw_spin_unlock(&pel->lock);
3883}
3884
a4f144eb 3885static bool is_sb_event(struct perf_event *event)
f2fb6bef 3886{
a4f144eb
DCC
3887 struct perf_event_attr *attr = &event->attr;
3888
f2fb6bef 3889 if (event->parent)
a4f144eb 3890 return false;
f2fb6bef
KL
3891
3892 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 3893 return false;
f2fb6bef 3894
a4f144eb
DCC
3895 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3896 attr->comm || attr->comm_exec ||
3897 attr->task ||
3898 attr->context_switch)
3899 return true;
3900 return false;
3901}
3902
3903static void unaccount_pmu_sb_event(struct perf_event *event)
3904{
3905 if (is_sb_event(event))
3906 detach_sb_event(event);
f2fb6bef
KL
3907}
3908
4beb31f3 3909static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3910{
4beb31f3
FW
3911 if (event->parent)
3912 return;
3913
4beb31f3
FW
3914 if (is_cgroup_event(event))
3915 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3916}
925d519a 3917
555e0c1e
FW
3918#ifdef CONFIG_NO_HZ_FULL
3919static DEFINE_SPINLOCK(nr_freq_lock);
3920#endif
3921
3922static void unaccount_freq_event_nohz(void)
3923{
3924#ifdef CONFIG_NO_HZ_FULL
3925 spin_lock(&nr_freq_lock);
3926 if (atomic_dec_and_test(&nr_freq_events))
3927 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3928 spin_unlock(&nr_freq_lock);
3929#endif
3930}
3931
3932static void unaccount_freq_event(void)
3933{
3934 if (tick_nohz_full_enabled())
3935 unaccount_freq_event_nohz();
3936 else
3937 atomic_dec(&nr_freq_events);
3938}
3939
4beb31f3
FW
3940static void unaccount_event(struct perf_event *event)
3941{
25432ae9
PZ
3942 bool dec = false;
3943
4beb31f3
FW
3944 if (event->parent)
3945 return;
3946
3947 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 3948 dec = true;
4beb31f3
FW
3949 if (event->attr.mmap || event->attr.mmap_data)
3950 atomic_dec(&nr_mmap_events);
3951 if (event->attr.comm)
3952 atomic_dec(&nr_comm_events);
e4222673
HB
3953 if (event->attr.namespaces)
3954 atomic_dec(&nr_namespaces_events);
4beb31f3
FW
3955 if (event->attr.task)
3956 atomic_dec(&nr_task_events);
948b26b6 3957 if (event->attr.freq)
555e0c1e 3958 unaccount_freq_event();
45ac1403 3959 if (event->attr.context_switch) {
25432ae9 3960 dec = true;
45ac1403
AH
3961 atomic_dec(&nr_switch_events);
3962 }
4beb31f3 3963 if (is_cgroup_event(event))
25432ae9 3964 dec = true;
4beb31f3 3965 if (has_branch_stack(event))
25432ae9
PZ
3966 dec = true;
3967
9107c89e
PZ
3968 if (dec) {
3969 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3970 schedule_delayed_work(&perf_sched_work, HZ);
3971 }
4beb31f3
FW
3972
3973 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
3974
3975 unaccount_pmu_sb_event(event);
4beb31f3 3976}
925d519a 3977
9107c89e
PZ
3978static void perf_sched_delayed(struct work_struct *work)
3979{
3980 mutex_lock(&perf_sched_mutex);
3981 if (atomic_dec_and_test(&perf_sched_count))
3982 static_branch_disable(&perf_sched_events);
3983 mutex_unlock(&perf_sched_mutex);
3984}
3985
bed5b25a
AS
3986/*
3987 * The following implement mutual exclusion of events on "exclusive" pmus
3988 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3989 * at a time, so we disallow creating events that might conflict, namely:
3990 *
3991 * 1) cpu-wide events in the presence of per-task events,
3992 * 2) per-task events in the presence of cpu-wide events,
3993 * 3) two matching events on the same context.
3994 *
3995 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 3996 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
3997 */
3998static int exclusive_event_init(struct perf_event *event)
3999{
4000 struct pmu *pmu = event->pmu;
4001
4002 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4003 return 0;
4004
4005 /*
4006 * Prevent co-existence of per-task and cpu-wide events on the
4007 * same exclusive pmu.
4008 *
4009 * Negative pmu::exclusive_cnt means there are cpu-wide
4010 * events on this "exclusive" pmu, positive means there are
4011 * per-task events.
4012 *
4013 * Since this is called in perf_event_alloc() path, event::ctx
4014 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4015 * to mean "per-task event", because unlike other attach states it
4016 * never gets cleared.
4017 */
4018 if (event->attach_state & PERF_ATTACH_TASK) {
4019 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4020 return -EBUSY;
4021 } else {
4022 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4023 return -EBUSY;
4024 }
4025
4026 return 0;
4027}
4028
4029static void exclusive_event_destroy(struct perf_event *event)
4030{
4031 struct pmu *pmu = event->pmu;
4032
4033 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4034 return;
4035
4036 /* see comment in exclusive_event_init() */
4037 if (event->attach_state & PERF_ATTACH_TASK)
4038 atomic_dec(&pmu->exclusive_cnt);
4039 else
4040 atomic_inc(&pmu->exclusive_cnt);
4041}
4042
4043static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4044{
3bf6215a 4045 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
4046 (e1->cpu == e2->cpu ||
4047 e1->cpu == -1 ||
4048 e2->cpu == -1))
4049 return true;
4050 return false;
4051}
4052
4053/* Called under the same ctx::mutex as perf_install_in_context() */
4054static bool exclusive_event_installable(struct perf_event *event,
4055 struct perf_event_context *ctx)
4056{
4057 struct perf_event *iter_event;
4058 struct pmu *pmu = event->pmu;
4059
4060 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4061 return true;
4062
4063 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4064 if (exclusive_event_match(iter_event, event))
4065 return false;
4066 }
4067
4068 return true;
4069}
4070
375637bc
AS
4071static void perf_addr_filters_splice(struct perf_event *event,
4072 struct list_head *head);
4073
683ede43 4074static void _free_event(struct perf_event *event)
f1600952 4075{
e360adbe 4076 irq_work_sync(&event->pending);
925d519a 4077
4beb31f3 4078 unaccount_event(event);
9ee318a7 4079
76369139 4080 if (event->rb) {
9bb5d40c
PZ
4081 /*
4082 * Can happen when we close an event with re-directed output.
4083 *
4084 * Since we have a 0 refcount, perf_mmap_close() will skip
4085 * over us; possibly making our ring_buffer_put() the last.
4086 */
4087 mutex_lock(&event->mmap_mutex);
b69cf536 4088 ring_buffer_attach(event, NULL);
9bb5d40c 4089 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4090 }
4091
e5d1367f
SE
4092 if (is_cgroup_event(event))
4093 perf_detach_cgroup(event);
4094
a0733e69
PZ
4095 if (!event->parent) {
4096 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4097 put_callchain_buffers();
4098 }
4099
4100 perf_event_free_bpf_prog(event);
375637bc
AS
4101 perf_addr_filters_splice(event, NULL);
4102 kfree(event->addr_filters_offs);
a0733e69
PZ
4103
4104 if (event->destroy)
4105 event->destroy(event);
4106
4107 if (event->ctx)
4108 put_ctx(event->ctx);
4109
62a92c8f
AS
4110 exclusive_event_destroy(event);
4111 module_put(event->pmu->module);
a0733e69
PZ
4112
4113 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4114}
4115
683ede43
PZ
4116/*
4117 * Used to free events which have a known refcount of 1, such as in error paths
4118 * where the event isn't exposed yet and inherited events.
4119 */
4120static void free_event(struct perf_event *event)
0793a61d 4121{
683ede43
PZ
4122 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4123 "unexpected event refcount: %ld; ptr=%p\n",
4124 atomic_long_read(&event->refcount), event)) {
4125 /* leak to avoid use-after-free */
4126 return;
4127 }
0793a61d 4128
683ede43 4129 _free_event(event);
0793a61d
TG
4130}
4131
a66a3052 4132/*
f8697762 4133 * Remove user event from the owner task.
a66a3052 4134 */
f8697762 4135static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4136{
8882135b 4137 struct task_struct *owner;
fb0459d7 4138
8882135b 4139 rcu_read_lock();
8882135b 4140 /*
f47c02c0
PZ
4141 * Matches the smp_store_release() in perf_event_exit_task(). If we
4142 * observe !owner it means the list deletion is complete and we can
4143 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4144 * owner->perf_event_mutex.
4145 */
506458ef 4146 owner = READ_ONCE(event->owner);
8882135b
PZ
4147 if (owner) {
4148 /*
4149 * Since delayed_put_task_struct() also drops the last
4150 * task reference we can safely take a new reference
4151 * while holding the rcu_read_lock().
4152 */
4153 get_task_struct(owner);
4154 }
4155 rcu_read_unlock();
4156
4157 if (owner) {
f63a8daa
PZ
4158 /*
4159 * If we're here through perf_event_exit_task() we're already
4160 * holding ctx->mutex which would be an inversion wrt. the
4161 * normal lock order.
4162 *
4163 * However we can safely take this lock because its the child
4164 * ctx->mutex.
4165 */
4166 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4167
8882135b
PZ
4168 /*
4169 * We have to re-check the event->owner field, if it is cleared
4170 * we raced with perf_event_exit_task(), acquiring the mutex
4171 * ensured they're done, and we can proceed with freeing the
4172 * event.
4173 */
f47c02c0 4174 if (event->owner) {
8882135b 4175 list_del_init(&event->owner_entry);
f47c02c0
PZ
4176 smp_store_release(&event->owner, NULL);
4177 }
8882135b
PZ
4178 mutex_unlock(&owner->perf_event_mutex);
4179 put_task_struct(owner);
4180 }
f8697762
JO
4181}
4182
f8697762
JO
4183static void put_event(struct perf_event *event)
4184{
f8697762
JO
4185 if (!atomic_long_dec_and_test(&event->refcount))
4186 return;
4187
c6e5b732
PZ
4188 _free_event(event);
4189}
4190
4191/*
4192 * Kill an event dead; while event:refcount will preserve the event
4193 * object, it will not preserve its functionality. Once the last 'user'
4194 * gives up the object, we'll destroy the thing.
4195 */
4196int perf_event_release_kernel(struct perf_event *event)
4197{
a4f4bb6d 4198 struct perf_event_context *ctx = event->ctx;
c6e5b732
PZ
4199 struct perf_event *child, *tmp;
4200
a4f4bb6d
PZ
4201 /*
4202 * If we got here through err_file: fput(event_file); we will not have
4203 * attached to a context yet.
4204 */
4205 if (!ctx) {
4206 WARN_ON_ONCE(event->attach_state &
4207 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4208 goto no_ctx;
4209 }
4210
f8697762
JO
4211 if (!is_kernel_event(event))
4212 perf_remove_from_owner(event);
8882135b 4213
5fa7c8ec 4214 ctx = perf_event_ctx_lock(event);
a83fe28e 4215 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4216 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4217
a69b0ca4 4218 raw_spin_lock_irq(&ctx->lock);
683ede43 4219 /*
d8a8cfc7 4220 * Mark this event as STATE_DEAD, there is no external reference to it
a69b0ca4 4221 * anymore.
683ede43 4222 *
a69b0ca4
PZ
4223 * Anybody acquiring event->child_mutex after the below loop _must_
4224 * also see this, most importantly inherit_event() which will avoid
4225 * placing more children on the list.
683ede43 4226 *
c6e5b732
PZ
4227 * Thus this guarantees that we will in fact observe and kill _ALL_
4228 * child events.
683ede43 4229 */
a69b0ca4
PZ
4230 event->state = PERF_EVENT_STATE_DEAD;
4231 raw_spin_unlock_irq(&ctx->lock);
4232
4233 perf_event_ctx_unlock(event, ctx);
683ede43 4234
c6e5b732
PZ
4235again:
4236 mutex_lock(&event->child_mutex);
4237 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4238
c6e5b732
PZ
4239 /*
4240 * Cannot change, child events are not migrated, see the
4241 * comment with perf_event_ctx_lock_nested().
4242 */
506458ef 4243 ctx = READ_ONCE(child->ctx);
c6e5b732
PZ
4244 /*
4245 * Since child_mutex nests inside ctx::mutex, we must jump
4246 * through hoops. We start by grabbing a reference on the ctx.
4247 *
4248 * Since the event cannot get freed while we hold the
4249 * child_mutex, the context must also exist and have a !0
4250 * reference count.
4251 */
4252 get_ctx(ctx);
4253
4254 /*
4255 * Now that we have a ctx ref, we can drop child_mutex, and
4256 * acquire ctx::mutex without fear of it going away. Then we
4257 * can re-acquire child_mutex.
4258 */
4259 mutex_unlock(&event->child_mutex);
4260 mutex_lock(&ctx->mutex);
4261 mutex_lock(&event->child_mutex);
4262
4263 /*
4264 * Now that we hold ctx::mutex and child_mutex, revalidate our
4265 * state, if child is still the first entry, it didn't get freed
4266 * and we can continue doing so.
4267 */
4268 tmp = list_first_entry_or_null(&event->child_list,
4269 struct perf_event, child_list);
4270 if (tmp == child) {
4271 perf_remove_from_context(child, DETACH_GROUP);
4272 list_del(&child->child_list);
4273 free_event(child);
4274 /*
4275 * This matches the refcount bump in inherit_event();
4276 * this can't be the last reference.
4277 */
4278 put_event(event);
4279 }
4280
4281 mutex_unlock(&event->child_mutex);
4282 mutex_unlock(&ctx->mutex);
4283 put_ctx(ctx);
4284 goto again;
4285 }
4286 mutex_unlock(&event->child_mutex);
4287
a4f4bb6d
PZ
4288no_ctx:
4289 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4290 return 0;
4291}
4292EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4293
8b10c5e2
PZ
4294/*
4295 * Called when the last reference to the file is gone.
4296 */
a6fa941d
AV
4297static int perf_release(struct inode *inode, struct file *file)
4298{
c6e5b732 4299 perf_event_release_kernel(file->private_data);
a6fa941d 4300 return 0;
fb0459d7 4301}
fb0459d7 4302
ca0dd44c 4303static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4304{
cdd6c482 4305 struct perf_event *child;
e53c0994
PZ
4306 u64 total = 0;
4307
59ed446f
PZ
4308 *enabled = 0;
4309 *running = 0;
4310
6f10581a 4311 mutex_lock(&event->child_mutex);
01add3ea 4312
7d88962e 4313 (void)perf_event_read(event, false);
01add3ea
SB
4314 total += perf_event_count(event);
4315
59ed446f
PZ
4316 *enabled += event->total_time_enabled +
4317 atomic64_read(&event->child_total_time_enabled);
4318 *running += event->total_time_running +
4319 atomic64_read(&event->child_total_time_running);
4320
4321 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4322 (void)perf_event_read(child, false);
01add3ea 4323 total += perf_event_count(child);
59ed446f
PZ
4324 *enabled += child->total_time_enabled;
4325 *running += child->total_time_running;
4326 }
6f10581a 4327 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4328
4329 return total;
4330}
ca0dd44c
PZ
4331
4332u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4333{
4334 struct perf_event_context *ctx;
4335 u64 count;
4336
4337 ctx = perf_event_ctx_lock(event);
4338 count = __perf_event_read_value(event, enabled, running);
4339 perf_event_ctx_unlock(event, ctx);
4340
4341 return count;
4342}
fb0459d7 4343EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4344
7d88962e 4345static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4346 u64 read_format, u64 *values)
3dab77fb 4347{
2aeb1883 4348 struct perf_event_context *ctx = leader->ctx;
fa8c2693 4349 struct perf_event *sub;
2aeb1883 4350 unsigned long flags;
fa8c2693 4351 int n = 1; /* skip @nr */
7d88962e 4352 int ret;
f63a8daa 4353
7d88962e
SB
4354 ret = perf_event_read(leader, true);
4355 if (ret)
4356 return ret;
abf4868b 4357
a9cd8194
PZ
4358 raw_spin_lock_irqsave(&ctx->lock, flags);
4359
fa8c2693
PZ
4360 /*
4361 * Since we co-schedule groups, {enabled,running} times of siblings
4362 * will be identical to those of the leader, so we only publish one
4363 * set.
4364 */
4365 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4366 values[n++] += leader->total_time_enabled +
4367 atomic64_read(&leader->child_total_time_enabled);
4368 }
3dab77fb 4369
fa8c2693
PZ
4370 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4371 values[n++] += leader->total_time_running +
4372 atomic64_read(&leader->child_total_time_running);
4373 }
4374
4375 /*
4376 * Write {count,id} tuples for every sibling.
4377 */
4378 values[n++] += perf_event_count(leader);
abf4868b
PZ
4379 if (read_format & PERF_FORMAT_ID)
4380 values[n++] = primary_event_id(leader);
3dab77fb 4381
fa8c2693
PZ
4382 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4383 values[n++] += perf_event_count(sub);
4384 if (read_format & PERF_FORMAT_ID)
4385 values[n++] = primary_event_id(sub);
4386 }
7d88962e 4387
2aeb1883 4388 raw_spin_unlock_irqrestore(&ctx->lock, flags);
7d88962e 4389 return 0;
fa8c2693 4390}
3dab77fb 4391
fa8c2693
PZ
4392static int perf_read_group(struct perf_event *event,
4393 u64 read_format, char __user *buf)
4394{
4395 struct perf_event *leader = event->group_leader, *child;
4396 struct perf_event_context *ctx = leader->ctx;
7d88962e 4397 int ret;
fa8c2693 4398 u64 *values;
3dab77fb 4399
fa8c2693 4400 lockdep_assert_held(&ctx->mutex);
3dab77fb 4401
fa8c2693
PZ
4402 values = kzalloc(event->read_size, GFP_KERNEL);
4403 if (!values)
4404 return -ENOMEM;
3dab77fb 4405
fa8c2693
PZ
4406 values[0] = 1 + leader->nr_siblings;
4407
4408 /*
4409 * By locking the child_mutex of the leader we effectively
4410 * lock the child list of all siblings.. XXX explain how.
4411 */
4412 mutex_lock(&leader->child_mutex);
abf4868b 4413
7d88962e
SB
4414 ret = __perf_read_group_add(leader, read_format, values);
4415 if (ret)
4416 goto unlock;
4417
4418 list_for_each_entry(child, &leader->child_list, child_list) {
4419 ret = __perf_read_group_add(child, read_format, values);
4420 if (ret)
4421 goto unlock;
4422 }
abf4868b 4423
fa8c2693 4424 mutex_unlock(&leader->child_mutex);
abf4868b 4425
7d88962e 4426 ret = event->read_size;
fa8c2693
PZ
4427 if (copy_to_user(buf, values, event->read_size))
4428 ret = -EFAULT;
7d88962e 4429 goto out;
fa8c2693 4430
7d88962e
SB
4431unlock:
4432 mutex_unlock(&leader->child_mutex);
4433out:
fa8c2693 4434 kfree(values);
abf4868b 4435 return ret;
3dab77fb
PZ
4436}
4437
b15f495b 4438static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4439 u64 read_format, char __user *buf)
4440{
59ed446f 4441 u64 enabled, running;
3dab77fb
PZ
4442 u64 values[4];
4443 int n = 0;
4444
ca0dd44c 4445 values[n++] = __perf_event_read_value(event, &enabled, &running);
59ed446f
PZ
4446 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4447 values[n++] = enabled;
4448 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4449 values[n++] = running;
3dab77fb 4450 if (read_format & PERF_FORMAT_ID)
cdd6c482 4451 values[n++] = primary_event_id(event);
3dab77fb
PZ
4452
4453 if (copy_to_user(buf, values, n * sizeof(u64)))
4454 return -EFAULT;
4455
4456 return n * sizeof(u64);
4457}
4458
dc633982
JO
4459static bool is_event_hup(struct perf_event *event)
4460{
4461 bool no_children;
4462
a69b0ca4 4463 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4464 return false;
4465
4466 mutex_lock(&event->child_mutex);
4467 no_children = list_empty(&event->child_list);
4468 mutex_unlock(&event->child_mutex);
4469 return no_children;
4470}
4471
0793a61d 4472/*
cdd6c482 4473 * Read the performance event - simple non blocking version for now
0793a61d
TG
4474 */
4475static ssize_t
b15f495b 4476__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4477{
cdd6c482 4478 u64 read_format = event->attr.read_format;
3dab77fb 4479 int ret;
0793a61d 4480
3b6f9e5c 4481 /*
cdd6c482 4482 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4483 * error state (i.e. because it was pinned but it couldn't be
4484 * scheduled on to the CPU at some point).
4485 */
cdd6c482 4486 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4487 return 0;
4488
c320c7b7 4489 if (count < event->read_size)
3dab77fb
PZ
4490 return -ENOSPC;
4491
cdd6c482 4492 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4493 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4494 ret = perf_read_group(event, read_format, buf);
3dab77fb 4495 else
b15f495b 4496 ret = perf_read_one(event, read_format, buf);
0793a61d 4497
3dab77fb 4498 return ret;
0793a61d
TG
4499}
4500
0793a61d
TG
4501static ssize_t
4502perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4503{
cdd6c482 4504 struct perf_event *event = file->private_data;
f63a8daa
PZ
4505 struct perf_event_context *ctx;
4506 int ret;
0793a61d 4507
f63a8daa 4508 ctx = perf_event_ctx_lock(event);
b15f495b 4509 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4510 perf_event_ctx_unlock(event, ctx);
4511
4512 return ret;
0793a61d
TG
4513}
4514
4515static unsigned int perf_poll(struct file *file, poll_table *wait)
4516{
cdd6c482 4517 struct perf_event *event = file->private_data;
76369139 4518 struct ring_buffer *rb;
61b67684 4519 unsigned int events = POLLHUP;
c7138f37 4520
e708d7ad 4521 poll_wait(file, &event->waitq, wait);
179033b3 4522
dc633982 4523 if (is_event_hup(event))
179033b3 4524 return events;
c7138f37 4525
10c6db11 4526 /*
9bb5d40c
PZ
4527 * Pin the event->rb by taking event->mmap_mutex; otherwise
4528 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4529 */
4530 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4531 rb = event->rb;
4532 if (rb)
76369139 4533 events = atomic_xchg(&rb->poll, 0);
10c6db11 4534 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4535 return events;
4536}
4537
f63a8daa 4538static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4539{
7d88962e 4540 (void)perf_event_read(event, false);
e7850595 4541 local64_set(&event->count, 0);
cdd6c482 4542 perf_event_update_userpage(event);
3df5edad
PZ
4543}
4544
c93f7669 4545/*
cdd6c482
IM
4546 * Holding the top-level event's child_mutex means that any
4547 * descendant process that has inherited this event will block
8ba289b8 4548 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4549 * task existence requirements of perf_event_enable/disable.
c93f7669 4550 */
cdd6c482
IM
4551static void perf_event_for_each_child(struct perf_event *event,
4552 void (*func)(struct perf_event *))
3df5edad 4553{
cdd6c482 4554 struct perf_event *child;
3df5edad 4555
cdd6c482 4556 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4557
cdd6c482
IM
4558 mutex_lock(&event->child_mutex);
4559 func(event);
4560 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4561 func(child);
cdd6c482 4562 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4563}
4564
cdd6c482
IM
4565static void perf_event_for_each(struct perf_event *event,
4566 void (*func)(struct perf_event *))
3df5edad 4567{
cdd6c482
IM
4568 struct perf_event_context *ctx = event->ctx;
4569 struct perf_event *sibling;
3df5edad 4570
f63a8daa
PZ
4571 lockdep_assert_held(&ctx->mutex);
4572
cdd6c482 4573 event = event->group_leader;
75f937f2 4574
cdd6c482 4575 perf_event_for_each_child(event, func);
cdd6c482 4576 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4577 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4578}
4579
fae3fde6
PZ
4580static void __perf_event_period(struct perf_event *event,
4581 struct perf_cpu_context *cpuctx,
4582 struct perf_event_context *ctx,
4583 void *info)
c7999c6f 4584{
fae3fde6 4585 u64 value = *((u64 *)info);
c7999c6f 4586 bool active;
08247e31 4587
cdd6c482 4588 if (event->attr.freq) {
cdd6c482 4589 event->attr.sample_freq = value;
08247e31 4590 } else {
cdd6c482
IM
4591 event->attr.sample_period = value;
4592 event->hw.sample_period = value;
08247e31 4593 }
bad7192b
PZ
4594
4595 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4596 if (active) {
4597 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4598 /*
4599 * We could be throttled; unthrottle now to avoid the tick
4600 * trying to unthrottle while we already re-started the event.
4601 */
4602 if (event->hw.interrupts == MAX_INTERRUPTS) {
4603 event->hw.interrupts = 0;
4604 perf_log_throttle(event, 1);
4605 }
bad7192b
PZ
4606 event->pmu->stop(event, PERF_EF_UPDATE);
4607 }
4608
4609 local64_set(&event->hw.period_left, 0);
4610
4611 if (active) {
4612 event->pmu->start(event, PERF_EF_RELOAD);
4613 perf_pmu_enable(ctx->pmu);
4614 }
c7999c6f
PZ
4615}
4616
4617static int perf_event_period(struct perf_event *event, u64 __user *arg)
4618{
c7999c6f
PZ
4619 u64 value;
4620
4621 if (!is_sampling_event(event))
4622 return -EINVAL;
4623
4624 if (copy_from_user(&value, arg, sizeof(value)))
4625 return -EFAULT;
4626
4627 if (!value)
4628 return -EINVAL;
4629
4630 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4631 return -EINVAL;
4632
fae3fde6 4633 event_function_call(event, __perf_event_period, &value);
08247e31 4634
c7999c6f 4635 return 0;
08247e31
PZ
4636}
4637
ac9721f3
PZ
4638static const struct file_operations perf_fops;
4639
2903ff01 4640static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4641{
2903ff01
AV
4642 struct fd f = fdget(fd);
4643 if (!f.file)
4644 return -EBADF;
ac9721f3 4645
2903ff01
AV
4646 if (f.file->f_op != &perf_fops) {
4647 fdput(f);
4648 return -EBADF;
ac9721f3 4649 }
2903ff01
AV
4650 *p = f;
4651 return 0;
ac9721f3
PZ
4652}
4653
4654static int perf_event_set_output(struct perf_event *event,
4655 struct perf_event *output_event);
6fb2915d 4656static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4657static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4658
f63a8daa 4659static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4660{
cdd6c482 4661 void (*func)(struct perf_event *);
3df5edad 4662 u32 flags = arg;
d859e29f
PM
4663
4664 switch (cmd) {
cdd6c482 4665 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4666 func = _perf_event_enable;
d859e29f 4667 break;
cdd6c482 4668 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4669 func = _perf_event_disable;
79f14641 4670 break;
cdd6c482 4671 case PERF_EVENT_IOC_RESET:
f63a8daa 4672 func = _perf_event_reset;
6de6a7b9 4673 break;
3df5edad 4674
cdd6c482 4675 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4676 return _perf_event_refresh(event, arg);
08247e31 4677
cdd6c482
IM
4678 case PERF_EVENT_IOC_PERIOD:
4679 return perf_event_period(event, (u64 __user *)arg);
08247e31 4680
cf4957f1
JO
4681 case PERF_EVENT_IOC_ID:
4682 {
4683 u64 id = primary_event_id(event);
4684
4685 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4686 return -EFAULT;
4687 return 0;
4688 }
4689
cdd6c482 4690 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4691 {
ac9721f3 4692 int ret;
ac9721f3 4693 if (arg != -1) {
2903ff01
AV
4694 struct perf_event *output_event;
4695 struct fd output;
4696 ret = perf_fget_light(arg, &output);
4697 if (ret)
4698 return ret;
4699 output_event = output.file->private_data;
4700 ret = perf_event_set_output(event, output_event);
4701 fdput(output);
4702 } else {
4703 ret = perf_event_set_output(event, NULL);
ac9721f3 4704 }
ac9721f3
PZ
4705 return ret;
4706 }
a4be7c27 4707
6fb2915d
LZ
4708 case PERF_EVENT_IOC_SET_FILTER:
4709 return perf_event_set_filter(event, (void __user *)arg);
4710
2541517c
AS
4711 case PERF_EVENT_IOC_SET_BPF:
4712 return perf_event_set_bpf_prog(event, arg);
4713
86e7972f
WN
4714 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4715 struct ring_buffer *rb;
4716
4717 rcu_read_lock();
4718 rb = rcu_dereference(event->rb);
4719 if (!rb || !rb->nr_pages) {
4720 rcu_read_unlock();
4721 return -EINVAL;
4722 }
4723 rb_toggle_paused(rb, !!arg);
4724 rcu_read_unlock();
4725 return 0;
4726 }
d859e29f 4727 default:
3df5edad 4728 return -ENOTTY;
d859e29f 4729 }
3df5edad
PZ
4730
4731 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4732 perf_event_for_each(event, func);
3df5edad 4733 else
cdd6c482 4734 perf_event_for_each_child(event, func);
3df5edad
PZ
4735
4736 return 0;
d859e29f
PM
4737}
4738
f63a8daa
PZ
4739static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4740{
4741 struct perf_event *event = file->private_data;
4742 struct perf_event_context *ctx;
4743 long ret;
4744
4745 ctx = perf_event_ctx_lock(event);
4746 ret = _perf_ioctl(event, cmd, arg);
4747 perf_event_ctx_unlock(event, ctx);
4748
4749 return ret;
4750}
4751
b3f20785
PM
4752#ifdef CONFIG_COMPAT
4753static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4754 unsigned long arg)
4755{
4756 switch (_IOC_NR(cmd)) {
4757 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4758 case _IOC_NR(PERF_EVENT_IOC_ID):
4759 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4760 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4761 cmd &= ~IOCSIZE_MASK;
4762 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4763 }
4764 break;
4765 }
4766 return perf_ioctl(file, cmd, arg);
4767}
4768#else
4769# define perf_compat_ioctl NULL
4770#endif
4771
cdd6c482 4772int perf_event_task_enable(void)
771d7cde 4773{
f63a8daa 4774 struct perf_event_context *ctx;
cdd6c482 4775 struct perf_event *event;
771d7cde 4776
cdd6c482 4777 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4778 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4779 ctx = perf_event_ctx_lock(event);
4780 perf_event_for_each_child(event, _perf_event_enable);
4781 perf_event_ctx_unlock(event, ctx);
4782 }
cdd6c482 4783 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4784
4785 return 0;
4786}
4787
cdd6c482 4788int perf_event_task_disable(void)
771d7cde 4789{
f63a8daa 4790 struct perf_event_context *ctx;
cdd6c482 4791 struct perf_event *event;
771d7cde 4792
cdd6c482 4793 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4794 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4795 ctx = perf_event_ctx_lock(event);
4796 perf_event_for_each_child(event, _perf_event_disable);
4797 perf_event_ctx_unlock(event, ctx);
4798 }
cdd6c482 4799 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4800
4801 return 0;
4802}
4803
cdd6c482 4804static int perf_event_index(struct perf_event *event)
194002b2 4805{
a4eaf7f1
PZ
4806 if (event->hw.state & PERF_HES_STOPPED)
4807 return 0;
4808
cdd6c482 4809 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4810 return 0;
4811
35edc2a5 4812 return event->pmu->event_idx(event);
194002b2
PZ
4813}
4814
c4794295 4815static void calc_timer_values(struct perf_event *event,
e3f3541c 4816 u64 *now,
7f310a5d
EM
4817 u64 *enabled,
4818 u64 *running)
c4794295 4819{
e3f3541c 4820 u64 ctx_time;
c4794295 4821
e3f3541c
PZ
4822 *now = perf_clock();
4823 ctx_time = event->shadow_ctx_time + *now;
0d3d73aa 4824 __perf_update_times(event, ctx_time, enabled, running);
c4794295
EM
4825}
4826
fa731587
PZ
4827static void perf_event_init_userpage(struct perf_event *event)
4828{
4829 struct perf_event_mmap_page *userpg;
4830 struct ring_buffer *rb;
4831
4832 rcu_read_lock();
4833 rb = rcu_dereference(event->rb);
4834 if (!rb)
4835 goto unlock;
4836
4837 userpg = rb->user_page;
4838
4839 /* Allow new userspace to detect that bit 0 is deprecated */
4840 userpg->cap_bit0_is_deprecated = 1;
4841 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4842 userpg->data_offset = PAGE_SIZE;
4843 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4844
4845unlock:
4846 rcu_read_unlock();
4847}
4848
c1317ec2
AL
4849void __weak arch_perf_update_userpage(
4850 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4851{
4852}
4853
38ff667b
PZ
4854/*
4855 * Callers need to ensure there can be no nesting of this function, otherwise
4856 * the seqlock logic goes bad. We can not serialize this because the arch
4857 * code calls this from NMI context.
4858 */
cdd6c482 4859void perf_event_update_userpage(struct perf_event *event)
37d81828 4860{
cdd6c482 4861 struct perf_event_mmap_page *userpg;
76369139 4862 struct ring_buffer *rb;
e3f3541c 4863 u64 enabled, running, now;
38ff667b
PZ
4864
4865 rcu_read_lock();
5ec4c599
PZ
4866 rb = rcu_dereference(event->rb);
4867 if (!rb)
4868 goto unlock;
4869
0d641208
EM
4870 /*
4871 * compute total_time_enabled, total_time_running
4872 * based on snapshot values taken when the event
4873 * was last scheduled in.
4874 *
4875 * we cannot simply called update_context_time()
4876 * because of locking issue as we can be called in
4877 * NMI context
4878 */
e3f3541c 4879 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4880
76369139 4881 userpg = rb->user_page;
7b732a75
PZ
4882 /*
4883 * Disable preemption so as to not let the corresponding user-space
4884 * spin too long if we get preempted.
4885 */
4886 preempt_disable();
37d81828 4887 ++userpg->lock;
92f22a38 4888 barrier();
cdd6c482 4889 userpg->index = perf_event_index(event);
b5e58793 4890 userpg->offset = perf_event_count(event);
365a4038 4891 if (userpg->index)
e7850595 4892 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4893
0d641208 4894 userpg->time_enabled = enabled +
cdd6c482 4895 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4896
0d641208 4897 userpg->time_running = running +
cdd6c482 4898 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4899
c1317ec2 4900 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4901
92f22a38 4902 barrier();
37d81828 4903 ++userpg->lock;
7b732a75 4904 preempt_enable();
38ff667b 4905unlock:
7b732a75 4906 rcu_read_unlock();
37d81828
PM
4907}
4908
11bac800 4909static int perf_mmap_fault(struct vm_fault *vmf)
906010b2 4910{
11bac800 4911 struct perf_event *event = vmf->vma->vm_file->private_data;
76369139 4912 struct ring_buffer *rb;
906010b2
PZ
4913 int ret = VM_FAULT_SIGBUS;
4914
4915 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4916 if (vmf->pgoff == 0)
4917 ret = 0;
4918 return ret;
4919 }
4920
4921 rcu_read_lock();
76369139
FW
4922 rb = rcu_dereference(event->rb);
4923 if (!rb)
906010b2
PZ
4924 goto unlock;
4925
4926 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4927 goto unlock;
4928
76369139 4929 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4930 if (!vmf->page)
4931 goto unlock;
4932
4933 get_page(vmf->page);
11bac800 4934 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
906010b2
PZ
4935 vmf->page->index = vmf->pgoff;
4936
4937 ret = 0;
4938unlock:
4939 rcu_read_unlock();
4940
4941 return ret;
4942}
4943
10c6db11
PZ
4944static void ring_buffer_attach(struct perf_event *event,
4945 struct ring_buffer *rb)
4946{
b69cf536 4947 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4948 unsigned long flags;
4949
b69cf536
PZ
4950 if (event->rb) {
4951 /*
4952 * Should be impossible, we set this when removing
4953 * event->rb_entry and wait/clear when adding event->rb_entry.
4954 */
4955 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4956
b69cf536 4957 old_rb = event->rb;
b69cf536
PZ
4958 spin_lock_irqsave(&old_rb->event_lock, flags);
4959 list_del_rcu(&event->rb_entry);
4960 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4961
2f993cf0
ON
4962 event->rcu_batches = get_state_synchronize_rcu();
4963 event->rcu_pending = 1;
b69cf536 4964 }
10c6db11 4965
b69cf536 4966 if (rb) {
2f993cf0
ON
4967 if (event->rcu_pending) {
4968 cond_synchronize_rcu(event->rcu_batches);
4969 event->rcu_pending = 0;
4970 }
4971
b69cf536
PZ
4972 spin_lock_irqsave(&rb->event_lock, flags);
4973 list_add_rcu(&event->rb_entry, &rb->event_list);
4974 spin_unlock_irqrestore(&rb->event_lock, flags);
4975 }
4976
767ae086
AS
4977 /*
4978 * Avoid racing with perf_mmap_close(AUX): stop the event
4979 * before swizzling the event::rb pointer; if it's getting
4980 * unmapped, its aux_mmap_count will be 0 and it won't
4981 * restart. See the comment in __perf_pmu_output_stop().
4982 *
4983 * Data will inevitably be lost when set_output is done in
4984 * mid-air, but then again, whoever does it like this is
4985 * not in for the data anyway.
4986 */
4987 if (has_aux(event))
4988 perf_event_stop(event, 0);
4989
b69cf536
PZ
4990 rcu_assign_pointer(event->rb, rb);
4991
4992 if (old_rb) {
4993 ring_buffer_put(old_rb);
4994 /*
4995 * Since we detached before setting the new rb, so that we
4996 * could attach the new rb, we could have missed a wakeup.
4997 * Provide it now.
4998 */
4999 wake_up_all(&event->waitq);
5000 }
10c6db11
PZ
5001}
5002
5003static void ring_buffer_wakeup(struct perf_event *event)
5004{
5005 struct ring_buffer *rb;
5006
5007 rcu_read_lock();
5008 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
5009 if (rb) {
5010 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5011 wake_up_all(&event->waitq);
5012 }
10c6db11
PZ
5013 rcu_read_unlock();
5014}
5015
fdc26706 5016struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 5017{
76369139 5018 struct ring_buffer *rb;
7b732a75 5019
ac9721f3 5020 rcu_read_lock();
76369139
FW
5021 rb = rcu_dereference(event->rb);
5022 if (rb) {
5023 if (!atomic_inc_not_zero(&rb->refcount))
5024 rb = NULL;
ac9721f3
PZ
5025 }
5026 rcu_read_unlock();
5027
76369139 5028 return rb;
ac9721f3
PZ
5029}
5030
fdc26706 5031void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 5032{
76369139 5033 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 5034 return;
7b732a75 5035
9bb5d40c 5036 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 5037
76369139 5038 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
5039}
5040
5041static void perf_mmap_open(struct vm_area_struct *vma)
5042{
cdd6c482 5043 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5044
cdd6c482 5045 atomic_inc(&event->mmap_count);
9bb5d40c 5046 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 5047
45bfb2e5
PZ
5048 if (vma->vm_pgoff)
5049 atomic_inc(&event->rb->aux_mmap_count);
5050
1e0fb9ec 5051 if (event->pmu->event_mapped)
bfe33492 5052 event->pmu->event_mapped(event, vma->vm_mm);
7b732a75
PZ
5053}
5054
95ff4ca2
AS
5055static void perf_pmu_output_stop(struct perf_event *event);
5056
9bb5d40c
PZ
5057/*
5058 * A buffer can be mmap()ed multiple times; either directly through the same
5059 * event, or through other events by use of perf_event_set_output().
5060 *
5061 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5062 * the buffer here, where we still have a VM context. This means we need
5063 * to detach all events redirecting to us.
5064 */
7b732a75
PZ
5065static void perf_mmap_close(struct vm_area_struct *vma)
5066{
cdd6c482 5067 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5068
b69cf536 5069 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
5070 struct user_struct *mmap_user = rb->mmap_user;
5071 int mmap_locked = rb->mmap_locked;
5072 unsigned long size = perf_data_size(rb);
789f90fc 5073
1e0fb9ec 5074 if (event->pmu->event_unmapped)
bfe33492 5075 event->pmu->event_unmapped(event, vma->vm_mm);
1e0fb9ec 5076
45bfb2e5
PZ
5077 /*
5078 * rb->aux_mmap_count will always drop before rb->mmap_count and
5079 * event->mmap_count, so it is ok to use event->mmap_mutex to
5080 * serialize with perf_mmap here.
5081 */
5082 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5083 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
5084 /*
5085 * Stop all AUX events that are writing to this buffer,
5086 * so that we can free its AUX pages and corresponding PMU
5087 * data. Note that after rb::aux_mmap_count dropped to zero,
5088 * they won't start any more (see perf_aux_output_begin()).
5089 */
5090 perf_pmu_output_stop(event);
5091
5092 /* now it's safe to free the pages */
45bfb2e5
PZ
5093 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5094 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5095
95ff4ca2 5096 /* this has to be the last one */
45bfb2e5 5097 rb_free_aux(rb);
95ff4ca2
AS
5098 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5099
45bfb2e5
PZ
5100 mutex_unlock(&event->mmap_mutex);
5101 }
5102
9bb5d40c
PZ
5103 atomic_dec(&rb->mmap_count);
5104
5105 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 5106 goto out_put;
9bb5d40c 5107
b69cf536 5108 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
5109 mutex_unlock(&event->mmap_mutex);
5110
5111 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
5112 if (atomic_read(&rb->mmap_count))
5113 goto out_put;
ac9721f3 5114
9bb5d40c
PZ
5115 /*
5116 * No other mmap()s, detach from all other events that might redirect
5117 * into the now unreachable buffer. Somewhat complicated by the
5118 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5119 */
5120again:
5121 rcu_read_lock();
5122 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5123 if (!atomic_long_inc_not_zero(&event->refcount)) {
5124 /*
5125 * This event is en-route to free_event() which will
5126 * detach it and remove it from the list.
5127 */
5128 continue;
5129 }
5130 rcu_read_unlock();
789f90fc 5131
9bb5d40c
PZ
5132 mutex_lock(&event->mmap_mutex);
5133 /*
5134 * Check we didn't race with perf_event_set_output() which can
5135 * swizzle the rb from under us while we were waiting to
5136 * acquire mmap_mutex.
5137 *
5138 * If we find a different rb; ignore this event, a next
5139 * iteration will no longer find it on the list. We have to
5140 * still restart the iteration to make sure we're not now
5141 * iterating the wrong list.
5142 */
b69cf536
PZ
5143 if (event->rb == rb)
5144 ring_buffer_attach(event, NULL);
5145
cdd6c482 5146 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5147 put_event(event);
ac9721f3 5148
9bb5d40c
PZ
5149 /*
5150 * Restart the iteration; either we're on the wrong list or
5151 * destroyed its integrity by doing a deletion.
5152 */
5153 goto again;
7b732a75 5154 }
9bb5d40c
PZ
5155 rcu_read_unlock();
5156
5157 /*
5158 * It could be there's still a few 0-ref events on the list; they'll
5159 * get cleaned up by free_event() -- they'll also still have their
5160 * ref on the rb and will free it whenever they are done with it.
5161 *
5162 * Aside from that, this buffer is 'fully' detached and unmapped,
5163 * undo the VM accounting.
5164 */
5165
5166 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5167 vma->vm_mm->pinned_vm -= mmap_locked;
5168 free_uid(mmap_user);
5169
b69cf536 5170out_put:
9bb5d40c 5171 ring_buffer_put(rb); /* could be last */
37d81828
PM
5172}
5173
f0f37e2f 5174static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5175 .open = perf_mmap_open,
45bfb2e5 5176 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
5177 .fault = perf_mmap_fault,
5178 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5179};
5180
5181static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5182{
cdd6c482 5183 struct perf_event *event = file->private_data;
22a4f650 5184 unsigned long user_locked, user_lock_limit;
789f90fc 5185 struct user_struct *user = current_user();
22a4f650 5186 unsigned long locked, lock_limit;
45bfb2e5 5187 struct ring_buffer *rb = NULL;
7b732a75
PZ
5188 unsigned long vma_size;
5189 unsigned long nr_pages;
45bfb2e5 5190 long user_extra = 0, extra = 0;
d57e34fd 5191 int ret = 0, flags = 0;
37d81828 5192
c7920614
PZ
5193 /*
5194 * Don't allow mmap() of inherited per-task counters. This would
5195 * create a performance issue due to all children writing to the
76369139 5196 * same rb.
c7920614
PZ
5197 */
5198 if (event->cpu == -1 && event->attr.inherit)
5199 return -EINVAL;
5200
43a21ea8 5201 if (!(vma->vm_flags & VM_SHARED))
37d81828 5202 return -EINVAL;
7b732a75
PZ
5203
5204 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
5205
5206 if (vma->vm_pgoff == 0) {
5207 nr_pages = (vma_size / PAGE_SIZE) - 1;
5208 } else {
5209 /*
5210 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5211 * mapped, all subsequent mappings should have the same size
5212 * and offset. Must be above the normal perf buffer.
5213 */
5214 u64 aux_offset, aux_size;
5215
5216 if (!event->rb)
5217 return -EINVAL;
5218
5219 nr_pages = vma_size / PAGE_SIZE;
5220
5221 mutex_lock(&event->mmap_mutex);
5222 ret = -EINVAL;
5223
5224 rb = event->rb;
5225 if (!rb)
5226 goto aux_unlock;
5227
6aa7de05
MR
5228 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5229 aux_size = READ_ONCE(rb->user_page->aux_size);
45bfb2e5
PZ
5230
5231 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5232 goto aux_unlock;
5233
5234 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5235 goto aux_unlock;
5236
5237 /* already mapped with a different offset */
5238 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5239 goto aux_unlock;
5240
5241 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5242 goto aux_unlock;
5243
5244 /* already mapped with a different size */
5245 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5246 goto aux_unlock;
5247
5248 if (!is_power_of_2(nr_pages))
5249 goto aux_unlock;
5250
5251 if (!atomic_inc_not_zero(&rb->mmap_count))
5252 goto aux_unlock;
5253
5254 if (rb_has_aux(rb)) {
5255 atomic_inc(&rb->aux_mmap_count);
5256 ret = 0;
5257 goto unlock;
5258 }
5259
5260 atomic_set(&rb->aux_mmap_count, 1);
5261 user_extra = nr_pages;
5262
5263 goto accounting;
5264 }
7b732a75 5265
7730d865 5266 /*
76369139 5267 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
5268 * can do bitmasks instead of modulo.
5269 */
2ed11312 5270 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
5271 return -EINVAL;
5272
7b732a75 5273 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
5274 return -EINVAL;
5275
cdd6c482 5276 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 5277again:
cdd6c482 5278 mutex_lock(&event->mmap_mutex);
76369139 5279 if (event->rb) {
9bb5d40c 5280 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 5281 ret = -EINVAL;
9bb5d40c
PZ
5282 goto unlock;
5283 }
5284
5285 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5286 /*
5287 * Raced against perf_mmap_close() through
5288 * perf_event_set_output(). Try again, hope for better
5289 * luck.
5290 */
5291 mutex_unlock(&event->mmap_mutex);
5292 goto again;
5293 }
5294
ebb3c4c4
PZ
5295 goto unlock;
5296 }
5297
789f90fc 5298 user_extra = nr_pages + 1;
45bfb2e5
PZ
5299
5300accounting:
cdd6c482 5301 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
5302
5303 /*
5304 * Increase the limit linearly with more CPUs:
5305 */
5306 user_lock_limit *= num_online_cpus();
5307
789f90fc 5308 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 5309
789f90fc
PZ
5310 if (user_locked > user_lock_limit)
5311 extra = user_locked - user_lock_limit;
7b732a75 5312
78d7d407 5313 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 5314 lock_limit >>= PAGE_SHIFT;
bc3e53f6 5315 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 5316
459ec28a
IM
5317 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5318 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
5319 ret = -EPERM;
5320 goto unlock;
5321 }
7b732a75 5322
45bfb2e5 5323 WARN_ON(!rb && event->rb);
906010b2 5324
d57e34fd 5325 if (vma->vm_flags & VM_WRITE)
76369139 5326 flags |= RING_BUFFER_WRITABLE;
d57e34fd 5327
76369139 5328 if (!rb) {
45bfb2e5
PZ
5329 rb = rb_alloc(nr_pages,
5330 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5331 event->cpu, flags);
26cb63ad 5332
45bfb2e5
PZ
5333 if (!rb) {
5334 ret = -ENOMEM;
5335 goto unlock;
5336 }
43a21ea8 5337
45bfb2e5
PZ
5338 atomic_set(&rb->mmap_count, 1);
5339 rb->mmap_user = get_current_user();
5340 rb->mmap_locked = extra;
26cb63ad 5341
45bfb2e5 5342 ring_buffer_attach(event, rb);
ac9721f3 5343
45bfb2e5
PZ
5344 perf_event_init_userpage(event);
5345 perf_event_update_userpage(event);
5346 } else {
1a594131
AS
5347 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5348 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5349 if (!ret)
5350 rb->aux_mmap_locked = extra;
5351 }
9a0f05cb 5352
ebb3c4c4 5353unlock:
45bfb2e5
PZ
5354 if (!ret) {
5355 atomic_long_add(user_extra, &user->locked_vm);
5356 vma->vm_mm->pinned_vm += extra;
5357
ac9721f3 5358 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5359 } else if (rb) {
5360 atomic_dec(&rb->mmap_count);
5361 }
5362aux_unlock:
cdd6c482 5363 mutex_unlock(&event->mmap_mutex);
37d81828 5364
9bb5d40c
PZ
5365 /*
5366 * Since pinned accounting is per vm we cannot allow fork() to copy our
5367 * vma.
5368 */
26cb63ad 5369 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5370 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5371
1e0fb9ec 5372 if (event->pmu->event_mapped)
bfe33492 5373 event->pmu->event_mapped(event, vma->vm_mm);
1e0fb9ec 5374
7b732a75 5375 return ret;
37d81828
PM
5376}
5377
3c446b3d
PZ
5378static int perf_fasync(int fd, struct file *filp, int on)
5379{
496ad9aa 5380 struct inode *inode = file_inode(filp);
cdd6c482 5381 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5382 int retval;
5383
5955102c 5384 inode_lock(inode);
cdd6c482 5385 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5386 inode_unlock(inode);
3c446b3d
PZ
5387
5388 if (retval < 0)
5389 return retval;
5390
5391 return 0;
5392}
5393
0793a61d 5394static const struct file_operations perf_fops = {
3326c1ce 5395 .llseek = no_llseek,
0793a61d
TG
5396 .release = perf_release,
5397 .read = perf_read,
5398 .poll = perf_poll,
d859e29f 5399 .unlocked_ioctl = perf_ioctl,
b3f20785 5400 .compat_ioctl = perf_compat_ioctl,
37d81828 5401 .mmap = perf_mmap,
3c446b3d 5402 .fasync = perf_fasync,
0793a61d
TG
5403};
5404
925d519a 5405/*
cdd6c482 5406 * Perf event wakeup
925d519a
PZ
5407 *
5408 * If there's data, ensure we set the poll() state and publish everything
5409 * to user-space before waking everybody up.
5410 */
5411
fed66e2c
PZ
5412static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5413{
5414 /* only the parent has fasync state */
5415 if (event->parent)
5416 event = event->parent;
5417 return &event->fasync;
5418}
5419
cdd6c482 5420void perf_event_wakeup(struct perf_event *event)
925d519a 5421{
10c6db11 5422 ring_buffer_wakeup(event);
4c9e2542 5423
cdd6c482 5424 if (event->pending_kill) {
fed66e2c 5425 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5426 event->pending_kill = 0;
4c9e2542 5427 }
925d519a
PZ
5428}
5429
e360adbe 5430static void perf_pending_event(struct irq_work *entry)
79f14641 5431{
cdd6c482
IM
5432 struct perf_event *event = container_of(entry,
5433 struct perf_event, pending);
d525211f
PZ
5434 int rctx;
5435
5436 rctx = perf_swevent_get_recursion_context();
5437 /*
5438 * If we 'fail' here, that's OK, it means recursion is already disabled
5439 * and we won't recurse 'further'.
5440 */
79f14641 5441
cdd6c482
IM
5442 if (event->pending_disable) {
5443 event->pending_disable = 0;
fae3fde6 5444 perf_event_disable_local(event);
79f14641
PZ
5445 }
5446
cdd6c482
IM
5447 if (event->pending_wakeup) {
5448 event->pending_wakeup = 0;
5449 perf_event_wakeup(event);
79f14641 5450 }
d525211f
PZ
5451
5452 if (rctx >= 0)
5453 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5454}
5455
39447b38
ZY
5456/*
5457 * We assume there is only KVM supporting the callbacks.
5458 * Later on, we might change it to a list if there is
5459 * another virtualization implementation supporting the callbacks.
5460 */
5461struct perf_guest_info_callbacks *perf_guest_cbs;
5462
5463int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5464{
5465 perf_guest_cbs = cbs;
5466 return 0;
5467}
5468EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5469
5470int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5471{
5472 perf_guest_cbs = NULL;
5473 return 0;
5474}
5475EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5476
4018994f
JO
5477static void
5478perf_output_sample_regs(struct perf_output_handle *handle,
5479 struct pt_regs *regs, u64 mask)
5480{
5481 int bit;
29dd3288 5482 DECLARE_BITMAP(_mask, 64);
4018994f 5483
29dd3288
MS
5484 bitmap_from_u64(_mask, mask);
5485 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
5486 u64 val;
5487
5488 val = perf_reg_value(regs, bit);
5489 perf_output_put(handle, val);
5490 }
5491}
5492
60e2364e 5493static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5494 struct pt_regs *regs,
5495 struct pt_regs *regs_user_copy)
4018994f 5496{
88a7c26a
AL
5497 if (user_mode(regs)) {
5498 regs_user->abi = perf_reg_abi(current);
2565711f 5499 regs_user->regs = regs;
88a7c26a
AL
5500 } else if (current->mm) {
5501 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5502 } else {
5503 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5504 regs_user->regs = NULL;
4018994f
JO
5505 }
5506}
5507
60e2364e
SE
5508static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5509 struct pt_regs *regs)
5510{
5511 regs_intr->regs = regs;
5512 regs_intr->abi = perf_reg_abi(current);
5513}
5514
5515
c5ebcedb
JO
5516/*
5517 * Get remaining task size from user stack pointer.
5518 *
5519 * It'd be better to take stack vma map and limit this more
5520 * precisly, but there's no way to get it safely under interrupt,
5521 * so using TASK_SIZE as limit.
5522 */
5523static u64 perf_ustack_task_size(struct pt_regs *regs)
5524{
5525 unsigned long addr = perf_user_stack_pointer(regs);
5526
5527 if (!addr || addr >= TASK_SIZE)
5528 return 0;
5529
5530 return TASK_SIZE - addr;
5531}
5532
5533static u16
5534perf_sample_ustack_size(u16 stack_size, u16 header_size,
5535 struct pt_regs *regs)
5536{
5537 u64 task_size;
5538
5539 /* No regs, no stack pointer, no dump. */
5540 if (!regs)
5541 return 0;
5542
5543 /*
5544 * Check if we fit in with the requested stack size into the:
5545 * - TASK_SIZE
5546 * If we don't, we limit the size to the TASK_SIZE.
5547 *
5548 * - remaining sample size
5549 * If we don't, we customize the stack size to
5550 * fit in to the remaining sample size.
5551 */
5552
5553 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5554 stack_size = min(stack_size, (u16) task_size);
5555
5556 /* Current header size plus static size and dynamic size. */
5557 header_size += 2 * sizeof(u64);
5558
5559 /* Do we fit in with the current stack dump size? */
5560 if ((u16) (header_size + stack_size) < header_size) {
5561 /*
5562 * If we overflow the maximum size for the sample,
5563 * we customize the stack dump size to fit in.
5564 */
5565 stack_size = USHRT_MAX - header_size - sizeof(u64);
5566 stack_size = round_up(stack_size, sizeof(u64));
5567 }
5568
5569 return stack_size;
5570}
5571
5572static void
5573perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5574 struct pt_regs *regs)
5575{
5576 /* Case of a kernel thread, nothing to dump */
5577 if (!regs) {
5578 u64 size = 0;
5579 perf_output_put(handle, size);
5580 } else {
5581 unsigned long sp;
5582 unsigned int rem;
5583 u64 dyn_size;
5584
5585 /*
5586 * We dump:
5587 * static size
5588 * - the size requested by user or the best one we can fit
5589 * in to the sample max size
5590 * data
5591 * - user stack dump data
5592 * dynamic size
5593 * - the actual dumped size
5594 */
5595
5596 /* Static size. */
5597 perf_output_put(handle, dump_size);
5598
5599 /* Data. */
5600 sp = perf_user_stack_pointer(regs);
5601 rem = __output_copy_user(handle, (void *) sp, dump_size);
5602 dyn_size = dump_size - rem;
5603
5604 perf_output_skip(handle, rem);
5605
5606 /* Dynamic size. */
5607 perf_output_put(handle, dyn_size);
5608 }
5609}
5610
c980d109
ACM
5611static void __perf_event_header__init_id(struct perf_event_header *header,
5612 struct perf_sample_data *data,
5613 struct perf_event *event)
6844c09d
ACM
5614{
5615 u64 sample_type = event->attr.sample_type;
5616
5617 data->type = sample_type;
5618 header->size += event->id_header_size;
5619
5620 if (sample_type & PERF_SAMPLE_TID) {
5621 /* namespace issues */
5622 data->tid_entry.pid = perf_event_pid(event, current);
5623 data->tid_entry.tid = perf_event_tid(event, current);
5624 }
5625
5626 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5627 data->time = perf_event_clock(event);
6844c09d 5628
ff3d527c 5629 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5630 data->id = primary_event_id(event);
5631
5632 if (sample_type & PERF_SAMPLE_STREAM_ID)
5633 data->stream_id = event->id;
5634
5635 if (sample_type & PERF_SAMPLE_CPU) {
5636 data->cpu_entry.cpu = raw_smp_processor_id();
5637 data->cpu_entry.reserved = 0;
5638 }
5639}
5640
76369139
FW
5641void perf_event_header__init_id(struct perf_event_header *header,
5642 struct perf_sample_data *data,
5643 struct perf_event *event)
c980d109
ACM
5644{
5645 if (event->attr.sample_id_all)
5646 __perf_event_header__init_id(header, data, event);
5647}
5648
5649static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5650 struct perf_sample_data *data)
5651{
5652 u64 sample_type = data->type;
5653
5654 if (sample_type & PERF_SAMPLE_TID)
5655 perf_output_put(handle, data->tid_entry);
5656
5657 if (sample_type & PERF_SAMPLE_TIME)
5658 perf_output_put(handle, data->time);
5659
5660 if (sample_type & PERF_SAMPLE_ID)
5661 perf_output_put(handle, data->id);
5662
5663 if (sample_type & PERF_SAMPLE_STREAM_ID)
5664 perf_output_put(handle, data->stream_id);
5665
5666 if (sample_type & PERF_SAMPLE_CPU)
5667 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5668
5669 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5670 perf_output_put(handle, data->id);
c980d109
ACM
5671}
5672
76369139
FW
5673void perf_event__output_id_sample(struct perf_event *event,
5674 struct perf_output_handle *handle,
5675 struct perf_sample_data *sample)
c980d109
ACM
5676{
5677 if (event->attr.sample_id_all)
5678 __perf_event__output_id_sample(handle, sample);
5679}
5680
3dab77fb 5681static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5682 struct perf_event *event,
5683 u64 enabled, u64 running)
3dab77fb 5684{
cdd6c482 5685 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5686 u64 values[4];
5687 int n = 0;
5688
b5e58793 5689 values[n++] = perf_event_count(event);
3dab77fb 5690 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5691 values[n++] = enabled +
cdd6c482 5692 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5693 }
5694 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5695 values[n++] = running +
cdd6c482 5696 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5697 }
5698 if (read_format & PERF_FORMAT_ID)
cdd6c482 5699 values[n++] = primary_event_id(event);
3dab77fb 5700
76369139 5701 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5702}
5703
3dab77fb 5704static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5705 struct perf_event *event,
5706 u64 enabled, u64 running)
3dab77fb 5707{
cdd6c482
IM
5708 struct perf_event *leader = event->group_leader, *sub;
5709 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5710 u64 values[5];
5711 int n = 0;
5712
5713 values[n++] = 1 + leader->nr_siblings;
5714
5715 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5716 values[n++] = enabled;
3dab77fb
PZ
5717
5718 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5719 values[n++] = running;
3dab77fb 5720
cdd6c482 5721 if (leader != event)
3dab77fb
PZ
5722 leader->pmu->read(leader);
5723
b5e58793 5724 values[n++] = perf_event_count(leader);
3dab77fb 5725 if (read_format & PERF_FORMAT_ID)
cdd6c482 5726 values[n++] = primary_event_id(leader);
3dab77fb 5727
76369139 5728 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5729
65abc865 5730 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5731 n = 0;
5732
6f5ab001
JO
5733 if ((sub != event) &&
5734 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5735 sub->pmu->read(sub);
5736
b5e58793 5737 values[n++] = perf_event_count(sub);
3dab77fb 5738 if (read_format & PERF_FORMAT_ID)
cdd6c482 5739 values[n++] = primary_event_id(sub);
3dab77fb 5740
76369139 5741 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5742 }
5743}
5744
eed01528
SE
5745#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5746 PERF_FORMAT_TOTAL_TIME_RUNNING)
5747
ba5213ae
PZ
5748/*
5749 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5750 *
5751 * The problem is that its both hard and excessively expensive to iterate the
5752 * child list, not to mention that its impossible to IPI the children running
5753 * on another CPU, from interrupt/NMI context.
5754 */
3dab77fb 5755static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5756 struct perf_event *event)
3dab77fb 5757{
e3f3541c 5758 u64 enabled = 0, running = 0, now;
eed01528
SE
5759 u64 read_format = event->attr.read_format;
5760
5761 /*
5762 * compute total_time_enabled, total_time_running
5763 * based on snapshot values taken when the event
5764 * was last scheduled in.
5765 *
5766 * we cannot simply called update_context_time()
5767 * because of locking issue as we are called in
5768 * NMI context
5769 */
c4794295 5770 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5771 calc_timer_values(event, &now, &enabled, &running);
eed01528 5772
cdd6c482 5773 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5774 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5775 else
eed01528 5776 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5777}
5778
5622f295
MM
5779void perf_output_sample(struct perf_output_handle *handle,
5780 struct perf_event_header *header,
5781 struct perf_sample_data *data,
cdd6c482 5782 struct perf_event *event)
5622f295
MM
5783{
5784 u64 sample_type = data->type;
5785
5786 perf_output_put(handle, *header);
5787
ff3d527c
AH
5788 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5789 perf_output_put(handle, data->id);
5790
5622f295
MM
5791 if (sample_type & PERF_SAMPLE_IP)
5792 perf_output_put(handle, data->ip);
5793
5794 if (sample_type & PERF_SAMPLE_TID)
5795 perf_output_put(handle, data->tid_entry);
5796
5797 if (sample_type & PERF_SAMPLE_TIME)
5798 perf_output_put(handle, data->time);
5799
5800 if (sample_type & PERF_SAMPLE_ADDR)
5801 perf_output_put(handle, data->addr);
5802
5803 if (sample_type & PERF_SAMPLE_ID)
5804 perf_output_put(handle, data->id);
5805
5806 if (sample_type & PERF_SAMPLE_STREAM_ID)
5807 perf_output_put(handle, data->stream_id);
5808
5809 if (sample_type & PERF_SAMPLE_CPU)
5810 perf_output_put(handle, data->cpu_entry);
5811
5812 if (sample_type & PERF_SAMPLE_PERIOD)
5813 perf_output_put(handle, data->period);
5814
5815 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5816 perf_output_read(handle, event);
5622f295
MM
5817
5818 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5819 if (data->callchain) {
5820 int size = 1;
5821
5822 if (data->callchain)
5823 size += data->callchain->nr;
5824
5825 size *= sizeof(u64);
5826
76369139 5827 __output_copy(handle, data->callchain, size);
5622f295
MM
5828 } else {
5829 u64 nr = 0;
5830 perf_output_put(handle, nr);
5831 }
5832 }
5833
5834 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
5835 struct perf_raw_record *raw = data->raw;
5836
5837 if (raw) {
5838 struct perf_raw_frag *frag = &raw->frag;
5839
5840 perf_output_put(handle, raw->size);
5841 do {
5842 if (frag->copy) {
5843 __output_custom(handle, frag->copy,
5844 frag->data, frag->size);
5845 } else {
5846 __output_copy(handle, frag->data,
5847 frag->size);
5848 }
5849 if (perf_raw_frag_last(frag))
5850 break;
5851 frag = frag->next;
5852 } while (1);
5853 if (frag->pad)
5854 __output_skip(handle, NULL, frag->pad);
5622f295
MM
5855 } else {
5856 struct {
5857 u32 size;
5858 u32 data;
5859 } raw = {
5860 .size = sizeof(u32),
5861 .data = 0,
5862 };
5863 perf_output_put(handle, raw);
5864 }
5865 }
a7ac67ea 5866
bce38cd5
SE
5867 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5868 if (data->br_stack) {
5869 size_t size;
5870
5871 size = data->br_stack->nr
5872 * sizeof(struct perf_branch_entry);
5873
5874 perf_output_put(handle, data->br_stack->nr);
5875 perf_output_copy(handle, data->br_stack->entries, size);
5876 } else {
5877 /*
5878 * we always store at least the value of nr
5879 */
5880 u64 nr = 0;
5881 perf_output_put(handle, nr);
5882 }
5883 }
4018994f
JO
5884
5885 if (sample_type & PERF_SAMPLE_REGS_USER) {
5886 u64 abi = data->regs_user.abi;
5887
5888 /*
5889 * If there are no regs to dump, notice it through
5890 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5891 */
5892 perf_output_put(handle, abi);
5893
5894 if (abi) {
5895 u64 mask = event->attr.sample_regs_user;
5896 perf_output_sample_regs(handle,
5897 data->regs_user.regs,
5898 mask);
5899 }
5900 }
c5ebcedb 5901
a5cdd40c 5902 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5903 perf_output_sample_ustack(handle,
5904 data->stack_user_size,
5905 data->regs_user.regs);
a5cdd40c 5906 }
c3feedf2
AK
5907
5908 if (sample_type & PERF_SAMPLE_WEIGHT)
5909 perf_output_put(handle, data->weight);
d6be9ad6
SE
5910
5911 if (sample_type & PERF_SAMPLE_DATA_SRC)
5912 perf_output_put(handle, data->data_src.val);
a5cdd40c 5913
fdfbbd07
AK
5914 if (sample_type & PERF_SAMPLE_TRANSACTION)
5915 perf_output_put(handle, data->txn);
5916
60e2364e
SE
5917 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5918 u64 abi = data->regs_intr.abi;
5919 /*
5920 * If there are no regs to dump, notice it through
5921 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5922 */
5923 perf_output_put(handle, abi);
5924
5925 if (abi) {
5926 u64 mask = event->attr.sample_regs_intr;
5927
5928 perf_output_sample_regs(handle,
5929 data->regs_intr.regs,
5930 mask);
5931 }
5932 }
5933
fc7ce9c7
KL
5934 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
5935 perf_output_put(handle, data->phys_addr);
5936
a5cdd40c
PZ
5937 if (!event->attr.watermark) {
5938 int wakeup_events = event->attr.wakeup_events;
5939
5940 if (wakeup_events) {
5941 struct ring_buffer *rb = handle->rb;
5942 int events = local_inc_return(&rb->events);
5943
5944 if (events >= wakeup_events) {
5945 local_sub(wakeup_events, &rb->events);
5946 local_inc(&rb->wakeup);
5947 }
5948 }
5949 }
5622f295
MM
5950}
5951
fc7ce9c7
KL
5952static u64 perf_virt_to_phys(u64 virt)
5953{
5954 u64 phys_addr = 0;
5955 struct page *p = NULL;
5956
5957 if (!virt)
5958 return 0;
5959
5960 if (virt >= TASK_SIZE) {
5961 /* If it's vmalloc()d memory, leave phys_addr as 0 */
5962 if (virt_addr_valid((void *)(uintptr_t)virt) &&
5963 !(virt >= VMALLOC_START && virt < VMALLOC_END))
5964 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
5965 } else {
5966 /*
5967 * Walking the pages tables for user address.
5968 * Interrupts are disabled, so it prevents any tear down
5969 * of the page tables.
5970 * Try IRQ-safe __get_user_pages_fast first.
5971 * If failed, leave phys_addr as 0.
5972 */
5973 if ((current->mm != NULL) &&
5974 (__get_user_pages_fast(virt, 1, 0, &p) == 1))
5975 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
5976
5977 if (p)
5978 put_page(p);
5979 }
5980
5981 return phys_addr;
5982}
5983
5622f295
MM
5984void perf_prepare_sample(struct perf_event_header *header,
5985 struct perf_sample_data *data,
cdd6c482 5986 struct perf_event *event,
5622f295 5987 struct pt_regs *regs)
7b732a75 5988{
cdd6c482 5989 u64 sample_type = event->attr.sample_type;
7b732a75 5990
cdd6c482 5991 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5992 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5993
5994 header->misc = 0;
5995 header->misc |= perf_misc_flags(regs);
6fab0192 5996
c980d109 5997 __perf_event_header__init_id(header, data, event);
6844c09d 5998
c320c7b7 5999 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
6000 data->ip = perf_instruction_pointer(regs);
6001
b23f3325 6002 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 6003 int size = 1;
394ee076 6004
e6dab5ff 6005 data->callchain = perf_callchain(event, regs);
5622f295
MM
6006
6007 if (data->callchain)
6008 size += data->callchain->nr;
6009
6010 header->size += size * sizeof(u64);
394ee076
PZ
6011 }
6012
3a43ce68 6013 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6014 struct perf_raw_record *raw = data->raw;
6015 int size;
6016
6017 if (raw) {
6018 struct perf_raw_frag *frag = &raw->frag;
6019 u32 sum = 0;
6020
6021 do {
6022 sum += frag->size;
6023 if (perf_raw_frag_last(frag))
6024 break;
6025 frag = frag->next;
6026 } while (1);
6027
6028 size = round_up(sum + sizeof(u32), sizeof(u64));
6029 raw->size = size - sizeof(u32);
6030 frag->pad = raw->size - sum;
6031 } else {
6032 size = sizeof(u64);
6033 }
a044560c 6034
7e3f977e 6035 header->size += size;
7f453c24 6036 }
bce38cd5
SE
6037
6038 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6039 int size = sizeof(u64); /* nr */
6040 if (data->br_stack) {
6041 size += data->br_stack->nr
6042 * sizeof(struct perf_branch_entry);
6043 }
6044 header->size += size;
6045 }
4018994f 6046
2565711f 6047 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
6048 perf_sample_regs_user(&data->regs_user, regs,
6049 &data->regs_user_copy);
2565711f 6050
4018994f
JO
6051 if (sample_type & PERF_SAMPLE_REGS_USER) {
6052 /* regs dump ABI info */
6053 int size = sizeof(u64);
6054
4018994f
JO
6055 if (data->regs_user.regs) {
6056 u64 mask = event->attr.sample_regs_user;
6057 size += hweight64(mask) * sizeof(u64);
6058 }
6059
6060 header->size += size;
6061 }
c5ebcedb
JO
6062
6063 if (sample_type & PERF_SAMPLE_STACK_USER) {
6064 /*
6065 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6066 * processed as the last one or have additional check added
6067 * in case new sample type is added, because we could eat
6068 * up the rest of the sample size.
6069 */
c5ebcedb
JO
6070 u16 stack_size = event->attr.sample_stack_user;
6071 u16 size = sizeof(u64);
6072
c5ebcedb 6073 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 6074 data->regs_user.regs);
c5ebcedb
JO
6075
6076 /*
6077 * If there is something to dump, add space for the dump
6078 * itself and for the field that tells the dynamic size,
6079 * which is how many have been actually dumped.
6080 */
6081 if (stack_size)
6082 size += sizeof(u64) + stack_size;
6083
6084 data->stack_user_size = stack_size;
6085 header->size += size;
6086 }
60e2364e
SE
6087
6088 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6089 /* regs dump ABI info */
6090 int size = sizeof(u64);
6091
6092 perf_sample_regs_intr(&data->regs_intr, regs);
6093
6094 if (data->regs_intr.regs) {
6095 u64 mask = event->attr.sample_regs_intr;
6096
6097 size += hweight64(mask) * sizeof(u64);
6098 }
6099
6100 header->size += size;
6101 }
fc7ce9c7
KL
6102
6103 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6104 data->phys_addr = perf_virt_to_phys(data->addr);
5622f295 6105}
7f453c24 6106
9ecda41a
WN
6107static void __always_inline
6108__perf_event_output(struct perf_event *event,
6109 struct perf_sample_data *data,
6110 struct pt_regs *regs,
6111 int (*output_begin)(struct perf_output_handle *,
6112 struct perf_event *,
6113 unsigned int))
5622f295
MM
6114{
6115 struct perf_output_handle handle;
6116 struct perf_event_header header;
689802b2 6117
927c7a9e
FW
6118 /* protect the callchain buffers */
6119 rcu_read_lock();
6120
cdd6c482 6121 perf_prepare_sample(&header, data, event, regs);
5c148194 6122
9ecda41a 6123 if (output_begin(&handle, event, header.size))
927c7a9e 6124 goto exit;
0322cd6e 6125
cdd6c482 6126 perf_output_sample(&handle, &header, data, event);
f413cdb8 6127
8a057d84 6128 perf_output_end(&handle);
927c7a9e
FW
6129
6130exit:
6131 rcu_read_unlock();
0322cd6e
PZ
6132}
6133
9ecda41a
WN
6134void
6135perf_event_output_forward(struct perf_event *event,
6136 struct perf_sample_data *data,
6137 struct pt_regs *regs)
6138{
6139 __perf_event_output(event, data, regs, perf_output_begin_forward);
6140}
6141
6142void
6143perf_event_output_backward(struct perf_event *event,
6144 struct perf_sample_data *data,
6145 struct pt_regs *regs)
6146{
6147 __perf_event_output(event, data, regs, perf_output_begin_backward);
6148}
6149
6150void
6151perf_event_output(struct perf_event *event,
6152 struct perf_sample_data *data,
6153 struct pt_regs *regs)
6154{
6155 __perf_event_output(event, data, regs, perf_output_begin);
6156}
6157
38b200d6 6158/*
cdd6c482 6159 * read event_id
38b200d6
PZ
6160 */
6161
6162struct perf_read_event {
6163 struct perf_event_header header;
6164
6165 u32 pid;
6166 u32 tid;
38b200d6
PZ
6167};
6168
6169static void
cdd6c482 6170perf_event_read_event(struct perf_event *event,
38b200d6
PZ
6171 struct task_struct *task)
6172{
6173 struct perf_output_handle handle;
c980d109 6174 struct perf_sample_data sample;
dfc65094 6175 struct perf_read_event read_event = {
38b200d6 6176 .header = {
cdd6c482 6177 .type = PERF_RECORD_READ,
38b200d6 6178 .misc = 0,
c320c7b7 6179 .size = sizeof(read_event) + event->read_size,
38b200d6 6180 },
cdd6c482
IM
6181 .pid = perf_event_pid(event, task),
6182 .tid = perf_event_tid(event, task),
38b200d6 6183 };
3dab77fb 6184 int ret;
38b200d6 6185
c980d109 6186 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 6187 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
6188 if (ret)
6189 return;
6190
dfc65094 6191 perf_output_put(&handle, read_event);
cdd6c482 6192 perf_output_read(&handle, event);
c980d109 6193 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 6194
38b200d6
PZ
6195 perf_output_end(&handle);
6196}
6197
aab5b71e 6198typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
6199
6200static void
aab5b71e
PZ
6201perf_iterate_ctx(struct perf_event_context *ctx,
6202 perf_iterate_f output,
b73e4fef 6203 void *data, bool all)
52d857a8
JO
6204{
6205 struct perf_event *event;
6206
6207 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
6208 if (!all) {
6209 if (event->state < PERF_EVENT_STATE_INACTIVE)
6210 continue;
6211 if (!event_filter_match(event))
6212 continue;
6213 }
6214
67516844 6215 output(event, data);
52d857a8
JO
6216 }
6217}
6218
aab5b71e 6219static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
6220{
6221 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6222 struct perf_event *event;
6223
6224 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
6225 /*
6226 * Skip events that are not fully formed yet; ensure that
6227 * if we observe event->ctx, both event and ctx will be
6228 * complete enough. See perf_install_in_context().
6229 */
6230 if (!smp_load_acquire(&event->ctx))
6231 continue;
6232
f2fb6bef
KL
6233 if (event->state < PERF_EVENT_STATE_INACTIVE)
6234 continue;
6235 if (!event_filter_match(event))
6236 continue;
6237 output(event, data);
6238 }
6239}
6240
aab5b71e
PZ
6241/*
6242 * Iterate all events that need to receive side-band events.
6243 *
6244 * For new callers; ensure that account_pmu_sb_event() includes
6245 * your event, otherwise it might not get delivered.
6246 */
52d857a8 6247static void
aab5b71e 6248perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
6249 struct perf_event_context *task_ctx)
6250{
52d857a8 6251 struct perf_event_context *ctx;
52d857a8
JO
6252 int ctxn;
6253
aab5b71e
PZ
6254 rcu_read_lock();
6255 preempt_disable();
6256
4e93ad60 6257 /*
aab5b71e
PZ
6258 * If we have task_ctx != NULL we only notify the task context itself.
6259 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
6260 * context.
6261 */
6262 if (task_ctx) {
aab5b71e
PZ
6263 perf_iterate_ctx(task_ctx, output, data, false);
6264 goto done;
4e93ad60
JO
6265 }
6266
aab5b71e 6267 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
6268
6269 for_each_task_context_nr(ctxn) {
52d857a8
JO
6270 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6271 if (ctx)
aab5b71e 6272 perf_iterate_ctx(ctx, output, data, false);
52d857a8 6273 }
aab5b71e 6274done:
f2fb6bef 6275 preempt_enable();
52d857a8 6276 rcu_read_unlock();
95ff4ca2
AS
6277}
6278
375637bc
AS
6279/*
6280 * Clear all file-based filters at exec, they'll have to be
6281 * re-instated when/if these objects are mmapped again.
6282 */
6283static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6284{
6285 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6286 struct perf_addr_filter *filter;
6287 unsigned int restart = 0, count = 0;
6288 unsigned long flags;
6289
6290 if (!has_addr_filter(event))
6291 return;
6292
6293 raw_spin_lock_irqsave(&ifh->lock, flags);
6294 list_for_each_entry(filter, &ifh->list, entry) {
6295 if (filter->inode) {
6296 event->addr_filters_offs[count] = 0;
6297 restart++;
6298 }
6299
6300 count++;
6301 }
6302
6303 if (restart)
6304 event->addr_filters_gen++;
6305 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6306
6307 if (restart)
767ae086 6308 perf_event_stop(event, 1);
375637bc
AS
6309}
6310
6311void perf_event_exec(void)
6312{
6313 struct perf_event_context *ctx;
6314 int ctxn;
6315
6316 rcu_read_lock();
6317 for_each_task_context_nr(ctxn) {
6318 ctx = current->perf_event_ctxp[ctxn];
6319 if (!ctx)
6320 continue;
6321
6322 perf_event_enable_on_exec(ctxn);
6323
aab5b71e 6324 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
6325 true);
6326 }
6327 rcu_read_unlock();
6328}
6329
95ff4ca2
AS
6330struct remote_output {
6331 struct ring_buffer *rb;
6332 int err;
6333};
6334
6335static void __perf_event_output_stop(struct perf_event *event, void *data)
6336{
6337 struct perf_event *parent = event->parent;
6338 struct remote_output *ro = data;
6339 struct ring_buffer *rb = ro->rb;
375637bc
AS
6340 struct stop_event_data sd = {
6341 .event = event,
6342 };
95ff4ca2
AS
6343
6344 if (!has_aux(event))
6345 return;
6346
6347 if (!parent)
6348 parent = event;
6349
6350 /*
6351 * In case of inheritance, it will be the parent that links to the
767ae086
AS
6352 * ring-buffer, but it will be the child that's actually using it.
6353 *
6354 * We are using event::rb to determine if the event should be stopped,
6355 * however this may race with ring_buffer_attach() (through set_output),
6356 * which will make us skip the event that actually needs to be stopped.
6357 * So ring_buffer_attach() has to stop an aux event before re-assigning
6358 * its rb pointer.
95ff4ca2
AS
6359 */
6360 if (rcu_dereference(parent->rb) == rb)
375637bc 6361 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
6362}
6363
6364static int __perf_pmu_output_stop(void *info)
6365{
6366 struct perf_event *event = info;
6367 struct pmu *pmu = event->pmu;
8b6a3fe8 6368 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
6369 struct remote_output ro = {
6370 .rb = event->rb,
6371 };
6372
6373 rcu_read_lock();
aab5b71e 6374 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 6375 if (cpuctx->task_ctx)
aab5b71e 6376 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 6377 &ro, false);
95ff4ca2
AS
6378 rcu_read_unlock();
6379
6380 return ro.err;
6381}
6382
6383static void perf_pmu_output_stop(struct perf_event *event)
6384{
6385 struct perf_event *iter;
6386 int err, cpu;
6387
6388restart:
6389 rcu_read_lock();
6390 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6391 /*
6392 * For per-CPU events, we need to make sure that neither they
6393 * nor their children are running; for cpu==-1 events it's
6394 * sufficient to stop the event itself if it's active, since
6395 * it can't have children.
6396 */
6397 cpu = iter->cpu;
6398 if (cpu == -1)
6399 cpu = READ_ONCE(iter->oncpu);
6400
6401 if (cpu == -1)
6402 continue;
6403
6404 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6405 if (err == -EAGAIN) {
6406 rcu_read_unlock();
6407 goto restart;
6408 }
6409 }
6410 rcu_read_unlock();
52d857a8
JO
6411}
6412
60313ebe 6413/*
9f498cc5
PZ
6414 * task tracking -- fork/exit
6415 *
13d7a241 6416 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
6417 */
6418
9f498cc5 6419struct perf_task_event {
3a80b4a3 6420 struct task_struct *task;
cdd6c482 6421 struct perf_event_context *task_ctx;
60313ebe
PZ
6422
6423 struct {
6424 struct perf_event_header header;
6425
6426 u32 pid;
6427 u32 ppid;
9f498cc5
PZ
6428 u32 tid;
6429 u32 ptid;
393b2ad8 6430 u64 time;
cdd6c482 6431 } event_id;
60313ebe
PZ
6432};
6433
67516844
JO
6434static int perf_event_task_match(struct perf_event *event)
6435{
13d7a241
SE
6436 return event->attr.comm || event->attr.mmap ||
6437 event->attr.mmap2 || event->attr.mmap_data ||
6438 event->attr.task;
67516844
JO
6439}
6440
cdd6c482 6441static void perf_event_task_output(struct perf_event *event,
52d857a8 6442 void *data)
60313ebe 6443{
52d857a8 6444 struct perf_task_event *task_event = data;
60313ebe 6445 struct perf_output_handle handle;
c980d109 6446 struct perf_sample_data sample;
9f498cc5 6447 struct task_struct *task = task_event->task;
c980d109 6448 int ret, size = task_event->event_id.header.size;
8bb39f9a 6449
67516844
JO
6450 if (!perf_event_task_match(event))
6451 return;
6452
c980d109 6453 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 6454
c980d109 6455 ret = perf_output_begin(&handle, event,
a7ac67ea 6456 task_event->event_id.header.size);
ef60777c 6457 if (ret)
c980d109 6458 goto out;
60313ebe 6459
cdd6c482
IM
6460 task_event->event_id.pid = perf_event_pid(event, task);
6461 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 6462
cdd6c482
IM
6463 task_event->event_id.tid = perf_event_tid(event, task);
6464 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 6465
34f43927
PZ
6466 task_event->event_id.time = perf_event_clock(event);
6467
cdd6c482 6468 perf_output_put(&handle, task_event->event_id);
393b2ad8 6469
c980d109
ACM
6470 perf_event__output_id_sample(event, &handle, &sample);
6471
60313ebe 6472 perf_output_end(&handle);
c980d109
ACM
6473out:
6474 task_event->event_id.header.size = size;
60313ebe
PZ
6475}
6476
cdd6c482
IM
6477static void perf_event_task(struct task_struct *task,
6478 struct perf_event_context *task_ctx,
3a80b4a3 6479 int new)
60313ebe 6480{
9f498cc5 6481 struct perf_task_event task_event;
60313ebe 6482
cdd6c482
IM
6483 if (!atomic_read(&nr_comm_events) &&
6484 !atomic_read(&nr_mmap_events) &&
6485 !atomic_read(&nr_task_events))
60313ebe
PZ
6486 return;
6487
9f498cc5 6488 task_event = (struct perf_task_event){
3a80b4a3
PZ
6489 .task = task,
6490 .task_ctx = task_ctx,
cdd6c482 6491 .event_id = {
60313ebe 6492 .header = {
cdd6c482 6493 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 6494 .misc = 0,
cdd6c482 6495 .size = sizeof(task_event.event_id),
60313ebe 6496 },
573402db
PZ
6497 /* .pid */
6498 /* .ppid */
9f498cc5
PZ
6499 /* .tid */
6500 /* .ptid */
34f43927 6501 /* .time */
60313ebe
PZ
6502 },
6503 };
6504
aab5b71e 6505 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
6506 &task_event,
6507 task_ctx);
9f498cc5
PZ
6508}
6509
cdd6c482 6510void perf_event_fork(struct task_struct *task)
9f498cc5 6511{
cdd6c482 6512 perf_event_task(task, NULL, 1);
e4222673 6513 perf_event_namespaces(task);
60313ebe
PZ
6514}
6515
8d1b2d93
PZ
6516/*
6517 * comm tracking
6518 */
6519
6520struct perf_comm_event {
22a4f650
IM
6521 struct task_struct *task;
6522 char *comm;
8d1b2d93
PZ
6523 int comm_size;
6524
6525 struct {
6526 struct perf_event_header header;
6527
6528 u32 pid;
6529 u32 tid;
cdd6c482 6530 } event_id;
8d1b2d93
PZ
6531};
6532
67516844
JO
6533static int perf_event_comm_match(struct perf_event *event)
6534{
6535 return event->attr.comm;
6536}
6537
cdd6c482 6538static void perf_event_comm_output(struct perf_event *event,
52d857a8 6539 void *data)
8d1b2d93 6540{
52d857a8 6541 struct perf_comm_event *comm_event = data;
8d1b2d93 6542 struct perf_output_handle handle;
c980d109 6543 struct perf_sample_data sample;
cdd6c482 6544 int size = comm_event->event_id.header.size;
c980d109
ACM
6545 int ret;
6546
67516844
JO
6547 if (!perf_event_comm_match(event))
6548 return;
6549
c980d109
ACM
6550 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6551 ret = perf_output_begin(&handle, event,
a7ac67ea 6552 comm_event->event_id.header.size);
8d1b2d93
PZ
6553
6554 if (ret)
c980d109 6555 goto out;
8d1b2d93 6556
cdd6c482
IM
6557 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6558 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 6559
cdd6c482 6560 perf_output_put(&handle, comm_event->event_id);
76369139 6561 __output_copy(&handle, comm_event->comm,
8d1b2d93 6562 comm_event->comm_size);
c980d109
ACM
6563
6564 perf_event__output_id_sample(event, &handle, &sample);
6565
8d1b2d93 6566 perf_output_end(&handle);
c980d109
ACM
6567out:
6568 comm_event->event_id.header.size = size;
8d1b2d93
PZ
6569}
6570
cdd6c482 6571static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 6572{
413ee3b4 6573 char comm[TASK_COMM_LEN];
8d1b2d93 6574 unsigned int size;
8d1b2d93 6575
413ee3b4 6576 memset(comm, 0, sizeof(comm));
96b02d78 6577 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 6578 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
6579
6580 comm_event->comm = comm;
6581 comm_event->comm_size = size;
6582
cdd6c482 6583 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 6584
aab5b71e 6585 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
6586 comm_event,
6587 NULL);
8d1b2d93
PZ
6588}
6589
82b89778 6590void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 6591{
9ee318a7
PZ
6592 struct perf_comm_event comm_event;
6593
cdd6c482 6594 if (!atomic_read(&nr_comm_events))
9ee318a7 6595 return;
a63eaf34 6596
9ee318a7 6597 comm_event = (struct perf_comm_event){
8d1b2d93 6598 .task = task,
573402db
PZ
6599 /* .comm */
6600 /* .comm_size */
cdd6c482 6601 .event_id = {
573402db 6602 .header = {
cdd6c482 6603 .type = PERF_RECORD_COMM,
82b89778 6604 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
6605 /* .size */
6606 },
6607 /* .pid */
6608 /* .tid */
8d1b2d93
PZ
6609 },
6610 };
6611
cdd6c482 6612 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
6613}
6614
e4222673
HB
6615/*
6616 * namespaces tracking
6617 */
6618
6619struct perf_namespaces_event {
6620 struct task_struct *task;
6621
6622 struct {
6623 struct perf_event_header header;
6624
6625 u32 pid;
6626 u32 tid;
6627 u64 nr_namespaces;
6628 struct perf_ns_link_info link_info[NR_NAMESPACES];
6629 } event_id;
6630};
6631
6632static int perf_event_namespaces_match(struct perf_event *event)
6633{
6634 return event->attr.namespaces;
6635}
6636
6637static void perf_event_namespaces_output(struct perf_event *event,
6638 void *data)
6639{
6640 struct perf_namespaces_event *namespaces_event = data;
6641 struct perf_output_handle handle;
6642 struct perf_sample_data sample;
6643 int ret;
6644
6645 if (!perf_event_namespaces_match(event))
6646 return;
6647
6648 perf_event_header__init_id(&namespaces_event->event_id.header,
6649 &sample, event);
6650 ret = perf_output_begin(&handle, event,
6651 namespaces_event->event_id.header.size);
6652 if (ret)
6653 return;
6654
6655 namespaces_event->event_id.pid = perf_event_pid(event,
6656 namespaces_event->task);
6657 namespaces_event->event_id.tid = perf_event_tid(event,
6658 namespaces_event->task);
6659
6660 perf_output_put(&handle, namespaces_event->event_id);
6661
6662 perf_event__output_id_sample(event, &handle, &sample);
6663
6664 perf_output_end(&handle);
6665}
6666
6667static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6668 struct task_struct *task,
6669 const struct proc_ns_operations *ns_ops)
6670{
6671 struct path ns_path;
6672 struct inode *ns_inode;
6673 void *error;
6674
6675 error = ns_get_path(&ns_path, task, ns_ops);
6676 if (!error) {
6677 ns_inode = ns_path.dentry->d_inode;
6678 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6679 ns_link_info->ino = ns_inode->i_ino;
6680 }
6681}
6682
6683void perf_event_namespaces(struct task_struct *task)
6684{
6685 struct perf_namespaces_event namespaces_event;
6686 struct perf_ns_link_info *ns_link_info;
6687
6688 if (!atomic_read(&nr_namespaces_events))
6689 return;
6690
6691 namespaces_event = (struct perf_namespaces_event){
6692 .task = task,
6693 .event_id = {
6694 .header = {
6695 .type = PERF_RECORD_NAMESPACES,
6696 .misc = 0,
6697 .size = sizeof(namespaces_event.event_id),
6698 },
6699 /* .pid */
6700 /* .tid */
6701 .nr_namespaces = NR_NAMESPACES,
6702 /* .link_info[NR_NAMESPACES] */
6703 },
6704 };
6705
6706 ns_link_info = namespaces_event.event_id.link_info;
6707
6708 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6709 task, &mntns_operations);
6710
6711#ifdef CONFIG_USER_NS
6712 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6713 task, &userns_operations);
6714#endif
6715#ifdef CONFIG_NET_NS
6716 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6717 task, &netns_operations);
6718#endif
6719#ifdef CONFIG_UTS_NS
6720 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6721 task, &utsns_operations);
6722#endif
6723#ifdef CONFIG_IPC_NS
6724 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6725 task, &ipcns_operations);
6726#endif
6727#ifdef CONFIG_PID_NS
6728 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6729 task, &pidns_operations);
6730#endif
6731#ifdef CONFIG_CGROUPS
6732 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6733 task, &cgroupns_operations);
6734#endif
6735
6736 perf_iterate_sb(perf_event_namespaces_output,
6737 &namespaces_event,
6738 NULL);
6739}
6740
0a4a9391
PZ
6741/*
6742 * mmap tracking
6743 */
6744
6745struct perf_mmap_event {
089dd79d
PZ
6746 struct vm_area_struct *vma;
6747
6748 const char *file_name;
6749 int file_size;
13d7a241
SE
6750 int maj, min;
6751 u64 ino;
6752 u64 ino_generation;
f972eb63 6753 u32 prot, flags;
0a4a9391
PZ
6754
6755 struct {
6756 struct perf_event_header header;
6757
6758 u32 pid;
6759 u32 tid;
6760 u64 start;
6761 u64 len;
6762 u64 pgoff;
cdd6c482 6763 } event_id;
0a4a9391
PZ
6764};
6765
67516844
JO
6766static int perf_event_mmap_match(struct perf_event *event,
6767 void *data)
6768{
6769 struct perf_mmap_event *mmap_event = data;
6770 struct vm_area_struct *vma = mmap_event->vma;
6771 int executable = vma->vm_flags & VM_EXEC;
6772
6773 return (!executable && event->attr.mmap_data) ||
13d7a241 6774 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
6775}
6776
cdd6c482 6777static void perf_event_mmap_output(struct perf_event *event,
52d857a8 6778 void *data)
0a4a9391 6779{
52d857a8 6780 struct perf_mmap_event *mmap_event = data;
0a4a9391 6781 struct perf_output_handle handle;
c980d109 6782 struct perf_sample_data sample;
cdd6c482 6783 int size = mmap_event->event_id.header.size;
c980d109 6784 int ret;
0a4a9391 6785
67516844
JO
6786 if (!perf_event_mmap_match(event, data))
6787 return;
6788
13d7a241
SE
6789 if (event->attr.mmap2) {
6790 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6791 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6792 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6793 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 6794 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
6795 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6796 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
6797 }
6798
c980d109
ACM
6799 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6800 ret = perf_output_begin(&handle, event,
a7ac67ea 6801 mmap_event->event_id.header.size);
0a4a9391 6802 if (ret)
c980d109 6803 goto out;
0a4a9391 6804
cdd6c482
IM
6805 mmap_event->event_id.pid = perf_event_pid(event, current);
6806 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 6807
cdd6c482 6808 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
6809
6810 if (event->attr.mmap2) {
6811 perf_output_put(&handle, mmap_event->maj);
6812 perf_output_put(&handle, mmap_event->min);
6813 perf_output_put(&handle, mmap_event->ino);
6814 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
6815 perf_output_put(&handle, mmap_event->prot);
6816 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
6817 }
6818
76369139 6819 __output_copy(&handle, mmap_event->file_name,
0a4a9391 6820 mmap_event->file_size);
c980d109
ACM
6821
6822 perf_event__output_id_sample(event, &handle, &sample);
6823
78d613eb 6824 perf_output_end(&handle);
c980d109
ACM
6825out:
6826 mmap_event->event_id.header.size = size;
0a4a9391
PZ
6827}
6828
cdd6c482 6829static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 6830{
089dd79d
PZ
6831 struct vm_area_struct *vma = mmap_event->vma;
6832 struct file *file = vma->vm_file;
13d7a241
SE
6833 int maj = 0, min = 0;
6834 u64 ino = 0, gen = 0;
f972eb63 6835 u32 prot = 0, flags = 0;
0a4a9391
PZ
6836 unsigned int size;
6837 char tmp[16];
6838 char *buf = NULL;
2c42cfbf 6839 char *name;
413ee3b4 6840
0b3589be
PZ
6841 if (vma->vm_flags & VM_READ)
6842 prot |= PROT_READ;
6843 if (vma->vm_flags & VM_WRITE)
6844 prot |= PROT_WRITE;
6845 if (vma->vm_flags & VM_EXEC)
6846 prot |= PROT_EXEC;
6847
6848 if (vma->vm_flags & VM_MAYSHARE)
6849 flags = MAP_SHARED;
6850 else
6851 flags = MAP_PRIVATE;
6852
6853 if (vma->vm_flags & VM_DENYWRITE)
6854 flags |= MAP_DENYWRITE;
6855 if (vma->vm_flags & VM_MAYEXEC)
6856 flags |= MAP_EXECUTABLE;
6857 if (vma->vm_flags & VM_LOCKED)
6858 flags |= MAP_LOCKED;
6859 if (vma->vm_flags & VM_HUGETLB)
6860 flags |= MAP_HUGETLB;
6861
0a4a9391 6862 if (file) {
13d7a241
SE
6863 struct inode *inode;
6864 dev_t dev;
3ea2f2b9 6865
2c42cfbf 6866 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 6867 if (!buf) {
c7e548b4
ON
6868 name = "//enomem";
6869 goto cpy_name;
0a4a9391 6870 }
413ee3b4 6871 /*
3ea2f2b9 6872 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
6873 * need to add enough zero bytes after the string to handle
6874 * the 64bit alignment we do later.
6875 */
9bf39ab2 6876 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 6877 if (IS_ERR(name)) {
c7e548b4
ON
6878 name = "//toolong";
6879 goto cpy_name;
0a4a9391 6880 }
13d7a241
SE
6881 inode = file_inode(vma->vm_file);
6882 dev = inode->i_sb->s_dev;
6883 ino = inode->i_ino;
6884 gen = inode->i_generation;
6885 maj = MAJOR(dev);
6886 min = MINOR(dev);
f972eb63 6887
c7e548b4 6888 goto got_name;
0a4a9391 6889 } else {
fbe26abe
JO
6890 if (vma->vm_ops && vma->vm_ops->name) {
6891 name = (char *) vma->vm_ops->name(vma);
6892 if (name)
6893 goto cpy_name;
6894 }
6895
2c42cfbf 6896 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6897 if (name)
6898 goto cpy_name;
089dd79d 6899
32c5fb7e 6900 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6901 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6902 name = "[heap]";
6903 goto cpy_name;
32c5fb7e
ON
6904 }
6905 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6906 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6907 name = "[stack]";
6908 goto cpy_name;
089dd79d
PZ
6909 }
6910
c7e548b4
ON
6911 name = "//anon";
6912 goto cpy_name;
0a4a9391
PZ
6913 }
6914
c7e548b4
ON
6915cpy_name:
6916 strlcpy(tmp, name, sizeof(tmp));
6917 name = tmp;
0a4a9391 6918got_name:
2c42cfbf
PZ
6919 /*
6920 * Since our buffer works in 8 byte units we need to align our string
6921 * size to a multiple of 8. However, we must guarantee the tail end is
6922 * zero'd out to avoid leaking random bits to userspace.
6923 */
6924 size = strlen(name)+1;
6925 while (!IS_ALIGNED(size, sizeof(u64)))
6926 name[size++] = '\0';
0a4a9391
PZ
6927
6928 mmap_event->file_name = name;
6929 mmap_event->file_size = size;
13d7a241
SE
6930 mmap_event->maj = maj;
6931 mmap_event->min = min;
6932 mmap_event->ino = ino;
6933 mmap_event->ino_generation = gen;
f972eb63
PZ
6934 mmap_event->prot = prot;
6935 mmap_event->flags = flags;
0a4a9391 6936
2fe85427
SE
6937 if (!(vma->vm_flags & VM_EXEC))
6938 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6939
cdd6c482 6940 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6941
aab5b71e 6942 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
6943 mmap_event,
6944 NULL);
665c2142 6945
0a4a9391
PZ
6946 kfree(buf);
6947}
6948
375637bc
AS
6949/*
6950 * Check whether inode and address range match filter criteria.
6951 */
6952static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6953 struct file *file, unsigned long offset,
6954 unsigned long size)
6955{
45063097 6956 if (filter->inode != file_inode(file))
375637bc
AS
6957 return false;
6958
6959 if (filter->offset > offset + size)
6960 return false;
6961
6962 if (filter->offset + filter->size < offset)
6963 return false;
6964
6965 return true;
6966}
6967
6968static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6969{
6970 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6971 struct vm_area_struct *vma = data;
6972 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6973 struct file *file = vma->vm_file;
6974 struct perf_addr_filter *filter;
6975 unsigned int restart = 0, count = 0;
6976
6977 if (!has_addr_filter(event))
6978 return;
6979
6980 if (!file)
6981 return;
6982
6983 raw_spin_lock_irqsave(&ifh->lock, flags);
6984 list_for_each_entry(filter, &ifh->list, entry) {
6985 if (perf_addr_filter_match(filter, file, off,
6986 vma->vm_end - vma->vm_start)) {
6987 event->addr_filters_offs[count] = vma->vm_start;
6988 restart++;
6989 }
6990
6991 count++;
6992 }
6993
6994 if (restart)
6995 event->addr_filters_gen++;
6996 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6997
6998 if (restart)
767ae086 6999 perf_event_stop(event, 1);
375637bc
AS
7000}
7001
7002/*
7003 * Adjust all task's events' filters to the new vma
7004 */
7005static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7006{
7007 struct perf_event_context *ctx;
7008 int ctxn;
7009
12b40a23
MP
7010 /*
7011 * Data tracing isn't supported yet and as such there is no need
7012 * to keep track of anything that isn't related to executable code:
7013 */
7014 if (!(vma->vm_flags & VM_EXEC))
7015 return;
7016
375637bc
AS
7017 rcu_read_lock();
7018 for_each_task_context_nr(ctxn) {
7019 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7020 if (!ctx)
7021 continue;
7022
aab5b71e 7023 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
7024 }
7025 rcu_read_unlock();
7026}
7027
3af9e859 7028void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 7029{
9ee318a7
PZ
7030 struct perf_mmap_event mmap_event;
7031
cdd6c482 7032 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
7033 return;
7034
7035 mmap_event = (struct perf_mmap_event){
089dd79d 7036 .vma = vma,
573402db
PZ
7037 /* .file_name */
7038 /* .file_size */
cdd6c482 7039 .event_id = {
573402db 7040 .header = {
cdd6c482 7041 .type = PERF_RECORD_MMAP,
39447b38 7042 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
7043 /* .size */
7044 },
7045 /* .pid */
7046 /* .tid */
089dd79d
PZ
7047 .start = vma->vm_start,
7048 .len = vma->vm_end - vma->vm_start,
3a0304e9 7049 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 7050 },
13d7a241
SE
7051 /* .maj (attr_mmap2 only) */
7052 /* .min (attr_mmap2 only) */
7053 /* .ino (attr_mmap2 only) */
7054 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
7055 /* .prot (attr_mmap2 only) */
7056 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
7057 };
7058
375637bc 7059 perf_addr_filters_adjust(vma);
cdd6c482 7060 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
7061}
7062
68db7e98
AS
7063void perf_event_aux_event(struct perf_event *event, unsigned long head,
7064 unsigned long size, u64 flags)
7065{
7066 struct perf_output_handle handle;
7067 struct perf_sample_data sample;
7068 struct perf_aux_event {
7069 struct perf_event_header header;
7070 u64 offset;
7071 u64 size;
7072 u64 flags;
7073 } rec = {
7074 .header = {
7075 .type = PERF_RECORD_AUX,
7076 .misc = 0,
7077 .size = sizeof(rec),
7078 },
7079 .offset = head,
7080 .size = size,
7081 .flags = flags,
7082 };
7083 int ret;
7084
7085 perf_event_header__init_id(&rec.header, &sample, event);
7086 ret = perf_output_begin(&handle, event, rec.header.size);
7087
7088 if (ret)
7089 return;
7090
7091 perf_output_put(&handle, rec);
7092 perf_event__output_id_sample(event, &handle, &sample);
7093
7094 perf_output_end(&handle);
7095}
7096
f38b0dbb
KL
7097/*
7098 * Lost/dropped samples logging
7099 */
7100void perf_log_lost_samples(struct perf_event *event, u64 lost)
7101{
7102 struct perf_output_handle handle;
7103 struct perf_sample_data sample;
7104 int ret;
7105
7106 struct {
7107 struct perf_event_header header;
7108 u64 lost;
7109 } lost_samples_event = {
7110 .header = {
7111 .type = PERF_RECORD_LOST_SAMPLES,
7112 .misc = 0,
7113 .size = sizeof(lost_samples_event),
7114 },
7115 .lost = lost,
7116 };
7117
7118 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7119
7120 ret = perf_output_begin(&handle, event,
7121 lost_samples_event.header.size);
7122 if (ret)
7123 return;
7124
7125 perf_output_put(&handle, lost_samples_event);
7126 perf_event__output_id_sample(event, &handle, &sample);
7127 perf_output_end(&handle);
7128}
7129
45ac1403
AH
7130/*
7131 * context_switch tracking
7132 */
7133
7134struct perf_switch_event {
7135 struct task_struct *task;
7136 struct task_struct *next_prev;
7137
7138 struct {
7139 struct perf_event_header header;
7140 u32 next_prev_pid;
7141 u32 next_prev_tid;
7142 } event_id;
7143};
7144
7145static int perf_event_switch_match(struct perf_event *event)
7146{
7147 return event->attr.context_switch;
7148}
7149
7150static void perf_event_switch_output(struct perf_event *event, void *data)
7151{
7152 struct perf_switch_event *se = data;
7153 struct perf_output_handle handle;
7154 struct perf_sample_data sample;
7155 int ret;
7156
7157 if (!perf_event_switch_match(event))
7158 return;
7159
7160 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7161 if (event->ctx->task) {
7162 se->event_id.header.type = PERF_RECORD_SWITCH;
7163 se->event_id.header.size = sizeof(se->event_id.header);
7164 } else {
7165 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7166 se->event_id.header.size = sizeof(se->event_id);
7167 se->event_id.next_prev_pid =
7168 perf_event_pid(event, se->next_prev);
7169 se->event_id.next_prev_tid =
7170 perf_event_tid(event, se->next_prev);
7171 }
7172
7173 perf_event_header__init_id(&se->event_id.header, &sample, event);
7174
7175 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7176 if (ret)
7177 return;
7178
7179 if (event->ctx->task)
7180 perf_output_put(&handle, se->event_id.header);
7181 else
7182 perf_output_put(&handle, se->event_id);
7183
7184 perf_event__output_id_sample(event, &handle, &sample);
7185
7186 perf_output_end(&handle);
7187}
7188
7189static void perf_event_switch(struct task_struct *task,
7190 struct task_struct *next_prev, bool sched_in)
7191{
7192 struct perf_switch_event switch_event;
7193
7194 /* N.B. caller checks nr_switch_events != 0 */
7195
7196 switch_event = (struct perf_switch_event){
7197 .task = task,
7198 .next_prev = next_prev,
7199 .event_id = {
7200 .header = {
7201 /* .type */
7202 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7203 /* .size */
7204 },
7205 /* .next_prev_pid */
7206 /* .next_prev_tid */
7207 },
7208 };
7209
aab5b71e 7210 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
7211 &switch_event,
7212 NULL);
7213}
7214
a78ac325
PZ
7215/*
7216 * IRQ throttle logging
7217 */
7218
cdd6c482 7219static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
7220{
7221 struct perf_output_handle handle;
c980d109 7222 struct perf_sample_data sample;
a78ac325
PZ
7223 int ret;
7224
7225 struct {
7226 struct perf_event_header header;
7227 u64 time;
cca3f454 7228 u64 id;
7f453c24 7229 u64 stream_id;
a78ac325
PZ
7230 } throttle_event = {
7231 .header = {
cdd6c482 7232 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
7233 .misc = 0,
7234 .size = sizeof(throttle_event),
7235 },
34f43927 7236 .time = perf_event_clock(event),
cdd6c482
IM
7237 .id = primary_event_id(event),
7238 .stream_id = event->id,
a78ac325
PZ
7239 };
7240
966ee4d6 7241 if (enable)
cdd6c482 7242 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 7243
c980d109
ACM
7244 perf_event_header__init_id(&throttle_event.header, &sample, event);
7245
7246 ret = perf_output_begin(&handle, event,
a7ac67ea 7247 throttle_event.header.size);
a78ac325
PZ
7248 if (ret)
7249 return;
7250
7251 perf_output_put(&handle, throttle_event);
c980d109 7252 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
7253 perf_output_end(&handle);
7254}
7255
8d4e6c4c
AS
7256void perf_event_itrace_started(struct perf_event *event)
7257{
7258 event->attach_state |= PERF_ATTACH_ITRACE;
7259}
7260
ec0d7729
AS
7261static void perf_log_itrace_start(struct perf_event *event)
7262{
7263 struct perf_output_handle handle;
7264 struct perf_sample_data sample;
7265 struct perf_aux_event {
7266 struct perf_event_header header;
7267 u32 pid;
7268 u32 tid;
7269 } rec;
7270 int ret;
7271
7272 if (event->parent)
7273 event = event->parent;
7274
7275 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8d4e6c4c 7276 event->attach_state & PERF_ATTACH_ITRACE)
ec0d7729
AS
7277 return;
7278
ec0d7729
AS
7279 rec.header.type = PERF_RECORD_ITRACE_START;
7280 rec.header.misc = 0;
7281 rec.header.size = sizeof(rec);
7282 rec.pid = perf_event_pid(event, current);
7283 rec.tid = perf_event_tid(event, current);
7284
7285 perf_event_header__init_id(&rec.header, &sample, event);
7286 ret = perf_output_begin(&handle, event, rec.header.size);
7287
7288 if (ret)
7289 return;
7290
7291 perf_output_put(&handle, rec);
7292 perf_event__output_id_sample(event, &handle, &sample);
7293
7294 perf_output_end(&handle);
7295}
7296
475113d9
JO
7297static int
7298__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 7299{
cdd6c482 7300 struct hw_perf_event *hwc = &event->hw;
79f14641 7301 int ret = 0;
475113d9 7302 u64 seq;
96398826 7303
e050e3f0
SE
7304 seq = __this_cpu_read(perf_throttled_seq);
7305 if (seq != hwc->interrupts_seq) {
7306 hwc->interrupts_seq = seq;
7307 hwc->interrupts = 1;
7308 } else {
7309 hwc->interrupts++;
7310 if (unlikely(throttle
7311 && hwc->interrupts >= max_samples_per_tick)) {
7312 __this_cpu_inc(perf_throttled_count);
555e0c1e 7313 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
7314 hwc->interrupts = MAX_INTERRUPTS;
7315 perf_log_throttle(event, 0);
a78ac325
PZ
7316 ret = 1;
7317 }
e050e3f0 7318 }
60db5e09 7319
cdd6c482 7320 if (event->attr.freq) {
def0a9b2 7321 u64 now = perf_clock();
abd50713 7322 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 7323
abd50713 7324 hwc->freq_time_stamp = now;
bd2b5b12 7325
abd50713 7326 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 7327 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
7328 }
7329
475113d9
JO
7330 return ret;
7331}
7332
7333int perf_event_account_interrupt(struct perf_event *event)
7334{
7335 return __perf_event_account_interrupt(event, 1);
7336}
7337
7338/*
7339 * Generic event overflow handling, sampling.
7340 */
7341
7342static int __perf_event_overflow(struct perf_event *event,
7343 int throttle, struct perf_sample_data *data,
7344 struct pt_regs *regs)
7345{
7346 int events = atomic_read(&event->event_limit);
7347 int ret = 0;
7348
7349 /*
7350 * Non-sampling counters might still use the PMI to fold short
7351 * hardware counters, ignore those.
7352 */
7353 if (unlikely(!is_sampling_event(event)))
7354 return 0;
7355
7356 ret = __perf_event_account_interrupt(event, throttle);
cc1582c2 7357
2023b359
PZ
7358 /*
7359 * XXX event_limit might not quite work as expected on inherited
cdd6c482 7360 * events
2023b359
PZ
7361 */
7362
cdd6c482
IM
7363 event->pending_kill = POLL_IN;
7364 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 7365 ret = 1;
cdd6c482 7366 event->pending_kill = POLL_HUP;
5aab90ce
JO
7367
7368 perf_event_disable_inatomic(event);
79f14641
PZ
7369 }
7370
aa6a5f3c 7371 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 7372
fed66e2c 7373 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
7374 event->pending_wakeup = 1;
7375 irq_work_queue(&event->pending);
f506b3dc
PZ
7376 }
7377
79f14641 7378 return ret;
f6c7d5fe
PZ
7379}
7380
a8b0ca17 7381int perf_event_overflow(struct perf_event *event,
5622f295
MM
7382 struct perf_sample_data *data,
7383 struct pt_regs *regs)
850bc73f 7384{
a8b0ca17 7385 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
7386}
7387
15dbf27c 7388/*
cdd6c482 7389 * Generic software event infrastructure
15dbf27c
PZ
7390 */
7391
b28ab83c
PZ
7392struct swevent_htable {
7393 struct swevent_hlist *swevent_hlist;
7394 struct mutex hlist_mutex;
7395 int hlist_refcount;
7396
7397 /* Recursion avoidance in each contexts */
7398 int recursion[PERF_NR_CONTEXTS];
7399};
7400
7401static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7402
7b4b6658 7403/*
cdd6c482
IM
7404 * We directly increment event->count and keep a second value in
7405 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
7406 * is kept in the range [-sample_period, 0] so that we can use the
7407 * sign as trigger.
7408 */
7409
ab573844 7410u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 7411{
cdd6c482 7412 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
7413 u64 period = hwc->last_period;
7414 u64 nr, offset;
7415 s64 old, val;
7416
7417 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
7418
7419again:
e7850595 7420 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
7421 if (val < 0)
7422 return 0;
15dbf27c 7423
7b4b6658
PZ
7424 nr = div64_u64(period + val, period);
7425 offset = nr * period;
7426 val -= offset;
e7850595 7427 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 7428 goto again;
15dbf27c 7429
7b4b6658 7430 return nr;
15dbf27c
PZ
7431}
7432
0cff784a 7433static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 7434 struct perf_sample_data *data,
5622f295 7435 struct pt_regs *regs)
15dbf27c 7436{
cdd6c482 7437 struct hw_perf_event *hwc = &event->hw;
850bc73f 7438 int throttle = 0;
15dbf27c 7439
0cff784a
PZ
7440 if (!overflow)
7441 overflow = perf_swevent_set_period(event);
15dbf27c 7442
7b4b6658
PZ
7443 if (hwc->interrupts == MAX_INTERRUPTS)
7444 return;
15dbf27c 7445
7b4b6658 7446 for (; overflow; overflow--) {
a8b0ca17 7447 if (__perf_event_overflow(event, throttle,
5622f295 7448 data, regs)) {
7b4b6658
PZ
7449 /*
7450 * We inhibit the overflow from happening when
7451 * hwc->interrupts == MAX_INTERRUPTS.
7452 */
7453 break;
7454 }
cf450a73 7455 throttle = 1;
7b4b6658 7456 }
15dbf27c
PZ
7457}
7458
a4eaf7f1 7459static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 7460 struct perf_sample_data *data,
5622f295 7461 struct pt_regs *regs)
7b4b6658 7462{
cdd6c482 7463 struct hw_perf_event *hwc = &event->hw;
d6d020e9 7464
e7850595 7465 local64_add(nr, &event->count);
d6d020e9 7466
0cff784a
PZ
7467 if (!regs)
7468 return;
7469
6c7e550f 7470 if (!is_sampling_event(event))
7b4b6658 7471 return;
d6d020e9 7472
5d81e5cf
AV
7473 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7474 data->period = nr;
7475 return perf_swevent_overflow(event, 1, data, regs);
7476 } else
7477 data->period = event->hw.last_period;
7478
0cff784a 7479 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 7480 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 7481
e7850595 7482 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 7483 return;
df1a132b 7484
a8b0ca17 7485 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
7486}
7487
f5ffe02e
FW
7488static int perf_exclude_event(struct perf_event *event,
7489 struct pt_regs *regs)
7490{
a4eaf7f1 7491 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 7492 return 1;
a4eaf7f1 7493
f5ffe02e
FW
7494 if (regs) {
7495 if (event->attr.exclude_user && user_mode(regs))
7496 return 1;
7497
7498 if (event->attr.exclude_kernel && !user_mode(regs))
7499 return 1;
7500 }
7501
7502 return 0;
7503}
7504
cdd6c482 7505static int perf_swevent_match(struct perf_event *event,
1c432d89 7506 enum perf_type_id type,
6fb2915d
LZ
7507 u32 event_id,
7508 struct perf_sample_data *data,
7509 struct pt_regs *regs)
15dbf27c 7510{
cdd6c482 7511 if (event->attr.type != type)
a21ca2ca 7512 return 0;
f5ffe02e 7513
cdd6c482 7514 if (event->attr.config != event_id)
15dbf27c
PZ
7515 return 0;
7516
f5ffe02e
FW
7517 if (perf_exclude_event(event, regs))
7518 return 0;
15dbf27c
PZ
7519
7520 return 1;
7521}
7522
76e1d904
FW
7523static inline u64 swevent_hash(u64 type, u32 event_id)
7524{
7525 u64 val = event_id | (type << 32);
7526
7527 return hash_64(val, SWEVENT_HLIST_BITS);
7528}
7529
49f135ed
FW
7530static inline struct hlist_head *
7531__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 7532{
49f135ed
FW
7533 u64 hash = swevent_hash(type, event_id);
7534
7535 return &hlist->heads[hash];
7536}
76e1d904 7537
49f135ed
FW
7538/* For the read side: events when they trigger */
7539static inline struct hlist_head *
b28ab83c 7540find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
7541{
7542 struct swevent_hlist *hlist;
76e1d904 7543
b28ab83c 7544 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
7545 if (!hlist)
7546 return NULL;
7547
49f135ed
FW
7548 return __find_swevent_head(hlist, type, event_id);
7549}
7550
7551/* For the event head insertion and removal in the hlist */
7552static inline struct hlist_head *
b28ab83c 7553find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
7554{
7555 struct swevent_hlist *hlist;
7556 u32 event_id = event->attr.config;
7557 u64 type = event->attr.type;
7558
7559 /*
7560 * Event scheduling is always serialized against hlist allocation
7561 * and release. Which makes the protected version suitable here.
7562 * The context lock guarantees that.
7563 */
b28ab83c 7564 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
7565 lockdep_is_held(&event->ctx->lock));
7566 if (!hlist)
7567 return NULL;
7568
7569 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
7570}
7571
7572static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 7573 u64 nr,
76e1d904
FW
7574 struct perf_sample_data *data,
7575 struct pt_regs *regs)
15dbf27c 7576{
4a32fea9 7577 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7578 struct perf_event *event;
76e1d904 7579 struct hlist_head *head;
15dbf27c 7580
76e1d904 7581 rcu_read_lock();
b28ab83c 7582 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
7583 if (!head)
7584 goto end;
7585
b67bfe0d 7586 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 7587 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 7588 perf_swevent_event(event, nr, data, regs);
15dbf27c 7589 }
76e1d904
FW
7590end:
7591 rcu_read_unlock();
15dbf27c
PZ
7592}
7593
86038c5e
PZI
7594DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7595
4ed7c92d 7596int perf_swevent_get_recursion_context(void)
96f6d444 7597{
4a32fea9 7598 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 7599
b28ab83c 7600 return get_recursion_context(swhash->recursion);
96f6d444 7601}
645e8cc0 7602EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 7603
98b5c2c6 7604void perf_swevent_put_recursion_context(int rctx)
15dbf27c 7605{
4a32fea9 7606 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 7607
b28ab83c 7608 put_recursion_context(swhash->recursion, rctx);
ce71b9df 7609}
15dbf27c 7610
86038c5e 7611void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 7612{
a4234bfc 7613 struct perf_sample_data data;
4ed7c92d 7614
86038c5e 7615 if (WARN_ON_ONCE(!regs))
4ed7c92d 7616 return;
a4234bfc 7617
fd0d000b 7618 perf_sample_data_init(&data, addr, 0);
a8b0ca17 7619 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
7620}
7621
7622void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7623{
7624 int rctx;
7625
7626 preempt_disable_notrace();
7627 rctx = perf_swevent_get_recursion_context();
7628 if (unlikely(rctx < 0))
7629 goto fail;
7630
7631 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
7632
7633 perf_swevent_put_recursion_context(rctx);
86038c5e 7634fail:
1c024eca 7635 preempt_enable_notrace();
b8e83514
PZ
7636}
7637
cdd6c482 7638static void perf_swevent_read(struct perf_event *event)
15dbf27c 7639{
15dbf27c
PZ
7640}
7641
a4eaf7f1 7642static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 7643{
4a32fea9 7644 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7645 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
7646 struct hlist_head *head;
7647
6c7e550f 7648 if (is_sampling_event(event)) {
7b4b6658 7649 hwc->last_period = hwc->sample_period;
cdd6c482 7650 perf_swevent_set_period(event);
7b4b6658 7651 }
76e1d904 7652
a4eaf7f1
PZ
7653 hwc->state = !(flags & PERF_EF_START);
7654
b28ab83c 7655 head = find_swevent_head(swhash, event);
12ca6ad2 7656 if (WARN_ON_ONCE(!head))
76e1d904
FW
7657 return -EINVAL;
7658
7659 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 7660 perf_event_update_userpage(event);
76e1d904 7661
15dbf27c
PZ
7662 return 0;
7663}
7664
a4eaf7f1 7665static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 7666{
76e1d904 7667 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
7668}
7669
a4eaf7f1 7670static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 7671{
a4eaf7f1 7672 event->hw.state = 0;
d6d020e9 7673}
aa9c4c0f 7674
a4eaf7f1 7675static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 7676{
a4eaf7f1 7677 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
7678}
7679
49f135ed
FW
7680/* Deref the hlist from the update side */
7681static inline struct swevent_hlist *
b28ab83c 7682swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 7683{
b28ab83c
PZ
7684 return rcu_dereference_protected(swhash->swevent_hlist,
7685 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
7686}
7687
b28ab83c 7688static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 7689{
b28ab83c 7690 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 7691
49f135ed 7692 if (!hlist)
76e1d904
FW
7693 return;
7694
70691d4a 7695 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 7696 kfree_rcu(hlist, rcu_head);
76e1d904
FW
7697}
7698
3b364d7b 7699static void swevent_hlist_put_cpu(int cpu)
76e1d904 7700{
b28ab83c 7701 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 7702
b28ab83c 7703 mutex_lock(&swhash->hlist_mutex);
76e1d904 7704
b28ab83c
PZ
7705 if (!--swhash->hlist_refcount)
7706 swevent_hlist_release(swhash);
76e1d904 7707
b28ab83c 7708 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7709}
7710
3b364d7b 7711static void swevent_hlist_put(void)
76e1d904
FW
7712{
7713 int cpu;
7714
76e1d904 7715 for_each_possible_cpu(cpu)
3b364d7b 7716 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7717}
7718
3b364d7b 7719static int swevent_hlist_get_cpu(int cpu)
76e1d904 7720{
b28ab83c 7721 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
7722 int err = 0;
7723
b28ab83c 7724 mutex_lock(&swhash->hlist_mutex);
a63fbed7
TG
7725 if (!swevent_hlist_deref(swhash) &&
7726 cpumask_test_cpu(cpu, perf_online_mask)) {
76e1d904
FW
7727 struct swevent_hlist *hlist;
7728
7729 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7730 if (!hlist) {
7731 err = -ENOMEM;
7732 goto exit;
7733 }
b28ab83c 7734 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7735 }
b28ab83c 7736 swhash->hlist_refcount++;
9ed6060d 7737exit:
b28ab83c 7738 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7739
7740 return err;
7741}
7742
3b364d7b 7743static int swevent_hlist_get(void)
76e1d904 7744{
3b364d7b 7745 int err, cpu, failed_cpu;
76e1d904 7746
a63fbed7 7747 mutex_lock(&pmus_lock);
76e1d904 7748 for_each_possible_cpu(cpu) {
3b364d7b 7749 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
7750 if (err) {
7751 failed_cpu = cpu;
7752 goto fail;
7753 }
7754 }
a63fbed7 7755 mutex_unlock(&pmus_lock);
76e1d904 7756 return 0;
9ed6060d 7757fail:
76e1d904
FW
7758 for_each_possible_cpu(cpu) {
7759 if (cpu == failed_cpu)
7760 break;
3b364d7b 7761 swevent_hlist_put_cpu(cpu);
76e1d904 7762 }
a63fbed7 7763 mutex_unlock(&pmus_lock);
76e1d904
FW
7764 return err;
7765}
7766
c5905afb 7767struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 7768
b0a873eb
PZ
7769static void sw_perf_event_destroy(struct perf_event *event)
7770{
7771 u64 event_id = event->attr.config;
95476b64 7772
b0a873eb
PZ
7773 WARN_ON(event->parent);
7774
c5905afb 7775 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 7776 swevent_hlist_put();
b0a873eb
PZ
7777}
7778
7779static int perf_swevent_init(struct perf_event *event)
7780{
8176cced 7781 u64 event_id = event->attr.config;
b0a873eb
PZ
7782
7783 if (event->attr.type != PERF_TYPE_SOFTWARE)
7784 return -ENOENT;
7785
2481c5fa
SE
7786 /*
7787 * no branch sampling for software events
7788 */
7789 if (has_branch_stack(event))
7790 return -EOPNOTSUPP;
7791
b0a873eb
PZ
7792 switch (event_id) {
7793 case PERF_COUNT_SW_CPU_CLOCK:
7794 case PERF_COUNT_SW_TASK_CLOCK:
7795 return -ENOENT;
7796
7797 default:
7798 break;
7799 }
7800
ce677831 7801 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
7802 return -ENOENT;
7803
7804 if (!event->parent) {
7805 int err;
7806
3b364d7b 7807 err = swevent_hlist_get();
b0a873eb
PZ
7808 if (err)
7809 return err;
7810
c5905afb 7811 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
7812 event->destroy = sw_perf_event_destroy;
7813 }
7814
7815 return 0;
7816}
7817
7818static struct pmu perf_swevent = {
89a1e187 7819 .task_ctx_nr = perf_sw_context,
95476b64 7820
34f43927
PZ
7821 .capabilities = PERF_PMU_CAP_NO_NMI,
7822
b0a873eb 7823 .event_init = perf_swevent_init,
a4eaf7f1
PZ
7824 .add = perf_swevent_add,
7825 .del = perf_swevent_del,
7826 .start = perf_swevent_start,
7827 .stop = perf_swevent_stop,
1c024eca 7828 .read = perf_swevent_read,
1c024eca
PZ
7829};
7830
b0a873eb
PZ
7831#ifdef CONFIG_EVENT_TRACING
7832
1c024eca
PZ
7833static int perf_tp_filter_match(struct perf_event *event,
7834 struct perf_sample_data *data)
7835{
7e3f977e 7836 void *record = data->raw->frag.data;
1c024eca 7837
b71b437e
PZ
7838 /* only top level events have filters set */
7839 if (event->parent)
7840 event = event->parent;
7841
1c024eca
PZ
7842 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7843 return 1;
7844 return 0;
7845}
7846
7847static int perf_tp_event_match(struct perf_event *event,
7848 struct perf_sample_data *data,
7849 struct pt_regs *regs)
7850{
a0f7d0f7
FW
7851 if (event->hw.state & PERF_HES_STOPPED)
7852 return 0;
580d607c
PZ
7853 /*
7854 * All tracepoints are from kernel-space.
7855 */
7856 if (event->attr.exclude_kernel)
1c024eca
PZ
7857 return 0;
7858
7859 if (!perf_tp_filter_match(event, data))
7860 return 0;
7861
7862 return 1;
7863}
7864
85b67bcb
AS
7865void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7866 struct trace_event_call *call, u64 count,
7867 struct pt_regs *regs, struct hlist_head *head,
7868 struct task_struct *task)
7869{
7870 struct bpf_prog *prog = call->prog;
7871
7872 if (prog) {
7873 *(struct pt_regs **)raw_data = regs;
7874 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7875 perf_swevent_put_recursion_context(rctx);
7876 return;
7877 }
7878 }
7879 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
75e83876 7880 rctx, task, NULL);
85b67bcb
AS
7881}
7882EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7883
1e1dcd93 7884void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff 7885 struct pt_regs *regs, struct hlist_head *head, int rctx,
75e83876 7886 struct task_struct *task, struct perf_event *event)
95476b64
FW
7887{
7888 struct perf_sample_data data;
1c024eca 7889
95476b64 7890 struct perf_raw_record raw = {
7e3f977e
DB
7891 .frag = {
7892 .size = entry_size,
7893 .data = record,
7894 },
95476b64
FW
7895 };
7896
1e1dcd93 7897 perf_sample_data_init(&data, 0, 0);
95476b64
FW
7898 data.raw = &raw;
7899
1e1dcd93
AS
7900 perf_trace_buf_update(record, event_type);
7901
75e83876
ZC
7902 /* Use the given event instead of the hlist */
7903 if (event) {
1c024eca 7904 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 7905 perf_swevent_event(event, count, &data, regs);
75e83876
ZC
7906 } else {
7907 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7908 if (perf_tp_event_match(event, &data, regs))
7909 perf_swevent_event(event, count, &data, regs);
7910 }
4f41c013 7911 }
ecc55f84 7912
e6dab5ff
AV
7913 /*
7914 * If we got specified a target task, also iterate its context and
7915 * deliver this event there too.
7916 */
7917 if (task && task != current) {
7918 struct perf_event_context *ctx;
7919 struct trace_entry *entry = record;
7920
7921 rcu_read_lock();
7922 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7923 if (!ctx)
7924 goto unlock;
7925
7926 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7927 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7928 continue;
7929 if (event->attr.config != entry->type)
7930 continue;
7931 if (perf_tp_event_match(event, &data, regs))
7932 perf_swevent_event(event, count, &data, regs);
7933 }
7934unlock:
7935 rcu_read_unlock();
7936 }
7937
ecc55f84 7938 perf_swevent_put_recursion_context(rctx);
95476b64
FW
7939}
7940EXPORT_SYMBOL_GPL(perf_tp_event);
7941
cdd6c482 7942static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 7943{
1c024eca 7944 perf_trace_destroy(event);
e077df4f
PZ
7945}
7946
b0a873eb 7947static int perf_tp_event_init(struct perf_event *event)
e077df4f 7948{
76e1d904
FW
7949 int err;
7950
b0a873eb
PZ
7951 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7952 return -ENOENT;
7953
2481c5fa
SE
7954 /*
7955 * no branch sampling for tracepoint events
7956 */
7957 if (has_branch_stack(event))
7958 return -EOPNOTSUPP;
7959
1c024eca
PZ
7960 err = perf_trace_init(event);
7961 if (err)
b0a873eb 7962 return err;
e077df4f 7963
cdd6c482 7964 event->destroy = tp_perf_event_destroy;
e077df4f 7965
b0a873eb
PZ
7966 return 0;
7967}
7968
7969static struct pmu perf_tracepoint = {
89a1e187
PZ
7970 .task_ctx_nr = perf_sw_context,
7971
b0a873eb 7972 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
7973 .add = perf_trace_add,
7974 .del = perf_trace_del,
7975 .start = perf_swevent_start,
7976 .stop = perf_swevent_stop,
b0a873eb 7977 .read = perf_swevent_read,
b0a873eb
PZ
7978};
7979
7980static inline void perf_tp_register(void)
7981{
2e80a82a 7982 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 7983}
6fb2915d 7984
6fb2915d
LZ
7985static void perf_event_free_filter(struct perf_event *event)
7986{
7987 ftrace_profile_free_filter(event);
7988}
7989
aa6a5f3c
AS
7990#ifdef CONFIG_BPF_SYSCALL
7991static void bpf_overflow_handler(struct perf_event *event,
7992 struct perf_sample_data *data,
7993 struct pt_regs *regs)
7994{
7995 struct bpf_perf_event_data_kern ctx = {
7996 .data = data,
7997 .regs = regs,
7d9285e8 7998 .event = event,
aa6a5f3c
AS
7999 };
8000 int ret = 0;
8001
8002 preempt_disable();
8003 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8004 goto out;
8005 rcu_read_lock();
88575199 8006 ret = BPF_PROG_RUN(event->prog, &ctx);
aa6a5f3c
AS
8007 rcu_read_unlock();
8008out:
8009 __this_cpu_dec(bpf_prog_active);
8010 preempt_enable();
8011 if (!ret)
8012 return;
8013
8014 event->orig_overflow_handler(event, data, regs);
8015}
8016
8017static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8018{
8019 struct bpf_prog *prog;
8020
8021 if (event->overflow_handler_context)
8022 /* hw breakpoint or kernel counter */
8023 return -EINVAL;
8024
8025 if (event->prog)
8026 return -EEXIST;
8027
8028 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8029 if (IS_ERR(prog))
8030 return PTR_ERR(prog);
8031
8032 event->prog = prog;
8033 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8034 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8035 return 0;
8036}
8037
8038static void perf_event_free_bpf_handler(struct perf_event *event)
8039{
8040 struct bpf_prog *prog = event->prog;
8041
8042 if (!prog)
8043 return;
8044
8045 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8046 event->prog = NULL;
8047 bpf_prog_put(prog);
8048}
8049#else
8050static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8051{
8052 return -EOPNOTSUPP;
8053}
8054static void perf_event_free_bpf_handler(struct perf_event *event)
8055{
8056}
8057#endif
8058
2541517c
AS
8059static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8060{
cf5f5cea 8061 bool is_kprobe, is_tracepoint, is_syscall_tp;
2541517c
AS
8062 struct bpf_prog *prog;
8063
8064 if (event->attr.type != PERF_TYPE_TRACEPOINT)
f91840a3 8065 return perf_event_set_bpf_handler(event, prog_fd);
2541517c
AS
8066
8067 if (event->tp_event->prog)
8068 return -EEXIST;
8069
98b5c2c6
AS
8070 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8071 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
cf5f5cea
YS
8072 is_syscall_tp = is_syscall_trace_event(event->tp_event);
8073 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
98b5c2c6 8074 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
8075 return -EINVAL;
8076
8077 prog = bpf_prog_get(prog_fd);
8078 if (IS_ERR(prog))
8079 return PTR_ERR(prog);
8080
98b5c2c6 8081 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
cf5f5cea
YS
8082 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8083 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
8084 /* valid fd, but invalid bpf program type */
8085 bpf_prog_put(prog);
8086 return -EINVAL;
8087 }
8088
cf5f5cea 8089 if (is_tracepoint || is_syscall_tp) {
32bbe007
AS
8090 int off = trace_event_get_offsets(event->tp_event);
8091
8092 if (prog->aux->max_ctx_offset > off) {
8093 bpf_prog_put(prog);
8094 return -EACCES;
8095 }
8096 }
2541517c 8097 event->tp_event->prog = prog;
ec9dd352 8098 event->tp_event->bpf_prog_owner = event;
2541517c
AS
8099
8100 return 0;
8101}
8102
8103static void perf_event_free_bpf_prog(struct perf_event *event)
8104{
8105 struct bpf_prog *prog;
8106
aa6a5f3c
AS
8107 perf_event_free_bpf_handler(event);
8108
2541517c
AS
8109 if (!event->tp_event)
8110 return;
8111
8112 prog = event->tp_event->prog;
ec9dd352 8113 if (prog && event->tp_event->bpf_prog_owner == event) {
2541517c 8114 event->tp_event->prog = NULL;
1aacde3d 8115 bpf_prog_put(prog);
2541517c
AS
8116 }
8117}
8118
e077df4f 8119#else
6fb2915d 8120
b0a873eb 8121static inline void perf_tp_register(void)
e077df4f 8122{
e077df4f 8123}
6fb2915d 8124
6fb2915d
LZ
8125static void perf_event_free_filter(struct perf_event *event)
8126{
8127}
8128
2541517c
AS
8129static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8130{
8131 return -ENOENT;
8132}
8133
8134static void perf_event_free_bpf_prog(struct perf_event *event)
8135{
8136}
07b139c8 8137#endif /* CONFIG_EVENT_TRACING */
e077df4f 8138
24f1e32c 8139#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 8140void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 8141{
f5ffe02e
FW
8142 struct perf_sample_data sample;
8143 struct pt_regs *regs = data;
8144
fd0d000b 8145 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 8146
a4eaf7f1 8147 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 8148 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
8149}
8150#endif
8151
375637bc
AS
8152/*
8153 * Allocate a new address filter
8154 */
8155static struct perf_addr_filter *
8156perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8157{
8158 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8159 struct perf_addr_filter *filter;
8160
8161 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8162 if (!filter)
8163 return NULL;
8164
8165 INIT_LIST_HEAD(&filter->entry);
8166 list_add_tail(&filter->entry, filters);
8167
8168 return filter;
8169}
8170
8171static void free_filters_list(struct list_head *filters)
8172{
8173 struct perf_addr_filter *filter, *iter;
8174
8175 list_for_each_entry_safe(filter, iter, filters, entry) {
8176 if (filter->inode)
8177 iput(filter->inode);
8178 list_del(&filter->entry);
8179 kfree(filter);
8180 }
8181}
8182
8183/*
8184 * Free existing address filters and optionally install new ones
8185 */
8186static void perf_addr_filters_splice(struct perf_event *event,
8187 struct list_head *head)
8188{
8189 unsigned long flags;
8190 LIST_HEAD(list);
8191
8192 if (!has_addr_filter(event))
8193 return;
8194
8195 /* don't bother with children, they don't have their own filters */
8196 if (event->parent)
8197 return;
8198
8199 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8200
8201 list_splice_init(&event->addr_filters.list, &list);
8202 if (head)
8203 list_splice(head, &event->addr_filters.list);
8204
8205 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8206
8207 free_filters_list(&list);
8208}
8209
8210/*
8211 * Scan through mm's vmas and see if one of them matches the
8212 * @filter; if so, adjust filter's address range.
8213 * Called with mm::mmap_sem down for reading.
8214 */
8215static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8216 struct mm_struct *mm)
8217{
8218 struct vm_area_struct *vma;
8219
8220 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8221 struct file *file = vma->vm_file;
8222 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8223 unsigned long vma_size = vma->vm_end - vma->vm_start;
8224
8225 if (!file)
8226 continue;
8227
8228 if (!perf_addr_filter_match(filter, file, off, vma_size))
8229 continue;
8230
8231 return vma->vm_start;
8232 }
8233
8234 return 0;
8235}
8236
8237/*
8238 * Update event's address range filters based on the
8239 * task's existing mappings, if any.
8240 */
8241static void perf_event_addr_filters_apply(struct perf_event *event)
8242{
8243 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8244 struct task_struct *task = READ_ONCE(event->ctx->task);
8245 struct perf_addr_filter *filter;
8246 struct mm_struct *mm = NULL;
8247 unsigned int count = 0;
8248 unsigned long flags;
8249
8250 /*
8251 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8252 * will stop on the parent's child_mutex that our caller is also holding
8253 */
8254 if (task == TASK_TOMBSTONE)
8255 return;
8256
6ce77bfd
AS
8257 if (!ifh->nr_file_filters)
8258 return;
8259
375637bc
AS
8260 mm = get_task_mm(event->ctx->task);
8261 if (!mm)
8262 goto restart;
8263
8264 down_read(&mm->mmap_sem);
8265
8266 raw_spin_lock_irqsave(&ifh->lock, flags);
8267 list_for_each_entry(filter, &ifh->list, entry) {
8268 event->addr_filters_offs[count] = 0;
8269
99f5bc9b
MP
8270 /*
8271 * Adjust base offset if the filter is associated to a binary
8272 * that needs to be mapped:
8273 */
8274 if (filter->inode)
375637bc
AS
8275 event->addr_filters_offs[count] =
8276 perf_addr_filter_apply(filter, mm);
8277
8278 count++;
8279 }
8280
8281 event->addr_filters_gen++;
8282 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8283
8284 up_read(&mm->mmap_sem);
8285
8286 mmput(mm);
8287
8288restart:
767ae086 8289 perf_event_stop(event, 1);
375637bc
AS
8290}
8291
8292/*
8293 * Address range filtering: limiting the data to certain
8294 * instruction address ranges. Filters are ioctl()ed to us from
8295 * userspace as ascii strings.
8296 *
8297 * Filter string format:
8298 *
8299 * ACTION RANGE_SPEC
8300 * where ACTION is one of the
8301 * * "filter": limit the trace to this region
8302 * * "start": start tracing from this address
8303 * * "stop": stop tracing at this address/region;
8304 * RANGE_SPEC is
8305 * * for kernel addresses: <start address>[/<size>]
8306 * * for object files: <start address>[/<size>]@</path/to/object/file>
8307 *
8308 * if <size> is not specified, the range is treated as a single address.
8309 */
8310enum {
e96271f3 8311 IF_ACT_NONE = -1,
375637bc
AS
8312 IF_ACT_FILTER,
8313 IF_ACT_START,
8314 IF_ACT_STOP,
8315 IF_SRC_FILE,
8316 IF_SRC_KERNEL,
8317 IF_SRC_FILEADDR,
8318 IF_SRC_KERNELADDR,
8319};
8320
8321enum {
8322 IF_STATE_ACTION = 0,
8323 IF_STATE_SOURCE,
8324 IF_STATE_END,
8325};
8326
8327static const match_table_t if_tokens = {
8328 { IF_ACT_FILTER, "filter" },
8329 { IF_ACT_START, "start" },
8330 { IF_ACT_STOP, "stop" },
8331 { IF_SRC_FILE, "%u/%u@%s" },
8332 { IF_SRC_KERNEL, "%u/%u" },
8333 { IF_SRC_FILEADDR, "%u@%s" },
8334 { IF_SRC_KERNELADDR, "%u" },
e96271f3 8335 { IF_ACT_NONE, NULL },
375637bc
AS
8336};
8337
8338/*
8339 * Address filter string parser
8340 */
8341static int
8342perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8343 struct list_head *filters)
8344{
8345 struct perf_addr_filter *filter = NULL;
8346 char *start, *orig, *filename = NULL;
8347 struct path path;
8348 substring_t args[MAX_OPT_ARGS];
8349 int state = IF_STATE_ACTION, token;
8350 unsigned int kernel = 0;
8351 int ret = -EINVAL;
8352
8353 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8354 if (!fstr)
8355 return -ENOMEM;
8356
8357 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8358 ret = -EINVAL;
8359
8360 if (!*start)
8361 continue;
8362
8363 /* filter definition begins */
8364 if (state == IF_STATE_ACTION) {
8365 filter = perf_addr_filter_new(event, filters);
8366 if (!filter)
8367 goto fail;
8368 }
8369
8370 token = match_token(start, if_tokens, args);
8371 switch (token) {
8372 case IF_ACT_FILTER:
8373 case IF_ACT_START:
8374 filter->filter = 1;
8375
8376 case IF_ACT_STOP:
8377 if (state != IF_STATE_ACTION)
8378 goto fail;
8379
8380 state = IF_STATE_SOURCE;
8381 break;
8382
8383 case IF_SRC_KERNELADDR:
8384 case IF_SRC_KERNEL:
8385 kernel = 1;
8386
8387 case IF_SRC_FILEADDR:
8388 case IF_SRC_FILE:
8389 if (state != IF_STATE_SOURCE)
8390 goto fail;
8391
8392 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8393 filter->range = 1;
8394
8395 *args[0].to = 0;
8396 ret = kstrtoul(args[0].from, 0, &filter->offset);
8397 if (ret)
8398 goto fail;
8399
8400 if (filter->range) {
8401 *args[1].to = 0;
8402 ret = kstrtoul(args[1].from, 0, &filter->size);
8403 if (ret)
8404 goto fail;
8405 }
8406
4059ffd0
MP
8407 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8408 int fpos = filter->range ? 2 : 1;
8409
8410 filename = match_strdup(&args[fpos]);
375637bc
AS
8411 if (!filename) {
8412 ret = -ENOMEM;
8413 goto fail;
8414 }
8415 }
8416
8417 state = IF_STATE_END;
8418 break;
8419
8420 default:
8421 goto fail;
8422 }
8423
8424 /*
8425 * Filter definition is fully parsed, validate and install it.
8426 * Make sure that it doesn't contradict itself or the event's
8427 * attribute.
8428 */
8429 if (state == IF_STATE_END) {
9ccbfbb1 8430 ret = -EINVAL;
375637bc
AS
8431 if (kernel && event->attr.exclude_kernel)
8432 goto fail;
8433
8434 if (!kernel) {
8435 if (!filename)
8436 goto fail;
8437
6ce77bfd
AS
8438 /*
8439 * For now, we only support file-based filters
8440 * in per-task events; doing so for CPU-wide
8441 * events requires additional context switching
8442 * trickery, since same object code will be
8443 * mapped at different virtual addresses in
8444 * different processes.
8445 */
8446 ret = -EOPNOTSUPP;
8447 if (!event->ctx->task)
8448 goto fail_free_name;
8449
375637bc
AS
8450 /* look up the path and grab its inode */
8451 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8452 if (ret)
8453 goto fail_free_name;
8454
8455 filter->inode = igrab(d_inode(path.dentry));
8456 path_put(&path);
8457 kfree(filename);
8458 filename = NULL;
8459
8460 ret = -EINVAL;
8461 if (!filter->inode ||
8462 !S_ISREG(filter->inode->i_mode))
8463 /* free_filters_list() will iput() */
8464 goto fail;
6ce77bfd
AS
8465
8466 event->addr_filters.nr_file_filters++;
375637bc
AS
8467 }
8468
8469 /* ready to consume more filters */
8470 state = IF_STATE_ACTION;
8471 filter = NULL;
8472 }
8473 }
8474
8475 if (state != IF_STATE_ACTION)
8476 goto fail;
8477
8478 kfree(orig);
8479
8480 return 0;
8481
8482fail_free_name:
8483 kfree(filename);
8484fail:
8485 free_filters_list(filters);
8486 kfree(orig);
8487
8488 return ret;
8489}
8490
8491static int
8492perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8493{
8494 LIST_HEAD(filters);
8495 int ret;
8496
8497 /*
8498 * Since this is called in perf_ioctl() path, we're already holding
8499 * ctx::mutex.
8500 */
8501 lockdep_assert_held(&event->ctx->mutex);
8502
8503 if (WARN_ON_ONCE(event->parent))
8504 return -EINVAL;
8505
375637bc
AS
8506 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8507 if (ret)
6ce77bfd 8508 goto fail_clear_files;
375637bc
AS
8509
8510 ret = event->pmu->addr_filters_validate(&filters);
6ce77bfd
AS
8511 if (ret)
8512 goto fail_free_filters;
375637bc
AS
8513
8514 /* remove existing filters, if any */
8515 perf_addr_filters_splice(event, &filters);
8516
8517 /* install new filters */
8518 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8519
6ce77bfd
AS
8520 return ret;
8521
8522fail_free_filters:
8523 free_filters_list(&filters);
8524
8525fail_clear_files:
8526 event->addr_filters.nr_file_filters = 0;
8527
375637bc
AS
8528 return ret;
8529}
8530
c796bbbe
AS
8531static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8532{
8533 char *filter_str;
8534 int ret = -EINVAL;
8535
375637bc
AS
8536 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8537 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8538 !has_addr_filter(event))
c796bbbe
AS
8539 return -EINVAL;
8540
8541 filter_str = strndup_user(arg, PAGE_SIZE);
8542 if (IS_ERR(filter_str))
8543 return PTR_ERR(filter_str);
8544
8545 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8546 event->attr.type == PERF_TYPE_TRACEPOINT)
8547 ret = ftrace_profile_set_filter(event, event->attr.config,
8548 filter_str);
375637bc
AS
8549 else if (has_addr_filter(event))
8550 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
8551
8552 kfree(filter_str);
8553 return ret;
8554}
8555
b0a873eb
PZ
8556/*
8557 * hrtimer based swevent callback
8558 */
f29ac756 8559
b0a873eb 8560static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 8561{
b0a873eb
PZ
8562 enum hrtimer_restart ret = HRTIMER_RESTART;
8563 struct perf_sample_data data;
8564 struct pt_regs *regs;
8565 struct perf_event *event;
8566 u64 period;
f29ac756 8567
b0a873eb 8568 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
8569
8570 if (event->state != PERF_EVENT_STATE_ACTIVE)
8571 return HRTIMER_NORESTART;
8572
b0a873eb 8573 event->pmu->read(event);
f344011c 8574
fd0d000b 8575 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
8576 regs = get_irq_regs();
8577
8578 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 8579 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 8580 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
8581 ret = HRTIMER_NORESTART;
8582 }
24f1e32c 8583
b0a873eb
PZ
8584 period = max_t(u64, 10000, event->hw.sample_period);
8585 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 8586
b0a873eb 8587 return ret;
f29ac756
PZ
8588}
8589
b0a873eb 8590static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 8591{
b0a873eb 8592 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
8593 s64 period;
8594
8595 if (!is_sampling_event(event))
8596 return;
f5ffe02e 8597
5d508e82
FBH
8598 period = local64_read(&hwc->period_left);
8599 if (period) {
8600 if (period < 0)
8601 period = 10000;
fa407f35 8602
5d508e82
FBH
8603 local64_set(&hwc->period_left, 0);
8604 } else {
8605 period = max_t(u64, 10000, hwc->sample_period);
8606 }
3497d206
TG
8607 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8608 HRTIMER_MODE_REL_PINNED);
24f1e32c 8609}
b0a873eb
PZ
8610
8611static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 8612{
b0a873eb
PZ
8613 struct hw_perf_event *hwc = &event->hw;
8614
6c7e550f 8615 if (is_sampling_event(event)) {
b0a873eb 8616 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 8617 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
8618
8619 hrtimer_cancel(&hwc->hrtimer);
8620 }
24f1e32c
FW
8621}
8622
ba3dd36c
PZ
8623static void perf_swevent_init_hrtimer(struct perf_event *event)
8624{
8625 struct hw_perf_event *hwc = &event->hw;
8626
8627 if (!is_sampling_event(event))
8628 return;
8629
8630 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8631 hwc->hrtimer.function = perf_swevent_hrtimer;
8632
8633 /*
8634 * Since hrtimers have a fixed rate, we can do a static freq->period
8635 * mapping and avoid the whole period adjust feedback stuff.
8636 */
8637 if (event->attr.freq) {
8638 long freq = event->attr.sample_freq;
8639
8640 event->attr.sample_period = NSEC_PER_SEC / freq;
8641 hwc->sample_period = event->attr.sample_period;
8642 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 8643 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
8644 event->attr.freq = 0;
8645 }
8646}
8647
b0a873eb
PZ
8648/*
8649 * Software event: cpu wall time clock
8650 */
8651
8652static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 8653{
b0a873eb
PZ
8654 s64 prev;
8655 u64 now;
8656
a4eaf7f1 8657 now = local_clock();
b0a873eb
PZ
8658 prev = local64_xchg(&event->hw.prev_count, now);
8659 local64_add(now - prev, &event->count);
24f1e32c 8660}
24f1e32c 8661
a4eaf7f1 8662static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8663{
a4eaf7f1 8664 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 8665 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8666}
8667
a4eaf7f1 8668static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 8669{
b0a873eb
PZ
8670 perf_swevent_cancel_hrtimer(event);
8671 cpu_clock_event_update(event);
8672}
f29ac756 8673
a4eaf7f1
PZ
8674static int cpu_clock_event_add(struct perf_event *event, int flags)
8675{
8676 if (flags & PERF_EF_START)
8677 cpu_clock_event_start(event, flags);
6a694a60 8678 perf_event_update_userpage(event);
a4eaf7f1
PZ
8679
8680 return 0;
8681}
8682
8683static void cpu_clock_event_del(struct perf_event *event, int flags)
8684{
8685 cpu_clock_event_stop(event, flags);
8686}
8687
b0a873eb
PZ
8688static void cpu_clock_event_read(struct perf_event *event)
8689{
8690 cpu_clock_event_update(event);
8691}
f344011c 8692
b0a873eb
PZ
8693static int cpu_clock_event_init(struct perf_event *event)
8694{
8695 if (event->attr.type != PERF_TYPE_SOFTWARE)
8696 return -ENOENT;
8697
8698 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8699 return -ENOENT;
8700
2481c5fa
SE
8701 /*
8702 * no branch sampling for software events
8703 */
8704 if (has_branch_stack(event))
8705 return -EOPNOTSUPP;
8706
ba3dd36c
PZ
8707 perf_swevent_init_hrtimer(event);
8708
b0a873eb 8709 return 0;
f29ac756
PZ
8710}
8711
b0a873eb 8712static struct pmu perf_cpu_clock = {
89a1e187
PZ
8713 .task_ctx_nr = perf_sw_context,
8714
34f43927
PZ
8715 .capabilities = PERF_PMU_CAP_NO_NMI,
8716
b0a873eb 8717 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
8718 .add = cpu_clock_event_add,
8719 .del = cpu_clock_event_del,
8720 .start = cpu_clock_event_start,
8721 .stop = cpu_clock_event_stop,
b0a873eb
PZ
8722 .read = cpu_clock_event_read,
8723};
8724
8725/*
8726 * Software event: task time clock
8727 */
8728
8729static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 8730{
b0a873eb
PZ
8731 u64 prev;
8732 s64 delta;
5c92d124 8733
b0a873eb
PZ
8734 prev = local64_xchg(&event->hw.prev_count, now);
8735 delta = now - prev;
8736 local64_add(delta, &event->count);
8737}
5c92d124 8738
a4eaf7f1 8739static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8740{
a4eaf7f1 8741 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 8742 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8743}
8744
a4eaf7f1 8745static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
8746{
8747 perf_swevent_cancel_hrtimer(event);
8748 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
8749}
8750
8751static int task_clock_event_add(struct perf_event *event, int flags)
8752{
8753 if (flags & PERF_EF_START)
8754 task_clock_event_start(event, flags);
6a694a60 8755 perf_event_update_userpage(event);
b0a873eb 8756
a4eaf7f1
PZ
8757 return 0;
8758}
8759
8760static void task_clock_event_del(struct perf_event *event, int flags)
8761{
8762 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
8763}
8764
8765static void task_clock_event_read(struct perf_event *event)
8766{
768a06e2
PZ
8767 u64 now = perf_clock();
8768 u64 delta = now - event->ctx->timestamp;
8769 u64 time = event->ctx->time + delta;
b0a873eb
PZ
8770
8771 task_clock_event_update(event, time);
8772}
8773
8774static int task_clock_event_init(struct perf_event *event)
6fb2915d 8775{
b0a873eb
PZ
8776 if (event->attr.type != PERF_TYPE_SOFTWARE)
8777 return -ENOENT;
8778
8779 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8780 return -ENOENT;
8781
2481c5fa
SE
8782 /*
8783 * no branch sampling for software events
8784 */
8785 if (has_branch_stack(event))
8786 return -EOPNOTSUPP;
8787
ba3dd36c
PZ
8788 perf_swevent_init_hrtimer(event);
8789
b0a873eb 8790 return 0;
6fb2915d
LZ
8791}
8792
b0a873eb 8793static struct pmu perf_task_clock = {
89a1e187
PZ
8794 .task_ctx_nr = perf_sw_context,
8795
34f43927
PZ
8796 .capabilities = PERF_PMU_CAP_NO_NMI,
8797
b0a873eb 8798 .event_init = task_clock_event_init,
a4eaf7f1
PZ
8799 .add = task_clock_event_add,
8800 .del = task_clock_event_del,
8801 .start = task_clock_event_start,
8802 .stop = task_clock_event_stop,
b0a873eb
PZ
8803 .read = task_clock_event_read,
8804};
6fb2915d 8805
ad5133b7 8806static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 8807{
e077df4f 8808}
6fb2915d 8809
fbbe0701
SB
8810static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8811{
8812}
8813
ad5133b7 8814static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 8815{
ad5133b7 8816 return 0;
6fb2915d
LZ
8817}
8818
18ab2cd3 8819static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
8820
8821static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 8822{
fbbe0701
SB
8823 __this_cpu_write(nop_txn_flags, flags);
8824
8825 if (flags & ~PERF_PMU_TXN_ADD)
8826 return;
8827
ad5133b7 8828 perf_pmu_disable(pmu);
6fb2915d
LZ
8829}
8830
ad5133b7
PZ
8831static int perf_pmu_commit_txn(struct pmu *pmu)
8832{
fbbe0701
SB
8833 unsigned int flags = __this_cpu_read(nop_txn_flags);
8834
8835 __this_cpu_write(nop_txn_flags, 0);
8836
8837 if (flags & ~PERF_PMU_TXN_ADD)
8838 return 0;
8839
ad5133b7
PZ
8840 perf_pmu_enable(pmu);
8841 return 0;
8842}
e077df4f 8843
ad5133b7 8844static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 8845{
fbbe0701
SB
8846 unsigned int flags = __this_cpu_read(nop_txn_flags);
8847
8848 __this_cpu_write(nop_txn_flags, 0);
8849
8850 if (flags & ~PERF_PMU_TXN_ADD)
8851 return;
8852
ad5133b7 8853 perf_pmu_enable(pmu);
24f1e32c
FW
8854}
8855
35edc2a5
PZ
8856static int perf_event_idx_default(struct perf_event *event)
8857{
c719f560 8858 return 0;
35edc2a5
PZ
8859}
8860
8dc85d54
PZ
8861/*
8862 * Ensures all contexts with the same task_ctx_nr have the same
8863 * pmu_cpu_context too.
8864 */
9e317041 8865static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 8866{
8dc85d54 8867 struct pmu *pmu;
b326e956 8868
8dc85d54
PZ
8869 if (ctxn < 0)
8870 return NULL;
24f1e32c 8871
8dc85d54
PZ
8872 list_for_each_entry(pmu, &pmus, entry) {
8873 if (pmu->task_ctx_nr == ctxn)
8874 return pmu->pmu_cpu_context;
8875 }
24f1e32c 8876
8dc85d54 8877 return NULL;
24f1e32c
FW
8878}
8879
51676957
PZ
8880static void free_pmu_context(struct pmu *pmu)
8881{
df0062b2
WD
8882 /*
8883 * Static contexts such as perf_sw_context have a global lifetime
8884 * and may be shared between different PMUs. Avoid freeing them
8885 * when a single PMU is going away.
8886 */
8887 if (pmu->task_ctx_nr > perf_invalid_context)
8888 return;
8889
8dc85d54 8890 mutex_lock(&pmus_lock);
51676957 8891 free_percpu(pmu->pmu_cpu_context);
8dc85d54 8892 mutex_unlock(&pmus_lock);
24f1e32c 8893}
6e855cd4
AS
8894
8895/*
8896 * Let userspace know that this PMU supports address range filtering:
8897 */
8898static ssize_t nr_addr_filters_show(struct device *dev,
8899 struct device_attribute *attr,
8900 char *page)
8901{
8902 struct pmu *pmu = dev_get_drvdata(dev);
8903
8904 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8905}
8906DEVICE_ATTR_RO(nr_addr_filters);
8907
2e80a82a 8908static struct idr pmu_idr;
d6d020e9 8909
abe43400
PZ
8910static ssize_t
8911type_show(struct device *dev, struct device_attribute *attr, char *page)
8912{
8913 struct pmu *pmu = dev_get_drvdata(dev);
8914
8915 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8916}
90826ca7 8917static DEVICE_ATTR_RO(type);
abe43400 8918
62b85639
SE
8919static ssize_t
8920perf_event_mux_interval_ms_show(struct device *dev,
8921 struct device_attribute *attr,
8922 char *page)
8923{
8924 struct pmu *pmu = dev_get_drvdata(dev);
8925
8926 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8927}
8928
272325c4
PZ
8929static DEFINE_MUTEX(mux_interval_mutex);
8930
62b85639
SE
8931static ssize_t
8932perf_event_mux_interval_ms_store(struct device *dev,
8933 struct device_attribute *attr,
8934 const char *buf, size_t count)
8935{
8936 struct pmu *pmu = dev_get_drvdata(dev);
8937 int timer, cpu, ret;
8938
8939 ret = kstrtoint(buf, 0, &timer);
8940 if (ret)
8941 return ret;
8942
8943 if (timer < 1)
8944 return -EINVAL;
8945
8946 /* same value, noting to do */
8947 if (timer == pmu->hrtimer_interval_ms)
8948 return count;
8949
272325c4 8950 mutex_lock(&mux_interval_mutex);
62b85639
SE
8951 pmu->hrtimer_interval_ms = timer;
8952
8953 /* update all cpuctx for this PMU */
a63fbed7 8954 cpus_read_lock();
272325c4 8955 for_each_online_cpu(cpu) {
62b85639
SE
8956 struct perf_cpu_context *cpuctx;
8957 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8958 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8959
272325c4
PZ
8960 cpu_function_call(cpu,
8961 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 8962 }
a63fbed7 8963 cpus_read_unlock();
272325c4 8964 mutex_unlock(&mux_interval_mutex);
62b85639
SE
8965
8966 return count;
8967}
90826ca7 8968static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 8969
90826ca7
GKH
8970static struct attribute *pmu_dev_attrs[] = {
8971 &dev_attr_type.attr,
8972 &dev_attr_perf_event_mux_interval_ms.attr,
8973 NULL,
abe43400 8974};
90826ca7 8975ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
8976
8977static int pmu_bus_running;
8978static struct bus_type pmu_bus = {
8979 .name = "event_source",
90826ca7 8980 .dev_groups = pmu_dev_groups,
abe43400
PZ
8981};
8982
8983static void pmu_dev_release(struct device *dev)
8984{
8985 kfree(dev);
8986}
8987
8988static int pmu_dev_alloc(struct pmu *pmu)
8989{
8990 int ret = -ENOMEM;
8991
8992 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8993 if (!pmu->dev)
8994 goto out;
8995
0c9d42ed 8996 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
8997 device_initialize(pmu->dev);
8998 ret = dev_set_name(pmu->dev, "%s", pmu->name);
8999 if (ret)
9000 goto free_dev;
9001
9002 dev_set_drvdata(pmu->dev, pmu);
9003 pmu->dev->bus = &pmu_bus;
9004 pmu->dev->release = pmu_dev_release;
9005 ret = device_add(pmu->dev);
9006 if (ret)
9007 goto free_dev;
9008
6e855cd4
AS
9009 /* For PMUs with address filters, throw in an extra attribute: */
9010 if (pmu->nr_addr_filters)
9011 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9012
9013 if (ret)
9014 goto del_dev;
9015
abe43400
PZ
9016out:
9017 return ret;
9018
6e855cd4
AS
9019del_dev:
9020 device_del(pmu->dev);
9021
abe43400
PZ
9022free_dev:
9023 put_device(pmu->dev);
9024 goto out;
9025}
9026
547e9fd7 9027static struct lock_class_key cpuctx_mutex;
facc4307 9028static struct lock_class_key cpuctx_lock;
547e9fd7 9029
03d8e80b 9030int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 9031{
108b02cf 9032 int cpu, ret;
24f1e32c 9033
b0a873eb 9034 mutex_lock(&pmus_lock);
33696fc0
PZ
9035 ret = -ENOMEM;
9036 pmu->pmu_disable_count = alloc_percpu(int);
9037 if (!pmu->pmu_disable_count)
9038 goto unlock;
f29ac756 9039
2e80a82a
PZ
9040 pmu->type = -1;
9041 if (!name)
9042 goto skip_type;
9043 pmu->name = name;
9044
9045 if (type < 0) {
0e9c3be2
TH
9046 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9047 if (type < 0) {
9048 ret = type;
2e80a82a
PZ
9049 goto free_pdc;
9050 }
9051 }
9052 pmu->type = type;
9053
abe43400
PZ
9054 if (pmu_bus_running) {
9055 ret = pmu_dev_alloc(pmu);
9056 if (ret)
9057 goto free_idr;
9058 }
9059
2e80a82a 9060skip_type:
26657848
PZ
9061 if (pmu->task_ctx_nr == perf_hw_context) {
9062 static int hw_context_taken = 0;
9063
5101ef20
MR
9064 /*
9065 * Other than systems with heterogeneous CPUs, it never makes
9066 * sense for two PMUs to share perf_hw_context. PMUs which are
9067 * uncore must use perf_invalid_context.
9068 */
9069 if (WARN_ON_ONCE(hw_context_taken &&
9070 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
9071 pmu->task_ctx_nr = perf_invalid_context;
9072
9073 hw_context_taken = 1;
9074 }
9075
8dc85d54
PZ
9076 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9077 if (pmu->pmu_cpu_context)
9078 goto got_cpu_context;
f29ac756 9079
c4814202 9080 ret = -ENOMEM;
108b02cf
PZ
9081 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9082 if (!pmu->pmu_cpu_context)
abe43400 9083 goto free_dev;
f344011c 9084
108b02cf
PZ
9085 for_each_possible_cpu(cpu) {
9086 struct perf_cpu_context *cpuctx;
9087
9088 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 9089 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 9090 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 9091 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 9092 cpuctx->ctx.pmu = pmu;
a63fbed7 9093 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9e630205 9094
272325c4 9095 __perf_mux_hrtimer_init(cpuctx, cpu);
108b02cf 9096 }
76e1d904 9097
8dc85d54 9098got_cpu_context:
ad5133b7
PZ
9099 if (!pmu->start_txn) {
9100 if (pmu->pmu_enable) {
9101 /*
9102 * If we have pmu_enable/pmu_disable calls, install
9103 * transaction stubs that use that to try and batch
9104 * hardware accesses.
9105 */
9106 pmu->start_txn = perf_pmu_start_txn;
9107 pmu->commit_txn = perf_pmu_commit_txn;
9108 pmu->cancel_txn = perf_pmu_cancel_txn;
9109 } else {
fbbe0701 9110 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
9111 pmu->commit_txn = perf_pmu_nop_int;
9112 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 9113 }
5c92d124 9114 }
15dbf27c 9115
ad5133b7
PZ
9116 if (!pmu->pmu_enable) {
9117 pmu->pmu_enable = perf_pmu_nop_void;
9118 pmu->pmu_disable = perf_pmu_nop_void;
9119 }
9120
35edc2a5
PZ
9121 if (!pmu->event_idx)
9122 pmu->event_idx = perf_event_idx_default;
9123
b0a873eb 9124 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 9125 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
9126 ret = 0;
9127unlock:
b0a873eb
PZ
9128 mutex_unlock(&pmus_lock);
9129
33696fc0 9130 return ret;
108b02cf 9131
abe43400
PZ
9132free_dev:
9133 device_del(pmu->dev);
9134 put_device(pmu->dev);
9135
2e80a82a
PZ
9136free_idr:
9137 if (pmu->type >= PERF_TYPE_MAX)
9138 idr_remove(&pmu_idr, pmu->type);
9139
108b02cf
PZ
9140free_pdc:
9141 free_percpu(pmu->pmu_disable_count);
9142 goto unlock;
f29ac756 9143}
c464c76e 9144EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 9145
b0a873eb 9146void perf_pmu_unregister(struct pmu *pmu)
5c92d124 9147{
0933840a
JO
9148 int remove_device;
9149
b0a873eb 9150 mutex_lock(&pmus_lock);
0933840a 9151 remove_device = pmu_bus_running;
b0a873eb
PZ
9152 list_del_rcu(&pmu->entry);
9153 mutex_unlock(&pmus_lock);
5c92d124 9154
0475f9ea 9155 /*
cde8e884
PZ
9156 * We dereference the pmu list under both SRCU and regular RCU, so
9157 * synchronize against both of those.
0475f9ea 9158 */
b0a873eb 9159 synchronize_srcu(&pmus_srcu);
cde8e884 9160 synchronize_rcu();
d6d020e9 9161
33696fc0 9162 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
9163 if (pmu->type >= PERF_TYPE_MAX)
9164 idr_remove(&pmu_idr, pmu->type);
0933840a
JO
9165 if (remove_device) {
9166 if (pmu->nr_addr_filters)
9167 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9168 device_del(pmu->dev);
9169 put_device(pmu->dev);
9170 }
51676957 9171 free_pmu_context(pmu);
b0a873eb 9172}
c464c76e 9173EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 9174
cc34b98b
MR
9175static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9176{
ccd41c86 9177 struct perf_event_context *ctx = NULL;
cc34b98b
MR
9178 int ret;
9179
9180 if (!try_module_get(pmu->module))
9181 return -ENODEV;
ccd41c86
PZ
9182
9183 if (event->group_leader != event) {
8b10c5e2
PZ
9184 /*
9185 * This ctx->mutex can nest when we're called through
9186 * inheritance. See the perf_event_ctx_lock_nested() comment.
9187 */
9188 ctx = perf_event_ctx_lock_nested(event->group_leader,
9189 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
9190 BUG_ON(!ctx);
9191 }
9192
cc34b98b
MR
9193 event->pmu = pmu;
9194 ret = pmu->event_init(event);
ccd41c86
PZ
9195
9196 if (ctx)
9197 perf_event_ctx_unlock(event->group_leader, ctx);
9198
cc34b98b
MR
9199 if (ret)
9200 module_put(pmu->module);
9201
9202 return ret;
9203}
9204
18ab2cd3 9205static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb 9206{
85c617ab 9207 struct pmu *pmu;
b0a873eb 9208 int idx;
940c5b29 9209 int ret;
b0a873eb
PZ
9210
9211 idx = srcu_read_lock(&pmus_srcu);
2e80a82a 9212
40999312
KL
9213 /* Try parent's PMU first: */
9214 if (event->parent && event->parent->pmu) {
9215 pmu = event->parent->pmu;
9216 ret = perf_try_init_event(pmu, event);
9217 if (!ret)
9218 goto unlock;
9219 }
9220
2e80a82a
PZ
9221 rcu_read_lock();
9222 pmu = idr_find(&pmu_idr, event->attr.type);
9223 rcu_read_unlock();
940c5b29 9224 if (pmu) {
cc34b98b 9225 ret = perf_try_init_event(pmu, event);
940c5b29
LM
9226 if (ret)
9227 pmu = ERR_PTR(ret);
2e80a82a 9228 goto unlock;
940c5b29 9229 }
2e80a82a 9230
b0a873eb 9231 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 9232 ret = perf_try_init_event(pmu, event);
b0a873eb 9233 if (!ret)
e5f4d339 9234 goto unlock;
76e1d904 9235
b0a873eb
PZ
9236 if (ret != -ENOENT) {
9237 pmu = ERR_PTR(ret);
e5f4d339 9238 goto unlock;
f344011c 9239 }
5c92d124 9240 }
e5f4d339
PZ
9241 pmu = ERR_PTR(-ENOENT);
9242unlock:
b0a873eb 9243 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 9244
4aeb0b42 9245 return pmu;
5c92d124
IM
9246}
9247
f2fb6bef
KL
9248static void attach_sb_event(struct perf_event *event)
9249{
9250 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9251
9252 raw_spin_lock(&pel->lock);
9253 list_add_rcu(&event->sb_list, &pel->list);
9254 raw_spin_unlock(&pel->lock);
9255}
9256
aab5b71e
PZ
9257/*
9258 * We keep a list of all !task (and therefore per-cpu) events
9259 * that need to receive side-band records.
9260 *
9261 * This avoids having to scan all the various PMU per-cpu contexts
9262 * looking for them.
9263 */
f2fb6bef
KL
9264static void account_pmu_sb_event(struct perf_event *event)
9265{
a4f144eb 9266 if (is_sb_event(event))
f2fb6bef
KL
9267 attach_sb_event(event);
9268}
9269
4beb31f3
FW
9270static void account_event_cpu(struct perf_event *event, int cpu)
9271{
9272 if (event->parent)
9273 return;
9274
4beb31f3
FW
9275 if (is_cgroup_event(event))
9276 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9277}
9278
555e0c1e
FW
9279/* Freq events need the tick to stay alive (see perf_event_task_tick). */
9280static void account_freq_event_nohz(void)
9281{
9282#ifdef CONFIG_NO_HZ_FULL
9283 /* Lock so we don't race with concurrent unaccount */
9284 spin_lock(&nr_freq_lock);
9285 if (atomic_inc_return(&nr_freq_events) == 1)
9286 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9287 spin_unlock(&nr_freq_lock);
9288#endif
9289}
9290
9291static void account_freq_event(void)
9292{
9293 if (tick_nohz_full_enabled())
9294 account_freq_event_nohz();
9295 else
9296 atomic_inc(&nr_freq_events);
9297}
9298
9299
766d6c07
FW
9300static void account_event(struct perf_event *event)
9301{
25432ae9
PZ
9302 bool inc = false;
9303
4beb31f3
FW
9304 if (event->parent)
9305 return;
9306
766d6c07 9307 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 9308 inc = true;
766d6c07
FW
9309 if (event->attr.mmap || event->attr.mmap_data)
9310 atomic_inc(&nr_mmap_events);
9311 if (event->attr.comm)
9312 atomic_inc(&nr_comm_events);
e4222673
HB
9313 if (event->attr.namespaces)
9314 atomic_inc(&nr_namespaces_events);
766d6c07
FW
9315 if (event->attr.task)
9316 atomic_inc(&nr_task_events);
555e0c1e
FW
9317 if (event->attr.freq)
9318 account_freq_event();
45ac1403
AH
9319 if (event->attr.context_switch) {
9320 atomic_inc(&nr_switch_events);
25432ae9 9321 inc = true;
45ac1403 9322 }
4beb31f3 9323 if (has_branch_stack(event))
25432ae9 9324 inc = true;
4beb31f3 9325 if (is_cgroup_event(event))
25432ae9
PZ
9326 inc = true;
9327
9107c89e 9328 if (inc) {
5bce9db1
AS
9329 /*
9330 * We need the mutex here because static_branch_enable()
9331 * must complete *before* the perf_sched_count increment
9332 * becomes visible.
9333 */
9107c89e
PZ
9334 if (atomic_inc_not_zero(&perf_sched_count))
9335 goto enabled;
9336
9337 mutex_lock(&perf_sched_mutex);
9338 if (!atomic_read(&perf_sched_count)) {
9339 static_branch_enable(&perf_sched_events);
9340 /*
9341 * Guarantee that all CPUs observe they key change and
9342 * call the perf scheduling hooks before proceeding to
9343 * install events that need them.
9344 */
9345 synchronize_sched();
9346 }
9347 /*
9348 * Now that we have waited for the sync_sched(), allow further
9349 * increments to by-pass the mutex.
9350 */
9351 atomic_inc(&perf_sched_count);
9352 mutex_unlock(&perf_sched_mutex);
9353 }
9354enabled:
4beb31f3
FW
9355
9356 account_event_cpu(event, event->cpu);
f2fb6bef
KL
9357
9358 account_pmu_sb_event(event);
766d6c07
FW
9359}
9360
0793a61d 9361/*
cdd6c482 9362 * Allocate and initialize a event structure
0793a61d 9363 */
cdd6c482 9364static struct perf_event *
c3f00c70 9365perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
9366 struct task_struct *task,
9367 struct perf_event *group_leader,
9368 struct perf_event *parent_event,
4dc0da86 9369 perf_overflow_handler_t overflow_handler,
79dff51e 9370 void *context, int cgroup_fd)
0793a61d 9371{
51b0fe39 9372 struct pmu *pmu;
cdd6c482
IM
9373 struct perf_event *event;
9374 struct hw_perf_event *hwc;
90983b16 9375 long err = -EINVAL;
0793a61d 9376
66832eb4
ON
9377 if ((unsigned)cpu >= nr_cpu_ids) {
9378 if (!task || cpu != -1)
9379 return ERR_PTR(-EINVAL);
9380 }
9381
c3f00c70 9382 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 9383 if (!event)
d5d2bc0d 9384 return ERR_PTR(-ENOMEM);
0793a61d 9385
04289bb9 9386 /*
cdd6c482 9387 * Single events are their own group leaders, with an
04289bb9
IM
9388 * empty sibling list:
9389 */
9390 if (!group_leader)
cdd6c482 9391 group_leader = event;
04289bb9 9392
cdd6c482
IM
9393 mutex_init(&event->child_mutex);
9394 INIT_LIST_HEAD(&event->child_list);
fccc714b 9395
cdd6c482
IM
9396 INIT_LIST_HEAD(&event->group_entry);
9397 INIT_LIST_HEAD(&event->event_entry);
9398 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 9399 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 9400 INIT_LIST_HEAD(&event->active_entry);
375637bc 9401 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
9402 INIT_HLIST_NODE(&event->hlist_entry);
9403
10c6db11 9404
cdd6c482 9405 init_waitqueue_head(&event->waitq);
e360adbe 9406 init_irq_work(&event->pending, perf_pending_event);
0793a61d 9407
cdd6c482 9408 mutex_init(&event->mmap_mutex);
375637bc 9409 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 9410
a6fa941d 9411 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
9412 event->cpu = cpu;
9413 event->attr = *attr;
9414 event->group_leader = group_leader;
9415 event->pmu = NULL;
cdd6c482 9416 event->oncpu = -1;
a96bbc16 9417
cdd6c482 9418 event->parent = parent_event;
b84fbc9f 9419
17cf22c3 9420 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 9421 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 9422
cdd6c482 9423 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 9424
d580ff86
PZ
9425 if (task) {
9426 event->attach_state = PERF_ATTACH_TASK;
d580ff86 9427 /*
50f16a8b
PZ
9428 * XXX pmu::event_init needs to know what task to account to
9429 * and we cannot use the ctx information because we need the
9430 * pmu before we get a ctx.
d580ff86 9431 */
50f16a8b 9432 event->hw.target = task;
d580ff86
PZ
9433 }
9434
34f43927
PZ
9435 event->clock = &local_clock;
9436 if (parent_event)
9437 event->clock = parent_event->clock;
9438
4dc0da86 9439 if (!overflow_handler && parent_event) {
b326e956 9440 overflow_handler = parent_event->overflow_handler;
4dc0da86 9441 context = parent_event->overflow_handler_context;
f1e4ba5b 9442#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c
AS
9443 if (overflow_handler == bpf_overflow_handler) {
9444 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9445
9446 if (IS_ERR(prog)) {
9447 err = PTR_ERR(prog);
9448 goto err_ns;
9449 }
9450 event->prog = prog;
9451 event->orig_overflow_handler =
9452 parent_event->orig_overflow_handler;
9453 }
9454#endif
4dc0da86 9455 }
66832eb4 9456
1879445d
WN
9457 if (overflow_handler) {
9458 event->overflow_handler = overflow_handler;
9459 event->overflow_handler_context = context;
9ecda41a
WN
9460 } else if (is_write_backward(event)){
9461 event->overflow_handler = perf_event_output_backward;
9462 event->overflow_handler_context = NULL;
1879445d 9463 } else {
9ecda41a 9464 event->overflow_handler = perf_event_output_forward;
1879445d
WN
9465 event->overflow_handler_context = NULL;
9466 }
97eaf530 9467
0231bb53 9468 perf_event__state_init(event);
a86ed508 9469
4aeb0b42 9470 pmu = NULL;
b8e83514 9471
cdd6c482 9472 hwc = &event->hw;
bd2b5b12 9473 hwc->sample_period = attr->sample_period;
0d48696f 9474 if (attr->freq && attr->sample_freq)
bd2b5b12 9475 hwc->sample_period = 1;
eced1dfc 9476 hwc->last_period = hwc->sample_period;
bd2b5b12 9477
e7850595 9478 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 9479
2023b359 9480 /*
ba5213ae
PZ
9481 * We currently do not support PERF_SAMPLE_READ on inherited events.
9482 * See perf_output_read().
2023b359 9483 */
ba5213ae 9484 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
90983b16 9485 goto err_ns;
a46a2300
YZ
9486
9487 if (!has_branch_stack(event))
9488 event->attr.branch_sample_type = 0;
2023b359 9489
79dff51e
MF
9490 if (cgroup_fd != -1) {
9491 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9492 if (err)
9493 goto err_ns;
9494 }
9495
b0a873eb 9496 pmu = perf_init_event(event);
85c617ab 9497 if (IS_ERR(pmu)) {
4aeb0b42 9498 err = PTR_ERR(pmu);
90983b16 9499 goto err_ns;
621a01ea 9500 }
d5d2bc0d 9501
bed5b25a
AS
9502 err = exclusive_event_init(event);
9503 if (err)
9504 goto err_pmu;
9505
375637bc
AS
9506 if (has_addr_filter(event)) {
9507 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9508 sizeof(unsigned long),
9509 GFP_KERNEL);
36cc2b92
DC
9510 if (!event->addr_filters_offs) {
9511 err = -ENOMEM;
375637bc 9512 goto err_per_task;
36cc2b92 9513 }
375637bc
AS
9514
9515 /* force hw sync on the address filters */
9516 event->addr_filters_gen = 1;
9517 }
9518
cdd6c482 9519 if (!event->parent) {
927c7a9e 9520 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 9521 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 9522 if (err)
375637bc 9523 goto err_addr_filters;
d010b332 9524 }
f344011c 9525 }
9ee318a7 9526
927a5570
AS
9527 /* symmetric to unaccount_event() in _free_event() */
9528 account_event(event);
9529
cdd6c482 9530 return event;
90983b16 9531
375637bc
AS
9532err_addr_filters:
9533 kfree(event->addr_filters_offs);
9534
bed5b25a
AS
9535err_per_task:
9536 exclusive_event_destroy(event);
9537
90983b16
FW
9538err_pmu:
9539 if (event->destroy)
9540 event->destroy(event);
c464c76e 9541 module_put(pmu->module);
90983b16 9542err_ns:
79dff51e
MF
9543 if (is_cgroup_event(event))
9544 perf_detach_cgroup(event);
90983b16
FW
9545 if (event->ns)
9546 put_pid_ns(event->ns);
9547 kfree(event);
9548
9549 return ERR_PTR(err);
0793a61d
TG
9550}
9551
cdd6c482
IM
9552static int perf_copy_attr(struct perf_event_attr __user *uattr,
9553 struct perf_event_attr *attr)
974802ea 9554{
974802ea 9555 u32 size;
cdf8073d 9556 int ret;
974802ea
PZ
9557
9558 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9559 return -EFAULT;
9560
9561 /*
9562 * zero the full structure, so that a short copy will be nice.
9563 */
9564 memset(attr, 0, sizeof(*attr));
9565
9566 ret = get_user(size, &uattr->size);
9567 if (ret)
9568 return ret;
9569
9570 if (size > PAGE_SIZE) /* silly large */
9571 goto err_size;
9572
9573 if (!size) /* abi compat */
9574 size = PERF_ATTR_SIZE_VER0;
9575
9576 if (size < PERF_ATTR_SIZE_VER0)
9577 goto err_size;
9578
9579 /*
9580 * If we're handed a bigger struct than we know of,
cdf8073d
IS
9581 * ensure all the unknown bits are 0 - i.e. new
9582 * user-space does not rely on any kernel feature
9583 * extensions we dont know about yet.
974802ea
PZ
9584 */
9585 if (size > sizeof(*attr)) {
cdf8073d
IS
9586 unsigned char __user *addr;
9587 unsigned char __user *end;
9588 unsigned char val;
974802ea 9589
cdf8073d
IS
9590 addr = (void __user *)uattr + sizeof(*attr);
9591 end = (void __user *)uattr + size;
974802ea 9592
cdf8073d 9593 for (; addr < end; addr++) {
974802ea
PZ
9594 ret = get_user(val, addr);
9595 if (ret)
9596 return ret;
9597 if (val)
9598 goto err_size;
9599 }
b3e62e35 9600 size = sizeof(*attr);
974802ea
PZ
9601 }
9602
9603 ret = copy_from_user(attr, uattr, size);
9604 if (ret)
9605 return -EFAULT;
9606
f12f42ac
MX
9607 attr->size = size;
9608
cd757645 9609 if (attr->__reserved_1)
974802ea
PZ
9610 return -EINVAL;
9611
9612 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9613 return -EINVAL;
9614
9615 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9616 return -EINVAL;
9617
bce38cd5
SE
9618 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9619 u64 mask = attr->branch_sample_type;
9620
9621 /* only using defined bits */
9622 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9623 return -EINVAL;
9624
9625 /* at least one branch bit must be set */
9626 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9627 return -EINVAL;
9628
bce38cd5
SE
9629 /* propagate priv level, when not set for branch */
9630 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9631
9632 /* exclude_kernel checked on syscall entry */
9633 if (!attr->exclude_kernel)
9634 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9635
9636 if (!attr->exclude_user)
9637 mask |= PERF_SAMPLE_BRANCH_USER;
9638
9639 if (!attr->exclude_hv)
9640 mask |= PERF_SAMPLE_BRANCH_HV;
9641 /*
9642 * adjust user setting (for HW filter setup)
9643 */
9644 attr->branch_sample_type = mask;
9645 }
e712209a
SE
9646 /* privileged levels capture (kernel, hv): check permissions */
9647 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
9648 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9649 return -EACCES;
bce38cd5 9650 }
4018994f 9651
c5ebcedb 9652 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 9653 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
9654 if (ret)
9655 return ret;
9656 }
9657
9658 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9659 if (!arch_perf_have_user_stack_dump())
9660 return -ENOSYS;
9661
9662 /*
9663 * We have __u32 type for the size, but so far
9664 * we can only use __u16 as maximum due to the
9665 * __u16 sample size limit.
9666 */
9667 if (attr->sample_stack_user >= USHRT_MAX)
9668 ret = -EINVAL;
9669 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9670 ret = -EINVAL;
9671 }
4018994f 9672
60e2364e
SE
9673 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9674 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
9675out:
9676 return ret;
9677
9678err_size:
9679 put_user(sizeof(*attr), &uattr->size);
9680 ret = -E2BIG;
9681 goto out;
9682}
9683
ac9721f3
PZ
9684static int
9685perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 9686{
b69cf536 9687 struct ring_buffer *rb = NULL;
a4be7c27
PZ
9688 int ret = -EINVAL;
9689
ac9721f3 9690 if (!output_event)
a4be7c27
PZ
9691 goto set;
9692
ac9721f3
PZ
9693 /* don't allow circular references */
9694 if (event == output_event)
a4be7c27
PZ
9695 goto out;
9696
0f139300
PZ
9697 /*
9698 * Don't allow cross-cpu buffers
9699 */
9700 if (output_event->cpu != event->cpu)
9701 goto out;
9702
9703 /*
76369139 9704 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
9705 */
9706 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9707 goto out;
9708
34f43927
PZ
9709 /*
9710 * Mixing clocks in the same buffer is trouble you don't need.
9711 */
9712 if (output_event->clock != event->clock)
9713 goto out;
9714
9ecda41a
WN
9715 /*
9716 * Either writing ring buffer from beginning or from end.
9717 * Mixing is not allowed.
9718 */
9719 if (is_write_backward(output_event) != is_write_backward(event))
9720 goto out;
9721
45bfb2e5
PZ
9722 /*
9723 * If both events generate aux data, they must be on the same PMU
9724 */
9725 if (has_aux(event) && has_aux(output_event) &&
9726 event->pmu != output_event->pmu)
9727 goto out;
9728
a4be7c27 9729set:
cdd6c482 9730 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
9731 /* Can't redirect output if we've got an active mmap() */
9732 if (atomic_read(&event->mmap_count))
9733 goto unlock;
a4be7c27 9734
ac9721f3 9735 if (output_event) {
76369139
FW
9736 /* get the rb we want to redirect to */
9737 rb = ring_buffer_get(output_event);
9738 if (!rb)
ac9721f3 9739 goto unlock;
a4be7c27
PZ
9740 }
9741
b69cf536 9742 ring_buffer_attach(event, rb);
9bb5d40c 9743
a4be7c27 9744 ret = 0;
ac9721f3
PZ
9745unlock:
9746 mutex_unlock(&event->mmap_mutex);
9747
a4be7c27 9748out:
a4be7c27
PZ
9749 return ret;
9750}
9751
f63a8daa
PZ
9752static void mutex_lock_double(struct mutex *a, struct mutex *b)
9753{
9754 if (b < a)
9755 swap(a, b);
9756
9757 mutex_lock(a);
9758 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9759}
9760
34f43927
PZ
9761static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9762{
9763 bool nmi_safe = false;
9764
9765 switch (clk_id) {
9766 case CLOCK_MONOTONIC:
9767 event->clock = &ktime_get_mono_fast_ns;
9768 nmi_safe = true;
9769 break;
9770
9771 case CLOCK_MONOTONIC_RAW:
9772 event->clock = &ktime_get_raw_fast_ns;
9773 nmi_safe = true;
9774 break;
9775
9776 case CLOCK_REALTIME:
9777 event->clock = &ktime_get_real_ns;
9778 break;
9779
9780 case CLOCK_BOOTTIME:
9781 event->clock = &ktime_get_boot_ns;
9782 break;
9783
9784 case CLOCK_TAI:
9785 event->clock = &ktime_get_tai_ns;
9786 break;
9787
9788 default:
9789 return -EINVAL;
9790 }
9791
9792 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9793 return -EINVAL;
9794
9795 return 0;
9796}
9797
321027c1
PZ
9798/*
9799 * Variation on perf_event_ctx_lock_nested(), except we take two context
9800 * mutexes.
9801 */
9802static struct perf_event_context *
9803__perf_event_ctx_lock_double(struct perf_event *group_leader,
9804 struct perf_event_context *ctx)
9805{
9806 struct perf_event_context *gctx;
9807
9808again:
9809 rcu_read_lock();
9810 gctx = READ_ONCE(group_leader->ctx);
9811 if (!atomic_inc_not_zero(&gctx->refcount)) {
9812 rcu_read_unlock();
9813 goto again;
9814 }
9815 rcu_read_unlock();
9816
9817 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9818
9819 if (group_leader->ctx != gctx) {
9820 mutex_unlock(&ctx->mutex);
9821 mutex_unlock(&gctx->mutex);
9822 put_ctx(gctx);
9823 goto again;
9824 }
9825
9826 return gctx;
9827}
9828
0793a61d 9829/**
cdd6c482 9830 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 9831 *
cdd6c482 9832 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 9833 * @pid: target pid
9f66a381 9834 * @cpu: target cpu
cdd6c482 9835 * @group_fd: group leader event fd
0793a61d 9836 */
cdd6c482
IM
9837SYSCALL_DEFINE5(perf_event_open,
9838 struct perf_event_attr __user *, attr_uptr,
2743a5b0 9839 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 9840{
b04243ef
PZ
9841 struct perf_event *group_leader = NULL, *output_event = NULL;
9842 struct perf_event *event, *sibling;
cdd6c482 9843 struct perf_event_attr attr;
f63a8daa 9844 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 9845 struct file *event_file = NULL;
2903ff01 9846 struct fd group = {NULL, 0};
38a81da2 9847 struct task_struct *task = NULL;
89a1e187 9848 struct pmu *pmu;
ea635c64 9849 int event_fd;
b04243ef 9850 int move_group = 0;
dc86cabe 9851 int err;
a21b0b35 9852 int f_flags = O_RDWR;
79dff51e 9853 int cgroup_fd = -1;
0793a61d 9854
2743a5b0 9855 /* for future expandability... */
e5d1367f 9856 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
9857 return -EINVAL;
9858
dc86cabe
IM
9859 err = perf_copy_attr(attr_uptr, &attr);
9860 if (err)
9861 return err;
eab656ae 9862
0764771d
PZ
9863 if (!attr.exclude_kernel) {
9864 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9865 return -EACCES;
9866 }
9867
e4222673
HB
9868 if (attr.namespaces) {
9869 if (!capable(CAP_SYS_ADMIN))
9870 return -EACCES;
9871 }
9872
df58ab24 9873 if (attr.freq) {
cdd6c482 9874 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 9875 return -EINVAL;
0819b2e3
PZ
9876 } else {
9877 if (attr.sample_period & (1ULL << 63))
9878 return -EINVAL;
df58ab24
PZ
9879 }
9880
fc7ce9c7
KL
9881 /* Only privileged users can get physical addresses */
9882 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
9883 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9884 return -EACCES;
9885
97c79a38
ACM
9886 if (!attr.sample_max_stack)
9887 attr.sample_max_stack = sysctl_perf_event_max_stack;
9888
e5d1367f
SE
9889 /*
9890 * In cgroup mode, the pid argument is used to pass the fd
9891 * opened to the cgroup directory in cgroupfs. The cpu argument
9892 * designates the cpu on which to monitor threads from that
9893 * cgroup.
9894 */
9895 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9896 return -EINVAL;
9897
a21b0b35
YD
9898 if (flags & PERF_FLAG_FD_CLOEXEC)
9899 f_flags |= O_CLOEXEC;
9900
9901 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
9902 if (event_fd < 0)
9903 return event_fd;
9904
ac9721f3 9905 if (group_fd != -1) {
2903ff01
AV
9906 err = perf_fget_light(group_fd, &group);
9907 if (err)
d14b12d7 9908 goto err_fd;
2903ff01 9909 group_leader = group.file->private_data;
ac9721f3
PZ
9910 if (flags & PERF_FLAG_FD_OUTPUT)
9911 output_event = group_leader;
9912 if (flags & PERF_FLAG_FD_NO_GROUP)
9913 group_leader = NULL;
9914 }
9915
e5d1367f 9916 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
9917 task = find_lively_task_by_vpid(pid);
9918 if (IS_ERR(task)) {
9919 err = PTR_ERR(task);
9920 goto err_group_fd;
9921 }
9922 }
9923
1f4ee503
PZ
9924 if (task && group_leader &&
9925 group_leader->attr.inherit != attr.inherit) {
9926 err = -EINVAL;
9927 goto err_task;
9928 }
9929
79c9ce57
PZ
9930 if (task) {
9931 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9932 if (err)
e5aeee51 9933 goto err_task;
79c9ce57
PZ
9934
9935 /*
9936 * Reuse ptrace permission checks for now.
9937 *
9938 * We must hold cred_guard_mutex across this and any potential
9939 * perf_install_in_context() call for this new event to
9940 * serialize against exec() altering our credentials (and the
9941 * perf_event_exit_task() that could imply).
9942 */
9943 err = -EACCES;
9944 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9945 goto err_cred;
9946 }
9947
79dff51e
MF
9948 if (flags & PERF_FLAG_PID_CGROUP)
9949 cgroup_fd = pid;
9950
4dc0da86 9951 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 9952 NULL, NULL, cgroup_fd);
d14b12d7
SE
9953 if (IS_ERR(event)) {
9954 err = PTR_ERR(event);
79c9ce57 9955 goto err_cred;
d14b12d7
SE
9956 }
9957
53b25335
VW
9958 if (is_sampling_event(event)) {
9959 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 9960 err = -EOPNOTSUPP;
53b25335
VW
9961 goto err_alloc;
9962 }
9963 }
9964
89a1e187
PZ
9965 /*
9966 * Special case software events and allow them to be part of
9967 * any hardware group.
9968 */
9969 pmu = event->pmu;
b04243ef 9970
34f43927
PZ
9971 if (attr.use_clockid) {
9972 err = perf_event_set_clock(event, attr.clockid);
9973 if (err)
9974 goto err_alloc;
9975 }
9976
4ff6a8de
DCC
9977 if (pmu->task_ctx_nr == perf_sw_context)
9978 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9979
b04243ef
PZ
9980 if (group_leader &&
9981 (is_software_event(event) != is_software_event(group_leader))) {
9982 if (is_software_event(event)) {
9983 /*
9984 * If event and group_leader are not both a software
9985 * event, and event is, then group leader is not.
9986 *
9987 * Allow the addition of software events to !software
9988 * groups, this is safe because software events never
9989 * fail to schedule.
9990 */
9991 pmu = group_leader->pmu;
9992 } else if (is_software_event(group_leader) &&
4ff6a8de 9993 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
9994 /*
9995 * In case the group is a pure software group, and we
9996 * try to add a hardware event, move the whole group to
9997 * the hardware context.
9998 */
9999 move_group = 1;
10000 }
10001 }
89a1e187
PZ
10002
10003 /*
10004 * Get the target context (task or percpu):
10005 */
4af57ef2 10006 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
10007 if (IS_ERR(ctx)) {
10008 err = PTR_ERR(ctx);
c6be5a5c 10009 goto err_alloc;
89a1e187
PZ
10010 }
10011
bed5b25a
AS
10012 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10013 err = -EBUSY;
10014 goto err_context;
10015 }
10016
ccff286d 10017 /*
cdd6c482 10018 * Look up the group leader (we will attach this event to it):
04289bb9 10019 */
ac9721f3 10020 if (group_leader) {
dc86cabe 10021 err = -EINVAL;
04289bb9 10022
04289bb9 10023 /*
ccff286d
IM
10024 * Do not allow a recursive hierarchy (this new sibling
10025 * becoming part of another group-sibling):
10026 */
10027 if (group_leader->group_leader != group_leader)
c3f00c70 10028 goto err_context;
34f43927
PZ
10029
10030 /* All events in a group should have the same clock */
10031 if (group_leader->clock != event->clock)
10032 goto err_context;
10033
ccff286d 10034 /*
64aee2a9
MR
10035 * Make sure we're both events for the same CPU;
10036 * grouping events for different CPUs is broken; since
10037 * you can never concurrently schedule them anyhow.
04289bb9 10038 */
64aee2a9
MR
10039 if (group_leader->cpu != event->cpu)
10040 goto err_context;
c3c87e77 10041
64aee2a9
MR
10042 /*
10043 * Make sure we're both on the same task, or both
10044 * per-CPU events.
10045 */
10046 if (group_leader->ctx->task != ctx->task)
10047 goto err_context;
10048
10049 /*
10050 * Do not allow to attach to a group in a different task
10051 * or CPU context. If we're moving SW events, we'll fix
10052 * this up later, so allow that.
10053 */
10054 if (!move_group && group_leader->ctx != ctx)
10055 goto err_context;
b04243ef 10056
3b6f9e5c
PM
10057 /*
10058 * Only a group leader can be exclusive or pinned
10059 */
0d48696f 10060 if (attr.exclusive || attr.pinned)
c3f00c70 10061 goto err_context;
ac9721f3
PZ
10062 }
10063
10064 if (output_event) {
10065 err = perf_event_set_output(event, output_event);
10066 if (err)
c3f00c70 10067 goto err_context;
ac9721f3 10068 }
0793a61d 10069
a21b0b35
YD
10070 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10071 f_flags);
ea635c64
AV
10072 if (IS_ERR(event_file)) {
10073 err = PTR_ERR(event_file);
201c2f85 10074 event_file = NULL;
c3f00c70 10075 goto err_context;
ea635c64 10076 }
9b51f66d 10077
b04243ef 10078 if (move_group) {
321027c1
PZ
10079 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10080
84c4e620
PZ
10081 if (gctx->task == TASK_TOMBSTONE) {
10082 err = -ESRCH;
10083 goto err_locked;
10084 }
321027c1
PZ
10085
10086 /*
10087 * Check if we raced against another sys_perf_event_open() call
10088 * moving the software group underneath us.
10089 */
10090 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10091 /*
10092 * If someone moved the group out from under us, check
10093 * if this new event wound up on the same ctx, if so
10094 * its the regular !move_group case, otherwise fail.
10095 */
10096 if (gctx != ctx) {
10097 err = -EINVAL;
10098 goto err_locked;
10099 } else {
10100 perf_event_ctx_unlock(group_leader, gctx);
10101 move_group = 0;
10102 }
10103 }
f55fc2a5
PZ
10104 } else {
10105 mutex_lock(&ctx->mutex);
10106 }
10107
84c4e620
PZ
10108 if (ctx->task == TASK_TOMBSTONE) {
10109 err = -ESRCH;
10110 goto err_locked;
10111 }
10112
a723968c
PZ
10113 if (!perf_event_validate_size(event)) {
10114 err = -E2BIG;
10115 goto err_locked;
10116 }
10117
a63fbed7
TG
10118 if (!task) {
10119 /*
10120 * Check if the @cpu we're creating an event for is online.
10121 *
10122 * We use the perf_cpu_context::ctx::mutex to serialize against
10123 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10124 */
10125 struct perf_cpu_context *cpuctx =
10126 container_of(ctx, struct perf_cpu_context, ctx);
10127
10128 if (!cpuctx->online) {
10129 err = -ENODEV;
10130 goto err_locked;
10131 }
10132 }
10133
10134
f55fc2a5
PZ
10135 /*
10136 * Must be under the same ctx::mutex as perf_install_in_context(),
10137 * because we need to serialize with concurrent event creation.
10138 */
10139 if (!exclusive_event_installable(event, ctx)) {
10140 /* exclusive and group stuff are assumed mutually exclusive */
10141 WARN_ON_ONCE(move_group);
f63a8daa 10142
f55fc2a5
PZ
10143 err = -EBUSY;
10144 goto err_locked;
10145 }
f63a8daa 10146
f55fc2a5
PZ
10147 WARN_ON_ONCE(ctx->parent_ctx);
10148
79c9ce57
PZ
10149 /*
10150 * This is the point on no return; we cannot fail hereafter. This is
10151 * where we start modifying current state.
10152 */
10153
f55fc2a5 10154 if (move_group) {
f63a8daa
PZ
10155 /*
10156 * See perf_event_ctx_lock() for comments on the details
10157 * of swizzling perf_event::ctx.
10158 */
45a0e07a 10159 perf_remove_from_context(group_leader, 0);
279b5165 10160 put_ctx(gctx);
0231bb53 10161
b04243ef
PZ
10162 list_for_each_entry(sibling, &group_leader->sibling_list,
10163 group_entry) {
45a0e07a 10164 perf_remove_from_context(sibling, 0);
b04243ef
PZ
10165 put_ctx(gctx);
10166 }
b04243ef 10167
f63a8daa
PZ
10168 /*
10169 * Wait for everybody to stop referencing the events through
10170 * the old lists, before installing it on new lists.
10171 */
0cda4c02 10172 synchronize_rcu();
f63a8daa 10173
8f95b435
PZI
10174 /*
10175 * Install the group siblings before the group leader.
10176 *
10177 * Because a group leader will try and install the entire group
10178 * (through the sibling list, which is still in-tact), we can
10179 * end up with siblings installed in the wrong context.
10180 *
10181 * By installing siblings first we NO-OP because they're not
10182 * reachable through the group lists.
10183 */
b04243ef
PZ
10184 list_for_each_entry(sibling, &group_leader->sibling_list,
10185 group_entry) {
8f95b435 10186 perf_event__state_init(sibling);
9fc81d87 10187 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
10188 get_ctx(ctx);
10189 }
8f95b435
PZI
10190
10191 /*
10192 * Removing from the context ends up with disabled
10193 * event. What we want here is event in the initial
10194 * startup state, ready to be add into new context.
10195 */
10196 perf_event__state_init(group_leader);
10197 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10198 get_ctx(ctx);
bed5b25a
AS
10199 }
10200
f73e22ab
PZ
10201 /*
10202 * Precalculate sample_data sizes; do while holding ctx::mutex such
10203 * that we're serialized against further additions and before
10204 * perf_install_in_context() which is the point the event is active and
10205 * can use these values.
10206 */
10207 perf_event__header_size(event);
10208 perf_event__id_header_size(event);
10209
78cd2c74
PZ
10210 event->owner = current;
10211
e2d37cd2 10212 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 10213 perf_unpin_context(ctx);
f63a8daa 10214
f55fc2a5 10215 if (move_group)
321027c1 10216 perf_event_ctx_unlock(group_leader, gctx);
d859e29f 10217 mutex_unlock(&ctx->mutex);
9b51f66d 10218
79c9ce57
PZ
10219 if (task) {
10220 mutex_unlock(&task->signal->cred_guard_mutex);
10221 put_task_struct(task);
10222 }
10223
cdd6c482
IM
10224 mutex_lock(&current->perf_event_mutex);
10225 list_add_tail(&event->owner_entry, &current->perf_event_list);
10226 mutex_unlock(&current->perf_event_mutex);
082ff5a2 10227
8a49542c
PZ
10228 /*
10229 * Drop the reference on the group_event after placing the
10230 * new event on the sibling_list. This ensures destruction
10231 * of the group leader will find the pointer to itself in
10232 * perf_group_detach().
10233 */
2903ff01 10234 fdput(group);
ea635c64
AV
10235 fd_install(event_fd, event_file);
10236 return event_fd;
0793a61d 10237
f55fc2a5
PZ
10238err_locked:
10239 if (move_group)
321027c1 10240 perf_event_ctx_unlock(group_leader, gctx);
f55fc2a5
PZ
10241 mutex_unlock(&ctx->mutex);
10242/* err_file: */
10243 fput(event_file);
c3f00c70 10244err_context:
fe4b04fa 10245 perf_unpin_context(ctx);
ea635c64 10246 put_ctx(ctx);
c6be5a5c 10247err_alloc:
13005627
PZ
10248 /*
10249 * If event_file is set, the fput() above will have called ->release()
10250 * and that will take care of freeing the event.
10251 */
10252 if (!event_file)
10253 free_event(event);
79c9ce57
PZ
10254err_cred:
10255 if (task)
10256 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 10257err_task:
e7d0bc04
PZ
10258 if (task)
10259 put_task_struct(task);
89a1e187 10260err_group_fd:
2903ff01 10261 fdput(group);
ea635c64
AV
10262err_fd:
10263 put_unused_fd(event_fd);
dc86cabe 10264 return err;
0793a61d
TG
10265}
10266
fb0459d7
AV
10267/**
10268 * perf_event_create_kernel_counter
10269 *
10270 * @attr: attributes of the counter to create
10271 * @cpu: cpu in which the counter is bound
38a81da2 10272 * @task: task to profile (NULL for percpu)
fb0459d7
AV
10273 */
10274struct perf_event *
10275perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 10276 struct task_struct *task,
4dc0da86
AK
10277 perf_overflow_handler_t overflow_handler,
10278 void *context)
fb0459d7 10279{
fb0459d7 10280 struct perf_event_context *ctx;
c3f00c70 10281 struct perf_event *event;
fb0459d7 10282 int err;
d859e29f 10283
fb0459d7
AV
10284 /*
10285 * Get the target context (task or percpu):
10286 */
d859e29f 10287
4dc0da86 10288 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 10289 overflow_handler, context, -1);
c3f00c70
PZ
10290 if (IS_ERR(event)) {
10291 err = PTR_ERR(event);
10292 goto err;
10293 }
d859e29f 10294
f8697762 10295 /* Mark owner so we could distinguish it from user events. */
63b6da39 10296 event->owner = TASK_TOMBSTONE;
f8697762 10297
4af57ef2 10298 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
10299 if (IS_ERR(ctx)) {
10300 err = PTR_ERR(ctx);
c3f00c70 10301 goto err_free;
d859e29f 10302 }
fb0459d7 10303
fb0459d7
AV
10304 WARN_ON_ONCE(ctx->parent_ctx);
10305 mutex_lock(&ctx->mutex);
84c4e620
PZ
10306 if (ctx->task == TASK_TOMBSTONE) {
10307 err = -ESRCH;
10308 goto err_unlock;
10309 }
10310
a63fbed7
TG
10311 if (!task) {
10312 /*
10313 * Check if the @cpu we're creating an event for is online.
10314 *
10315 * We use the perf_cpu_context::ctx::mutex to serialize against
10316 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10317 */
10318 struct perf_cpu_context *cpuctx =
10319 container_of(ctx, struct perf_cpu_context, ctx);
10320 if (!cpuctx->online) {
10321 err = -ENODEV;
10322 goto err_unlock;
10323 }
10324 }
10325
bed5b25a 10326 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 10327 err = -EBUSY;
84c4e620 10328 goto err_unlock;
bed5b25a
AS
10329 }
10330
fb0459d7 10331 perf_install_in_context(ctx, event, cpu);
fe4b04fa 10332 perf_unpin_context(ctx);
fb0459d7
AV
10333 mutex_unlock(&ctx->mutex);
10334
fb0459d7
AV
10335 return event;
10336
84c4e620
PZ
10337err_unlock:
10338 mutex_unlock(&ctx->mutex);
10339 perf_unpin_context(ctx);
10340 put_ctx(ctx);
c3f00c70
PZ
10341err_free:
10342 free_event(event);
10343err:
c6567f64 10344 return ERR_PTR(err);
9b51f66d 10345}
fb0459d7 10346EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 10347
0cda4c02
YZ
10348void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10349{
10350 struct perf_event_context *src_ctx;
10351 struct perf_event_context *dst_ctx;
10352 struct perf_event *event, *tmp;
10353 LIST_HEAD(events);
10354
10355 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10356 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10357
f63a8daa
PZ
10358 /*
10359 * See perf_event_ctx_lock() for comments on the details
10360 * of swizzling perf_event::ctx.
10361 */
10362 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
10363 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10364 event_entry) {
45a0e07a 10365 perf_remove_from_context(event, 0);
9a545de0 10366 unaccount_event_cpu(event, src_cpu);
0cda4c02 10367 put_ctx(src_ctx);
9886167d 10368 list_add(&event->migrate_entry, &events);
0cda4c02 10369 }
0cda4c02 10370
8f95b435
PZI
10371 /*
10372 * Wait for the events to quiesce before re-instating them.
10373 */
0cda4c02
YZ
10374 synchronize_rcu();
10375
8f95b435
PZI
10376 /*
10377 * Re-instate events in 2 passes.
10378 *
10379 * Skip over group leaders and only install siblings on this first
10380 * pass, siblings will not get enabled without a leader, however a
10381 * leader will enable its siblings, even if those are still on the old
10382 * context.
10383 */
10384 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10385 if (event->group_leader == event)
10386 continue;
10387
10388 list_del(&event->migrate_entry);
10389 if (event->state >= PERF_EVENT_STATE_OFF)
10390 event->state = PERF_EVENT_STATE_INACTIVE;
10391 account_event_cpu(event, dst_cpu);
10392 perf_install_in_context(dst_ctx, event, dst_cpu);
10393 get_ctx(dst_ctx);
10394 }
10395
10396 /*
10397 * Once all the siblings are setup properly, install the group leaders
10398 * to make it go.
10399 */
9886167d
PZ
10400 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10401 list_del(&event->migrate_entry);
0cda4c02
YZ
10402 if (event->state >= PERF_EVENT_STATE_OFF)
10403 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 10404 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
10405 perf_install_in_context(dst_ctx, event, dst_cpu);
10406 get_ctx(dst_ctx);
10407 }
10408 mutex_unlock(&dst_ctx->mutex);
f63a8daa 10409 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
10410}
10411EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10412
cdd6c482 10413static void sync_child_event(struct perf_event *child_event,
38b200d6 10414 struct task_struct *child)
d859e29f 10415{
cdd6c482 10416 struct perf_event *parent_event = child_event->parent;
8bc20959 10417 u64 child_val;
d859e29f 10418
cdd6c482
IM
10419 if (child_event->attr.inherit_stat)
10420 perf_event_read_event(child_event, child);
38b200d6 10421
b5e58793 10422 child_val = perf_event_count(child_event);
d859e29f
PM
10423
10424 /*
10425 * Add back the child's count to the parent's count:
10426 */
a6e6dea6 10427 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
10428 atomic64_add(child_event->total_time_enabled,
10429 &parent_event->child_total_time_enabled);
10430 atomic64_add(child_event->total_time_running,
10431 &parent_event->child_total_time_running);
d859e29f
PM
10432}
10433
9b51f66d 10434static void
8ba289b8
PZ
10435perf_event_exit_event(struct perf_event *child_event,
10436 struct perf_event_context *child_ctx,
10437 struct task_struct *child)
9b51f66d 10438{
8ba289b8
PZ
10439 struct perf_event *parent_event = child_event->parent;
10440
1903d50c
PZ
10441 /*
10442 * Do not destroy the 'original' grouping; because of the context
10443 * switch optimization the original events could've ended up in a
10444 * random child task.
10445 *
10446 * If we were to destroy the original group, all group related
10447 * operations would cease to function properly after this random
10448 * child dies.
10449 *
10450 * Do destroy all inherited groups, we don't care about those
10451 * and being thorough is better.
10452 */
32132a3d
PZ
10453 raw_spin_lock_irq(&child_ctx->lock);
10454 WARN_ON_ONCE(child_ctx->is_active);
10455
8ba289b8 10456 if (parent_event)
32132a3d
PZ
10457 perf_group_detach(child_event);
10458 list_del_event(child_event, child_ctx);
0d3d73aa 10459 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
32132a3d 10460 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 10461
9b51f66d 10462 /*
8ba289b8 10463 * Parent events are governed by their filedesc, retain them.
9b51f66d 10464 */
8ba289b8 10465 if (!parent_event) {
179033b3 10466 perf_event_wakeup(child_event);
8ba289b8 10467 return;
4bcf349a 10468 }
8ba289b8
PZ
10469 /*
10470 * Child events can be cleaned up.
10471 */
10472
10473 sync_child_event(child_event, child);
10474
10475 /*
10476 * Remove this event from the parent's list
10477 */
10478 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10479 mutex_lock(&parent_event->child_mutex);
10480 list_del_init(&child_event->child_list);
10481 mutex_unlock(&parent_event->child_mutex);
10482
10483 /*
10484 * Kick perf_poll() for is_event_hup().
10485 */
10486 perf_event_wakeup(parent_event);
10487 free_event(child_event);
10488 put_event(parent_event);
9b51f66d
IM
10489}
10490
8dc85d54 10491static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 10492{
211de6eb 10493 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 10494 struct perf_event *child_event, *next;
63b6da39
PZ
10495
10496 WARN_ON_ONCE(child != current);
9b51f66d 10497
6a3351b6 10498 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 10499 if (!child_ctx)
9b51f66d
IM
10500 return;
10501
ad3a37de 10502 /*
6a3351b6
PZ
10503 * In order to reduce the amount of tricky in ctx tear-down, we hold
10504 * ctx::mutex over the entire thing. This serializes against almost
10505 * everything that wants to access the ctx.
10506 *
10507 * The exception is sys_perf_event_open() /
10508 * perf_event_create_kernel_count() which does find_get_context()
10509 * without ctx::mutex (it cannot because of the move_group double mutex
10510 * lock thing). See the comments in perf_install_in_context().
ad3a37de 10511 */
6a3351b6 10512 mutex_lock(&child_ctx->mutex);
c93f7669
PM
10513
10514 /*
6a3351b6
PZ
10515 * In a single ctx::lock section, de-schedule the events and detach the
10516 * context from the task such that we cannot ever get it scheduled back
10517 * in.
c93f7669 10518 */
6a3351b6 10519 raw_spin_lock_irq(&child_ctx->lock);
487f05e1 10520 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
4a1c0f26 10521
71a851b4 10522 /*
63b6da39
PZ
10523 * Now that the context is inactive, destroy the task <-> ctx relation
10524 * and mark the context dead.
71a851b4 10525 */
63b6da39
PZ
10526 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10527 put_ctx(child_ctx); /* cannot be last */
10528 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10529 put_task_struct(current); /* cannot be last */
4a1c0f26 10530
211de6eb 10531 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 10532 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 10533
211de6eb
PZ
10534 if (clone_ctx)
10535 put_ctx(clone_ctx);
4a1c0f26 10536
9f498cc5 10537 /*
cdd6c482
IM
10538 * Report the task dead after unscheduling the events so that we
10539 * won't get any samples after PERF_RECORD_EXIT. We can however still
10540 * get a few PERF_RECORD_READ events.
9f498cc5 10541 */
cdd6c482 10542 perf_event_task(child, child_ctx, 0);
a63eaf34 10543
ebf905fc 10544 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 10545 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 10546
a63eaf34
PM
10547 mutex_unlock(&child_ctx->mutex);
10548
10549 put_ctx(child_ctx);
9b51f66d
IM
10550}
10551
8dc85d54
PZ
10552/*
10553 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
10554 *
10555 * Can be called with cred_guard_mutex held when called from
10556 * install_exec_creds().
8dc85d54
PZ
10557 */
10558void perf_event_exit_task(struct task_struct *child)
10559{
8882135b 10560 struct perf_event *event, *tmp;
8dc85d54
PZ
10561 int ctxn;
10562
8882135b
PZ
10563 mutex_lock(&child->perf_event_mutex);
10564 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10565 owner_entry) {
10566 list_del_init(&event->owner_entry);
10567
10568 /*
10569 * Ensure the list deletion is visible before we clear
10570 * the owner, closes a race against perf_release() where
10571 * we need to serialize on the owner->perf_event_mutex.
10572 */
f47c02c0 10573 smp_store_release(&event->owner, NULL);
8882135b
PZ
10574 }
10575 mutex_unlock(&child->perf_event_mutex);
10576
8dc85d54
PZ
10577 for_each_task_context_nr(ctxn)
10578 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
10579
10580 /*
10581 * The perf_event_exit_task_context calls perf_event_task
10582 * with child's task_ctx, which generates EXIT events for
10583 * child contexts and sets child->perf_event_ctxp[] to NULL.
10584 * At this point we need to send EXIT events to cpu contexts.
10585 */
10586 perf_event_task(child, NULL, 0);
8dc85d54
PZ
10587}
10588
889ff015
FW
10589static void perf_free_event(struct perf_event *event,
10590 struct perf_event_context *ctx)
10591{
10592 struct perf_event *parent = event->parent;
10593
10594 if (WARN_ON_ONCE(!parent))
10595 return;
10596
10597 mutex_lock(&parent->child_mutex);
10598 list_del_init(&event->child_list);
10599 mutex_unlock(&parent->child_mutex);
10600
a6fa941d 10601 put_event(parent);
889ff015 10602
652884fe 10603 raw_spin_lock_irq(&ctx->lock);
8a49542c 10604 perf_group_detach(event);
889ff015 10605 list_del_event(event, ctx);
652884fe 10606 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
10607 free_event(event);
10608}
10609
bbbee908 10610/*
652884fe 10611 * Free an unexposed, unused context as created by inheritance by
8dc85d54 10612 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
10613 *
10614 * Not all locks are strictly required, but take them anyway to be nice and
10615 * help out with the lockdep assertions.
bbbee908 10616 */
cdd6c482 10617void perf_event_free_task(struct task_struct *task)
bbbee908 10618{
8dc85d54 10619 struct perf_event_context *ctx;
cdd6c482 10620 struct perf_event *event, *tmp;
8dc85d54 10621 int ctxn;
bbbee908 10622
8dc85d54
PZ
10623 for_each_task_context_nr(ctxn) {
10624 ctx = task->perf_event_ctxp[ctxn];
10625 if (!ctx)
10626 continue;
bbbee908 10627
8dc85d54 10628 mutex_lock(&ctx->mutex);
e552a838
PZ
10629 raw_spin_lock_irq(&ctx->lock);
10630 /*
10631 * Destroy the task <-> ctx relation and mark the context dead.
10632 *
10633 * This is important because even though the task hasn't been
10634 * exposed yet the context has been (through child_list).
10635 */
10636 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10637 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10638 put_task_struct(task); /* cannot be last */
10639 raw_spin_unlock_irq(&ctx->lock);
bbbee908 10640
15121c78 10641 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
8dc85d54 10642 perf_free_event(event, ctx);
bbbee908 10643
8dc85d54 10644 mutex_unlock(&ctx->mutex);
8dc85d54
PZ
10645 put_ctx(ctx);
10646 }
889ff015
FW
10647}
10648
4e231c79
PZ
10649void perf_event_delayed_put(struct task_struct *task)
10650{
10651 int ctxn;
10652
10653 for_each_task_context_nr(ctxn)
10654 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10655}
10656
e03e7ee3 10657struct file *perf_event_get(unsigned int fd)
ffe8690c 10658{
e03e7ee3 10659 struct file *file;
ffe8690c 10660
e03e7ee3
AS
10661 file = fget_raw(fd);
10662 if (!file)
10663 return ERR_PTR(-EBADF);
ffe8690c 10664
e03e7ee3
AS
10665 if (file->f_op != &perf_fops) {
10666 fput(file);
10667 return ERR_PTR(-EBADF);
10668 }
ffe8690c 10669
e03e7ee3 10670 return file;
ffe8690c
KX
10671}
10672
10673const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10674{
10675 if (!event)
10676 return ERR_PTR(-EINVAL);
10677
10678 return &event->attr;
10679}
10680
97dee4f3 10681/*
d8a8cfc7
PZ
10682 * Inherit a event from parent task to child task.
10683 *
10684 * Returns:
10685 * - valid pointer on success
10686 * - NULL for orphaned events
10687 * - IS_ERR() on error
97dee4f3
PZ
10688 */
10689static struct perf_event *
10690inherit_event(struct perf_event *parent_event,
10691 struct task_struct *parent,
10692 struct perf_event_context *parent_ctx,
10693 struct task_struct *child,
10694 struct perf_event *group_leader,
10695 struct perf_event_context *child_ctx)
10696{
8ca2bd41 10697 enum perf_event_state parent_state = parent_event->state;
97dee4f3 10698 struct perf_event *child_event;
cee010ec 10699 unsigned long flags;
97dee4f3
PZ
10700
10701 /*
10702 * Instead of creating recursive hierarchies of events,
10703 * we link inherited events back to the original parent,
10704 * which has a filp for sure, which we use as the reference
10705 * count:
10706 */
10707 if (parent_event->parent)
10708 parent_event = parent_event->parent;
10709
10710 child_event = perf_event_alloc(&parent_event->attr,
10711 parent_event->cpu,
d580ff86 10712 child,
97dee4f3 10713 group_leader, parent_event,
79dff51e 10714 NULL, NULL, -1);
97dee4f3
PZ
10715 if (IS_ERR(child_event))
10716 return child_event;
a6fa941d 10717
c6e5b732
PZ
10718 /*
10719 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10720 * must be under the same lock in order to serialize against
10721 * perf_event_release_kernel(), such that either we must observe
10722 * is_orphaned_event() or they will observe us on the child_list.
10723 */
10724 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
10725 if (is_orphaned_event(parent_event) ||
10726 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 10727 mutex_unlock(&parent_event->child_mutex);
a6fa941d
AV
10728 free_event(child_event);
10729 return NULL;
10730 }
10731
97dee4f3
PZ
10732 get_ctx(child_ctx);
10733
10734 /*
10735 * Make the child state follow the state of the parent event,
10736 * not its attr.disabled bit. We hold the parent's mutex,
10737 * so we won't race with perf_event_{en, dis}able_family.
10738 */
1929def9 10739 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
10740 child_event->state = PERF_EVENT_STATE_INACTIVE;
10741 else
10742 child_event->state = PERF_EVENT_STATE_OFF;
10743
10744 if (parent_event->attr.freq) {
10745 u64 sample_period = parent_event->hw.sample_period;
10746 struct hw_perf_event *hwc = &child_event->hw;
10747
10748 hwc->sample_period = sample_period;
10749 hwc->last_period = sample_period;
10750
10751 local64_set(&hwc->period_left, sample_period);
10752 }
10753
10754 child_event->ctx = child_ctx;
10755 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
10756 child_event->overflow_handler_context
10757 = parent_event->overflow_handler_context;
97dee4f3 10758
614b6780
TG
10759 /*
10760 * Precalculate sample_data sizes
10761 */
10762 perf_event__header_size(child_event);
6844c09d 10763 perf_event__id_header_size(child_event);
614b6780 10764
97dee4f3
PZ
10765 /*
10766 * Link it up in the child's context:
10767 */
cee010ec 10768 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 10769 add_event_to_ctx(child_event, child_ctx);
cee010ec 10770 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 10771
97dee4f3
PZ
10772 /*
10773 * Link this into the parent event's child list
10774 */
97dee4f3
PZ
10775 list_add_tail(&child_event->child_list, &parent_event->child_list);
10776 mutex_unlock(&parent_event->child_mutex);
10777
10778 return child_event;
10779}
10780
d8a8cfc7
PZ
10781/*
10782 * Inherits an event group.
10783 *
10784 * This will quietly suppress orphaned events; !inherit_event() is not an error.
10785 * This matches with perf_event_release_kernel() removing all child events.
10786 *
10787 * Returns:
10788 * - 0 on success
10789 * - <0 on error
10790 */
97dee4f3
PZ
10791static int inherit_group(struct perf_event *parent_event,
10792 struct task_struct *parent,
10793 struct perf_event_context *parent_ctx,
10794 struct task_struct *child,
10795 struct perf_event_context *child_ctx)
10796{
10797 struct perf_event *leader;
10798 struct perf_event *sub;
10799 struct perf_event *child_ctr;
10800
10801 leader = inherit_event(parent_event, parent, parent_ctx,
10802 child, NULL, child_ctx);
10803 if (IS_ERR(leader))
10804 return PTR_ERR(leader);
d8a8cfc7
PZ
10805 /*
10806 * @leader can be NULL here because of is_orphaned_event(). In this
10807 * case inherit_event() will create individual events, similar to what
10808 * perf_group_detach() would do anyway.
10809 */
97dee4f3
PZ
10810 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10811 child_ctr = inherit_event(sub, parent, parent_ctx,
10812 child, leader, child_ctx);
10813 if (IS_ERR(child_ctr))
10814 return PTR_ERR(child_ctr);
10815 }
10816 return 0;
889ff015
FW
10817}
10818
d8a8cfc7
PZ
10819/*
10820 * Creates the child task context and tries to inherit the event-group.
10821 *
10822 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10823 * inherited_all set when we 'fail' to inherit an orphaned event; this is
10824 * consistent with perf_event_release_kernel() removing all child events.
10825 *
10826 * Returns:
10827 * - 0 on success
10828 * - <0 on error
10829 */
889ff015
FW
10830static int
10831inherit_task_group(struct perf_event *event, struct task_struct *parent,
10832 struct perf_event_context *parent_ctx,
8dc85d54 10833 struct task_struct *child, int ctxn,
889ff015
FW
10834 int *inherited_all)
10835{
10836 int ret;
8dc85d54 10837 struct perf_event_context *child_ctx;
889ff015
FW
10838
10839 if (!event->attr.inherit) {
10840 *inherited_all = 0;
10841 return 0;
bbbee908
PZ
10842 }
10843
fe4b04fa 10844 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
10845 if (!child_ctx) {
10846 /*
10847 * This is executed from the parent task context, so
10848 * inherit events that have been marked for cloning.
10849 * First allocate and initialize a context for the
10850 * child.
10851 */
734df5ab 10852 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
10853 if (!child_ctx)
10854 return -ENOMEM;
bbbee908 10855
8dc85d54 10856 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
10857 }
10858
10859 ret = inherit_group(event, parent, parent_ctx,
10860 child, child_ctx);
10861
10862 if (ret)
10863 *inherited_all = 0;
10864
10865 return ret;
bbbee908
PZ
10866}
10867
9b51f66d 10868/*
cdd6c482 10869 * Initialize the perf_event context in task_struct
9b51f66d 10870 */
985c8dcb 10871static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 10872{
889ff015 10873 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
10874 struct perf_event_context *cloned_ctx;
10875 struct perf_event *event;
9b51f66d 10876 struct task_struct *parent = current;
564c2b21 10877 int inherited_all = 1;
dddd3379 10878 unsigned long flags;
6ab423e0 10879 int ret = 0;
9b51f66d 10880
8dc85d54 10881 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
10882 return 0;
10883
ad3a37de 10884 /*
25346b93
PM
10885 * If the parent's context is a clone, pin it so it won't get
10886 * swapped under us.
ad3a37de 10887 */
8dc85d54 10888 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
10889 if (!parent_ctx)
10890 return 0;
25346b93 10891
ad3a37de
PM
10892 /*
10893 * No need to check if parent_ctx != NULL here; since we saw
10894 * it non-NULL earlier, the only reason for it to become NULL
10895 * is if we exit, and since we're currently in the middle of
10896 * a fork we can't be exiting at the same time.
10897 */
ad3a37de 10898
9b51f66d
IM
10899 /*
10900 * Lock the parent list. No need to lock the child - not PID
10901 * hashed yet and not running, so nobody can access it.
10902 */
d859e29f 10903 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
10904
10905 /*
10906 * We dont have to disable NMIs - we are only looking at
10907 * the list, not manipulating it:
10908 */
889ff015 10909 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
10910 ret = inherit_task_group(event, parent, parent_ctx,
10911 child, ctxn, &inherited_all);
889ff015 10912 if (ret)
e7cc4865 10913 goto out_unlock;
889ff015 10914 }
b93f7978 10915
dddd3379
TG
10916 /*
10917 * We can't hold ctx->lock when iterating the ->flexible_group list due
10918 * to allocations, but we need to prevent rotation because
10919 * rotate_ctx() will change the list from interrupt context.
10920 */
10921 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10922 parent_ctx->rotate_disable = 1;
10923 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10924
889ff015 10925 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
10926 ret = inherit_task_group(event, parent, parent_ctx,
10927 child, ctxn, &inherited_all);
889ff015 10928 if (ret)
e7cc4865 10929 goto out_unlock;
564c2b21
PM
10930 }
10931
dddd3379
TG
10932 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10933 parent_ctx->rotate_disable = 0;
dddd3379 10934
8dc85d54 10935 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 10936
05cbaa28 10937 if (child_ctx && inherited_all) {
564c2b21
PM
10938 /*
10939 * Mark the child context as a clone of the parent
10940 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
10941 *
10942 * Note that if the parent is a clone, the holding of
10943 * parent_ctx->lock avoids it from being uncloned.
564c2b21 10944 */
c5ed5145 10945 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
10946 if (cloned_ctx) {
10947 child_ctx->parent_ctx = cloned_ctx;
25346b93 10948 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
10949 } else {
10950 child_ctx->parent_ctx = parent_ctx;
10951 child_ctx->parent_gen = parent_ctx->generation;
10952 }
10953 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
10954 }
10955
c5ed5145 10956 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
e7cc4865 10957out_unlock:
d859e29f 10958 mutex_unlock(&parent_ctx->mutex);
6ab423e0 10959
25346b93 10960 perf_unpin_context(parent_ctx);
fe4b04fa 10961 put_ctx(parent_ctx);
ad3a37de 10962
6ab423e0 10963 return ret;
9b51f66d
IM
10964}
10965
8dc85d54
PZ
10966/*
10967 * Initialize the perf_event context in task_struct
10968 */
10969int perf_event_init_task(struct task_struct *child)
10970{
10971 int ctxn, ret;
10972
8550d7cb
ON
10973 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10974 mutex_init(&child->perf_event_mutex);
10975 INIT_LIST_HEAD(&child->perf_event_list);
10976
8dc85d54
PZ
10977 for_each_task_context_nr(ctxn) {
10978 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
10979 if (ret) {
10980 perf_event_free_task(child);
8dc85d54 10981 return ret;
6c72e350 10982 }
8dc85d54
PZ
10983 }
10984
10985 return 0;
10986}
10987
220b140b
PM
10988static void __init perf_event_init_all_cpus(void)
10989{
b28ab83c 10990 struct swevent_htable *swhash;
220b140b 10991 int cpu;
220b140b 10992
a63fbed7
TG
10993 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
10994
220b140b 10995 for_each_possible_cpu(cpu) {
b28ab83c
PZ
10996 swhash = &per_cpu(swevent_htable, cpu);
10997 mutex_init(&swhash->hlist_mutex);
2fde4f94 10998 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
10999
11000 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11001 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788 11002
058fe1c0
DCC
11003#ifdef CONFIG_CGROUP_PERF
11004 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11005#endif
e48c1788 11006 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
11007 }
11008}
11009
a63fbed7 11010void perf_swevent_init_cpu(unsigned int cpu)
0793a61d 11011{
108b02cf 11012 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 11013
b28ab83c 11014 mutex_lock(&swhash->hlist_mutex);
059fcd8c 11015 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
11016 struct swevent_hlist *hlist;
11017
b28ab83c
PZ
11018 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11019 WARN_ON(!hlist);
11020 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 11021 }
b28ab83c 11022 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
11023}
11024
2965faa5 11025#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 11026static void __perf_event_exit_context(void *__info)
0793a61d 11027{
108b02cf 11028 struct perf_event_context *ctx = __info;
fae3fde6
PZ
11029 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11030 struct perf_event *event;
0793a61d 11031
fae3fde6 11032 raw_spin_lock(&ctx->lock);
0ee098c9 11033 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
fae3fde6 11034 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 11035 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 11036 raw_spin_unlock(&ctx->lock);
0793a61d 11037}
108b02cf
PZ
11038
11039static void perf_event_exit_cpu_context(int cpu)
11040{
a63fbed7 11041 struct perf_cpu_context *cpuctx;
108b02cf
PZ
11042 struct perf_event_context *ctx;
11043 struct pmu *pmu;
108b02cf 11044
a63fbed7
TG
11045 mutex_lock(&pmus_lock);
11046 list_for_each_entry(pmu, &pmus, entry) {
11047 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11048 ctx = &cpuctx->ctx;
108b02cf
PZ
11049
11050 mutex_lock(&ctx->mutex);
11051 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
a63fbed7 11052 cpuctx->online = 0;
108b02cf
PZ
11053 mutex_unlock(&ctx->mutex);
11054 }
a63fbed7
TG
11055 cpumask_clear_cpu(cpu, perf_online_mask);
11056 mutex_unlock(&pmus_lock);
108b02cf 11057}
00e16c3d
TG
11058#else
11059
11060static void perf_event_exit_cpu_context(int cpu) { }
11061
11062#endif
108b02cf 11063
a63fbed7
TG
11064int perf_event_init_cpu(unsigned int cpu)
11065{
11066 struct perf_cpu_context *cpuctx;
11067 struct perf_event_context *ctx;
11068 struct pmu *pmu;
11069
11070 perf_swevent_init_cpu(cpu);
11071
11072 mutex_lock(&pmus_lock);
11073 cpumask_set_cpu(cpu, perf_online_mask);
11074 list_for_each_entry(pmu, &pmus, entry) {
11075 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11076 ctx = &cpuctx->ctx;
11077
11078 mutex_lock(&ctx->mutex);
11079 cpuctx->online = 1;
11080 mutex_unlock(&ctx->mutex);
11081 }
11082 mutex_unlock(&pmus_lock);
11083
11084 return 0;
11085}
11086
00e16c3d 11087int perf_event_exit_cpu(unsigned int cpu)
0793a61d 11088{
e3703f8c 11089 perf_event_exit_cpu_context(cpu);
00e16c3d 11090 return 0;
0793a61d 11091}
0793a61d 11092
c277443c
PZ
11093static int
11094perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11095{
11096 int cpu;
11097
11098 for_each_online_cpu(cpu)
11099 perf_event_exit_cpu(cpu);
11100
11101 return NOTIFY_OK;
11102}
11103
11104/*
11105 * Run the perf reboot notifier at the very last possible moment so that
11106 * the generic watchdog code runs as long as possible.
11107 */
11108static struct notifier_block perf_reboot_notifier = {
11109 .notifier_call = perf_reboot,
11110 .priority = INT_MIN,
11111};
11112
cdd6c482 11113void __init perf_event_init(void)
0793a61d 11114{
3c502e7a
JW
11115 int ret;
11116
2e80a82a
PZ
11117 idr_init(&pmu_idr);
11118
220b140b 11119 perf_event_init_all_cpus();
b0a873eb 11120 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
11121 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11122 perf_pmu_register(&perf_cpu_clock, NULL, -1);
11123 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 11124 perf_tp_register();
00e16c3d 11125 perf_event_init_cpu(smp_processor_id());
c277443c 11126 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
11127
11128 ret = init_hw_breakpoint();
11129 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 11130
b01c3a00
JO
11131 /*
11132 * Build time assertion that we keep the data_head at the intended
11133 * location. IOW, validation we got the __reserved[] size right.
11134 */
11135 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11136 != 1024);
0793a61d 11137}
abe43400 11138
fd979c01
CS
11139ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11140 char *page)
11141{
11142 struct perf_pmu_events_attr *pmu_attr =
11143 container_of(attr, struct perf_pmu_events_attr, attr);
11144
11145 if (pmu_attr->event_str)
11146 return sprintf(page, "%s\n", pmu_attr->event_str);
11147
11148 return 0;
11149}
675965b0 11150EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 11151
abe43400
PZ
11152static int __init perf_event_sysfs_init(void)
11153{
11154 struct pmu *pmu;
11155 int ret;
11156
11157 mutex_lock(&pmus_lock);
11158
11159 ret = bus_register(&pmu_bus);
11160 if (ret)
11161 goto unlock;
11162
11163 list_for_each_entry(pmu, &pmus, entry) {
11164 if (!pmu->name || pmu->type < 0)
11165 continue;
11166
11167 ret = pmu_dev_alloc(pmu);
11168 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11169 }
11170 pmu_bus_running = 1;
11171 ret = 0;
11172
11173unlock:
11174 mutex_unlock(&pmus_lock);
11175
11176 return ret;
11177}
11178device_initcall(perf_event_sysfs_init);
e5d1367f
SE
11179
11180#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
11181static struct cgroup_subsys_state *
11182perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
11183{
11184 struct perf_cgroup *jc;
e5d1367f 11185
1b15d055 11186 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
11187 if (!jc)
11188 return ERR_PTR(-ENOMEM);
11189
e5d1367f
SE
11190 jc->info = alloc_percpu(struct perf_cgroup_info);
11191 if (!jc->info) {
11192 kfree(jc);
11193 return ERR_PTR(-ENOMEM);
11194 }
11195
e5d1367f
SE
11196 return &jc->css;
11197}
11198
eb95419b 11199static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 11200{
eb95419b
TH
11201 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11202
e5d1367f
SE
11203 free_percpu(jc->info);
11204 kfree(jc);
11205}
11206
11207static int __perf_cgroup_move(void *info)
11208{
11209 struct task_struct *task = info;
ddaaf4e2 11210 rcu_read_lock();
e5d1367f 11211 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 11212 rcu_read_unlock();
e5d1367f
SE
11213 return 0;
11214}
11215
1f7dd3e5 11216static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 11217{
bb9d97b6 11218 struct task_struct *task;
1f7dd3e5 11219 struct cgroup_subsys_state *css;
bb9d97b6 11220
1f7dd3e5 11221 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 11222 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
11223}
11224
073219e9 11225struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
11226 .css_alloc = perf_cgroup_css_alloc,
11227 .css_free = perf_cgroup_css_free,
bb9d97b6 11228 .attach = perf_cgroup_attach,
968ebff1
TH
11229 /*
11230 * Implicitly enable on dfl hierarchy so that perf events can
11231 * always be filtered by cgroup2 path as long as perf_event
11232 * controller is not mounted on a legacy hierarchy.
11233 */
11234 .implicit_on_dfl = true,
8cfd8147 11235 .threaded = true,
e5d1367f
SE
11236};
11237#endif /* CONFIG_CGROUP_PERF */