perf/core: Fix unlock balance in perf_init_event()
[linux-block.git] / kernel / events / core.c
CommitLineData
8e86e015 1// SPDX-License-Identifier: GPL-2.0
0793a61d 2/*
57c0c15b 3 * Performance events core code:
0793a61d 4 *
98144511 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
0793a61d
TG
9 */
10
11#include <linux/fs.h>
b9cacc7b 12#include <linux/mm.h>
0793a61d
TG
13#include <linux/cpu.h>
14#include <linux/smp.h>
2e80a82a 15#include <linux/idr.h>
04289bb9 16#include <linux/file.h>
0793a61d 17#include <linux/poll.h>
5a0e3ad6 18#include <linux/slab.h>
76e1d904 19#include <linux/hash.h>
12351ef8 20#include <linux/tick.h>
0793a61d 21#include <linux/sysfs.h>
22a4f650 22#include <linux/dcache.h>
0793a61d 23#include <linux/percpu.h>
22a4f650 24#include <linux/ptrace.h>
c277443c 25#include <linux/reboot.h>
b9cacc7b 26#include <linux/vmstat.h>
abe43400 27#include <linux/device.h>
6e5fdeed 28#include <linux/export.h>
906010b2 29#include <linux/vmalloc.h>
b9cacc7b
PZ
30#include <linux/hardirq.h>
31#include <linux/rculist.h>
0793a61d
TG
32#include <linux/uaccess.h>
33#include <linux/syscalls.h>
34#include <linux/anon_inodes.h>
aa9c4c0f 35#include <linux/kernel_stat.h>
39bed6cb 36#include <linux/cgroup.h>
cdd6c482 37#include <linux/perf_event.h>
af658dca 38#include <linux/trace_events.h>
3c502e7a 39#include <linux/hw_breakpoint.h>
c5ebcedb 40#include <linux/mm_types.h>
c464c76e 41#include <linux/module.h>
f972eb63 42#include <linux/mman.h>
b3f20785 43#include <linux/compat.h>
2541517c
AS
44#include <linux/bpf.h>
45#include <linux/filter.h>
375637bc
AS
46#include <linux/namei.h>
47#include <linux/parser.h>
e6017571 48#include <linux/sched/clock.h>
6e84f315 49#include <linux/sched/mm.h>
e4222673
HB
50#include <linux/proc_ns.h>
51#include <linux/mount.h>
0793a61d 52
76369139
FW
53#include "internal.h"
54
4e193bd4
TB
55#include <asm/irq_regs.h>
56
272325c4
PZ
57typedef int (*remote_function_f)(void *);
58
fe4b04fa 59struct remote_function_call {
e7e7ee2e 60 struct task_struct *p;
272325c4 61 remote_function_f func;
e7e7ee2e
IM
62 void *info;
63 int ret;
fe4b04fa
PZ
64};
65
66static void remote_function(void *data)
67{
68 struct remote_function_call *tfc = data;
69 struct task_struct *p = tfc->p;
70
71 if (p) {
0da4cf3e
PZ
72 /* -EAGAIN */
73 if (task_cpu(p) != smp_processor_id())
74 return;
75
76 /*
77 * Now that we're on right CPU with IRQs disabled, we can test
78 * if we hit the right task without races.
79 */
80
81 tfc->ret = -ESRCH; /* No such (running) process */
82 if (p != current)
fe4b04fa
PZ
83 return;
84 }
85
86 tfc->ret = tfc->func(tfc->info);
87}
88
89/**
90 * task_function_call - call a function on the cpu on which a task runs
91 * @p: the task to evaluate
92 * @func: the function to be called
93 * @info: the function call argument
94 *
95 * Calls the function @func when the task is currently running. This might
96 * be on the current CPU, which just calls the function directly
97 *
98 * returns: @func return value, or
99 * -ESRCH - when the process isn't running
100 * -EAGAIN - when the process moved away
101 */
102static int
272325c4 103task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
104{
105 struct remote_function_call data = {
e7e7ee2e
IM
106 .p = p,
107 .func = func,
108 .info = info,
0da4cf3e 109 .ret = -EAGAIN,
fe4b04fa 110 };
0da4cf3e 111 int ret;
fe4b04fa 112
0da4cf3e
PZ
113 do {
114 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
115 if (!ret)
116 ret = data.ret;
117 } while (ret == -EAGAIN);
fe4b04fa 118
0da4cf3e 119 return ret;
fe4b04fa
PZ
120}
121
122/**
123 * cpu_function_call - call a function on the cpu
124 * @func: the function to be called
125 * @info: the function call argument
126 *
127 * Calls the function @func on the remote cpu.
128 *
129 * returns: @func return value or -ENXIO when the cpu is offline
130 */
272325c4 131static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
132{
133 struct remote_function_call data = {
e7e7ee2e
IM
134 .p = NULL,
135 .func = func,
136 .info = info,
137 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
138 };
139
140 smp_call_function_single(cpu, remote_function, &data, 1);
141
142 return data.ret;
143}
144
fae3fde6
PZ
145static inline struct perf_cpu_context *
146__get_cpu_context(struct perf_event_context *ctx)
147{
148 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
149}
150
151static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
152 struct perf_event_context *ctx)
0017960f 153{
fae3fde6
PZ
154 raw_spin_lock(&cpuctx->ctx.lock);
155 if (ctx)
156 raw_spin_lock(&ctx->lock);
157}
158
159static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
160 struct perf_event_context *ctx)
161{
162 if (ctx)
163 raw_spin_unlock(&ctx->lock);
164 raw_spin_unlock(&cpuctx->ctx.lock);
165}
166
63b6da39
PZ
167#define TASK_TOMBSTONE ((void *)-1L)
168
169static bool is_kernel_event(struct perf_event *event)
170{
f47c02c0 171 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
172}
173
39a43640
PZ
174/*
175 * On task ctx scheduling...
176 *
177 * When !ctx->nr_events a task context will not be scheduled. This means
178 * we can disable the scheduler hooks (for performance) without leaving
179 * pending task ctx state.
180 *
181 * This however results in two special cases:
182 *
183 * - removing the last event from a task ctx; this is relatively straight
184 * forward and is done in __perf_remove_from_context.
185 *
186 * - adding the first event to a task ctx; this is tricky because we cannot
187 * rely on ctx->is_active and therefore cannot use event_function_call().
188 * See perf_install_in_context().
189 *
39a43640
PZ
190 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
191 */
192
fae3fde6
PZ
193typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
194 struct perf_event_context *, void *);
195
196struct event_function_struct {
197 struct perf_event *event;
198 event_f func;
199 void *data;
200};
201
202static int event_function(void *info)
203{
204 struct event_function_struct *efs = info;
205 struct perf_event *event = efs->event;
0017960f 206 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
207 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
208 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 209 int ret = 0;
fae3fde6 210
16444645 211 lockdep_assert_irqs_disabled();
fae3fde6 212
63b6da39 213 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
214 /*
215 * Since we do the IPI call without holding ctx->lock things can have
216 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
217 */
218 if (ctx->task) {
63b6da39 219 if (ctx->task != current) {
0da4cf3e 220 ret = -ESRCH;
63b6da39
PZ
221 goto unlock;
222 }
fae3fde6 223
fae3fde6
PZ
224 /*
225 * We only use event_function_call() on established contexts,
226 * and event_function() is only ever called when active (or
227 * rather, we'll have bailed in task_function_call() or the
228 * above ctx->task != current test), therefore we must have
229 * ctx->is_active here.
230 */
231 WARN_ON_ONCE(!ctx->is_active);
232 /*
233 * And since we have ctx->is_active, cpuctx->task_ctx must
234 * match.
235 */
63b6da39
PZ
236 WARN_ON_ONCE(task_ctx != ctx);
237 } else {
238 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 239 }
63b6da39 240
fae3fde6 241 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 242unlock:
fae3fde6
PZ
243 perf_ctx_unlock(cpuctx, task_ctx);
244
63b6da39 245 return ret;
fae3fde6
PZ
246}
247
fae3fde6 248static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
249{
250 struct perf_event_context *ctx = event->ctx;
63b6da39 251 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
252 struct event_function_struct efs = {
253 .event = event,
254 .func = func,
255 .data = data,
256 };
0017960f 257
c97f4736
PZ
258 if (!event->parent) {
259 /*
260 * If this is a !child event, we must hold ctx::mutex to
261 * stabilize the the event->ctx relation. See
262 * perf_event_ctx_lock().
263 */
264 lockdep_assert_held(&ctx->mutex);
265 }
0017960f
PZ
266
267 if (!task) {
fae3fde6 268 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
269 return;
270 }
271
63b6da39
PZ
272 if (task == TASK_TOMBSTONE)
273 return;
274
a096309b 275again:
fae3fde6 276 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
277 return;
278
279 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
280 /*
281 * Reload the task pointer, it might have been changed by
282 * a concurrent perf_event_context_sched_out().
283 */
284 task = ctx->task;
a096309b
PZ
285 if (task == TASK_TOMBSTONE) {
286 raw_spin_unlock_irq(&ctx->lock);
287 return;
0017960f 288 }
a096309b
PZ
289 if (ctx->is_active) {
290 raw_spin_unlock_irq(&ctx->lock);
291 goto again;
292 }
293 func(event, NULL, ctx, data);
0017960f
PZ
294 raw_spin_unlock_irq(&ctx->lock);
295}
296
cca20946
PZ
297/*
298 * Similar to event_function_call() + event_function(), but hard assumes IRQs
299 * are already disabled and we're on the right CPU.
300 */
301static void event_function_local(struct perf_event *event, event_f func, void *data)
302{
303 struct perf_event_context *ctx = event->ctx;
304 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
305 struct task_struct *task = READ_ONCE(ctx->task);
306 struct perf_event_context *task_ctx = NULL;
307
16444645 308 lockdep_assert_irqs_disabled();
cca20946
PZ
309
310 if (task) {
311 if (task == TASK_TOMBSTONE)
312 return;
313
314 task_ctx = ctx;
315 }
316
317 perf_ctx_lock(cpuctx, task_ctx);
318
319 task = ctx->task;
320 if (task == TASK_TOMBSTONE)
321 goto unlock;
322
323 if (task) {
324 /*
325 * We must be either inactive or active and the right task,
326 * otherwise we're screwed, since we cannot IPI to somewhere
327 * else.
328 */
329 if (ctx->is_active) {
330 if (WARN_ON_ONCE(task != current))
331 goto unlock;
332
333 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
334 goto unlock;
335 }
336 } else {
337 WARN_ON_ONCE(&cpuctx->ctx != ctx);
338 }
339
340 func(event, cpuctx, ctx, data);
341unlock:
342 perf_ctx_unlock(cpuctx, task_ctx);
343}
344
e5d1367f
SE
345#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
346 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
347 PERF_FLAG_PID_CGROUP |\
348 PERF_FLAG_FD_CLOEXEC)
e5d1367f 349
bce38cd5
SE
350/*
351 * branch priv levels that need permission checks
352 */
353#define PERF_SAMPLE_BRANCH_PERM_PLM \
354 (PERF_SAMPLE_BRANCH_KERNEL |\
355 PERF_SAMPLE_BRANCH_HV)
356
0b3fcf17
SE
357enum event_type_t {
358 EVENT_FLEXIBLE = 0x1,
359 EVENT_PINNED = 0x2,
3cbaa590 360 EVENT_TIME = 0x4,
487f05e1
AS
361 /* see ctx_resched() for details */
362 EVENT_CPU = 0x8,
0b3fcf17
SE
363 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
364};
365
e5d1367f
SE
366/*
367 * perf_sched_events : >0 events exist
368 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
369 */
9107c89e
PZ
370
371static void perf_sched_delayed(struct work_struct *work);
372DEFINE_STATIC_KEY_FALSE(perf_sched_events);
373static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
374static DEFINE_MUTEX(perf_sched_mutex);
375static atomic_t perf_sched_count;
376
e5d1367f 377static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 378static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 379static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 380
cdd6c482
IM
381static atomic_t nr_mmap_events __read_mostly;
382static atomic_t nr_comm_events __read_mostly;
e4222673 383static atomic_t nr_namespaces_events __read_mostly;
cdd6c482 384static atomic_t nr_task_events __read_mostly;
948b26b6 385static atomic_t nr_freq_events __read_mostly;
45ac1403 386static atomic_t nr_switch_events __read_mostly;
76193a94 387static atomic_t nr_ksymbol_events __read_mostly;
6ee52e2a 388static atomic_t nr_bpf_events __read_mostly;
9ee318a7 389
108b02cf
PZ
390static LIST_HEAD(pmus);
391static DEFINE_MUTEX(pmus_lock);
392static struct srcu_struct pmus_srcu;
a63fbed7 393static cpumask_var_t perf_online_mask;
108b02cf 394
0764771d 395/*
cdd6c482 396 * perf event paranoia level:
0fbdea19
IM
397 * -1 - not paranoid at all
398 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 399 * 1 - disallow cpu events for unpriv
0fbdea19 400 * 2 - disallow kernel profiling for unpriv
0764771d 401 */
0161028b 402int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 403
20443384
FW
404/* Minimum for 512 kiB + 1 user control page */
405int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
406
407/*
cdd6c482 408 * max perf event sample rate
df58ab24 409 */
14c63f17
DH
410#define DEFAULT_MAX_SAMPLE_RATE 100000
411#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
412#define DEFAULT_CPU_TIME_MAX_PERCENT 25
413
414int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
415
416static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
417static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
418
d9494cb4
PZ
419static int perf_sample_allowed_ns __read_mostly =
420 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 421
18ab2cd3 422static void update_perf_cpu_limits(void)
14c63f17
DH
423{
424 u64 tmp = perf_sample_period_ns;
425
426 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
427 tmp = div_u64(tmp, 100);
428 if (!tmp)
429 tmp = 1;
430
431 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 432}
163ec435 433
8d5bce0c 434static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
9e630205 435
163ec435
PZ
436int perf_proc_update_handler(struct ctl_table *table, int write,
437 void __user *buffer, size_t *lenp,
438 loff_t *ppos)
439{
1a51c5da
SE
440 int ret;
441 int perf_cpu = sysctl_perf_cpu_time_max_percent;
ab7fdefb
KL
442 /*
443 * If throttling is disabled don't allow the write:
444 */
1a51c5da 445 if (write && (perf_cpu == 100 || perf_cpu == 0))
ab7fdefb
KL
446 return -EINVAL;
447
1a51c5da
SE
448 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
449 if (ret || !write)
450 return ret;
451
163ec435 452 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
453 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
454 update_perf_cpu_limits();
455
456 return 0;
457}
458
459int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
460
461int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
462 void __user *buffer, size_t *lenp,
463 loff_t *ppos)
464{
1572e45a 465 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
14c63f17
DH
466
467 if (ret || !write)
468 return ret;
469
b303e7c1
PZ
470 if (sysctl_perf_cpu_time_max_percent == 100 ||
471 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
472 printk(KERN_WARNING
473 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
474 WRITE_ONCE(perf_sample_allowed_ns, 0);
475 } else {
476 update_perf_cpu_limits();
477 }
163ec435
PZ
478
479 return 0;
480}
1ccd1549 481
14c63f17
DH
482/*
483 * perf samples are done in some very critical code paths (NMIs).
484 * If they take too much CPU time, the system can lock up and not
485 * get any real work done. This will drop the sample rate when
486 * we detect that events are taking too long.
487 */
488#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 489static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 490
91a612ee
PZ
491static u64 __report_avg;
492static u64 __report_allowed;
493
6a02ad66 494static void perf_duration_warn(struct irq_work *w)
14c63f17 495{
0d87d7ec 496 printk_ratelimited(KERN_INFO
91a612ee
PZ
497 "perf: interrupt took too long (%lld > %lld), lowering "
498 "kernel.perf_event_max_sample_rate to %d\n",
499 __report_avg, __report_allowed,
500 sysctl_perf_event_sample_rate);
6a02ad66
PZ
501}
502
503static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
504
505void perf_sample_event_took(u64 sample_len_ns)
506{
91a612ee
PZ
507 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
508 u64 running_len;
509 u64 avg_len;
510 u32 max;
14c63f17 511
91a612ee 512 if (max_len == 0)
14c63f17
DH
513 return;
514
91a612ee
PZ
515 /* Decay the counter by 1 average sample. */
516 running_len = __this_cpu_read(running_sample_length);
517 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
518 running_len += sample_len_ns;
519 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
520
521 /*
91a612ee
PZ
522 * Note: this will be biased artifically low until we have
523 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
524 * from having to maintain a count.
525 */
91a612ee
PZ
526 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
527 if (avg_len <= max_len)
14c63f17
DH
528 return;
529
91a612ee
PZ
530 __report_avg = avg_len;
531 __report_allowed = max_len;
14c63f17 532
91a612ee
PZ
533 /*
534 * Compute a throttle threshold 25% below the current duration.
535 */
536 avg_len += avg_len / 4;
537 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
538 if (avg_len < max)
539 max /= (u32)avg_len;
540 else
541 max = 1;
14c63f17 542
91a612ee
PZ
543 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
544 WRITE_ONCE(max_samples_per_tick, max);
545
546 sysctl_perf_event_sample_rate = max * HZ;
547 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 548
cd578abb 549 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 550 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 551 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 552 __report_avg, __report_allowed,
cd578abb
PZ
553 sysctl_perf_event_sample_rate);
554 }
14c63f17
DH
555}
556
cdd6c482 557static atomic64_t perf_event_id;
a96bbc16 558
0b3fcf17
SE
559static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
560 enum event_type_t event_type);
561
562static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
563 enum event_type_t event_type,
564 struct task_struct *task);
565
566static void update_context_time(struct perf_event_context *ctx);
567static u64 perf_event_time(struct perf_event *event);
0b3fcf17 568
cdd6c482 569void __weak perf_event_print_debug(void) { }
0793a61d 570
84c79910 571extern __weak const char *perf_pmu_name(void)
0793a61d 572{
84c79910 573 return "pmu";
0793a61d
TG
574}
575
0b3fcf17
SE
576static inline u64 perf_clock(void)
577{
578 return local_clock();
579}
580
34f43927
PZ
581static inline u64 perf_event_clock(struct perf_event *event)
582{
583 return event->clock();
584}
585
0d3d73aa
PZ
586/*
587 * State based event timekeeping...
588 *
589 * The basic idea is to use event->state to determine which (if any) time
590 * fields to increment with the current delta. This means we only need to
591 * update timestamps when we change state or when they are explicitly requested
592 * (read).
593 *
594 * Event groups make things a little more complicated, but not terribly so. The
595 * rules for a group are that if the group leader is OFF the entire group is
596 * OFF, irrespecive of what the group member states are. This results in
597 * __perf_effective_state().
598 *
599 * A futher ramification is that when a group leader flips between OFF and
600 * !OFF, we need to update all group member times.
601 *
602 *
603 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
604 * need to make sure the relevant context time is updated before we try and
605 * update our timestamps.
606 */
607
608static __always_inline enum perf_event_state
609__perf_effective_state(struct perf_event *event)
610{
611 struct perf_event *leader = event->group_leader;
612
613 if (leader->state <= PERF_EVENT_STATE_OFF)
614 return leader->state;
615
616 return event->state;
617}
618
619static __always_inline void
620__perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
621{
622 enum perf_event_state state = __perf_effective_state(event);
623 u64 delta = now - event->tstamp;
624
625 *enabled = event->total_time_enabled;
626 if (state >= PERF_EVENT_STATE_INACTIVE)
627 *enabled += delta;
628
629 *running = event->total_time_running;
630 if (state >= PERF_EVENT_STATE_ACTIVE)
631 *running += delta;
632}
633
634static void perf_event_update_time(struct perf_event *event)
635{
636 u64 now = perf_event_time(event);
637
638 __perf_update_times(event, now, &event->total_time_enabled,
639 &event->total_time_running);
640 event->tstamp = now;
641}
642
643static void perf_event_update_sibling_time(struct perf_event *leader)
644{
645 struct perf_event *sibling;
646
edb39592 647 for_each_sibling_event(sibling, leader)
0d3d73aa
PZ
648 perf_event_update_time(sibling);
649}
650
651static void
652perf_event_set_state(struct perf_event *event, enum perf_event_state state)
653{
654 if (event->state == state)
655 return;
656
657 perf_event_update_time(event);
658 /*
659 * If a group leader gets enabled/disabled all its siblings
660 * are affected too.
661 */
662 if ((event->state < 0) ^ (state < 0))
663 perf_event_update_sibling_time(event);
664
665 WRITE_ONCE(event->state, state);
666}
667
e5d1367f
SE
668#ifdef CONFIG_CGROUP_PERF
669
e5d1367f
SE
670static inline bool
671perf_cgroup_match(struct perf_event *event)
672{
673 struct perf_event_context *ctx = event->ctx;
674 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
675
ef824fa1
TH
676 /* @event doesn't care about cgroup */
677 if (!event->cgrp)
678 return true;
679
680 /* wants specific cgroup scope but @cpuctx isn't associated with any */
681 if (!cpuctx->cgrp)
682 return false;
683
684 /*
685 * Cgroup scoping is recursive. An event enabled for a cgroup is
686 * also enabled for all its descendant cgroups. If @cpuctx's
687 * cgroup is a descendant of @event's (the test covers identity
688 * case), it's a match.
689 */
690 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
691 event->cgrp->css.cgroup);
e5d1367f
SE
692}
693
e5d1367f
SE
694static inline void perf_detach_cgroup(struct perf_event *event)
695{
4e2ba650 696 css_put(&event->cgrp->css);
e5d1367f
SE
697 event->cgrp = NULL;
698}
699
700static inline int is_cgroup_event(struct perf_event *event)
701{
702 return event->cgrp != NULL;
703}
704
705static inline u64 perf_cgroup_event_time(struct perf_event *event)
706{
707 struct perf_cgroup_info *t;
708
709 t = per_cpu_ptr(event->cgrp->info, event->cpu);
710 return t->time;
711}
712
713static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
714{
715 struct perf_cgroup_info *info;
716 u64 now;
717
718 now = perf_clock();
719
720 info = this_cpu_ptr(cgrp->info);
721
722 info->time += now - info->timestamp;
723 info->timestamp = now;
724}
725
726static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
727{
c917e0f2
SL
728 struct perf_cgroup *cgrp = cpuctx->cgrp;
729 struct cgroup_subsys_state *css;
730
731 if (cgrp) {
732 for (css = &cgrp->css; css; css = css->parent) {
733 cgrp = container_of(css, struct perf_cgroup, css);
734 __update_cgrp_time(cgrp);
735 }
736 }
e5d1367f
SE
737}
738
739static inline void update_cgrp_time_from_event(struct perf_event *event)
740{
3f7cce3c
SE
741 struct perf_cgroup *cgrp;
742
e5d1367f 743 /*
3f7cce3c
SE
744 * ensure we access cgroup data only when needed and
745 * when we know the cgroup is pinned (css_get)
e5d1367f 746 */
3f7cce3c 747 if (!is_cgroup_event(event))
e5d1367f
SE
748 return;
749
614e4c4e 750 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
751 /*
752 * Do not update time when cgroup is not active
753 */
28fa741c 754 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
3f7cce3c 755 __update_cgrp_time(event->cgrp);
e5d1367f
SE
756}
757
758static inline void
3f7cce3c
SE
759perf_cgroup_set_timestamp(struct task_struct *task,
760 struct perf_event_context *ctx)
e5d1367f
SE
761{
762 struct perf_cgroup *cgrp;
763 struct perf_cgroup_info *info;
c917e0f2 764 struct cgroup_subsys_state *css;
e5d1367f 765
3f7cce3c
SE
766 /*
767 * ctx->lock held by caller
768 * ensure we do not access cgroup data
769 * unless we have the cgroup pinned (css_get)
770 */
771 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
772 return;
773
614e4c4e 774 cgrp = perf_cgroup_from_task(task, ctx);
c917e0f2
SL
775
776 for (css = &cgrp->css; css; css = css->parent) {
777 cgrp = container_of(css, struct perf_cgroup, css);
778 info = this_cpu_ptr(cgrp->info);
779 info->timestamp = ctx->timestamp;
780 }
e5d1367f
SE
781}
782
058fe1c0
DCC
783static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
784
e5d1367f
SE
785#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
786#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
787
788/*
789 * reschedule events based on the cgroup constraint of task.
790 *
791 * mode SWOUT : schedule out everything
792 * mode SWIN : schedule in based on cgroup for next
793 */
18ab2cd3 794static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
795{
796 struct perf_cpu_context *cpuctx;
058fe1c0 797 struct list_head *list;
e5d1367f
SE
798 unsigned long flags;
799
800 /*
058fe1c0
DCC
801 * Disable interrupts and preemption to avoid this CPU's
802 * cgrp_cpuctx_entry to change under us.
e5d1367f
SE
803 */
804 local_irq_save(flags);
805
058fe1c0
DCC
806 list = this_cpu_ptr(&cgrp_cpuctx_list);
807 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
808 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
e5d1367f 809
058fe1c0
DCC
810 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
811 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f 812
058fe1c0
DCC
813 if (mode & PERF_CGROUP_SWOUT) {
814 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
815 /*
816 * must not be done before ctxswout due
817 * to event_filter_match() in event_sched_out()
818 */
819 cpuctx->cgrp = NULL;
820 }
e5d1367f 821
058fe1c0
DCC
822 if (mode & PERF_CGROUP_SWIN) {
823 WARN_ON_ONCE(cpuctx->cgrp);
824 /*
825 * set cgrp before ctxsw in to allow
826 * event_filter_match() to not have to pass
827 * task around
828 * we pass the cpuctx->ctx to perf_cgroup_from_task()
829 * because cgorup events are only per-cpu
830 */
831 cpuctx->cgrp = perf_cgroup_from_task(task,
832 &cpuctx->ctx);
833 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
e5d1367f 834 }
058fe1c0
DCC
835 perf_pmu_enable(cpuctx->ctx.pmu);
836 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f
SE
837 }
838
e5d1367f
SE
839 local_irq_restore(flags);
840}
841
a8d757ef
SE
842static inline void perf_cgroup_sched_out(struct task_struct *task,
843 struct task_struct *next)
e5d1367f 844{
a8d757ef
SE
845 struct perf_cgroup *cgrp1;
846 struct perf_cgroup *cgrp2 = NULL;
847
ddaaf4e2 848 rcu_read_lock();
a8d757ef
SE
849 /*
850 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
851 * we do not need to pass the ctx here because we know
852 * we are holding the rcu lock
a8d757ef 853 */
614e4c4e 854 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 855 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
856
857 /*
858 * only schedule out current cgroup events if we know
859 * that we are switching to a different cgroup. Otherwise,
860 * do no touch the cgroup events.
861 */
862 if (cgrp1 != cgrp2)
863 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
864
865 rcu_read_unlock();
e5d1367f
SE
866}
867
a8d757ef
SE
868static inline void perf_cgroup_sched_in(struct task_struct *prev,
869 struct task_struct *task)
e5d1367f 870{
a8d757ef
SE
871 struct perf_cgroup *cgrp1;
872 struct perf_cgroup *cgrp2 = NULL;
873
ddaaf4e2 874 rcu_read_lock();
a8d757ef
SE
875 /*
876 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
877 * we do not need to pass the ctx here because we know
878 * we are holding the rcu lock
a8d757ef 879 */
614e4c4e 880 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 881 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
882
883 /*
884 * only need to schedule in cgroup events if we are changing
885 * cgroup during ctxsw. Cgroup events were not scheduled
886 * out of ctxsw out if that was not the case.
887 */
888 if (cgrp1 != cgrp2)
889 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
890
891 rcu_read_unlock();
e5d1367f
SE
892}
893
894static inline int perf_cgroup_connect(int fd, struct perf_event *event,
895 struct perf_event_attr *attr,
896 struct perf_event *group_leader)
897{
898 struct perf_cgroup *cgrp;
899 struct cgroup_subsys_state *css;
2903ff01
AV
900 struct fd f = fdget(fd);
901 int ret = 0;
e5d1367f 902
2903ff01 903 if (!f.file)
e5d1367f
SE
904 return -EBADF;
905
b583043e 906 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 907 &perf_event_cgrp_subsys);
3db272c0
LZ
908 if (IS_ERR(css)) {
909 ret = PTR_ERR(css);
910 goto out;
911 }
e5d1367f
SE
912
913 cgrp = container_of(css, struct perf_cgroup, css);
914 event->cgrp = cgrp;
915
916 /*
917 * all events in a group must monitor
918 * the same cgroup because a task belongs
919 * to only one perf cgroup at a time
920 */
921 if (group_leader && group_leader->cgrp != cgrp) {
922 perf_detach_cgroup(event);
923 ret = -EINVAL;
e5d1367f 924 }
3db272c0 925out:
2903ff01 926 fdput(f);
e5d1367f
SE
927 return ret;
928}
929
930static inline void
931perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
932{
933 struct perf_cgroup_info *t;
934 t = per_cpu_ptr(event->cgrp->info, event->cpu);
935 event->shadow_ctx_time = now - t->timestamp;
936}
937
db4a8356
DCC
938/*
939 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
940 * cleared when last cgroup event is removed.
941 */
942static inline void
943list_update_cgroup_event(struct perf_event *event,
944 struct perf_event_context *ctx, bool add)
945{
946 struct perf_cpu_context *cpuctx;
058fe1c0 947 struct list_head *cpuctx_entry;
db4a8356
DCC
948
949 if (!is_cgroup_event(event))
950 return;
951
db4a8356
DCC
952 /*
953 * Because cgroup events are always per-cpu events,
954 * this will always be called from the right CPU.
955 */
956 cpuctx = __get_cpu_context(ctx);
33801b94 957
958 /*
959 * Since setting cpuctx->cgrp is conditional on the current @cgrp
960 * matching the event's cgroup, we must do this for every new event,
961 * because if the first would mismatch, the second would not try again
962 * and we would leave cpuctx->cgrp unset.
963 */
964 if (add && !cpuctx->cgrp) {
be96b316
TH
965 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
966
be96b316
TH
967 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
968 cpuctx->cgrp = cgrp;
058fe1c0 969 }
33801b94 970
971 if (add && ctx->nr_cgroups++)
972 return;
973 else if (!add && --ctx->nr_cgroups)
974 return;
975
976 /* no cgroup running */
977 if (!add)
978 cpuctx->cgrp = NULL;
979
980 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
981 if (add)
982 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
983 else
984 list_del(cpuctx_entry);
db4a8356
DCC
985}
986
e5d1367f
SE
987#else /* !CONFIG_CGROUP_PERF */
988
989static inline bool
990perf_cgroup_match(struct perf_event *event)
991{
992 return true;
993}
994
995static inline void perf_detach_cgroup(struct perf_event *event)
996{}
997
998static inline int is_cgroup_event(struct perf_event *event)
999{
1000 return 0;
1001}
1002
e5d1367f
SE
1003static inline void update_cgrp_time_from_event(struct perf_event *event)
1004{
1005}
1006
1007static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1008{
1009}
1010
a8d757ef
SE
1011static inline void perf_cgroup_sched_out(struct task_struct *task,
1012 struct task_struct *next)
e5d1367f
SE
1013{
1014}
1015
a8d757ef
SE
1016static inline void perf_cgroup_sched_in(struct task_struct *prev,
1017 struct task_struct *task)
e5d1367f
SE
1018{
1019}
1020
1021static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1022 struct perf_event_attr *attr,
1023 struct perf_event *group_leader)
1024{
1025 return -EINVAL;
1026}
1027
1028static inline void
3f7cce3c
SE
1029perf_cgroup_set_timestamp(struct task_struct *task,
1030 struct perf_event_context *ctx)
e5d1367f
SE
1031{
1032}
1033
d00dbd29 1034static inline void
e5d1367f
SE
1035perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1036{
1037}
1038
1039static inline void
1040perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1041{
1042}
1043
1044static inline u64 perf_cgroup_event_time(struct perf_event *event)
1045{
1046 return 0;
1047}
1048
db4a8356
DCC
1049static inline void
1050list_update_cgroup_event(struct perf_event *event,
1051 struct perf_event_context *ctx, bool add)
1052{
1053}
1054
e5d1367f
SE
1055#endif
1056
9e630205
SE
1057/*
1058 * set default to be dependent on timer tick just
1059 * like original code
1060 */
1061#define PERF_CPU_HRTIMER (1000 / HZ)
1062/*
8a1115ff 1063 * function must be called with interrupts disabled
9e630205 1064 */
272325c4 1065static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1066{
1067 struct perf_cpu_context *cpuctx;
8d5bce0c 1068 bool rotations;
9e630205 1069
16444645 1070 lockdep_assert_irqs_disabled();
9e630205
SE
1071
1072 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1073 rotations = perf_rotate_context(cpuctx);
1074
4cfafd30
PZ
1075 raw_spin_lock(&cpuctx->hrtimer_lock);
1076 if (rotations)
9e630205 1077 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1078 else
1079 cpuctx->hrtimer_active = 0;
1080 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1081
4cfafd30 1082 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1083}
1084
272325c4 1085static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1086{
272325c4 1087 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1088 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1089 u64 interval;
9e630205
SE
1090
1091 /* no multiplexing needed for SW PMU */
1092 if (pmu->task_ctx_nr == perf_sw_context)
1093 return;
1094
62b85639
SE
1095 /*
1096 * check default is sane, if not set then force to
1097 * default interval (1/tick)
1098 */
272325c4
PZ
1099 interval = pmu->hrtimer_interval_ms;
1100 if (interval < 1)
1101 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1102
272325c4 1103 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1104
4cfafd30 1105 raw_spin_lock_init(&cpuctx->hrtimer_lock);
30f9028b 1106 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
272325c4 1107 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1108}
1109
272325c4 1110static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1111{
272325c4 1112 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1113 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1114 unsigned long flags;
9e630205
SE
1115
1116 /* not for SW PMU */
1117 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1118 return 0;
9e630205 1119
4cfafd30
PZ
1120 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1121 if (!cpuctx->hrtimer_active) {
1122 cpuctx->hrtimer_active = 1;
1123 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
30f9028b 1124 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
4cfafd30
PZ
1125 }
1126 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1127
272325c4 1128 return 0;
9e630205
SE
1129}
1130
33696fc0 1131void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1132{
33696fc0
PZ
1133 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1134 if (!(*count)++)
1135 pmu->pmu_disable(pmu);
9e35ad38 1136}
9e35ad38 1137
33696fc0 1138void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1139{
33696fc0
PZ
1140 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1141 if (!--(*count))
1142 pmu->pmu_enable(pmu);
9e35ad38 1143}
9e35ad38 1144
2fde4f94 1145static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1146
1147/*
2fde4f94
MR
1148 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1149 * perf_event_task_tick() are fully serialized because they're strictly cpu
1150 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1151 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1152 */
2fde4f94 1153static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1154{
2fde4f94 1155 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1156
16444645 1157 lockdep_assert_irqs_disabled();
b5ab4cd5 1158
2fde4f94
MR
1159 WARN_ON(!list_empty(&ctx->active_ctx_list));
1160
1161 list_add(&ctx->active_ctx_list, head);
1162}
1163
1164static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1165{
16444645 1166 lockdep_assert_irqs_disabled();
2fde4f94
MR
1167
1168 WARN_ON(list_empty(&ctx->active_ctx_list));
1169
1170 list_del_init(&ctx->active_ctx_list);
9e35ad38 1171}
9e35ad38 1172
cdd6c482 1173static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1174{
8c94abbb 1175 refcount_inc(&ctx->refcount);
a63eaf34
PM
1176}
1177
4af57ef2
YZ
1178static void free_ctx(struct rcu_head *head)
1179{
1180 struct perf_event_context *ctx;
1181
1182 ctx = container_of(head, struct perf_event_context, rcu_head);
1183 kfree(ctx->task_ctx_data);
1184 kfree(ctx);
1185}
1186
cdd6c482 1187static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1188{
8c94abbb 1189 if (refcount_dec_and_test(&ctx->refcount)) {
564c2b21
PM
1190 if (ctx->parent_ctx)
1191 put_ctx(ctx->parent_ctx);
63b6da39 1192 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1193 put_task_struct(ctx->task);
4af57ef2 1194 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1195 }
a63eaf34
PM
1196}
1197
f63a8daa
PZ
1198/*
1199 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1200 * perf_pmu_migrate_context() we need some magic.
1201 *
1202 * Those places that change perf_event::ctx will hold both
1203 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1204 *
8b10c5e2
PZ
1205 * Lock ordering is by mutex address. There are two other sites where
1206 * perf_event_context::mutex nests and those are:
1207 *
1208 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1209 * perf_event_exit_event()
1210 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1211 *
1212 * - perf_event_init_context() [ parent, 0 ]
1213 * inherit_task_group()
1214 * inherit_group()
1215 * inherit_event()
1216 * perf_event_alloc()
1217 * perf_init_event()
1218 * perf_try_init_event() [ child , 1 ]
1219 *
1220 * While it appears there is an obvious deadlock here -- the parent and child
1221 * nesting levels are inverted between the two. This is in fact safe because
1222 * life-time rules separate them. That is an exiting task cannot fork, and a
1223 * spawning task cannot (yet) exit.
1224 *
1225 * But remember that that these are parent<->child context relations, and
1226 * migration does not affect children, therefore these two orderings should not
1227 * interact.
f63a8daa
PZ
1228 *
1229 * The change in perf_event::ctx does not affect children (as claimed above)
1230 * because the sys_perf_event_open() case will install a new event and break
1231 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1232 * concerned with cpuctx and that doesn't have children.
1233 *
1234 * The places that change perf_event::ctx will issue:
1235 *
1236 * perf_remove_from_context();
1237 * synchronize_rcu();
1238 * perf_install_in_context();
1239 *
1240 * to affect the change. The remove_from_context() + synchronize_rcu() should
1241 * quiesce the event, after which we can install it in the new location. This
1242 * means that only external vectors (perf_fops, prctl) can perturb the event
1243 * while in transit. Therefore all such accessors should also acquire
1244 * perf_event_context::mutex to serialize against this.
1245 *
1246 * However; because event->ctx can change while we're waiting to acquire
1247 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1248 * function.
1249 *
1250 * Lock order:
79c9ce57 1251 * cred_guard_mutex
f63a8daa
PZ
1252 * task_struct::perf_event_mutex
1253 * perf_event_context::mutex
f63a8daa 1254 * perf_event::child_mutex;
07c4a776 1255 * perf_event_context::lock
f63a8daa
PZ
1256 * perf_event::mmap_mutex
1257 * mmap_sem
18736eef 1258 * perf_addr_filters_head::lock
82d94856
PZ
1259 *
1260 * cpu_hotplug_lock
1261 * pmus_lock
1262 * cpuctx->mutex / perf_event_context::mutex
f63a8daa 1263 */
a83fe28e
PZ
1264static struct perf_event_context *
1265perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1266{
1267 struct perf_event_context *ctx;
1268
1269again:
1270 rcu_read_lock();
6aa7de05 1271 ctx = READ_ONCE(event->ctx);
8c94abbb 1272 if (!refcount_inc_not_zero(&ctx->refcount)) {
f63a8daa
PZ
1273 rcu_read_unlock();
1274 goto again;
1275 }
1276 rcu_read_unlock();
1277
a83fe28e 1278 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1279 if (event->ctx != ctx) {
1280 mutex_unlock(&ctx->mutex);
1281 put_ctx(ctx);
1282 goto again;
1283 }
1284
1285 return ctx;
1286}
1287
a83fe28e
PZ
1288static inline struct perf_event_context *
1289perf_event_ctx_lock(struct perf_event *event)
1290{
1291 return perf_event_ctx_lock_nested(event, 0);
1292}
1293
f63a8daa
PZ
1294static void perf_event_ctx_unlock(struct perf_event *event,
1295 struct perf_event_context *ctx)
1296{
1297 mutex_unlock(&ctx->mutex);
1298 put_ctx(ctx);
1299}
1300
211de6eb
PZ
1301/*
1302 * This must be done under the ctx->lock, such as to serialize against
1303 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1304 * calling scheduler related locks and ctx->lock nests inside those.
1305 */
1306static __must_check struct perf_event_context *
1307unclone_ctx(struct perf_event_context *ctx)
71a851b4 1308{
211de6eb
PZ
1309 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1310
1311 lockdep_assert_held(&ctx->lock);
1312
1313 if (parent_ctx)
71a851b4 1314 ctx->parent_ctx = NULL;
5a3126d4 1315 ctx->generation++;
211de6eb
PZ
1316
1317 return parent_ctx;
71a851b4
PZ
1318}
1319
1d953111
ON
1320static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1321 enum pid_type type)
6844c09d 1322{
1d953111 1323 u32 nr;
6844c09d
ACM
1324 /*
1325 * only top level events have the pid namespace they were created in
1326 */
1327 if (event->parent)
1328 event = event->parent;
1329
1d953111
ON
1330 nr = __task_pid_nr_ns(p, type, event->ns);
1331 /* avoid -1 if it is idle thread or runs in another ns */
1332 if (!nr && !pid_alive(p))
1333 nr = -1;
1334 return nr;
6844c09d
ACM
1335}
1336
1d953111 1337static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
6844c09d 1338{
6883f81a 1339 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1d953111 1340}
6844c09d 1341
1d953111
ON
1342static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1343{
1344 return perf_event_pid_type(event, p, PIDTYPE_PID);
6844c09d
ACM
1345}
1346
7f453c24 1347/*
cdd6c482 1348 * If we inherit events we want to return the parent event id
7f453c24
PZ
1349 * to userspace.
1350 */
cdd6c482 1351static u64 primary_event_id(struct perf_event *event)
7f453c24 1352{
cdd6c482 1353 u64 id = event->id;
7f453c24 1354
cdd6c482
IM
1355 if (event->parent)
1356 id = event->parent->id;
7f453c24
PZ
1357
1358 return id;
1359}
1360
25346b93 1361/*
cdd6c482 1362 * Get the perf_event_context for a task and lock it.
63b6da39 1363 *
25346b93
PM
1364 * This has to cope with with the fact that until it is locked,
1365 * the context could get moved to another task.
1366 */
cdd6c482 1367static struct perf_event_context *
8dc85d54 1368perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1369{
cdd6c482 1370 struct perf_event_context *ctx;
25346b93 1371
9ed6060d 1372retry:
058ebd0e
PZ
1373 /*
1374 * One of the few rules of preemptible RCU is that one cannot do
1375 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1376 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1377 * rcu_read_unlock_special().
1378 *
1379 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1380 * side critical section has interrupts disabled.
058ebd0e 1381 */
2fd59077 1382 local_irq_save(*flags);
058ebd0e 1383 rcu_read_lock();
8dc85d54 1384 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1385 if (ctx) {
1386 /*
1387 * If this context is a clone of another, it might
1388 * get swapped for another underneath us by
cdd6c482 1389 * perf_event_task_sched_out, though the
25346b93
PM
1390 * rcu_read_lock() protects us from any context
1391 * getting freed. Lock the context and check if it
1392 * got swapped before we could get the lock, and retry
1393 * if so. If we locked the right context, then it
1394 * can't get swapped on us any more.
1395 */
2fd59077 1396 raw_spin_lock(&ctx->lock);
8dc85d54 1397 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1398 raw_spin_unlock(&ctx->lock);
058ebd0e 1399 rcu_read_unlock();
2fd59077 1400 local_irq_restore(*flags);
25346b93
PM
1401 goto retry;
1402 }
b49a9e7e 1403
63b6da39 1404 if (ctx->task == TASK_TOMBSTONE ||
8c94abbb 1405 !refcount_inc_not_zero(&ctx->refcount)) {
2fd59077 1406 raw_spin_unlock(&ctx->lock);
b49a9e7e 1407 ctx = NULL;
828b6f0e
PZ
1408 } else {
1409 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1410 }
25346b93
PM
1411 }
1412 rcu_read_unlock();
2fd59077
PM
1413 if (!ctx)
1414 local_irq_restore(*flags);
25346b93
PM
1415 return ctx;
1416}
1417
1418/*
1419 * Get the context for a task and increment its pin_count so it
1420 * can't get swapped to another task. This also increments its
1421 * reference count so that the context can't get freed.
1422 */
8dc85d54
PZ
1423static struct perf_event_context *
1424perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1425{
cdd6c482 1426 struct perf_event_context *ctx;
25346b93
PM
1427 unsigned long flags;
1428
8dc85d54 1429 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1430 if (ctx) {
1431 ++ctx->pin_count;
e625cce1 1432 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1433 }
1434 return ctx;
1435}
1436
cdd6c482 1437static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1438{
1439 unsigned long flags;
1440
e625cce1 1441 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1442 --ctx->pin_count;
e625cce1 1443 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1444}
1445
f67218c3
PZ
1446/*
1447 * Update the record of the current time in a context.
1448 */
1449static void update_context_time(struct perf_event_context *ctx)
1450{
1451 u64 now = perf_clock();
1452
1453 ctx->time += now - ctx->timestamp;
1454 ctx->timestamp = now;
1455}
1456
4158755d
SE
1457static u64 perf_event_time(struct perf_event *event)
1458{
1459 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1460
1461 if (is_cgroup_event(event))
1462 return perf_cgroup_event_time(event);
1463
4158755d
SE
1464 return ctx ? ctx->time : 0;
1465}
1466
487f05e1
AS
1467static enum event_type_t get_event_type(struct perf_event *event)
1468{
1469 struct perf_event_context *ctx = event->ctx;
1470 enum event_type_t event_type;
1471
1472 lockdep_assert_held(&ctx->lock);
1473
3bda69c1
AS
1474 /*
1475 * It's 'group type', really, because if our group leader is
1476 * pinned, so are we.
1477 */
1478 if (event->group_leader != event)
1479 event = event->group_leader;
1480
487f05e1
AS
1481 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1482 if (!ctx->task)
1483 event_type |= EVENT_CPU;
1484
1485 return event_type;
1486}
1487
8e1a2031 1488/*
161c85fa 1489 * Helper function to initialize event group nodes.
8e1a2031 1490 */
161c85fa 1491static void init_event_group(struct perf_event *event)
8e1a2031
AB
1492{
1493 RB_CLEAR_NODE(&event->group_node);
1494 event->group_index = 0;
1495}
1496
1497/*
1498 * Extract pinned or flexible groups from the context
161c85fa 1499 * based on event attrs bits.
8e1a2031
AB
1500 */
1501static struct perf_event_groups *
1502get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
889ff015
FW
1503{
1504 if (event->attr.pinned)
1505 return &ctx->pinned_groups;
1506 else
1507 return &ctx->flexible_groups;
1508}
1509
8e1a2031 1510/*
161c85fa 1511 * Helper function to initializes perf_event_group trees.
8e1a2031 1512 */
161c85fa 1513static void perf_event_groups_init(struct perf_event_groups *groups)
8e1a2031
AB
1514{
1515 groups->tree = RB_ROOT;
1516 groups->index = 0;
1517}
1518
1519/*
1520 * Compare function for event groups;
161c85fa
PZ
1521 *
1522 * Implements complex key that first sorts by CPU and then by virtual index
1523 * which provides ordering when rotating groups for the same CPU.
8e1a2031 1524 */
161c85fa
PZ
1525static bool
1526perf_event_groups_less(struct perf_event *left, struct perf_event *right)
8e1a2031 1527{
161c85fa
PZ
1528 if (left->cpu < right->cpu)
1529 return true;
1530 if (left->cpu > right->cpu)
1531 return false;
1532
1533 if (left->group_index < right->group_index)
1534 return true;
1535 if (left->group_index > right->group_index)
1536 return false;
1537
1538 return false;
8e1a2031
AB
1539}
1540
1541/*
161c85fa
PZ
1542 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1543 * key (see perf_event_groups_less). This places it last inside the CPU
1544 * subtree.
8e1a2031
AB
1545 */
1546static void
1547perf_event_groups_insert(struct perf_event_groups *groups,
161c85fa 1548 struct perf_event *event)
8e1a2031
AB
1549{
1550 struct perf_event *node_event;
1551 struct rb_node *parent;
1552 struct rb_node **node;
1553
1554 event->group_index = ++groups->index;
1555
1556 node = &groups->tree.rb_node;
1557 parent = *node;
1558
1559 while (*node) {
1560 parent = *node;
161c85fa 1561 node_event = container_of(*node, struct perf_event, group_node);
8e1a2031
AB
1562
1563 if (perf_event_groups_less(event, node_event))
1564 node = &parent->rb_left;
1565 else
1566 node = &parent->rb_right;
1567 }
1568
1569 rb_link_node(&event->group_node, parent, node);
1570 rb_insert_color(&event->group_node, &groups->tree);
1571}
1572
1573/*
161c85fa 1574 * Helper function to insert event into the pinned or flexible groups.
8e1a2031
AB
1575 */
1576static void
1577add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1578{
1579 struct perf_event_groups *groups;
1580
1581 groups = get_event_groups(event, ctx);
1582 perf_event_groups_insert(groups, event);
1583}
1584
1585/*
161c85fa 1586 * Delete a group from a tree.
8e1a2031
AB
1587 */
1588static void
1589perf_event_groups_delete(struct perf_event_groups *groups,
161c85fa 1590 struct perf_event *event)
8e1a2031 1591{
161c85fa
PZ
1592 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1593 RB_EMPTY_ROOT(&groups->tree));
8e1a2031 1594
161c85fa 1595 rb_erase(&event->group_node, &groups->tree);
8e1a2031
AB
1596 init_event_group(event);
1597}
1598
1599/*
161c85fa 1600 * Helper function to delete event from its groups.
8e1a2031
AB
1601 */
1602static void
1603del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1604{
1605 struct perf_event_groups *groups;
1606
1607 groups = get_event_groups(event, ctx);
1608 perf_event_groups_delete(groups, event);
1609}
1610
1611/*
161c85fa 1612 * Get the leftmost event in the @cpu subtree.
8e1a2031
AB
1613 */
1614static struct perf_event *
1615perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1616{
1617 struct perf_event *node_event = NULL, *match = NULL;
1618 struct rb_node *node = groups->tree.rb_node;
1619
1620 while (node) {
161c85fa 1621 node_event = container_of(node, struct perf_event, group_node);
8e1a2031
AB
1622
1623 if (cpu < node_event->cpu) {
1624 node = node->rb_left;
1625 } else if (cpu > node_event->cpu) {
1626 node = node->rb_right;
1627 } else {
1628 match = node_event;
1629 node = node->rb_left;
1630 }
1631 }
1632
1633 return match;
1634}
1635
1cac7b1a
PZ
1636/*
1637 * Like rb_entry_next_safe() for the @cpu subtree.
1638 */
1639static struct perf_event *
1640perf_event_groups_next(struct perf_event *event)
1641{
1642 struct perf_event *next;
1643
1644 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1645 if (next && next->cpu == event->cpu)
1646 return next;
1647
1648 return NULL;
1649}
1650
8e1a2031 1651/*
161c85fa 1652 * Iterate through the whole groups tree.
8e1a2031 1653 */
6e6804d2
PZ
1654#define perf_event_groups_for_each(event, groups) \
1655 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1656 typeof(*event), group_node); event; \
1657 event = rb_entry_safe(rb_next(&event->group_node), \
1658 typeof(*event), group_node))
8e1a2031 1659
fccc714b 1660/*
788faab7 1661 * Add an event from the lists for its context.
fccc714b
PZ
1662 * Must be called with ctx->mutex and ctx->lock held.
1663 */
04289bb9 1664static void
cdd6c482 1665list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1666{
c994d613
PZ
1667 lockdep_assert_held(&ctx->lock);
1668
8a49542c
PZ
1669 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1670 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9 1671
0d3d73aa
PZ
1672 event->tstamp = perf_event_time(event);
1673
04289bb9 1674 /*
8a49542c
PZ
1675 * If we're a stand alone event or group leader, we go to the context
1676 * list, group events are kept attached to the group so that
1677 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1678 */
8a49542c 1679 if (event->group_leader == event) {
4ff6a8de 1680 event->group_caps = event->event_caps;
8e1a2031 1681 add_event_to_groups(event, ctx);
5c148194 1682 }
592903cd 1683
db4a8356 1684 list_update_cgroup_event(event, ctx, true);
e5d1367f 1685
cdd6c482
IM
1686 list_add_rcu(&event->event_entry, &ctx->event_list);
1687 ctx->nr_events++;
1688 if (event->attr.inherit_stat)
bfbd3381 1689 ctx->nr_stat++;
5a3126d4
PZ
1690
1691 ctx->generation++;
04289bb9
IM
1692}
1693
0231bb53
JO
1694/*
1695 * Initialize event state based on the perf_event_attr::disabled.
1696 */
1697static inline void perf_event__state_init(struct perf_event *event)
1698{
1699 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1700 PERF_EVENT_STATE_INACTIVE;
1701}
1702
a723968c 1703static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1704{
1705 int entry = sizeof(u64); /* value */
1706 int size = 0;
1707 int nr = 1;
1708
1709 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1710 size += sizeof(u64);
1711
1712 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1713 size += sizeof(u64);
1714
1715 if (event->attr.read_format & PERF_FORMAT_ID)
1716 entry += sizeof(u64);
1717
1718 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1719 nr += nr_siblings;
c320c7b7
ACM
1720 size += sizeof(u64);
1721 }
1722
1723 size += entry * nr;
1724 event->read_size = size;
1725}
1726
a723968c 1727static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1728{
1729 struct perf_sample_data *data;
c320c7b7
ACM
1730 u16 size = 0;
1731
c320c7b7
ACM
1732 if (sample_type & PERF_SAMPLE_IP)
1733 size += sizeof(data->ip);
1734
6844c09d
ACM
1735 if (sample_type & PERF_SAMPLE_ADDR)
1736 size += sizeof(data->addr);
1737
1738 if (sample_type & PERF_SAMPLE_PERIOD)
1739 size += sizeof(data->period);
1740
c3feedf2
AK
1741 if (sample_type & PERF_SAMPLE_WEIGHT)
1742 size += sizeof(data->weight);
1743
6844c09d
ACM
1744 if (sample_type & PERF_SAMPLE_READ)
1745 size += event->read_size;
1746
d6be9ad6
SE
1747 if (sample_type & PERF_SAMPLE_DATA_SRC)
1748 size += sizeof(data->data_src.val);
1749
fdfbbd07
AK
1750 if (sample_type & PERF_SAMPLE_TRANSACTION)
1751 size += sizeof(data->txn);
1752
fc7ce9c7
KL
1753 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1754 size += sizeof(data->phys_addr);
1755
6844c09d
ACM
1756 event->header_size = size;
1757}
1758
a723968c
PZ
1759/*
1760 * Called at perf_event creation and when events are attached/detached from a
1761 * group.
1762 */
1763static void perf_event__header_size(struct perf_event *event)
1764{
1765 __perf_event_read_size(event,
1766 event->group_leader->nr_siblings);
1767 __perf_event_header_size(event, event->attr.sample_type);
1768}
1769
6844c09d
ACM
1770static void perf_event__id_header_size(struct perf_event *event)
1771{
1772 struct perf_sample_data *data;
1773 u64 sample_type = event->attr.sample_type;
1774 u16 size = 0;
1775
c320c7b7
ACM
1776 if (sample_type & PERF_SAMPLE_TID)
1777 size += sizeof(data->tid_entry);
1778
1779 if (sample_type & PERF_SAMPLE_TIME)
1780 size += sizeof(data->time);
1781
ff3d527c
AH
1782 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1783 size += sizeof(data->id);
1784
c320c7b7
ACM
1785 if (sample_type & PERF_SAMPLE_ID)
1786 size += sizeof(data->id);
1787
1788 if (sample_type & PERF_SAMPLE_STREAM_ID)
1789 size += sizeof(data->stream_id);
1790
1791 if (sample_type & PERF_SAMPLE_CPU)
1792 size += sizeof(data->cpu_entry);
1793
6844c09d 1794 event->id_header_size = size;
c320c7b7
ACM
1795}
1796
a723968c
PZ
1797static bool perf_event_validate_size(struct perf_event *event)
1798{
1799 /*
1800 * The values computed here will be over-written when we actually
1801 * attach the event.
1802 */
1803 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1804 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1805 perf_event__id_header_size(event);
1806
1807 /*
1808 * Sum the lot; should not exceed the 64k limit we have on records.
1809 * Conservative limit to allow for callchains and other variable fields.
1810 */
1811 if (event->read_size + event->header_size +
1812 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1813 return false;
1814
1815 return true;
1816}
1817
8a49542c
PZ
1818static void perf_group_attach(struct perf_event *event)
1819{
c320c7b7 1820 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1821
a76a82a3
PZ
1822 lockdep_assert_held(&event->ctx->lock);
1823
74c3337c
PZ
1824 /*
1825 * We can have double attach due to group movement in perf_event_open.
1826 */
1827 if (event->attach_state & PERF_ATTACH_GROUP)
1828 return;
1829
8a49542c
PZ
1830 event->attach_state |= PERF_ATTACH_GROUP;
1831
1832 if (group_leader == event)
1833 return;
1834
652884fe
PZ
1835 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1836
4ff6a8de 1837 group_leader->group_caps &= event->event_caps;
8a49542c 1838
8343aae6 1839 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
8a49542c 1840 group_leader->nr_siblings++;
c320c7b7
ACM
1841
1842 perf_event__header_size(group_leader);
1843
edb39592 1844 for_each_sibling_event(pos, group_leader)
c320c7b7 1845 perf_event__header_size(pos);
8a49542c
PZ
1846}
1847
a63eaf34 1848/*
788faab7 1849 * Remove an event from the lists for its context.
fccc714b 1850 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1851 */
04289bb9 1852static void
cdd6c482 1853list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1854{
652884fe
PZ
1855 WARN_ON_ONCE(event->ctx != ctx);
1856 lockdep_assert_held(&ctx->lock);
1857
8a49542c
PZ
1858 /*
1859 * We can have double detach due to exit/hot-unplug + close.
1860 */
1861 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1862 return;
8a49542c
PZ
1863
1864 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1865
db4a8356 1866 list_update_cgroup_event(event, ctx, false);
e5d1367f 1867
cdd6c482
IM
1868 ctx->nr_events--;
1869 if (event->attr.inherit_stat)
bfbd3381 1870 ctx->nr_stat--;
8bc20959 1871
cdd6c482 1872 list_del_rcu(&event->event_entry);
04289bb9 1873
8a49542c 1874 if (event->group_leader == event)
8e1a2031 1875 del_event_from_groups(event, ctx);
5c148194 1876
b2e74a26
SE
1877 /*
1878 * If event was in error state, then keep it
1879 * that way, otherwise bogus counts will be
1880 * returned on read(). The only way to get out
1881 * of error state is by explicit re-enabling
1882 * of the event
1883 */
1884 if (event->state > PERF_EVENT_STATE_OFF)
0d3d73aa 1885 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
5a3126d4
PZ
1886
1887 ctx->generation++;
050735b0
PZ
1888}
1889
ab43762e
AS
1890static int
1891perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
1892{
1893 if (!has_aux(aux_event))
1894 return 0;
1895
1896 if (!event->pmu->aux_output_match)
1897 return 0;
1898
1899 return event->pmu->aux_output_match(aux_event);
1900}
1901
1902static void put_event(struct perf_event *event);
1903static void event_sched_out(struct perf_event *event,
1904 struct perf_cpu_context *cpuctx,
1905 struct perf_event_context *ctx);
1906
1907static void perf_put_aux_event(struct perf_event *event)
1908{
1909 struct perf_event_context *ctx = event->ctx;
1910 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1911 struct perf_event *iter;
1912
1913 /*
1914 * If event uses aux_event tear down the link
1915 */
1916 if (event->aux_event) {
1917 iter = event->aux_event;
1918 event->aux_event = NULL;
1919 put_event(iter);
1920 return;
1921 }
1922
1923 /*
1924 * If the event is an aux_event, tear down all links to
1925 * it from other events.
1926 */
1927 for_each_sibling_event(iter, event->group_leader) {
1928 if (iter->aux_event != event)
1929 continue;
1930
1931 iter->aux_event = NULL;
1932 put_event(event);
1933
1934 /*
1935 * If it's ACTIVE, schedule it out and put it into ERROR
1936 * state so that we don't try to schedule it again. Note
1937 * that perf_event_enable() will clear the ERROR status.
1938 */
1939 event_sched_out(iter, cpuctx, ctx);
1940 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
1941 }
1942}
1943
1944static int perf_get_aux_event(struct perf_event *event,
1945 struct perf_event *group_leader)
1946{
1947 /*
1948 * Our group leader must be an aux event if we want to be
1949 * an aux_output. This way, the aux event will precede its
1950 * aux_output events in the group, and therefore will always
1951 * schedule first.
1952 */
1953 if (!group_leader)
1954 return 0;
1955
1956 if (!perf_aux_output_match(event, group_leader))
1957 return 0;
1958
1959 if (!atomic_long_inc_not_zero(&group_leader->refcount))
1960 return 0;
1961
1962 /*
1963 * Link aux_outputs to their aux event; this is undone in
1964 * perf_group_detach() by perf_put_aux_event(). When the
1965 * group in torn down, the aux_output events loose their
1966 * link to the aux_event and can't schedule any more.
1967 */
1968 event->aux_event = group_leader;
1969
1970 return 1;
1971}
1972
8a49542c 1973static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1974{
1975 struct perf_event *sibling, *tmp;
6668128a 1976 struct perf_event_context *ctx = event->ctx;
8a49542c 1977
6668128a 1978 lockdep_assert_held(&ctx->lock);
a76a82a3 1979
8a49542c
PZ
1980 /*
1981 * We can have double detach due to exit/hot-unplug + close.
1982 */
1983 if (!(event->attach_state & PERF_ATTACH_GROUP))
1984 return;
1985
1986 event->attach_state &= ~PERF_ATTACH_GROUP;
1987
ab43762e
AS
1988 perf_put_aux_event(event);
1989
8a49542c
PZ
1990 /*
1991 * If this is a sibling, remove it from its group.
1992 */
1993 if (event->group_leader != event) {
8343aae6 1994 list_del_init(&event->sibling_list);
8a49542c 1995 event->group_leader->nr_siblings--;
c320c7b7 1996 goto out;
8a49542c
PZ
1997 }
1998
04289bb9 1999 /*
cdd6c482
IM
2000 * If this was a group event with sibling events then
2001 * upgrade the siblings to singleton events by adding them
8a49542c 2002 * to whatever list we are on.
04289bb9 2003 */
8343aae6 2004 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
8e1a2031 2005
04289bb9 2006 sibling->group_leader = sibling;
24868367 2007 list_del_init(&sibling->sibling_list);
d6f962b5
FW
2008
2009 /* Inherit group flags from the previous leader */
4ff6a8de 2010 sibling->group_caps = event->group_caps;
652884fe 2011
8e1a2031 2012 if (!RB_EMPTY_NODE(&event->group_node)) {
8e1a2031 2013 add_event_to_groups(sibling, event->ctx);
6668128a
PZ
2014
2015 if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
2016 struct list_head *list = sibling->attr.pinned ?
2017 &ctx->pinned_active : &ctx->flexible_active;
2018
2019 list_add_tail(&sibling->active_list, list);
2020 }
8e1a2031
AB
2021 }
2022
652884fe 2023 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 2024 }
c320c7b7
ACM
2025
2026out:
2027 perf_event__header_size(event->group_leader);
2028
edb39592 2029 for_each_sibling_event(tmp, event->group_leader)
c320c7b7 2030 perf_event__header_size(tmp);
04289bb9
IM
2031}
2032
fadfe7be
JO
2033static bool is_orphaned_event(struct perf_event *event)
2034{
a69b0ca4 2035 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
2036}
2037
2c81a647 2038static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
2039{
2040 struct pmu *pmu = event->pmu;
2041 return pmu->filter_match ? pmu->filter_match(event) : 1;
2042}
2043
2c81a647
MR
2044/*
2045 * Check whether we should attempt to schedule an event group based on
2046 * PMU-specific filtering. An event group can consist of HW and SW events,
2047 * potentially with a SW leader, so we must check all the filters, to
2048 * determine whether a group is schedulable:
2049 */
2050static inline int pmu_filter_match(struct perf_event *event)
2051{
edb39592 2052 struct perf_event *sibling;
2c81a647
MR
2053
2054 if (!__pmu_filter_match(event))
2055 return 0;
2056
edb39592
PZ
2057 for_each_sibling_event(sibling, event) {
2058 if (!__pmu_filter_match(sibling))
2c81a647
MR
2059 return 0;
2060 }
2061
2062 return 1;
2063}
2064
fa66f07a
SE
2065static inline int
2066event_filter_match(struct perf_event *event)
2067{
0b8f1e2e
PZ
2068 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2069 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
2070}
2071
9ffcfa6f
SE
2072static void
2073event_sched_out(struct perf_event *event,
3b6f9e5c 2074 struct perf_cpu_context *cpuctx,
cdd6c482 2075 struct perf_event_context *ctx)
3b6f9e5c 2076{
0d3d73aa 2077 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
652884fe
PZ
2078
2079 WARN_ON_ONCE(event->ctx != ctx);
2080 lockdep_assert_held(&ctx->lock);
2081
cdd6c482 2082 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 2083 return;
3b6f9e5c 2084
6668128a
PZ
2085 /*
2086 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2087 * we can schedule events _OUT_ individually through things like
2088 * __perf_remove_from_context().
2089 */
2090 list_del_init(&event->active_list);
2091
44377277
AS
2092 perf_pmu_disable(event->pmu);
2093
28a967c3
PZ
2094 event->pmu->del(event, 0);
2095 event->oncpu = -1;
0d3d73aa 2096
1d54ad94
PZ
2097 if (READ_ONCE(event->pending_disable) >= 0) {
2098 WRITE_ONCE(event->pending_disable, -1);
0d3d73aa 2099 state = PERF_EVENT_STATE_OFF;
970892a9 2100 }
0d3d73aa 2101 perf_event_set_state(event, state);
3b6f9e5c 2102
cdd6c482 2103 if (!is_software_event(event))
3b6f9e5c 2104 cpuctx->active_oncpu--;
2fde4f94
MR
2105 if (!--ctx->nr_active)
2106 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
2107 if (event->attr.freq && event->attr.sample_freq)
2108 ctx->nr_freq--;
cdd6c482 2109 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 2110 cpuctx->exclusive = 0;
44377277
AS
2111
2112 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
2113}
2114
d859e29f 2115static void
cdd6c482 2116group_sched_out(struct perf_event *group_event,
d859e29f 2117 struct perf_cpu_context *cpuctx,
cdd6c482 2118 struct perf_event_context *ctx)
d859e29f 2119{
cdd6c482 2120 struct perf_event *event;
0d3d73aa
PZ
2121
2122 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2123 return;
d859e29f 2124
3f005e7d
MR
2125 perf_pmu_disable(ctx->pmu);
2126
cdd6c482 2127 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
2128
2129 /*
2130 * Schedule out siblings (if any):
2131 */
edb39592 2132 for_each_sibling_event(event, group_event)
cdd6c482 2133 event_sched_out(event, cpuctx, ctx);
d859e29f 2134
3f005e7d
MR
2135 perf_pmu_enable(ctx->pmu);
2136
0d3d73aa 2137 if (group_event->attr.exclusive)
d859e29f
PM
2138 cpuctx->exclusive = 0;
2139}
2140
45a0e07a 2141#define DETACH_GROUP 0x01UL
0017960f 2142
0793a61d 2143/*
cdd6c482 2144 * Cross CPU call to remove a performance event
0793a61d 2145 *
cdd6c482 2146 * We disable the event on the hardware level first. After that we
0793a61d
TG
2147 * remove it from the context list.
2148 */
fae3fde6
PZ
2149static void
2150__perf_remove_from_context(struct perf_event *event,
2151 struct perf_cpu_context *cpuctx,
2152 struct perf_event_context *ctx,
2153 void *info)
0793a61d 2154{
45a0e07a 2155 unsigned long flags = (unsigned long)info;
0793a61d 2156
3c5c8711
PZ
2157 if (ctx->is_active & EVENT_TIME) {
2158 update_context_time(ctx);
2159 update_cgrp_time_from_cpuctx(cpuctx);
2160 }
2161
cdd6c482 2162 event_sched_out(event, cpuctx, ctx);
45a0e07a 2163 if (flags & DETACH_GROUP)
46ce0fe9 2164 perf_group_detach(event);
cdd6c482 2165 list_del_event(event, ctx);
39a43640
PZ
2166
2167 if (!ctx->nr_events && ctx->is_active) {
64ce3126 2168 ctx->is_active = 0;
39a43640
PZ
2169 if (ctx->task) {
2170 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2171 cpuctx->task_ctx = NULL;
2172 }
64ce3126 2173 }
0793a61d
TG
2174}
2175
0793a61d 2176/*
cdd6c482 2177 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 2178 *
cdd6c482
IM
2179 * If event->ctx is a cloned context, callers must make sure that
2180 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
2181 * remains valid. This is OK when called from perf_release since
2182 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 2183 * When called from perf_event_exit_task, it's OK because the
c93f7669 2184 * context has been detached from its task.
0793a61d 2185 */
45a0e07a 2186static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 2187{
a76a82a3
PZ
2188 struct perf_event_context *ctx = event->ctx;
2189
2190 lockdep_assert_held(&ctx->mutex);
0793a61d 2191
45a0e07a 2192 event_function_call(event, __perf_remove_from_context, (void *)flags);
a76a82a3
PZ
2193
2194 /*
2195 * The above event_function_call() can NO-OP when it hits
2196 * TASK_TOMBSTONE. In that case we must already have been detached
2197 * from the context (by perf_event_exit_event()) but the grouping
2198 * might still be in-tact.
2199 */
2200 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2201 if ((flags & DETACH_GROUP) &&
2202 (event->attach_state & PERF_ATTACH_GROUP)) {
2203 /*
2204 * Since in that case we cannot possibly be scheduled, simply
2205 * detach now.
2206 */
2207 raw_spin_lock_irq(&ctx->lock);
2208 perf_group_detach(event);
2209 raw_spin_unlock_irq(&ctx->lock);
2210 }
0793a61d
TG
2211}
2212
d859e29f 2213/*
cdd6c482 2214 * Cross CPU call to disable a performance event
d859e29f 2215 */
fae3fde6
PZ
2216static void __perf_event_disable(struct perf_event *event,
2217 struct perf_cpu_context *cpuctx,
2218 struct perf_event_context *ctx,
2219 void *info)
7b648018 2220{
fae3fde6
PZ
2221 if (event->state < PERF_EVENT_STATE_INACTIVE)
2222 return;
7b648018 2223
3c5c8711
PZ
2224 if (ctx->is_active & EVENT_TIME) {
2225 update_context_time(ctx);
2226 update_cgrp_time_from_event(event);
2227 }
2228
fae3fde6
PZ
2229 if (event == event->group_leader)
2230 group_sched_out(event, cpuctx, ctx);
2231 else
2232 event_sched_out(event, cpuctx, ctx);
0d3d73aa
PZ
2233
2234 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
7b648018
PZ
2235}
2236
d859e29f 2237/*
788faab7 2238 * Disable an event.
c93f7669 2239 *
cdd6c482
IM
2240 * If event->ctx is a cloned context, callers must make sure that
2241 * every task struct that event->ctx->task could possibly point to
9f014e3a 2242 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2243 * perf_event_for_each_child or perf_event_for_each because they
2244 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
2245 * goes to exit will block in perf_event_exit_event().
2246 *
cdd6c482 2247 * When called from perf_pending_event it's OK because event->ctx
c93f7669 2248 * is the current context on this CPU and preemption is disabled,
cdd6c482 2249 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 2250 */
f63a8daa 2251static void _perf_event_disable(struct perf_event *event)
d859e29f 2252{
cdd6c482 2253 struct perf_event_context *ctx = event->ctx;
d859e29f 2254
e625cce1 2255 raw_spin_lock_irq(&ctx->lock);
7b648018 2256 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 2257 raw_spin_unlock_irq(&ctx->lock);
7b648018 2258 return;
53cfbf59 2259 }
e625cce1 2260 raw_spin_unlock_irq(&ctx->lock);
7b648018 2261
fae3fde6
PZ
2262 event_function_call(event, __perf_event_disable, NULL);
2263}
2264
2265void perf_event_disable_local(struct perf_event *event)
2266{
2267 event_function_local(event, __perf_event_disable, NULL);
d859e29f 2268}
f63a8daa
PZ
2269
2270/*
2271 * Strictly speaking kernel users cannot create groups and therefore this
2272 * interface does not need the perf_event_ctx_lock() magic.
2273 */
2274void perf_event_disable(struct perf_event *event)
2275{
2276 struct perf_event_context *ctx;
2277
2278 ctx = perf_event_ctx_lock(event);
2279 _perf_event_disable(event);
2280 perf_event_ctx_unlock(event, ctx);
2281}
dcfce4a0 2282EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 2283
5aab90ce
JO
2284void perf_event_disable_inatomic(struct perf_event *event)
2285{
1d54ad94
PZ
2286 WRITE_ONCE(event->pending_disable, smp_processor_id());
2287 /* can fail, see perf_pending_event_disable() */
5aab90ce
JO
2288 irq_work_queue(&event->pending);
2289}
2290
e5d1367f 2291static void perf_set_shadow_time(struct perf_event *event,
0d3d73aa 2292 struct perf_event_context *ctx)
e5d1367f
SE
2293{
2294 /*
2295 * use the correct time source for the time snapshot
2296 *
2297 * We could get by without this by leveraging the
2298 * fact that to get to this function, the caller
2299 * has most likely already called update_context_time()
2300 * and update_cgrp_time_xx() and thus both timestamp
2301 * are identical (or very close). Given that tstamp is,
2302 * already adjusted for cgroup, we could say that:
2303 * tstamp - ctx->timestamp
2304 * is equivalent to
2305 * tstamp - cgrp->timestamp.
2306 *
2307 * Then, in perf_output_read(), the calculation would
2308 * work with no changes because:
2309 * - event is guaranteed scheduled in
2310 * - no scheduled out in between
2311 * - thus the timestamp would be the same
2312 *
2313 * But this is a bit hairy.
2314 *
2315 * So instead, we have an explicit cgroup call to remain
2316 * within the time time source all along. We believe it
2317 * is cleaner and simpler to understand.
2318 */
2319 if (is_cgroup_event(event))
0d3d73aa 2320 perf_cgroup_set_shadow_time(event, event->tstamp);
e5d1367f 2321 else
0d3d73aa 2322 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
e5d1367f
SE
2323}
2324
4fe757dd
PZ
2325#define MAX_INTERRUPTS (~0ULL)
2326
2327static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2328static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2329
235c7fc7 2330static int
9ffcfa6f 2331event_sched_in(struct perf_event *event,
235c7fc7 2332 struct perf_cpu_context *cpuctx,
6e37738a 2333 struct perf_event_context *ctx)
235c7fc7 2334{
44377277 2335 int ret = 0;
4158755d 2336
63342411
PZ
2337 lockdep_assert_held(&ctx->lock);
2338
cdd6c482 2339 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2340 return 0;
2341
95ff4ca2
AS
2342 WRITE_ONCE(event->oncpu, smp_processor_id());
2343 /*
0c1cbc18
PZ
2344 * Order event::oncpu write to happen before the ACTIVE state is
2345 * visible. This allows perf_event_{stop,read}() to observe the correct
2346 * ->oncpu if it sees ACTIVE.
95ff4ca2
AS
2347 */
2348 smp_wmb();
0d3d73aa 2349 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2350
2351 /*
2352 * Unthrottle events, since we scheduled we might have missed several
2353 * ticks already, also for a heavily scheduling task there is little
2354 * guarantee it'll get a tick in a timely manner.
2355 */
2356 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2357 perf_log_throttle(event, 1);
2358 event->hw.interrupts = 0;
2359 }
2360
44377277
AS
2361 perf_pmu_disable(event->pmu);
2362
0d3d73aa 2363 perf_set_shadow_time(event, ctx);
72f669c0 2364
ec0d7729
AS
2365 perf_log_itrace_start(event);
2366
a4eaf7f1 2367 if (event->pmu->add(event, PERF_EF_START)) {
0d3d73aa 2368 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
cdd6c482 2369 event->oncpu = -1;
44377277
AS
2370 ret = -EAGAIN;
2371 goto out;
235c7fc7
IM
2372 }
2373
cdd6c482 2374 if (!is_software_event(event))
3b6f9e5c 2375 cpuctx->active_oncpu++;
2fde4f94
MR
2376 if (!ctx->nr_active++)
2377 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2378 if (event->attr.freq && event->attr.sample_freq)
2379 ctx->nr_freq++;
235c7fc7 2380
cdd6c482 2381 if (event->attr.exclusive)
3b6f9e5c
PM
2382 cpuctx->exclusive = 1;
2383
44377277
AS
2384out:
2385 perf_pmu_enable(event->pmu);
2386
2387 return ret;
235c7fc7
IM
2388}
2389
6751b71e 2390static int
cdd6c482 2391group_sched_in(struct perf_event *group_event,
6751b71e 2392 struct perf_cpu_context *cpuctx,
6e37738a 2393 struct perf_event_context *ctx)
6751b71e 2394{
6bde9b6c 2395 struct perf_event *event, *partial_group = NULL;
4a234593 2396 struct pmu *pmu = ctx->pmu;
6751b71e 2397
cdd6c482 2398 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2399 return 0;
2400
fbbe0701 2401 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2402
9ffcfa6f 2403 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2404 pmu->cancel_txn(pmu);
272325c4 2405 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2406 return -EAGAIN;
90151c35 2407 }
6751b71e
PM
2408
2409 /*
2410 * Schedule in siblings as one group (if any):
2411 */
edb39592 2412 for_each_sibling_event(event, group_event) {
9ffcfa6f 2413 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2414 partial_group = event;
6751b71e
PM
2415 goto group_error;
2416 }
2417 }
2418
9ffcfa6f 2419 if (!pmu->commit_txn(pmu))
6e85158c 2420 return 0;
9ffcfa6f 2421
6751b71e
PM
2422group_error:
2423 /*
2424 * Groups can be scheduled in as one unit only, so undo any
2425 * partial group before returning:
0d3d73aa 2426 * The events up to the failed event are scheduled out normally.
6751b71e 2427 */
edb39592 2428 for_each_sibling_event(event, group_event) {
cdd6c482 2429 if (event == partial_group)
0d3d73aa 2430 break;
d7842da4 2431
0d3d73aa 2432 event_sched_out(event, cpuctx, ctx);
6751b71e 2433 }
9ffcfa6f 2434 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2435
ad5133b7 2436 pmu->cancel_txn(pmu);
90151c35 2437
272325c4 2438 perf_mux_hrtimer_restart(cpuctx);
9e630205 2439
6751b71e
PM
2440 return -EAGAIN;
2441}
2442
3b6f9e5c 2443/*
cdd6c482 2444 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2445 */
cdd6c482 2446static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2447 struct perf_cpu_context *cpuctx,
2448 int can_add_hw)
2449{
2450 /*
cdd6c482 2451 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2452 */
4ff6a8de 2453 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2454 return 1;
2455 /*
2456 * If an exclusive group is already on, no other hardware
cdd6c482 2457 * events can go on.
3b6f9e5c
PM
2458 */
2459 if (cpuctx->exclusive)
2460 return 0;
2461 /*
2462 * If this group is exclusive and there are already
cdd6c482 2463 * events on the CPU, it can't go on.
3b6f9e5c 2464 */
cdd6c482 2465 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2466 return 0;
2467 /*
2468 * Otherwise, try to add it if all previous groups were able
2469 * to go on.
2470 */
2471 return can_add_hw;
2472}
2473
cdd6c482
IM
2474static void add_event_to_ctx(struct perf_event *event,
2475 struct perf_event_context *ctx)
53cfbf59 2476{
cdd6c482 2477 list_add_event(event, ctx);
8a49542c 2478 perf_group_attach(event);
53cfbf59
PM
2479}
2480
bd2afa49
PZ
2481static void ctx_sched_out(struct perf_event_context *ctx,
2482 struct perf_cpu_context *cpuctx,
2483 enum event_type_t event_type);
2c29ef0f
PZ
2484static void
2485ctx_sched_in(struct perf_event_context *ctx,
2486 struct perf_cpu_context *cpuctx,
2487 enum event_type_t event_type,
2488 struct task_struct *task);
fe4b04fa 2489
bd2afa49 2490static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
487f05e1
AS
2491 struct perf_event_context *ctx,
2492 enum event_type_t event_type)
bd2afa49
PZ
2493{
2494 if (!cpuctx->task_ctx)
2495 return;
2496
2497 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2498 return;
2499
487f05e1 2500 ctx_sched_out(ctx, cpuctx, event_type);
bd2afa49
PZ
2501}
2502
dce5855b
PZ
2503static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2504 struct perf_event_context *ctx,
2505 struct task_struct *task)
2506{
2507 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2508 if (ctx)
2509 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2510 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2511 if (ctx)
2512 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2513}
2514
487f05e1
AS
2515/*
2516 * We want to maintain the following priority of scheduling:
2517 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2518 * - task pinned (EVENT_PINNED)
2519 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2520 * - task flexible (EVENT_FLEXIBLE).
2521 *
2522 * In order to avoid unscheduling and scheduling back in everything every
2523 * time an event is added, only do it for the groups of equal priority and
2524 * below.
2525 *
2526 * This can be called after a batch operation on task events, in which case
2527 * event_type is a bit mask of the types of events involved. For CPU events,
2528 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2529 */
3e349507 2530static void ctx_resched(struct perf_cpu_context *cpuctx,
487f05e1
AS
2531 struct perf_event_context *task_ctx,
2532 enum event_type_t event_type)
0017960f 2533{
bd903afe 2534 enum event_type_t ctx_event_type;
487f05e1
AS
2535 bool cpu_event = !!(event_type & EVENT_CPU);
2536
2537 /*
2538 * If pinned groups are involved, flexible groups also need to be
2539 * scheduled out.
2540 */
2541 if (event_type & EVENT_PINNED)
2542 event_type |= EVENT_FLEXIBLE;
2543
bd903afe
SL
2544 ctx_event_type = event_type & EVENT_ALL;
2545
3e349507
PZ
2546 perf_pmu_disable(cpuctx->ctx.pmu);
2547 if (task_ctx)
487f05e1
AS
2548 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2549
2550 /*
2551 * Decide which cpu ctx groups to schedule out based on the types
2552 * of events that caused rescheduling:
2553 * - EVENT_CPU: schedule out corresponding groups;
2554 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2555 * - otherwise, do nothing more.
2556 */
2557 if (cpu_event)
2558 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2559 else if (ctx_event_type & EVENT_PINNED)
2560 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2561
3e349507
PZ
2562 perf_event_sched_in(cpuctx, task_ctx, current);
2563 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2564}
2565
c68d224e
SE
2566void perf_pmu_resched(struct pmu *pmu)
2567{
2568 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2569 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2570
2571 perf_ctx_lock(cpuctx, task_ctx);
2572 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2573 perf_ctx_unlock(cpuctx, task_ctx);
2574}
2575
0793a61d 2576/*
cdd6c482 2577 * Cross CPU call to install and enable a performance event
682076ae 2578 *
a096309b
PZ
2579 * Very similar to remote_function() + event_function() but cannot assume that
2580 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2581 */
fe4b04fa 2582static int __perf_install_in_context(void *info)
0793a61d 2583{
a096309b
PZ
2584 struct perf_event *event = info;
2585 struct perf_event_context *ctx = event->ctx;
108b02cf 2586 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2587 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2588 bool reprogram = true;
a096309b 2589 int ret = 0;
0793a61d 2590
63b6da39 2591 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2592 if (ctx->task) {
b58f6b0d
PZ
2593 raw_spin_lock(&ctx->lock);
2594 task_ctx = ctx;
a096309b 2595
63cae12b 2596 reprogram = (ctx->task == current);
b58f6b0d 2597
39a43640 2598 /*
63cae12b
PZ
2599 * If the task is running, it must be running on this CPU,
2600 * otherwise we cannot reprogram things.
2601 *
2602 * If its not running, we don't care, ctx->lock will
2603 * serialize against it becoming runnable.
39a43640 2604 */
63cae12b
PZ
2605 if (task_curr(ctx->task) && !reprogram) {
2606 ret = -ESRCH;
2607 goto unlock;
2608 }
a096309b 2609
63cae12b 2610 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2611 } else if (task_ctx) {
2612 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2613 }
b58f6b0d 2614
33801b94 2615#ifdef CONFIG_CGROUP_PERF
2616 if (is_cgroup_event(event)) {
2617 /*
2618 * If the current cgroup doesn't match the event's
2619 * cgroup, we should not try to schedule it.
2620 */
2621 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2622 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2623 event->cgrp->css.cgroup);
2624 }
2625#endif
2626
63cae12b 2627 if (reprogram) {
a096309b
PZ
2628 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2629 add_event_to_ctx(event, ctx);
487f05e1 2630 ctx_resched(cpuctx, task_ctx, get_event_type(event));
a096309b
PZ
2631 } else {
2632 add_event_to_ctx(event, ctx);
2633 }
2634
63b6da39 2635unlock:
2c29ef0f 2636 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2637
a096309b 2638 return ret;
0793a61d
TG
2639}
2640
8a58ddae
AS
2641static bool exclusive_event_installable(struct perf_event *event,
2642 struct perf_event_context *ctx);
2643
0793a61d 2644/*
a096309b
PZ
2645 * Attach a performance event to a context.
2646 *
2647 * Very similar to event_function_call, see comment there.
0793a61d
TG
2648 */
2649static void
cdd6c482
IM
2650perf_install_in_context(struct perf_event_context *ctx,
2651 struct perf_event *event,
0793a61d
TG
2652 int cpu)
2653{
a096309b 2654 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2655
fe4b04fa
PZ
2656 lockdep_assert_held(&ctx->mutex);
2657
8a58ddae
AS
2658 WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2659
0cda4c02
YZ
2660 if (event->cpu != -1)
2661 event->cpu = cpu;
c3f00c70 2662
0b8f1e2e
PZ
2663 /*
2664 * Ensures that if we can observe event->ctx, both the event and ctx
2665 * will be 'complete'. See perf_iterate_sb_cpu().
2666 */
2667 smp_store_release(&event->ctx, ctx);
2668
db0503e4
PZ
2669 /*
2670 * perf_event_attr::disabled events will not run and can be initialized
2671 * without IPI. Except when this is the first event for the context, in
2672 * that case we need the magic of the IPI to set ctx->is_active.
2673 *
2674 * The IOC_ENABLE that is sure to follow the creation of a disabled
2675 * event will issue the IPI and reprogram the hardware.
2676 */
2677 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2678 raw_spin_lock_irq(&ctx->lock);
2679 if (ctx->task == TASK_TOMBSTONE) {
2680 raw_spin_unlock_irq(&ctx->lock);
2681 return;
2682 }
2683 add_event_to_ctx(event, ctx);
2684 raw_spin_unlock_irq(&ctx->lock);
2685 return;
2686 }
2687
a096309b
PZ
2688 if (!task) {
2689 cpu_function_call(cpu, __perf_install_in_context, event);
2690 return;
2691 }
2692
2693 /*
2694 * Should not happen, we validate the ctx is still alive before calling.
2695 */
2696 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2697 return;
2698
39a43640
PZ
2699 /*
2700 * Installing events is tricky because we cannot rely on ctx->is_active
2701 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2702 *
2703 * Instead we use task_curr(), which tells us if the task is running.
2704 * However, since we use task_curr() outside of rq::lock, we can race
2705 * against the actual state. This means the result can be wrong.
2706 *
2707 * If we get a false positive, we retry, this is harmless.
2708 *
2709 * If we get a false negative, things are complicated. If we are after
2710 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2711 * value must be correct. If we're before, it doesn't matter since
2712 * perf_event_context_sched_in() will program the counter.
2713 *
2714 * However, this hinges on the remote context switch having observed
2715 * our task->perf_event_ctxp[] store, such that it will in fact take
2716 * ctx::lock in perf_event_context_sched_in().
2717 *
2718 * We do this by task_function_call(), if the IPI fails to hit the task
2719 * we know any future context switch of task must see the
2720 * perf_event_ctpx[] store.
39a43640 2721 */
63cae12b 2722
63b6da39 2723 /*
63cae12b
PZ
2724 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2725 * task_cpu() load, such that if the IPI then does not find the task
2726 * running, a future context switch of that task must observe the
2727 * store.
63b6da39 2728 */
63cae12b
PZ
2729 smp_mb();
2730again:
2731 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2732 return;
2733
2734 raw_spin_lock_irq(&ctx->lock);
2735 task = ctx->task;
84c4e620 2736 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2737 /*
2738 * Cannot happen because we already checked above (which also
2739 * cannot happen), and we hold ctx->mutex, which serializes us
2740 * against perf_event_exit_task_context().
2741 */
63b6da39
PZ
2742 raw_spin_unlock_irq(&ctx->lock);
2743 return;
2744 }
39a43640 2745 /*
63cae12b
PZ
2746 * If the task is not running, ctx->lock will avoid it becoming so,
2747 * thus we can safely install the event.
39a43640 2748 */
63cae12b
PZ
2749 if (task_curr(task)) {
2750 raw_spin_unlock_irq(&ctx->lock);
2751 goto again;
2752 }
2753 add_event_to_ctx(event, ctx);
2754 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2755}
2756
d859e29f 2757/*
cdd6c482 2758 * Cross CPU call to enable a performance event
d859e29f 2759 */
fae3fde6
PZ
2760static void __perf_event_enable(struct perf_event *event,
2761 struct perf_cpu_context *cpuctx,
2762 struct perf_event_context *ctx,
2763 void *info)
04289bb9 2764{
cdd6c482 2765 struct perf_event *leader = event->group_leader;
fae3fde6 2766 struct perf_event_context *task_ctx;
04289bb9 2767
6e801e01
PZ
2768 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2769 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2770 return;
3cbed429 2771
bd2afa49
PZ
2772 if (ctx->is_active)
2773 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2774
0d3d73aa 2775 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
04289bb9 2776
fae3fde6
PZ
2777 if (!ctx->is_active)
2778 return;
2779
e5d1367f 2780 if (!event_filter_match(event)) {
bd2afa49 2781 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2782 return;
e5d1367f 2783 }
f4c4176f 2784
04289bb9 2785 /*
cdd6c482 2786 * If the event is in a group and isn't the group leader,
d859e29f 2787 * then don't put it on unless the group is on.
04289bb9 2788 */
bd2afa49
PZ
2789 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2790 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2791 return;
bd2afa49 2792 }
fe4b04fa 2793
fae3fde6
PZ
2794 task_ctx = cpuctx->task_ctx;
2795 if (ctx->task)
2796 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2797
487f05e1 2798 ctx_resched(cpuctx, task_ctx, get_event_type(event));
7b648018
PZ
2799}
2800
d859e29f 2801/*
788faab7 2802 * Enable an event.
c93f7669 2803 *
cdd6c482
IM
2804 * If event->ctx is a cloned context, callers must make sure that
2805 * every task struct that event->ctx->task could possibly point to
c93f7669 2806 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2807 * perf_event_for_each_child or perf_event_for_each as described
2808 * for perf_event_disable.
d859e29f 2809 */
f63a8daa 2810static void _perf_event_enable(struct perf_event *event)
d859e29f 2811{
cdd6c482 2812 struct perf_event_context *ctx = event->ctx;
d859e29f 2813
7b648018 2814 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2815 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2816 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2817 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2818 return;
2819 }
2820
d859e29f 2821 /*
cdd6c482 2822 * If the event is in error state, clear that first.
7b648018
PZ
2823 *
2824 * That way, if we see the event in error state below, we know that it
2825 * has gone back into error state, as distinct from the task having
2826 * been scheduled away before the cross-call arrived.
d859e29f 2827 */
cdd6c482
IM
2828 if (event->state == PERF_EVENT_STATE_ERROR)
2829 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2830 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2831
fae3fde6 2832 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2833}
f63a8daa
PZ
2834
2835/*
2836 * See perf_event_disable();
2837 */
2838void perf_event_enable(struct perf_event *event)
2839{
2840 struct perf_event_context *ctx;
2841
2842 ctx = perf_event_ctx_lock(event);
2843 _perf_event_enable(event);
2844 perf_event_ctx_unlock(event, ctx);
2845}
dcfce4a0 2846EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2847
375637bc
AS
2848struct stop_event_data {
2849 struct perf_event *event;
2850 unsigned int restart;
2851};
2852
95ff4ca2
AS
2853static int __perf_event_stop(void *info)
2854{
375637bc
AS
2855 struct stop_event_data *sd = info;
2856 struct perf_event *event = sd->event;
95ff4ca2 2857
375637bc 2858 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2859 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2860 return 0;
2861
2862 /* matches smp_wmb() in event_sched_in() */
2863 smp_rmb();
2864
2865 /*
2866 * There is a window with interrupts enabled before we get here,
2867 * so we need to check again lest we try to stop another CPU's event.
2868 */
2869 if (READ_ONCE(event->oncpu) != smp_processor_id())
2870 return -EAGAIN;
2871
2872 event->pmu->stop(event, PERF_EF_UPDATE);
2873
375637bc
AS
2874 /*
2875 * May race with the actual stop (through perf_pmu_output_stop()),
2876 * but it is only used for events with AUX ring buffer, and such
2877 * events will refuse to restart because of rb::aux_mmap_count==0,
2878 * see comments in perf_aux_output_begin().
2879 *
788faab7 2880 * Since this is happening on an event-local CPU, no trace is lost
375637bc
AS
2881 * while restarting.
2882 */
2883 if (sd->restart)
c9bbdd48 2884 event->pmu->start(event, 0);
375637bc 2885
95ff4ca2
AS
2886 return 0;
2887}
2888
767ae086 2889static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
2890{
2891 struct stop_event_data sd = {
2892 .event = event,
767ae086 2893 .restart = restart,
375637bc
AS
2894 };
2895 int ret = 0;
2896
2897 do {
2898 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2899 return 0;
2900
2901 /* matches smp_wmb() in event_sched_in() */
2902 smp_rmb();
2903
2904 /*
2905 * We only want to restart ACTIVE events, so if the event goes
2906 * inactive here (event->oncpu==-1), there's nothing more to do;
2907 * fall through with ret==-ENXIO.
2908 */
2909 ret = cpu_function_call(READ_ONCE(event->oncpu),
2910 __perf_event_stop, &sd);
2911 } while (ret == -EAGAIN);
2912
2913 return ret;
2914}
2915
2916/*
2917 * In order to contain the amount of racy and tricky in the address filter
2918 * configuration management, it is a two part process:
2919 *
2920 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2921 * we update the addresses of corresponding vmas in
c60f83b8 2922 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
375637bc
AS
2923 * (p2) when an event is scheduled in (pmu::add), it calls
2924 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2925 * if the generation has changed since the previous call.
2926 *
2927 * If (p1) happens while the event is active, we restart it to force (p2).
2928 *
2929 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2930 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2931 * ioctl;
2932 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2933 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2934 * for reading;
2935 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2936 * of exec.
2937 */
2938void perf_event_addr_filters_sync(struct perf_event *event)
2939{
2940 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2941
2942 if (!has_addr_filter(event))
2943 return;
2944
2945 raw_spin_lock(&ifh->lock);
2946 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2947 event->pmu->addr_filters_sync(event);
2948 event->hw.addr_filters_gen = event->addr_filters_gen;
2949 }
2950 raw_spin_unlock(&ifh->lock);
2951}
2952EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2953
f63a8daa 2954static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2955{
2023b359 2956 /*
cdd6c482 2957 * not supported on inherited events
2023b359 2958 */
2e939d1d 2959 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2960 return -EINVAL;
2961
cdd6c482 2962 atomic_add(refresh, &event->event_limit);
f63a8daa 2963 _perf_event_enable(event);
2023b359
PZ
2964
2965 return 0;
79f14641 2966}
f63a8daa
PZ
2967
2968/*
2969 * See perf_event_disable()
2970 */
2971int perf_event_refresh(struct perf_event *event, int refresh)
2972{
2973 struct perf_event_context *ctx;
2974 int ret;
2975
2976 ctx = perf_event_ctx_lock(event);
2977 ret = _perf_event_refresh(event, refresh);
2978 perf_event_ctx_unlock(event, ctx);
2979
2980 return ret;
2981}
26ca5c11 2982EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2983
32ff77e8
MC
2984static int perf_event_modify_breakpoint(struct perf_event *bp,
2985 struct perf_event_attr *attr)
2986{
2987 int err;
2988
2989 _perf_event_disable(bp);
2990
2991 err = modify_user_hw_breakpoint_check(bp, attr, true);
32ff77e8 2992
bf06278c 2993 if (!bp->attr.disabled)
32ff77e8 2994 _perf_event_enable(bp);
bf06278c
JO
2995
2996 return err;
32ff77e8
MC
2997}
2998
2999static int perf_event_modify_attr(struct perf_event *event,
3000 struct perf_event_attr *attr)
3001{
3002 if (event->attr.type != attr->type)
3003 return -EINVAL;
3004
3005 switch (event->attr.type) {
3006 case PERF_TYPE_BREAKPOINT:
3007 return perf_event_modify_breakpoint(event, attr);
3008 default:
3009 /* Place holder for future additions. */
3010 return -EOPNOTSUPP;
3011 }
3012}
3013
5b0311e1
FW
3014static void ctx_sched_out(struct perf_event_context *ctx,
3015 struct perf_cpu_context *cpuctx,
3016 enum event_type_t event_type)
235c7fc7 3017{
6668128a 3018 struct perf_event *event, *tmp;
db24d33e 3019 int is_active = ctx->is_active;
235c7fc7 3020
c994d613 3021 lockdep_assert_held(&ctx->lock);
235c7fc7 3022
39a43640
PZ
3023 if (likely(!ctx->nr_events)) {
3024 /*
3025 * See __perf_remove_from_context().
3026 */
3027 WARN_ON_ONCE(ctx->is_active);
3028 if (ctx->task)
3029 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 3030 return;
39a43640
PZ
3031 }
3032
db24d33e 3033 ctx->is_active &= ~event_type;
3cbaa590
PZ
3034 if (!(ctx->is_active & EVENT_ALL))
3035 ctx->is_active = 0;
3036
63e30d3e
PZ
3037 if (ctx->task) {
3038 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3039 if (!ctx->is_active)
3040 cpuctx->task_ctx = NULL;
3041 }
facc4307 3042
8fdc6539
PZ
3043 /*
3044 * Always update time if it was set; not only when it changes.
3045 * Otherwise we can 'forget' to update time for any but the last
3046 * context we sched out. For example:
3047 *
3048 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3049 * ctx_sched_out(.event_type = EVENT_PINNED)
3050 *
3051 * would only update time for the pinned events.
3052 */
3cbaa590
PZ
3053 if (is_active & EVENT_TIME) {
3054 /* update (and stop) ctx time */
3055 update_context_time(ctx);
3056 update_cgrp_time_from_cpuctx(cpuctx);
3057 }
3058
8fdc6539
PZ
3059 is_active ^= ctx->is_active; /* changed bits */
3060
3cbaa590 3061 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 3062 return;
5b0311e1 3063
fd7d5517
IR
3064 /*
3065 * If we had been multiplexing, no rotations are necessary, now no events
3066 * are active.
3067 */
3068 ctx->rotate_necessary = 0;
3069
075e0b00 3070 perf_pmu_disable(ctx->pmu);
3cbaa590 3071 if (is_active & EVENT_PINNED) {
6668128a 3072 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
889ff015 3073 group_sched_out(event, cpuctx, ctx);
9ed6060d 3074 }
889ff015 3075
3cbaa590 3076 if (is_active & EVENT_FLEXIBLE) {
6668128a 3077 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
8c9ed8e1 3078 group_sched_out(event, cpuctx, ctx);
9ed6060d 3079 }
1b9a644f 3080 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
3081}
3082
564c2b21 3083/*
5a3126d4
PZ
3084 * Test whether two contexts are equivalent, i.e. whether they have both been
3085 * cloned from the same version of the same context.
3086 *
3087 * Equivalence is measured using a generation number in the context that is
3088 * incremented on each modification to it; see unclone_ctx(), list_add_event()
3089 * and list_del_event().
564c2b21 3090 */
cdd6c482
IM
3091static int context_equiv(struct perf_event_context *ctx1,
3092 struct perf_event_context *ctx2)
564c2b21 3093{
211de6eb
PZ
3094 lockdep_assert_held(&ctx1->lock);
3095 lockdep_assert_held(&ctx2->lock);
3096
5a3126d4
PZ
3097 /* Pinning disables the swap optimization */
3098 if (ctx1->pin_count || ctx2->pin_count)
3099 return 0;
3100
3101 /* If ctx1 is the parent of ctx2 */
3102 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3103 return 1;
3104
3105 /* If ctx2 is the parent of ctx1 */
3106 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3107 return 1;
3108
3109 /*
3110 * If ctx1 and ctx2 have the same parent; we flatten the parent
3111 * hierarchy, see perf_event_init_context().
3112 */
3113 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3114 ctx1->parent_gen == ctx2->parent_gen)
3115 return 1;
3116
3117 /* Unmatched */
3118 return 0;
564c2b21
PM
3119}
3120
cdd6c482
IM
3121static void __perf_event_sync_stat(struct perf_event *event,
3122 struct perf_event *next_event)
bfbd3381
PZ
3123{
3124 u64 value;
3125
cdd6c482 3126 if (!event->attr.inherit_stat)
bfbd3381
PZ
3127 return;
3128
3129 /*
cdd6c482 3130 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
3131 * because we're in the middle of a context switch and have IRQs
3132 * disabled, which upsets smp_call_function_single(), however
cdd6c482 3133 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
3134 * don't need to use it.
3135 */
0d3d73aa 3136 if (event->state == PERF_EVENT_STATE_ACTIVE)
3dbebf15 3137 event->pmu->read(event);
bfbd3381 3138
0d3d73aa 3139 perf_event_update_time(event);
bfbd3381
PZ
3140
3141 /*
cdd6c482 3142 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
3143 * values when we flip the contexts.
3144 */
e7850595
PZ
3145 value = local64_read(&next_event->count);
3146 value = local64_xchg(&event->count, value);
3147 local64_set(&next_event->count, value);
bfbd3381 3148
cdd6c482
IM
3149 swap(event->total_time_enabled, next_event->total_time_enabled);
3150 swap(event->total_time_running, next_event->total_time_running);
19d2e755 3151
bfbd3381 3152 /*
19d2e755 3153 * Since we swizzled the values, update the user visible data too.
bfbd3381 3154 */
cdd6c482
IM
3155 perf_event_update_userpage(event);
3156 perf_event_update_userpage(next_event);
bfbd3381
PZ
3157}
3158
cdd6c482
IM
3159static void perf_event_sync_stat(struct perf_event_context *ctx,
3160 struct perf_event_context *next_ctx)
bfbd3381 3161{
cdd6c482 3162 struct perf_event *event, *next_event;
bfbd3381
PZ
3163
3164 if (!ctx->nr_stat)
3165 return;
3166
02ffdbc8
PZ
3167 update_context_time(ctx);
3168
cdd6c482
IM
3169 event = list_first_entry(&ctx->event_list,
3170 struct perf_event, event_entry);
bfbd3381 3171
cdd6c482
IM
3172 next_event = list_first_entry(&next_ctx->event_list,
3173 struct perf_event, event_entry);
bfbd3381 3174
cdd6c482
IM
3175 while (&event->event_entry != &ctx->event_list &&
3176 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 3177
cdd6c482 3178 __perf_event_sync_stat(event, next_event);
bfbd3381 3179
cdd6c482
IM
3180 event = list_next_entry(event, event_entry);
3181 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
3182 }
3183}
3184
fe4b04fa
PZ
3185static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3186 struct task_struct *next)
0793a61d 3187{
8dc85d54 3188 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 3189 struct perf_event_context *next_ctx;
5a3126d4 3190 struct perf_event_context *parent, *next_parent;
108b02cf 3191 struct perf_cpu_context *cpuctx;
c93f7669 3192 int do_switch = 1;
0793a61d 3193
108b02cf
PZ
3194 if (likely(!ctx))
3195 return;
10989fb2 3196
108b02cf
PZ
3197 cpuctx = __get_cpu_context(ctx);
3198 if (!cpuctx->task_ctx)
0793a61d
TG
3199 return;
3200
c93f7669 3201 rcu_read_lock();
8dc85d54 3202 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
3203 if (!next_ctx)
3204 goto unlock;
3205
3206 parent = rcu_dereference(ctx->parent_ctx);
3207 next_parent = rcu_dereference(next_ctx->parent_ctx);
3208
3209 /* If neither context have a parent context; they cannot be clones. */
802c8a61 3210 if (!parent && !next_parent)
5a3126d4
PZ
3211 goto unlock;
3212
3213 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
3214 /*
3215 * Looks like the two contexts are clones, so we might be
3216 * able to optimize the context switch. We lock both
3217 * contexts and check that they are clones under the
3218 * lock (including re-checking that neither has been
3219 * uncloned in the meantime). It doesn't matter which
3220 * order we take the locks because no other cpu could
3221 * be trying to lock both of these tasks.
3222 */
e625cce1
TG
3223 raw_spin_lock(&ctx->lock);
3224 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 3225 if (context_equiv(ctx, next_ctx)) {
c2b98a86
AB
3226 struct pmu *pmu = ctx->pmu;
3227
63b6da39
PZ
3228 WRITE_ONCE(ctx->task, next);
3229 WRITE_ONCE(next_ctx->task, task);
5a158c3c 3230
c2b98a86
AB
3231 /*
3232 * PMU specific parts of task perf context can require
3233 * additional synchronization. As an example of such
3234 * synchronization see implementation details of Intel
3235 * LBR call stack data profiling;
3236 */
3237 if (pmu->swap_task_ctx)
3238 pmu->swap_task_ctx(ctx, next_ctx);
3239 else
3240 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
5a158c3c 3241
63b6da39
PZ
3242 /*
3243 * RCU_INIT_POINTER here is safe because we've not
3244 * modified the ctx and the above modification of
3245 * ctx->task and ctx->task_ctx_data are immaterial
3246 * since those values are always verified under
3247 * ctx->lock which we're now holding.
3248 */
3249 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3250 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3251
c93f7669 3252 do_switch = 0;
bfbd3381 3253
cdd6c482 3254 perf_event_sync_stat(ctx, next_ctx);
c93f7669 3255 }
e625cce1
TG
3256 raw_spin_unlock(&next_ctx->lock);
3257 raw_spin_unlock(&ctx->lock);
564c2b21 3258 }
5a3126d4 3259unlock:
c93f7669 3260 rcu_read_unlock();
564c2b21 3261
c93f7669 3262 if (do_switch) {
facc4307 3263 raw_spin_lock(&ctx->lock);
487f05e1 3264 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
facc4307 3265 raw_spin_unlock(&ctx->lock);
c93f7669 3266 }
0793a61d
TG
3267}
3268
e48c1788
PZ
3269static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3270
ba532500
YZ
3271void perf_sched_cb_dec(struct pmu *pmu)
3272{
e48c1788
PZ
3273 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3274
ba532500 3275 this_cpu_dec(perf_sched_cb_usages);
e48c1788
PZ
3276
3277 if (!--cpuctx->sched_cb_usage)
3278 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
3279}
3280
e48c1788 3281
ba532500
YZ
3282void perf_sched_cb_inc(struct pmu *pmu)
3283{
e48c1788
PZ
3284 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3285
3286 if (!cpuctx->sched_cb_usage++)
3287 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3288
ba532500
YZ
3289 this_cpu_inc(perf_sched_cb_usages);
3290}
3291
3292/*
3293 * This function provides the context switch callback to the lower code
3294 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
3295 *
3296 * This callback is relevant even to per-cpu events; for example multi event
3297 * PEBS requires this to provide PID/TID information. This requires we flush
3298 * all queued PEBS records before we context switch to a new task.
ba532500
YZ
3299 */
3300static void perf_pmu_sched_task(struct task_struct *prev,
3301 struct task_struct *next,
3302 bool sched_in)
3303{
3304 struct perf_cpu_context *cpuctx;
3305 struct pmu *pmu;
ba532500
YZ
3306
3307 if (prev == next)
3308 return;
3309
e48c1788 3310 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
1fd7e416 3311 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
ba532500 3312
e48c1788
PZ
3313 if (WARN_ON_ONCE(!pmu->sched_task))
3314 continue;
ba532500 3315
e48c1788
PZ
3316 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3317 perf_pmu_disable(pmu);
ba532500 3318
e48c1788 3319 pmu->sched_task(cpuctx->task_ctx, sched_in);
ba532500 3320
e48c1788
PZ
3321 perf_pmu_enable(pmu);
3322 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
ba532500 3323 }
ba532500
YZ
3324}
3325
45ac1403
AH
3326static void perf_event_switch(struct task_struct *task,
3327 struct task_struct *next_prev, bool sched_in);
3328
8dc85d54
PZ
3329#define for_each_task_context_nr(ctxn) \
3330 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3331
3332/*
3333 * Called from scheduler to remove the events of the current task,
3334 * with interrupts disabled.
3335 *
3336 * We stop each event and update the event value in event->count.
3337 *
3338 * This does not protect us against NMI, but disable()
3339 * sets the disabled bit in the control field of event _before_
3340 * accessing the event control register. If a NMI hits, then it will
3341 * not restart the event.
3342 */
ab0cce56
JO
3343void __perf_event_task_sched_out(struct task_struct *task,
3344 struct task_struct *next)
8dc85d54
PZ
3345{
3346 int ctxn;
3347
ba532500
YZ
3348 if (__this_cpu_read(perf_sched_cb_usages))
3349 perf_pmu_sched_task(task, next, false);
3350
45ac1403
AH
3351 if (atomic_read(&nr_switch_events))
3352 perf_event_switch(task, next, false);
3353
8dc85d54
PZ
3354 for_each_task_context_nr(ctxn)
3355 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
3356
3357 /*
3358 * if cgroup events exist on this CPU, then we need
3359 * to check if we have to switch out PMU state.
3360 * cgroup event are system-wide mode only
3361 */
4a32fea9 3362 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 3363 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
3364}
3365
5b0311e1
FW
3366/*
3367 * Called with IRQs disabled
3368 */
3369static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3370 enum event_type_t event_type)
3371{
3372 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
3373}
3374
1cac7b1a
PZ
3375static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3376 int (*func)(struct perf_event *, void *), void *data)
0793a61d 3377{
1cac7b1a
PZ
3378 struct perf_event **evt, *evt1, *evt2;
3379 int ret;
8e1a2031 3380
1cac7b1a
PZ
3381 evt1 = perf_event_groups_first(groups, -1);
3382 evt2 = perf_event_groups_first(groups, cpu);
3383
3384 while (evt1 || evt2) {
3385 if (evt1 && evt2) {
3386 if (evt1->group_index < evt2->group_index)
3387 evt = &evt1;
3388 else
3389 evt = &evt2;
3390 } else if (evt1) {
3391 evt = &evt1;
3392 } else {
3393 evt = &evt2;
8e1a2031 3394 }
1cac7b1a
PZ
3395
3396 ret = func(*evt, data);
3397 if (ret)
3398 return ret;
3399
3400 *evt = perf_event_groups_next(*evt);
8e1a2031 3401 }
0793a61d 3402
1cac7b1a
PZ
3403 return 0;
3404}
3405
3406struct sched_in_data {
3407 struct perf_event_context *ctx;
3408 struct perf_cpu_context *cpuctx;
3409 int can_add_hw;
3410};
3411
3412static int pinned_sched_in(struct perf_event *event, void *data)
3413{
3414 struct sched_in_data *sid = data;
3415
3416 if (event->state <= PERF_EVENT_STATE_OFF)
3417 return 0;
3418
3419 if (!event_filter_match(event))
3420 return 0;
3421
6668128a
PZ
3422 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3423 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3424 list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3425 }
1cac7b1a
PZ
3426
3427 /*
3428 * If this pinned group hasn't been scheduled,
3429 * put it in error state.
3430 */
3431 if (event->state == PERF_EVENT_STATE_INACTIVE)
3432 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3433
3434 return 0;
3435}
3436
3437static int flexible_sched_in(struct perf_event *event, void *data)
3438{
3439 struct sched_in_data *sid = data;
3440
3441 if (event->state <= PERF_EVENT_STATE_OFF)
3442 return 0;
3443
3444 if (!event_filter_match(event))
3445 return 0;
3446
3447 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
fd7d5517
IR
3448 int ret = group_sched_in(event, sid->cpuctx, sid->ctx);
3449 if (ret) {
1cac7b1a 3450 sid->can_add_hw = 0;
fd7d5517
IR
3451 sid->ctx->rotate_necessary = 1;
3452 return 0;
3453 }
3454 list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3b6f9e5c 3455 }
1cac7b1a
PZ
3456
3457 return 0;
5b0311e1
FW
3458}
3459
3460static void
1cac7b1a
PZ
3461ctx_pinned_sched_in(struct perf_event_context *ctx,
3462 struct perf_cpu_context *cpuctx)
5b0311e1 3463{
1cac7b1a
PZ
3464 struct sched_in_data sid = {
3465 .ctx = ctx,
3466 .cpuctx = cpuctx,
3467 .can_add_hw = 1,
3468 };
3b6f9e5c 3469
1cac7b1a
PZ
3470 visit_groups_merge(&ctx->pinned_groups,
3471 smp_processor_id(),
3472 pinned_sched_in, &sid);
3473}
8e1a2031 3474
1cac7b1a
PZ
3475static void
3476ctx_flexible_sched_in(struct perf_event_context *ctx,
3477 struct perf_cpu_context *cpuctx)
3478{
3479 struct sched_in_data sid = {
3480 .ctx = ctx,
3481 .cpuctx = cpuctx,
3482 .can_add_hw = 1,
3483 };
0793a61d 3484
1cac7b1a
PZ
3485 visit_groups_merge(&ctx->flexible_groups,
3486 smp_processor_id(),
3487 flexible_sched_in, &sid);
5b0311e1
FW
3488}
3489
3490static void
3491ctx_sched_in(struct perf_event_context *ctx,
3492 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3493 enum event_type_t event_type,
3494 struct task_struct *task)
5b0311e1 3495{
db24d33e 3496 int is_active = ctx->is_active;
c994d613
PZ
3497 u64 now;
3498
3499 lockdep_assert_held(&ctx->lock);
e5d1367f 3500
5b0311e1 3501 if (likely(!ctx->nr_events))
facc4307 3502 return;
5b0311e1 3503
3cbaa590 3504 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3505 if (ctx->task) {
3506 if (!is_active)
3507 cpuctx->task_ctx = ctx;
3508 else
3509 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3510 }
3511
3cbaa590
PZ
3512 is_active ^= ctx->is_active; /* changed bits */
3513
3514 if (is_active & EVENT_TIME) {
3515 /* start ctx time */
3516 now = perf_clock();
3517 ctx->timestamp = now;
3518 perf_cgroup_set_timestamp(task, ctx);
3519 }
3520
5b0311e1
FW
3521 /*
3522 * First go through the list and put on any pinned groups
3523 * in order to give them the best chance of going on.
3524 */
3cbaa590 3525 if (is_active & EVENT_PINNED)
6e37738a 3526 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3527
3528 /* Then walk through the lower prio flexible groups */
3cbaa590 3529 if (is_active & EVENT_FLEXIBLE)
6e37738a 3530 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3531}
3532
329c0e01 3533static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3534 enum event_type_t event_type,
3535 struct task_struct *task)
329c0e01
FW
3536{
3537 struct perf_event_context *ctx = &cpuctx->ctx;
3538
e5d1367f 3539 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3540}
3541
e5d1367f
SE
3542static void perf_event_context_sched_in(struct perf_event_context *ctx,
3543 struct task_struct *task)
235c7fc7 3544{
108b02cf 3545 struct perf_cpu_context *cpuctx;
235c7fc7 3546
108b02cf 3547 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3548 if (cpuctx->task_ctx == ctx)
3549 return;
3550
facc4307 3551 perf_ctx_lock(cpuctx, ctx);
fdccc3fb 3552 /*
3553 * We must check ctx->nr_events while holding ctx->lock, such
3554 * that we serialize against perf_install_in_context().
3555 */
3556 if (!ctx->nr_events)
3557 goto unlock;
3558
1b9a644f 3559 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3560 /*
3561 * We want to keep the following priority order:
3562 * cpu pinned (that don't need to move), task pinned,
3563 * cpu flexible, task flexible.
fe45bafb
AS
3564 *
3565 * However, if task's ctx is not carrying any pinned
3566 * events, no need to flip the cpuctx's events around.
329c0e01 3567 */
8e1a2031 3568 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
fe45bafb 3569 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3570 perf_event_sched_in(cpuctx, ctx, task);
facc4307 3571 perf_pmu_enable(ctx->pmu);
fdccc3fb 3572
3573unlock:
facc4307 3574 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3575}
3576
8dc85d54
PZ
3577/*
3578 * Called from scheduler to add the events of the current task
3579 * with interrupts disabled.
3580 *
3581 * We restore the event value and then enable it.
3582 *
3583 * This does not protect us against NMI, but enable()
3584 * sets the enabled bit in the control field of event _before_
3585 * accessing the event control register. If a NMI hits, then it will
3586 * keep the event running.
3587 */
ab0cce56
JO
3588void __perf_event_task_sched_in(struct task_struct *prev,
3589 struct task_struct *task)
8dc85d54
PZ
3590{
3591 struct perf_event_context *ctx;
3592 int ctxn;
3593
7e41d177
PZ
3594 /*
3595 * If cgroup events exist on this CPU, then we need to check if we have
3596 * to switch in PMU state; cgroup event are system-wide mode only.
3597 *
3598 * Since cgroup events are CPU events, we must schedule these in before
3599 * we schedule in the task events.
3600 */
3601 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3602 perf_cgroup_sched_in(prev, task);
3603
8dc85d54
PZ
3604 for_each_task_context_nr(ctxn) {
3605 ctx = task->perf_event_ctxp[ctxn];
3606 if (likely(!ctx))
3607 continue;
3608
e5d1367f 3609 perf_event_context_sched_in(ctx, task);
8dc85d54 3610 }
d010b332 3611
45ac1403
AH
3612 if (atomic_read(&nr_switch_events))
3613 perf_event_switch(task, prev, true);
3614
ba532500
YZ
3615 if (__this_cpu_read(perf_sched_cb_usages))
3616 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3617}
3618
abd50713
PZ
3619static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3620{
3621 u64 frequency = event->attr.sample_freq;
3622 u64 sec = NSEC_PER_SEC;
3623 u64 divisor, dividend;
3624
3625 int count_fls, nsec_fls, frequency_fls, sec_fls;
3626
3627 count_fls = fls64(count);
3628 nsec_fls = fls64(nsec);
3629 frequency_fls = fls64(frequency);
3630 sec_fls = 30;
3631
3632 /*
3633 * We got @count in @nsec, with a target of sample_freq HZ
3634 * the target period becomes:
3635 *
3636 * @count * 10^9
3637 * period = -------------------
3638 * @nsec * sample_freq
3639 *
3640 */
3641
3642 /*
3643 * Reduce accuracy by one bit such that @a and @b converge
3644 * to a similar magnitude.
3645 */
fe4b04fa 3646#define REDUCE_FLS(a, b) \
abd50713
PZ
3647do { \
3648 if (a##_fls > b##_fls) { \
3649 a >>= 1; \
3650 a##_fls--; \
3651 } else { \
3652 b >>= 1; \
3653 b##_fls--; \
3654 } \
3655} while (0)
3656
3657 /*
3658 * Reduce accuracy until either term fits in a u64, then proceed with
3659 * the other, so that finally we can do a u64/u64 division.
3660 */
3661 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3662 REDUCE_FLS(nsec, frequency);
3663 REDUCE_FLS(sec, count);
3664 }
3665
3666 if (count_fls + sec_fls > 64) {
3667 divisor = nsec * frequency;
3668
3669 while (count_fls + sec_fls > 64) {
3670 REDUCE_FLS(count, sec);
3671 divisor >>= 1;
3672 }
3673
3674 dividend = count * sec;
3675 } else {
3676 dividend = count * sec;
3677
3678 while (nsec_fls + frequency_fls > 64) {
3679 REDUCE_FLS(nsec, frequency);
3680 dividend >>= 1;
3681 }
3682
3683 divisor = nsec * frequency;
3684 }
3685
f6ab91ad
PZ
3686 if (!divisor)
3687 return dividend;
3688
abd50713
PZ
3689 return div64_u64(dividend, divisor);
3690}
3691
e050e3f0
SE
3692static DEFINE_PER_CPU(int, perf_throttled_count);
3693static DEFINE_PER_CPU(u64, perf_throttled_seq);
3694
f39d47ff 3695static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3696{
cdd6c482 3697 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3698 s64 period, sample_period;
bd2b5b12
PZ
3699 s64 delta;
3700
abd50713 3701 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3702
3703 delta = (s64)(period - hwc->sample_period);
3704 delta = (delta + 7) / 8; /* low pass filter */
3705
3706 sample_period = hwc->sample_period + delta;
3707
3708 if (!sample_period)
3709 sample_period = 1;
3710
bd2b5b12 3711 hwc->sample_period = sample_period;
abd50713 3712
e7850595 3713 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3714 if (disable)
3715 event->pmu->stop(event, PERF_EF_UPDATE);
3716
e7850595 3717 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3718
3719 if (disable)
3720 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3721 }
bd2b5b12
PZ
3722}
3723
e050e3f0
SE
3724/*
3725 * combine freq adjustment with unthrottling to avoid two passes over the
3726 * events. At the same time, make sure, having freq events does not change
3727 * the rate of unthrottling as that would introduce bias.
3728 */
3729static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3730 int needs_unthr)
60db5e09 3731{
cdd6c482
IM
3732 struct perf_event *event;
3733 struct hw_perf_event *hwc;
e050e3f0 3734 u64 now, period = TICK_NSEC;
abd50713 3735 s64 delta;
60db5e09 3736
e050e3f0
SE
3737 /*
3738 * only need to iterate over all events iff:
3739 * - context have events in frequency mode (needs freq adjust)
3740 * - there are events to unthrottle on this cpu
3741 */
3742 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3743 return;
3744
e050e3f0 3745 raw_spin_lock(&ctx->lock);
f39d47ff 3746 perf_pmu_disable(ctx->pmu);
e050e3f0 3747
03541f8b 3748 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3749 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3750 continue;
3751
5632ab12 3752 if (!event_filter_match(event))
5d27c23d
PZ
3753 continue;
3754
44377277
AS
3755 perf_pmu_disable(event->pmu);
3756
cdd6c482 3757 hwc = &event->hw;
6a24ed6c 3758
ae23bff1 3759 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3760 hwc->interrupts = 0;
cdd6c482 3761 perf_log_throttle(event, 1);
a4eaf7f1 3762 event->pmu->start(event, 0);
a78ac325
PZ
3763 }
3764
cdd6c482 3765 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3766 goto next;
60db5e09 3767
e050e3f0
SE
3768 /*
3769 * stop the event and update event->count
3770 */
3771 event->pmu->stop(event, PERF_EF_UPDATE);
3772
e7850595 3773 now = local64_read(&event->count);
abd50713
PZ
3774 delta = now - hwc->freq_count_stamp;
3775 hwc->freq_count_stamp = now;
60db5e09 3776
e050e3f0
SE
3777 /*
3778 * restart the event
3779 * reload only if value has changed
f39d47ff
SE
3780 * we have stopped the event so tell that
3781 * to perf_adjust_period() to avoid stopping it
3782 * twice.
e050e3f0 3783 */
abd50713 3784 if (delta > 0)
f39d47ff 3785 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3786
3787 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3788 next:
3789 perf_pmu_enable(event->pmu);
60db5e09 3790 }
e050e3f0 3791
f39d47ff 3792 perf_pmu_enable(ctx->pmu);
e050e3f0 3793 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3794}
3795
235c7fc7 3796/*
8703a7cf 3797 * Move @event to the tail of the @ctx's elegible events.
235c7fc7 3798 */
8703a7cf 3799static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
0793a61d 3800{
dddd3379
TG
3801 /*
3802 * Rotate the first entry last of non-pinned groups. Rotation might be
3803 * disabled by the inheritance code.
3804 */
8703a7cf
PZ
3805 if (ctx->rotate_disable)
3806 return;
8e1a2031 3807
8703a7cf
PZ
3808 perf_event_groups_delete(&ctx->flexible_groups, event);
3809 perf_event_groups_insert(&ctx->flexible_groups, event);
235c7fc7
IM
3810}
3811
7fa343b7 3812/* pick an event from the flexible_groups to rotate */
8d5bce0c 3813static inline struct perf_event *
7fa343b7 3814ctx_event_to_rotate(struct perf_event_context *ctx)
235c7fc7 3815{
7fa343b7
SL
3816 struct perf_event *event;
3817
3818 /* pick the first active flexible event */
3819 event = list_first_entry_or_null(&ctx->flexible_active,
3820 struct perf_event, active_list);
3821
3822 /* if no active flexible event, pick the first event */
3823 if (!event) {
3824 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
3825 typeof(*event), group_node);
3826 }
3827
3828 return event;
8d5bce0c
PZ
3829}
3830
3831static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3832{
3833 struct perf_event *cpu_event = NULL, *task_event = NULL;
fd7d5517
IR
3834 struct perf_event_context *task_ctx = NULL;
3835 int cpu_rotate, task_rotate;
8d5bce0c
PZ
3836
3837 /*
3838 * Since we run this from IRQ context, nobody can install new
3839 * events, thus the event count values are stable.
3840 */
7fc23a53 3841
fd7d5517
IR
3842 cpu_rotate = cpuctx->ctx.rotate_necessary;
3843 task_ctx = cpuctx->task_ctx;
3844 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
9717e6cd 3845
8d5bce0c
PZ
3846 if (!(cpu_rotate || task_rotate))
3847 return false;
0f5a2601 3848
facc4307 3849 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3850 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3851
8d5bce0c 3852 if (task_rotate)
7fa343b7 3853 task_event = ctx_event_to_rotate(task_ctx);
8d5bce0c 3854 if (cpu_rotate)
7fa343b7 3855 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
8703a7cf 3856
8d5bce0c
PZ
3857 /*
3858 * As per the order given at ctx_resched() first 'pop' task flexible
3859 * and then, if needed CPU flexible.
3860 */
fd7d5517
IR
3861 if (task_event || (task_ctx && cpu_event))
3862 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
8d5bce0c
PZ
3863 if (cpu_event)
3864 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
0793a61d 3865
8d5bce0c 3866 if (task_event)
fd7d5517 3867 rotate_ctx(task_ctx, task_event);
8d5bce0c
PZ
3868 if (cpu_event)
3869 rotate_ctx(&cpuctx->ctx, cpu_event);
235c7fc7 3870
fd7d5517 3871 perf_event_sched_in(cpuctx, task_ctx, current);
235c7fc7 3872
0f5a2601
PZ
3873 perf_pmu_enable(cpuctx->ctx.pmu);
3874 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
9e630205 3875
8d5bce0c 3876 return true;
e9d2b064
PZ
3877}
3878
3879void perf_event_task_tick(void)
3880{
2fde4f94
MR
3881 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3882 struct perf_event_context *ctx, *tmp;
e050e3f0 3883 int throttled;
b5ab4cd5 3884
16444645 3885 lockdep_assert_irqs_disabled();
e9d2b064 3886
e050e3f0
SE
3887 __this_cpu_inc(perf_throttled_seq);
3888 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3889 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3890
2fde4f94 3891 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3892 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3893}
3894
889ff015
FW
3895static int event_enable_on_exec(struct perf_event *event,
3896 struct perf_event_context *ctx)
3897{
3898 if (!event->attr.enable_on_exec)
3899 return 0;
3900
3901 event->attr.enable_on_exec = 0;
3902 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3903 return 0;
3904
0d3d73aa 3905 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
889ff015
FW
3906
3907 return 1;
3908}
3909
57e7986e 3910/*
cdd6c482 3911 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3912 * This expects task == current.
3913 */
c1274499 3914static void perf_event_enable_on_exec(int ctxn)
57e7986e 3915{
c1274499 3916 struct perf_event_context *ctx, *clone_ctx = NULL;
487f05e1 3917 enum event_type_t event_type = 0;
3e349507 3918 struct perf_cpu_context *cpuctx;
cdd6c482 3919 struct perf_event *event;
57e7986e
PM
3920 unsigned long flags;
3921 int enabled = 0;
3922
3923 local_irq_save(flags);
c1274499 3924 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3925 if (!ctx || !ctx->nr_events)
57e7986e
PM
3926 goto out;
3927
3e349507
PZ
3928 cpuctx = __get_cpu_context(ctx);
3929 perf_ctx_lock(cpuctx, ctx);
7fce2509 3930 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
487f05e1 3931 list_for_each_entry(event, &ctx->event_list, event_entry) {
3e349507 3932 enabled |= event_enable_on_exec(event, ctx);
487f05e1
AS
3933 event_type |= get_event_type(event);
3934 }
57e7986e
PM
3935
3936 /*
3e349507 3937 * Unclone and reschedule this context if we enabled any event.
57e7986e 3938 */
3e349507 3939 if (enabled) {
211de6eb 3940 clone_ctx = unclone_ctx(ctx);
487f05e1 3941 ctx_resched(cpuctx, ctx, event_type);
7bbba0eb
PZ
3942 } else {
3943 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3e349507
PZ
3944 }
3945 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3946
9ed6060d 3947out:
57e7986e 3948 local_irq_restore(flags);
211de6eb
PZ
3949
3950 if (clone_ctx)
3951 put_ctx(clone_ctx);
57e7986e
PM
3952}
3953
0492d4c5
PZ
3954struct perf_read_data {
3955 struct perf_event *event;
3956 bool group;
7d88962e 3957 int ret;
0492d4c5
PZ
3958};
3959
451d24d1 3960static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
d6a2f903 3961{
d6a2f903
DCC
3962 u16 local_pkg, event_pkg;
3963
3964 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
451d24d1
PZ
3965 int local_cpu = smp_processor_id();
3966
3967 event_pkg = topology_physical_package_id(event_cpu);
3968 local_pkg = topology_physical_package_id(local_cpu);
d6a2f903
DCC
3969
3970 if (event_pkg == local_pkg)
3971 return local_cpu;
3972 }
3973
3974 return event_cpu;
3975}
3976
0793a61d 3977/*
cdd6c482 3978 * Cross CPU call to read the hardware event
0793a61d 3979 */
cdd6c482 3980static void __perf_event_read(void *info)
0793a61d 3981{
0492d4c5
PZ
3982 struct perf_read_data *data = info;
3983 struct perf_event *sub, *event = data->event;
cdd6c482 3984 struct perf_event_context *ctx = event->ctx;
108b02cf 3985 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3986 struct pmu *pmu = event->pmu;
621a01ea 3987
e1ac3614
PM
3988 /*
3989 * If this is a task context, we need to check whether it is
3990 * the current task context of this cpu. If not it has been
3991 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3992 * event->count would have been updated to a recent sample
3993 * when the event was scheduled out.
e1ac3614
PM
3994 */
3995 if (ctx->task && cpuctx->task_ctx != ctx)
3996 return;
3997
e625cce1 3998 raw_spin_lock(&ctx->lock);
0c1cbc18 3999 if (ctx->is_active & EVENT_TIME) {
542e72fc 4000 update_context_time(ctx);
e5d1367f
SE
4001 update_cgrp_time_from_event(event);
4002 }
0492d4c5 4003
0d3d73aa
PZ
4004 perf_event_update_time(event);
4005 if (data->group)
4006 perf_event_update_sibling_time(event);
0c1cbc18 4007
4a00c16e
SB
4008 if (event->state != PERF_EVENT_STATE_ACTIVE)
4009 goto unlock;
0492d4c5 4010
4a00c16e
SB
4011 if (!data->group) {
4012 pmu->read(event);
4013 data->ret = 0;
0492d4c5 4014 goto unlock;
4a00c16e
SB
4015 }
4016
4017 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4018
4019 pmu->read(event);
0492d4c5 4020
edb39592 4021 for_each_sibling_event(sub, event) {
4a00c16e
SB
4022 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4023 /*
4024 * Use sibling's PMU rather than @event's since
4025 * sibling could be on different (eg: software) PMU.
4026 */
0492d4c5 4027 sub->pmu->read(sub);
4a00c16e 4028 }
0492d4c5 4029 }
4a00c16e
SB
4030
4031 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
4032
4033unlock:
e625cce1 4034 raw_spin_unlock(&ctx->lock);
0793a61d
TG
4035}
4036
b5e58793
PZ
4037static inline u64 perf_event_count(struct perf_event *event)
4038{
c39a0e2c 4039 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
4040}
4041
ffe8690c
KX
4042/*
4043 * NMI-safe method to read a local event, that is an event that
4044 * is:
4045 * - either for the current task, or for this CPU
4046 * - does not have inherit set, for inherited task events
4047 * will not be local and we cannot read them atomically
4048 * - must not have a pmu::count method
4049 */
7d9285e8
YS
4050int perf_event_read_local(struct perf_event *event, u64 *value,
4051 u64 *enabled, u64 *running)
ffe8690c
KX
4052{
4053 unsigned long flags;
f91840a3 4054 int ret = 0;
ffe8690c
KX
4055
4056 /*
4057 * Disabling interrupts avoids all counter scheduling (context
4058 * switches, timer based rotation and IPIs).
4059 */
4060 local_irq_save(flags);
4061
ffe8690c
KX
4062 /*
4063 * It must not be an event with inherit set, we cannot read
4064 * all child counters from atomic context.
4065 */
f91840a3
AS
4066 if (event->attr.inherit) {
4067 ret = -EOPNOTSUPP;
4068 goto out;
4069 }
ffe8690c 4070
f91840a3
AS
4071 /* If this is a per-task event, it must be for current */
4072 if ((event->attach_state & PERF_ATTACH_TASK) &&
4073 event->hw.target != current) {
4074 ret = -EINVAL;
4075 goto out;
4076 }
4077
4078 /* If this is a per-CPU event, it must be for this CPU */
4079 if (!(event->attach_state & PERF_ATTACH_TASK) &&
4080 event->cpu != smp_processor_id()) {
4081 ret = -EINVAL;
4082 goto out;
4083 }
ffe8690c 4084
befb1b3c
RC
4085 /* If this is a pinned event it must be running on this CPU */
4086 if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4087 ret = -EBUSY;
4088 goto out;
4089 }
4090
ffe8690c
KX
4091 /*
4092 * If the event is currently on this CPU, its either a per-task event,
4093 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4094 * oncpu == -1).
4095 */
4096 if (event->oncpu == smp_processor_id())
4097 event->pmu->read(event);
4098
f91840a3 4099 *value = local64_read(&event->count);
0d3d73aa
PZ
4100 if (enabled || running) {
4101 u64 now = event->shadow_ctx_time + perf_clock();
4102 u64 __enabled, __running;
4103
4104 __perf_update_times(event, now, &__enabled, &__running);
4105 if (enabled)
4106 *enabled = __enabled;
4107 if (running)
4108 *running = __running;
4109 }
f91840a3 4110out:
ffe8690c
KX
4111 local_irq_restore(flags);
4112
f91840a3 4113 return ret;
ffe8690c
KX
4114}
4115
7d88962e 4116static int perf_event_read(struct perf_event *event, bool group)
0793a61d 4117{
0c1cbc18 4118 enum perf_event_state state = READ_ONCE(event->state);
451d24d1 4119 int event_cpu, ret = 0;
7d88962e 4120
0793a61d 4121 /*
cdd6c482
IM
4122 * If event is enabled and currently active on a CPU, update the
4123 * value in the event structure:
0793a61d 4124 */
0c1cbc18
PZ
4125again:
4126 if (state == PERF_EVENT_STATE_ACTIVE) {
4127 struct perf_read_data data;
4128
4129 /*
4130 * Orders the ->state and ->oncpu loads such that if we see
4131 * ACTIVE we must also see the right ->oncpu.
4132 *
4133 * Matches the smp_wmb() from event_sched_in().
4134 */
4135 smp_rmb();
d6a2f903 4136
451d24d1
PZ
4137 event_cpu = READ_ONCE(event->oncpu);
4138 if ((unsigned)event_cpu >= nr_cpu_ids)
4139 return 0;
4140
0c1cbc18
PZ
4141 data = (struct perf_read_data){
4142 .event = event,
4143 .group = group,
4144 .ret = 0,
4145 };
4146
451d24d1
PZ
4147 preempt_disable();
4148 event_cpu = __perf_event_read_cpu(event, event_cpu);
d6a2f903 4149
58763148
PZ
4150 /*
4151 * Purposely ignore the smp_call_function_single() return
4152 * value.
4153 *
451d24d1 4154 * If event_cpu isn't a valid CPU it means the event got
58763148
PZ
4155 * scheduled out and that will have updated the event count.
4156 *
4157 * Therefore, either way, we'll have an up-to-date event count
4158 * after this.
4159 */
451d24d1
PZ
4160 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4161 preempt_enable();
58763148 4162 ret = data.ret;
0c1cbc18
PZ
4163
4164 } else if (state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
4165 struct perf_event_context *ctx = event->ctx;
4166 unsigned long flags;
4167
e625cce1 4168 raw_spin_lock_irqsave(&ctx->lock, flags);
0c1cbc18
PZ
4169 state = event->state;
4170 if (state != PERF_EVENT_STATE_INACTIVE) {
4171 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4172 goto again;
4173 }
4174
c530ccd9 4175 /*
0c1cbc18
PZ
4176 * May read while context is not active (e.g., thread is
4177 * blocked), in that case we cannot update context time
c530ccd9 4178 */
0c1cbc18 4179 if (ctx->is_active & EVENT_TIME) {
c530ccd9 4180 update_context_time(ctx);
e5d1367f
SE
4181 update_cgrp_time_from_event(event);
4182 }
0c1cbc18 4183
0d3d73aa 4184 perf_event_update_time(event);
0492d4c5 4185 if (group)
0d3d73aa 4186 perf_event_update_sibling_time(event);
e625cce1 4187 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 4188 }
7d88962e
SB
4189
4190 return ret;
0793a61d
TG
4191}
4192
a63eaf34 4193/*
cdd6c482 4194 * Initialize the perf_event context in a task_struct:
a63eaf34 4195 */
eb184479 4196static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 4197{
e625cce1 4198 raw_spin_lock_init(&ctx->lock);
a63eaf34 4199 mutex_init(&ctx->mutex);
2fde4f94 4200 INIT_LIST_HEAD(&ctx->active_ctx_list);
8e1a2031
AB
4201 perf_event_groups_init(&ctx->pinned_groups);
4202 perf_event_groups_init(&ctx->flexible_groups);
a63eaf34 4203 INIT_LIST_HEAD(&ctx->event_list);
6668128a
PZ
4204 INIT_LIST_HEAD(&ctx->pinned_active);
4205 INIT_LIST_HEAD(&ctx->flexible_active);
8c94abbb 4206 refcount_set(&ctx->refcount, 1);
eb184479
PZ
4207}
4208
4209static struct perf_event_context *
4210alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4211{
4212 struct perf_event_context *ctx;
4213
4214 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4215 if (!ctx)
4216 return NULL;
4217
4218 __perf_event_init_context(ctx);
7b3c92b8
MWO
4219 if (task)
4220 ctx->task = get_task_struct(task);
eb184479
PZ
4221 ctx->pmu = pmu;
4222
4223 return ctx;
a63eaf34
PM
4224}
4225
2ebd4ffb
MH
4226static struct task_struct *
4227find_lively_task_by_vpid(pid_t vpid)
4228{
4229 struct task_struct *task;
0793a61d
TG
4230
4231 rcu_read_lock();
2ebd4ffb 4232 if (!vpid)
0793a61d
TG
4233 task = current;
4234 else
2ebd4ffb 4235 task = find_task_by_vpid(vpid);
0793a61d
TG
4236 if (task)
4237 get_task_struct(task);
4238 rcu_read_unlock();
4239
4240 if (!task)
4241 return ERR_PTR(-ESRCH);
4242
2ebd4ffb 4243 return task;
2ebd4ffb
MH
4244}
4245
fe4b04fa
PZ
4246/*
4247 * Returns a matching context with refcount and pincount.
4248 */
108b02cf 4249static struct perf_event_context *
4af57ef2
YZ
4250find_get_context(struct pmu *pmu, struct task_struct *task,
4251 struct perf_event *event)
0793a61d 4252{
211de6eb 4253 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 4254 struct perf_cpu_context *cpuctx;
4af57ef2 4255 void *task_ctx_data = NULL;
25346b93 4256 unsigned long flags;
8dc85d54 4257 int ctxn, err;
4af57ef2 4258 int cpu = event->cpu;
0793a61d 4259
22a4ec72 4260 if (!task) {
cdd6c482 4261 /* Must be root to operate on a CPU event: */
da97e184
JFG
4262 err = perf_allow_cpu(&event->attr);
4263 if (err)
4264 return ERR_PTR(err);
0793a61d 4265
108b02cf 4266 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 4267 ctx = &cpuctx->ctx;
c93f7669 4268 get_ctx(ctx);
fe4b04fa 4269 ++ctx->pin_count;
0793a61d 4270
0793a61d
TG
4271 return ctx;
4272 }
4273
8dc85d54
PZ
4274 err = -EINVAL;
4275 ctxn = pmu->task_ctx_nr;
4276 if (ctxn < 0)
4277 goto errout;
4278
4af57ef2
YZ
4279 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4280 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4281 if (!task_ctx_data) {
4282 err = -ENOMEM;
4283 goto errout;
4284 }
4285 }
4286
9ed6060d 4287retry:
8dc85d54 4288 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 4289 if (ctx) {
211de6eb 4290 clone_ctx = unclone_ctx(ctx);
fe4b04fa 4291 ++ctx->pin_count;
4af57ef2
YZ
4292
4293 if (task_ctx_data && !ctx->task_ctx_data) {
4294 ctx->task_ctx_data = task_ctx_data;
4295 task_ctx_data = NULL;
4296 }
e625cce1 4297 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
4298
4299 if (clone_ctx)
4300 put_ctx(clone_ctx);
9137fb28 4301 } else {
eb184479 4302 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
4303 err = -ENOMEM;
4304 if (!ctx)
4305 goto errout;
eb184479 4306
4af57ef2
YZ
4307 if (task_ctx_data) {
4308 ctx->task_ctx_data = task_ctx_data;
4309 task_ctx_data = NULL;
4310 }
4311
dbe08d82
ON
4312 err = 0;
4313 mutex_lock(&task->perf_event_mutex);
4314 /*
4315 * If it has already passed perf_event_exit_task().
4316 * we must see PF_EXITING, it takes this mutex too.
4317 */
4318 if (task->flags & PF_EXITING)
4319 err = -ESRCH;
4320 else if (task->perf_event_ctxp[ctxn])
4321 err = -EAGAIN;
fe4b04fa 4322 else {
9137fb28 4323 get_ctx(ctx);
fe4b04fa 4324 ++ctx->pin_count;
dbe08d82 4325 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 4326 }
dbe08d82
ON
4327 mutex_unlock(&task->perf_event_mutex);
4328
4329 if (unlikely(err)) {
9137fb28 4330 put_ctx(ctx);
dbe08d82
ON
4331
4332 if (err == -EAGAIN)
4333 goto retry;
4334 goto errout;
a63eaf34
PM
4335 }
4336 }
4337
4af57ef2 4338 kfree(task_ctx_data);
0793a61d 4339 return ctx;
c93f7669 4340
9ed6060d 4341errout:
4af57ef2 4342 kfree(task_ctx_data);
c93f7669 4343 return ERR_PTR(err);
0793a61d
TG
4344}
4345
6fb2915d 4346static void perf_event_free_filter(struct perf_event *event);
2541517c 4347static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 4348
cdd6c482 4349static void free_event_rcu(struct rcu_head *head)
592903cd 4350{
cdd6c482 4351 struct perf_event *event;
592903cd 4352
cdd6c482
IM
4353 event = container_of(head, struct perf_event, rcu_head);
4354 if (event->ns)
4355 put_pid_ns(event->ns);
6fb2915d 4356 perf_event_free_filter(event);
cdd6c482 4357 kfree(event);
592903cd
PZ
4358}
4359
b69cf536
PZ
4360static void ring_buffer_attach(struct perf_event *event,
4361 struct ring_buffer *rb);
925d519a 4362
f2fb6bef
KL
4363static void detach_sb_event(struct perf_event *event)
4364{
4365 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4366
4367 raw_spin_lock(&pel->lock);
4368 list_del_rcu(&event->sb_list);
4369 raw_spin_unlock(&pel->lock);
4370}
4371
a4f144eb 4372static bool is_sb_event(struct perf_event *event)
f2fb6bef 4373{
a4f144eb
DCC
4374 struct perf_event_attr *attr = &event->attr;
4375
f2fb6bef 4376 if (event->parent)
a4f144eb 4377 return false;
f2fb6bef
KL
4378
4379 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 4380 return false;
f2fb6bef 4381
a4f144eb
DCC
4382 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4383 attr->comm || attr->comm_exec ||
76193a94 4384 attr->task || attr->ksymbol ||
21038f2b
SL
4385 attr->context_switch ||
4386 attr->bpf_event)
a4f144eb
DCC
4387 return true;
4388 return false;
4389}
4390
4391static void unaccount_pmu_sb_event(struct perf_event *event)
4392{
4393 if (is_sb_event(event))
4394 detach_sb_event(event);
f2fb6bef
KL
4395}
4396
4beb31f3 4397static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 4398{
4beb31f3
FW
4399 if (event->parent)
4400 return;
4401
4beb31f3
FW
4402 if (is_cgroup_event(event))
4403 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4404}
925d519a 4405
555e0c1e
FW
4406#ifdef CONFIG_NO_HZ_FULL
4407static DEFINE_SPINLOCK(nr_freq_lock);
4408#endif
4409
4410static void unaccount_freq_event_nohz(void)
4411{
4412#ifdef CONFIG_NO_HZ_FULL
4413 spin_lock(&nr_freq_lock);
4414 if (atomic_dec_and_test(&nr_freq_events))
4415 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4416 spin_unlock(&nr_freq_lock);
4417#endif
4418}
4419
4420static void unaccount_freq_event(void)
4421{
4422 if (tick_nohz_full_enabled())
4423 unaccount_freq_event_nohz();
4424 else
4425 atomic_dec(&nr_freq_events);
4426}
4427
4beb31f3
FW
4428static void unaccount_event(struct perf_event *event)
4429{
25432ae9
PZ
4430 bool dec = false;
4431
4beb31f3
FW
4432 if (event->parent)
4433 return;
4434
4435 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 4436 dec = true;
4beb31f3
FW
4437 if (event->attr.mmap || event->attr.mmap_data)
4438 atomic_dec(&nr_mmap_events);
4439 if (event->attr.comm)
4440 atomic_dec(&nr_comm_events);
e4222673
HB
4441 if (event->attr.namespaces)
4442 atomic_dec(&nr_namespaces_events);
4beb31f3
FW
4443 if (event->attr.task)
4444 atomic_dec(&nr_task_events);
948b26b6 4445 if (event->attr.freq)
555e0c1e 4446 unaccount_freq_event();
45ac1403 4447 if (event->attr.context_switch) {
25432ae9 4448 dec = true;
45ac1403
AH
4449 atomic_dec(&nr_switch_events);
4450 }
4beb31f3 4451 if (is_cgroup_event(event))
25432ae9 4452 dec = true;
4beb31f3 4453 if (has_branch_stack(event))
25432ae9 4454 dec = true;
76193a94
SL
4455 if (event->attr.ksymbol)
4456 atomic_dec(&nr_ksymbol_events);
6ee52e2a
SL
4457 if (event->attr.bpf_event)
4458 atomic_dec(&nr_bpf_events);
25432ae9 4459
9107c89e
PZ
4460 if (dec) {
4461 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4462 schedule_delayed_work(&perf_sched_work, HZ);
4463 }
4beb31f3
FW
4464
4465 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
4466
4467 unaccount_pmu_sb_event(event);
4beb31f3 4468}
925d519a 4469
9107c89e
PZ
4470static void perf_sched_delayed(struct work_struct *work)
4471{
4472 mutex_lock(&perf_sched_mutex);
4473 if (atomic_dec_and_test(&perf_sched_count))
4474 static_branch_disable(&perf_sched_events);
4475 mutex_unlock(&perf_sched_mutex);
4476}
4477
bed5b25a
AS
4478/*
4479 * The following implement mutual exclusion of events on "exclusive" pmus
4480 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4481 * at a time, so we disallow creating events that might conflict, namely:
4482 *
4483 * 1) cpu-wide events in the presence of per-task events,
4484 * 2) per-task events in the presence of cpu-wide events,
4485 * 3) two matching events on the same context.
4486 *
4487 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 4488 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
4489 */
4490static int exclusive_event_init(struct perf_event *event)
4491{
4492 struct pmu *pmu = event->pmu;
4493
8a58ddae 4494 if (!is_exclusive_pmu(pmu))
bed5b25a
AS
4495 return 0;
4496
4497 /*
4498 * Prevent co-existence of per-task and cpu-wide events on the
4499 * same exclusive pmu.
4500 *
4501 * Negative pmu::exclusive_cnt means there are cpu-wide
4502 * events on this "exclusive" pmu, positive means there are
4503 * per-task events.
4504 *
4505 * Since this is called in perf_event_alloc() path, event::ctx
4506 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4507 * to mean "per-task event", because unlike other attach states it
4508 * never gets cleared.
4509 */
4510 if (event->attach_state & PERF_ATTACH_TASK) {
4511 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4512 return -EBUSY;
4513 } else {
4514 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4515 return -EBUSY;
4516 }
4517
4518 return 0;
4519}
4520
4521static void exclusive_event_destroy(struct perf_event *event)
4522{
4523 struct pmu *pmu = event->pmu;
4524
8a58ddae 4525 if (!is_exclusive_pmu(pmu))
bed5b25a
AS
4526 return;
4527
4528 /* see comment in exclusive_event_init() */
4529 if (event->attach_state & PERF_ATTACH_TASK)
4530 atomic_dec(&pmu->exclusive_cnt);
4531 else
4532 atomic_inc(&pmu->exclusive_cnt);
4533}
4534
4535static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4536{
3bf6215a 4537 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
4538 (e1->cpu == e2->cpu ||
4539 e1->cpu == -1 ||
4540 e2->cpu == -1))
4541 return true;
4542 return false;
4543}
4544
bed5b25a
AS
4545static bool exclusive_event_installable(struct perf_event *event,
4546 struct perf_event_context *ctx)
4547{
4548 struct perf_event *iter_event;
4549 struct pmu *pmu = event->pmu;
4550
8a58ddae
AS
4551 lockdep_assert_held(&ctx->mutex);
4552
4553 if (!is_exclusive_pmu(pmu))
bed5b25a
AS
4554 return true;
4555
4556 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4557 if (exclusive_event_match(iter_event, event))
4558 return false;
4559 }
4560
4561 return true;
4562}
4563
375637bc
AS
4564static void perf_addr_filters_splice(struct perf_event *event,
4565 struct list_head *head);
4566
683ede43 4567static void _free_event(struct perf_event *event)
f1600952 4568{
e360adbe 4569 irq_work_sync(&event->pending);
925d519a 4570
4beb31f3 4571 unaccount_event(event);
9ee318a7 4572
da97e184
JFG
4573 security_perf_event_free(event);
4574
76369139 4575 if (event->rb) {
9bb5d40c
PZ
4576 /*
4577 * Can happen when we close an event with re-directed output.
4578 *
4579 * Since we have a 0 refcount, perf_mmap_close() will skip
4580 * over us; possibly making our ring_buffer_put() the last.
4581 */
4582 mutex_lock(&event->mmap_mutex);
b69cf536 4583 ring_buffer_attach(event, NULL);
9bb5d40c 4584 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4585 }
4586
e5d1367f
SE
4587 if (is_cgroup_event(event))
4588 perf_detach_cgroup(event);
4589
a0733e69
PZ
4590 if (!event->parent) {
4591 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4592 put_callchain_buffers();
4593 }
4594
4595 perf_event_free_bpf_prog(event);
375637bc 4596 perf_addr_filters_splice(event, NULL);
c60f83b8 4597 kfree(event->addr_filter_ranges);
a0733e69
PZ
4598
4599 if (event->destroy)
4600 event->destroy(event);
4601
1cf8dfe8
PZ
4602 /*
4603 * Must be after ->destroy(), due to uprobe_perf_close() using
4604 * hw.target.
4605 */
621b6d2e
PB
4606 if (event->hw.target)
4607 put_task_struct(event->hw.target);
4608
1cf8dfe8
PZ
4609 /*
4610 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4611 * all task references must be cleaned up.
4612 */
4613 if (event->ctx)
4614 put_ctx(event->ctx);
4615
62a92c8f
AS
4616 exclusive_event_destroy(event);
4617 module_put(event->pmu->module);
a0733e69
PZ
4618
4619 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4620}
4621
683ede43
PZ
4622/*
4623 * Used to free events which have a known refcount of 1, such as in error paths
4624 * where the event isn't exposed yet and inherited events.
4625 */
4626static void free_event(struct perf_event *event)
0793a61d 4627{
683ede43
PZ
4628 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4629 "unexpected event refcount: %ld; ptr=%p\n",
4630 atomic_long_read(&event->refcount), event)) {
4631 /* leak to avoid use-after-free */
4632 return;
4633 }
0793a61d 4634
683ede43 4635 _free_event(event);
0793a61d
TG
4636}
4637
a66a3052 4638/*
f8697762 4639 * Remove user event from the owner task.
a66a3052 4640 */
f8697762 4641static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4642{
8882135b 4643 struct task_struct *owner;
fb0459d7 4644
8882135b 4645 rcu_read_lock();
8882135b 4646 /*
f47c02c0
PZ
4647 * Matches the smp_store_release() in perf_event_exit_task(). If we
4648 * observe !owner it means the list deletion is complete and we can
4649 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4650 * owner->perf_event_mutex.
4651 */
506458ef 4652 owner = READ_ONCE(event->owner);
8882135b
PZ
4653 if (owner) {
4654 /*
4655 * Since delayed_put_task_struct() also drops the last
4656 * task reference we can safely take a new reference
4657 * while holding the rcu_read_lock().
4658 */
4659 get_task_struct(owner);
4660 }
4661 rcu_read_unlock();
4662
4663 if (owner) {
f63a8daa
PZ
4664 /*
4665 * If we're here through perf_event_exit_task() we're already
4666 * holding ctx->mutex which would be an inversion wrt. the
4667 * normal lock order.
4668 *
4669 * However we can safely take this lock because its the child
4670 * ctx->mutex.
4671 */
4672 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4673
8882135b
PZ
4674 /*
4675 * We have to re-check the event->owner field, if it is cleared
4676 * we raced with perf_event_exit_task(), acquiring the mutex
4677 * ensured they're done, and we can proceed with freeing the
4678 * event.
4679 */
f47c02c0 4680 if (event->owner) {
8882135b 4681 list_del_init(&event->owner_entry);
f47c02c0
PZ
4682 smp_store_release(&event->owner, NULL);
4683 }
8882135b
PZ
4684 mutex_unlock(&owner->perf_event_mutex);
4685 put_task_struct(owner);
4686 }
f8697762
JO
4687}
4688
f8697762
JO
4689static void put_event(struct perf_event *event)
4690{
f8697762
JO
4691 if (!atomic_long_dec_and_test(&event->refcount))
4692 return;
4693
c6e5b732
PZ
4694 _free_event(event);
4695}
4696
4697/*
4698 * Kill an event dead; while event:refcount will preserve the event
4699 * object, it will not preserve its functionality. Once the last 'user'
4700 * gives up the object, we'll destroy the thing.
4701 */
4702int perf_event_release_kernel(struct perf_event *event)
4703{
a4f4bb6d 4704 struct perf_event_context *ctx = event->ctx;
c6e5b732 4705 struct perf_event *child, *tmp;
82d94856 4706 LIST_HEAD(free_list);
c6e5b732 4707
a4f4bb6d
PZ
4708 /*
4709 * If we got here through err_file: fput(event_file); we will not have
4710 * attached to a context yet.
4711 */
4712 if (!ctx) {
4713 WARN_ON_ONCE(event->attach_state &
4714 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4715 goto no_ctx;
4716 }
4717
f8697762
JO
4718 if (!is_kernel_event(event))
4719 perf_remove_from_owner(event);
8882135b 4720
5fa7c8ec 4721 ctx = perf_event_ctx_lock(event);
a83fe28e 4722 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4723 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4724
a69b0ca4 4725 raw_spin_lock_irq(&ctx->lock);
683ede43 4726 /*
d8a8cfc7 4727 * Mark this event as STATE_DEAD, there is no external reference to it
a69b0ca4 4728 * anymore.
683ede43 4729 *
a69b0ca4
PZ
4730 * Anybody acquiring event->child_mutex after the below loop _must_
4731 * also see this, most importantly inherit_event() which will avoid
4732 * placing more children on the list.
683ede43 4733 *
c6e5b732
PZ
4734 * Thus this guarantees that we will in fact observe and kill _ALL_
4735 * child events.
683ede43 4736 */
a69b0ca4
PZ
4737 event->state = PERF_EVENT_STATE_DEAD;
4738 raw_spin_unlock_irq(&ctx->lock);
4739
4740 perf_event_ctx_unlock(event, ctx);
683ede43 4741
c6e5b732
PZ
4742again:
4743 mutex_lock(&event->child_mutex);
4744 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4745
c6e5b732
PZ
4746 /*
4747 * Cannot change, child events are not migrated, see the
4748 * comment with perf_event_ctx_lock_nested().
4749 */
506458ef 4750 ctx = READ_ONCE(child->ctx);
c6e5b732
PZ
4751 /*
4752 * Since child_mutex nests inside ctx::mutex, we must jump
4753 * through hoops. We start by grabbing a reference on the ctx.
4754 *
4755 * Since the event cannot get freed while we hold the
4756 * child_mutex, the context must also exist and have a !0
4757 * reference count.
4758 */
4759 get_ctx(ctx);
4760
4761 /*
4762 * Now that we have a ctx ref, we can drop child_mutex, and
4763 * acquire ctx::mutex without fear of it going away. Then we
4764 * can re-acquire child_mutex.
4765 */
4766 mutex_unlock(&event->child_mutex);
4767 mutex_lock(&ctx->mutex);
4768 mutex_lock(&event->child_mutex);
4769
4770 /*
4771 * Now that we hold ctx::mutex and child_mutex, revalidate our
4772 * state, if child is still the first entry, it didn't get freed
4773 * and we can continue doing so.
4774 */
4775 tmp = list_first_entry_or_null(&event->child_list,
4776 struct perf_event, child_list);
4777 if (tmp == child) {
4778 perf_remove_from_context(child, DETACH_GROUP);
82d94856 4779 list_move(&child->child_list, &free_list);
c6e5b732
PZ
4780 /*
4781 * This matches the refcount bump in inherit_event();
4782 * this can't be the last reference.
4783 */
4784 put_event(event);
4785 }
4786
4787 mutex_unlock(&event->child_mutex);
4788 mutex_unlock(&ctx->mutex);
4789 put_ctx(ctx);
4790 goto again;
4791 }
4792 mutex_unlock(&event->child_mutex);
4793
82d94856 4794 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
1cf8dfe8
PZ
4795 void *var = &child->ctx->refcount;
4796
82d94856
PZ
4797 list_del(&child->child_list);
4798 free_event(child);
1cf8dfe8
PZ
4799
4800 /*
4801 * Wake any perf_event_free_task() waiting for this event to be
4802 * freed.
4803 */
4804 smp_mb(); /* pairs with wait_var_event() */
4805 wake_up_var(var);
82d94856
PZ
4806 }
4807
a4f4bb6d
PZ
4808no_ctx:
4809 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4810 return 0;
4811}
4812EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4813
8b10c5e2
PZ
4814/*
4815 * Called when the last reference to the file is gone.
4816 */
a6fa941d
AV
4817static int perf_release(struct inode *inode, struct file *file)
4818{
c6e5b732 4819 perf_event_release_kernel(file->private_data);
a6fa941d 4820 return 0;
fb0459d7 4821}
fb0459d7 4822
ca0dd44c 4823static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4824{
cdd6c482 4825 struct perf_event *child;
e53c0994
PZ
4826 u64 total = 0;
4827
59ed446f
PZ
4828 *enabled = 0;
4829 *running = 0;
4830
6f10581a 4831 mutex_lock(&event->child_mutex);
01add3ea 4832
7d88962e 4833 (void)perf_event_read(event, false);
01add3ea
SB
4834 total += perf_event_count(event);
4835
59ed446f
PZ
4836 *enabled += event->total_time_enabled +
4837 atomic64_read(&event->child_total_time_enabled);
4838 *running += event->total_time_running +
4839 atomic64_read(&event->child_total_time_running);
4840
4841 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4842 (void)perf_event_read(child, false);
01add3ea 4843 total += perf_event_count(child);
59ed446f
PZ
4844 *enabled += child->total_time_enabled;
4845 *running += child->total_time_running;
4846 }
6f10581a 4847 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4848
4849 return total;
4850}
ca0dd44c
PZ
4851
4852u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4853{
4854 struct perf_event_context *ctx;
4855 u64 count;
4856
4857 ctx = perf_event_ctx_lock(event);
4858 count = __perf_event_read_value(event, enabled, running);
4859 perf_event_ctx_unlock(event, ctx);
4860
4861 return count;
4862}
fb0459d7 4863EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4864
7d88962e 4865static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4866 u64 read_format, u64 *values)
3dab77fb 4867{
2aeb1883 4868 struct perf_event_context *ctx = leader->ctx;
fa8c2693 4869 struct perf_event *sub;
2aeb1883 4870 unsigned long flags;
fa8c2693 4871 int n = 1; /* skip @nr */
7d88962e 4872 int ret;
f63a8daa 4873
7d88962e
SB
4874 ret = perf_event_read(leader, true);
4875 if (ret)
4876 return ret;
abf4868b 4877
a9cd8194
PZ
4878 raw_spin_lock_irqsave(&ctx->lock, flags);
4879
fa8c2693
PZ
4880 /*
4881 * Since we co-schedule groups, {enabled,running} times of siblings
4882 * will be identical to those of the leader, so we only publish one
4883 * set.
4884 */
4885 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4886 values[n++] += leader->total_time_enabled +
4887 atomic64_read(&leader->child_total_time_enabled);
4888 }
3dab77fb 4889
fa8c2693
PZ
4890 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4891 values[n++] += leader->total_time_running +
4892 atomic64_read(&leader->child_total_time_running);
4893 }
4894
4895 /*
4896 * Write {count,id} tuples for every sibling.
4897 */
4898 values[n++] += perf_event_count(leader);
abf4868b
PZ
4899 if (read_format & PERF_FORMAT_ID)
4900 values[n++] = primary_event_id(leader);
3dab77fb 4901
edb39592 4902 for_each_sibling_event(sub, leader) {
fa8c2693
PZ
4903 values[n++] += perf_event_count(sub);
4904 if (read_format & PERF_FORMAT_ID)
4905 values[n++] = primary_event_id(sub);
4906 }
7d88962e 4907
2aeb1883 4908 raw_spin_unlock_irqrestore(&ctx->lock, flags);
7d88962e 4909 return 0;
fa8c2693 4910}
3dab77fb 4911
fa8c2693
PZ
4912static int perf_read_group(struct perf_event *event,
4913 u64 read_format, char __user *buf)
4914{
4915 struct perf_event *leader = event->group_leader, *child;
4916 struct perf_event_context *ctx = leader->ctx;
7d88962e 4917 int ret;
fa8c2693 4918 u64 *values;
3dab77fb 4919
fa8c2693 4920 lockdep_assert_held(&ctx->mutex);
3dab77fb 4921
fa8c2693
PZ
4922 values = kzalloc(event->read_size, GFP_KERNEL);
4923 if (!values)
4924 return -ENOMEM;
3dab77fb 4925
fa8c2693
PZ
4926 values[0] = 1 + leader->nr_siblings;
4927
4928 /*
4929 * By locking the child_mutex of the leader we effectively
4930 * lock the child list of all siblings.. XXX explain how.
4931 */
4932 mutex_lock(&leader->child_mutex);
abf4868b 4933
7d88962e
SB
4934 ret = __perf_read_group_add(leader, read_format, values);
4935 if (ret)
4936 goto unlock;
4937
4938 list_for_each_entry(child, &leader->child_list, child_list) {
4939 ret = __perf_read_group_add(child, read_format, values);
4940 if (ret)
4941 goto unlock;
4942 }
abf4868b 4943
fa8c2693 4944 mutex_unlock(&leader->child_mutex);
abf4868b 4945
7d88962e 4946 ret = event->read_size;
fa8c2693
PZ
4947 if (copy_to_user(buf, values, event->read_size))
4948 ret = -EFAULT;
7d88962e 4949 goto out;
fa8c2693 4950
7d88962e
SB
4951unlock:
4952 mutex_unlock(&leader->child_mutex);
4953out:
fa8c2693 4954 kfree(values);
abf4868b 4955 return ret;
3dab77fb
PZ
4956}
4957
b15f495b 4958static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4959 u64 read_format, char __user *buf)
4960{
59ed446f 4961 u64 enabled, running;
3dab77fb
PZ
4962 u64 values[4];
4963 int n = 0;
4964
ca0dd44c 4965 values[n++] = __perf_event_read_value(event, &enabled, &running);
59ed446f
PZ
4966 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4967 values[n++] = enabled;
4968 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4969 values[n++] = running;
3dab77fb 4970 if (read_format & PERF_FORMAT_ID)
cdd6c482 4971 values[n++] = primary_event_id(event);
3dab77fb
PZ
4972
4973 if (copy_to_user(buf, values, n * sizeof(u64)))
4974 return -EFAULT;
4975
4976 return n * sizeof(u64);
4977}
4978
dc633982
JO
4979static bool is_event_hup(struct perf_event *event)
4980{
4981 bool no_children;
4982
a69b0ca4 4983 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4984 return false;
4985
4986 mutex_lock(&event->child_mutex);
4987 no_children = list_empty(&event->child_list);
4988 mutex_unlock(&event->child_mutex);
4989 return no_children;
4990}
4991
0793a61d 4992/*
cdd6c482 4993 * Read the performance event - simple non blocking version for now
0793a61d
TG
4994 */
4995static ssize_t
b15f495b 4996__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4997{
cdd6c482 4998 u64 read_format = event->attr.read_format;
3dab77fb 4999 int ret;
0793a61d 5000
3b6f9e5c 5001 /*
788faab7 5002 * Return end-of-file for a read on an event that is in
3b6f9e5c
PM
5003 * error state (i.e. because it was pinned but it couldn't be
5004 * scheduled on to the CPU at some point).
5005 */
cdd6c482 5006 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
5007 return 0;
5008
c320c7b7 5009 if (count < event->read_size)
3dab77fb
PZ
5010 return -ENOSPC;
5011
cdd6c482 5012 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 5013 if (read_format & PERF_FORMAT_GROUP)
b15f495b 5014 ret = perf_read_group(event, read_format, buf);
3dab77fb 5015 else
b15f495b 5016 ret = perf_read_one(event, read_format, buf);
0793a61d 5017
3dab77fb 5018 return ret;
0793a61d
TG
5019}
5020
0793a61d
TG
5021static ssize_t
5022perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5023{
cdd6c482 5024 struct perf_event *event = file->private_data;
f63a8daa
PZ
5025 struct perf_event_context *ctx;
5026 int ret;
0793a61d 5027
da97e184
JFG
5028 ret = security_perf_event_read(event);
5029 if (ret)
5030 return ret;
5031
f63a8daa 5032 ctx = perf_event_ctx_lock(event);
b15f495b 5033 ret = __perf_read(event, buf, count);
f63a8daa
PZ
5034 perf_event_ctx_unlock(event, ctx);
5035
5036 return ret;
0793a61d
TG
5037}
5038
9dd95748 5039static __poll_t perf_poll(struct file *file, poll_table *wait)
0793a61d 5040{
cdd6c482 5041 struct perf_event *event = file->private_data;
76369139 5042 struct ring_buffer *rb;
a9a08845 5043 __poll_t events = EPOLLHUP;
c7138f37 5044
e708d7ad 5045 poll_wait(file, &event->waitq, wait);
179033b3 5046
dc633982 5047 if (is_event_hup(event))
179033b3 5048 return events;
c7138f37 5049
10c6db11 5050 /*
9bb5d40c
PZ
5051 * Pin the event->rb by taking event->mmap_mutex; otherwise
5052 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
5053 */
5054 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
5055 rb = event->rb;
5056 if (rb)
76369139 5057 events = atomic_xchg(&rb->poll, 0);
10c6db11 5058 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
5059 return events;
5060}
5061
f63a8daa 5062static void _perf_event_reset(struct perf_event *event)
6de6a7b9 5063{
7d88962e 5064 (void)perf_event_read(event, false);
e7850595 5065 local64_set(&event->count, 0);
cdd6c482 5066 perf_event_update_userpage(event);
3df5edad
PZ
5067}
5068
c93f7669 5069/*
cdd6c482
IM
5070 * Holding the top-level event's child_mutex means that any
5071 * descendant process that has inherited this event will block
8ba289b8 5072 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 5073 * task existence requirements of perf_event_enable/disable.
c93f7669 5074 */
cdd6c482
IM
5075static void perf_event_for_each_child(struct perf_event *event,
5076 void (*func)(struct perf_event *))
3df5edad 5077{
cdd6c482 5078 struct perf_event *child;
3df5edad 5079
cdd6c482 5080 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 5081
cdd6c482
IM
5082 mutex_lock(&event->child_mutex);
5083 func(event);
5084 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 5085 func(child);
cdd6c482 5086 mutex_unlock(&event->child_mutex);
3df5edad
PZ
5087}
5088
cdd6c482
IM
5089static void perf_event_for_each(struct perf_event *event,
5090 void (*func)(struct perf_event *))
3df5edad 5091{
cdd6c482
IM
5092 struct perf_event_context *ctx = event->ctx;
5093 struct perf_event *sibling;
3df5edad 5094
f63a8daa
PZ
5095 lockdep_assert_held(&ctx->mutex);
5096
cdd6c482 5097 event = event->group_leader;
75f937f2 5098
cdd6c482 5099 perf_event_for_each_child(event, func);
edb39592 5100 for_each_sibling_event(sibling, event)
724b6daa 5101 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
5102}
5103
fae3fde6
PZ
5104static void __perf_event_period(struct perf_event *event,
5105 struct perf_cpu_context *cpuctx,
5106 struct perf_event_context *ctx,
5107 void *info)
c7999c6f 5108{
fae3fde6 5109 u64 value = *((u64 *)info);
c7999c6f 5110 bool active;
08247e31 5111
cdd6c482 5112 if (event->attr.freq) {
cdd6c482 5113 event->attr.sample_freq = value;
08247e31 5114 } else {
cdd6c482
IM
5115 event->attr.sample_period = value;
5116 event->hw.sample_period = value;
08247e31 5117 }
bad7192b
PZ
5118
5119 active = (event->state == PERF_EVENT_STATE_ACTIVE);
5120 if (active) {
5121 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
5122 /*
5123 * We could be throttled; unthrottle now to avoid the tick
5124 * trying to unthrottle while we already re-started the event.
5125 */
5126 if (event->hw.interrupts == MAX_INTERRUPTS) {
5127 event->hw.interrupts = 0;
5128 perf_log_throttle(event, 1);
5129 }
bad7192b
PZ
5130 event->pmu->stop(event, PERF_EF_UPDATE);
5131 }
5132
5133 local64_set(&event->hw.period_left, 0);
5134
5135 if (active) {
5136 event->pmu->start(event, PERF_EF_RELOAD);
5137 perf_pmu_enable(ctx->pmu);
5138 }
c7999c6f
PZ
5139}
5140
81ec3f3c
JO
5141static int perf_event_check_period(struct perf_event *event, u64 value)
5142{
5143 return event->pmu->check_period(event, value);
5144}
5145
c7999c6f
PZ
5146static int perf_event_period(struct perf_event *event, u64 __user *arg)
5147{
c7999c6f
PZ
5148 u64 value;
5149
5150 if (!is_sampling_event(event))
5151 return -EINVAL;
5152
5153 if (copy_from_user(&value, arg, sizeof(value)))
5154 return -EFAULT;
5155
5156 if (!value)
5157 return -EINVAL;
5158
5159 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5160 return -EINVAL;
5161
81ec3f3c
JO
5162 if (perf_event_check_period(event, value))
5163 return -EINVAL;
5164
913a90bc
RB
5165 if (!event->attr.freq && (value & (1ULL << 63)))
5166 return -EINVAL;
5167
fae3fde6 5168 event_function_call(event, __perf_event_period, &value);
08247e31 5169
c7999c6f 5170 return 0;
08247e31
PZ
5171}
5172
ac9721f3
PZ
5173static const struct file_operations perf_fops;
5174
2903ff01 5175static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 5176{
2903ff01
AV
5177 struct fd f = fdget(fd);
5178 if (!f.file)
5179 return -EBADF;
ac9721f3 5180
2903ff01
AV
5181 if (f.file->f_op != &perf_fops) {
5182 fdput(f);
5183 return -EBADF;
ac9721f3 5184 }
2903ff01
AV
5185 *p = f;
5186 return 0;
ac9721f3
PZ
5187}
5188
5189static int perf_event_set_output(struct perf_event *event,
5190 struct perf_event *output_event);
6fb2915d 5191static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 5192static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
32ff77e8
MC
5193static int perf_copy_attr(struct perf_event_attr __user *uattr,
5194 struct perf_event_attr *attr);
a4be7c27 5195
f63a8daa 5196static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 5197{
cdd6c482 5198 void (*func)(struct perf_event *);
3df5edad 5199 u32 flags = arg;
d859e29f
PM
5200
5201 switch (cmd) {
cdd6c482 5202 case PERF_EVENT_IOC_ENABLE:
f63a8daa 5203 func = _perf_event_enable;
d859e29f 5204 break;
cdd6c482 5205 case PERF_EVENT_IOC_DISABLE:
f63a8daa 5206 func = _perf_event_disable;
79f14641 5207 break;
cdd6c482 5208 case PERF_EVENT_IOC_RESET:
f63a8daa 5209 func = _perf_event_reset;
6de6a7b9 5210 break;
3df5edad 5211
cdd6c482 5212 case PERF_EVENT_IOC_REFRESH:
f63a8daa 5213 return _perf_event_refresh(event, arg);
08247e31 5214
cdd6c482
IM
5215 case PERF_EVENT_IOC_PERIOD:
5216 return perf_event_period(event, (u64 __user *)arg);
08247e31 5217
cf4957f1
JO
5218 case PERF_EVENT_IOC_ID:
5219 {
5220 u64 id = primary_event_id(event);
5221
5222 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5223 return -EFAULT;
5224 return 0;
5225 }
5226
cdd6c482 5227 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 5228 {
ac9721f3 5229 int ret;
ac9721f3 5230 if (arg != -1) {
2903ff01
AV
5231 struct perf_event *output_event;
5232 struct fd output;
5233 ret = perf_fget_light(arg, &output);
5234 if (ret)
5235 return ret;
5236 output_event = output.file->private_data;
5237 ret = perf_event_set_output(event, output_event);
5238 fdput(output);
5239 } else {
5240 ret = perf_event_set_output(event, NULL);
ac9721f3 5241 }
ac9721f3
PZ
5242 return ret;
5243 }
a4be7c27 5244
6fb2915d
LZ
5245 case PERF_EVENT_IOC_SET_FILTER:
5246 return perf_event_set_filter(event, (void __user *)arg);
5247
2541517c
AS
5248 case PERF_EVENT_IOC_SET_BPF:
5249 return perf_event_set_bpf_prog(event, arg);
5250
86e7972f
WN
5251 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5252 struct ring_buffer *rb;
5253
5254 rcu_read_lock();
5255 rb = rcu_dereference(event->rb);
5256 if (!rb || !rb->nr_pages) {
5257 rcu_read_unlock();
5258 return -EINVAL;
5259 }
5260 rb_toggle_paused(rb, !!arg);
5261 rcu_read_unlock();
5262 return 0;
5263 }
f371b304
YS
5264
5265 case PERF_EVENT_IOC_QUERY_BPF:
f4e2298e 5266 return perf_event_query_prog_array(event, (void __user *)arg);
32ff77e8
MC
5267
5268 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5269 struct perf_event_attr new_attr;
5270 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5271 &new_attr);
5272
5273 if (err)
5274 return err;
5275
5276 return perf_event_modify_attr(event, &new_attr);
5277 }
d859e29f 5278 default:
3df5edad 5279 return -ENOTTY;
d859e29f 5280 }
3df5edad
PZ
5281
5282 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 5283 perf_event_for_each(event, func);
3df5edad 5284 else
cdd6c482 5285 perf_event_for_each_child(event, func);
3df5edad
PZ
5286
5287 return 0;
d859e29f
PM
5288}
5289
f63a8daa
PZ
5290static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5291{
5292 struct perf_event *event = file->private_data;
5293 struct perf_event_context *ctx;
5294 long ret;
5295
da97e184
JFG
5296 /* Treat ioctl like writes as it is likely a mutating operation. */
5297 ret = security_perf_event_write(event);
5298 if (ret)
5299 return ret;
5300
f63a8daa
PZ
5301 ctx = perf_event_ctx_lock(event);
5302 ret = _perf_ioctl(event, cmd, arg);
5303 perf_event_ctx_unlock(event, ctx);
5304
5305 return ret;
5306}
5307
b3f20785
PM
5308#ifdef CONFIG_COMPAT
5309static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5310 unsigned long arg)
5311{
5312 switch (_IOC_NR(cmd)) {
5313 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5314 case _IOC_NR(PERF_EVENT_IOC_ID):
82489c5f
ES
5315 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5316 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
b3f20785
PM
5317 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5318 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5319 cmd &= ~IOCSIZE_MASK;
5320 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5321 }
5322 break;
5323 }
5324 return perf_ioctl(file, cmd, arg);
5325}
5326#else
5327# define perf_compat_ioctl NULL
5328#endif
5329
cdd6c482 5330int perf_event_task_enable(void)
771d7cde 5331{
f63a8daa 5332 struct perf_event_context *ctx;
cdd6c482 5333 struct perf_event *event;
771d7cde 5334
cdd6c482 5335 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
5336 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5337 ctx = perf_event_ctx_lock(event);
5338 perf_event_for_each_child(event, _perf_event_enable);
5339 perf_event_ctx_unlock(event, ctx);
5340 }
cdd6c482 5341 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
5342
5343 return 0;
5344}
5345
cdd6c482 5346int perf_event_task_disable(void)
771d7cde 5347{
f63a8daa 5348 struct perf_event_context *ctx;
cdd6c482 5349 struct perf_event *event;
771d7cde 5350
cdd6c482 5351 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
5352 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5353 ctx = perf_event_ctx_lock(event);
5354 perf_event_for_each_child(event, _perf_event_disable);
5355 perf_event_ctx_unlock(event, ctx);
5356 }
cdd6c482 5357 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
5358
5359 return 0;
5360}
5361
cdd6c482 5362static int perf_event_index(struct perf_event *event)
194002b2 5363{
a4eaf7f1
PZ
5364 if (event->hw.state & PERF_HES_STOPPED)
5365 return 0;
5366
cdd6c482 5367 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
5368 return 0;
5369
35edc2a5 5370 return event->pmu->event_idx(event);
194002b2
PZ
5371}
5372
c4794295 5373static void calc_timer_values(struct perf_event *event,
e3f3541c 5374 u64 *now,
7f310a5d
EM
5375 u64 *enabled,
5376 u64 *running)
c4794295 5377{
e3f3541c 5378 u64 ctx_time;
c4794295 5379
e3f3541c
PZ
5380 *now = perf_clock();
5381 ctx_time = event->shadow_ctx_time + *now;
0d3d73aa 5382 __perf_update_times(event, ctx_time, enabled, running);
c4794295
EM
5383}
5384
fa731587
PZ
5385static void perf_event_init_userpage(struct perf_event *event)
5386{
5387 struct perf_event_mmap_page *userpg;
5388 struct ring_buffer *rb;
5389
5390 rcu_read_lock();
5391 rb = rcu_dereference(event->rb);
5392 if (!rb)
5393 goto unlock;
5394
5395 userpg = rb->user_page;
5396
5397 /* Allow new userspace to detect that bit 0 is deprecated */
5398 userpg->cap_bit0_is_deprecated = 1;
5399 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
5400 userpg->data_offset = PAGE_SIZE;
5401 userpg->data_size = perf_data_size(rb);
fa731587
PZ
5402
5403unlock:
5404 rcu_read_unlock();
5405}
5406
c1317ec2
AL
5407void __weak arch_perf_update_userpage(
5408 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
5409{
5410}
5411
38ff667b
PZ
5412/*
5413 * Callers need to ensure there can be no nesting of this function, otherwise
5414 * the seqlock logic goes bad. We can not serialize this because the arch
5415 * code calls this from NMI context.
5416 */
cdd6c482 5417void perf_event_update_userpage(struct perf_event *event)
37d81828 5418{
cdd6c482 5419 struct perf_event_mmap_page *userpg;
76369139 5420 struct ring_buffer *rb;
e3f3541c 5421 u64 enabled, running, now;
38ff667b
PZ
5422
5423 rcu_read_lock();
5ec4c599
PZ
5424 rb = rcu_dereference(event->rb);
5425 if (!rb)
5426 goto unlock;
5427
0d641208
EM
5428 /*
5429 * compute total_time_enabled, total_time_running
5430 * based on snapshot values taken when the event
5431 * was last scheduled in.
5432 *
5433 * we cannot simply called update_context_time()
5434 * because of locking issue as we can be called in
5435 * NMI context
5436 */
e3f3541c 5437 calc_timer_values(event, &now, &enabled, &running);
38ff667b 5438
76369139 5439 userpg = rb->user_page;
7b732a75 5440 /*
9d2dcc8f
MF
5441 * Disable preemption to guarantee consistent time stamps are stored to
5442 * the user page.
7b732a75
PZ
5443 */
5444 preempt_disable();
37d81828 5445 ++userpg->lock;
92f22a38 5446 barrier();
cdd6c482 5447 userpg->index = perf_event_index(event);
b5e58793 5448 userpg->offset = perf_event_count(event);
365a4038 5449 if (userpg->index)
e7850595 5450 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 5451
0d641208 5452 userpg->time_enabled = enabled +
cdd6c482 5453 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 5454
0d641208 5455 userpg->time_running = running +
cdd6c482 5456 atomic64_read(&event->child_total_time_running);
7f8b4e4e 5457
c1317ec2 5458 arch_perf_update_userpage(event, userpg, now);
e3f3541c 5459
92f22a38 5460 barrier();
37d81828 5461 ++userpg->lock;
7b732a75 5462 preempt_enable();
38ff667b 5463unlock:
7b732a75 5464 rcu_read_unlock();
37d81828 5465}
82975c46 5466EXPORT_SYMBOL_GPL(perf_event_update_userpage);
37d81828 5467
9e3ed2d7 5468static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
906010b2 5469{
11bac800 5470 struct perf_event *event = vmf->vma->vm_file->private_data;
76369139 5471 struct ring_buffer *rb;
9e3ed2d7 5472 vm_fault_t ret = VM_FAULT_SIGBUS;
906010b2
PZ
5473
5474 if (vmf->flags & FAULT_FLAG_MKWRITE) {
5475 if (vmf->pgoff == 0)
5476 ret = 0;
5477 return ret;
5478 }
5479
5480 rcu_read_lock();
76369139
FW
5481 rb = rcu_dereference(event->rb);
5482 if (!rb)
906010b2
PZ
5483 goto unlock;
5484
5485 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5486 goto unlock;
5487
76369139 5488 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
5489 if (!vmf->page)
5490 goto unlock;
5491
5492 get_page(vmf->page);
11bac800 5493 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
906010b2
PZ
5494 vmf->page->index = vmf->pgoff;
5495
5496 ret = 0;
5497unlock:
5498 rcu_read_unlock();
5499
5500 return ret;
5501}
5502
10c6db11
PZ
5503static void ring_buffer_attach(struct perf_event *event,
5504 struct ring_buffer *rb)
5505{
b69cf536 5506 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
5507 unsigned long flags;
5508
b69cf536
PZ
5509 if (event->rb) {
5510 /*
5511 * Should be impossible, we set this when removing
5512 * event->rb_entry and wait/clear when adding event->rb_entry.
5513 */
5514 WARN_ON_ONCE(event->rcu_pending);
10c6db11 5515
b69cf536 5516 old_rb = event->rb;
b69cf536
PZ
5517 spin_lock_irqsave(&old_rb->event_lock, flags);
5518 list_del_rcu(&event->rb_entry);
5519 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 5520
2f993cf0
ON
5521 event->rcu_batches = get_state_synchronize_rcu();
5522 event->rcu_pending = 1;
b69cf536 5523 }
10c6db11 5524
b69cf536 5525 if (rb) {
2f993cf0
ON
5526 if (event->rcu_pending) {
5527 cond_synchronize_rcu(event->rcu_batches);
5528 event->rcu_pending = 0;
5529 }
5530
b69cf536
PZ
5531 spin_lock_irqsave(&rb->event_lock, flags);
5532 list_add_rcu(&event->rb_entry, &rb->event_list);
5533 spin_unlock_irqrestore(&rb->event_lock, flags);
5534 }
5535
767ae086
AS
5536 /*
5537 * Avoid racing with perf_mmap_close(AUX): stop the event
5538 * before swizzling the event::rb pointer; if it's getting
5539 * unmapped, its aux_mmap_count will be 0 and it won't
5540 * restart. See the comment in __perf_pmu_output_stop().
5541 *
5542 * Data will inevitably be lost when set_output is done in
5543 * mid-air, but then again, whoever does it like this is
5544 * not in for the data anyway.
5545 */
5546 if (has_aux(event))
5547 perf_event_stop(event, 0);
5548
b69cf536
PZ
5549 rcu_assign_pointer(event->rb, rb);
5550
5551 if (old_rb) {
5552 ring_buffer_put(old_rb);
5553 /*
5554 * Since we detached before setting the new rb, so that we
5555 * could attach the new rb, we could have missed a wakeup.
5556 * Provide it now.
5557 */
5558 wake_up_all(&event->waitq);
5559 }
10c6db11
PZ
5560}
5561
5562static void ring_buffer_wakeup(struct perf_event *event)
5563{
5564 struct ring_buffer *rb;
5565
5566 rcu_read_lock();
5567 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
5568 if (rb) {
5569 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5570 wake_up_all(&event->waitq);
5571 }
10c6db11
PZ
5572 rcu_read_unlock();
5573}
5574
fdc26706 5575struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 5576{
76369139 5577 struct ring_buffer *rb;
7b732a75 5578
ac9721f3 5579 rcu_read_lock();
76369139
FW
5580 rb = rcu_dereference(event->rb);
5581 if (rb) {
fecb8ed2 5582 if (!refcount_inc_not_zero(&rb->refcount))
76369139 5583 rb = NULL;
ac9721f3
PZ
5584 }
5585 rcu_read_unlock();
5586
76369139 5587 return rb;
ac9721f3
PZ
5588}
5589
fdc26706 5590void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 5591{
fecb8ed2 5592 if (!refcount_dec_and_test(&rb->refcount))
ac9721f3 5593 return;
7b732a75 5594
9bb5d40c 5595 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 5596
76369139 5597 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
5598}
5599
5600static void perf_mmap_open(struct vm_area_struct *vma)
5601{
cdd6c482 5602 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5603
cdd6c482 5604 atomic_inc(&event->mmap_count);
9bb5d40c 5605 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 5606
45bfb2e5
PZ
5607 if (vma->vm_pgoff)
5608 atomic_inc(&event->rb->aux_mmap_count);
5609
1e0fb9ec 5610 if (event->pmu->event_mapped)
bfe33492 5611 event->pmu->event_mapped(event, vma->vm_mm);
7b732a75
PZ
5612}
5613
95ff4ca2
AS
5614static void perf_pmu_output_stop(struct perf_event *event);
5615
9bb5d40c
PZ
5616/*
5617 * A buffer can be mmap()ed multiple times; either directly through the same
5618 * event, or through other events by use of perf_event_set_output().
5619 *
5620 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5621 * the buffer here, where we still have a VM context. This means we need
5622 * to detach all events redirecting to us.
5623 */
7b732a75
PZ
5624static void perf_mmap_close(struct vm_area_struct *vma)
5625{
cdd6c482 5626 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5627
b69cf536 5628 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
5629 struct user_struct *mmap_user = rb->mmap_user;
5630 int mmap_locked = rb->mmap_locked;
5631 unsigned long size = perf_data_size(rb);
789f90fc 5632
1e0fb9ec 5633 if (event->pmu->event_unmapped)
bfe33492 5634 event->pmu->event_unmapped(event, vma->vm_mm);
1e0fb9ec 5635
45bfb2e5
PZ
5636 /*
5637 * rb->aux_mmap_count will always drop before rb->mmap_count and
5638 * event->mmap_count, so it is ok to use event->mmap_mutex to
5639 * serialize with perf_mmap here.
5640 */
5641 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5642 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
5643 /*
5644 * Stop all AUX events that are writing to this buffer,
5645 * so that we can free its AUX pages and corresponding PMU
5646 * data. Note that after rb::aux_mmap_count dropped to zero,
5647 * they won't start any more (see perf_aux_output_begin()).
5648 */
5649 perf_pmu_output_stop(event);
5650
5651 /* now it's safe to free the pages */
5e6c3c7b
TR
5652 if (!rb->aux_mmap_locked)
5653 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5654 else
5655 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
45bfb2e5 5656
95ff4ca2 5657 /* this has to be the last one */
45bfb2e5 5658 rb_free_aux(rb);
ca3bb3d0 5659 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
95ff4ca2 5660
45bfb2e5
PZ
5661 mutex_unlock(&event->mmap_mutex);
5662 }
5663
9bb5d40c
PZ
5664 atomic_dec(&rb->mmap_count);
5665
5666 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 5667 goto out_put;
9bb5d40c 5668
b69cf536 5669 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
5670 mutex_unlock(&event->mmap_mutex);
5671
5672 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
5673 if (atomic_read(&rb->mmap_count))
5674 goto out_put;
ac9721f3 5675
9bb5d40c
PZ
5676 /*
5677 * No other mmap()s, detach from all other events that might redirect
5678 * into the now unreachable buffer. Somewhat complicated by the
5679 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5680 */
5681again:
5682 rcu_read_lock();
5683 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5684 if (!atomic_long_inc_not_zero(&event->refcount)) {
5685 /*
5686 * This event is en-route to free_event() which will
5687 * detach it and remove it from the list.
5688 */
5689 continue;
5690 }
5691 rcu_read_unlock();
789f90fc 5692
9bb5d40c
PZ
5693 mutex_lock(&event->mmap_mutex);
5694 /*
5695 * Check we didn't race with perf_event_set_output() which can
5696 * swizzle the rb from under us while we were waiting to
5697 * acquire mmap_mutex.
5698 *
5699 * If we find a different rb; ignore this event, a next
5700 * iteration will no longer find it on the list. We have to
5701 * still restart the iteration to make sure we're not now
5702 * iterating the wrong list.
5703 */
b69cf536
PZ
5704 if (event->rb == rb)
5705 ring_buffer_attach(event, NULL);
5706
cdd6c482 5707 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5708 put_event(event);
ac9721f3 5709
9bb5d40c
PZ
5710 /*
5711 * Restart the iteration; either we're on the wrong list or
5712 * destroyed its integrity by doing a deletion.
5713 */
5714 goto again;
7b732a75 5715 }
9bb5d40c
PZ
5716 rcu_read_unlock();
5717
5718 /*
5719 * It could be there's still a few 0-ref events on the list; they'll
5720 * get cleaned up by free_event() -- they'll also still have their
5721 * ref on the rb and will free it whenever they are done with it.
5722 *
5723 * Aside from that, this buffer is 'fully' detached and unmapped,
5724 * undo the VM accounting.
5725 */
5726
d44248a4
SL
5727 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
5728 &mmap_user->locked_vm);
70f8a3ca 5729 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
9bb5d40c
PZ
5730 free_uid(mmap_user);
5731
b69cf536 5732out_put:
9bb5d40c 5733 ring_buffer_put(rb); /* could be last */
37d81828
PM
5734}
5735
f0f37e2f 5736static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5737 .open = perf_mmap_open,
fca0c116 5738 .close = perf_mmap_close, /* non mergeable */
43a21ea8
PZ
5739 .fault = perf_mmap_fault,
5740 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5741};
5742
5743static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5744{
cdd6c482 5745 struct perf_event *event = file->private_data;
22a4f650 5746 unsigned long user_locked, user_lock_limit;
789f90fc 5747 struct user_struct *user = current_user();
22a4f650 5748 unsigned long locked, lock_limit;
45bfb2e5 5749 struct ring_buffer *rb = NULL;
7b732a75
PZ
5750 unsigned long vma_size;
5751 unsigned long nr_pages;
45bfb2e5 5752 long user_extra = 0, extra = 0;
d57e34fd 5753 int ret = 0, flags = 0;
37d81828 5754
c7920614
PZ
5755 /*
5756 * Don't allow mmap() of inherited per-task counters. This would
5757 * create a performance issue due to all children writing to the
76369139 5758 * same rb.
c7920614
PZ
5759 */
5760 if (event->cpu == -1 && event->attr.inherit)
5761 return -EINVAL;
5762
43a21ea8 5763 if (!(vma->vm_flags & VM_SHARED))
37d81828 5764 return -EINVAL;
7b732a75 5765
da97e184
JFG
5766 ret = security_perf_event_read(event);
5767 if (ret)
5768 return ret;
5769
7b732a75 5770 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
5771
5772 if (vma->vm_pgoff == 0) {
5773 nr_pages = (vma_size / PAGE_SIZE) - 1;
5774 } else {
5775 /*
5776 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5777 * mapped, all subsequent mappings should have the same size
5778 * and offset. Must be above the normal perf buffer.
5779 */
5780 u64 aux_offset, aux_size;
5781
5782 if (!event->rb)
5783 return -EINVAL;
5784
5785 nr_pages = vma_size / PAGE_SIZE;
5786
5787 mutex_lock(&event->mmap_mutex);
5788 ret = -EINVAL;
5789
5790 rb = event->rb;
5791 if (!rb)
5792 goto aux_unlock;
5793
6aa7de05
MR
5794 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5795 aux_size = READ_ONCE(rb->user_page->aux_size);
45bfb2e5
PZ
5796
5797 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5798 goto aux_unlock;
5799
5800 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5801 goto aux_unlock;
5802
5803 /* already mapped with a different offset */
5804 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5805 goto aux_unlock;
5806
5807 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5808 goto aux_unlock;
5809
5810 /* already mapped with a different size */
5811 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5812 goto aux_unlock;
5813
5814 if (!is_power_of_2(nr_pages))
5815 goto aux_unlock;
5816
5817 if (!atomic_inc_not_zero(&rb->mmap_count))
5818 goto aux_unlock;
5819
5820 if (rb_has_aux(rb)) {
5821 atomic_inc(&rb->aux_mmap_count);
5822 ret = 0;
5823 goto unlock;
5824 }
5825
5826 atomic_set(&rb->aux_mmap_count, 1);
5827 user_extra = nr_pages;
5828
5829 goto accounting;
5830 }
7b732a75 5831
7730d865 5832 /*
76369139 5833 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
5834 * can do bitmasks instead of modulo.
5835 */
2ed11312 5836 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
5837 return -EINVAL;
5838
7b732a75 5839 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
5840 return -EINVAL;
5841
cdd6c482 5842 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 5843again:
cdd6c482 5844 mutex_lock(&event->mmap_mutex);
76369139 5845 if (event->rb) {
9bb5d40c 5846 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 5847 ret = -EINVAL;
9bb5d40c
PZ
5848 goto unlock;
5849 }
5850
5851 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5852 /*
5853 * Raced against perf_mmap_close() through
5854 * perf_event_set_output(). Try again, hope for better
5855 * luck.
5856 */
5857 mutex_unlock(&event->mmap_mutex);
5858 goto again;
5859 }
5860
ebb3c4c4
PZ
5861 goto unlock;
5862 }
5863
789f90fc 5864 user_extra = nr_pages + 1;
45bfb2e5
PZ
5865
5866accounting:
cdd6c482 5867 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
5868
5869 /*
5870 * Increase the limit linearly with more CPUs:
5871 */
5872 user_lock_limit *= num_online_cpus();
5873
789f90fc 5874 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 5875
d44248a4
SL
5876 if (user_locked <= user_lock_limit) {
5877 /* charge all to locked_vm */
5878 } else if (atomic_long_read(&user->locked_vm) >= user_lock_limit) {
5879 /* charge all to pinned_vm */
5880 extra = user_extra;
5881 user_extra = 0;
5882 } else {
5883 /*
5884 * charge locked_vm until it hits user_lock_limit;
5885 * charge the rest from pinned_vm
5886 */
789f90fc 5887 extra = user_locked - user_lock_limit;
d44248a4
SL
5888 user_extra -= extra;
5889 }
7b732a75 5890
78d7d407 5891 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 5892 lock_limit >>= PAGE_SHIFT;
70f8a3ca 5893 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
7b732a75 5894
da97e184 5895 if ((locked > lock_limit) && perf_is_paranoid() &&
459ec28a 5896 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
5897 ret = -EPERM;
5898 goto unlock;
5899 }
7b732a75 5900
45bfb2e5 5901 WARN_ON(!rb && event->rb);
906010b2 5902
d57e34fd 5903 if (vma->vm_flags & VM_WRITE)
76369139 5904 flags |= RING_BUFFER_WRITABLE;
d57e34fd 5905
76369139 5906 if (!rb) {
45bfb2e5
PZ
5907 rb = rb_alloc(nr_pages,
5908 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5909 event->cpu, flags);
26cb63ad 5910
45bfb2e5
PZ
5911 if (!rb) {
5912 ret = -ENOMEM;
5913 goto unlock;
5914 }
43a21ea8 5915
45bfb2e5
PZ
5916 atomic_set(&rb->mmap_count, 1);
5917 rb->mmap_user = get_current_user();
5918 rb->mmap_locked = extra;
26cb63ad 5919
45bfb2e5 5920 ring_buffer_attach(event, rb);
ac9721f3 5921
45bfb2e5
PZ
5922 perf_event_init_userpage(event);
5923 perf_event_update_userpage(event);
5924 } else {
1a594131
AS
5925 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5926 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5927 if (!ret)
5928 rb->aux_mmap_locked = extra;
5929 }
9a0f05cb 5930
ebb3c4c4 5931unlock:
45bfb2e5
PZ
5932 if (!ret) {
5933 atomic_long_add(user_extra, &user->locked_vm);
70f8a3ca 5934 atomic64_add(extra, &vma->vm_mm->pinned_vm);
45bfb2e5 5935
ac9721f3 5936 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5937 } else if (rb) {
5938 atomic_dec(&rb->mmap_count);
5939 }
5940aux_unlock:
cdd6c482 5941 mutex_unlock(&event->mmap_mutex);
37d81828 5942
9bb5d40c
PZ
5943 /*
5944 * Since pinned accounting is per vm we cannot allow fork() to copy our
5945 * vma.
5946 */
26cb63ad 5947 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5948 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5949
1e0fb9ec 5950 if (event->pmu->event_mapped)
bfe33492 5951 event->pmu->event_mapped(event, vma->vm_mm);
1e0fb9ec 5952
7b732a75 5953 return ret;
37d81828
PM
5954}
5955
3c446b3d
PZ
5956static int perf_fasync(int fd, struct file *filp, int on)
5957{
496ad9aa 5958 struct inode *inode = file_inode(filp);
cdd6c482 5959 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5960 int retval;
5961
5955102c 5962 inode_lock(inode);
cdd6c482 5963 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5964 inode_unlock(inode);
3c446b3d
PZ
5965
5966 if (retval < 0)
5967 return retval;
5968
5969 return 0;
5970}
5971
0793a61d 5972static const struct file_operations perf_fops = {
3326c1ce 5973 .llseek = no_llseek,
0793a61d
TG
5974 .release = perf_release,
5975 .read = perf_read,
5976 .poll = perf_poll,
d859e29f 5977 .unlocked_ioctl = perf_ioctl,
b3f20785 5978 .compat_ioctl = perf_compat_ioctl,
37d81828 5979 .mmap = perf_mmap,
3c446b3d 5980 .fasync = perf_fasync,
0793a61d
TG
5981};
5982
925d519a 5983/*
cdd6c482 5984 * Perf event wakeup
925d519a
PZ
5985 *
5986 * If there's data, ensure we set the poll() state and publish everything
5987 * to user-space before waking everybody up.
5988 */
5989
fed66e2c
PZ
5990static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5991{
5992 /* only the parent has fasync state */
5993 if (event->parent)
5994 event = event->parent;
5995 return &event->fasync;
5996}
5997
cdd6c482 5998void perf_event_wakeup(struct perf_event *event)
925d519a 5999{
10c6db11 6000 ring_buffer_wakeup(event);
4c9e2542 6001
cdd6c482 6002 if (event->pending_kill) {
fed66e2c 6003 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 6004 event->pending_kill = 0;
4c9e2542 6005 }
925d519a
PZ
6006}
6007
1d54ad94
PZ
6008static void perf_pending_event_disable(struct perf_event *event)
6009{
6010 int cpu = READ_ONCE(event->pending_disable);
6011
6012 if (cpu < 0)
6013 return;
6014
6015 if (cpu == smp_processor_id()) {
6016 WRITE_ONCE(event->pending_disable, -1);
6017 perf_event_disable_local(event);
6018 return;
6019 }
6020
6021 /*
6022 * CPU-A CPU-B
6023 *
6024 * perf_event_disable_inatomic()
6025 * @pending_disable = CPU-A;
6026 * irq_work_queue();
6027 *
6028 * sched-out
6029 * @pending_disable = -1;
6030 *
6031 * sched-in
6032 * perf_event_disable_inatomic()
6033 * @pending_disable = CPU-B;
6034 * irq_work_queue(); // FAILS
6035 *
6036 * irq_work_run()
6037 * perf_pending_event()
6038 *
6039 * But the event runs on CPU-B and wants disabling there.
6040 */
6041 irq_work_queue_on(&event->pending, cpu);
6042}
6043
e360adbe 6044static void perf_pending_event(struct irq_work *entry)
79f14641 6045{
1d54ad94 6046 struct perf_event *event = container_of(entry, struct perf_event, pending);
d525211f
PZ
6047 int rctx;
6048
6049 rctx = perf_swevent_get_recursion_context();
6050 /*
6051 * If we 'fail' here, that's OK, it means recursion is already disabled
6052 * and we won't recurse 'further'.
6053 */
79f14641 6054
1d54ad94 6055 perf_pending_event_disable(event);
79f14641 6056
cdd6c482
IM
6057 if (event->pending_wakeup) {
6058 event->pending_wakeup = 0;
6059 perf_event_wakeup(event);
79f14641 6060 }
d525211f
PZ
6061
6062 if (rctx >= 0)
6063 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
6064}
6065
39447b38
ZY
6066/*
6067 * We assume there is only KVM supporting the callbacks.
6068 * Later on, we might change it to a list if there is
6069 * another virtualization implementation supporting the callbacks.
6070 */
6071struct perf_guest_info_callbacks *perf_guest_cbs;
6072
6073int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6074{
6075 perf_guest_cbs = cbs;
6076 return 0;
6077}
6078EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6079
6080int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6081{
6082 perf_guest_cbs = NULL;
6083 return 0;
6084}
6085EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6086
4018994f
JO
6087static void
6088perf_output_sample_regs(struct perf_output_handle *handle,
6089 struct pt_regs *regs, u64 mask)
6090{
6091 int bit;
29dd3288 6092 DECLARE_BITMAP(_mask, 64);
4018994f 6093
29dd3288
MS
6094 bitmap_from_u64(_mask, mask);
6095 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
6096 u64 val;
6097
6098 val = perf_reg_value(regs, bit);
6099 perf_output_put(handle, val);
6100 }
6101}
6102
60e2364e 6103static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
6104 struct pt_regs *regs,
6105 struct pt_regs *regs_user_copy)
4018994f 6106{
88a7c26a
AL
6107 if (user_mode(regs)) {
6108 regs_user->abi = perf_reg_abi(current);
2565711f 6109 regs_user->regs = regs;
085ebfe9 6110 } else if (!(current->flags & PF_KTHREAD)) {
88a7c26a 6111 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
6112 } else {
6113 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6114 regs_user->regs = NULL;
4018994f
JO
6115 }
6116}
6117
60e2364e
SE
6118static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6119 struct pt_regs *regs)
6120{
6121 regs_intr->regs = regs;
6122 regs_intr->abi = perf_reg_abi(current);
6123}
6124
6125
c5ebcedb
JO
6126/*
6127 * Get remaining task size from user stack pointer.
6128 *
6129 * It'd be better to take stack vma map and limit this more
9f014e3a 6130 * precisely, but there's no way to get it safely under interrupt,
c5ebcedb
JO
6131 * so using TASK_SIZE as limit.
6132 */
6133static u64 perf_ustack_task_size(struct pt_regs *regs)
6134{
6135 unsigned long addr = perf_user_stack_pointer(regs);
6136
6137 if (!addr || addr >= TASK_SIZE)
6138 return 0;
6139
6140 return TASK_SIZE - addr;
6141}
6142
6143static u16
6144perf_sample_ustack_size(u16 stack_size, u16 header_size,
6145 struct pt_regs *regs)
6146{
6147 u64 task_size;
6148
6149 /* No regs, no stack pointer, no dump. */
6150 if (!regs)
6151 return 0;
6152
6153 /*
6154 * Check if we fit in with the requested stack size into the:
6155 * - TASK_SIZE
6156 * If we don't, we limit the size to the TASK_SIZE.
6157 *
6158 * - remaining sample size
6159 * If we don't, we customize the stack size to
6160 * fit in to the remaining sample size.
6161 */
6162
6163 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6164 stack_size = min(stack_size, (u16) task_size);
6165
6166 /* Current header size plus static size and dynamic size. */
6167 header_size += 2 * sizeof(u64);
6168
6169 /* Do we fit in with the current stack dump size? */
6170 if ((u16) (header_size + stack_size) < header_size) {
6171 /*
6172 * If we overflow the maximum size for the sample,
6173 * we customize the stack dump size to fit in.
6174 */
6175 stack_size = USHRT_MAX - header_size - sizeof(u64);
6176 stack_size = round_up(stack_size, sizeof(u64));
6177 }
6178
6179 return stack_size;
6180}
6181
6182static void
6183perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6184 struct pt_regs *regs)
6185{
6186 /* Case of a kernel thread, nothing to dump */
6187 if (!regs) {
6188 u64 size = 0;
6189 perf_output_put(handle, size);
6190 } else {
6191 unsigned long sp;
6192 unsigned int rem;
6193 u64 dyn_size;
02e18447 6194 mm_segment_t fs;
c5ebcedb
JO
6195
6196 /*
6197 * We dump:
6198 * static size
6199 * - the size requested by user or the best one we can fit
6200 * in to the sample max size
6201 * data
6202 * - user stack dump data
6203 * dynamic size
6204 * - the actual dumped size
6205 */
6206
6207 /* Static size. */
6208 perf_output_put(handle, dump_size);
6209
6210 /* Data. */
6211 sp = perf_user_stack_pointer(regs);
02e18447
YC
6212 fs = get_fs();
6213 set_fs(USER_DS);
c5ebcedb 6214 rem = __output_copy_user(handle, (void *) sp, dump_size);
02e18447 6215 set_fs(fs);
c5ebcedb
JO
6216 dyn_size = dump_size - rem;
6217
6218 perf_output_skip(handle, rem);
6219
6220 /* Dynamic size. */
6221 perf_output_put(handle, dyn_size);
6222 }
6223}
6224
c980d109
ACM
6225static void __perf_event_header__init_id(struct perf_event_header *header,
6226 struct perf_sample_data *data,
6227 struct perf_event *event)
6844c09d
ACM
6228{
6229 u64 sample_type = event->attr.sample_type;
6230
6231 data->type = sample_type;
6232 header->size += event->id_header_size;
6233
6234 if (sample_type & PERF_SAMPLE_TID) {
6235 /* namespace issues */
6236 data->tid_entry.pid = perf_event_pid(event, current);
6237 data->tid_entry.tid = perf_event_tid(event, current);
6238 }
6239
6240 if (sample_type & PERF_SAMPLE_TIME)
34f43927 6241 data->time = perf_event_clock(event);
6844c09d 6242
ff3d527c 6243 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
6244 data->id = primary_event_id(event);
6245
6246 if (sample_type & PERF_SAMPLE_STREAM_ID)
6247 data->stream_id = event->id;
6248
6249 if (sample_type & PERF_SAMPLE_CPU) {
6250 data->cpu_entry.cpu = raw_smp_processor_id();
6251 data->cpu_entry.reserved = 0;
6252 }
6253}
6254
76369139
FW
6255void perf_event_header__init_id(struct perf_event_header *header,
6256 struct perf_sample_data *data,
6257 struct perf_event *event)
c980d109
ACM
6258{
6259 if (event->attr.sample_id_all)
6260 __perf_event_header__init_id(header, data, event);
6261}
6262
6263static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6264 struct perf_sample_data *data)
6265{
6266 u64 sample_type = data->type;
6267
6268 if (sample_type & PERF_SAMPLE_TID)
6269 perf_output_put(handle, data->tid_entry);
6270
6271 if (sample_type & PERF_SAMPLE_TIME)
6272 perf_output_put(handle, data->time);
6273
6274 if (sample_type & PERF_SAMPLE_ID)
6275 perf_output_put(handle, data->id);
6276
6277 if (sample_type & PERF_SAMPLE_STREAM_ID)
6278 perf_output_put(handle, data->stream_id);
6279
6280 if (sample_type & PERF_SAMPLE_CPU)
6281 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
6282
6283 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6284 perf_output_put(handle, data->id);
c980d109
ACM
6285}
6286
76369139
FW
6287void perf_event__output_id_sample(struct perf_event *event,
6288 struct perf_output_handle *handle,
6289 struct perf_sample_data *sample)
c980d109
ACM
6290{
6291 if (event->attr.sample_id_all)
6292 __perf_event__output_id_sample(handle, sample);
6293}
6294
3dab77fb 6295static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
6296 struct perf_event *event,
6297 u64 enabled, u64 running)
3dab77fb 6298{
cdd6c482 6299 u64 read_format = event->attr.read_format;
3dab77fb
PZ
6300 u64 values[4];
6301 int n = 0;
6302
b5e58793 6303 values[n++] = perf_event_count(event);
3dab77fb 6304 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 6305 values[n++] = enabled +
cdd6c482 6306 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
6307 }
6308 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 6309 values[n++] = running +
cdd6c482 6310 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
6311 }
6312 if (read_format & PERF_FORMAT_ID)
cdd6c482 6313 values[n++] = primary_event_id(event);
3dab77fb 6314
76369139 6315 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
6316}
6317
3dab77fb 6318static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
6319 struct perf_event *event,
6320 u64 enabled, u64 running)
3dab77fb 6321{
cdd6c482
IM
6322 struct perf_event *leader = event->group_leader, *sub;
6323 u64 read_format = event->attr.read_format;
3dab77fb
PZ
6324 u64 values[5];
6325 int n = 0;
6326
6327 values[n++] = 1 + leader->nr_siblings;
6328
6329 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 6330 values[n++] = enabled;
3dab77fb
PZ
6331
6332 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 6333 values[n++] = running;
3dab77fb 6334
9e5b127d
PZ
6335 if ((leader != event) &&
6336 (leader->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
6337 leader->pmu->read(leader);
6338
b5e58793 6339 values[n++] = perf_event_count(leader);
3dab77fb 6340 if (read_format & PERF_FORMAT_ID)
cdd6c482 6341 values[n++] = primary_event_id(leader);
3dab77fb 6342
76369139 6343 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 6344
edb39592 6345 for_each_sibling_event(sub, leader) {
3dab77fb
PZ
6346 n = 0;
6347
6f5ab001
JO
6348 if ((sub != event) &&
6349 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
6350 sub->pmu->read(sub);
6351
b5e58793 6352 values[n++] = perf_event_count(sub);
3dab77fb 6353 if (read_format & PERF_FORMAT_ID)
cdd6c482 6354 values[n++] = primary_event_id(sub);
3dab77fb 6355
76369139 6356 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
6357 }
6358}
6359
eed01528
SE
6360#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6361 PERF_FORMAT_TOTAL_TIME_RUNNING)
6362
ba5213ae
PZ
6363/*
6364 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6365 *
6366 * The problem is that its both hard and excessively expensive to iterate the
6367 * child list, not to mention that its impossible to IPI the children running
6368 * on another CPU, from interrupt/NMI context.
6369 */
3dab77fb 6370static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 6371 struct perf_event *event)
3dab77fb 6372{
e3f3541c 6373 u64 enabled = 0, running = 0, now;
eed01528
SE
6374 u64 read_format = event->attr.read_format;
6375
6376 /*
6377 * compute total_time_enabled, total_time_running
6378 * based on snapshot values taken when the event
6379 * was last scheduled in.
6380 *
6381 * we cannot simply called update_context_time()
6382 * because of locking issue as we are called in
6383 * NMI context
6384 */
c4794295 6385 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 6386 calc_timer_values(event, &now, &enabled, &running);
eed01528 6387
cdd6c482 6388 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 6389 perf_output_read_group(handle, event, enabled, running);
3dab77fb 6390 else
eed01528 6391 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
6392}
6393
5622f295
MM
6394void perf_output_sample(struct perf_output_handle *handle,
6395 struct perf_event_header *header,
6396 struct perf_sample_data *data,
cdd6c482 6397 struct perf_event *event)
5622f295
MM
6398{
6399 u64 sample_type = data->type;
6400
6401 perf_output_put(handle, *header);
6402
ff3d527c
AH
6403 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6404 perf_output_put(handle, data->id);
6405
5622f295
MM
6406 if (sample_type & PERF_SAMPLE_IP)
6407 perf_output_put(handle, data->ip);
6408
6409 if (sample_type & PERF_SAMPLE_TID)
6410 perf_output_put(handle, data->tid_entry);
6411
6412 if (sample_type & PERF_SAMPLE_TIME)
6413 perf_output_put(handle, data->time);
6414
6415 if (sample_type & PERF_SAMPLE_ADDR)
6416 perf_output_put(handle, data->addr);
6417
6418 if (sample_type & PERF_SAMPLE_ID)
6419 perf_output_put(handle, data->id);
6420
6421 if (sample_type & PERF_SAMPLE_STREAM_ID)
6422 perf_output_put(handle, data->stream_id);
6423
6424 if (sample_type & PERF_SAMPLE_CPU)
6425 perf_output_put(handle, data->cpu_entry);
6426
6427 if (sample_type & PERF_SAMPLE_PERIOD)
6428 perf_output_put(handle, data->period);
6429
6430 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 6431 perf_output_read(handle, event);
5622f295
MM
6432
6433 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
99e818cc 6434 int size = 1;
5622f295 6435
99e818cc
JO
6436 size += data->callchain->nr;
6437 size *= sizeof(u64);
6438 __output_copy(handle, data->callchain, size);
5622f295
MM
6439 }
6440
6441 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6442 struct perf_raw_record *raw = data->raw;
6443
6444 if (raw) {
6445 struct perf_raw_frag *frag = &raw->frag;
6446
6447 perf_output_put(handle, raw->size);
6448 do {
6449 if (frag->copy) {
6450 __output_custom(handle, frag->copy,
6451 frag->data, frag->size);
6452 } else {
6453 __output_copy(handle, frag->data,
6454 frag->size);
6455 }
6456 if (perf_raw_frag_last(frag))
6457 break;
6458 frag = frag->next;
6459 } while (1);
6460 if (frag->pad)
6461 __output_skip(handle, NULL, frag->pad);
5622f295
MM
6462 } else {
6463 struct {
6464 u32 size;
6465 u32 data;
6466 } raw = {
6467 .size = sizeof(u32),
6468 .data = 0,
6469 };
6470 perf_output_put(handle, raw);
6471 }
6472 }
a7ac67ea 6473
bce38cd5
SE
6474 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6475 if (data->br_stack) {
6476 size_t size;
6477
6478 size = data->br_stack->nr
6479 * sizeof(struct perf_branch_entry);
6480
6481 perf_output_put(handle, data->br_stack->nr);
6482 perf_output_copy(handle, data->br_stack->entries, size);
6483 } else {
6484 /*
6485 * we always store at least the value of nr
6486 */
6487 u64 nr = 0;
6488 perf_output_put(handle, nr);
6489 }
6490 }
4018994f
JO
6491
6492 if (sample_type & PERF_SAMPLE_REGS_USER) {
6493 u64 abi = data->regs_user.abi;
6494
6495 /*
6496 * If there are no regs to dump, notice it through
6497 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6498 */
6499 perf_output_put(handle, abi);
6500
6501 if (abi) {
6502 u64 mask = event->attr.sample_regs_user;
6503 perf_output_sample_regs(handle,
6504 data->regs_user.regs,
6505 mask);
6506 }
6507 }
c5ebcedb 6508
a5cdd40c 6509 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
6510 perf_output_sample_ustack(handle,
6511 data->stack_user_size,
6512 data->regs_user.regs);
a5cdd40c 6513 }
c3feedf2
AK
6514
6515 if (sample_type & PERF_SAMPLE_WEIGHT)
6516 perf_output_put(handle, data->weight);
d6be9ad6
SE
6517
6518 if (sample_type & PERF_SAMPLE_DATA_SRC)
6519 perf_output_put(handle, data->data_src.val);
a5cdd40c 6520
fdfbbd07
AK
6521 if (sample_type & PERF_SAMPLE_TRANSACTION)
6522 perf_output_put(handle, data->txn);
6523
60e2364e
SE
6524 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6525 u64 abi = data->regs_intr.abi;
6526 /*
6527 * If there are no regs to dump, notice it through
6528 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6529 */
6530 perf_output_put(handle, abi);
6531
6532 if (abi) {
6533 u64 mask = event->attr.sample_regs_intr;
6534
6535 perf_output_sample_regs(handle,
6536 data->regs_intr.regs,
6537 mask);
6538 }
6539 }
6540
fc7ce9c7
KL
6541 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6542 perf_output_put(handle, data->phys_addr);
6543
a5cdd40c
PZ
6544 if (!event->attr.watermark) {
6545 int wakeup_events = event->attr.wakeup_events;
6546
6547 if (wakeup_events) {
6548 struct ring_buffer *rb = handle->rb;
6549 int events = local_inc_return(&rb->events);
6550
6551 if (events >= wakeup_events) {
6552 local_sub(wakeup_events, &rb->events);
6553 local_inc(&rb->wakeup);
6554 }
6555 }
6556 }
5622f295
MM
6557}
6558
fc7ce9c7
KL
6559static u64 perf_virt_to_phys(u64 virt)
6560{
6561 u64 phys_addr = 0;
6562 struct page *p = NULL;
6563
6564 if (!virt)
6565 return 0;
6566
6567 if (virt >= TASK_SIZE) {
6568 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6569 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6570 !(virt >= VMALLOC_START && virt < VMALLOC_END))
6571 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6572 } else {
6573 /*
6574 * Walking the pages tables for user address.
6575 * Interrupts are disabled, so it prevents any tear down
6576 * of the page tables.
6577 * Try IRQ-safe __get_user_pages_fast first.
6578 * If failed, leave phys_addr as 0.
6579 */
6580 if ((current->mm != NULL) &&
6581 (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6582 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6583
6584 if (p)
6585 put_page(p);
6586 }
6587
6588 return phys_addr;
6589}
6590
99e818cc
JO
6591static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6592
6cbc304f 6593struct perf_callchain_entry *
8cf7e0e2
JO
6594perf_callchain(struct perf_event *event, struct pt_regs *regs)
6595{
6596 bool kernel = !event->attr.exclude_callchain_kernel;
6597 bool user = !event->attr.exclude_callchain_user;
6598 /* Disallow cross-task user callchains. */
6599 bool crosstask = event->ctx->task && event->ctx->task != current;
6600 const u32 max_stack = event->attr.sample_max_stack;
99e818cc 6601 struct perf_callchain_entry *callchain;
8cf7e0e2
JO
6602
6603 if (!kernel && !user)
99e818cc 6604 return &__empty_callchain;
8cf7e0e2 6605
99e818cc
JO
6606 callchain = get_perf_callchain(regs, 0, kernel, user,
6607 max_stack, crosstask, true);
6608 return callchain ?: &__empty_callchain;
8cf7e0e2
JO
6609}
6610
5622f295
MM
6611void perf_prepare_sample(struct perf_event_header *header,
6612 struct perf_sample_data *data,
cdd6c482 6613 struct perf_event *event,
5622f295 6614 struct pt_regs *regs)
7b732a75 6615{
cdd6c482 6616 u64 sample_type = event->attr.sample_type;
7b732a75 6617
cdd6c482 6618 header->type = PERF_RECORD_SAMPLE;
c320c7b7 6619 header->size = sizeof(*header) + event->header_size;
5622f295
MM
6620
6621 header->misc = 0;
6622 header->misc |= perf_misc_flags(regs);
6fab0192 6623
c980d109 6624 __perf_event_header__init_id(header, data, event);
6844c09d 6625
c320c7b7 6626 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
6627 data->ip = perf_instruction_pointer(regs);
6628
b23f3325 6629 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 6630 int size = 1;
394ee076 6631
6cbc304f
PZ
6632 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6633 data->callchain = perf_callchain(event, regs);
6634
99e818cc 6635 size += data->callchain->nr;
5622f295
MM
6636
6637 header->size += size * sizeof(u64);
394ee076
PZ
6638 }
6639
3a43ce68 6640 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6641 struct perf_raw_record *raw = data->raw;
6642 int size;
6643
6644 if (raw) {
6645 struct perf_raw_frag *frag = &raw->frag;
6646 u32 sum = 0;
6647
6648 do {
6649 sum += frag->size;
6650 if (perf_raw_frag_last(frag))
6651 break;
6652 frag = frag->next;
6653 } while (1);
6654
6655 size = round_up(sum + sizeof(u32), sizeof(u64));
6656 raw->size = size - sizeof(u32);
6657 frag->pad = raw->size - sum;
6658 } else {
6659 size = sizeof(u64);
6660 }
a044560c 6661
7e3f977e 6662 header->size += size;
7f453c24 6663 }
bce38cd5
SE
6664
6665 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6666 int size = sizeof(u64); /* nr */
6667 if (data->br_stack) {
6668 size += data->br_stack->nr
6669 * sizeof(struct perf_branch_entry);
6670 }
6671 header->size += size;
6672 }
4018994f 6673
2565711f 6674 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
6675 perf_sample_regs_user(&data->regs_user, regs,
6676 &data->regs_user_copy);
2565711f 6677
4018994f
JO
6678 if (sample_type & PERF_SAMPLE_REGS_USER) {
6679 /* regs dump ABI info */
6680 int size = sizeof(u64);
6681
4018994f
JO
6682 if (data->regs_user.regs) {
6683 u64 mask = event->attr.sample_regs_user;
6684 size += hweight64(mask) * sizeof(u64);
6685 }
6686
6687 header->size += size;
6688 }
c5ebcedb
JO
6689
6690 if (sample_type & PERF_SAMPLE_STACK_USER) {
6691 /*
9f014e3a 6692 * Either we need PERF_SAMPLE_STACK_USER bit to be always
c5ebcedb
JO
6693 * processed as the last one or have additional check added
6694 * in case new sample type is added, because we could eat
6695 * up the rest of the sample size.
6696 */
c5ebcedb
JO
6697 u16 stack_size = event->attr.sample_stack_user;
6698 u16 size = sizeof(u64);
6699
c5ebcedb 6700 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 6701 data->regs_user.regs);
c5ebcedb
JO
6702
6703 /*
6704 * If there is something to dump, add space for the dump
6705 * itself and for the field that tells the dynamic size,
6706 * which is how many have been actually dumped.
6707 */
6708 if (stack_size)
6709 size += sizeof(u64) + stack_size;
6710
6711 data->stack_user_size = stack_size;
6712 header->size += size;
6713 }
60e2364e
SE
6714
6715 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6716 /* regs dump ABI info */
6717 int size = sizeof(u64);
6718
6719 perf_sample_regs_intr(&data->regs_intr, regs);
6720
6721 if (data->regs_intr.regs) {
6722 u64 mask = event->attr.sample_regs_intr;
6723
6724 size += hweight64(mask) * sizeof(u64);
6725 }
6726
6727 header->size += size;
6728 }
fc7ce9c7
KL
6729
6730 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6731 data->phys_addr = perf_virt_to_phys(data->addr);
5622f295 6732}
7f453c24 6733
56201969 6734static __always_inline int
9ecda41a
WN
6735__perf_event_output(struct perf_event *event,
6736 struct perf_sample_data *data,
6737 struct pt_regs *regs,
6738 int (*output_begin)(struct perf_output_handle *,
6739 struct perf_event *,
6740 unsigned int))
5622f295
MM
6741{
6742 struct perf_output_handle handle;
6743 struct perf_event_header header;
56201969 6744 int err;
689802b2 6745
927c7a9e
FW
6746 /* protect the callchain buffers */
6747 rcu_read_lock();
6748
cdd6c482 6749 perf_prepare_sample(&header, data, event, regs);
5c148194 6750
56201969
ACM
6751 err = output_begin(&handle, event, header.size);
6752 if (err)
927c7a9e 6753 goto exit;
0322cd6e 6754
cdd6c482 6755 perf_output_sample(&handle, &header, data, event);
f413cdb8 6756
8a057d84 6757 perf_output_end(&handle);
927c7a9e
FW
6758
6759exit:
6760 rcu_read_unlock();
56201969 6761 return err;
0322cd6e
PZ
6762}
6763
9ecda41a
WN
6764void
6765perf_event_output_forward(struct perf_event *event,
6766 struct perf_sample_data *data,
6767 struct pt_regs *regs)
6768{
6769 __perf_event_output(event, data, regs, perf_output_begin_forward);
6770}
6771
6772void
6773perf_event_output_backward(struct perf_event *event,
6774 struct perf_sample_data *data,
6775 struct pt_regs *regs)
6776{
6777 __perf_event_output(event, data, regs, perf_output_begin_backward);
6778}
6779
56201969 6780int
9ecda41a
WN
6781perf_event_output(struct perf_event *event,
6782 struct perf_sample_data *data,
6783 struct pt_regs *regs)
6784{
56201969 6785 return __perf_event_output(event, data, regs, perf_output_begin);
9ecda41a
WN
6786}
6787
38b200d6 6788/*
cdd6c482 6789 * read event_id
38b200d6
PZ
6790 */
6791
6792struct perf_read_event {
6793 struct perf_event_header header;
6794
6795 u32 pid;
6796 u32 tid;
38b200d6
PZ
6797};
6798
6799static void
cdd6c482 6800perf_event_read_event(struct perf_event *event,
38b200d6
PZ
6801 struct task_struct *task)
6802{
6803 struct perf_output_handle handle;
c980d109 6804 struct perf_sample_data sample;
dfc65094 6805 struct perf_read_event read_event = {
38b200d6 6806 .header = {
cdd6c482 6807 .type = PERF_RECORD_READ,
38b200d6 6808 .misc = 0,
c320c7b7 6809 .size = sizeof(read_event) + event->read_size,
38b200d6 6810 },
cdd6c482
IM
6811 .pid = perf_event_pid(event, task),
6812 .tid = perf_event_tid(event, task),
38b200d6 6813 };
3dab77fb 6814 int ret;
38b200d6 6815
c980d109 6816 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 6817 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
6818 if (ret)
6819 return;
6820
dfc65094 6821 perf_output_put(&handle, read_event);
cdd6c482 6822 perf_output_read(&handle, event);
c980d109 6823 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 6824
38b200d6
PZ
6825 perf_output_end(&handle);
6826}
6827
aab5b71e 6828typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
6829
6830static void
aab5b71e
PZ
6831perf_iterate_ctx(struct perf_event_context *ctx,
6832 perf_iterate_f output,
b73e4fef 6833 void *data, bool all)
52d857a8
JO
6834{
6835 struct perf_event *event;
6836
6837 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
6838 if (!all) {
6839 if (event->state < PERF_EVENT_STATE_INACTIVE)
6840 continue;
6841 if (!event_filter_match(event))
6842 continue;
6843 }
6844
67516844 6845 output(event, data);
52d857a8
JO
6846 }
6847}
6848
aab5b71e 6849static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
6850{
6851 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6852 struct perf_event *event;
6853
6854 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
6855 /*
6856 * Skip events that are not fully formed yet; ensure that
6857 * if we observe event->ctx, both event and ctx will be
6858 * complete enough. See perf_install_in_context().
6859 */
6860 if (!smp_load_acquire(&event->ctx))
6861 continue;
6862
f2fb6bef
KL
6863 if (event->state < PERF_EVENT_STATE_INACTIVE)
6864 continue;
6865 if (!event_filter_match(event))
6866 continue;
6867 output(event, data);
6868 }
6869}
6870
aab5b71e
PZ
6871/*
6872 * Iterate all events that need to receive side-band events.
6873 *
6874 * For new callers; ensure that account_pmu_sb_event() includes
6875 * your event, otherwise it might not get delivered.
6876 */
52d857a8 6877static void
aab5b71e 6878perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
6879 struct perf_event_context *task_ctx)
6880{
52d857a8 6881 struct perf_event_context *ctx;
52d857a8
JO
6882 int ctxn;
6883
aab5b71e
PZ
6884 rcu_read_lock();
6885 preempt_disable();
6886
4e93ad60 6887 /*
aab5b71e
PZ
6888 * If we have task_ctx != NULL we only notify the task context itself.
6889 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
6890 * context.
6891 */
6892 if (task_ctx) {
aab5b71e
PZ
6893 perf_iterate_ctx(task_ctx, output, data, false);
6894 goto done;
4e93ad60
JO
6895 }
6896
aab5b71e 6897 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
6898
6899 for_each_task_context_nr(ctxn) {
52d857a8
JO
6900 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6901 if (ctx)
aab5b71e 6902 perf_iterate_ctx(ctx, output, data, false);
52d857a8 6903 }
aab5b71e 6904done:
f2fb6bef 6905 preempt_enable();
52d857a8 6906 rcu_read_unlock();
95ff4ca2
AS
6907}
6908
375637bc
AS
6909/*
6910 * Clear all file-based filters at exec, they'll have to be
6911 * re-instated when/if these objects are mmapped again.
6912 */
6913static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6914{
6915 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6916 struct perf_addr_filter *filter;
6917 unsigned int restart = 0, count = 0;
6918 unsigned long flags;
6919
6920 if (!has_addr_filter(event))
6921 return;
6922
6923 raw_spin_lock_irqsave(&ifh->lock, flags);
6924 list_for_each_entry(filter, &ifh->list, entry) {
9511bce9 6925 if (filter->path.dentry) {
c60f83b8
AS
6926 event->addr_filter_ranges[count].start = 0;
6927 event->addr_filter_ranges[count].size = 0;
375637bc
AS
6928 restart++;
6929 }
6930
6931 count++;
6932 }
6933
6934 if (restart)
6935 event->addr_filters_gen++;
6936 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6937
6938 if (restart)
767ae086 6939 perf_event_stop(event, 1);
375637bc
AS
6940}
6941
6942void perf_event_exec(void)
6943{
6944 struct perf_event_context *ctx;
6945 int ctxn;
6946
6947 rcu_read_lock();
6948 for_each_task_context_nr(ctxn) {
6949 ctx = current->perf_event_ctxp[ctxn];
6950 if (!ctx)
6951 continue;
6952
6953 perf_event_enable_on_exec(ctxn);
6954
aab5b71e 6955 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
6956 true);
6957 }
6958 rcu_read_unlock();
6959}
6960
95ff4ca2
AS
6961struct remote_output {
6962 struct ring_buffer *rb;
6963 int err;
6964};
6965
6966static void __perf_event_output_stop(struct perf_event *event, void *data)
6967{
6968 struct perf_event *parent = event->parent;
6969 struct remote_output *ro = data;
6970 struct ring_buffer *rb = ro->rb;
375637bc
AS
6971 struct stop_event_data sd = {
6972 .event = event,
6973 };
95ff4ca2
AS
6974
6975 if (!has_aux(event))
6976 return;
6977
6978 if (!parent)
6979 parent = event;
6980
6981 /*
6982 * In case of inheritance, it will be the parent that links to the
767ae086
AS
6983 * ring-buffer, but it will be the child that's actually using it.
6984 *
6985 * We are using event::rb to determine if the event should be stopped,
6986 * however this may race with ring_buffer_attach() (through set_output),
6987 * which will make us skip the event that actually needs to be stopped.
6988 * So ring_buffer_attach() has to stop an aux event before re-assigning
6989 * its rb pointer.
95ff4ca2
AS
6990 */
6991 if (rcu_dereference(parent->rb) == rb)
375637bc 6992 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
6993}
6994
6995static int __perf_pmu_output_stop(void *info)
6996{
6997 struct perf_event *event = info;
f3a519e4 6998 struct pmu *pmu = event->ctx->pmu;
8b6a3fe8 6999 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
7000 struct remote_output ro = {
7001 .rb = event->rb,
7002 };
7003
7004 rcu_read_lock();
aab5b71e 7005 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 7006 if (cpuctx->task_ctx)
aab5b71e 7007 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 7008 &ro, false);
95ff4ca2
AS
7009 rcu_read_unlock();
7010
7011 return ro.err;
7012}
7013
7014static void perf_pmu_output_stop(struct perf_event *event)
7015{
7016 struct perf_event *iter;
7017 int err, cpu;
7018
7019restart:
7020 rcu_read_lock();
7021 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7022 /*
7023 * For per-CPU events, we need to make sure that neither they
7024 * nor their children are running; for cpu==-1 events it's
7025 * sufficient to stop the event itself if it's active, since
7026 * it can't have children.
7027 */
7028 cpu = iter->cpu;
7029 if (cpu == -1)
7030 cpu = READ_ONCE(iter->oncpu);
7031
7032 if (cpu == -1)
7033 continue;
7034
7035 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7036 if (err == -EAGAIN) {
7037 rcu_read_unlock();
7038 goto restart;
7039 }
7040 }
7041 rcu_read_unlock();
52d857a8
JO
7042}
7043
60313ebe 7044/*
9f498cc5
PZ
7045 * task tracking -- fork/exit
7046 *
13d7a241 7047 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
7048 */
7049
9f498cc5 7050struct perf_task_event {
3a80b4a3 7051 struct task_struct *task;
cdd6c482 7052 struct perf_event_context *task_ctx;
60313ebe
PZ
7053
7054 struct {
7055 struct perf_event_header header;
7056
7057 u32 pid;
7058 u32 ppid;
9f498cc5
PZ
7059 u32 tid;
7060 u32 ptid;
393b2ad8 7061 u64 time;
cdd6c482 7062 } event_id;
60313ebe
PZ
7063};
7064
67516844
JO
7065static int perf_event_task_match(struct perf_event *event)
7066{
13d7a241
SE
7067 return event->attr.comm || event->attr.mmap ||
7068 event->attr.mmap2 || event->attr.mmap_data ||
7069 event->attr.task;
67516844
JO
7070}
7071
cdd6c482 7072static void perf_event_task_output(struct perf_event *event,
52d857a8 7073 void *data)
60313ebe 7074{
52d857a8 7075 struct perf_task_event *task_event = data;
60313ebe 7076 struct perf_output_handle handle;
c980d109 7077 struct perf_sample_data sample;
9f498cc5 7078 struct task_struct *task = task_event->task;
c980d109 7079 int ret, size = task_event->event_id.header.size;
8bb39f9a 7080
67516844
JO
7081 if (!perf_event_task_match(event))
7082 return;
7083
c980d109 7084 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 7085
c980d109 7086 ret = perf_output_begin(&handle, event,
a7ac67ea 7087 task_event->event_id.header.size);
ef60777c 7088 if (ret)
c980d109 7089 goto out;
60313ebe 7090
cdd6c482
IM
7091 task_event->event_id.pid = perf_event_pid(event, task);
7092 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 7093
cdd6c482
IM
7094 task_event->event_id.tid = perf_event_tid(event, task);
7095 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 7096
34f43927
PZ
7097 task_event->event_id.time = perf_event_clock(event);
7098
cdd6c482 7099 perf_output_put(&handle, task_event->event_id);
393b2ad8 7100
c980d109
ACM
7101 perf_event__output_id_sample(event, &handle, &sample);
7102
60313ebe 7103 perf_output_end(&handle);
c980d109
ACM
7104out:
7105 task_event->event_id.header.size = size;
60313ebe
PZ
7106}
7107
cdd6c482
IM
7108static void perf_event_task(struct task_struct *task,
7109 struct perf_event_context *task_ctx,
3a80b4a3 7110 int new)
60313ebe 7111{
9f498cc5 7112 struct perf_task_event task_event;
60313ebe 7113
cdd6c482
IM
7114 if (!atomic_read(&nr_comm_events) &&
7115 !atomic_read(&nr_mmap_events) &&
7116 !atomic_read(&nr_task_events))
60313ebe
PZ
7117 return;
7118
9f498cc5 7119 task_event = (struct perf_task_event){
3a80b4a3
PZ
7120 .task = task,
7121 .task_ctx = task_ctx,
cdd6c482 7122 .event_id = {
60313ebe 7123 .header = {
cdd6c482 7124 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 7125 .misc = 0,
cdd6c482 7126 .size = sizeof(task_event.event_id),
60313ebe 7127 },
573402db
PZ
7128 /* .pid */
7129 /* .ppid */
9f498cc5
PZ
7130 /* .tid */
7131 /* .ptid */
34f43927 7132 /* .time */
60313ebe
PZ
7133 },
7134 };
7135
aab5b71e 7136 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
7137 &task_event,
7138 task_ctx);
9f498cc5
PZ
7139}
7140
cdd6c482 7141void perf_event_fork(struct task_struct *task)
9f498cc5 7142{
cdd6c482 7143 perf_event_task(task, NULL, 1);
e4222673 7144 perf_event_namespaces(task);
60313ebe
PZ
7145}
7146
8d1b2d93
PZ
7147/*
7148 * comm tracking
7149 */
7150
7151struct perf_comm_event {
22a4f650
IM
7152 struct task_struct *task;
7153 char *comm;
8d1b2d93
PZ
7154 int comm_size;
7155
7156 struct {
7157 struct perf_event_header header;
7158
7159 u32 pid;
7160 u32 tid;
cdd6c482 7161 } event_id;
8d1b2d93
PZ
7162};
7163
67516844
JO
7164static int perf_event_comm_match(struct perf_event *event)
7165{
7166 return event->attr.comm;
7167}
7168
cdd6c482 7169static void perf_event_comm_output(struct perf_event *event,
52d857a8 7170 void *data)
8d1b2d93 7171{
52d857a8 7172 struct perf_comm_event *comm_event = data;
8d1b2d93 7173 struct perf_output_handle handle;
c980d109 7174 struct perf_sample_data sample;
cdd6c482 7175 int size = comm_event->event_id.header.size;
c980d109
ACM
7176 int ret;
7177
67516844
JO
7178 if (!perf_event_comm_match(event))
7179 return;
7180
c980d109
ACM
7181 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7182 ret = perf_output_begin(&handle, event,
a7ac67ea 7183 comm_event->event_id.header.size);
8d1b2d93
PZ
7184
7185 if (ret)
c980d109 7186 goto out;
8d1b2d93 7187
cdd6c482
IM
7188 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7189 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 7190
cdd6c482 7191 perf_output_put(&handle, comm_event->event_id);
76369139 7192 __output_copy(&handle, comm_event->comm,
8d1b2d93 7193 comm_event->comm_size);
c980d109
ACM
7194
7195 perf_event__output_id_sample(event, &handle, &sample);
7196
8d1b2d93 7197 perf_output_end(&handle);
c980d109
ACM
7198out:
7199 comm_event->event_id.header.size = size;
8d1b2d93
PZ
7200}
7201
cdd6c482 7202static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 7203{
413ee3b4 7204 char comm[TASK_COMM_LEN];
8d1b2d93 7205 unsigned int size;
8d1b2d93 7206
413ee3b4 7207 memset(comm, 0, sizeof(comm));
96b02d78 7208 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 7209 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
7210
7211 comm_event->comm = comm;
7212 comm_event->comm_size = size;
7213
cdd6c482 7214 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 7215
aab5b71e 7216 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
7217 comm_event,
7218 NULL);
8d1b2d93
PZ
7219}
7220
82b89778 7221void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 7222{
9ee318a7
PZ
7223 struct perf_comm_event comm_event;
7224
cdd6c482 7225 if (!atomic_read(&nr_comm_events))
9ee318a7 7226 return;
a63eaf34 7227
9ee318a7 7228 comm_event = (struct perf_comm_event){
8d1b2d93 7229 .task = task,
573402db
PZ
7230 /* .comm */
7231 /* .comm_size */
cdd6c482 7232 .event_id = {
573402db 7233 .header = {
cdd6c482 7234 .type = PERF_RECORD_COMM,
82b89778 7235 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
7236 /* .size */
7237 },
7238 /* .pid */
7239 /* .tid */
8d1b2d93
PZ
7240 },
7241 };
7242
cdd6c482 7243 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
7244}
7245
e4222673
HB
7246/*
7247 * namespaces tracking
7248 */
7249
7250struct perf_namespaces_event {
7251 struct task_struct *task;
7252
7253 struct {
7254 struct perf_event_header header;
7255
7256 u32 pid;
7257 u32 tid;
7258 u64 nr_namespaces;
7259 struct perf_ns_link_info link_info[NR_NAMESPACES];
7260 } event_id;
7261};
7262
7263static int perf_event_namespaces_match(struct perf_event *event)
7264{
7265 return event->attr.namespaces;
7266}
7267
7268static void perf_event_namespaces_output(struct perf_event *event,
7269 void *data)
7270{
7271 struct perf_namespaces_event *namespaces_event = data;
7272 struct perf_output_handle handle;
7273 struct perf_sample_data sample;
34900ec5 7274 u16 header_size = namespaces_event->event_id.header.size;
e4222673
HB
7275 int ret;
7276
7277 if (!perf_event_namespaces_match(event))
7278 return;
7279
7280 perf_event_header__init_id(&namespaces_event->event_id.header,
7281 &sample, event);
7282 ret = perf_output_begin(&handle, event,
7283 namespaces_event->event_id.header.size);
7284 if (ret)
34900ec5 7285 goto out;
e4222673
HB
7286
7287 namespaces_event->event_id.pid = perf_event_pid(event,
7288 namespaces_event->task);
7289 namespaces_event->event_id.tid = perf_event_tid(event,
7290 namespaces_event->task);
7291
7292 perf_output_put(&handle, namespaces_event->event_id);
7293
7294 perf_event__output_id_sample(event, &handle, &sample);
7295
7296 perf_output_end(&handle);
34900ec5
JO
7297out:
7298 namespaces_event->event_id.header.size = header_size;
e4222673
HB
7299}
7300
7301static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7302 struct task_struct *task,
7303 const struct proc_ns_operations *ns_ops)
7304{
7305 struct path ns_path;
7306 struct inode *ns_inode;
7307 void *error;
7308
7309 error = ns_get_path(&ns_path, task, ns_ops);
7310 if (!error) {
7311 ns_inode = ns_path.dentry->d_inode;
7312 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7313 ns_link_info->ino = ns_inode->i_ino;
0e18dd12 7314 path_put(&ns_path);
e4222673
HB
7315 }
7316}
7317
7318void perf_event_namespaces(struct task_struct *task)
7319{
7320 struct perf_namespaces_event namespaces_event;
7321 struct perf_ns_link_info *ns_link_info;
7322
7323 if (!atomic_read(&nr_namespaces_events))
7324 return;
7325
7326 namespaces_event = (struct perf_namespaces_event){
7327 .task = task,
7328 .event_id = {
7329 .header = {
7330 .type = PERF_RECORD_NAMESPACES,
7331 .misc = 0,
7332 .size = sizeof(namespaces_event.event_id),
7333 },
7334 /* .pid */
7335 /* .tid */
7336 .nr_namespaces = NR_NAMESPACES,
7337 /* .link_info[NR_NAMESPACES] */
7338 },
7339 };
7340
7341 ns_link_info = namespaces_event.event_id.link_info;
7342
7343 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7344 task, &mntns_operations);
7345
7346#ifdef CONFIG_USER_NS
7347 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7348 task, &userns_operations);
7349#endif
7350#ifdef CONFIG_NET_NS
7351 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7352 task, &netns_operations);
7353#endif
7354#ifdef CONFIG_UTS_NS
7355 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7356 task, &utsns_operations);
7357#endif
7358#ifdef CONFIG_IPC_NS
7359 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7360 task, &ipcns_operations);
7361#endif
7362#ifdef CONFIG_PID_NS
7363 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7364 task, &pidns_operations);
7365#endif
7366#ifdef CONFIG_CGROUPS
7367 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7368 task, &cgroupns_operations);
7369#endif
7370
7371 perf_iterate_sb(perf_event_namespaces_output,
7372 &namespaces_event,
7373 NULL);
7374}
7375
0a4a9391
PZ
7376/*
7377 * mmap tracking
7378 */
7379
7380struct perf_mmap_event {
089dd79d
PZ
7381 struct vm_area_struct *vma;
7382
7383 const char *file_name;
7384 int file_size;
13d7a241
SE
7385 int maj, min;
7386 u64 ino;
7387 u64 ino_generation;
f972eb63 7388 u32 prot, flags;
0a4a9391
PZ
7389
7390 struct {
7391 struct perf_event_header header;
7392
7393 u32 pid;
7394 u32 tid;
7395 u64 start;
7396 u64 len;
7397 u64 pgoff;
cdd6c482 7398 } event_id;
0a4a9391
PZ
7399};
7400
67516844
JO
7401static int perf_event_mmap_match(struct perf_event *event,
7402 void *data)
7403{
7404 struct perf_mmap_event *mmap_event = data;
7405 struct vm_area_struct *vma = mmap_event->vma;
7406 int executable = vma->vm_flags & VM_EXEC;
7407
7408 return (!executable && event->attr.mmap_data) ||
13d7a241 7409 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
7410}
7411
cdd6c482 7412static void perf_event_mmap_output(struct perf_event *event,
52d857a8 7413 void *data)
0a4a9391 7414{
52d857a8 7415 struct perf_mmap_event *mmap_event = data;
0a4a9391 7416 struct perf_output_handle handle;
c980d109 7417 struct perf_sample_data sample;
cdd6c482 7418 int size = mmap_event->event_id.header.size;
d9c1bb2f 7419 u32 type = mmap_event->event_id.header.type;
c980d109 7420 int ret;
0a4a9391 7421
67516844
JO
7422 if (!perf_event_mmap_match(event, data))
7423 return;
7424
13d7a241
SE
7425 if (event->attr.mmap2) {
7426 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7427 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7428 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7429 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 7430 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
7431 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7432 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
7433 }
7434
c980d109
ACM
7435 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7436 ret = perf_output_begin(&handle, event,
a7ac67ea 7437 mmap_event->event_id.header.size);
0a4a9391 7438 if (ret)
c980d109 7439 goto out;
0a4a9391 7440
cdd6c482
IM
7441 mmap_event->event_id.pid = perf_event_pid(event, current);
7442 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 7443
cdd6c482 7444 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
7445
7446 if (event->attr.mmap2) {
7447 perf_output_put(&handle, mmap_event->maj);
7448 perf_output_put(&handle, mmap_event->min);
7449 perf_output_put(&handle, mmap_event->ino);
7450 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
7451 perf_output_put(&handle, mmap_event->prot);
7452 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
7453 }
7454
76369139 7455 __output_copy(&handle, mmap_event->file_name,
0a4a9391 7456 mmap_event->file_size);
c980d109
ACM
7457
7458 perf_event__output_id_sample(event, &handle, &sample);
7459
78d613eb 7460 perf_output_end(&handle);
c980d109
ACM
7461out:
7462 mmap_event->event_id.header.size = size;
d9c1bb2f 7463 mmap_event->event_id.header.type = type;
0a4a9391
PZ
7464}
7465
cdd6c482 7466static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 7467{
089dd79d
PZ
7468 struct vm_area_struct *vma = mmap_event->vma;
7469 struct file *file = vma->vm_file;
13d7a241
SE
7470 int maj = 0, min = 0;
7471 u64 ino = 0, gen = 0;
f972eb63 7472 u32 prot = 0, flags = 0;
0a4a9391
PZ
7473 unsigned int size;
7474 char tmp[16];
7475 char *buf = NULL;
2c42cfbf 7476 char *name;
413ee3b4 7477
0b3589be
PZ
7478 if (vma->vm_flags & VM_READ)
7479 prot |= PROT_READ;
7480 if (vma->vm_flags & VM_WRITE)
7481 prot |= PROT_WRITE;
7482 if (vma->vm_flags & VM_EXEC)
7483 prot |= PROT_EXEC;
7484
7485 if (vma->vm_flags & VM_MAYSHARE)
7486 flags = MAP_SHARED;
7487 else
7488 flags = MAP_PRIVATE;
7489
7490 if (vma->vm_flags & VM_DENYWRITE)
7491 flags |= MAP_DENYWRITE;
7492 if (vma->vm_flags & VM_MAYEXEC)
7493 flags |= MAP_EXECUTABLE;
7494 if (vma->vm_flags & VM_LOCKED)
7495 flags |= MAP_LOCKED;
7496 if (vma->vm_flags & VM_HUGETLB)
7497 flags |= MAP_HUGETLB;
7498
0a4a9391 7499 if (file) {
13d7a241
SE
7500 struct inode *inode;
7501 dev_t dev;
3ea2f2b9 7502
2c42cfbf 7503 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 7504 if (!buf) {
c7e548b4
ON
7505 name = "//enomem";
7506 goto cpy_name;
0a4a9391 7507 }
413ee3b4 7508 /*
3ea2f2b9 7509 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
7510 * need to add enough zero bytes after the string to handle
7511 * the 64bit alignment we do later.
7512 */
9bf39ab2 7513 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 7514 if (IS_ERR(name)) {
c7e548b4
ON
7515 name = "//toolong";
7516 goto cpy_name;
0a4a9391 7517 }
13d7a241
SE
7518 inode = file_inode(vma->vm_file);
7519 dev = inode->i_sb->s_dev;
7520 ino = inode->i_ino;
7521 gen = inode->i_generation;
7522 maj = MAJOR(dev);
7523 min = MINOR(dev);
f972eb63 7524
c7e548b4 7525 goto got_name;
0a4a9391 7526 } else {
fbe26abe
JO
7527 if (vma->vm_ops && vma->vm_ops->name) {
7528 name = (char *) vma->vm_ops->name(vma);
7529 if (name)
7530 goto cpy_name;
7531 }
7532
2c42cfbf 7533 name = (char *)arch_vma_name(vma);
c7e548b4
ON
7534 if (name)
7535 goto cpy_name;
089dd79d 7536
32c5fb7e 7537 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 7538 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
7539 name = "[heap]";
7540 goto cpy_name;
32c5fb7e
ON
7541 }
7542 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 7543 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
7544 name = "[stack]";
7545 goto cpy_name;
089dd79d
PZ
7546 }
7547
c7e548b4
ON
7548 name = "//anon";
7549 goto cpy_name;
0a4a9391
PZ
7550 }
7551
c7e548b4
ON
7552cpy_name:
7553 strlcpy(tmp, name, sizeof(tmp));
7554 name = tmp;
0a4a9391 7555got_name:
2c42cfbf
PZ
7556 /*
7557 * Since our buffer works in 8 byte units we need to align our string
7558 * size to a multiple of 8. However, we must guarantee the tail end is
7559 * zero'd out to avoid leaking random bits to userspace.
7560 */
7561 size = strlen(name)+1;
7562 while (!IS_ALIGNED(size, sizeof(u64)))
7563 name[size++] = '\0';
0a4a9391
PZ
7564
7565 mmap_event->file_name = name;
7566 mmap_event->file_size = size;
13d7a241
SE
7567 mmap_event->maj = maj;
7568 mmap_event->min = min;
7569 mmap_event->ino = ino;
7570 mmap_event->ino_generation = gen;
f972eb63
PZ
7571 mmap_event->prot = prot;
7572 mmap_event->flags = flags;
0a4a9391 7573
2fe85427
SE
7574 if (!(vma->vm_flags & VM_EXEC))
7575 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7576
cdd6c482 7577 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 7578
aab5b71e 7579 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
7580 mmap_event,
7581 NULL);
665c2142 7582
0a4a9391
PZ
7583 kfree(buf);
7584}
7585
375637bc
AS
7586/*
7587 * Check whether inode and address range match filter criteria.
7588 */
7589static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7590 struct file *file, unsigned long offset,
7591 unsigned long size)
7592{
7f635ff1
MP
7593 /* d_inode(NULL) won't be equal to any mapped user-space file */
7594 if (!filter->path.dentry)
7595 return false;
7596
9511bce9 7597 if (d_inode(filter->path.dentry) != file_inode(file))
375637bc
AS
7598 return false;
7599
7600 if (filter->offset > offset + size)
7601 return false;
7602
7603 if (filter->offset + filter->size < offset)
7604 return false;
7605
7606 return true;
7607}
7608
c60f83b8
AS
7609static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7610 struct vm_area_struct *vma,
7611 struct perf_addr_filter_range *fr)
7612{
7613 unsigned long vma_size = vma->vm_end - vma->vm_start;
7614 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7615 struct file *file = vma->vm_file;
7616
7617 if (!perf_addr_filter_match(filter, file, off, vma_size))
7618 return false;
7619
7620 if (filter->offset < off) {
7621 fr->start = vma->vm_start;
7622 fr->size = min(vma_size, filter->size - (off - filter->offset));
7623 } else {
7624 fr->start = vma->vm_start + filter->offset - off;
7625 fr->size = min(vma->vm_end - fr->start, filter->size);
7626 }
7627
7628 return true;
7629}
7630
375637bc
AS
7631static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7632{
7633 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7634 struct vm_area_struct *vma = data;
375637bc
AS
7635 struct perf_addr_filter *filter;
7636 unsigned int restart = 0, count = 0;
c60f83b8 7637 unsigned long flags;
375637bc
AS
7638
7639 if (!has_addr_filter(event))
7640 return;
7641
c60f83b8 7642 if (!vma->vm_file)
375637bc
AS
7643 return;
7644
7645 raw_spin_lock_irqsave(&ifh->lock, flags);
7646 list_for_each_entry(filter, &ifh->list, entry) {
c60f83b8
AS
7647 if (perf_addr_filter_vma_adjust(filter, vma,
7648 &event->addr_filter_ranges[count]))
375637bc 7649 restart++;
375637bc
AS
7650
7651 count++;
7652 }
7653
7654 if (restart)
7655 event->addr_filters_gen++;
7656 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7657
7658 if (restart)
767ae086 7659 perf_event_stop(event, 1);
375637bc
AS
7660}
7661
7662/*
7663 * Adjust all task's events' filters to the new vma
7664 */
7665static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7666{
7667 struct perf_event_context *ctx;
7668 int ctxn;
7669
12b40a23
MP
7670 /*
7671 * Data tracing isn't supported yet and as such there is no need
7672 * to keep track of anything that isn't related to executable code:
7673 */
7674 if (!(vma->vm_flags & VM_EXEC))
7675 return;
7676
375637bc
AS
7677 rcu_read_lock();
7678 for_each_task_context_nr(ctxn) {
7679 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7680 if (!ctx)
7681 continue;
7682
aab5b71e 7683 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
7684 }
7685 rcu_read_unlock();
7686}
7687
3af9e859 7688void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 7689{
9ee318a7
PZ
7690 struct perf_mmap_event mmap_event;
7691
cdd6c482 7692 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
7693 return;
7694
7695 mmap_event = (struct perf_mmap_event){
089dd79d 7696 .vma = vma,
573402db
PZ
7697 /* .file_name */
7698 /* .file_size */
cdd6c482 7699 .event_id = {
573402db 7700 .header = {
cdd6c482 7701 .type = PERF_RECORD_MMAP,
39447b38 7702 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
7703 /* .size */
7704 },
7705 /* .pid */
7706 /* .tid */
089dd79d
PZ
7707 .start = vma->vm_start,
7708 .len = vma->vm_end - vma->vm_start,
3a0304e9 7709 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 7710 },
13d7a241
SE
7711 /* .maj (attr_mmap2 only) */
7712 /* .min (attr_mmap2 only) */
7713 /* .ino (attr_mmap2 only) */
7714 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
7715 /* .prot (attr_mmap2 only) */
7716 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
7717 };
7718
375637bc 7719 perf_addr_filters_adjust(vma);
cdd6c482 7720 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
7721}
7722
68db7e98
AS
7723void perf_event_aux_event(struct perf_event *event, unsigned long head,
7724 unsigned long size, u64 flags)
7725{
7726 struct perf_output_handle handle;
7727 struct perf_sample_data sample;
7728 struct perf_aux_event {
7729 struct perf_event_header header;
7730 u64 offset;
7731 u64 size;
7732 u64 flags;
7733 } rec = {
7734 .header = {
7735 .type = PERF_RECORD_AUX,
7736 .misc = 0,
7737 .size = sizeof(rec),
7738 },
7739 .offset = head,
7740 .size = size,
7741 .flags = flags,
7742 };
7743 int ret;
7744
7745 perf_event_header__init_id(&rec.header, &sample, event);
7746 ret = perf_output_begin(&handle, event, rec.header.size);
7747
7748 if (ret)
7749 return;
7750
7751 perf_output_put(&handle, rec);
7752 perf_event__output_id_sample(event, &handle, &sample);
7753
7754 perf_output_end(&handle);
7755}
7756
f38b0dbb
KL
7757/*
7758 * Lost/dropped samples logging
7759 */
7760void perf_log_lost_samples(struct perf_event *event, u64 lost)
7761{
7762 struct perf_output_handle handle;
7763 struct perf_sample_data sample;
7764 int ret;
7765
7766 struct {
7767 struct perf_event_header header;
7768 u64 lost;
7769 } lost_samples_event = {
7770 .header = {
7771 .type = PERF_RECORD_LOST_SAMPLES,
7772 .misc = 0,
7773 .size = sizeof(lost_samples_event),
7774 },
7775 .lost = lost,
7776 };
7777
7778 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7779
7780 ret = perf_output_begin(&handle, event,
7781 lost_samples_event.header.size);
7782 if (ret)
7783 return;
7784
7785 perf_output_put(&handle, lost_samples_event);
7786 perf_event__output_id_sample(event, &handle, &sample);
7787 perf_output_end(&handle);
7788}
7789
45ac1403
AH
7790/*
7791 * context_switch tracking
7792 */
7793
7794struct perf_switch_event {
7795 struct task_struct *task;
7796 struct task_struct *next_prev;
7797
7798 struct {
7799 struct perf_event_header header;
7800 u32 next_prev_pid;
7801 u32 next_prev_tid;
7802 } event_id;
7803};
7804
7805static int perf_event_switch_match(struct perf_event *event)
7806{
7807 return event->attr.context_switch;
7808}
7809
7810static void perf_event_switch_output(struct perf_event *event, void *data)
7811{
7812 struct perf_switch_event *se = data;
7813 struct perf_output_handle handle;
7814 struct perf_sample_data sample;
7815 int ret;
7816
7817 if (!perf_event_switch_match(event))
7818 return;
7819
7820 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7821 if (event->ctx->task) {
7822 se->event_id.header.type = PERF_RECORD_SWITCH;
7823 se->event_id.header.size = sizeof(se->event_id.header);
7824 } else {
7825 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7826 se->event_id.header.size = sizeof(se->event_id);
7827 se->event_id.next_prev_pid =
7828 perf_event_pid(event, se->next_prev);
7829 se->event_id.next_prev_tid =
7830 perf_event_tid(event, se->next_prev);
7831 }
7832
7833 perf_event_header__init_id(&se->event_id.header, &sample, event);
7834
7835 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7836 if (ret)
7837 return;
7838
7839 if (event->ctx->task)
7840 perf_output_put(&handle, se->event_id.header);
7841 else
7842 perf_output_put(&handle, se->event_id);
7843
7844 perf_event__output_id_sample(event, &handle, &sample);
7845
7846 perf_output_end(&handle);
7847}
7848
7849static void perf_event_switch(struct task_struct *task,
7850 struct task_struct *next_prev, bool sched_in)
7851{
7852 struct perf_switch_event switch_event;
7853
7854 /* N.B. caller checks nr_switch_events != 0 */
7855
7856 switch_event = (struct perf_switch_event){
7857 .task = task,
7858 .next_prev = next_prev,
7859 .event_id = {
7860 .header = {
7861 /* .type */
7862 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7863 /* .size */
7864 },
7865 /* .next_prev_pid */
7866 /* .next_prev_tid */
7867 },
7868 };
7869
101592b4
AB
7870 if (!sched_in && task->state == TASK_RUNNING)
7871 switch_event.event_id.header.misc |=
7872 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7873
aab5b71e 7874 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
7875 &switch_event,
7876 NULL);
7877}
7878
a78ac325
PZ
7879/*
7880 * IRQ throttle logging
7881 */
7882
cdd6c482 7883static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
7884{
7885 struct perf_output_handle handle;
c980d109 7886 struct perf_sample_data sample;
a78ac325
PZ
7887 int ret;
7888
7889 struct {
7890 struct perf_event_header header;
7891 u64 time;
cca3f454 7892 u64 id;
7f453c24 7893 u64 stream_id;
a78ac325
PZ
7894 } throttle_event = {
7895 .header = {
cdd6c482 7896 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
7897 .misc = 0,
7898 .size = sizeof(throttle_event),
7899 },
34f43927 7900 .time = perf_event_clock(event),
cdd6c482
IM
7901 .id = primary_event_id(event),
7902 .stream_id = event->id,
a78ac325
PZ
7903 };
7904
966ee4d6 7905 if (enable)
cdd6c482 7906 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 7907
c980d109
ACM
7908 perf_event_header__init_id(&throttle_event.header, &sample, event);
7909
7910 ret = perf_output_begin(&handle, event,
a7ac67ea 7911 throttle_event.header.size);
a78ac325
PZ
7912 if (ret)
7913 return;
7914
7915 perf_output_put(&handle, throttle_event);
c980d109 7916 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
7917 perf_output_end(&handle);
7918}
7919
76193a94
SL
7920/*
7921 * ksymbol register/unregister tracking
7922 */
7923
7924struct perf_ksymbol_event {
7925 const char *name;
7926 int name_len;
7927 struct {
7928 struct perf_event_header header;
7929 u64 addr;
7930 u32 len;
7931 u16 ksym_type;
7932 u16 flags;
7933 } event_id;
7934};
7935
7936static int perf_event_ksymbol_match(struct perf_event *event)
7937{
7938 return event->attr.ksymbol;
7939}
7940
7941static void perf_event_ksymbol_output(struct perf_event *event, void *data)
7942{
7943 struct perf_ksymbol_event *ksymbol_event = data;
7944 struct perf_output_handle handle;
7945 struct perf_sample_data sample;
7946 int ret;
7947
7948 if (!perf_event_ksymbol_match(event))
7949 return;
7950
7951 perf_event_header__init_id(&ksymbol_event->event_id.header,
7952 &sample, event);
7953 ret = perf_output_begin(&handle, event,
7954 ksymbol_event->event_id.header.size);
7955 if (ret)
7956 return;
7957
7958 perf_output_put(&handle, ksymbol_event->event_id);
7959 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
7960 perf_event__output_id_sample(event, &handle, &sample);
7961
7962 perf_output_end(&handle);
7963}
7964
7965void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
7966 const char *sym)
7967{
7968 struct perf_ksymbol_event ksymbol_event;
7969 char name[KSYM_NAME_LEN];
7970 u16 flags = 0;
7971 int name_len;
7972
7973 if (!atomic_read(&nr_ksymbol_events))
7974 return;
7975
7976 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
7977 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
7978 goto err;
7979
7980 strlcpy(name, sym, KSYM_NAME_LEN);
7981 name_len = strlen(name) + 1;
7982 while (!IS_ALIGNED(name_len, sizeof(u64)))
7983 name[name_len++] = '\0';
7984 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
7985
7986 if (unregister)
7987 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
7988
7989 ksymbol_event = (struct perf_ksymbol_event){
7990 .name = name,
7991 .name_len = name_len,
7992 .event_id = {
7993 .header = {
7994 .type = PERF_RECORD_KSYMBOL,
7995 .size = sizeof(ksymbol_event.event_id) +
7996 name_len,
7997 },
7998 .addr = addr,
7999 .len = len,
8000 .ksym_type = ksym_type,
8001 .flags = flags,
8002 },
8003 };
8004
8005 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8006 return;
8007err:
8008 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8009}
8010
6ee52e2a
SL
8011/*
8012 * bpf program load/unload tracking
8013 */
8014
8015struct perf_bpf_event {
8016 struct bpf_prog *prog;
8017 struct {
8018 struct perf_event_header header;
8019 u16 type;
8020 u16 flags;
8021 u32 id;
8022 u8 tag[BPF_TAG_SIZE];
8023 } event_id;
8024};
8025
8026static int perf_event_bpf_match(struct perf_event *event)
8027{
8028 return event->attr.bpf_event;
8029}
8030
8031static void perf_event_bpf_output(struct perf_event *event, void *data)
8032{
8033 struct perf_bpf_event *bpf_event = data;
8034 struct perf_output_handle handle;
8035 struct perf_sample_data sample;
8036 int ret;
8037
8038 if (!perf_event_bpf_match(event))
8039 return;
8040
8041 perf_event_header__init_id(&bpf_event->event_id.header,
8042 &sample, event);
8043 ret = perf_output_begin(&handle, event,
8044 bpf_event->event_id.header.size);
8045 if (ret)
8046 return;
8047
8048 perf_output_put(&handle, bpf_event->event_id);
8049 perf_event__output_id_sample(event, &handle, &sample);
8050
8051 perf_output_end(&handle);
8052}
8053
8054static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8055 enum perf_bpf_event_type type)
8056{
8057 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8058 char sym[KSYM_NAME_LEN];
8059 int i;
8060
8061 if (prog->aux->func_cnt == 0) {
8062 bpf_get_prog_name(prog, sym);
8063 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8064 (u64)(unsigned long)prog->bpf_func,
8065 prog->jited_len, unregister, sym);
8066 } else {
8067 for (i = 0; i < prog->aux->func_cnt; i++) {
8068 struct bpf_prog *subprog = prog->aux->func[i];
8069
8070 bpf_get_prog_name(subprog, sym);
8071 perf_event_ksymbol(
8072 PERF_RECORD_KSYMBOL_TYPE_BPF,
8073 (u64)(unsigned long)subprog->bpf_func,
8074 subprog->jited_len, unregister, sym);
8075 }
8076 }
8077}
8078
8079void perf_event_bpf_event(struct bpf_prog *prog,
8080 enum perf_bpf_event_type type,
8081 u16 flags)
8082{
8083 struct perf_bpf_event bpf_event;
8084
8085 if (type <= PERF_BPF_EVENT_UNKNOWN ||
8086 type >= PERF_BPF_EVENT_MAX)
8087 return;
8088
8089 switch (type) {
8090 case PERF_BPF_EVENT_PROG_LOAD:
8091 case PERF_BPF_EVENT_PROG_UNLOAD:
8092 if (atomic_read(&nr_ksymbol_events))
8093 perf_event_bpf_emit_ksymbols(prog, type);
8094 break;
8095 default:
8096 break;
8097 }
8098
8099 if (!atomic_read(&nr_bpf_events))
8100 return;
8101
8102 bpf_event = (struct perf_bpf_event){
8103 .prog = prog,
8104 .event_id = {
8105 .header = {
8106 .type = PERF_RECORD_BPF_EVENT,
8107 .size = sizeof(bpf_event.event_id),
8108 },
8109 .type = type,
8110 .flags = flags,
8111 .id = prog->aux->id,
8112 },
8113 };
8114
8115 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8116
8117 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8118 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8119}
8120
8d4e6c4c
AS
8121void perf_event_itrace_started(struct perf_event *event)
8122{
8123 event->attach_state |= PERF_ATTACH_ITRACE;
8124}
8125
ec0d7729
AS
8126static void perf_log_itrace_start(struct perf_event *event)
8127{
8128 struct perf_output_handle handle;
8129 struct perf_sample_data sample;
8130 struct perf_aux_event {
8131 struct perf_event_header header;
8132 u32 pid;
8133 u32 tid;
8134 } rec;
8135 int ret;
8136
8137 if (event->parent)
8138 event = event->parent;
8139
8140 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8d4e6c4c 8141 event->attach_state & PERF_ATTACH_ITRACE)
ec0d7729
AS
8142 return;
8143
ec0d7729
AS
8144 rec.header.type = PERF_RECORD_ITRACE_START;
8145 rec.header.misc = 0;
8146 rec.header.size = sizeof(rec);
8147 rec.pid = perf_event_pid(event, current);
8148 rec.tid = perf_event_tid(event, current);
8149
8150 perf_event_header__init_id(&rec.header, &sample, event);
8151 ret = perf_output_begin(&handle, event, rec.header.size);
8152
8153 if (ret)
8154 return;
8155
8156 perf_output_put(&handle, rec);
8157 perf_event__output_id_sample(event, &handle, &sample);
8158
8159 perf_output_end(&handle);
8160}
8161
475113d9
JO
8162static int
8163__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 8164{
cdd6c482 8165 struct hw_perf_event *hwc = &event->hw;
79f14641 8166 int ret = 0;
475113d9 8167 u64 seq;
96398826 8168
e050e3f0
SE
8169 seq = __this_cpu_read(perf_throttled_seq);
8170 if (seq != hwc->interrupts_seq) {
8171 hwc->interrupts_seq = seq;
8172 hwc->interrupts = 1;
8173 } else {
8174 hwc->interrupts++;
8175 if (unlikely(throttle
8176 && hwc->interrupts >= max_samples_per_tick)) {
8177 __this_cpu_inc(perf_throttled_count);
555e0c1e 8178 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
8179 hwc->interrupts = MAX_INTERRUPTS;
8180 perf_log_throttle(event, 0);
a78ac325
PZ
8181 ret = 1;
8182 }
e050e3f0 8183 }
60db5e09 8184
cdd6c482 8185 if (event->attr.freq) {
def0a9b2 8186 u64 now = perf_clock();
abd50713 8187 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 8188
abd50713 8189 hwc->freq_time_stamp = now;
bd2b5b12 8190
abd50713 8191 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 8192 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
8193 }
8194
475113d9
JO
8195 return ret;
8196}
8197
8198int perf_event_account_interrupt(struct perf_event *event)
8199{
8200 return __perf_event_account_interrupt(event, 1);
8201}
8202
8203/*
8204 * Generic event overflow handling, sampling.
8205 */
8206
8207static int __perf_event_overflow(struct perf_event *event,
8208 int throttle, struct perf_sample_data *data,
8209 struct pt_regs *regs)
8210{
8211 int events = atomic_read(&event->event_limit);
8212 int ret = 0;
8213
8214 /*
8215 * Non-sampling counters might still use the PMI to fold short
8216 * hardware counters, ignore those.
8217 */
8218 if (unlikely(!is_sampling_event(event)))
8219 return 0;
8220
8221 ret = __perf_event_account_interrupt(event, throttle);
cc1582c2 8222
2023b359
PZ
8223 /*
8224 * XXX event_limit might not quite work as expected on inherited
cdd6c482 8225 * events
2023b359
PZ
8226 */
8227
cdd6c482
IM
8228 event->pending_kill = POLL_IN;
8229 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 8230 ret = 1;
cdd6c482 8231 event->pending_kill = POLL_HUP;
5aab90ce
JO
8232
8233 perf_event_disable_inatomic(event);
79f14641
PZ
8234 }
8235
aa6a5f3c 8236 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 8237
fed66e2c 8238 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
8239 event->pending_wakeup = 1;
8240 irq_work_queue(&event->pending);
f506b3dc
PZ
8241 }
8242
79f14641 8243 return ret;
f6c7d5fe
PZ
8244}
8245
a8b0ca17 8246int perf_event_overflow(struct perf_event *event,
5622f295
MM
8247 struct perf_sample_data *data,
8248 struct pt_regs *regs)
850bc73f 8249{
a8b0ca17 8250 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
8251}
8252
15dbf27c 8253/*
cdd6c482 8254 * Generic software event infrastructure
15dbf27c
PZ
8255 */
8256
b28ab83c
PZ
8257struct swevent_htable {
8258 struct swevent_hlist *swevent_hlist;
8259 struct mutex hlist_mutex;
8260 int hlist_refcount;
8261
8262 /* Recursion avoidance in each contexts */
8263 int recursion[PERF_NR_CONTEXTS];
8264};
8265
8266static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8267
7b4b6658 8268/*
cdd6c482
IM
8269 * We directly increment event->count and keep a second value in
8270 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
8271 * is kept in the range [-sample_period, 0] so that we can use the
8272 * sign as trigger.
8273 */
8274
ab573844 8275u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 8276{
cdd6c482 8277 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
8278 u64 period = hwc->last_period;
8279 u64 nr, offset;
8280 s64 old, val;
8281
8282 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
8283
8284again:
e7850595 8285 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
8286 if (val < 0)
8287 return 0;
15dbf27c 8288
7b4b6658
PZ
8289 nr = div64_u64(period + val, period);
8290 offset = nr * period;
8291 val -= offset;
e7850595 8292 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 8293 goto again;
15dbf27c 8294
7b4b6658 8295 return nr;
15dbf27c
PZ
8296}
8297
0cff784a 8298static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 8299 struct perf_sample_data *data,
5622f295 8300 struct pt_regs *regs)
15dbf27c 8301{
cdd6c482 8302 struct hw_perf_event *hwc = &event->hw;
850bc73f 8303 int throttle = 0;
15dbf27c 8304
0cff784a
PZ
8305 if (!overflow)
8306 overflow = perf_swevent_set_period(event);
15dbf27c 8307
7b4b6658
PZ
8308 if (hwc->interrupts == MAX_INTERRUPTS)
8309 return;
15dbf27c 8310
7b4b6658 8311 for (; overflow; overflow--) {
a8b0ca17 8312 if (__perf_event_overflow(event, throttle,
5622f295 8313 data, regs)) {
7b4b6658
PZ
8314 /*
8315 * We inhibit the overflow from happening when
8316 * hwc->interrupts == MAX_INTERRUPTS.
8317 */
8318 break;
8319 }
cf450a73 8320 throttle = 1;
7b4b6658 8321 }
15dbf27c
PZ
8322}
8323
a4eaf7f1 8324static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 8325 struct perf_sample_data *data,
5622f295 8326 struct pt_regs *regs)
7b4b6658 8327{
cdd6c482 8328 struct hw_perf_event *hwc = &event->hw;
d6d020e9 8329
e7850595 8330 local64_add(nr, &event->count);
d6d020e9 8331
0cff784a
PZ
8332 if (!regs)
8333 return;
8334
6c7e550f 8335 if (!is_sampling_event(event))
7b4b6658 8336 return;
d6d020e9 8337
5d81e5cf
AV
8338 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8339 data->period = nr;
8340 return perf_swevent_overflow(event, 1, data, regs);
8341 } else
8342 data->period = event->hw.last_period;
8343
0cff784a 8344 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 8345 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 8346
e7850595 8347 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 8348 return;
df1a132b 8349
a8b0ca17 8350 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
8351}
8352
f5ffe02e
FW
8353static int perf_exclude_event(struct perf_event *event,
8354 struct pt_regs *regs)
8355{
a4eaf7f1 8356 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 8357 return 1;
a4eaf7f1 8358
f5ffe02e
FW
8359 if (regs) {
8360 if (event->attr.exclude_user && user_mode(regs))
8361 return 1;
8362
8363 if (event->attr.exclude_kernel && !user_mode(regs))
8364 return 1;
8365 }
8366
8367 return 0;
8368}
8369
cdd6c482 8370static int perf_swevent_match(struct perf_event *event,
1c432d89 8371 enum perf_type_id type,
6fb2915d
LZ
8372 u32 event_id,
8373 struct perf_sample_data *data,
8374 struct pt_regs *regs)
15dbf27c 8375{
cdd6c482 8376 if (event->attr.type != type)
a21ca2ca 8377 return 0;
f5ffe02e 8378
cdd6c482 8379 if (event->attr.config != event_id)
15dbf27c
PZ
8380 return 0;
8381
f5ffe02e
FW
8382 if (perf_exclude_event(event, regs))
8383 return 0;
15dbf27c
PZ
8384
8385 return 1;
8386}
8387
76e1d904
FW
8388static inline u64 swevent_hash(u64 type, u32 event_id)
8389{
8390 u64 val = event_id | (type << 32);
8391
8392 return hash_64(val, SWEVENT_HLIST_BITS);
8393}
8394
49f135ed
FW
8395static inline struct hlist_head *
8396__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 8397{
49f135ed
FW
8398 u64 hash = swevent_hash(type, event_id);
8399
8400 return &hlist->heads[hash];
8401}
76e1d904 8402
49f135ed
FW
8403/* For the read side: events when they trigger */
8404static inline struct hlist_head *
b28ab83c 8405find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
8406{
8407 struct swevent_hlist *hlist;
76e1d904 8408
b28ab83c 8409 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
8410 if (!hlist)
8411 return NULL;
8412
49f135ed
FW
8413 return __find_swevent_head(hlist, type, event_id);
8414}
8415
8416/* For the event head insertion and removal in the hlist */
8417static inline struct hlist_head *
b28ab83c 8418find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
8419{
8420 struct swevent_hlist *hlist;
8421 u32 event_id = event->attr.config;
8422 u64 type = event->attr.type;
8423
8424 /*
8425 * Event scheduling is always serialized against hlist allocation
8426 * and release. Which makes the protected version suitable here.
8427 * The context lock guarantees that.
8428 */
b28ab83c 8429 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
8430 lockdep_is_held(&event->ctx->lock));
8431 if (!hlist)
8432 return NULL;
8433
8434 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
8435}
8436
8437static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 8438 u64 nr,
76e1d904
FW
8439 struct perf_sample_data *data,
8440 struct pt_regs *regs)
15dbf27c 8441{
4a32fea9 8442 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 8443 struct perf_event *event;
76e1d904 8444 struct hlist_head *head;
15dbf27c 8445
76e1d904 8446 rcu_read_lock();
b28ab83c 8447 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
8448 if (!head)
8449 goto end;
8450
b67bfe0d 8451 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 8452 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 8453 perf_swevent_event(event, nr, data, regs);
15dbf27c 8454 }
76e1d904
FW
8455end:
8456 rcu_read_unlock();
15dbf27c
PZ
8457}
8458
86038c5e
PZI
8459DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8460
4ed7c92d 8461int perf_swevent_get_recursion_context(void)
96f6d444 8462{
4a32fea9 8463 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 8464
b28ab83c 8465 return get_recursion_context(swhash->recursion);
96f6d444 8466}
645e8cc0 8467EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 8468
98b5c2c6 8469void perf_swevent_put_recursion_context(int rctx)
15dbf27c 8470{
4a32fea9 8471 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 8472
b28ab83c 8473 put_recursion_context(swhash->recursion, rctx);
ce71b9df 8474}
15dbf27c 8475
86038c5e 8476void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 8477{
a4234bfc 8478 struct perf_sample_data data;
4ed7c92d 8479
86038c5e 8480 if (WARN_ON_ONCE(!regs))
4ed7c92d 8481 return;
a4234bfc 8482
fd0d000b 8483 perf_sample_data_init(&data, addr, 0);
a8b0ca17 8484 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
8485}
8486
8487void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8488{
8489 int rctx;
8490
8491 preempt_disable_notrace();
8492 rctx = perf_swevent_get_recursion_context();
8493 if (unlikely(rctx < 0))
8494 goto fail;
8495
8496 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
8497
8498 perf_swevent_put_recursion_context(rctx);
86038c5e 8499fail:
1c024eca 8500 preempt_enable_notrace();
b8e83514
PZ
8501}
8502
cdd6c482 8503static void perf_swevent_read(struct perf_event *event)
15dbf27c 8504{
15dbf27c
PZ
8505}
8506
a4eaf7f1 8507static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 8508{
4a32fea9 8509 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 8510 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
8511 struct hlist_head *head;
8512
6c7e550f 8513 if (is_sampling_event(event)) {
7b4b6658 8514 hwc->last_period = hwc->sample_period;
cdd6c482 8515 perf_swevent_set_period(event);
7b4b6658 8516 }
76e1d904 8517
a4eaf7f1
PZ
8518 hwc->state = !(flags & PERF_EF_START);
8519
b28ab83c 8520 head = find_swevent_head(swhash, event);
12ca6ad2 8521 if (WARN_ON_ONCE(!head))
76e1d904
FW
8522 return -EINVAL;
8523
8524 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 8525 perf_event_update_userpage(event);
76e1d904 8526
15dbf27c
PZ
8527 return 0;
8528}
8529
a4eaf7f1 8530static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 8531{
76e1d904 8532 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
8533}
8534
a4eaf7f1 8535static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 8536{
a4eaf7f1 8537 event->hw.state = 0;
d6d020e9 8538}
aa9c4c0f 8539
a4eaf7f1 8540static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 8541{
a4eaf7f1 8542 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
8543}
8544
49f135ed
FW
8545/* Deref the hlist from the update side */
8546static inline struct swevent_hlist *
b28ab83c 8547swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 8548{
b28ab83c
PZ
8549 return rcu_dereference_protected(swhash->swevent_hlist,
8550 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
8551}
8552
b28ab83c 8553static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 8554{
b28ab83c 8555 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 8556
49f135ed 8557 if (!hlist)
76e1d904
FW
8558 return;
8559
70691d4a 8560 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 8561 kfree_rcu(hlist, rcu_head);
76e1d904
FW
8562}
8563
3b364d7b 8564static void swevent_hlist_put_cpu(int cpu)
76e1d904 8565{
b28ab83c 8566 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 8567
b28ab83c 8568 mutex_lock(&swhash->hlist_mutex);
76e1d904 8569
b28ab83c
PZ
8570 if (!--swhash->hlist_refcount)
8571 swevent_hlist_release(swhash);
76e1d904 8572
b28ab83c 8573 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
8574}
8575
3b364d7b 8576static void swevent_hlist_put(void)
76e1d904
FW
8577{
8578 int cpu;
8579
76e1d904 8580 for_each_possible_cpu(cpu)
3b364d7b 8581 swevent_hlist_put_cpu(cpu);
76e1d904
FW
8582}
8583
3b364d7b 8584static int swevent_hlist_get_cpu(int cpu)
76e1d904 8585{
b28ab83c 8586 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
8587 int err = 0;
8588
b28ab83c 8589 mutex_lock(&swhash->hlist_mutex);
a63fbed7
TG
8590 if (!swevent_hlist_deref(swhash) &&
8591 cpumask_test_cpu(cpu, perf_online_mask)) {
76e1d904
FW
8592 struct swevent_hlist *hlist;
8593
8594 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8595 if (!hlist) {
8596 err = -ENOMEM;
8597 goto exit;
8598 }
b28ab83c 8599 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 8600 }
b28ab83c 8601 swhash->hlist_refcount++;
9ed6060d 8602exit:
b28ab83c 8603 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
8604
8605 return err;
8606}
8607
3b364d7b 8608static int swevent_hlist_get(void)
76e1d904 8609{
3b364d7b 8610 int err, cpu, failed_cpu;
76e1d904 8611
a63fbed7 8612 mutex_lock(&pmus_lock);
76e1d904 8613 for_each_possible_cpu(cpu) {
3b364d7b 8614 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
8615 if (err) {
8616 failed_cpu = cpu;
8617 goto fail;
8618 }
8619 }
a63fbed7 8620 mutex_unlock(&pmus_lock);
76e1d904 8621 return 0;
9ed6060d 8622fail:
76e1d904
FW
8623 for_each_possible_cpu(cpu) {
8624 if (cpu == failed_cpu)
8625 break;
3b364d7b 8626 swevent_hlist_put_cpu(cpu);
76e1d904 8627 }
a63fbed7 8628 mutex_unlock(&pmus_lock);
76e1d904
FW
8629 return err;
8630}
8631
c5905afb 8632struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 8633
b0a873eb
PZ
8634static void sw_perf_event_destroy(struct perf_event *event)
8635{
8636 u64 event_id = event->attr.config;
95476b64 8637
b0a873eb
PZ
8638 WARN_ON(event->parent);
8639
c5905afb 8640 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 8641 swevent_hlist_put();
b0a873eb
PZ
8642}
8643
8644static int perf_swevent_init(struct perf_event *event)
8645{
8176cced 8646 u64 event_id = event->attr.config;
b0a873eb
PZ
8647
8648 if (event->attr.type != PERF_TYPE_SOFTWARE)
8649 return -ENOENT;
8650
2481c5fa
SE
8651 /*
8652 * no branch sampling for software events
8653 */
8654 if (has_branch_stack(event))
8655 return -EOPNOTSUPP;
8656
b0a873eb
PZ
8657 switch (event_id) {
8658 case PERF_COUNT_SW_CPU_CLOCK:
8659 case PERF_COUNT_SW_TASK_CLOCK:
8660 return -ENOENT;
8661
8662 default:
8663 break;
8664 }
8665
ce677831 8666 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
8667 return -ENOENT;
8668
8669 if (!event->parent) {
8670 int err;
8671
3b364d7b 8672 err = swevent_hlist_get();
b0a873eb
PZ
8673 if (err)
8674 return err;
8675
c5905afb 8676 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
8677 event->destroy = sw_perf_event_destroy;
8678 }
8679
8680 return 0;
8681}
8682
8683static struct pmu perf_swevent = {
89a1e187 8684 .task_ctx_nr = perf_sw_context,
95476b64 8685
34f43927
PZ
8686 .capabilities = PERF_PMU_CAP_NO_NMI,
8687
b0a873eb 8688 .event_init = perf_swevent_init,
a4eaf7f1
PZ
8689 .add = perf_swevent_add,
8690 .del = perf_swevent_del,
8691 .start = perf_swevent_start,
8692 .stop = perf_swevent_stop,
1c024eca 8693 .read = perf_swevent_read,
1c024eca
PZ
8694};
8695
b0a873eb
PZ
8696#ifdef CONFIG_EVENT_TRACING
8697
1c024eca
PZ
8698static int perf_tp_filter_match(struct perf_event *event,
8699 struct perf_sample_data *data)
8700{
7e3f977e 8701 void *record = data->raw->frag.data;
1c024eca 8702
b71b437e
PZ
8703 /* only top level events have filters set */
8704 if (event->parent)
8705 event = event->parent;
8706
1c024eca
PZ
8707 if (likely(!event->filter) || filter_match_preds(event->filter, record))
8708 return 1;
8709 return 0;
8710}
8711
8712static int perf_tp_event_match(struct perf_event *event,
8713 struct perf_sample_data *data,
8714 struct pt_regs *regs)
8715{
a0f7d0f7
FW
8716 if (event->hw.state & PERF_HES_STOPPED)
8717 return 0;
580d607c 8718 /*
9fd2e48b 8719 * If exclude_kernel, only trace user-space tracepoints (uprobes)
580d607c 8720 */
9fd2e48b 8721 if (event->attr.exclude_kernel && !user_mode(regs))
1c024eca
PZ
8722 return 0;
8723
8724 if (!perf_tp_filter_match(event, data))
8725 return 0;
8726
8727 return 1;
8728}
8729
85b67bcb
AS
8730void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8731 struct trace_event_call *call, u64 count,
8732 struct pt_regs *regs, struct hlist_head *head,
8733 struct task_struct *task)
8734{
e87c6bc3 8735 if (bpf_prog_array_valid(call)) {
85b67bcb 8736 *(struct pt_regs **)raw_data = regs;
e87c6bc3 8737 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
85b67bcb
AS
8738 perf_swevent_put_recursion_context(rctx);
8739 return;
8740 }
8741 }
8742 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8fd0fbbe 8743 rctx, task);
85b67bcb
AS
8744}
8745EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8746
1e1dcd93 8747void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff 8748 struct pt_regs *regs, struct hlist_head *head, int rctx,
8fd0fbbe 8749 struct task_struct *task)
95476b64
FW
8750{
8751 struct perf_sample_data data;
8fd0fbbe 8752 struct perf_event *event;
1c024eca 8753
95476b64 8754 struct perf_raw_record raw = {
7e3f977e
DB
8755 .frag = {
8756 .size = entry_size,
8757 .data = record,
8758 },
95476b64
FW
8759 };
8760
1e1dcd93 8761 perf_sample_data_init(&data, 0, 0);
95476b64
FW
8762 data.raw = &raw;
8763
1e1dcd93
AS
8764 perf_trace_buf_update(record, event_type);
8765
8fd0fbbe 8766 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 8767 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 8768 perf_swevent_event(event, count, &data, regs);
4f41c013 8769 }
ecc55f84 8770
e6dab5ff
AV
8771 /*
8772 * If we got specified a target task, also iterate its context and
8773 * deliver this event there too.
8774 */
8775 if (task && task != current) {
8776 struct perf_event_context *ctx;
8777 struct trace_entry *entry = record;
8778
8779 rcu_read_lock();
8780 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8781 if (!ctx)
8782 goto unlock;
8783
8784 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cd6fb677
JO
8785 if (event->cpu != smp_processor_id())
8786 continue;
e6dab5ff
AV
8787 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8788 continue;
8789 if (event->attr.config != entry->type)
8790 continue;
8791 if (perf_tp_event_match(event, &data, regs))
8792 perf_swevent_event(event, count, &data, regs);
8793 }
8794unlock:
8795 rcu_read_unlock();
8796 }
8797
ecc55f84 8798 perf_swevent_put_recursion_context(rctx);
95476b64
FW
8799}
8800EXPORT_SYMBOL_GPL(perf_tp_event);
8801
cdd6c482 8802static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 8803{
1c024eca 8804 perf_trace_destroy(event);
e077df4f
PZ
8805}
8806
b0a873eb 8807static int perf_tp_event_init(struct perf_event *event)
e077df4f 8808{
76e1d904
FW
8809 int err;
8810
b0a873eb
PZ
8811 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8812 return -ENOENT;
8813
2481c5fa
SE
8814 /*
8815 * no branch sampling for tracepoint events
8816 */
8817 if (has_branch_stack(event))
8818 return -EOPNOTSUPP;
8819
1c024eca
PZ
8820 err = perf_trace_init(event);
8821 if (err)
b0a873eb 8822 return err;
e077df4f 8823
cdd6c482 8824 event->destroy = tp_perf_event_destroy;
e077df4f 8825
b0a873eb
PZ
8826 return 0;
8827}
8828
8829static struct pmu perf_tracepoint = {
89a1e187
PZ
8830 .task_ctx_nr = perf_sw_context,
8831
b0a873eb 8832 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
8833 .add = perf_trace_add,
8834 .del = perf_trace_del,
8835 .start = perf_swevent_start,
8836 .stop = perf_swevent_stop,
b0a873eb 8837 .read = perf_swevent_read,
b0a873eb
PZ
8838};
8839
33ea4b24 8840#if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
e12f03d7
SL
8841/*
8842 * Flags in config, used by dynamic PMU kprobe and uprobe
8843 * The flags should match following PMU_FORMAT_ATTR().
8844 *
8845 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8846 * if not set, create kprobe/uprobe
a6ca88b2
SL
8847 *
8848 * The following values specify a reference counter (or semaphore in the
8849 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
8850 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
8851 *
8852 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
8853 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
e12f03d7
SL
8854 */
8855enum perf_probe_config {
8856 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
a6ca88b2
SL
8857 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
8858 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
e12f03d7
SL
8859};
8860
8861PMU_FORMAT_ATTR(retprobe, "config:0");
a6ca88b2 8862#endif
e12f03d7 8863
a6ca88b2
SL
8864#ifdef CONFIG_KPROBE_EVENTS
8865static struct attribute *kprobe_attrs[] = {
e12f03d7
SL
8866 &format_attr_retprobe.attr,
8867 NULL,
8868};
8869
a6ca88b2 8870static struct attribute_group kprobe_format_group = {
e12f03d7 8871 .name = "format",
a6ca88b2 8872 .attrs = kprobe_attrs,
e12f03d7
SL
8873};
8874
a6ca88b2
SL
8875static const struct attribute_group *kprobe_attr_groups[] = {
8876 &kprobe_format_group,
e12f03d7
SL
8877 NULL,
8878};
8879
8880static int perf_kprobe_event_init(struct perf_event *event);
8881static struct pmu perf_kprobe = {
8882 .task_ctx_nr = perf_sw_context,
8883 .event_init = perf_kprobe_event_init,
8884 .add = perf_trace_add,
8885 .del = perf_trace_del,
8886 .start = perf_swevent_start,
8887 .stop = perf_swevent_stop,
8888 .read = perf_swevent_read,
a6ca88b2 8889 .attr_groups = kprobe_attr_groups,
e12f03d7
SL
8890};
8891
8892static int perf_kprobe_event_init(struct perf_event *event)
8893{
8894 int err;
8895 bool is_retprobe;
8896
8897 if (event->attr.type != perf_kprobe.type)
8898 return -ENOENT;
32e6e967
SL
8899
8900 if (!capable(CAP_SYS_ADMIN))
8901 return -EACCES;
8902
e12f03d7
SL
8903 /*
8904 * no branch sampling for probe events
8905 */
8906 if (has_branch_stack(event))
8907 return -EOPNOTSUPP;
8908
8909 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8910 err = perf_kprobe_init(event, is_retprobe);
8911 if (err)
8912 return err;
8913
8914 event->destroy = perf_kprobe_destroy;
8915
8916 return 0;
8917}
8918#endif /* CONFIG_KPROBE_EVENTS */
8919
33ea4b24 8920#ifdef CONFIG_UPROBE_EVENTS
a6ca88b2
SL
8921PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
8922
8923static struct attribute *uprobe_attrs[] = {
8924 &format_attr_retprobe.attr,
8925 &format_attr_ref_ctr_offset.attr,
8926 NULL,
8927};
8928
8929static struct attribute_group uprobe_format_group = {
8930 .name = "format",
8931 .attrs = uprobe_attrs,
8932};
8933
8934static const struct attribute_group *uprobe_attr_groups[] = {
8935 &uprobe_format_group,
8936 NULL,
8937};
8938
33ea4b24
SL
8939static int perf_uprobe_event_init(struct perf_event *event);
8940static struct pmu perf_uprobe = {
8941 .task_ctx_nr = perf_sw_context,
8942 .event_init = perf_uprobe_event_init,
8943 .add = perf_trace_add,
8944 .del = perf_trace_del,
8945 .start = perf_swevent_start,
8946 .stop = perf_swevent_stop,
8947 .read = perf_swevent_read,
a6ca88b2 8948 .attr_groups = uprobe_attr_groups,
33ea4b24
SL
8949};
8950
8951static int perf_uprobe_event_init(struct perf_event *event)
8952{
8953 int err;
a6ca88b2 8954 unsigned long ref_ctr_offset;
33ea4b24
SL
8955 bool is_retprobe;
8956
8957 if (event->attr.type != perf_uprobe.type)
8958 return -ENOENT;
32e6e967
SL
8959
8960 if (!capable(CAP_SYS_ADMIN))
8961 return -EACCES;
8962
33ea4b24
SL
8963 /*
8964 * no branch sampling for probe events
8965 */
8966 if (has_branch_stack(event))
8967 return -EOPNOTSUPP;
8968
8969 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
a6ca88b2
SL
8970 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
8971 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
33ea4b24
SL
8972 if (err)
8973 return err;
8974
8975 event->destroy = perf_uprobe_destroy;
8976
8977 return 0;
8978}
8979#endif /* CONFIG_UPROBE_EVENTS */
8980
b0a873eb
PZ
8981static inline void perf_tp_register(void)
8982{
2e80a82a 8983 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e12f03d7
SL
8984#ifdef CONFIG_KPROBE_EVENTS
8985 perf_pmu_register(&perf_kprobe, "kprobe", -1);
8986#endif
33ea4b24
SL
8987#ifdef CONFIG_UPROBE_EVENTS
8988 perf_pmu_register(&perf_uprobe, "uprobe", -1);
8989#endif
e077df4f 8990}
6fb2915d 8991
6fb2915d
LZ
8992static void perf_event_free_filter(struct perf_event *event)
8993{
8994 ftrace_profile_free_filter(event);
8995}
8996
aa6a5f3c
AS
8997#ifdef CONFIG_BPF_SYSCALL
8998static void bpf_overflow_handler(struct perf_event *event,
8999 struct perf_sample_data *data,
9000 struct pt_regs *regs)
9001{
9002 struct bpf_perf_event_data_kern ctx = {
9003 .data = data,
7d9285e8 9004 .event = event,
aa6a5f3c
AS
9005 };
9006 int ret = 0;
9007
c895f6f7 9008 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
aa6a5f3c
AS
9009 preempt_disable();
9010 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9011 goto out;
9012 rcu_read_lock();
88575199 9013 ret = BPF_PROG_RUN(event->prog, &ctx);
aa6a5f3c
AS
9014 rcu_read_unlock();
9015out:
9016 __this_cpu_dec(bpf_prog_active);
9017 preempt_enable();
9018 if (!ret)
9019 return;
9020
9021 event->orig_overflow_handler(event, data, regs);
9022}
9023
9024static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9025{
9026 struct bpf_prog *prog;
9027
9028 if (event->overflow_handler_context)
9029 /* hw breakpoint or kernel counter */
9030 return -EINVAL;
9031
9032 if (event->prog)
9033 return -EEXIST;
9034
9035 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9036 if (IS_ERR(prog))
9037 return PTR_ERR(prog);
9038
9039 event->prog = prog;
9040 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9041 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9042 return 0;
9043}
9044
9045static void perf_event_free_bpf_handler(struct perf_event *event)
9046{
9047 struct bpf_prog *prog = event->prog;
9048
9049 if (!prog)
9050 return;
9051
9052 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9053 event->prog = NULL;
9054 bpf_prog_put(prog);
9055}
9056#else
9057static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9058{
9059 return -EOPNOTSUPP;
9060}
9061static void perf_event_free_bpf_handler(struct perf_event *event)
9062{
9063}
9064#endif
9065
e12f03d7
SL
9066/*
9067 * returns true if the event is a tracepoint, or a kprobe/upprobe created
9068 * with perf_event_open()
9069 */
9070static inline bool perf_event_is_tracing(struct perf_event *event)
9071{
9072 if (event->pmu == &perf_tracepoint)
9073 return true;
9074#ifdef CONFIG_KPROBE_EVENTS
9075 if (event->pmu == &perf_kprobe)
9076 return true;
33ea4b24
SL
9077#endif
9078#ifdef CONFIG_UPROBE_EVENTS
9079 if (event->pmu == &perf_uprobe)
9080 return true;
e12f03d7
SL
9081#endif
9082 return false;
9083}
9084
2541517c
AS
9085static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9086{
cf5f5cea 9087 bool is_kprobe, is_tracepoint, is_syscall_tp;
2541517c 9088 struct bpf_prog *prog;
e87c6bc3 9089 int ret;
2541517c 9090
e12f03d7 9091 if (!perf_event_is_tracing(event))
f91840a3 9092 return perf_event_set_bpf_handler(event, prog_fd);
2541517c 9093
98b5c2c6
AS
9094 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9095 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
cf5f5cea
YS
9096 is_syscall_tp = is_syscall_trace_event(event->tp_event);
9097 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
98b5c2c6 9098 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
9099 return -EINVAL;
9100
9101 prog = bpf_prog_get(prog_fd);
9102 if (IS_ERR(prog))
9103 return PTR_ERR(prog);
9104
98b5c2c6 9105 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
cf5f5cea
YS
9106 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9107 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
9108 /* valid fd, but invalid bpf program type */
9109 bpf_prog_put(prog);
9110 return -EINVAL;
9111 }
9112
9802d865
JB
9113 /* Kprobe override only works for kprobes, not uprobes. */
9114 if (prog->kprobe_override &&
9115 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9116 bpf_prog_put(prog);
9117 return -EINVAL;
9118 }
9119
cf5f5cea 9120 if (is_tracepoint || is_syscall_tp) {
32bbe007
AS
9121 int off = trace_event_get_offsets(event->tp_event);
9122
9123 if (prog->aux->max_ctx_offset > off) {
9124 bpf_prog_put(prog);
9125 return -EACCES;
9126 }
9127 }
2541517c 9128
e87c6bc3
YS
9129 ret = perf_event_attach_bpf_prog(event, prog);
9130 if (ret)
9131 bpf_prog_put(prog);
9132 return ret;
2541517c
AS
9133}
9134
9135static void perf_event_free_bpf_prog(struct perf_event *event)
9136{
e12f03d7 9137 if (!perf_event_is_tracing(event)) {
0b4c6841 9138 perf_event_free_bpf_handler(event);
2541517c 9139 return;
2541517c 9140 }
e87c6bc3 9141 perf_event_detach_bpf_prog(event);
2541517c
AS
9142}
9143
e077df4f 9144#else
6fb2915d 9145
b0a873eb 9146static inline void perf_tp_register(void)
e077df4f 9147{
e077df4f 9148}
6fb2915d 9149
6fb2915d
LZ
9150static void perf_event_free_filter(struct perf_event *event)
9151{
9152}
9153
2541517c
AS
9154static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9155{
9156 return -ENOENT;
9157}
9158
9159static void perf_event_free_bpf_prog(struct perf_event *event)
9160{
9161}
07b139c8 9162#endif /* CONFIG_EVENT_TRACING */
e077df4f 9163
24f1e32c 9164#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 9165void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 9166{
f5ffe02e
FW
9167 struct perf_sample_data sample;
9168 struct pt_regs *regs = data;
9169
fd0d000b 9170 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 9171
a4eaf7f1 9172 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 9173 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
9174}
9175#endif
9176
375637bc
AS
9177/*
9178 * Allocate a new address filter
9179 */
9180static struct perf_addr_filter *
9181perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9182{
9183 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9184 struct perf_addr_filter *filter;
9185
9186 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9187 if (!filter)
9188 return NULL;
9189
9190 INIT_LIST_HEAD(&filter->entry);
9191 list_add_tail(&filter->entry, filters);
9192
9193 return filter;
9194}
9195
9196static void free_filters_list(struct list_head *filters)
9197{
9198 struct perf_addr_filter *filter, *iter;
9199
9200 list_for_each_entry_safe(filter, iter, filters, entry) {
9511bce9 9201 path_put(&filter->path);
375637bc
AS
9202 list_del(&filter->entry);
9203 kfree(filter);
9204 }
9205}
9206
9207/*
9208 * Free existing address filters and optionally install new ones
9209 */
9210static void perf_addr_filters_splice(struct perf_event *event,
9211 struct list_head *head)
9212{
9213 unsigned long flags;
9214 LIST_HEAD(list);
9215
9216 if (!has_addr_filter(event))
9217 return;
9218
9219 /* don't bother with children, they don't have their own filters */
9220 if (event->parent)
9221 return;
9222
9223 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9224
9225 list_splice_init(&event->addr_filters.list, &list);
9226 if (head)
9227 list_splice(head, &event->addr_filters.list);
9228
9229 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9230
9231 free_filters_list(&list);
9232}
9233
9234/*
9235 * Scan through mm's vmas and see if one of them matches the
9236 * @filter; if so, adjust filter's address range.
9237 * Called with mm::mmap_sem down for reading.
9238 */
c60f83b8
AS
9239static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9240 struct mm_struct *mm,
9241 struct perf_addr_filter_range *fr)
375637bc
AS
9242{
9243 struct vm_area_struct *vma;
9244
9245 for (vma = mm->mmap; vma; vma = vma->vm_next) {
c60f83b8 9246 if (!vma->vm_file)
375637bc
AS
9247 continue;
9248
c60f83b8
AS
9249 if (perf_addr_filter_vma_adjust(filter, vma, fr))
9250 return;
375637bc 9251 }
375637bc
AS
9252}
9253
9254/*
9255 * Update event's address range filters based on the
9256 * task's existing mappings, if any.
9257 */
9258static void perf_event_addr_filters_apply(struct perf_event *event)
9259{
9260 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9261 struct task_struct *task = READ_ONCE(event->ctx->task);
9262 struct perf_addr_filter *filter;
9263 struct mm_struct *mm = NULL;
9264 unsigned int count = 0;
9265 unsigned long flags;
9266
9267 /*
9268 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9269 * will stop on the parent's child_mutex that our caller is also holding
9270 */
9271 if (task == TASK_TOMBSTONE)
9272 return;
9273
52a44f83
AS
9274 if (ifh->nr_file_filters) {
9275 mm = get_task_mm(event->ctx->task);
9276 if (!mm)
9277 goto restart;
375637bc 9278
52a44f83
AS
9279 down_read(&mm->mmap_sem);
9280 }
375637bc
AS
9281
9282 raw_spin_lock_irqsave(&ifh->lock, flags);
9283 list_for_each_entry(filter, &ifh->list, entry) {
52a44f83
AS
9284 if (filter->path.dentry) {
9285 /*
9286 * Adjust base offset if the filter is associated to a
9287 * binary that needs to be mapped:
9288 */
9289 event->addr_filter_ranges[count].start = 0;
9290 event->addr_filter_ranges[count].size = 0;
375637bc 9291
c60f83b8 9292 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
52a44f83
AS
9293 } else {
9294 event->addr_filter_ranges[count].start = filter->offset;
9295 event->addr_filter_ranges[count].size = filter->size;
9296 }
375637bc
AS
9297
9298 count++;
9299 }
9300
9301 event->addr_filters_gen++;
9302 raw_spin_unlock_irqrestore(&ifh->lock, flags);
9303
52a44f83
AS
9304 if (ifh->nr_file_filters) {
9305 up_read(&mm->mmap_sem);
375637bc 9306
52a44f83
AS
9307 mmput(mm);
9308 }
375637bc
AS
9309
9310restart:
767ae086 9311 perf_event_stop(event, 1);
375637bc
AS
9312}
9313
9314/*
9315 * Address range filtering: limiting the data to certain
9316 * instruction address ranges. Filters are ioctl()ed to us from
9317 * userspace as ascii strings.
9318 *
9319 * Filter string format:
9320 *
9321 * ACTION RANGE_SPEC
9322 * where ACTION is one of the
9323 * * "filter": limit the trace to this region
9324 * * "start": start tracing from this address
9325 * * "stop": stop tracing at this address/region;
9326 * RANGE_SPEC is
9327 * * for kernel addresses: <start address>[/<size>]
9328 * * for object files: <start address>[/<size>]@</path/to/object/file>
9329 *
6ed70cf3
AS
9330 * if <size> is not specified or is zero, the range is treated as a single
9331 * address; not valid for ACTION=="filter".
375637bc
AS
9332 */
9333enum {
e96271f3 9334 IF_ACT_NONE = -1,
375637bc
AS
9335 IF_ACT_FILTER,
9336 IF_ACT_START,
9337 IF_ACT_STOP,
9338 IF_SRC_FILE,
9339 IF_SRC_KERNEL,
9340 IF_SRC_FILEADDR,
9341 IF_SRC_KERNELADDR,
9342};
9343
9344enum {
9345 IF_STATE_ACTION = 0,
9346 IF_STATE_SOURCE,
9347 IF_STATE_END,
9348};
9349
9350static const match_table_t if_tokens = {
9351 { IF_ACT_FILTER, "filter" },
9352 { IF_ACT_START, "start" },
9353 { IF_ACT_STOP, "stop" },
9354 { IF_SRC_FILE, "%u/%u@%s" },
9355 { IF_SRC_KERNEL, "%u/%u" },
9356 { IF_SRC_FILEADDR, "%u@%s" },
9357 { IF_SRC_KERNELADDR, "%u" },
e96271f3 9358 { IF_ACT_NONE, NULL },
375637bc
AS
9359};
9360
9361/*
9362 * Address filter string parser
9363 */
9364static int
9365perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9366 struct list_head *filters)
9367{
9368 struct perf_addr_filter *filter = NULL;
9369 char *start, *orig, *filename = NULL;
375637bc
AS
9370 substring_t args[MAX_OPT_ARGS];
9371 int state = IF_STATE_ACTION, token;
9372 unsigned int kernel = 0;
9373 int ret = -EINVAL;
9374
9375 orig = fstr = kstrdup(fstr, GFP_KERNEL);
9376 if (!fstr)
9377 return -ENOMEM;
9378
9379 while ((start = strsep(&fstr, " ,\n")) != NULL) {
6ed70cf3
AS
9380 static const enum perf_addr_filter_action_t actions[] = {
9381 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
9382 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
9383 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
9384 };
375637bc
AS
9385 ret = -EINVAL;
9386
9387 if (!*start)
9388 continue;
9389
9390 /* filter definition begins */
9391 if (state == IF_STATE_ACTION) {
9392 filter = perf_addr_filter_new(event, filters);
9393 if (!filter)
9394 goto fail;
9395 }
9396
9397 token = match_token(start, if_tokens, args);
9398 switch (token) {
9399 case IF_ACT_FILTER:
9400 case IF_ACT_START:
375637bc
AS
9401 case IF_ACT_STOP:
9402 if (state != IF_STATE_ACTION)
9403 goto fail;
9404
6ed70cf3 9405 filter->action = actions[token];
375637bc
AS
9406 state = IF_STATE_SOURCE;
9407 break;
9408
9409 case IF_SRC_KERNELADDR:
9410 case IF_SRC_KERNEL:
9411 kernel = 1;
10c3405f 9412 /* fall through */
375637bc
AS
9413
9414 case IF_SRC_FILEADDR:
9415 case IF_SRC_FILE:
9416 if (state != IF_STATE_SOURCE)
9417 goto fail;
9418
375637bc
AS
9419 *args[0].to = 0;
9420 ret = kstrtoul(args[0].from, 0, &filter->offset);
9421 if (ret)
9422 goto fail;
9423
6ed70cf3 9424 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
375637bc
AS
9425 *args[1].to = 0;
9426 ret = kstrtoul(args[1].from, 0, &filter->size);
9427 if (ret)
9428 goto fail;
9429 }
9430
4059ffd0 9431 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
6ed70cf3 9432 int fpos = token == IF_SRC_FILE ? 2 : 1;
4059ffd0
MP
9433
9434 filename = match_strdup(&args[fpos]);
375637bc
AS
9435 if (!filename) {
9436 ret = -ENOMEM;
9437 goto fail;
9438 }
9439 }
9440
9441 state = IF_STATE_END;
9442 break;
9443
9444 default:
9445 goto fail;
9446 }
9447
9448 /*
9449 * Filter definition is fully parsed, validate and install it.
9450 * Make sure that it doesn't contradict itself or the event's
9451 * attribute.
9452 */
9453 if (state == IF_STATE_END) {
9ccbfbb1 9454 ret = -EINVAL;
375637bc
AS
9455 if (kernel && event->attr.exclude_kernel)
9456 goto fail;
9457
6ed70cf3
AS
9458 /*
9459 * ACTION "filter" must have a non-zero length region
9460 * specified.
9461 */
9462 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9463 !filter->size)
9464 goto fail;
9465
375637bc
AS
9466 if (!kernel) {
9467 if (!filename)
9468 goto fail;
9469
6ce77bfd
AS
9470 /*
9471 * For now, we only support file-based filters
9472 * in per-task events; doing so for CPU-wide
9473 * events requires additional context switching
9474 * trickery, since same object code will be
9475 * mapped at different virtual addresses in
9476 * different processes.
9477 */
9478 ret = -EOPNOTSUPP;
9479 if (!event->ctx->task)
9480 goto fail_free_name;
9481
375637bc 9482 /* look up the path and grab its inode */
9511bce9
SL
9483 ret = kern_path(filename, LOOKUP_FOLLOW,
9484 &filter->path);
375637bc
AS
9485 if (ret)
9486 goto fail_free_name;
9487
375637bc
AS
9488 kfree(filename);
9489 filename = NULL;
9490
9491 ret = -EINVAL;
9511bce9
SL
9492 if (!filter->path.dentry ||
9493 !S_ISREG(d_inode(filter->path.dentry)
9494 ->i_mode))
375637bc 9495 goto fail;
6ce77bfd
AS
9496
9497 event->addr_filters.nr_file_filters++;
375637bc
AS
9498 }
9499
9500 /* ready to consume more filters */
9501 state = IF_STATE_ACTION;
9502 filter = NULL;
9503 }
9504 }
9505
9506 if (state != IF_STATE_ACTION)
9507 goto fail;
9508
9509 kfree(orig);
9510
9511 return 0;
9512
9513fail_free_name:
9514 kfree(filename);
9515fail:
9516 free_filters_list(filters);
9517 kfree(orig);
9518
9519 return ret;
9520}
9521
9522static int
9523perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9524{
9525 LIST_HEAD(filters);
9526 int ret;
9527
9528 /*
9529 * Since this is called in perf_ioctl() path, we're already holding
9530 * ctx::mutex.
9531 */
9532 lockdep_assert_held(&event->ctx->mutex);
9533
9534 if (WARN_ON_ONCE(event->parent))
9535 return -EINVAL;
9536
375637bc
AS
9537 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9538 if (ret)
6ce77bfd 9539 goto fail_clear_files;
375637bc
AS
9540
9541 ret = event->pmu->addr_filters_validate(&filters);
6ce77bfd
AS
9542 if (ret)
9543 goto fail_free_filters;
375637bc
AS
9544
9545 /* remove existing filters, if any */
9546 perf_addr_filters_splice(event, &filters);
9547
9548 /* install new filters */
9549 perf_event_for_each_child(event, perf_event_addr_filters_apply);
9550
6ce77bfd
AS
9551 return ret;
9552
9553fail_free_filters:
9554 free_filters_list(&filters);
9555
9556fail_clear_files:
9557 event->addr_filters.nr_file_filters = 0;
9558
375637bc
AS
9559 return ret;
9560}
9561
c796bbbe
AS
9562static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9563{
c796bbbe 9564 int ret = -EINVAL;
e12f03d7 9565 char *filter_str;
c796bbbe
AS
9566
9567 filter_str = strndup_user(arg, PAGE_SIZE);
9568 if (IS_ERR(filter_str))
9569 return PTR_ERR(filter_str);
9570
e12f03d7
SL
9571#ifdef CONFIG_EVENT_TRACING
9572 if (perf_event_is_tracing(event)) {
9573 struct perf_event_context *ctx = event->ctx;
9574
9575 /*
9576 * Beware, here be dragons!!
9577 *
9578 * the tracepoint muck will deadlock against ctx->mutex, but
9579 * the tracepoint stuff does not actually need it. So
9580 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9581 * already have a reference on ctx.
9582 *
9583 * This can result in event getting moved to a different ctx,
9584 * but that does not affect the tracepoint state.
9585 */
9586 mutex_unlock(&ctx->mutex);
9587 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9588 mutex_lock(&ctx->mutex);
9589 } else
9590#endif
9591 if (has_addr_filter(event))
375637bc 9592 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
9593
9594 kfree(filter_str);
9595 return ret;
9596}
9597
b0a873eb
PZ
9598/*
9599 * hrtimer based swevent callback
9600 */
f29ac756 9601
b0a873eb 9602static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 9603{
b0a873eb
PZ
9604 enum hrtimer_restart ret = HRTIMER_RESTART;
9605 struct perf_sample_data data;
9606 struct pt_regs *regs;
9607 struct perf_event *event;
9608 u64 period;
f29ac756 9609
b0a873eb 9610 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
9611
9612 if (event->state != PERF_EVENT_STATE_ACTIVE)
9613 return HRTIMER_NORESTART;
9614
b0a873eb 9615 event->pmu->read(event);
f344011c 9616
fd0d000b 9617 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
9618 regs = get_irq_regs();
9619
9620 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 9621 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 9622 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
9623 ret = HRTIMER_NORESTART;
9624 }
24f1e32c 9625
b0a873eb
PZ
9626 period = max_t(u64, 10000, event->hw.sample_period);
9627 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 9628
b0a873eb 9629 return ret;
f29ac756
PZ
9630}
9631
b0a873eb 9632static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 9633{
b0a873eb 9634 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
9635 s64 period;
9636
9637 if (!is_sampling_event(event))
9638 return;
f5ffe02e 9639
5d508e82
FBH
9640 period = local64_read(&hwc->period_left);
9641 if (period) {
9642 if (period < 0)
9643 period = 10000;
fa407f35 9644
5d508e82
FBH
9645 local64_set(&hwc->period_left, 0);
9646 } else {
9647 period = max_t(u64, 10000, hwc->sample_period);
9648 }
3497d206 9649 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
30f9028b 9650 HRTIMER_MODE_REL_PINNED_HARD);
24f1e32c 9651}
b0a873eb
PZ
9652
9653static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 9654{
b0a873eb
PZ
9655 struct hw_perf_event *hwc = &event->hw;
9656
6c7e550f 9657 if (is_sampling_event(event)) {
b0a873eb 9658 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 9659 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
9660
9661 hrtimer_cancel(&hwc->hrtimer);
9662 }
24f1e32c
FW
9663}
9664
ba3dd36c
PZ
9665static void perf_swevent_init_hrtimer(struct perf_event *event)
9666{
9667 struct hw_perf_event *hwc = &event->hw;
9668
9669 if (!is_sampling_event(event))
9670 return;
9671
30f9028b 9672 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
ba3dd36c
PZ
9673 hwc->hrtimer.function = perf_swevent_hrtimer;
9674
9675 /*
9676 * Since hrtimers have a fixed rate, we can do a static freq->period
9677 * mapping and avoid the whole period adjust feedback stuff.
9678 */
9679 if (event->attr.freq) {
9680 long freq = event->attr.sample_freq;
9681
9682 event->attr.sample_period = NSEC_PER_SEC / freq;
9683 hwc->sample_period = event->attr.sample_period;
9684 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 9685 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
9686 event->attr.freq = 0;
9687 }
9688}
9689
b0a873eb
PZ
9690/*
9691 * Software event: cpu wall time clock
9692 */
9693
9694static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 9695{
b0a873eb
PZ
9696 s64 prev;
9697 u64 now;
9698
a4eaf7f1 9699 now = local_clock();
b0a873eb
PZ
9700 prev = local64_xchg(&event->hw.prev_count, now);
9701 local64_add(now - prev, &event->count);
24f1e32c 9702}
24f1e32c 9703
a4eaf7f1 9704static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 9705{
a4eaf7f1 9706 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 9707 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
9708}
9709
a4eaf7f1 9710static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 9711{
b0a873eb
PZ
9712 perf_swevent_cancel_hrtimer(event);
9713 cpu_clock_event_update(event);
9714}
f29ac756 9715
a4eaf7f1
PZ
9716static int cpu_clock_event_add(struct perf_event *event, int flags)
9717{
9718 if (flags & PERF_EF_START)
9719 cpu_clock_event_start(event, flags);
6a694a60 9720 perf_event_update_userpage(event);
a4eaf7f1
PZ
9721
9722 return 0;
9723}
9724
9725static void cpu_clock_event_del(struct perf_event *event, int flags)
9726{
9727 cpu_clock_event_stop(event, flags);
9728}
9729
b0a873eb
PZ
9730static void cpu_clock_event_read(struct perf_event *event)
9731{
9732 cpu_clock_event_update(event);
9733}
f344011c 9734
b0a873eb
PZ
9735static int cpu_clock_event_init(struct perf_event *event)
9736{
9737 if (event->attr.type != PERF_TYPE_SOFTWARE)
9738 return -ENOENT;
9739
9740 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9741 return -ENOENT;
9742
2481c5fa
SE
9743 /*
9744 * no branch sampling for software events
9745 */
9746 if (has_branch_stack(event))
9747 return -EOPNOTSUPP;
9748
ba3dd36c
PZ
9749 perf_swevent_init_hrtimer(event);
9750
b0a873eb 9751 return 0;
f29ac756
PZ
9752}
9753
b0a873eb 9754static struct pmu perf_cpu_clock = {
89a1e187
PZ
9755 .task_ctx_nr = perf_sw_context,
9756
34f43927
PZ
9757 .capabilities = PERF_PMU_CAP_NO_NMI,
9758
b0a873eb 9759 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
9760 .add = cpu_clock_event_add,
9761 .del = cpu_clock_event_del,
9762 .start = cpu_clock_event_start,
9763 .stop = cpu_clock_event_stop,
b0a873eb
PZ
9764 .read = cpu_clock_event_read,
9765};
9766
9767/*
9768 * Software event: task time clock
9769 */
9770
9771static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 9772{
b0a873eb
PZ
9773 u64 prev;
9774 s64 delta;
5c92d124 9775
b0a873eb
PZ
9776 prev = local64_xchg(&event->hw.prev_count, now);
9777 delta = now - prev;
9778 local64_add(delta, &event->count);
9779}
5c92d124 9780
a4eaf7f1 9781static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 9782{
a4eaf7f1 9783 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 9784 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
9785}
9786
a4eaf7f1 9787static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
9788{
9789 perf_swevent_cancel_hrtimer(event);
9790 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
9791}
9792
9793static int task_clock_event_add(struct perf_event *event, int flags)
9794{
9795 if (flags & PERF_EF_START)
9796 task_clock_event_start(event, flags);
6a694a60 9797 perf_event_update_userpage(event);
b0a873eb 9798
a4eaf7f1
PZ
9799 return 0;
9800}
9801
9802static void task_clock_event_del(struct perf_event *event, int flags)
9803{
9804 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
9805}
9806
9807static void task_clock_event_read(struct perf_event *event)
9808{
768a06e2
PZ
9809 u64 now = perf_clock();
9810 u64 delta = now - event->ctx->timestamp;
9811 u64 time = event->ctx->time + delta;
b0a873eb
PZ
9812
9813 task_clock_event_update(event, time);
9814}
9815
9816static int task_clock_event_init(struct perf_event *event)
6fb2915d 9817{
b0a873eb
PZ
9818 if (event->attr.type != PERF_TYPE_SOFTWARE)
9819 return -ENOENT;
9820
9821 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9822 return -ENOENT;
9823
2481c5fa
SE
9824 /*
9825 * no branch sampling for software events
9826 */
9827 if (has_branch_stack(event))
9828 return -EOPNOTSUPP;
9829
ba3dd36c
PZ
9830 perf_swevent_init_hrtimer(event);
9831
b0a873eb 9832 return 0;
6fb2915d
LZ
9833}
9834
b0a873eb 9835static struct pmu perf_task_clock = {
89a1e187
PZ
9836 .task_ctx_nr = perf_sw_context,
9837
34f43927
PZ
9838 .capabilities = PERF_PMU_CAP_NO_NMI,
9839
b0a873eb 9840 .event_init = task_clock_event_init,
a4eaf7f1
PZ
9841 .add = task_clock_event_add,
9842 .del = task_clock_event_del,
9843 .start = task_clock_event_start,
9844 .stop = task_clock_event_stop,
b0a873eb
PZ
9845 .read = task_clock_event_read,
9846};
6fb2915d 9847
ad5133b7 9848static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 9849{
e077df4f 9850}
6fb2915d 9851
fbbe0701
SB
9852static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9853{
9854}
9855
ad5133b7 9856static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 9857{
ad5133b7 9858 return 0;
6fb2915d
LZ
9859}
9860
81ec3f3c
JO
9861static int perf_event_nop_int(struct perf_event *event, u64 value)
9862{
9863 return 0;
9864}
9865
18ab2cd3 9866static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
9867
9868static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 9869{
fbbe0701
SB
9870 __this_cpu_write(nop_txn_flags, flags);
9871
9872 if (flags & ~PERF_PMU_TXN_ADD)
9873 return;
9874
ad5133b7 9875 perf_pmu_disable(pmu);
6fb2915d
LZ
9876}
9877
ad5133b7
PZ
9878static int perf_pmu_commit_txn(struct pmu *pmu)
9879{
fbbe0701
SB
9880 unsigned int flags = __this_cpu_read(nop_txn_flags);
9881
9882 __this_cpu_write(nop_txn_flags, 0);
9883
9884 if (flags & ~PERF_PMU_TXN_ADD)
9885 return 0;
9886
ad5133b7
PZ
9887 perf_pmu_enable(pmu);
9888 return 0;
9889}
e077df4f 9890
ad5133b7 9891static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 9892{
fbbe0701
SB
9893 unsigned int flags = __this_cpu_read(nop_txn_flags);
9894
9895 __this_cpu_write(nop_txn_flags, 0);
9896
9897 if (flags & ~PERF_PMU_TXN_ADD)
9898 return;
9899
ad5133b7 9900 perf_pmu_enable(pmu);
24f1e32c
FW
9901}
9902
35edc2a5
PZ
9903static int perf_event_idx_default(struct perf_event *event)
9904{
c719f560 9905 return 0;
35edc2a5
PZ
9906}
9907
8dc85d54
PZ
9908/*
9909 * Ensures all contexts with the same task_ctx_nr have the same
9910 * pmu_cpu_context too.
9911 */
9e317041 9912static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 9913{
8dc85d54 9914 struct pmu *pmu;
b326e956 9915
8dc85d54
PZ
9916 if (ctxn < 0)
9917 return NULL;
24f1e32c 9918
8dc85d54
PZ
9919 list_for_each_entry(pmu, &pmus, entry) {
9920 if (pmu->task_ctx_nr == ctxn)
9921 return pmu->pmu_cpu_context;
9922 }
24f1e32c 9923
8dc85d54 9924 return NULL;
24f1e32c
FW
9925}
9926
51676957
PZ
9927static void free_pmu_context(struct pmu *pmu)
9928{
df0062b2
WD
9929 /*
9930 * Static contexts such as perf_sw_context have a global lifetime
9931 * and may be shared between different PMUs. Avoid freeing them
9932 * when a single PMU is going away.
9933 */
9934 if (pmu->task_ctx_nr > perf_invalid_context)
9935 return;
9936
51676957 9937 free_percpu(pmu->pmu_cpu_context);
24f1e32c 9938}
6e855cd4
AS
9939
9940/*
9941 * Let userspace know that this PMU supports address range filtering:
9942 */
9943static ssize_t nr_addr_filters_show(struct device *dev,
9944 struct device_attribute *attr,
9945 char *page)
9946{
9947 struct pmu *pmu = dev_get_drvdata(dev);
9948
9949 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9950}
9951DEVICE_ATTR_RO(nr_addr_filters);
9952
2e80a82a 9953static struct idr pmu_idr;
d6d020e9 9954
abe43400
PZ
9955static ssize_t
9956type_show(struct device *dev, struct device_attribute *attr, char *page)
9957{
9958 struct pmu *pmu = dev_get_drvdata(dev);
9959
9960 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9961}
90826ca7 9962static DEVICE_ATTR_RO(type);
abe43400 9963
62b85639
SE
9964static ssize_t
9965perf_event_mux_interval_ms_show(struct device *dev,
9966 struct device_attribute *attr,
9967 char *page)
9968{
9969 struct pmu *pmu = dev_get_drvdata(dev);
9970
9971 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9972}
9973
272325c4
PZ
9974static DEFINE_MUTEX(mux_interval_mutex);
9975
62b85639
SE
9976static ssize_t
9977perf_event_mux_interval_ms_store(struct device *dev,
9978 struct device_attribute *attr,
9979 const char *buf, size_t count)
9980{
9981 struct pmu *pmu = dev_get_drvdata(dev);
9982 int timer, cpu, ret;
9983
9984 ret = kstrtoint(buf, 0, &timer);
9985 if (ret)
9986 return ret;
9987
9988 if (timer < 1)
9989 return -EINVAL;
9990
9991 /* same value, noting to do */
9992 if (timer == pmu->hrtimer_interval_ms)
9993 return count;
9994
272325c4 9995 mutex_lock(&mux_interval_mutex);
62b85639
SE
9996 pmu->hrtimer_interval_ms = timer;
9997
9998 /* update all cpuctx for this PMU */
a63fbed7 9999 cpus_read_lock();
272325c4 10000 for_each_online_cpu(cpu) {
62b85639
SE
10001 struct perf_cpu_context *cpuctx;
10002 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10003 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10004
272325c4
PZ
10005 cpu_function_call(cpu,
10006 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 10007 }
a63fbed7 10008 cpus_read_unlock();
272325c4 10009 mutex_unlock(&mux_interval_mutex);
62b85639
SE
10010
10011 return count;
10012}
90826ca7 10013static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 10014
90826ca7
GKH
10015static struct attribute *pmu_dev_attrs[] = {
10016 &dev_attr_type.attr,
10017 &dev_attr_perf_event_mux_interval_ms.attr,
10018 NULL,
abe43400 10019};
90826ca7 10020ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
10021
10022static int pmu_bus_running;
10023static struct bus_type pmu_bus = {
10024 .name = "event_source",
90826ca7 10025 .dev_groups = pmu_dev_groups,
abe43400
PZ
10026};
10027
10028static void pmu_dev_release(struct device *dev)
10029{
10030 kfree(dev);
10031}
10032
10033static int pmu_dev_alloc(struct pmu *pmu)
10034{
10035 int ret = -ENOMEM;
10036
10037 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10038 if (!pmu->dev)
10039 goto out;
10040
0c9d42ed 10041 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
10042 device_initialize(pmu->dev);
10043 ret = dev_set_name(pmu->dev, "%s", pmu->name);
10044 if (ret)
10045 goto free_dev;
10046
10047 dev_set_drvdata(pmu->dev, pmu);
10048 pmu->dev->bus = &pmu_bus;
10049 pmu->dev->release = pmu_dev_release;
10050 ret = device_add(pmu->dev);
10051 if (ret)
10052 goto free_dev;
10053
6e855cd4
AS
10054 /* For PMUs with address filters, throw in an extra attribute: */
10055 if (pmu->nr_addr_filters)
10056 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10057
10058 if (ret)
10059 goto del_dev;
10060
f3a3a825
JO
10061 if (pmu->attr_update)
10062 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10063
10064 if (ret)
10065 goto del_dev;
10066
abe43400
PZ
10067out:
10068 return ret;
10069
6e855cd4
AS
10070del_dev:
10071 device_del(pmu->dev);
10072
abe43400
PZ
10073free_dev:
10074 put_device(pmu->dev);
10075 goto out;
10076}
10077
547e9fd7 10078static struct lock_class_key cpuctx_mutex;
facc4307 10079static struct lock_class_key cpuctx_lock;
547e9fd7 10080
03d8e80b 10081int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 10082{
66d258c5 10083 int cpu, ret, max = PERF_TYPE_MAX;
24f1e32c 10084
b0a873eb 10085 mutex_lock(&pmus_lock);
33696fc0
PZ
10086 ret = -ENOMEM;
10087 pmu->pmu_disable_count = alloc_percpu(int);
10088 if (!pmu->pmu_disable_count)
10089 goto unlock;
f29ac756 10090
2e80a82a
PZ
10091 pmu->type = -1;
10092 if (!name)
10093 goto skip_type;
10094 pmu->name = name;
10095
66d258c5
PZ
10096 if (type != PERF_TYPE_SOFTWARE) {
10097 if (type >= 0)
10098 max = type;
10099
10100 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
10101 if (ret < 0)
2e80a82a 10102 goto free_pdc;
66d258c5
PZ
10103
10104 WARN_ON(type >= 0 && ret != type);
10105
10106 type = ret;
2e80a82a
PZ
10107 }
10108 pmu->type = type;
10109
abe43400
PZ
10110 if (pmu_bus_running) {
10111 ret = pmu_dev_alloc(pmu);
10112 if (ret)
10113 goto free_idr;
10114 }
10115
2e80a82a 10116skip_type:
26657848
PZ
10117 if (pmu->task_ctx_nr == perf_hw_context) {
10118 static int hw_context_taken = 0;
10119
5101ef20
MR
10120 /*
10121 * Other than systems with heterogeneous CPUs, it never makes
10122 * sense for two PMUs to share perf_hw_context. PMUs which are
10123 * uncore must use perf_invalid_context.
10124 */
10125 if (WARN_ON_ONCE(hw_context_taken &&
10126 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
10127 pmu->task_ctx_nr = perf_invalid_context;
10128
10129 hw_context_taken = 1;
10130 }
10131
8dc85d54
PZ
10132 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10133 if (pmu->pmu_cpu_context)
10134 goto got_cpu_context;
f29ac756 10135
c4814202 10136 ret = -ENOMEM;
108b02cf
PZ
10137 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10138 if (!pmu->pmu_cpu_context)
abe43400 10139 goto free_dev;
f344011c 10140
108b02cf
PZ
10141 for_each_possible_cpu(cpu) {
10142 struct perf_cpu_context *cpuctx;
10143
10144 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 10145 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 10146 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 10147 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 10148 cpuctx->ctx.pmu = pmu;
a63fbed7 10149 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9e630205 10150
272325c4 10151 __perf_mux_hrtimer_init(cpuctx, cpu);
108b02cf 10152 }
76e1d904 10153
8dc85d54 10154got_cpu_context:
ad5133b7
PZ
10155 if (!pmu->start_txn) {
10156 if (pmu->pmu_enable) {
10157 /*
10158 * If we have pmu_enable/pmu_disable calls, install
10159 * transaction stubs that use that to try and batch
10160 * hardware accesses.
10161 */
10162 pmu->start_txn = perf_pmu_start_txn;
10163 pmu->commit_txn = perf_pmu_commit_txn;
10164 pmu->cancel_txn = perf_pmu_cancel_txn;
10165 } else {
fbbe0701 10166 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
10167 pmu->commit_txn = perf_pmu_nop_int;
10168 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 10169 }
5c92d124 10170 }
15dbf27c 10171
ad5133b7
PZ
10172 if (!pmu->pmu_enable) {
10173 pmu->pmu_enable = perf_pmu_nop_void;
10174 pmu->pmu_disable = perf_pmu_nop_void;
10175 }
10176
81ec3f3c
JO
10177 if (!pmu->check_period)
10178 pmu->check_period = perf_event_nop_int;
10179
35edc2a5
PZ
10180 if (!pmu->event_idx)
10181 pmu->event_idx = perf_event_idx_default;
10182
d44f821b
LK
10183 /*
10184 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
10185 * since these cannot be in the IDR. This way the linear search
10186 * is fast, provided a valid software event is provided.
10187 */
10188 if (type == PERF_TYPE_SOFTWARE || !name)
10189 list_add_rcu(&pmu->entry, &pmus);
10190 else
10191 list_add_tail_rcu(&pmu->entry, &pmus);
10192
bed5b25a 10193 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
10194 ret = 0;
10195unlock:
b0a873eb
PZ
10196 mutex_unlock(&pmus_lock);
10197
33696fc0 10198 return ret;
108b02cf 10199
abe43400
PZ
10200free_dev:
10201 device_del(pmu->dev);
10202 put_device(pmu->dev);
10203
2e80a82a 10204free_idr:
66d258c5 10205 if (pmu->type != PERF_TYPE_SOFTWARE)
2e80a82a
PZ
10206 idr_remove(&pmu_idr, pmu->type);
10207
108b02cf
PZ
10208free_pdc:
10209 free_percpu(pmu->pmu_disable_count);
10210 goto unlock;
f29ac756 10211}
c464c76e 10212EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 10213
b0a873eb 10214void perf_pmu_unregister(struct pmu *pmu)
5c92d124 10215{
b0a873eb
PZ
10216 mutex_lock(&pmus_lock);
10217 list_del_rcu(&pmu->entry);
5c92d124 10218
0475f9ea 10219 /*
cde8e884
PZ
10220 * We dereference the pmu list under both SRCU and regular RCU, so
10221 * synchronize against both of those.
0475f9ea 10222 */
b0a873eb 10223 synchronize_srcu(&pmus_srcu);
cde8e884 10224 synchronize_rcu();
d6d020e9 10225
33696fc0 10226 free_percpu(pmu->pmu_disable_count);
66d258c5 10227 if (pmu->type != PERF_TYPE_SOFTWARE)
2e80a82a 10228 idr_remove(&pmu_idr, pmu->type);
a9f97721 10229 if (pmu_bus_running) {
0933840a
JO
10230 if (pmu->nr_addr_filters)
10231 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10232 device_del(pmu->dev);
10233 put_device(pmu->dev);
10234 }
51676957 10235 free_pmu_context(pmu);
a9f97721 10236 mutex_unlock(&pmus_lock);
b0a873eb 10237}
c464c76e 10238EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 10239
e321d02d
KL
10240static inline bool has_extended_regs(struct perf_event *event)
10241{
10242 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10243 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10244}
10245
cc34b98b
MR
10246static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10247{
ccd41c86 10248 struct perf_event_context *ctx = NULL;
cc34b98b
MR
10249 int ret;
10250
10251 if (!try_module_get(pmu->module))
10252 return -ENODEV;
ccd41c86 10253
0c7296ca
PZ
10254 /*
10255 * A number of pmu->event_init() methods iterate the sibling_list to,
10256 * for example, validate if the group fits on the PMU. Therefore,
10257 * if this is a sibling event, acquire the ctx->mutex to protect
10258 * the sibling_list.
10259 */
10260 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
8b10c5e2
PZ
10261 /*
10262 * This ctx->mutex can nest when we're called through
10263 * inheritance. See the perf_event_ctx_lock_nested() comment.
10264 */
10265 ctx = perf_event_ctx_lock_nested(event->group_leader,
10266 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
10267 BUG_ON(!ctx);
10268 }
10269
cc34b98b
MR
10270 event->pmu = pmu;
10271 ret = pmu->event_init(event);
ccd41c86
PZ
10272
10273 if (ctx)
10274 perf_event_ctx_unlock(event->group_leader, ctx);
10275
cc6795ae 10276 if (!ret) {
e321d02d
KL
10277 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10278 has_extended_regs(event))
10279 ret = -EOPNOTSUPP;
10280
cc6795ae 10281 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
e321d02d 10282 event_has_any_exclude_flag(event))
cc6795ae 10283 ret = -EINVAL;
e321d02d
KL
10284
10285 if (ret && event->destroy)
10286 event->destroy(event);
cc6795ae
AM
10287 }
10288
cc34b98b
MR
10289 if (ret)
10290 module_put(pmu->module);
10291
10292 return ret;
10293}
10294
18ab2cd3 10295static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb 10296{
66d258c5 10297 int idx, type, ret;
85c617ab 10298 struct pmu *pmu;
b0a873eb
PZ
10299
10300 idx = srcu_read_lock(&pmus_srcu);
2e80a82a 10301
40999312
KL
10302 /* Try parent's PMU first: */
10303 if (event->parent && event->parent->pmu) {
10304 pmu = event->parent->pmu;
10305 ret = perf_try_init_event(pmu, event);
10306 if (!ret)
10307 goto unlock;
10308 }
10309
66d258c5
PZ
10310 /*
10311 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
10312 * are often aliases for PERF_TYPE_RAW.
10313 */
10314 type = event->attr.type;
10315 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE)
10316 type = PERF_TYPE_RAW;
10317
10318again:
deb0c3c2 10319 rcu_read_lock();
66d258c5 10320 pmu = idr_find(&pmu_idr, type);
2e80a82a 10321 rcu_read_unlock();
940c5b29 10322 if (pmu) {
cc34b98b 10323 ret = perf_try_init_event(pmu, event);
66d258c5
PZ
10324 if (ret == -ENOENT && event->attr.type != type) {
10325 type = event->attr.type;
10326 goto again;
10327 }
10328
940c5b29
LM
10329 if (ret)
10330 pmu = ERR_PTR(ret);
66d258c5 10331
2e80a82a 10332 goto unlock;
940c5b29 10333 }
2e80a82a 10334
b0a873eb 10335 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 10336 ret = perf_try_init_event(pmu, event);
b0a873eb 10337 if (!ret)
e5f4d339 10338 goto unlock;
76e1d904 10339
b0a873eb
PZ
10340 if (ret != -ENOENT) {
10341 pmu = ERR_PTR(ret);
e5f4d339 10342 goto unlock;
f344011c 10343 }
5c92d124 10344 }
e5f4d339
PZ
10345 pmu = ERR_PTR(-ENOENT);
10346unlock:
b0a873eb 10347 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 10348
4aeb0b42 10349 return pmu;
5c92d124
IM
10350}
10351
f2fb6bef
KL
10352static void attach_sb_event(struct perf_event *event)
10353{
10354 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10355
10356 raw_spin_lock(&pel->lock);
10357 list_add_rcu(&event->sb_list, &pel->list);
10358 raw_spin_unlock(&pel->lock);
10359}
10360
aab5b71e
PZ
10361/*
10362 * We keep a list of all !task (and therefore per-cpu) events
10363 * that need to receive side-band records.
10364 *
10365 * This avoids having to scan all the various PMU per-cpu contexts
10366 * looking for them.
10367 */
f2fb6bef
KL
10368static void account_pmu_sb_event(struct perf_event *event)
10369{
a4f144eb 10370 if (is_sb_event(event))
f2fb6bef
KL
10371 attach_sb_event(event);
10372}
10373
4beb31f3
FW
10374static void account_event_cpu(struct perf_event *event, int cpu)
10375{
10376 if (event->parent)
10377 return;
10378
4beb31f3
FW
10379 if (is_cgroup_event(event))
10380 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10381}
10382
555e0c1e
FW
10383/* Freq events need the tick to stay alive (see perf_event_task_tick). */
10384static void account_freq_event_nohz(void)
10385{
10386#ifdef CONFIG_NO_HZ_FULL
10387 /* Lock so we don't race with concurrent unaccount */
10388 spin_lock(&nr_freq_lock);
10389 if (atomic_inc_return(&nr_freq_events) == 1)
10390 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10391 spin_unlock(&nr_freq_lock);
10392#endif
10393}
10394
10395static void account_freq_event(void)
10396{
10397 if (tick_nohz_full_enabled())
10398 account_freq_event_nohz();
10399 else
10400 atomic_inc(&nr_freq_events);
10401}
10402
10403
766d6c07
FW
10404static void account_event(struct perf_event *event)
10405{
25432ae9
PZ
10406 bool inc = false;
10407
4beb31f3
FW
10408 if (event->parent)
10409 return;
10410
766d6c07 10411 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 10412 inc = true;
766d6c07
FW
10413 if (event->attr.mmap || event->attr.mmap_data)
10414 atomic_inc(&nr_mmap_events);
10415 if (event->attr.comm)
10416 atomic_inc(&nr_comm_events);
e4222673
HB
10417 if (event->attr.namespaces)
10418 atomic_inc(&nr_namespaces_events);
766d6c07
FW
10419 if (event->attr.task)
10420 atomic_inc(&nr_task_events);
555e0c1e
FW
10421 if (event->attr.freq)
10422 account_freq_event();
45ac1403
AH
10423 if (event->attr.context_switch) {
10424 atomic_inc(&nr_switch_events);
25432ae9 10425 inc = true;
45ac1403 10426 }
4beb31f3 10427 if (has_branch_stack(event))
25432ae9 10428 inc = true;
4beb31f3 10429 if (is_cgroup_event(event))
25432ae9 10430 inc = true;
76193a94
SL
10431 if (event->attr.ksymbol)
10432 atomic_inc(&nr_ksymbol_events);
6ee52e2a
SL
10433 if (event->attr.bpf_event)
10434 atomic_inc(&nr_bpf_events);
25432ae9 10435
9107c89e 10436 if (inc) {
5bce9db1
AS
10437 /*
10438 * We need the mutex here because static_branch_enable()
10439 * must complete *before* the perf_sched_count increment
10440 * becomes visible.
10441 */
9107c89e
PZ
10442 if (atomic_inc_not_zero(&perf_sched_count))
10443 goto enabled;
10444
10445 mutex_lock(&perf_sched_mutex);
10446 if (!atomic_read(&perf_sched_count)) {
10447 static_branch_enable(&perf_sched_events);
10448 /*
10449 * Guarantee that all CPUs observe they key change and
10450 * call the perf scheduling hooks before proceeding to
10451 * install events that need them.
10452 */
0809d954 10453 synchronize_rcu();
9107c89e
PZ
10454 }
10455 /*
10456 * Now that we have waited for the sync_sched(), allow further
10457 * increments to by-pass the mutex.
10458 */
10459 atomic_inc(&perf_sched_count);
10460 mutex_unlock(&perf_sched_mutex);
10461 }
10462enabled:
4beb31f3
FW
10463
10464 account_event_cpu(event, event->cpu);
f2fb6bef
KL
10465
10466 account_pmu_sb_event(event);
766d6c07
FW
10467}
10468
0793a61d 10469/*
788faab7 10470 * Allocate and initialize an event structure
0793a61d 10471 */
cdd6c482 10472static struct perf_event *
c3f00c70 10473perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
10474 struct task_struct *task,
10475 struct perf_event *group_leader,
10476 struct perf_event *parent_event,
4dc0da86 10477 perf_overflow_handler_t overflow_handler,
79dff51e 10478 void *context, int cgroup_fd)
0793a61d 10479{
51b0fe39 10480 struct pmu *pmu;
cdd6c482
IM
10481 struct perf_event *event;
10482 struct hw_perf_event *hwc;
90983b16 10483 long err = -EINVAL;
0793a61d 10484
66832eb4
ON
10485 if ((unsigned)cpu >= nr_cpu_ids) {
10486 if (!task || cpu != -1)
10487 return ERR_PTR(-EINVAL);
10488 }
10489
c3f00c70 10490 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 10491 if (!event)
d5d2bc0d 10492 return ERR_PTR(-ENOMEM);
0793a61d 10493
04289bb9 10494 /*
cdd6c482 10495 * Single events are their own group leaders, with an
04289bb9
IM
10496 * empty sibling list:
10497 */
10498 if (!group_leader)
cdd6c482 10499 group_leader = event;
04289bb9 10500
cdd6c482
IM
10501 mutex_init(&event->child_mutex);
10502 INIT_LIST_HEAD(&event->child_list);
fccc714b 10503
cdd6c482
IM
10504 INIT_LIST_HEAD(&event->event_entry);
10505 INIT_LIST_HEAD(&event->sibling_list);
6668128a 10506 INIT_LIST_HEAD(&event->active_list);
8e1a2031 10507 init_event_group(event);
10c6db11 10508 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 10509 INIT_LIST_HEAD(&event->active_entry);
375637bc 10510 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
10511 INIT_HLIST_NODE(&event->hlist_entry);
10512
10c6db11 10513
cdd6c482 10514 init_waitqueue_head(&event->waitq);
1d54ad94 10515 event->pending_disable = -1;
e360adbe 10516 init_irq_work(&event->pending, perf_pending_event);
0793a61d 10517
cdd6c482 10518 mutex_init(&event->mmap_mutex);
375637bc 10519 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 10520
a6fa941d 10521 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
10522 event->cpu = cpu;
10523 event->attr = *attr;
10524 event->group_leader = group_leader;
10525 event->pmu = NULL;
cdd6c482 10526 event->oncpu = -1;
a96bbc16 10527
cdd6c482 10528 event->parent = parent_event;
b84fbc9f 10529
17cf22c3 10530 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 10531 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 10532
cdd6c482 10533 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 10534
d580ff86
PZ
10535 if (task) {
10536 event->attach_state = PERF_ATTACH_TASK;
d580ff86 10537 /*
50f16a8b
PZ
10538 * XXX pmu::event_init needs to know what task to account to
10539 * and we cannot use the ctx information because we need the
10540 * pmu before we get a ctx.
d580ff86 10541 */
7b3c92b8 10542 event->hw.target = get_task_struct(task);
d580ff86
PZ
10543 }
10544
34f43927
PZ
10545 event->clock = &local_clock;
10546 if (parent_event)
10547 event->clock = parent_event->clock;
10548
4dc0da86 10549 if (!overflow_handler && parent_event) {
b326e956 10550 overflow_handler = parent_event->overflow_handler;
4dc0da86 10551 context = parent_event->overflow_handler_context;
f1e4ba5b 10552#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c
AS
10553 if (overflow_handler == bpf_overflow_handler) {
10554 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10555
10556 if (IS_ERR(prog)) {
10557 err = PTR_ERR(prog);
10558 goto err_ns;
10559 }
10560 event->prog = prog;
10561 event->orig_overflow_handler =
10562 parent_event->orig_overflow_handler;
10563 }
10564#endif
4dc0da86 10565 }
66832eb4 10566
1879445d
WN
10567 if (overflow_handler) {
10568 event->overflow_handler = overflow_handler;
10569 event->overflow_handler_context = context;
9ecda41a
WN
10570 } else if (is_write_backward(event)){
10571 event->overflow_handler = perf_event_output_backward;
10572 event->overflow_handler_context = NULL;
1879445d 10573 } else {
9ecda41a 10574 event->overflow_handler = perf_event_output_forward;
1879445d
WN
10575 event->overflow_handler_context = NULL;
10576 }
97eaf530 10577
0231bb53 10578 perf_event__state_init(event);
a86ed508 10579
4aeb0b42 10580 pmu = NULL;
b8e83514 10581
cdd6c482 10582 hwc = &event->hw;
bd2b5b12 10583 hwc->sample_period = attr->sample_period;
0d48696f 10584 if (attr->freq && attr->sample_freq)
bd2b5b12 10585 hwc->sample_period = 1;
eced1dfc 10586 hwc->last_period = hwc->sample_period;
bd2b5b12 10587
e7850595 10588 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 10589
2023b359 10590 /*
ba5213ae
PZ
10591 * We currently do not support PERF_SAMPLE_READ on inherited events.
10592 * See perf_output_read().
2023b359 10593 */
ba5213ae 10594 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
90983b16 10595 goto err_ns;
a46a2300
YZ
10596
10597 if (!has_branch_stack(event))
10598 event->attr.branch_sample_type = 0;
2023b359 10599
79dff51e
MF
10600 if (cgroup_fd != -1) {
10601 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10602 if (err)
10603 goto err_ns;
10604 }
10605
b0a873eb 10606 pmu = perf_init_event(event);
85c617ab 10607 if (IS_ERR(pmu)) {
4aeb0b42 10608 err = PTR_ERR(pmu);
90983b16 10609 goto err_ns;
621a01ea 10610 }
d5d2bc0d 10611
09f4e8f0
PZ
10612 /*
10613 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
10614 * be different on other CPUs in the uncore mask.
10615 */
10616 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
10617 err = -EINVAL;
10618 goto err_pmu;
10619 }
10620
ab43762e
AS
10621 if (event->attr.aux_output &&
10622 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
10623 err = -EOPNOTSUPP;
10624 goto err_pmu;
10625 }
10626
bed5b25a
AS
10627 err = exclusive_event_init(event);
10628 if (err)
10629 goto err_pmu;
10630
375637bc 10631 if (has_addr_filter(event)) {
c60f83b8
AS
10632 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10633 sizeof(struct perf_addr_filter_range),
10634 GFP_KERNEL);
10635 if (!event->addr_filter_ranges) {
36cc2b92 10636 err = -ENOMEM;
375637bc 10637 goto err_per_task;
36cc2b92 10638 }
375637bc 10639
18736eef
AS
10640 /*
10641 * Clone the parent's vma offsets: they are valid until exec()
10642 * even if the mm is not shared with the parent.
10643 */
10644 if (event->parent) {
10645 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10646
10647 raw_spin_lock_irq(&ifh->lock);
c60f83b8
AS
10648 memcpy(event->addr_filter_ranges,
10649 event->parent->addr_filter_ranges,
10650 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
18736eef
AS
10651 raw_spin_unlock_irq(&ifh->lock);
10652 }
10653
375637bc
AS
10654 /* force hw sync on the address filters */
10655 event->addr_filters_gen = 1;
10656 }
10657
cdd6c482 10658 if (!event->parent) {
927c7a9e 10659 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 10660 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 10661 if (err)
375637bc 10662 goto err_addr_filters;
d010b332 10663 }
f344011c 10664 }
9ee318a7 10665
da97e184
JFG
10666 err = security_perf_event_alloc(event);
10667 if (err)
10668 goto err_callchain_buffer;
10669
927a5570
AS
10670 /* symmetric to unaccount_event() in _free_event() */
10671 account_event(event);
10672
cdd6c482 10673 return event;
90983b16 10674
da97e184
JFG
10675err_callchain_buffer:
10676 if (!event->parent) {
10677 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
10678 put_callchain_buffers();
10679 }
375637bc 10680err_addr_filters:
c60f83b8 10681 kfree(event->addr_filter_ranges);
375637bc 10682
bed5b25a
AS
10683err_per_task:
10684 exclusive_event_destroy(event);
10685
90983b16
FW
10686err_pmu:
10687 if (event->destroy)
10688 event->destroy(event);
c464c76e 10689 module_put(pmu->module);
90983b16 10690err_ns:
79dff51e
MF
10691 if (is_cgroup_event(event))
10692 perf_detach_cgroup(event);
90983b16
FW
10693 if (event->ns)
10694 put_pid_ns(event->ns);
621b6d2e
PB
10695 if (event->hw.target)
10696 put_task_struct(event->hw.target);
90983b16
FW
10697 kfree(event);
10698
10699 return ERR_PTR(err);
0793a61d
TG
10700}
10701
cdd6c482
IM
10702static int perf_copy_attr(struct perf_event_attr __user *uattr,
10703 struct perf_event_attr *attr)
974802ea 10704{
974802ea 10705 u32 size;
cdf8073d 10706 int ret;
974802ea 10707
c2ba8f41 10708 /* Zero the full structure, so that a short copy will be nice. */
974802ea
PZ
10709 memset(attr, 0, sizeof(*attr));
10710
10711 ret = get_user(size, &uattr->size);
10712 if (ret)
10713 return ret;
10714
c2ba8f41
AS
10715 /* ABI compatibility quirk: */
10716 if (!size)
974802ea 10717 size = PERF_ATTR_SIZE_VER0;
c2ba8f41 10718 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
974802ea
PZ
10719 goto err_size;
10720
c2ba8f41
AS
10721 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
10722 if (ret) {
10723 if (ret == -E2BIG)
10724 goto err_size;
10725 return ret;
974802ea
PZ
10726 }
10727
f12f42ac
MX
10728 attr->size = size;
10729
8c7e9756 10730 if (attr->__reserved_1 || attr->__reserved_2)
974802ea
PZ
10731 return -EINVAL;
10732
10733 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10734 return -EINVAL;
10735
10736 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10737 return -EINVAL;
10738
bce38cd5
SE
10739 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10740 u64 mask = attr->branch_sample_type;
10741
10742 /* only using defined bits */
10743 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10744 return -EINVAL;
10745
10746 /* at least one branch bit must be set */
10747 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10748 return -EINVAL;
10749
bce38cd5
SE
10750 /* propagate priv level, when not set for branch */
10751 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10752
10753 /* exclude_kernel checked on syscall entry */
10754 if (!attr->exclude_kernel)
10755 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10756
10757 if (!attr->exclude_user)
10758 mask |= PERF_SAMPLE_BRANCH_USER;
10759
10760 if (!attr->exclude_hv)
10761 mask |= PERF_SAMPLE_BRANCH_HV;
10762 /*
10763 * adjust user setting (for HW filter setup)
10764 */
10765 attr->branch_sample_type = mask;
10766 }
e712209a 10767 /* privileged levels capture (kernel, hv): check permissions */
da97e184
JFG
10768 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
10769 ret = perf_allow_kernel(attr);
10770 if (ret)
10771 return ret;
10772 }
bce38cd5 10773 }
4018994f 10774
c5ebcedb 10775 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 10776 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
10777 if (ret)
10778 return ret;
10779 }
10780
10781 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10782 if (!arch_perf_have_user_stack_dump())
10783 return -ENOSYS;
10784
10785 /*
10786 * We have __u32 type for the size, but so far
10787 * we can only use __u16 as maximum due to the
10788 * __u16 sample size limit.
10789 */
10790 if (attr->sample_stack_user >= USHRT_MAX)
78b562fb 10791 return -EINVAL;
c5ebcedb 10792 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
78b562fb 10793 return -EINVAL;
c5ebcedb 10794 }
4018994f 10795
5f970521
JO
10796 if (!attr->sample_max_stack)
10797 attr->sample_max_stack = sysctl_perf_event_max_stack;
10798
60e2364e
SE
10799 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10800 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
10801out:
10802 return ret;
10803
10804err_size:
10805 put_user(sizeof(*attr), &uattr->size);
10806 ret = -E2BIG;
10807 goto out;
10808}
10809
ac9721f3
PZ
10810static int
10811perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 10812{
b69cf536 10813 struct ring_buffer *rb = NULL;
a4be7c27
PZ
10814 int ret = -EINVAL;
10815
ac9721f3 10816 if (!output_event)
a4be7c27
PZ
10817 goto set;
10818
ac9721f3
PZ
10819 /* don't allow circular references */
10820 if (event == output_event)
a4be7c27
PZ
10821 goto out;
10822
0f139300
PZ
10823 /*
10824 * Don't allow cross-cpu buffers
10825 */
10826 if (output_event->cpu != event->cpu)
10827 goto out;
10828
10829 /*
76369139 10830 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
10831 */
10832 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10833 goto out;
10834
34f43927
PZ
10835 /*
10836 * Mixing clocks in the same buffer is trouble you don't need.
10837 */
10838 if (output_event->clock != event->clock)
10839 goto out;
10840
9ecda41a
WN
10841 /*
10842 * Either writing ring buffer from beginning or from end.
10843 * Mixing is not allowed.
10844 */
10845 if (is_write_backward(output_event) != is_write_backward(event))
10846 goto out;
10847
45bfb2e5
PZ
10848 /*
10849 * If both events generate aux data, they must be on the same PMU
10850 */
10851 if (has_aux(event) && has_aux(output_event) &&
10852 event->pmu != output_event->pmu)
10853 goto out;
10854
a4be7c27 10855set:
cdd6c482 10856 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
10857 /* Can't redirect output if we've got an active mmap() */
10858 if (atomic_read(&event->mmap_count))
10859 goto unlock;
a4be7c27 10860
ac9721f3 10861 if (output_event) {
76369139
FW
10862 /* get the rb we want to redirect to */
10863 rb = ring_buffer_get(output_event);
10864 if (!rb)
ac9721f3 10865 goto unlock;
a4be7c27
PZ
10866 }
10867
b69cf536 10868 ring_buffer_attach(event, rb);
9bb5d40c 10869
a4be7c27 10870 ret = 0;
ac9721f3
PZ
10871unlock:
10872 mutex_unlock(&event->mmap_mutex);
10873
a4be7c27 10874out:
a4be7c27
PZ
10875 return ret;
10876}
10877
f63a8daa
PZ
10878static void mutex_lock_double(struct mutex *a, struct mutex *b)
10879{
10880 if (b < a)
10881 swap(a, b);
10882
10883 mutex_lock(a);
10884 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10885}
10886
34f43927
PZ
10887static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10888{
10889 bool nmi_safe = false;
10890
10891 switch (clk_id) {
10892 case CLOCK_MONOTONIC:
10893 event->clock = &ktime_get_mono_fast_ns;
10894 nmi_safe = true;
10895 break;
10896
10897 case CLOCK_MONOTONIC_RAW:
10898 event->clock = &ktime_get_raw_fast_ns;
10899 nmi_safe = true;
10900 break;
10901
10902 case CLOCK_REALTIME:
10903 event->clock = &ktime_get_real_ns;
10904 break;
10905
10906 case CLOCK_BOOTTIME:
9285ec4c 10907 event->clock = &ktime_get_boottime_ns;
34f43927
PZ
10908 break;
10909
10910 case CLOCK_TAI:
9285ec4c 10911 event->clock = &ktime_get_clocktai_ns;
34f43927
PZ
10912 break;
10913
10914 default:
10915 return -EINVAL;
10916 }
10917
10918 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10919 return -EINVAL;
10920
10921 return 0;
10922}
10923
321027c1
PZ
10924/*
10925 * Variation on perf_event_ctx_lock_nested(), except we take two context
10926 * mutexes.
10927 */
10928static struct perf_event_context *
10929__perf_event_ctx_lock_double(struct perf_event *group_leader,
10930 struct perf_event_context *ctx)
10931{
10932 struct perf_event_context *gctx;
10933
10934again:
10935 rcu_read_lock();
10936 gctx = READ_ONCE(group_leader->ctx);
8c94abbb 10937 if (!refcount_inc_not_zero(&gctx->refcount)) {
321027c1
PZ
10938 rcu_read_unlock();
10939 goto again;
10940 }
10941 rcu_read_unlock();
10942
10943 mutex_lock_double(&gctx->mutex, &ctx->mutex);
10944
10945 if (group_leader->ctx != gctx) {
10946 mutex_unlock(&ctx->mutex);
10947 mutex_unlock(&gctx->mutex);
10948 put_ctx(gctx);
10949 goto again;
10950 }
10951
10952 return gctx;
10953}
10954
0793a61d 10955/**
cdd6c482 10956 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 10957 *
cdd6c482 10958 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 10959 * @pid: target pid
9f66a381 10960 * @cpu: target cpu
cdd6c482 10961 * @group_fd: group leader event fd
0793a61d 10962 */
cdd6c482
IM
10963SYSCALL_DEFINE5(perf_event_open,
10964 struct perf_event_attr __user *, attr_uptr,
2743a5b0 10965 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 10966{
b04243ef
PZ
10967 struct perf_event *group_leader = NULL, *output_event = NULL;
10968 struct perf_event *event, *sibling;
cdd6c482 10969 struct perf_event_attr attr;
f63a8daa 10970 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 10971 struct file *event_file = NULL;
2903ff01 10972 struct fd group = {NULL, 0};
38a81da2 10973 struct task_struct *task = NULL;
89a1e187 10974 struct pmu *pmu;
ea635c64 10975 int event_fd;
b04243ef 10976 int move_group = 0;
dc86cabe 10977 int err;
a21b0b35 10978 int f_flags = O_RDWR;
79dff51e 10979 int cgroup_fd = -1;
0793a61d 10980
2743a5b0 10981 /* for future expandability... */
e5d1367f 10982 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
10983 return -EINVAL;
10984
da97e184
JFG
10985 /* Do we allow access to perf_event_open(2) ? */
10986 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
10987 if (err)
10988 return err;
10989
dc86cabe
IM
10990 err = perf_copy_attr(attr_uptr, &attr);
10991 if (err)
10992 return err;
eab656ae 10993
0764771d 10994 if (!attr.exclude_kernel) {
da97e184
JFG
10995 err = perf_allow_kernel(&attr);
10996 if (err)
10997 return err;
0764771d
PZ
10998 }
10999
e4222673
HB
11000 if (attr.namespaces) {
11001 if (!capable(CAP_SYS_ADMIN))
11002 return -EACCES;
11003 }
11004
df58ab24 11005 if (attr.freq) {
cdd6c482 11006 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 11007 return -EINVAL;
0819b2e3
PZ
11008 } else {
11009 if (attr.sample_period & (1ULL << 63))
11010 return -EINVAL;
df58ab24
PZ
11011 }
11012
fc7ce9c7 11013 /* Only privileged users can get physical addresses */
da97e184
JFG
11014 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11015 err = perf_allow_kernel(&attr);
11016 if (err)
11017 return err;
11018 }
fc7ce9c7 11019
b0c8fdc7
DH
11020 err = security_locked_down(LOCKDOWN_PERF);
11021 if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR))
11022 /* REGS_INTR can leak data, lockdown must prevent this */
11023 return err;
11024
11025 err = 0;
11026
e5d1367f
SE
11027 /*
11028 * In cgroup mode, the pid argument is used to pass the fd
11029 * opened to the cgroup directory in cgroupfs. The cpu argument
11030 * designates the cpu on which to monitor threads from that
11031 * cgroup.
11032 */
11033 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
11034 return -EINVAL;
11035
a21b0b35
YD
11036 if (flags & PERF_FLAG_FD_CLOEXEC)
11037 f_flags |= O_CLOEXEC;
11038
11039 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
11040 if (event_fd < 0)
11041 return event_fd;
11042
ac9721f3 11043 if (group_fd != -1) {
2903ff01
AV
11044 err = perf_fget_light(group_fd, &group);
11045 if (err)
d14b12d7 11046 goto err_fd;
2903ff01 11047 group_leader = group.file->private_data;
ac9721f3
PZ
11048 if (flags & PERF_FLAG_FD_OUTPUT)
11049 output_event = group_leader;
11050 if (flags & PERF_FLAG_FD_NO_GROUP)
11051 group_leader = NULL;
11052 }
11053
e5d1367f 11054 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
11055 task = find_lively_task_by_vpid(pid);
11056 if (IS_ERR(task)) {
11057 err = PTR_ERR(task);
11058 goto err_group_fd;
11059 }
11060 }
11061
1f4ee503
PZ
11062 if (task && group_leader &&
11063 group_leader->attr.inherit != attr.inherit) {
11064 err = -EINVAL;
11065 goto err_task;
11066 }
11067
79c9ce57
PZ
11068 if (task) {
11069 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
11070 if (err)
e5aeee51 11071 goto err_task;
79c9ce57
PZ
11072
11073 /*
11074 * Reuse ptrace permission checks for now.
11075 *
11076 * We must hold cred_guard_mutex across this and any potential
11077 * perf_install_in_context() call for this new event to
11078 * serialize against exec() altering our credentials (and the
11079 * perf_event_exit_task() that could imply).
11080 */
11081 err = -EACCES;
11082 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
11083 goto err_cred;
11084 }
11085
79dff51e
MF
11086 if (flags & PERF_FLAG_PID_CGROUP)
11087 cgroup_fd = pid;
11088
4dc0da86 11089 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 11090 NULL, NULL, cgroup_fd);
d14b12d7
SE
11091 if (IS_ERR(event)) {
11092 err = PTR_ERR(event);
79c9ce57 11093 goto err_cred;
d14b12d7
SE
11094 }
11095
53b25335
VW
11096 if (is_sampling_event(event)) {
11097 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 11098 err = -EOPNOTSUPP;
53b25335
VW
11099 goto err_alloc;
11100 }
11101 }
11102
89a1e187
PZ
11103 /*
11104 * Special case software events and allow them to be part of
11105 * any hardware group.
11106 */
11107 pmu = event->pmu;
b04243ef 11108
34f43927
PZ
11109 if (attr.use_clockid) {
11110 err = perf_event_set_clock(event, attr.clockid);
11111 if (err)
11112 goto err_alloc;
11113 }
11114
4ff6a8de
DCC
11115 if (pmu->task_ctx_nr == perf_sw_context)
11116 event->event_caps |= PERF_EV_CAP_SOFTWARE;
11117
a1150c20
SL
11118 if (group_leader) {
11119 if (is_software_event(event) &&
11120 !in_software_context(group_leader)) {
b04243ef 11121 /*
a1150c20
SL
11122 * If the event is a sw event, but the group_leader
11123 * is on hw context.
b04243ef 11124 *
a1150c20
SL
11125 * Allow the addition of software events to hw
11126 * groups, this is safe because software events
11127 * never fail to schedule.
b04243ef 11128 */
a1150c20
SL
11129 pmu = group_leader->ctx->pmu;
11130 } else if (!is_software_event(event) &&
11131 is_software_event(group_leader) &&
4ff6a8de 11132 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
11133 /*
11134 * In case the group is a pure software group, and we
11135 * try to add a hardware event, move the whole group to
11136 * the hardware context.
11137 */
11138 move_group = 1;
11139 }
11140 }
89a1e187
PZ
11141
11142 /*
11143 * Get the target context (task or percpu):
11144 */
4af57ef2 11145 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
11146 if (IS_ERR(ctx)) {
11147 err = PTR_ERR(ctx);
c6be5a5c 11148 goto err_alloc;
89a1e187
PZ
11149 }
11150
ccff286d 11151 /*
cdd6c482 11152 * Look up the group leader (we will attach this event to it):
04289bb9 11153 */
ac9721f3 11154 if (group_leader) {
dc86cabe 11155 err = -EINVAL;
04289bb9 11156
04289bb9 11157 /*
ccff286d
IM
11158 * Do not allow a recursive hierarchy (this new sibling
11159 * becoming part of another group-sibling):
11160 */
11161 if (group_leader->group_leader != group_leader)
c3f00c70 11162 goto err_context;
34f43927
PZ
11163
11164 /* All events in a group should have the same clock */
11165 if (group_leader->clock != event->clock)
11166 goto err_context;
11167
ccff286d 11168 /*
64aee2a9
MR
11169 * Make sure we're both events for the same CPU;
11170 * grouping events for different CPUs is broken; since
11171 * you can never concurrently schedule them anyhow.
04289bb9 11172 */
64aee2a9
MR
11173 if (group_leader->cpu != event->cpu)
11174 goto err_context;
c3c87e77 11175
64aee2a9
MR
11176 /*
11177 * Make sure we're both on the same task, or both
11178 * per-CPU events.
11179 */
11180 if (group_leader->ctx->task != ctx->task)
11181 goto err_context;
11182
11183 /*
11184 * Do not allow to attach to a group in a different task
11185 * or CPU context. If we're moving SW events, we'll fix
11186 * this up later, so allow that.
11187 */
11188 if (!move_group && group_leader->ctx != ctx)
11189 goto err_context;
b04243ef 11190
3b6f9e5c
PM
11191 /*
11192 * Only a group leader can be exclusive or pinned
11193 */
0d48696f 11194 if (attr.exclusive || attr.pinned)
c3f00c70 11195 goto err_context;
ac9721f3
PZ
11196 }
11197
11198 if (output_event) {
11199 err = perf_event_set_output(event, output_event);
11200 if (err)
c3f00c70 11201 goto err_context;
ac9721f3 11202 }
0793a61d 11203
a21b0b35
YD
11204 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11205 f_flags);
ea635c64
AV
11206 if (IS_ERR(event_file)) {
11207 err = PTR_ERR(event_file);
201c2f85 11208 event_file = NULL;
c3f00c70 11209 goto err_context;
ea635c64 11210 }
9b51f66d 11211
b04243ef 11212 if (move_group) {
321027c1
PZ
11213 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11214
84c4e620
PZ
11215 if (gctx->task == TASK_TOMBSTONE) {
11216 err = -ESRCH;
11217 goto err_locked;
11218 }
321027c1
PZ
11219
11220 /*
11221 * Check if we raced against another sys_perf_event_open() call
11222 * moving the software group underneath us.
11223 */
11224 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11225 /*
11226 * If someone moved the group out from under us, check
11227 * if this new event wound up on the same ctx, if so
11228 * its the regular !move_group case, otherwise fail.
11229 */
11230 if (gctx != ctx) {
11231 err = -EINVAL;
11232 goto err_locked;
11233 } else {
11234 perf_event_ctx_unlock(group_leader, gctx);
11235 move_group = 0;
11236 }
11237 }
8a58ddae
AS
11238
11239 /*
11240 * Failure to create exclusive events returns -EBUSY.
11241 */
11242 err = -EBUSY;
11243 if (!exclusive_event_installable(group_leader, ctx))
11244 goto err_locked;
11245
11246 for_each_sibling_event(sibling, group_leader) {
11247 if (!exclusive_event_installable(sibling, ctx))
11248 goto err_locked;
11249 }
f55fc2a5
PZ
11250 } else {
11251 mutex_lock(&ctx->mutex);
11252 }
11253
84c4e620
PZ
11254 if (ctx->task == TASK_TOMBSTONE) {
11255 err = -ESRCH;
11256 goto err_locked;
11257 }
11258
a723968c
PZ
11259 if (!perf_event_validate_size(event)) {
11260 err = -E2BIG;
11261 goto err_locked;
11262 }
11263
a63fbed7
TG
11264 if (!task) {
11265 /*
11266 * Check if the @cpu we're creating an event for is online.
11267 *
11268 * We use the perf_cpu_context::ctx::mutex to serialize against
11269 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11270 */
11271 struct perf_cpu_context *cpuctx =
11272 container_of(ctx, struct perf_cpu_context, ctx);
11273
11274 if (!cpuctx->online) {
11275 err = -ENODEV;
11276 goto err_locked;
11277 }
11278 }
11279
ab43762e
AS
11280 if (event->attr.aux_output && !perf_get_aux_event(event, group_leader))
11281 goto err_locked;
a63fbed7 11282
f55fc2a5
PZ
11283 /*
11284 * Must be under the same ctx::mutex as perf_install_in_context(),
11285 * because we need to serialize with concurrent event creation.
11286 */
11287 if (!exclusive_event_installable(event, ctx)) {
f55fc2a5
PZ
11288 err = -EBUSY;
11289 goto err_locked;
11290 }
f63a8daa 11291
f55fc2a5
PZ
11292 WARN_ON_ONCE(ctx->parent_ctx);
11293
79c9ce57
PZ
11294 /*
11295 * This is the point on no return; we cannot fail hereafter. This is
11296 * where we start modifying current state.
11297 */
11298
f55fc2a5 11299 if (move_group) {
f63a8daa
PZ
11300 /*
11301 * See perf_event_ctx_lock() for comments on the details
11302 * of swizzling perf_event::ctx.
11303 */
45a0e07a 11304 perf_remove_from_context(group_leader, 0);
279b5165 11305 put_ctx(gctx);
0231bb53 11306
edb39592 11307 for_each_sibling_event(sibling, group_leader) {
45a0e07a 11308 perf_remove_from_context(sibling, 0);
b04243ef
PZ
11309 put_ctx(gctx);
11310 }
b04243ef 11311
f63a8daa
PZ
11312 /*
11313 * Wait for everybody to stop referencing the events through
11314 * the old lists, before installing it on new lists.
11315 */
0cda4c02 11316 synchronize_rcu();
f63a8daa 11317
8f95b435
PZI
11318 /*
11319 * Install the group siblings before the group leader.
11320 *
11321 * Because a group leader will try and install the entire group
11322 * (through the sibling list, which is still in-tact), we can
11323 * end up with siblings installed in the wrong context.
11324 *
11325 * By installing siblings first we NO-OP because they're not
11326 * reachable through the group lists.
11327 */
edb39592 11328 for_each_sibling_event(sibling, group_leader) {
8f95b435 11329 perf_event__state_init(sibling);
9fc81d87 11330 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
11331 get_ctx(ctx);
11332 }
8f95b435
PZI
11333
11334 /*
11335 * Removing from the context ends up with disabled
11336 * event. What we want here is event in the initial
11337 * startup state, ready to be add into new context.
11338 */
11339 perf_event__state_init(group_leader);
11340 perf_install_in_context(ctx, group_leader, group_leader->cpu);
11341 get_ctx(ctx);
bed5b25a
AS
11342 }
11343
f73e22ab
PZ
11344 /*
11345 * Precalculate sample_data sizes; do while holding ctx::mutex such
11346 * that we're serialized against further additions and before
11347 * perf_install_in_context() which is the point the event is active and
11348 * can use these values.
11349 */
11350 perf_event__header_size(event);
11351 perf_event__id_header_size(event);
11352
78cd2c74
PZ
11353 event->owner = current;
11354
e2d37cd2 11355 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 11356 perf_unpin_context(ctx);
f63a8daa 11357
f55fc2a5 11358 if (move_group)
321027c1 11359 perf_event_ctx_unlock(group_leader, gctx);
d859e29f 11360 mutex_unlock(&ctx->mutex);
9b51f66d 11361
79c9ce57
PZ
11362 if (task) {
11363 mutex_unlock(&task->signal->cred_guard_mutex);
11364 put_task_struct(task);
11365 }
11366
cdd6c482
IM
11367 mutex_lock(&current->perf_event_mutex);
11368 list_add_tail(&event->owner_entry, &current->perf_event_list);
11369 mutex_unlock(&current->perf_event_mutex);
082ff5a2 11370
8a49542c
PZ
11371 /*
11372 * Drop the reference on the group_event after placing the
11373 * new event on the sibling_list. This ensures destruction
11374 * of the group leader will find the pointer to itself in
11375 * perf_group_detach().
11376 */
2903ff01 11377 fdput(group);
ea635c64
AV
11378 fd_install(event_fd, event_file);
11379 return event_fd;
0793a61d 11380
f55fc2a5
PZ
11381err_locked:
11382 if (move_group)
321027c1 11383 perf_event_ctx_unlock(group_leader, gctx);
f55fc2a5
PZ
11384 mutex_unlock(&ctx->mutex);
11385/* err_file: */
11386 fput(event_file);
c3f00c70 11387err_context:
fe4b04fa 11388 perf_unpin_context(ctx);
ea635c64 11389 put_ctx(ctx);
c6be5a5c 11390err_alloc:
13005627
PZ
11391 /*
11392 * If event_file is set, the fput() above will have called ->release()
11393 * and that will take care of freeing the event.
11394 */
11395 if (!event_file)
11396 free_event(event);
79c9ce57
PZ
11397err_cred:
11398 if (task)
11399 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 11400err_task:
e7d0bc04
PZ
11401 if (task)
11402 put_task_struct(task);
89a1e187 11403err_group_fd:
2903ff01 11404 fdput(group);
ea635c64
AV
11405err_fd:
11406 put_unused_fd(event_fd);
dc86cabe 11407 return err;
0793a61d
TG
11408}
11409
fb0459d7
AV
11410/**
11411 * perf_event_create_kernel_counter
11412 *
11413 * @attr: attributes of the counter to create
11414 * @cpu: cpu in which the counter is bound
38a81da2 11415 * @task: task to profile (NULL for percpu)
fb0459d7
AV
11416 */
11417struct perf_event *
11418perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 11419 struct task_struct *task,
4dc0da86
AK
11420 perf_overflow_handler_t overflow_handler,
11421 void *context)
fb0459d7 11422{
fb0459d7 11423 struct perf_event_context *ctx;
c3f00c70 11424 struct perf_event *event;
fb0459d7 11425 int err;
d859e29f 11426
fb0459d7 11427 /*
dce5affb
AS
11428 * Grouping is not supported for kernel events, neither is 'AUX',
11429 * make sure the caller's intentions are adjusted.
fb0459d7 11430 */
dce5affb
AS
11431 if (attr->aux_output)
11432 return ERR_PTR(-EINVAL);
d859e29f 11433
4dc0da86 11434 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 11435 overflow_handler, context, -1);
c3f00c70
PZ
11436 if (IS_ERR(event)) {
11437 err = PTR_ERR(event);
11438 goto err;
11439 }
d859e29f 11440
f8697762 11441 /* Mark owner so we could distinguish it from user events. */
63b6da39 11442 event->owner = TASK_TOMBSTONE;
f8697762 11443
f25d8ba9
AS
11444 /*
11445 * Get the target context (task or percpu):
11446 */
4af57ef2 11447 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
11448 if (IS_ERR(ctx)) {
11449 err = PTR_ERR(ctx);
c3f00c70 11450 goto err_free;
d859e29f 11451 }
fb0459d7 11452
fb0459d7
AV
11453 WARN_ON_ONCE(ctx->parent_ctx);
11454 mutex_lock(&ctx->mutex);
84c4e620
PZ
11455 if (ctx->task == TASK_TOMBSTONE) {
11456 err = -ESRCH;
11457 goto err_unlock;
11458 }
11459
a63fbed7
TG
11460 if (!task) {
11461 /*
11462 * Check if the @cpu we're creating an event for is online.
11463 *
11464 * We use the perf_cpu_context::ctx::mutex to serialize against
11465 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11466 */
11467 struct perf_cpu_context *cpuctx =
11468 container_of(ctx, struct perf_cpu_context, ctx);
11469 if (!cpuctx->online) {
11470 err = -ENODEV;
11471 goto err_unlock;
11472 }
11473 }
11474
bed5b25a 11475 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 11476 err = -EBUSY;
84c4e620 11477 goto err_unlock;
bed5b25a
AS
11478 }
11479
4ce54af8 11480 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 11481 perf_unpin_context(ctx);
fb0459d7
AV
11482 mutex_unlock(&ctx->mutex);
11483
fb0459d7
AV
11484 return event;
11485
84c4e620
PZ
11486err_unlock:
11487 mutex_unlock(&ctx->mutex);
11488 perf_unpin_context(ctx);
11489 put_ctx(ctx);
c3f00c70
PZ
11490err_free:
11491 free_event(event);
11492err:
c6567f64 11493 return ERR_PTR(err);
9b51f66d 11494}
fb0459d7 11495EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 11496
0cda4c02
YZ
11497void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11498{
11499 struct perf_event_context *src_ctx;
11500 struct perf_event_context *dst_ctx;
11501 struct perf_event *event, *tmp;
11502 LIST_HEAD(events);
11503
11504 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11505 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11506
f63a8daa
PZ
11507 /*
11508 * See perf_event_ctx_lock() for comments on the details
11509 * of swizzling perf_event::ctx.
11510 */
11511 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
11512 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11513 event_entry) {
45a0e07a 11514 perf_remove_from_context(event, 0);
9a545de0 11515 unaccount_event_cpu(event, src_cpu);
0cda4c02 11516 put_ctx(src_ctx);
9886167d 11517 list_add(&event->migrate_entry, &events);
0cda4c02 11518 }
0cda4c02 11519
8f95b435
PZI
11520 /*
11521 * Wait for the events to quiesce before re-instating them.
11522 */
0cda4c02
YZ
11523 synchronize_rcu();
11524
8f95b435
PZI
11525 /*
11526 * Re-instate events in 2 passes.
11527 *
11528 * Skip over group leaders and only install siblings on this first
11529 * pass, siblings will not get enabled without a leader, however a
11530 * leader will enable its siblings, even if those are still on the old
11531 * context.
11532 */
11533 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11534 if (event->group_leader == event)
11535 continue;
11536
11537 list_del(&event->migrate_entry);
11538 if (event->state >= PERF_EVENT_STATE_OFF)
11539 event->state = PERF_EVENT_STATE_INACTIVE;
11540 account_event_cpu(event, dst_cpu);
11541 perf_install_in_context(dst_ctx, event, dst_cpu);
11542 get_ctx(dst_ctx);
11543 }
11544
11545 /*
11546 * Once all the siblings are setup properly, install the group leaders
11547 * to make it go.
11548 */
9886167d
PZ
11549 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11550 list_del(&event->migrate_entry);
0cda4c02
YZ
11551 if (event->state >= PERF_EVENT_STATE_OFF)
11552 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 11553 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
11554 perf_install_in_context(dst_ctx, event, dst_cpu);
11555 get_ctx(dst_ctx);
11556 }
11557 mutex_unlock(&dst_ctx->mutex);
f63a8daa 11558 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
11559}
11560EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11561
cdd6c482 11562static void sync_child_event(struct perf_event *child_event,
38b200d6 11563 struct task_struct *child)
d859e29f 11564{
cdd6c482 11565 struct perf_event *parent_event = child_event->parent;
8bc20959 11566 u64 child_val;
d859e29f 11567
cdd6c482
IM
11568 if (child_event->attr.inherit_stat)
11569 perf_event_read_event(child_event, child);
38b200d6 11570
b5e58793 11571 child_val = perf_event_count(child_event);
d859e29f
PM
11572
11573 /*
11574 * Add back the child's count to the parent's count:
11575 */
a6e6dea6 11576 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
11577 atomic64_add(child_event->total_time_enabled,
11578 &parent_event->child_total_time_enabled);
11579 atomic64_add(child_event->total_time_running,
11580 &parent_event->child_total_time_running);
d859e29f
PM
11581}
11582
9b51f66d 11583static void
8ba289b8
PZ
11584perf_event_exit_event(struct perf_event *child_event,
11585 struct perf_event_context *child_ctx,
11586 struct task_struct *child)
9b51f66d 11587{
8ba289b8
PZ
11588 struct perf_event *parent_event = child_event->parent;
11589
1903d50c
PZ
11590 /*
11591 * Do not destroy the 'original' grouping; because of the context
11592 * switch optimization the original events could've ended up in a
11593 * random child task.
11594 *
11595 * If we were to destroy the original group, all group related
11596 * operations would cease to function properly after this random
11597 * child dies.
11598 *
11599 * Do destroy all inherited groups, we don't care about those
11600 * and being thorough is better.
11601 */
32132a3d
PZ
11602 raw_spin_lock_irq(&child_ctx->lock);
11603 WARN_ON_ONCE(child_ctx->is_active);
11604
8ba289b8 11605 if (parent_event)
32132a3d
PZ
11606 perf_group_detach(child_event);
11607 list_del_event(child_event, child_ctx);
0d3d73aa 11608 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
32132a3d 11609 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 11610
9b51f66d 11611 /*
8ba289b8 11612 * Parent events are governed by their filedesc, retain them.
9b51f66d 11613 */
8ba289b8 11614 if (!parent_event) {
179033b3 11615 perf_event_wakeup(child_event);
8ba289b8 11616 return;
4bcf349a 11617 }
8ba289b8
PZ
11618 /*
11619 * Child events can be cleaned up.
11620 */
11621
11622 sync_child_event(child_event, child);
11623
11624 /*
11625 * Remove this event from the parent's list
11626 */
11627 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11628 mutex_lock(&parent_event->child_mutex);
11629 list_del_init(&child_event->child_list);
11630 mutex_unlock(&parent_event->child_mutex);
11631
11632 /*
11633 * Kick perf_poll() for is_event_hup().
11634 */
11635 perf_event_wakeup(parent_event);
11636 free_event(child_event);
11637 put_event(parent_event);
9b51f66d
IM
11638}
11639
8dc85d54 11640static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 11641{
211de6eb 11642 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 11643 struct perf_event *child_event, *next;
63b6da39
PZ
11644
11645 WARN_ON_ONCE(child != current);
9b51f66d 11646
6a3351b6 11647 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 11648 if (!child_ctx)
9b51f66d
IM
11649 return;
11650
ad3a37de 11651 /*
6a3351b6
PZ
11652 * In order to reduce the amount of tricky in ctx tear-down, we hold
11653 * ctx::mutex over the entire thing. This serializes against almost
11654 * everything that wants to access the ctx.
11655 *
11656 * The exception is sys_perf_event_open() /
11657 * perf_event_create_kernel_count() which does find_get_context()
11658 * without ctx::mutex (it cannot because of the move_group double mutex
11659 * lock thing). See the comments in perf_install_in_context().
ad3a37de 11660 */
6a3351b6 11661 mutex_lock(&child_ctx->mutex);
c93f7669
PM
11662
11663 /*
6a3351b6
PZ
11664 * In a single ctx::lock section, de-schedule the events and detach the
11665 * context from the task such that we cannot ever get it scheduled back
11666 * in.
c93f7669 11667 */
6a3351b6 11668 raw_spin_lock_irq(&child_ctx->lock);
487f05e1 11669 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
4a1c0f26 11670
71a851b4 11671 /*
63b6da39
PZ
11672 * Now that the context is inactive, destroy the task <-> ctx relation
11673 * and mark the context dead.
71a851b4 11674 */
63b6da39
PZ
11675 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11676 put_ctx(child_ctx); /* cannot be last */
11677 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11678 put_task_struct(current); /* cannot be last */
4a1c0f26 11679
211de6eb 11680 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 11681 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 11682
211de6eb
PZ
11683 if (clone_ctx)
11684 put_ctx(clone_ctx);
4a1c0f26 11685
9f498cc5 11686 /*
cdd6c482
IM
11687 * Report the task dead after unscheduling the events so that we
11688 * won't get any samples after PERF_RECORD_EXIT. We can however still
11689 * get a few PERF_RECORD_READ events.
9f498cc5 11690 */
cdd6c482 11691 perf_event_task(child, child_ctx, 0);
a63eaf34 11692
ebf905fc 11693 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 11694 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 11695
a63eaf34
PM
11696 mutex_unlock(&child_ctx->mutex);
11697
11698 put_ctx(child_ctx);
9b51f66d
IM
11699}
11700
8dc85d54
PZ
11701/*
11702 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
11703 *
11704 * Can be called with cred_guard_mutex held when called from
11705 * install_exec_creds().
8dc85d54
PZ
11706 */
11707void perf_event_exit_task(struct task_struct *child)
11708{
8882135b 11709 struct perf_event *event, *tmp;
8dc85d54
PZ
11710 int ctxn;
11711
8882135b
PZ
11712 mutex_lock(&child->perf_event_mutex);
11713 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11714 owner_entry) {
11715 list_del_init(&event->owner_entry);
11716
11717 /*
11718 * Ensure the list deletion is visible before we clear
11719 * the owner, closes a race against perf_release() where
11720 * we need to serialize on the owner->perf_event_mutex.
11721 */
f47c02c0 11722 smp_store_release(&event->owner, NULL);
8882135b
PZ
11723 }
11724 mutex_unlock(&child->perf_event_mutex);
11725
8dc85d54
PZ
11726 for_each_task_context_nr(ctxn)
11727 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
11728
11729 /*
11730 * The perf_event_exit_task_context calls perf_event_task
11731 * with child's task_ctx, which generates EXIT events for
11732 * child contexts and sets child->perf_event_ctxp[] to NULL.
11733 * At this point we need to send EXIT events to cpu contexts.
11734 */
11735 perf_event_task(child, NULL, 0);
8dc85d54
PZ
11736}
11737
889ff015
FW
11738static void perf_free_event(struct perf_event *event,
11739 struct perf_event_context *ctx)
11740{
11741 struct perf_event *parent = event->parent;
11742
11743 if (WARN_ON_ONCE(!parent))
11744 return;
11745
11746 mutex_lock(&parent->child_mutex);
11747 list_del_init(&event->child_list);
11748 mutex_unlock(&parent->child_mutex);
11749
a6fa941d 11750 put_event(parent);
889ff015 11751
652884fe 11752 raw_spin_lock_irq(&ctx->lock);
8a49542c 11753 perf_group_detach(event);
889ff015 11754 list_del_event(event, ctx);
652884fe 11755 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
11756 free_event(event);
11757}
11758
bbbee908 11759/*
1cf8dfe8
PZ
11760 * Free a context as created by inheritance by perf_event_init_task() below,
11761 * used by fork() in case of fail.
652884fe 11762 *
1cf8dfe8
PZ
11763 * Even though the task has never lived, the context and events have been
11764 * exposed through the child_list, so we must take care tearing it all down.
bbbee908 11765 */
cdd6c482 11766void perf_event_free_task(struct task_struct *task)
bbbee908 11767{
8dc85d54 11768 struct perf_event_context *ctx;
cdd6c482 11769 struct perf_event *event, *tmp;
8dc85d54 11770 int ctxn;
bbbee908 11771
8dc85d54
PZ
11772 for_each_task_context_nr(ctxn) {
11773 ctx = task->perf_event_ctxp[ctxn];
11774 if (!ctx)
11775 continue;
bbbee908 11776
8dc85d54 11777 mutex_lock(&ctx->mutex);
e552a838
PZ
11778 raw_spin_lock_irq(&ctx->lock);
11779 /*
11780 * Destroy the task <-> ctx relation and mark the context dead.
11781 *
11782 * This is important because even though the task hasn't been
11783 * exposed yet the context has been (through child_list).
11784 */
11785 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11786 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11787 put_task_struct(task); /* cannot be last */
11788 raw_spin_unlock_irq(&ctx->lock);
bbbee908 11789
15121c78 11790 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
8dc85d54 11791 perf_free_event(event, ctx);
bbbee908 11792
8dc85d54 11793 mutex_unlock(&ctx->mutex);
1cf8dfe8
PZ
11794
11795 /*
11796 * perf_event_release_kernel() could've stolen some of our
11797 * child events and still have them on its free_list. In that
11798 * case we must wait for these events to have been freed (in
11799 * particular all their references to this task must've been
11800 * dropped).
11801 *
11802 * Without this copy_process() will unconditionally free this
11803 * task (irrespective of its reference count) and
11804 * _free_event()'s put_task_struct(event->hw.target) will be a
11805 * use-after-free.
11806 *
11807 * Wait for all events to drop their context reference.
11808 */
11809 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
11810 put_ctx(ctx); /* must be last */
8dc85d54 11811 }
889ff015
FW
11812}
11813
4e231c79
PZ
11814void perf_event_delayed_put(struct task_struct *task)
11815{
11816 int ctxn;
11817
11818 for_each_task_context_nr(ctxn)
11819 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11820}
11821
e03e7ee3 11822struct file *perf_event_get(unsigned int fd)
ffe8690c 11823{
02e5ad97 11824 struct file *file = fget(fd);
e03e7ee3
AS
11825 if (!file)
11826 return ERR_PTR(-EBADF);
ffe8690c 11827
e03e7ee3
AS
11828 if (file->f_op != &perf_fops) {
11829 fput(file);
11830 return ERR_PTR(-EBADF);
11831 }
ffe8690c 11832
e03e7ee3 11833 return file;
ffe8690c
KX
11834}
11835
f8d959a5
YS
11836const struct perf_event *perf_get_event(struct file *file)
11837{
11838 if (file->f_op != &perf_fops)
11839 return ERR_PTR(-EINVAL);
11840
11841 return file->private_data;
11842}
11843
ffe8690c
KX
11844const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11845{
11846 if (!event)
11847 return ERR_PTR(-EINVAL);
11848
11849 return &event->attr;
11850}
11851
97dee4f3 11852/*
788faab7 11853 * Inherit an event from parent task to child task.
d8a8cfc7
PZ
11854 *
11855 * Returns:
11856 * - valid pointer on success
11857 * - NULL for orphaned events
11858 * - IS_ERR() on error
97dee4f3
PZ
11859 */
11860static struct perf_event *
11861inherit_event(struct perf_event *parent_event,
11862 struct task_struct *parent,
11863 struct perf_event_context *parent_ctx,
11864 struct task_struct *child,
11865 struct perf_event *group_leader,
11866 struct perf_event_context *child_ctx)
11867{
8ca2bd41 11868 enum perf_event_state parent_state = parent_event->state;
97dee4f3 11869 struct perf_event *child_event;
cee010ec 11870 unsigned long flags;
97dee4f3
PZ
11871
11872 /*
11873 * Instead of creating recursive hierarchies of events,
11874 * we link inherited events back to the original parent,
11875 * which has a filp for sure, which we use as the reference
11876 * count:
11877 */
11878 if (parent_event->parent)
11879 parent_event = parent_event->parent;
11880
11881 child_event = perf_event_alloc(&parent_event->attr,
11882 parent_event->cpu,
d580ff86 11883 child,
97dee4f3 11884 group_leader, parent_event,
79dff51e 11885 NULL, NULL, -1);
97dee4f3
PZ
11886 if (IS_ERR(child_event))
11887 return child_event;
a6fa941d 11888
313ccb96
JO
11889
11890 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11891 !child_ctx->task_ctx_data) {
11892 struct pmu *pmu = child_event->pmu;
11893
11894 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11895 GFP_KERNEL);
11896 if (!child_ctx->task_ctx_data) {
11897 free_event(child_event);
697d8778 11898 return ERR_PTR(-ENOMEM);
313ccb96
JO
11899 }
11900 }
11901
c6e5b732
PZ
11902 /*
11903 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11904 * must be under the same lock in order to serialize against
11905 * perf_event_release_kernel(), such that either we must observe
11906 * is_orphaned_event() or they will observe us on the child_list.
11907 */
11908 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
11909 if (is_orphaned_event(parent_event) ||
11910 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 11911 mutex_unlock(&parent_event->child_mutex);
313ccb96 11912 /* task_ctx_data is freed with child_ctx */
a6fa941d
AV
11913 free_event(child_event);
11914 return NULL;
11915 }
11916
97dee4f3
PZ
11917 get_ctx(child_ctx);
11918
11919 /*
11920 * Make the child state follow the state of the parent event,
11921 * not its attr.disabled bit. We hold the parent's mutex,
11922 * so we won't race with perf_event_{en, dis}able_family.
11923 */
1929def9 11924 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
11925 child_event->state = PERF_EVENT_STATE_INACTIVE;
11926 else
11927 child_event->state = PERF_EVENT_STATE_OFF;
11928
11929 if (parent_event->attr.freq) {
11930 u64 sample_period = parent_event->hw.sample_period;
11931 struct hw_perf_event *hwc = &child_event->hw;
11932
11933 hwc->sample_period = sample_period;
11934 hwc->last_period = sample_period;
11935
11936 local64_set(&hwc->period_left, sample_period);
11937 }
11938
11939 child_event->ctx = child_ctx;
11940 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
11941 child_event->overflow_handler_context
11942 = parent_event->overflow_handler_context;
97dee4f3 11943
614b6780
TG
11944 /*
11945 * Precalculate sample_data sizes
11946 */
11947 perf_event__header_size(child_event);
6844c09d 11948 perf_event__id_header_size(child_event);
614b6780 11949
97dee4f3
PZ
11950 /*
11951 * Link it up in the child's context:
11952 */
cee010ec 11953 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 11954 add_event_to_ctx(child_event, child_ctx);
cee010ec 11955 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 11956
97dee4f3
PZ
11957 /*
11958 * Link this into the parent event's child list
11959 */
97dee4f3
PZ
11960 list_add_tail(&child_event->child_list, &parent_event->child_list);
11961 mutex_unlock(&parent_event->child_mutex);
11962
11963 return child_event;
11964}
11965
d8a8cfc7
PZ
11966/*
11967 * Inherits an event group.
11968 *
11969 * This will quietly suppress orphaned events; !inherit_event() is not an error.
11970 * This matches with perf_event_release_kernel() removing all child events.
11971 *
11972 * Returns:
11973 * - 0 on success
11974 * - <0 on error
11975 */
97dee4f3
PZ
11976static int inherit_group(struct perf_event *parent_event,
11977 struct task_struct *parent,
11978 struct perf_event_context *parent_ctx,
11979 struct task_struct *child,
11980 struct perf_event_context *child_ctx)
11981{
11982 struct perf_event *leader;
11983 struct perf_event *sub;
11984 struct perf_event *child_ctr;
11985
11986 leader = inherit_event(parent_event, parent, parent_ctx,
11987 child, NULL, child_ctx);
11988 if (IS_ERR(leader))
11989 return PTR_ERR(leader);
d8a8cfc7
PZ
11990 /*
11991 * @leader can be NULL here because of is_orphaned_event(). In this
11992 * case inherit_event() will create individual events, similar to what
11993 * perf_group_detach() would do anyway.
11994 */
edb39592 11995 for_each_sibling_event(sub, parent_event) {
97dee4f3
PZ
11996 child_ctr = inherit_event(sub, parent, parent_ctx,
11997 child, leader, child_ctx);
11998 if (IS_ERR(child_ctr))
11999 return PTR_ERR(child_ctr);
f733c6b5 12000
00496fe5 12001 if (sub->aux_event == parent_event && child_ctr &&
f733c6b5
AS
12002 !perf_get_aux_event(child_ctr, leader))
12003 return -EINVAL;
97dee4f3
PZ
12004 }
12005 return 0;
889ff015
FW
12006}
12007
d8a8cfc7
PZ
12008/*
12009 * Creates the child task context and tries to inherit the event-group.
12010 *
12011 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12012 * inherited_all set when we 'fail' to inherit an orphaned event; this is
12013 * consistent with perf_event_release_kernel() removing all child events.
12014 *
12015 * Returns:
12016 * - 0 on success
12017 * - <0 on error
12018 */
889ff015
FW
12019static int
12020inherit_task_group(struct perf_event *event, struct task_struct *parent,
12021 struct perf_event_context *parent_ctx,
8dc85d54 12022 struct task_struct *child, int ctxn,
889ff015
FW
12023 int *inherited_all)
12024{
12025 int ret;
8dc85d54 12026 struct perf_event_context *child_ctx;
889ff015
FW
12027
12028 if (!event->attr.inherit) {
12029 *inherited_all = 0;
12030 return 0;
bbbee908
PZ
12031 }
12032
fe4b04fa 12033 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
12034 if (!child_ctx) {
12035 /*
12036 * This is executed from the parent task context, so
12037 * inherit events that have been marked for cloning.
12038 * First allocate and initialize a context for the
12039 * child.
12040 */
734df5ab 12041 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
12042 if (!child_ctx)
12043 return -ENOMEM;
bbbee908 12044
8dc85d54 12045 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
12046 }
12047
12048 ret = inherit_group(event, parent, parent_ctx,
12049 child, child_ctx);
12050
12051 if (ret)
12052 *inherited_all = 0;
12053
12054 return ret;
bbbee908
PZ
12055}
12056
9b51f66d 12057/*
cdd6c482 12058 * Initialize the perf_event context in task_struct
9b51f66d 12059 */
985c8dcb 12060static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 12061{
889ff015 12062 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
12063 struct perf_event_context *cloned_ctx;
12064 struct perf_event *event;
9b51f66d 12065 struct task_struct *parent = current;
564c2b21 12066 int inherited_all = 1;
dddd3379 12067 unsigned long flags;
6ab423e0 12068 int ret = 0;
9b51f66d 12069
8dc85d54 12070 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
12071 return 0;
12072
ad3a37de 12073 /*
25346b93
PM
12074 * If the parent's context is a clone, pin it so it won't get
12075 * swapped under us.
ad3a37de 12076 */
8dc85d54 12077 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
12078 if (!parent_ctx)
12079 return 0;
25346b93 12080
ad3a37de
PM
12081 /*
12082 * No need to check if parent_ctx != NULL here; since we saw
12083 * it non-NULL earlier, the only reason for it to become NULL
12084 * is if we exit, and since we're currently in the middle of
12085 * a fork we can't be exiting at the same time.
12086 */
ad3a37de 12087
9b51f66d
IM
12088 /*
12089 * Lock the parent list. No need to lock the child - not PID
12090 * hashed yet and not running, so nobody can access it.
12091 */
d859e29f 12092 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
12093
12094 /*
12095 * We dont have to disable NMIs - we are only looking at
12096 * the list, not manipulating it:
12097 */
6e6804d2 12098 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
8dc85d54
PZ
12099 ret = inherit_task_group(event, parent, parent_ctx,
12100 child, ctxn, &inherited_all);
889ff015 12101 if (ret)
e7cc4865 12102 goto out_unlock;
889ff015 12103 }
b93f7978 12104
dddd3379
TG
12105 /*
12106 * We can't hold ctx->lock when iterating the ->flexible_group list due
12107 * to allocations, but we need to prevent rotation because
12108 * rotate_ctx() will change the list from interrupt context.
12109 */
12110 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12111 parent_ctx->rotate_disable = 1;
12112 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12113
6e6804d2 12114 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
8dc85d54
PZ
12115 ret = inherit_task_group(event, parent, parent_ctx,
12116 child, ctxn, &inherited_all);
889ff015 12117 if (ret)
e7cc4865 12118 goto out_unlock;
564c2b21
PM
12119 }
12120
dddd3379
TG
12121 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12122 parent_ctx->rotate_disable = 0;
dddd3379 12123
8dc85d54 12124 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 12125
05cbaa28 12126 if (child_ctx && inherited_all) {
564c2b21
PM
12127 /*
12128 * Mark the child context as a clone of the parent
12129 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
12130 *
12131 * Note that if the parent is a clone, the holding of
12132 * parent_ctx->lock avoids it from being uncloned.
564c2b21 12133 */
c5ed5145 12134 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
12135 if (cloned_ctx) {
12136 child_ctx->parent_ctx = cloned_ctx;
25346b93 12137 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
12138 } else {
12139 child_ctx->parent_ctx = parent_ctx;
12140 child_ctx->parent_gen = parent_ctx->generation;
12141 }
12142 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
12143 }
12144
c5ed5145 12145 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
e7cc4865 12146out_unlock:
d859e29f 12147 mutex_unlock(&parent_ctx->mutex);
6ab423e0 12148
25346b93 12149 perf_unpin_context(parent_ctx);
fe4b04fa 12150 put_ctx(parent_ctx);
ad3a37de 12151
6ab423e0 12152 return ret;
9b51f66d
IM
12153}
12154
8dc85d54
PZ
12155/*
12156 * Initialize the perf_event context in task_struct
12157 */
12158int perf_event_init_task(struct task_struct *child)
12159{
12160 int ctxn, ret;
12161
8550d7cb
ON
12162 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12163 mutex_init(&child->perf_event_mutex);
12164 INIT_LIST_HEAD(&child->perf_event_list);
12165
8dc85d54
PZ
12166 for_each_task_context_nr(ctxn) {
12167 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
12168 if (ret) {
12169 perf_event_free_task(child);
8dc85d54 12170 return ret;
6c72e350 12171 }
8dc85d54
PZ
12172 }
12173
12174 return 0;
12175}
12176
220b140b
PM
12177static void __init perf_event_init_all_cpus(void)
12178{
b28ab83c 12179 struct swevent_htable *swhash;
220b140b 12180 int cpu;
220b140b 12181
a63fbed7
TG
12182 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12183
220b140b 12184 for_each_possible_cpu(cpu) {
b28ab83c
PZ
12185 swhash = &per_cpu(swevent_htable, cpu);
12186 mutex_init(&swhash->hlist_mutex);
2fde4f94 12187 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
12188
12189 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12190 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788 12191
058fe1c0
DCC
12192#ifdef CONFIG_CGROUP_PERF
12193 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12194#endif
e48c1788 12195 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
12196 }
12197}
12198
d18bf422 12199static void perf_swevent_init_cpu(unsigned int cpu)
0793a61d 12200{
108b02cf 12201 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 12202
b28ab83c 12203 mutex_lock(&swhash->hlist_mutex);
059fcd8c 12204 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
12205 struct swevent_hlist *hlist;
12206
b28ab83c
PZ
12207 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12208 WARN_ON(!hlist);
12209 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 12210 }
b28ab83c 12211 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
12212}
12213
2965faa5 12214#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 12215static void __perf_event_exit_context(void *__info)
0793a61d 12216{
108b02cf 12217 struct perf_event_context *ctx = __info;
fae3fde6
PZ
12218 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12219 struct perf_event *event;
0793a61d 12220
fae3fde6 12221 raw_spin_lock(&ctx->lock);
0ee098c9 12222 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
fae3fde6 12223 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 12224 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 12225 raw_spin_unlock(&ctx->lock);
0793a61d 12226}
108b02cf
PZ
12227
12228static void perf_event_exit_cpu_context(int cpu)
12229{
a63fbed7 12230 struct perf_cpu_context *cpuctx;
108b02cf
PZ
12231 struct perf_event_context *ctx;
12232 struct pmu *pmu;
108b02cf 12233
a63fbed7
TG
12234 mutex_lock(&pmus_lock);
12235 list_for_each_entry(pmu, &pmus, entry) {
12236 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12237 ctx = &cpuctx->ctx;
108b02cf
PZ
12238
12239 mutex_lock(&ctx->mutex);
12240 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
a63fbed7 12241 cpuctx->online = 0;
108b02cf
PZ
12242 mutex_unlock(&ctx->mutex);
12243 }
a63fbed7
TG
12244 cpumask_clear_cpu(cpu, perf_online_mask);
12245 mutex_unlock(&pmus_lock);
108b02cf 12246}
00e16c3d
TG
12247#else
12248
12249static void perf_event_exit_cpu_context(int cpu) { }
12250
12251#endif
108b02cf 12252
a63fbed7
TG
12253int perf_event_init_cpu(unsigned int cpu)
12254{
12255 struct perf_cpu_context *cpuctx;
12256 struct perf_event_context *ctx;
12257 struct pmu *pmu;
12258
12259 perf_swevent_init_cpu(cpu);
12260
12261 mutex_lock(&pmus_lock);
12262 cpumask_set_cpu(cpu, perf_online_mask);
12263 list_for_each_entry(pmu, &pmus, entry) {
12264 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12265 ctx = &cpuctx->ctx;
12266
12267 mutex_lock(&ctx->mutex);
12268 cpuctx->online = 1;
12269 mutex_unlock(&ctx->mutex);
12270 }
12271 mutex_unlock(&pmus_lock);
12272
12273 return 0;
12274}
12275
00e16c3d 12276int perf_event_exit_cpu(unsigned int cpu)
0793a61d 12277{
e3703f8c 12278 perf_event_exit_cpu_context(cpu);
00e16c3d 12279 return 0;
0793a61d 12280}
0793a61d 12281
c277443c
PZ
12282static int
12283perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12284{
12285 int cpu;
12286
12287 for_each_online_cpu(cpu)
12288 perf_event_exit_cpu(cpu);
12289
12290 return NOTIFY_OK;
12291}
12292
12293/*
12294 * Run the perf reboot notifier at the very last possible moment so that
12295 * the generic watchdog code runs as long as possible.
12296 */
12297static struct notifier_block perf_reboot_notifier = {
12298 .notifier_call = perf_reboot,
12299 .priority = INT_MIN,
12300};
12301
cdd6c482 12302void __init perf_event_init(void)
0793a61d 12303{
3c502e7a
JW
12304 int ret;
12305
2e80a82a
PZ
12306 idr_init(&pmu_idr);
12307
220b140b 12308 perf_event_init_all_cpus();
b0a873eb 12309 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
12310 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12311 perf_pmu_register(&perf_cpu_clock, NULL, -1);
12312 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 12313 perf_tp_register();
00e16c3d 12314 perf_event_init_cpu(smp_processor_id());
c277443c 12315 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
12316
12317 ret = init_hw_breakpoint();
12318 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 12319
b01c3a00
JO
12320 /*
12321 * Build time assertion that we keep the data_head at the intended
12322 * location. IOW, validation we got the __reserved[] size right.
12323 */
12324 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12325 != 1024);
0793a61d 12326}
abe43400 12327
fd979c01
CS
12328ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12329 char *page)
12330{
12331 struct perf_pmu_events_attr *pmu_attr =
12332 container_of(attr, struct perf_pmu_events_attr, attr);
12333
12334 if (pmu_attr->event_str)
12335 return sprintf(page, "%s\n", pmu_attr->event_str);
12336
12337 return 0;
12338}
675965b0 12339EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 12340
abe43400
PZ
12341static int __init perf_event_sysfs_init(void)
12342{
12343 struct pmu *pmu;
12344 int ret;
12345
12346 mutex_lock(&pmus_lock);
12347
12348 ret = bus_register(&pmu_bus);
12349 if (ret)
12350 goto unlock;
12351
12352 list_for_each_entry(pmu, &pmus, entry) {
12353 if (!pmu->name || pmu->type < 0)
12354 continue;
12355
12356 ret = pmu_dev_alloc(pmu);
12357 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12358 }
12359 pmu_bus_running = 1;
12360 ret = 0;
12361
12362unlock:
12363 mutex_unlock(&pmus_lock);
12364
12365 return ret;
12366}
12367device_initcall(perf_event_sysfs_init);
e5d1367f
SE
12368
12369#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
12370static struct cgroup_subsys_state *
12371perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
12372{
12373 struct perf_cgroup *jc;
e5d1367f 12374
1b15d055 12375 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
12376 if (!jc)
12377 return ERR_PTR(-ENOMEM);
12378
e5d1367f
SE
12379 jc->info = alloc_percpu(struct perf_cgroup_info);
12380 if (!jc->info) {
12381 kfree(jc);
12382 return ERR_PTR(-ENOMEM);
12383 }
12384
e5d1367f
SE
12385 return &jc->css;
12386}
12387
eb95419b 12388static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 12389{
eb95419b
TH
12390 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12391
e5d1367f
SE
12392 free_percpu(jc->info);
12393 kfree(jc);
12394}
12395
12396static int __perf_cgroup_move(void *info)
12397{
12398 struct task_struct *task = info;
ddaaf4e2 12399 rcu_read_lock();
e5d1367f 12400 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 12401 rcu_read_unlock();
e5d1367f
SE
12402 return 0;
12403}
12404
1f7dd3e5 12405static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 12406{
bb9d97b6 12407 struct task_struct *task;
1f7dd3e5 12408 struct cgroup_subsys_state *css;
bb9d97b6 12409
1f7dd3e5 12410 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 12411 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
12412}
12413
073219e9 12414struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
12415 .css_alloc = perf_cgroup_css_alloc,
12416 .css_free = perf_cgroup_css_free,
bb9d97b6 12417 .attach = perf_cgroup_attach,
968ebff1
TH
12418 /*
12419 * Implicitly enable on dfl hierarchy so that perf events can
12420 * always be filtered by cgroup2 path as long as perf_event
12421 * controller is not mounted on a legacy hierarchy.
12422 */
12423 .implicit_on_dfl = true,
8cfd8147 12424 .threaded = true,
e5d1367f
SE
12425};
12426#endif /* CONFIG_CGROUP_PERF */