perf/bpf: Fix duplicate type check
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
8e86e015 1// SPDX-License-Identifier: GPL-2.0
0793a61d 2/*
57c0c15b 3 * Performance events core code:
0793a61d 4 *
98144511 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
0793a61d
TG
9 */
10
11#include <linux/fs.h>
b9cacc7b 12#include <linux/mm.h>
0793a61d
TG
13#include <linux/cpu.h>
14#include <linux/smp.h>
2e80a82a 15#include <linux/idr.h>
04289bb9 16#include <linux/file.h>
0793a61d 17#include <linux/poll.h>
5a0e3ad6 18#include <linux/slab.h>
76e1d904 19#include <linux/hash.h>
12351ef8 20#include <linux/tick.h>
0793a61d 21#include <linux/sysfs.h>
22a4f650 22#include <linux/dcache.h>
0793a61d 23#include <linux/percpu.h>
22a4f650 24#include <linux/ptrace.h>
c277443c 25#include <linux/reboot.h>
b9cacc7b 26#include <linux/vmstat.h>
abe43400 27#include <linux/device.h>
6e5fdeed 28#include <linux/export.h>
906010b2 29#include <linux/vmalloc.h>
b9cacc7b 30#include <linux/hardirq.h>
03911132 31#include <linux/hugetlb.h>
b9cacc7b 32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
375637bc
AS
47#include <linux/namei.h>
48#include <linux/parser.h>
e6017571 49#include <linux/sched/clock.h>
6e84f315 50#include <linux/sched/mm.h>
e4222673
HB
51#include <linux/proc_ns.h>
52#include <linux/mount.h>
6eef8a71 53#include <linux/min_heap.h>
8d97e718 54#include <linux/highmem.h>
8af26be0 55#include <linux/pgtable.h>
88a16a13 56#include <linux/buildid.h>
ca6c2132 57#include <linux/task_work.h>
0793a61d 58
76369139
FW
59#include "internal.h"
60
4e193bd4
TB
61#include <asm/irq_regs.h>
62
272325c4
PZ
63typedef int (*remote_function_f)(void *);
64
fe4b04fa 65struct remote_function_call {
e7e7ee2e 66 struct task_struct *p;
272325c4 67 remote_function_f func;
e7e7ee2e
IM
68 void *info;
69 int ret;
fe4b04fa
PZ
70};
71
72static void remote_function(void *data)
73{
74 struct remote_function_call *tfc = data;
75 struct task_struct *p = tfc->p;
76
77 if (p) {
0da4cf3e
PZ
78 /* -EAGAIN */
79 if (task_cpu(p) != smp_processor_id())
80 return;
81
82 /*
83 * Now that we're on right CPU with IRQs disabled, we can test
84 * if we hit the right task without races.
85 */
86
87 tfc->ret = -ESRCH; /* No such (running) process */
88 if (p != current)
fe4b04fa
PZ
89 return;
90 }
91
92 tfc->ret = tfc->func(tfc->info);
93}
94
95/**
96 * task_function_call - call a function on the cpu on which a task runs
97 * @p: the task to evaluate
98 * @func: the function to be called
99 * @info: the function call argument
100 *
101 * Calls the function @func when the task is currently running. This might
2ed6edd3
BR
102 * be on the current CPU, which just calls the function directly. This will
103 * retry due to any failures in smp_call_function_single(), such as if the
104 * task_cpu() goes offline concurrently.
fe4b04fa 105 *
6d6b8b9f 106 * returns @func return value or -ESRCH or -ENXIO when the process isn't running
fe4b04fa
PZ
107 */
108static int
272325c4 109task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
110{
111 struct remote_function_call data = {
e7e7ee2e
IM
112 .p = p,
113 .func = func,
114 .info = info,
0da4cf3e 115 .ret = -EAGAIN,
fe4b04fa 116 };
0da4cf3e 117 int ret;
fe4b04fa 118
2ed6edd3
BR
119 for (;;) {
120 ret = smp_call_function_single(task_cpu(p), remote_function,
121 &data, 1);
6d6b8b9f
KJ
122 if (!ret)
123 ret = data.ret;
2ed6edd3
BR
124
125 if (ret != -EAGAIN)
126 break;
127
128 cond_resched();
129 }
fe4b04fa 130
0da4cf3e 131 return ret;
fe4b04fa
PZ
132}
133
134/**
135 * cpu_function_call - call a function on the cpu
a1ddf524 136 * @cpu: target cpu to queue this function
fe4b04fa
PZ
137 * @func: the function to be called
138 * @info: the function call argument
139 *
140 * Calls the function @func on the remote cpu.
141 *
142 * returns: @func return value or -ENXIO when the cpu is offline
143 */
272325c4 144static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
145{
146 struct remote_function_call data = {
e7e7ee2e
IM
147 .p = NULL,
148 .func = func,
149 .info = info,
150 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
151 };
152
153 smp_call_function_single(cpu, remote_function, &data, 1);
154
155 return data.ret;
156}
157
fae3fde6
PZ
158static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159 struct perf_event_context *ctx)
0017960f 160{
fae3fde6
PZ
161 raw_spin_lock(&cpuctx->ctx.lock);
162 if (ctx)
163 raw_spin_lock(&ctx->lock);
164}
165
166static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167 struct perf_event_context *ctx)
168{
169 if (ctx)
170 raw_spin_unlock(&ctx->lock);
171 raw_spin_unlock(&cpuctx->ctx.lock);
172}
173
63b6da39
PZ
174#define TASK_TOMBSTONE ((void *)-1L)
175
176static bool is_kernel_event(struct perf_event *event)
177{
f47c02c0 178 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
179}
180
bd275681
PZ
181static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
182
183struct perf_event_context *perf_cpu_task_ctx(void)
184{
185 lockdep_assert_irqs_disabled();
186 return this_cpu_ptr(&perf_cpu_context)->task_ctx;
187}
188
39a43640
PZ
189/*
190 * On task ctx scheduling...
191 *
192 * When !ctx->nr_events a task context will not be scheduled. This means
193 * we can disable the scheduler hooks (for performance) without leaving
194 * pending task ctx state.
195 *
196 * This however results in two special cases:
197 *
198 * - removing the last event from a task ctx; this is relatively straight
199 * forward and is done in __perf_remove_from_context.
200 *
201 * - adding the first event to a task ctx; this is tricky because we cannot
202 * rely on ctx->is_active and therefore cannot use event_function_call().
203 * See perf_install_in_context().
204 *
39a43640
PZ
205 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
206 */
207
fae3fde6
PZ
208typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
209 struct perf_event_context *, void *);
210
211struct event_function_struct {
212 struct perf_event *event;
213 event_f func;
214 void *data;
215};
216
217static int event_function(void *info)
218{
219 struct event_function_struct *efs = info;
220 struct perf_event *event = efs->event;
0017960f 221 struct perf_event_context *ctx = event->ctx;
bd275681 222 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
fae3fde6 223 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 224 int ret = 0;
fae3fde6 225
16444645 226 lockdep_assert_irqs_disabled();
fae3fde6 227
63b6da39 228 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
229 /*
230 * Since we do the IPI call without holding ctx->lock things can have
231 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
232 */
233 if (ctx->task) {
63b6da39 234 if (ctx->task != current) {
0da4cf3e 235 ret = -ESRCH;
63b6da39
PZ
236 goto unlock;
237 }
fae3fde6 238
fae3fde6
PZ
239 /*
240 * We only use event_function_call() on established contexts,
241 * and event_function() is only ever called when active (or
242 * rather, we'll have bailed in task_function_call() or the
243 * above ctx->task != current test), therefore we must have
244 * ctx->is_active here.
245 */
246 WARN_ON_ONCE(!ctx->is_active);
247 /*
248 * And since we have ctx->is_active, cpuctx->task_ctx must
249 * match.
250 */
63b6da39
PZ
251 WARN_ON_ONCE(task_ctx != ctx);
252 } else {
253 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 254 }
63b6da39 255
fae3fde6 256 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 257unlock:
fae3fde6
PZ
258 perf_ctx_unlock(cpuctx, task_ctx);
259
63b6da39 260 return ret;
fae3fde6
PZ
261}
262
fae3fde6 263static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
264{
265 struct perf_event_context *ctx = event->ctx;
63b6da39 266 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
267 struct event_function_struct efs = {
268 .event = event,
269 .func = func,
270 .data = data,
271 };
0017960f 272
c97f4736
PZ
273 if (!event->parent) {
274 /*
275 * If this is a !child event, we must hold ctx::mutex to
c034f48e 276 * stabilize the event->ctx relation. See
c97f4736
PZ
277 * perf_event_ctx_lock().
278 */
279 lockdep_assert_held(&ctx->mutex);
280 }
0017960f
PZ
281
282 if (!task) {
fae3fde6 283 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
284 return;
285 }
286
63b6da39
PZ
287 if (task == TASK_TOMBSTONE)
288 return;
289
a096309b 290again:
fae3fde6 291 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
292 return;
293
294 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
295 /*
296 * Reload the task pointer, it might have been changed by
297 * a concurrent perf_event_context_sched_out().
298 */
299 task = ctx->task;
a096309b
PZ
300 if (task == TASK_TOMBSTONE) {
301 raw_spin_unlock_irq(&ctx->lock);
302 return;
0017960f 303 }
a096309b
PZ
304 if (ctx->is_active) {
305 raw_spin_unlock_irq(&ctx->lock);
306 goto again;
307 }
308 func(event, NULL, ctx, data);
0017960f
PZ
309 raw_spin_unlock_irq(&ctx->lock);
310}
311
cca20946
PZ
312/*
313 * Similar to event_function_call() + event_function(), but hard assumes IRQs
314 * are already disabled and we're on the right CPU.
315 */
316static void event_function_local(struct perf_event *event, event_f func, void *data)
317{
318 struct perf_event_context *ctx = event->ctx;
bd275681 319 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
cca20946
PZ
320 struct task_struct *task = READ_ONCE(ctx->task);
321 struct perf_event_context *task_ctx = NULL;
322
16444645 323 lockdep_assert_irqs_disabled();
cca20946
PZ
324
325 if (task) {
326 if (task == TASK_TOMBSTONE)
327 return;
328
329 task_ctx = ctx;
330 }
331
332 perf_ctx_lock(cpuctx, task_ctx);
333
334 task = ctx->task;
335 if (task == TASK_TOMBSTONE)
336 goto unlock;
337
338 if (task) {
339 /*
340 * We must be either inactive or active and the right task,
341 * otherwise we're screwed, since we cannot IPI to somewhere
342 * else.
343 */
344 if (ctx->is_active) {
345 if (WARN_ON_ONCE(task != current))
346 goto unlock;
347
348 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
349 goto unlock;
350 }
351 } else {
352 WARN_ON_ONCE(&cpuctx->ctx != ctx);
353 }
354
355 func(event, cpuctx, ctx, data);
356unlock:
357 perf_ctx_unlock(cpuctx, task_ctx);
358}
359
e5d1367f
SE
360#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
361 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
362 PERF_FLAG_PID_CGROUP |\
363 PERF_FLAG_FD_CLOEXEC)
e5d1367f 364
bce38cd5
SE
365/*
366 * branch priv levels that need permission checks
367 */
368#define PERF_SAMPLE_BRANCH_PERM_PLM \
369 (PERF_SAMPLE_BRANCH_KERNEL |\
370 PERF_SAMPLE_BRANCH_HV)
371
0b3fcf17
SE
372enum event_type_t {
373 EVENT_FLEXIBLE = 0x1,
374 EVENT_PINNED = 0x2,
3cbaa590 375 EVENT_TIME = 0x4,
487f05e1
AS
376 /* see ctx_resched() for details */
377 EVENT_CPU = 0x8,
f06cc667 378 EVENT_CGROUP = 0x10,
0b3fcf17
SE
379 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
380};
381
e5d1367f
SE
382/*
383 * perf_sched_events : >0 events exist
e5d1367f 384 */
9107c89e
PZ
385
386static void perf_sched_delayed(struct work_struct *work);
387DEFINE_STATIC_KEY_FALSE(perf_sched_events);
388static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
389static DEFINE_MUTEX(perf_sched_mutex);
390static atomic_t perf_sched_count;
391
f2fb6bef 392static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 393
cdd6c482
IM
394static atomic_t nr_mmap_events __read_mostly;
395static atomic_t nr_comm_events __read_mostly;
e4222673 396static atomic_t nr_namespaces_events __read_mostly;
cdd6c482 397static atomic_t nr_task_events __read_mostly;
948b26b6 398static atomic_t nr_freq_events __read_mostly;
45ac1403 399static atomic_t nr_switch_events __read_mostly;
76193a94 400static atomic_t nr_ksymbol_events __read_mostly;
6ee52e2a 401static atomic_t nr_bpf_events __read_mostly;
96aaab68 402static atomic_t nr_cgroup_events __read_mostly;
e17d43b9 403static atomic_t nr_text_poke_events __read_mostly;
88a16a13 404static atomic_t nr_build_id_events __read_mostly;
9ee318a7 405
108b02cf
PZ
406static LIST_HEAD(pmus);
407static DEFINE_MUTEX(pmus_lock);
408static struct srcu_struct pmus_srcu;
a63fbed7 409static cpumask_var_t perf_online_mask;
bdacfaf2 410static struct kmem_cache *perf_event_cache;
108b02cf 411
0764771d 412/*
cdd6c482 413 * perf event paranoia level:
0fbdea19
IM
414 * -1 - not paranoid at all
415 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 416 * 1 - disallow cpu events for unpriv
0fbdea19 417 * 2 - disallow kernel profiling for unpriv
0764771d 418 */
0161028b 419int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 420
20443384
FW
421/* Minimum for 512 kiB + 1 user control page */
422int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
423
424/*
cdd6c482 425 * max perf event sample rate
df58ab24 426 */
14c63f17
DH
427#define DEFAULT_MAX_SAMPLE_RATE 100000
428#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
429#define DEFAULT_CPU_TIME_MAX_PERCENT 25
430
431int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
432
433static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
434static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
435
d9494cb4
PZ
436static int perf_sample_allowed_ns __read_mostly =
437 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 438
18ab2cd3 439static void update_perf_cpu_limits(void)
14c63f17
DH
440{
441 u64 tmp = perf_sample_period_ns;
442
443 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
444 tmp = div_u64(tmp, 100);
445 if (!tmp)
446 tmp = 1;
447
448 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 449}
163ec435 450
bd275681 451static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
9e630205 452
e6814ec3
XJ
453int perf_event_max_sample_rate_handler(struct ctl_table *table, int write,
454 void *buffer, size_t *lenp, loff_t *ppos)
163ec435 455{
1a51c5da
SE
456 int ret;
457 int perf_cpu = sysctl_perf_cpu_time_max_percent;
ab7fdefb
KL
458 /*
459 * If throttling is disabled don't allow the write:
460 */
1a51c5da 461 if (write && (perf_cpu == 100 || perf_cpu == 0))
ab7fdefb
KL
462 return -EINVAL;
463
1a51c5da
SE
464 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 if (ret || !write)
466 return ret;
467
163ec435 468 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
469 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
470 update_perf_cpu_limits();
471
472 return 0;
473}
474
475int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
476
477int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
32927393 478 void *buffer, size_t *lenp, loff_t *ppos)
14c63f17 479{
1572e45a 480 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
14c63f17
DH
481
482 if (ret || !write)
483 return ret;
484
b303e7c1
PZ
485 if (sysctl_perf_cpu_time_max_percent == 100 ||
486 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
487 printk(KERN_WARNING
488 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
489 WRITE_ONCE(perf_sample_allowed_ns, 0);
490 } else {
491 update_perf_cpu_limits();
492 }
163ec435
PZ
493
494 return 0;
495}
1ccd1549 496
14c63f17
DH
497/*
498 * perf samples are done in some very critical code paths (NMIs).
499 * If they take too much CPU time, the system can lock up and not
500 * get any real work done. This will drop the sample rate when
501 * we detect that events are taking too long.
502 */
503#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 504static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 505
91a612ee
PZ
506static u64 __report_avg;
507static u64 __report_allowed;
508
6a02ad66 509static void perf_duration_warn(struct irq_work *w)
14c63f17 510{
0d87d7ec 511 printk_ratelimited(KERN_INFO
91a612ee
PZ
512 "perf: interrupt took too long (%lld > %lld), lowering "
513 "kernel.perf_event_max_sample_rate to %d\n",
514 __report_avg, __report_allowed,
515 sysctl_perf_event_sample_rate);
6a02ad66
PZ
516}
517
518static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
519
520void perf_sample_event_took(u64 sample_len_ns)
521{
91a612ee
PZ
522 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
523 u64 running_len;
524 u64 avg_len;
525 u32 max;
14c63f17 526
91a612ee 527 if (max_len == 0)
14c63f17
DH
528 return;
529
91a612ee
PZ
530 /* Decay the counter by 1 average sample. */
531 running_len = __this_cpu_read(running_sample_length);
532 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
533 running_len += sample_len_ns;
534 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
535
536 /*
91a612ee
PZ
537 * Note: this will be biased artifically low until we have
538 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
539 * from having to maintain a count.
540 */
91a612ee
PZ
541 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
542 if (avg_len <= max_len)
14c63f17
DH
543 return;
544
91a612ee
PZ
545 __report_avg = avg_len;
546 __report_allowed = max_len;
14c63f17 547
91a612ee
PZ
548 /*
549 * Compute a throttle threshold 25% below the current duration.
550 */
551 avg_len += avg_len / 4;
552 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
553 if (avg_len < max)
554 max /= (u32)avg_len;
555 else
556 max = 1;
14c63f17 557
91a612ee
PZ
558 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
559 WRITE_ONCE(max_samples_per_tick, max);
560
561 sysctl_perf_event_sample_rate = max * HZ;
562 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 563
cd578abb 564 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 565 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 566 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 567 __report_avg, __report_allowed,
cd578abb
PZ
568 sysctl_perf_event_sample_rate);
569 }
14c63f17
DH
570}
571
cdd6c482 572static atomic64_t perf_event_id;
a96bbc16 573
e5d1367f
SE
574static void update_context_time(struct perf_event_context *ctx);
575static u64 perf_event_time(struct perf_event *event);
0b3fcf17 576
cdd6c482 577void __weak perf_event_print_debug(void) { }
0793a61d 578
0b3fcf17
SE
579static inline u64 perf_clock(void)
580{
581 return local_clock();
582}
583
34f43927
PZ
584static inline u64 perf_event_clock(struct perf_event *event)
585{
586 return event->clock();
587}
588
0d3d73aa
PZ
589/*
590 * State based event timekeeping...
591 *
592 * The basic idea is to use event->state to determine which (if any) time
593 * fields to increment with the current delta. This means we only need to
594 * update timestamps when we change state or when they are explicitly requested
595 * (read).
596 *
597 * Event groups make things a little more complicated, but not terribly so. The
598 * rules for a group are that if the group leader is OFF the entire group is
599 * OFF, irrespecive of what the group member states are. This results in
600 * __perf_effective_state().
601 *
602 * A futher ramification is that when a group leader flips between OFF and
603 * !OFF, we need to update all group member times.
604 *
605 *
606 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
607 * need to make sure the relevant context time is updated before we try and
608 * update our timestamps.
609 */
610
611static __always_inline enum perf_event_state
612__perf_effective_state(struct perf_event *event)
613{
614 struct perf_event *leader = event->group_leader;
615
616 if (leader->state <= PERF_EVENT_STATE_OFF)
617 return leader->state;
618
619 return event->state;
620}
621
622static __always_inline void
623__perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
624{
625 enum perf_event_state state = __perf_effective_state(event);
626 u64 delta = now - event->tstamp;
627
628 *enabled = event->total_time_enabled;
629 if (state >= PERF_EVENT_STATE_INACTIVE)
630 *enabled += delta;
631
632 *running = event->total_time_running;
633 if (state >= PERF_EVENT_STATE_ACTIVE)
634 *running += delta;
635}
636
637static void perf_event_update_time(struct perf_event *event)
638{
639 u64 now = perf_event_time(event);
640
641 __perf_update_times(event, now, &event->total_time_enabled,
642 &event->total_time_running);
643 event->tstamp = now;
644}
645
646static void perf_event_update_sibling_time(struct perf_event *leader)
647{
648 struct perf_event *sibling;
649
edb39592 650 for_each_sibling_event(sibling, leader)
0d3d73aa
PZ
651 perf_event_update_time(sibling);
652}
653
654static void
655perf_event_set_state(struct perf_event *event, enum perf_event_state state)
656{
657 if (event->state == state)
658 return;
659
660 perf_event_update_time(event);
661 /*
662 * If a group leader gets enabled/disabled all its siblings
663 * are affected too.
664 */
665 if ((event->state < 0) ^ (state < 0))
666 perf_event_update_sibling_time(event);
667
668 WRITE_ONCE(event->state, state);
669}
670
09f5e7dc
PZ
671/*
672 * UP store-release, load-acquire
673 */
674
675#define __store_release(ptr, val) \
676do { \
677 barrier(); \
678 WRITE_ONCE(*(ptr), (val)); \
679} while (0)
680
681#define __load_acquire(ptr) \
682({ \
683 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \
684 barrier(); \
685 ___p; \
686})
687
f06cc667 688static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
bd275681
PZ
689{
690 struct perf_event_pmu_context *pmu_ctx;
691
f06cc667
PZ
692 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
693 if (cgroup && !pmu_ctx->nr_cgroups)
694 continue;
bd275681 695 perf_pmu_disable(pmu_ctx->pmu);
f06cc667 696 }
bd275681
PZ
697}
698
f06cc667 699static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
bd275681
PZ
700{
701 struct perf_event_pmu_context *pmu_ctx;
702
f06cc667
PZ
703 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
704 if (cgroup && !pmu_ctx->nr_cgroups)
705 continue;
bd275681 706 perf_pmu_enable(pmu_ctx->pmu);
f06cc667 707 }
bd275681
PZ
708}
709
710static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type);
711static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type);
712
e5d1367f
SE
713#ifdef CONFIG_CGROUP_PERF
714
e5d1367f
SE
715static inline bool
716perf_cgroup_match(struct perf_event *event)
717{
bd275681 718 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
e5d1367f 719
ef824fa1
TH
720 /* @event doesn't care about cgroup */
721 if (!event->cgrp)
722 return true;
723
724 /* wants specific cgroup scope but @cpuctx isn't associated with any */
725 if (!cpuctx->cgrp)
726 return false;
727
728 /*
729 * Cgroup scoping is recursive. An event enabled for a cgroup is
730 * also enabled for all its descendant cgroups. If @cpuctx's
731 * cgroup is a descendant of @event's (the test covers identity
732 * case), it's a match.
733 */
734 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
735 event->cgrp->css.cgroup);
e5d1367f
SE
736}
737
e5d1367f
SE
738static inline void perf_detach_cgroup(struct perf_event *event)
739{
4e2ba650 740 css_put(&event->cgrp->css);
e5d1367f
SE
741 event->cgrp = NULL;
742}
743
744static inline int is_cgroup_event(struct perf_event *event)
745{
746 return event->cgrp != NULL;
747}
748
749static inline u64 perf_cgroup_event_time(struct perf_event *event)
750{
751 struct perf_cgroup_info *t;
752
753 t = per_cpu_ptr(event->cgrp->info, event->cpu);
754 return t->time;
755}
756
09f5e7dc 757static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
e5d1367f 758{
09f5e7dc 759 struct perf_cgroup_info *t;
e5d1367f 760
09f5e7dc
PZ
761 t = per_cpu_ptr(event->cgrp->info, event->cpu);
762 if (!__load_acquire(&t->active))
763 return t->time;
764 now += READ_ONCE(t->timeoffset);
765 return now;
766}
e5d1367f 767
09f5e7dc
PZ
768static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
769{
770 if (adv)
771 info->time += now - info->timestamp;
e5d1367f 772 info->timestamp = now;
09f5e7dc
PZ
773 /*
774 * see update_context_time()
775 */
776 WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
e5d1367f
SE
777}
778
09f5e7dc 779static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
e5d1367f 780{
c917e0f2
SL
781 struct perf_cgroup *cgrp = cpuctx->cgrp;
782 struct cgroup_subsys_state *css;
09f5e7dc 783 struct perf_cgroup_info *info;
c917e0f2
SL
784
785 if (cgrp) {
09f5e7dc
PZ
786 u64 now = perf_clock();
787
c917e0f2
SL
788 for (css = &cgrp->css; css; css = css->parent) {
789 cgrp = container_of(css, struct perf_cgroup, css);
09f5e7dc
PZ
790 info = this_cpu_ptr(cgrp->info);
791
792 __update_cgrp_time(info, now, true);
793 if (final)
794 __store_release(&info->active, 0);
c917e0f2
SL
795 }
796 }
e5d1367f
SE
797}
798
799static inline void update_cgrp_time_from_event(struct perf_event *event)
800{
09f5e7dc 801 struct perf_cgroup_info *info;
3f7cce3c 802
e5d1367f 803 /*
3f7cce3c
SE
804 * ensure we access cgroup data only when needed and
805 * when we know the cgroup is pinned (css_get)
e5d1367f 806 */
3f7cce3c 807 if (!is_cgroup_event(event))
e5d1367f
SE
808 return;
809
6875186a 810 info = this_cpu_ptr(event->cgrp->info);
3f7cce3c
SE
811 /*
812 * Do not update time when cgroup is not active
813 */
6875186a 814 if (info->active)
09f5e7dc 815 __update_cgrp_time(info, perf_clock(), true);
e5d1367f
SE
816}
817
818static inline void
a0827713 819perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
e5d1367f 820{
a0827713
CZ
821 struct perf_event_context *ctx = &cpuctx->ctx;
822 struct perf_cgroup *cgrp = cpuctx->cgrp;
e5d1367f 823 struct perf_cgroup_info *info;
c917e0f2 824 struct cgroup_subsys_state *css;
e5d1367f 825
3f7cce3c
SE
826 /*
827 * ctx->lock held by caller
828 * ensure we do not access cgroup data
829 * unless we have the cgroup pinned (css_get)
830 */
a0827713 831 if (!cgrp)
e5d1367f
SE
832 return;
833
a0827713 834 WARN_ON_ONCE(!ctx->nr_cgroups);
c917e0f2
SL
835
836 for (css = &cgrp->css; css; css = css->parent) {
837 cgrp = container_of(css, struct perf_cgroup, css);
838 info = this_cpu_ptr(cgrp->info);
09f5e7dc
PZ
839 __update_cgrp_time(info, ctx->timestamp, false);
840 __store_release(&info->active, 1);
c917e0f2 841 }
e5d1367f
SE
842}
843
e5d1367f
SE
844/*
845 * reschedule events based on the cgroup constraint of task.
e5d1367f 846 */
96492a6c 847static void perf_cgroup_switch(struct task_struct *task)
e5d1367f 848{
bd275681 849 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
96492a6c 850 struct perf_cgroup *cgrp;
e5d1367f 851
f841b682
CZ
852 /*
853 * cpuctx->cgrp is set when the first cgroup event enabled,
854 * and is cleared when the last cgroup event disabled.
855 */
856 if (READ_ONCE(cpuctx->cgrp) == NULL)
857 return;
96492a6c 858
bd275681 859 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
f841b682
CZ
860
861 cgrp = perf_cgroup_from_task(task, NULL);
bd275681
PZ
862 if (READ_ONCE(cpuctx->cgrp) == cgrp)
863 return;
e5d1367f 864
bd275681 865 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
f06cc667 866 perf_ctx_disable(&cpuctx->ctx, true);
e5d1367f 867
f06cc667 868 ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
bd275681
PZ
869 /*
870 * must not be done before ctxswout due
871 * to update_cgrp_time_from_cpuctx() in
872 * ctx_sched_out()
873 */
874 cpuctx->cgrp = cgrp;
875 /*
876 * set cgrp before ctxsw in to allow
877 * perf_cgroup_set_timestamp() in ctx_sched_in()
878 * to not have to pass task around
879 */
f06cc667 880 ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
e5d1367f 881
f06cc667 882 perf_ctx_enable(&cpuctx->ctx, true);
bd275681 883 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f
SE
884}
885
c2283c93
IR
886static int perf_cgroup_ensure_storage(struct perf_event *event,
887 struct cgroup_subsys_state *css)
888{
889 struct perf_cpu_context *cpuctx;
890 struct perf_event **storage;
891 int cpu, heap_size, ret = 0;
892
893 /*
894 * Allow storage to have sufficent space for an iterator for each
895 * possibly nested cgroup plus an iterator for events with no cgroup.
896 */
897 for (heap_size = 1; css; css = css->parent)
898 heap_size++;
899
900 for_each_possible_cpu(cpu) {
bd275681 901 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
c2283c93
IR
902 if (heap_size <= cpuctx->heap_size)
903 continue;
904
905 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
906 GFP_KERNEL, cpu_to_node(cpu));
907 if (!storage) {
908 ret = -ENOMEM;
909 break;
910 }
911
912 raw_spin_lock_irq(&cpuctx->ctx.lock);
913 if (cpuctx->heap_size < heap_size) {
914 swap(cpuctx->heap, storage);
915 if (storage == cpuctx->heap_default)
916 storage = NULL;
917 cpuctx->heap_size = heap_size;
918 }
919 raw_spin_unlock_irq(&cpuctx->ctx.lock);
920
921 kfree(storage);
922 }
923
924 return ret;
925}
926
e5d1367f
SE
927static inline int perf_cgroup_connect(int fd, struct perf_event *event,
928 struct perf_event_attr *attr,
929 struct perf_event *group_leader)
930{
931 struct perf_cgroup *cgrp;
932 struct cgroup_subsys_state *css;
2903ff01
AV
933 struct fd f = fdget(fd);
934 int ret = 0;
e5d1367f 935
2903ff01 936 if (!f.file)
e5d1367f
SE
937 return -EBADF;
938
b583043e 939 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 940 &perf_event_cgrp_subsys);
3db272c0
LZ
941 if (IS_ERR(css)) {
942 ret = PTR_ERR(css);
943 goto out;
944 }
e5d1367f 945
c2283c93
IR
946 ret = perf_cgroup_ensure_storage(event, css);
947 if (ret)
948 goto out;
949
e5d1367f
SE
950 cgrp = container_of(css, struct perf_cgroup, css);
951 event->cgrp = cgrp;
952
953 /*
954 * all events in a group must monitor
955 * the same cgroup because a task belongs
956 * to only one perf cgroup at a time
957 */
958 if (group_leader && group_leader->cgrp != cgrp) {
959 perf_detach_cgroup(event);
960 ret = -EINVAL;
e5d1367f 961 }
3db272c0 962out:
2903ff01 963 fdput(f);
e5d1367f
SE
964 return ret;
965}
966
db4a8356 967static inline void
33238c50 968perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
db4a8356
DCC
969{
970 struct perf_cpu_context *cpuctx;
971
972 if (!is_cgroup_event(event))
973 return;
974
f06cc667
PZ
975 event->pmu_ctx->nr_cgroups++;
976
db4a8356
DCC
977 /*
978 * Because cgroup events are always per-cpu events,
07c59729 979 * @ctx == &cpuctx->ctx.
db4a8356 980 */
07c59729 981 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
33801b94 982
33238c50 983 if (ctx->nr_cgroups++)
33801b94 984 return;
33238c50 985
e19cd0b6 986 cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
33238c50
PZ
987}
988
989static inline void
990perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
991{
992 struct perf_cpu_context *cpuctx;
993
994 if (!is_cgroup_event(event))
33801b94 995 return;
996
f06cc667
PZ
997 event->pmu_ctx->nr_cgroups--;
998
33238c50
PZ
999 /*
1000 * Because cgroup events are always per-cpu events,
1001 * @ctx == &cpuctx->ctx.
1002 */
1003 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1004
1005 if (--ctx->nr_cgroups)
1006 return;
1007
e19cd0b6 1008 cpuctx->cgrp = NULL;
db4a8356
DCC
1009}
1010
e5d1367f
SE
1011#else /* !CONFIG_CGROUP_PERF */
1012
1013static inline bool
1014perf_cgroup_match(struct perf_event *event)
1015{
1016 return true;
1017}
1018
1019static inline void perf_detach_cgroup(struct perf_event *event)
1020{}
1021
1022static inline int is_cgroup_event(struct perf_event *event)
1023{
1024 return 0;
1025}
1026
e5d1367f
SE
1027static inline void update_cgrp_time_from_event(struct perf_event *event)
1028{
1029}
1030
09f5e7dc
PZ
1031static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1032 bool final)
e5d1367f
SE
1033{
1034}
1035
e5d1367f
SE
1036static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1037 struct perf_event_attr *attr,
1038 struct perf_event *group_leader)
1039{
1040 return -EINVAL;
1041}
1042
1043static inline void
a0827713 1044perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
e5d1367f
SE
1045{
1046}
1047
09f5e7dc 1048static inline u64 perf_cgroup_event_time(struct perf_event *event)
e5d1367f 1049{
09f5e7dc 1050 return 0;
e5d1367f
SE
1051}
1052
09f5e7dc 1053static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
e5d1367f
SE
1054{
1055 return 0;
1056}
1057
db4a8356 1058static inline void
33238c50 1059perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
db4a8356
DCC
1060{
1061}
1062
33238c50
PZ
1063static inline void
1064perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1065{
1066}
96492a6c
CZ
1067
1068static void perf_cgroup_switch(struct task_struct *task)
1069{
1070}
e5d1367f
SE
1071#endif
1072
9e630205
SE
1073/*
1074 * set default to be dependent on timer tick just
1075 * like original code
1076 */
1077#define PERF_CPU_HRTIMER (1000 / HZ)
1078/*
8a1115ff 1079 * function must be called with interrupts disabled
9e630205 1080 */
272325c4 1081static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205 1082{
bd275681 1083 struct perf_cpu_pmu_context *cpc;
8d5bce0c 1084 bool rotations;
9e630205 1085
16444645 1086 lockdep_assert_irqs_disabled();
9e630205 1087
bd275681
PZ
1088 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1089 rotations = perf_rotate_context(cpc);
9e630205 1090
bd275681 1091 raw_spin_lock(&cpc->hrtimer_lock);
4cfafd30 1092 if (rotations)
bd275681 1093 hrtimer_forward_now(hr, cpc->hrtimer_interval);
4cfafd30 1094 else
bd275681
PZ
1095 cpc->hrtimer_active = 0;
1096 raw_spin_unlock(&cpc->hrtimer_lock);
9e630205 1097
4cfafd30 1098 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1099}
1100
bd275681 1101static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
9e630205 1102{
bd275681
PZ
1103 struct hrtimer *timer = &cpc->hrtimer;
1104 struct pmu *pmu = cpc->epc.pmu;
272325c4 1105 u64 interval;
9e630205 1106
62b85639
SE
1107 /*
1108 * check default is sane, if not set then force to
1109 * default interval (1/tick)
1110 */
272325c4
PZ
1111 interval = pmu->hrtimer_interval_ms;
1112 if (interval < 1)
1113 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1114
bd275681 1115 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1116
bd275681 1117 raw_spin_lock_init(&cpc->hrtimer_lock);
30f9028b 1118 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
272325c4 1119 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1120}
1121
bd275681 1122static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
9e630205 1123{
bd275681 1124 struct hrtimer *timer = &cpc->hrtimer;
4cfafd30 1125 unsigned long flags;
9e630205 1126
bd275681
PZ
1127 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1128 if (!cpc->hrtimer_active) {
1129 cpc->hrtimer_active = 1;
1130 hrtimer_forward_now(timer, cpc->hrtimer_interval);
30f9028b 1131 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
4cfafd30 1132 }
bd275681 1133 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
9e630205 1134
272325c4 1135 return 0;
9e630205
SE
1136}
1137
1af6239d
PZ
1138static int perf_mux_hrtimer_restart_ipi(void *arg)
1139{
1140 return perf_mux_hrtimer_restart(arg);
1141}
1142
33696fc0 1143void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1144{
33696fc0
PZ
1145 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1146 if (!(*count)++)
1147 pmu->pmu_disable(pmu);
9e35ad38 1148}
9e35ad38 1149
33696fc0 1150void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1151{
33696fc0
PZ
1152 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1153 if (!--(*count))
1154 pmu->pmu_enable(pmu);
9e35ad38 1155}
9e35ad38 1156
bd275681 1157static void perf_assert_pmu_disabled(struct pmu *pmu)
2fde4f94 1158{
bd275681 1159 WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
9e35ad38 1160}
9e35ad38 1161
cdd6c482 1162static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1163{
8c94abbb 1164 refcount_inc(&ctx->refcount);
a63eaf34
PM
1165}
1166
ff9ff926
KL
1167static void *alloc_task_ctx_data(struct pmu *pmu)
1168{
217c2a63
KL
1169 if (pmu->task_ctx_cache)
1170 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1171
5a09928d 1172 return NULL;
ff9ff926
KL
1173}
1174
1175static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1176{
217c2a63
KL
1177 if (pmu->task_ctx_cache && task_ctx_data)
1178 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
ff9ff926
KL
1179}
1180
4af57ef2
YZ
1181static void free_ctx(struct rcu_head *head)
1182{
1183 struct perf_event_context *ctx;
1184
1185 ctx = container_of(head, struct perf_event_context, rcu_head);
4af57ef2
YZ
1186 kfree(ctx);
1187}
1188
cdd6c482 1189static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1190{
8c94abbb 1191 if (refcount_dec_and_test(&ctx->refcount)) {
564c2b21
PM
1192 if (ctx->parent_ctx)
1193 put_ctx(ctx->parent_ctx);
63b6da39 1194 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1195 put_task_struct(ctx->task);
4af57ef2 1196 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1197 }
a63eaf34
PM
1198}
1199
f63a8daa
PZ
1200/*
1201 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1202 * perf_pmu_migrate_context() we need some magic.
1203 *
1204 * Those places that change perf_event::ctx will hold both
1205 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1206 *
8b10c5e2
PZ
1207 * Lock ordering is by mutex address. There are two other sites where
1208 * perf_event_context::mutex nests and those are:
1209 *
1210 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1211 * perf_event_exit_event()
1212 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1213 *
1214 * - perf_event_init_context() [ parent, 0 ]
1215 * inherit_task_group()
1216 * inherit_group()
1217 * inherit_event()
1218 * perf_event_alloc()
1219 * perf_init_event()
1220 * perf_try_init_event() [ child , 1 ]
1221 *
1222 * While it appears there is an obvious deadlock here -- the parent and child
1223 * nesting levels are inverted between the two. This is in fact safe because
1224 * life-time rules separate them. That is an exiting task cannot fork, and a
1225 * spawning task cannot (yet) exit.
1226 *
c034f48e 1227 * But remember that these are parent<->child context relations, and
8b10c5e2
PZ
1228 * migration does not affect children, therefore these two orderings should not
1229 * interact.
f63a8daa
PZ
1230 *
1231 * The change in perf_event::ctx does not affect children (as claimed above)
1232 * because the sys_perf_event_open() case will install a new event and break
1233 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1234 * concerned with cpuctx and that doesn't have children.
1235 *
1236 * The places that change perf_event::ctx will issue:
1237 *
1238 * perf_remove_from_context();
1239 * synchronize_rcu();
1240 * perf_install_in_context();
1241 *
1242 * to affect the change. The remove_from_context() + synchronize_rcu() should
1243 * quiesce the event, after which we can install it in the new location. This
1244 * means that only external vectors (perf_fops, prctl) can perturb the event
1245 * while in transit. Therefore all such accessors should also acquire
1246 * perf_event_context::mutex to serialize against this.
1247 *
1248 * However; because event->ctx can change while we're waiting to acquire
1249 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1250 * function.
1251 *
1252 * Lock order:
f7cfd871 1253 * exec_update_lock
f63a8daa
PZ
1254 * task_struct::perf_event_mutex
1255 * perf_event_context::mutex
f63a8daa 1256 * perf_event::child_mutex;
07c4a776 1257 * perf_event_context::lock
f63a8daa 1258 * perf_event::mmap_mutex
c1e8d7c6 1259 * mmap_lock
18736eef 1260 * perf_addr_filters_head::lock
82d94856
PZ
1261 *
1262 * cpu_hotplug_lock
1263 * pmus_lock
1264 * cpuctx->mutex / perf_event_context::mutex
f63a8daa 1265 */
a83fe28e
PZ
1266static struct perf_event_context *
1267perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1268{
1269 struct perf_event_context *ctx;
1270
1271again:
1272 rcu_read_lock();
6aa7de05 1273 ctx = READ_ONCE(event->ctx);
8c94abbb 1274 if (!refcount_inc_not_zero(&ctx->refcount)) {
f63a8daa
PZ
1275 rcu_read_unlock();
1276 goto again;
1277 }
1278 rcu_read_unlock();
1279
a83fe28e 1280 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1281 if (event->ctx != ctx) {
1282 mutex_unlock(&ctx->mutex);
1283 put_ctx(ctx);
1284 goto again;
1285 }
1286
1287 return ctx;
1288}
1289
a83fe28e
PZ
1290static inline struct perf_event_context *
1291perf_event_ctx_lock(struct perf_event *event)
1292{
1293 return perf_event_ctx_lock_nested(event, 0);
1294}
1295
f63a8daa
PZ
1296static void perf_event_ctx_unlock(struct perf_event *event,
1297 struct perf_event_context *ctx)
1298{
1299 mutex_unlock(&ctx->mutex);
1300 put_ctx(ctx);
1301}
1302
211de6eb
PZ
1303/*
1304 * This must be done under the ctx->lock, such as to serialize against
1305 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1306 * calling scheduler related locks and ctx->lock nests inside those.
1307 */
1308static __must_check struct perf_event_context *
1309unclone_ctx(struct perf_event_context *ctx)
71a851b4 1310{
211de6eb
PZ
1311 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1312
1313 lockdep_assert_held(&ctx->lock);
1314
1315 if (parent_ctx)
71a851b4 1316 ctx->parent_ctx = NULL;
5a3126d4 1317 ctx->generation++;
211de6eb
PZ
1318
1319 return parent_ctx;
71a851b4
PZ
1320}
1321
1d953111
ON
1322static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1323 enum pid_type type)
6844c09d 1324{
1d953111 1325 u32 nr;
6844c09d
ACM
1326 /*
1327 * only top level events have the pid namespace they were created in
1328 */
1329 if (event->parent)
1330 event = event->parent;
1331
1d953111
ON
1332 nr = __task_pid_nr_ns(p, type, event->ns);
1333 /* avoid -1 if it is idle thread or runs in another ns */
1334 if (!nr && !pid_alive(p))
1335 nr = -1;
1336 return nr;
6844c09d
ACM
1337}
1338
1d953111 1339static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
6844c09d 1340{
6883f81a 1341 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1d953111 1342}
6844c09d 1343
1d953111
ON
1344static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1345{
1346 return perf_event_pid_type(event, p, PIDTYPE_PID);
6844c09d
ACM
1347}
1348
7f453c24 1349/*
cdd6c482 1350 * If we inherit events we want to return the parent event id
7f453c24
PZ
1351 * to userspace.
1352 */
cdd6c482 1353static u64 primary_event_id(struct perf_event *event)
7f453c24 1354{
cdd6c482 1355 u64 id = event->id;
7f453c24 1356
cdd6c482
IM
1357 if (event->parent)
1358 id = event->parent->id;
7f453c24
PZ
1359
1360 return id;
1361}
1362
25346b93 1363/*
cdd6c482 1364 * Get the perf_event_context for a task and lock it.
63b6da39 1365 *
c034f48e 1366 * This has to cope with the fact that until it is locked,
25346b93
PM
1367 * the context could get moved to another task.
1368 */
cdd6c482 1369static struct perf_event_context *
bd275681 1370perf_lock_task_context(struct task_struct *task, unsigned long *flags)
25346b93 1371{
cdd6c482 1372 struct perf_event_context *ctx;
25346b93 1373
9ed6060d 1374retry:
058ebd0e
PZ
1375 /*
1376 * One of the few rules of preemptible RCU is that one cannot do
1377 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1378 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1379 * rcu_read_unlock_special().
1380 *
1381 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1382 * side critical section has interrupts disabled.
058ebd0e 1383 */
2fd59077 1384 local_irq_save(*flags);
058ebd0e 1385 rcu_read_lock();
bd275681 1386 ctx = rcu_dereference(task->perf_event_ctxp);
25346b93
PM
1387 if (ctx) {
1388 /*
1389 * If this context is a clone of another, it might
1390 * get swapped for another underneath us by
cdd6c482 1391 * perf_event_task_sched_out, though the
25346b93
PM
1392 * rcu_read_lock() protects us from any context
1393 * getting freed. Lock the context and check if it
1394 * got swapped before we could get the lock, and retry
1395 * if so. If we locked the right context, then it
1396 * can't get swapped on us any more.
1397 */
2fd59077 1398 raw_spin_lock(&ctx->lock);
bd275681 1399 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
2fd59077 1400 raw_spin_unlock(&ctx->lock);
058ebd0e 1401 rcu_read_unlock();
2fd59077 1402 local_irq_restore(*flags);
25346b93
PM
1403 goto retry;
1404 }
b49a9e7e 1405
63b6da39 1406 if (ctx->task == TASK_TOMBSTONE ||
8c94abbb 1407 !refcount_inc_not_zero(&ctx->refcount)) {
2fd59077 1408 raw_spin_unlock(&ctx->lock);
b49a9e7e 1409 ctx = NULL;
828b6f0e
PZ
1410 } else {
1411 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1412 }
25346b93
PM
1413 }
1414 rcu_read_unlock();
2fd59077
PM
1415 if (!ctx)
1416 local_irq_restore(*flags);
25346b93
PM
1417 return ctx;
1418}
1419
1420/*
1421 * Get the context for a task and increment its pin_count so it
1422 * can't get swapped to another task. This also increments its
1423 * reference count so that the context can't get freed.
1424 */
8dc85d54 1425static struct perf_event_context *
bd275681 1426perf_pin_task_context(struct task_struct *task)
25346b93 1427{
cdd6c482 1428 struct perf_event_context *ctx;
25346b93
PM
1429 unsigned long flags;
1430
bd275681 1431 ctx = perf_lock_task_context(task, &flags);
25346b93
PM
1432 if (ctx) {
1433 ++ctx->pin_count;
e625cce1 1434 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1435 }
1436 return ctx;
1437}
1438
cdd6c482 1439static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1440{
1441 unsigned long flags;
1442
e625cce1 1443 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1444 --ctx->pin_count;
e625cce1 1445 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1446}
1447
f67218c3
PZ
1448/*
1449 * Update the record of the current time in a context.
1450 */
09f5e7dc 1451static void __update_context_time(struct perf_event_context *ctx, bool adv)
f67218c3
PZ
1452{
1453 u64 now = perf_clock();
1454
f3c0eba2
PZ
1455 lockdep_assert_held(&ctx->lock);
1456
09f5e7dc
PZ
1457 if (adv)
1458 ctx->time += now - ctx->timestamp;
f67218c3 1459 ctx->timestamp = now;
09f5e7dc
PZ
1460
1461 /*
1462 * The above: time' = time + (now - timestamp), can be re-arranged
1463 * into: time` = now + (time - timestamp), which gives a single value
1464 * offset to compute future time without locks on.
1465 *
1466 * See perf_event_time_now(), which can be used from NMI context where
1467 * it's (obviously) not possible to acquire ctx->lock in order to read
1468 * both the above values in a consistent manner.
1469 */
1470 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1471}
1472
1473static void update_context_time(struct perf_event_context *ctx)
1474{
1475 __update_context_time(ctx, true);
f67218c3
PZ
1476}
1477
4158755d
SE
1478static u64 perf_event_time(struct perf_event *event)
1479{
1480 struct perf_event_context *ctx = event->ctx;
e5d1367f 1481
09f5e7dc
PZ
1482 if (unlikely(!ctx))
1483 return 0;
1484
e5d1367f
SE
1485 if (is_cgroup_event(event))
1486 return perf_cgroup_event_time(event);
1487
09f5e7dc
PZ
1488 return ctx->time;
1489}
1490
1491static u64 perf_event_time_now(struct perf_event *event, u64 now)
1492{
1493 struct perf_event_context *ctx = event->ctx;
1494
1495 if (unlikely(!ctx))
1496 return 0;
1497
1498 if (is_cgroup_event(event))
1499 return perf_cgroup_event_time_now(event, now);
1500
1501 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1502 return ctx->time;
1503
1504 now += READ_ONCE(ctx->timeoffset);
1505 return now;
4158755d
SE
1506}
1507
487f05e1
AS
1508static enum event_type_t get_event_type(struct perf_event *event)
1509{
1510 struct perf_event_context *ctx = event->ctx;
1511 enum event_type_t event_type;
1512
1513 lockdep_assert_held(&ctx->lock);
1514
3bda69c1
AS
1515 /*
1516 * It's 'group type', really, because if our group leader is
1517 * pinned, so are we.
1518 */
1519 if (event->group_leader != event)
1520 event = event->group_leader;
1521
487f05e1
AS
1522 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1523 if (!ctx->task)
1524 event_type |= EVENT_CPU;
1525
1526 return event_type;
1527}
1528
8e1a2031 1529/*
161c85fa 1530 * Helper function to initialize event group nodes.
8e1a2031 1531 */
161c85fa 1532static void init_event_group(struct perf_event *event)
8e1a2031
AB
1533{
1534 RB_CLEAR_NODE(&event->group_node);
1535 event->group_index = 0;
1536}
1537
1538/*
1539 * Extract pinned or flexible groups from the context
161c85fa 1540 * based on event attrs bits.
8e1a2031
AB
1541 */
1542static struct perf_event_groups *
1543get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
889ff015
FW
1544{
1545 if (event->attr.pinned)
1546 return &ctx->pinned_groups;
1547 else
1548 return &ctx->flexible_groups;
1549}
1550
8e1a2031 1551/*
161c85fa 1552 * Helper function to initializes perf_event_group trees.
8e1a2031 1553 */
161c85fa 1554static void perf_event_groups_init(struct perf_event_groups *groups)
8e1a2031
AB
1555{
1556 groups->tree = RB_ROOT;
1557 groups->index = 0;
1558}
1559
a3b89864
PZ
1560static inline struct cgroup *event_cgroup(const struct perf_event *event)
1561{
1562 struct cgroup *cgroup = NULL;
1563
1564#ifdef CONFIG_CGROUP_PERF
1565 if (event->cgrp)
1566 cgroup = event->cgrp->css.cgroup;
1567#endif
1568
1569 return cgroup;
1570}
1571
8e1a2031
AB
1572/*
1573 * Compare function for event groups;
161c85fa
PZ
1574 *
1575 * Implements complex key that first sorts by CPU and then by virtual index
1576 * which provides ordering when rotating groups for the same CPU.
8e1a2031 1577 */
a3b89864 1578static __always_inline int
bd275681
PZ
1579perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1580 const struct cgroup *left_cgroup, const u64 left_group_index,
1581 const struct perf_event *right)
8e1a2031 1582{
a3b89864
PZ
1583 if (left_cpu < right->cpu)
1584 return -1;
1585 if (left_cpu > right->cpu)
1586 return 1;
161c85fa 1587
bd275681
PZ
1588 if (left_pmu) {
1589 if (left_pmu < right->pmu_ctx->pmu)
1590 return -1;
1591 if (left_pmu > right->pmu_ctx->pmu)
1592 return 1;
1593 }
1594
95ed6c70 1595#ifdef CONFIG_CGROUP_PERF
a3b89864
PZ
1596 {
1597 const struct cgroup *right_cgroup = event_cgroup(right);
1598
1599 if (left_cgroup != right_cgroup) {
1600 if (!left_cgroup) {
1601 /*
1602 * Left has no cgroup but right does, no
1603 * cgroups come first.
1604 */
1605 return -1;
1606 }
1607 if (!right_cgroup) {
1608 /*
1609 * Right has no cgroup but left does, no
1610 * cgroups come first.
1611 */
1612 return 1;
1613 }
1614 /* Two dissimilar cgroups, order by id. */
1615 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1616 return -1;
1617
1618 return 1;
95ed6c70 1619 }
95ed6c70
IR
1620 }
1621#endif
1622
a3b89864
PZ
1623 if (left_group_index < right->group_index)
1624 return -1;
1625 if (left_group_index > right->group_index)
1626 return 1;
1627
1628 return 0;
1629}
161c85fa 1630
a3b89864
PZ
1631#define __node_2_pe(node) \
1632 rb_entry((node), struct perf_event, group_node)
1633
1634static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1635{
1636 struct perf_event *e = __node_2_pe(a);
bd275681
PZ
1637 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1638 e->group_index, __node_2_pe(b)) < 0;
a3b89864
PZ
1639}
1640
1641struct __group_key {
1642 int cpu;
bd275681 1643 struct pmu *pmu;
a3b89864
PZ
1644 struct cgroup *cgroup;
1645};
1646
1647static inline int __group_cmp(const void *key, const struct rb_node *node)
1648{
1649 const struct __group_key *a = key;
1650 const struct perf_event *b = __node_2_pe(node);
1651
bd275681
PZ
1652 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1653 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1654}
1655
1656static inline int
1657__group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1658{
1659 const struct __group_key *a = key;
1660 const struct perf_event *b = __node_2_pe(node);
1661
1662 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1663 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1664 b->group_index, b);
8e1a2031
AB
1665}
1666
1667/*
bd275681
PZ
1668 * Insert @event into @groups' tree; using
1669 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1670 * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
8e1a2031
AB
1671 */
1672static void
1673perf_event_groups_insert(struct perf_event_groups *groups,
161c85fa 1674 struct perf_event *event)
8e1a2031 1675{
8e1a2031
AB
1676 event->group_index = ++groups->index;
1677
a3b89864 1678 rb_add(&event->group_node, &groups->tree, __group_less);
8e1a2031
AB
1679}
1680
1681/*
161c85fa 1682 * Helper function to insert event into the pinned or flexible groups.
8e1a2031
AB
1683 */
1684static void
1685add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1686{
1687 struct perf_event_groups *groups;
1688
1689 groups = get_event_groups(event, ctx);
1690 perf_event_groups_insert(groups, event);
1691}
1692
1693/*
161c85fa 1694 * Delete a group from a tree.
8e1a2031
AB
1695 */
1696static void
1697perf_event_groups_delete(struct perf_event_groups *groups,
161c85fa 1698 struct perf_event *event)
8e1a2031 1699{
161c85fa
PZ
1700 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1701 RB_EMPTY_ROOT(&groups->tree));
8e1a2031 1702
161c85fa 1703 rb_erase(&event->group_node, &groups->tree);
8e1a2031
AB
1704 init_event_group(event);
1705}
1706
1707/*
161c85fa 1708 * Helper function to delete event from its groups.
8e1a2031
AB
1709 */
1710static void
1711del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1712{
1713 struct perf_event_groups *groups;
1714
1715 groups = get_event_groups(event, ctx);
1716 perf_event_groups_delete(groups, event);
1717}
1718
1719/*
bd275681 1720 * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
8e1a2031
AB
1721 */
1722static struct perf_event *
95ed6c70 1723perf_event_groups_first(struct perf_event_groups *groups, int cpu,
bd275681 1724 struct pmu *pmu, struct cgroup *cgrp)
8e1a2031 1725{
a3b89864
PZ
1726 struct __group_key key = {
1727 .cpu = cpu,
bd275681 1728 .pmu = pmu,
a3b89864
PZ
1729 .cgroup = cgrp,
1730 };
1731 struct rb_node *node;
95ed6c70 1732
a3b89864
PZ
1733 node = rb_find_first(&key, &groups->tree, __group_cmp);
1734 if (node)
1735 return __node_2_pe(node);
8e1a2031 1736
a3b89864 1737 return NULL;
8e1a2031
AB
1738}
1739
1cac7b1a 1740static struct perf_event *
bd275681 1741perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1cac7b1a 1742{
a3b89864
PZ
1743 struct __group_key key = {
1744 .cpu = event->cpu,
bd275681 1745 .pmu = pmu,
a3b89864
PZ
1746 .cgroup = event_cgroup(event),
1747 };
1748 struct rb_node *next;
1cac7b1a 1749
a3b89864
PZ
1750 next = rb_next_match(&key, &event->group_node, __group_cmp);
1751 if (next)
1752 return __node_2_pe(next);
95ed6c70 1753
a3b89864 1754 return NULL;
1cac7b1a
PZ
1755}
1756
bd275681
PZ
1757#define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \
1758 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \
1759 event; event = perf_event_groups_next(event, pmu))
1760
8e1a2031 1761/*
161c85fa 1762 * Iterate through the whole groups tree.
8e1a2031 1763 */
6e6804d2
PZ
1764#define perf_event_groups_for_each(event, groups) \
1765 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1766 typeof(*event), group_node); event; \
1767 event = rb_entry_safe(rb_next(&event->group_node), \
1768 typeof(*event), group_node))
8e1a2031 1769
fccc714b 1770/*
788faab7 1771 * Add an event from the lists for its context.
fccc714b
PZ
1772 * Must be called with ctx->mutex and ctx->lock held.
1773 */
04289bb9 1774static void
cdd6c482 1775list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1776{
c994d613
PZ
1777 lockdep_assert_held(&ctx->lock);
1778
8a49542c
PZ
1779 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1780 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9 1781
0d3d73aa
PZ
1782 event->tstamp = perf_event_time(event);
1783
04289bb9 1784 /*
8a49542c
PZ
1785 * If we're a stand alone event or group leader, we go to the context
1786 * list, group events are kept attached to the group so that
1787 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1788 */
8a49542c 1789 if (event->group_leader == event) {
4ff6a8de 1790 event->group_caps = event->event_caps;
8e1a2031 1791 add_event_to_groups(event, ctx);
5c148194 1792 }
592903cd 1793
cdd6c482
IM
1794 list_add_rcu(&event->event_entry, &ctx->event_list);
1795 ctx->nr_events++;
82ff0c02
RH
1796 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1797 ctx->nr_user++;
cdd6c482 1798 if (event->attr.inherit_stat)
bfbd3381 1799 ctx->nr_stat++;
5a3126d4 1800
33238c50
PZ
1801 if (event->state > PERF_EVENT_STATE_OFF)
1802 perf_cgroup_event_enable(event, ctx);
1803
5a3126d4 1804 ctx->generation++;
bd275681 1805 event->pmu_ctx->nr_events++;
04289bb9
IM
1806}
1807
0231bb53
JO
1808/*
1809 * Initialize event state based on the perf_event_attr::disabled.
1810 */
1811static inline void perf_event__state_init(struct perf_event *event)
1812{
1813 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1814 PERF_EVENT_STATE_INACTIVE;
1815}
1816
382c27f4 1817static int __perf_event_read_size(u64 read_format, int nr_siblings)
c320c7b7
ACM
1818{
1819 int entry = sizeof(u64); /* value */
1820 int size = 0;
1821 int nr = 1;
1822
382c27f4 1823 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
c320c7b7
ACM
1824 size += sizeof(u64);
1825
382c27f4 1826 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
c320c7b7
ACM
1827 size += sizeof(u64);
1828
382c27f4 1829 if (read_format & PERF_FORMAT_ID)
c320c7b7
ACM
1830 entry += sizeof(u64);
1831
382c27f4 1832 if (read_format & PERF_FORMAT_LOST)
119a784c
NK
1833 entry += sizeof(u64);
1834
382c27f4 1835 if (read_format & PERF_FORMAT_GROUP) {
a723968c 1836 nr += nr_siblings;
c320c7b7
ACM
1837 size += sizeof(u64);
1838 }
1839
382c27f4
PZ
1840 /*
1841 * Since perf_event_validate_size() limits this to 16k and inhibits
1842 * adding more siblings, this will never overflow.
1843 */
1844 return size + nr * entry;
c320c7b7
ACM
1845}
1846
a723968c 1847static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1848{
1849 struct perf_sample_data *data;
c320c7b7
ACM
1850 u16 size = 0;
1851
c320c7b7
ACM
1852 if (sample_type & PERF_SAMPLE_IP)
1853 size += sizeof(data->ip);
1854
6844c09d
ACM
1855 if (sample_type & PERF_SAMPLE_ADDR)
1856 size += sizeof(data->addr);
1857
1858 if (sample_type & PERF_SAMPLE_PERIOD)
1859 size += sizeof(data->period);
1860
2a6c6b7d
KL
1861 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1862 size += sizeof(data->weight.full);
c3feedf2 1863
6844c09d
ACM
1864 if (sample_type & PERF_SAMPLE_READ)
1865 size += event->read_size;
1866
d6be9ad6
SE
1867 if (sample_type & PERF_SAMPLE_DATA_SRC)
1868 size += sizeof(data->data_src.val);
1869
fdfbbd07
AK
1870 if (sample_type & PERF_SAMPLE_TRANSACTION)
1871 size += sizeof(data->txn);
1872
fc7ce9c7
KL
1873 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1874 size += sizeof(data->phys_addr);
1875
6546b19f
NK
1876 if (sample_type & PERF_SAMPLE_CGROUP)
1877 size += sizeof(data->cgroup);
1878
8d97e718
KL
1879 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1880 size += sizeof(data->data_page_size);
1881
995f088e
SE
1882 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1883 size += sizeof(data->code_page_size);
1884
6844c09d
ACM
1885 event->header_size = size;
1886}
1887
a723968c
PZ
1888/*
1889 * Called at perf_event creation and when events are attached/detached from a
1890 * group.
1891 */
1892static void perf_event__header_size(struct perf_event *event)
1893{
382c27f4
PZ
1894 event->read_size =
1895 __perf_event_read_size(event->attr.read_format,
1896 event->group_leader->nr_siblings);
a723968c
PZ
1897 __perf_event_header_size(event, event->attr.sample_type);
1898}
1899
6844c09d
ACM
1900static void perf_event__id_header_size(struct perf_event *event)
1901{
1902 struct perf_sample_data *data;
1903 u64 sample_type = event->attr.sample_type;
1904 u16 size = 0;
1905
c320c7b7
ACM
1906 if (sample_type & PERF_SAMPLE_TID)
1907 size += sizeof(data->tid_entry);
1908
1909 if (sample_type & PERF_SAMPLE_TIME)
1910 size += sizeof(data->time);
1911
ff3d527c
AH
1912 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1913 size += sizeof(data->id);
1914
c320c7b7
ACM
1915 if (sample_type & PERF_SAMPLE_ID)
1916 size += sizeof(data->id);
1917
1918 if (sample_type & PERF_SAMPLE_STREAM_ID)
1919 size += sizeof(data->stream_id);
1920
1921 if (sample_type & PERF_SAMPLE_CPU)
1922 size += sizeof(data->cpu_entry);
1923
6844c09d 1924 event->id_header_size = size;
c320c7b7
ACM
1925}
1926
382c27f4
PZ
1927/*
1928 * Check that adding an event to the group does not result in anybody
1929 * overflowing the 64k event limit imposed by the output buffer.
1930 *
1931 * Specifically, check that the read_size for the event does not exceed 16k,
1932 * read_size being the one term that grows with groups size. Since read_size
1933 * depends on per-event read_format, also (re)check the existing events.
1934 *
1935 * This leaves 48k for the constant size fields and things like callchains,
1936 * branch stacks and register sets.
1937 */
a723968c
PZ
1938static bool perf_event_validate_size(struct perf_event *event)
1939{
382c27f4 1940 struct perf_event *sibling, *group_leader = event->group_leader;
a723968c 1941
382c27f4
PZ
1942 if (__perf_event_read_size(event->attr.read_format,
1943 group_leader->nr_siblings + 1) > 16*1024)
a723968c
PZ
1944 return false;
1945
382c27f4
PZ
1946 if (__perf_event_read_size(group_leader->attr.read_format,
1947 group_leader->nr_siblings + 1) > 16*1024)
1948 return false;
1949
7e2c1e4b
MR
1950 /*
1951 * When creating a new group leader, group_leader->ctx is initialized
1952 * after the size has been validated, but we cannot safely use
1953 * for_each_sibling_event() until group_leader->ctx is set. A new group
1954 * leader cannot have any siblings yet, so we can safely skip checking
1955 * the non-existent siblings.
1956 */
1957 if (event == group_leader)
1958 return true;
1959
382c27f4
PZ
1960 for_each_sibling_event(sibling, group_leader) {
1961 if (__perf_event_read_size(sibling->attr.read_format,
1962 group_leader->nr_siblings + 1) > 16*1024)
1963 return false;
1964 }
1965
a723968c
PZ
1966 return true;
1967}
1968
8a49542c
PZ
1969static void perf_group_attach(struct perf_event *event)
1970{
c320c7b7 1971 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1972
a76a82a3
PZ
1973 lockdep_assert_held(&event->ctx->lock);
1974
74c3337c 1975 /*
bd275681
PZ
1976 * We can have double attach due to group movement (move_group) in
1977 * perf_event_open().
74c3337c
PZ
1978 */
1979 if (event->attach_state & PERF_ATTACH_GROUP)
1980 return;
1981
8a49542c
PZ
1982 event->attach_state |= PERF_ATTACH_GROUP;
1983
1984 if (group_leader == event)
1985 return;
1986
652884fe
PZ
1987 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1988
4ff6a8de 1989 group_leader->group_caps &= event->event_caps;
8a49542c 1990
8343aae6 1991 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
8a49542c 1992 group_leader->nr_siblings++;
32671e37 1993 group_leader->group_generation++;
c320c7b7
ACM
1994
1995 perf_event__header_size(group_leader);
1996
edb39592 1997 for_each_sibling_event(pos, group_leader)
c320c7b7 1998 perf_event__header_size(pos);
8a49542c
PZ
1999}
2000
a63eaf34 2001/*
788faab7 2002 * Remove an event from the lists for its context.
fccc714b 2003 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 2004 */
04289bb9 2005static void
cdd6c482 2006list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 2007{
652884fe
PZ
2008 WARN_ON_ONCE(event->ctx != ctx);
2009 lockdep_assert_held(&ctx->lock);
2010
8a49542c
PZ
2011 /*
2012 * We can have double detach due to exit/hot-unplug + close.
2013 */
2014 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 2015 return;
8a49542c
PZ
2016
2017 event->attach_state &= ~PERF_ATTACH_CONTEXT;
2018
cdd6c482 2019 ctx->nr_events--;
82ff0c02
RH
2020 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2021 ctx->nr_user--;
cdd6c482 2022 if (event->attr.inherit_stat)
bfbd3381 2023 ctx->nr_stat--;
8bc20959 2024
cdd6c482 2025 list_del_rcu(&event->event_entry);
04289bb9 2026
8a49542c 2027 if (event->group_leader == event)
8e1a2031 2028 del_event_from_groups(event, ctx);
5c148194 2029
b2e74a26
SE
2030 /*
2031 * If event was in error state, then keep it
2032 * that way, otherwise bogus counts will be
2033 * returned on read(). The only way to get out
2034 * of error state is by explicit re-enabling
2035 * of the event
2036 */
33238c50
PZ
2037 if (event->state > PERF_EVENT_STATE_OFF) {
2038 perf_cgroup_event_disable(event, ctx);
0d3d73aa 2039 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
33238c50 2040 }
5a3126d4
PZ
2041
2042 ctx->generation++;
bd275681 2043 event->pmu_ctx->nr_events--;
050735b0
PZ
2044}
2045
ab43762e
AS
2046static int
2047perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2048{
2049 if (!has_aux(aux_event))
2050 return 0;
2051
2052 if (!event->pmu->aux_output_match)
2053 return 0;
2054
2055 return event->pmu->aux_output_match(aux_event);
2056}
2057
2058static void put_event(struct perf_event *event);
2059static void event_sched_out(struct perf_event *event,
ab43762e
AS
2060 struct perf_event_context *ctx);
2061
2062static void perf_put_aux_event(struct perf_event *event)
2063{
2064 struct perf_event_context *ctx = event->ctx;
ab43762e
AS
2065 struct perf_event *iter;
2066
2067 /*
2068 * If event uses aux_event tear down the link
2069 */
2070 if (event->aux_event) {
2071 iter = event->aux_event;
2072 event->aux_event = NULL;
2073 put_event(iter);
2074 return;
2075 }
2076
2077 /*
2078 * If the event is an aux_event, tear down all links to
2079 * it from other events.
2080 */
2081 for_each_sibling_event(iter, event->group_leader) {
2082 if (iter->aux_event != event)
2083 continue;
2084
2085 iter->aux_event = NULL;
2086 put_event(event);
2087
2088 /*
2089 * If it's ACTIVE, schedule it out and put it into ERROR
2090 * state so that we don't try to schedule it again. Note
2091 * that perf_event_enable() will clear the ERROR status.
2092 */
bd275681 2093 event_sched_out(iter, ctx);
ab43762e
AS
2094 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2095 }
2096}
2097
a4faf00d
AS
2098static bool perf_need_aux_event(struct perf_event *event)
2099{
2100 return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2101}
2102
ab43762e
AS
2103static int perf_get_aux_event(struct perf_event *event,
2104 struct perf_event *group_leader)
2105{
2106 /*
2107 * Our group leader must be an aux event if we want to be
2108 * an aux_output. This way, the aux event will precede its
2109 * aux_output events in the group, and therefore will always
2110 * schedule first.
2111 */
2112 if (!group_leader)
2113 return 0;
2114
a4faf00d
AS
2115 /*
2116 * aux_output and aux_sample_size are mutually exclusive.
2117 */
2118 if (event->attr.aux_output && event->attr.aux_sample_size)
2119 return 0;
2120
2121 if (event->attr.aux_output &&
2122 !perf_aux_output_match(event, group_leader))
2123 return 0;
2124
2125 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
ab43762e
AS
2126 return 0;
2127
2128 if (!atomic_long_inc_not_zero(&group_leader->refcount))
2129 return 0;
2130
2131 /*
2132 * Link aux_outputs to their aux event; this is undone in
2133 * perf_group_detach() by perf_put_aux_event(). When the
2134 * group in torn down, the aux_output events loose their
2135 * link to the aux_event and can't schedule any more.
2136 */
2137 event->aux_event = group_leader;
2138
2139 return 1;
2140}
2141
ab6f824c
PZ
2142static inline struct list_head *get_event_list(struct perf_event *event)
2143{
bd275681
PZ
2144 return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2145 &event->pmu_ctx->flexible_active;
ab6f824c
PZ
2146}
2147
9f0c4fa1
KL
2148/*
2149 * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2150 * cannot exist on their own, schedule them out and move them into the ERROR
2151 * state. Also see _perf_event_enable(), it will not be able to recover
2152 * this ERROR state.
2153 */
2154static inline void perf_remove_sibling_event(struct perf_event *event)
2155{
bd275681 2156 event_sched_out(event, event->ctx);
9f0c4fa1
KL
2157 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2158}
2159
8a49542c 2160static void perf_group_detach(struct perf_event *event)
050735b0 2161{
9f0c4fa1 2162 struct perf_event *leader = event->group_leader;
050735b0 2163 struct perf_event *sibling, *tmp;
6668128a 2164 struct perf_event_context *ctx = event->ctx;
8a49542c 2165
6668128a 2166 lockdep_assert_held(&ctx->lock);
a76a82a3 2167
8a49542c
PZ
2168 /*
2169 * We can have double detach due to exit/hot-unplug + close.
2170 */
2171 if (!(event->attach_state & PERF_ATTACH_GROUP))
2172 return;
2173
2174 event->attach_state &= ~PERF_ATTACH_GROUP;
2175
ab43762e
AS
2176 perf_put_aux_event(event);
2177
8a49542c
PZ
2178 /*
2179 * If this is a sibling, remove it from its group.
2180 */
9f0c4fa1 2181 if (leader != event) {
8343aae6 2182 list_del_init(&event->sibling_list);
8a49542c 2183 event->group_leader->nr_siblings--;
32671e37 2184 event->group_leader->group_generation++;
c320c7b7 2185 goto out;
8a49542c
PZ
2186 }
2187
04289bb9 2188 /*
cdd6c482
IM
2189 * If this was a group event with sibling events then
2190 * upgrade the siblings to singleton events by adding them
8a49542c 2191 * to whatever list we are on.
04289bb9 2192 */
8343aae6 2193 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
8e1a2031 2194
9f0c4fa1
KL
2195 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2196 perf_remove_sibling_event(sibling);
2197
04289bb9 2198 sibling->group_leader = sibling;
24868367 2199 list_del_init(&sibling->sibling_list);
d6f962b5
FW
2200
2201 /* Inherit group flags from the previous leader */
4ff6a8de 2202 sibling->group_caps = event->group_caps;
652884fe 2203
fd0815f6 2204 if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
8e1a2031 2205 add_event_to_groups(sibling, event->ctx);
6668128a 2206
ab6f824c
PZ
2207 if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2208 list_add_tail(&sibling->active_list, get_event_list(sibling));
8e1a2031
AB
2209 }
2210
652884fe 2211 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 2212 }
c320c7b7
ACM
2213
2214out:
9f0c4fa1 2215 for_each_sibling_event(tmp, leader)
c320c7b7 2216 perf_event__header_size(tmp);
9f0c4fa1
KL
2217
2218 perf_event__header_size(leader);
04289bb9
IM
2219}
2220
ef54c1a4
PZ
2221static void sync_child_event(struct perf_event *child_event);
2222
2223static void perf_child_detach(struct perf_event *event)
2224{
2225 struct perf_event *parent_event = event->parent;
2226
2227 if (!(event->attach_state & PERF_ATTACH_CHILD))
2228 return;
2229
2230 event->attach_state &= ~PERF_ATTACH_CHILD;
2231
2232 if (WARN_ON_ONCE(!parent_event))
2233 return;
2234
2235 lockdep_assert_held(&parent_event->child_mutex);
2236
2237 sync_child_event(event);
2238 list_del_init(&event->child_list);
2239}
2240
fadfe7be
JO
2241static bool is_orphaned_event(struct perf_event *event)
2242{
a69b0ca4 2243 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
2244}
2245
fa66f07a
SE
2246static inline int
2247event_filter_match(struct perf_event *event)
2248{
0b8f1e2e 2249 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
bd275681 2250 perf_cgroup_match(event);
fa66f07a
SE
2251}
2252
9ffcfa6f 2253static void
bd275681 2254event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
3b6f9e5c 2255{
bd275681
PZ
2256 struct perf_event_pmu_context *epc = event->pmu_ctx;
2257 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
0d3d73aa 2258 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
652884fe 2259
bd275681
PZ
2260 // XXX cpc serialization, probably per-cpu IRQ disabled
2261
652884fe
PZ
2262 WARN_ON_ONCE(event->ctx != ctx);
2263 lockdep_assert_held(&ctx->lock);
2264
cdd6c482 2265 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 2266 return;
3b6f9e5c 2267
6668128a
PZ
2268 /*
2269 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2270 * we can schedule events _OUT_ individually through things like
2271 * __perf_remove_from_context().
2272 */
2273 list_del_init(&event->active_list);
2274
44377277
AS
2275 perf_pmu_disable(event->pmu);
2276
28a967c3
PZ
2277 event->pmu->del(event, 0);
2278 event->oncpu = -1;
0d3d73aa 2279
ca6c2132
PZ
2280 if (event->pending_disable) {
2281 event->pending_disable = 0;
33238c50 2282 perf_cgroup_event_disable(event, ctx);
0d3d73aa 2283 state = PERF_EVENT_STATE_OFF;
970892a9 2284 }
ca6c2132
PZ
2285
2286 if (event->pending_sigtrap) {
2287 bool dec = true;
2288
2289 event->pending_sigtrap = 0;
2290 if (state != PERF_EVENT_STATE_OFF &&
2291 !event->pending_work) {
2292 event->pending_work = 1;
2293 dec = false;
517e6a30 2294 WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount));
ca6c2132
PZ
2295 task_work_add(current, &event->pending_task, TWA_RESUME);
2296 }
2297 if (dec)
2298 local_dec(&event->ctx->nr_pending);
2299 }
2300
0d3d73aa 2301 perf_event_set_state(event, state);
3b6f9e5c 2302
cdd6c482 2303 if (!is_software_event(event))
bd275681 2304 cpc->active_oncpu--;
0f5a2601
PZ
2305 if (event->attr.freq && event->attr.sample_freq)
2306 ctx->nr_freq--;
bd275681
PZ
2307 if (event->attr.exclusive || !cpc->active_oncpu)
2308 cpc->exclusive = 0;
44377277
AS
2309
2310 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
2311}
2312
d859e29f 2313static void
bd275681 2314group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
d859e29f 2315{
cdd6c482 2316 struct perf_event *event;
0d3d73aa
PZ
2317
2318 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2319 return;
d859e29f 2320
bd275681 2321 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
3f005e7d 2322
bd275681 2323 event_sched_out(group_event, ctx);
d859e29f
PM
2324
2325 /*
2326 * Schedule out siblings (if any):
2327 */
edb39592 2328 for_each_sibling_event(event, group_event)
bd275681 2329 event_sched_out(event, ctx);
d859e29f
PM
2330}
2331
45a0e07a 2332#define DETACH_GROUP 0x01UL
ef54c1a4 2333#define DETACH_CHILD 0x02UL
517e6a30 2334#define DETACH_DEAD 0x04UL
0017960f 2335
0793a61d 2336/*
cdd6c482 2337 * Cross CPU call to remove a performance event
0793a61d 2338 *
cdd6c482 2339 * We disable the event on the hardware level first. After that we
0793a61d
TG
2340 * remove it from the context list.
2341 */
fae3fde6
PZ
2342static void
2343__perf_remove_from_context(struct perf_event *event,
2344 struct perf_cpu_context *cpuctx,
2345 struct perf_event_context *ctx,
2346 void *info)
0793a61d 2347{
bd275681 2348 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
45a0e07a 2349 unsigned long flags = (unsigned long)info;
0793a61d 2350
3c5c8711
PZ
2351 if (ctx->is_active & EVENT_TIME) {
2352 update_context_time(ctx);
09f5e7dc 2353 update_cgrp_time_from_cpuctx(cpuctx, false);
3c5c8711
PZ
2354 }
2355
517e6a30
PZ
2356 /*
2357 * Ensure event_sched_out() switches to OFF, at the very least
2358 * this avoids raising perf_pending_task() at this time.
2359 */
2360 if (flags & DETACH_DEAD)
2361 event->pending_disable = 1;
bd275681 2362 event_sched_out(event, ctx);
45a0e07a 2363 if (flags & DETACH_GROUP)
46ce0fe9 2364 perf_group_detach(event);
ef54c1a4
PZ
2365 if (flags & DETACH_CHILD)
2366 perf_child_detach(event);
cdd6c482 2367 list_del_event(event, ctx);
517e6a30
PZ
2368 if (flags & DETACH_DEAD)
2369 event->state = PERF_EVENT_STATE_DEAD;
39a43640 2370
bd275681
PZ
2371 if (!pmu_ctx->nr_events) {
2372 pmu_ctx->rotate_necessary = 0;
2373
2374 if (ctx->task && ctx->is_active) {
2375 struct perf_cpu_pmu_context *cpc;
2376
2377 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2378 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2379 cpc->task_epc = NULL;
2380 }
2381 }
2382
39a43640 2383 if (!ctx->nr_events && ctx->is_active) {
09f5e7dc
PZ
2384 if (ctx == &cpuctx->ctx)
2385 update_cgrp_time_from_cpuctx(cpuctx, true);
2386
64ce3126 2387 ctx->is_active = 0;
39a43640
PZ
2388 if (ctx->task) {
2389 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2390 cpuctx->task_ctx = NULL;
2391 }
64ce3126 2392 }
0793a61d
TG
2393}
2394
0793a61d 2395/*
cdd6c482 2396 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 2397 *
cdd6c482
IM
2398 * If event->ctx is a cloned context, callers must make sure that
2399 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
2400 * remains valid. This is OK when called from perf_release since
2401 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 2402 * When called from perf_event_exit_task, it's OK because the
c93f7669 2403 * context has been detached from its task.
0793a61d 2404 */
45a0e07a 2405static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 2406{
a76a82a3
PZ
2407 struct perf_event_context *ctx = event->ctx;
2408
2409 lockdep_assert_held(&ctx->mutex);
0793a61d 2410
a76a82a3 2411 /*
ef54c1a4
PZ
2412 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2413 * to work in the face of TASK_TOMBSTONE, unlike every other
2414 * event_function_call() user.
a76a82a3 2415 */
ef54c1a4 2416 raw_spin_lock_irq(&ctx->lock);
bd275681
PZ
2417 if (!ctx->is_active) {
2418 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
ef54c1a4 2419 ctx, (void *)flags);
a76a82a3 2420 raw_spin_unlock_irq(&ctx->lock);
ef54c1a4 2421 return;
a76a82a3 2422 }
ef54c1a4
PZ
2423 raw_spin_unlock_irq(&ctx->lock);
2424
2425 event_function_call(event, __perf_remove_from_context, (void *)flags);
0793a61d
TG
2426}
2427
d859e29f 2428/*
cdd6c482 2429 * Cross CPU call to disable a performance event
d859e29f 2430 */
fae3fde6
PZ
2431static void __perf_event_disable(struct perf_event *event,
2432 struct perf_cpu_context *cpuctx,
2433 struct perf_event_context *ctx,
2434 void *info)
7b648018 2435{
fae3fde6
PZ
2436 if (event->state < PERF_EVENT_STATE_INACTIVE)
2437 return;
7b648018 2438
3c5c8711
PZ
2439 if (ctx->is_active & EVENT_TIME) {
2440 update_context_time(ctx);
2441 update_cgrp_time_from_event(event);
2442 }
2443
bd275681
PZ
2444 perf_pmu_disable(event->pmu_ctx->pmu);
2445
fae3fde6 2446 if (event == event->group_leader)
bd275681 2447 group_sched_out(event, ctx);
fae3fde6 2448 else
bd275681 2449 event_sched_out(event, ctx);
0d3d73aa
PZ
2450
2451 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
33238c50 2452 perf_cgroup_event_disable(event, ctx);
bd275681
PZ
2453
2454 perf_pmu_enable(event->pmu_ctx->pmu);
7b648018
PZ
2455}
2456
d859e29f 2457/*
788faab7 2458 * Disable an event.
c93f7669 2459 *
cdd6c482
IM
2460 * If event->ctx is a cloned context, callers must make sure that
2461 * every task struct that event->ctx->task could possibly point to
9f014e3a 2462 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2463 * perf_event_for_each_child or perf_event_for_each because they
2464 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
2465 * goes to exit will block in perf_event_exit_event().
2466 *
ca6c2132 2467 * When called from perf_pending_irq it's OK because event->ctx
c93f7669 2468 * is the current context on this CPU and preemption is disabled,
cdd6c482 2469 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 2470 */
f63a8daa 2471static void _perf_event_disable(struct perf_event *event)
d859e29f 2472{
cdd6c482 2473 struct perf_event_context *ctx = event->ctx;
d859e29f 2474
e625cce1 2475 raw_spin_lock_irq(&ctx->lock);
7b648018 2476 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 2477 raw_spin_unlock_irq(&ctx->lock);
7b648018 2478 return;
53cfbf59 2479 }
e625cce1 2480 raw_spin_unlock_irq(&ctx->lock);
7b648018 2481
fae3fde6
PZ
2482 event_function_call(event, __perf_event_disable, NULL);
2483}
2484
2485void perf_event_disable_local(struct perf_event *event)
2486{
2487 event_function_local(event, __perf_event_disable, NULL);
d859e29f 2488}
f63a8daa
PZ
2489
2490/*
2491 * Strictly speaking kernel users cannot create groups and therefore this
2492 * interface does not need the perf_event_ctx_lock() magic.
2493 */
2494void perf_event_disable(struct perf_event *event)
2495{
2496 struct perf_event_context *ctx;
2497
2498 ctx = perf_event_ctx_lock(event);
2499 _perf_event_disable(event);
2500 perf_event_ctx_unlock(event, ctx);
2501}
dcfce4a0 2502EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 2503
5aab90ce
JO
2504void perf_event_disable_inatomic(struct perf_event *event)
2505{
ca6c2132
PZ
2506 event->pending_disable = 1;
2507 irq_work_queue(&event->pending_irq);
5aab90ce
JO
2508}
2509
4fe757dd
PZ
2510#define MAX_INTERRUPTS (~0ULL)
2511
2512static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2513static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2514
235c7fc7 2515static int
bd275681 2516event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
235c7fc7 2517{
bd275681
PZ
2518 struct perf_event_pmu_context *epc = event->pmu_ctx;
2519 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
44377277 2520 int ret = 0;
4158755d 2521
ab6f824c
PZ
2522 WARN_ON_ONCE(event->ctx != ctx);
2523
63342411
PZ
2524 lockdep_assert_held(&ctx->lock);
2525
cdd6c482 2526 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2527 return 0;
2528
95ff4ca2
AS
2529 WRITE_ONCE(event->oncpu, smp_processor_id());
2530 /*
0c1cbc18
PZ
2531 * Order event::oncpu write to happen before the ACTIVE state is
2532 * visible. This allows perf_event_{stop,read}() to observe the correct
2533 * ->oncpu if it sees ACTIVE.
95ff4ca2
AS
2534 */
2535 smp_wmb();
0d3d73aa 2536 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2537
2538 /*
2539 * Unthrottle events, since we scheduled we might have missed several
2540 * ticks already, also for a heavily scheduling task there is little
2541 * guarantee it'll get a tick in a timely manner.
2542 */
2543 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2544 perf_log_throttle(event, 1);
2545 event->hw.interrupts = 0;
2546 }
2547
44377277
AS
2548 perf_pmu_disable(event->pmu);
2549
ec0d7729
AS
2550 perf_log_itrace_start(event);
2551
a4eaf7f1 2552 if (event->pmu->add(event, PERF_EF_START)) {
0d3d73aa 2553 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
cdd6c482 2554 event->oncpu = -1;
44377277
AS
2555 ret = -EAGAIN;
2556 goto out;
235c7fc7
IM
2557 }
2558
cdd6c482 2559 if (!is_software_event(event))
bd275681 2560 cpc->active_oncpu++;
0f5a2601
PZ
2561 if (event->attr.freq && event->attr.sample_freq)
2562 ctx->nr_freq++;
235c7fc7 2563
cdd6c482 2564 if (event->attr.exclusive)
bd275681 2565 cpc->exclusive = 1;
3b6f9e5c 2566
44377277
AS
2567out:
2568 perf_pmu_enable(event->pmu);
2569
2570 return ret;
235c7fc7
IM
2571}
2572
6751b71e 2573static int
bd275681 2574group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
6751b71e 2575{
6bde9b6c 2576 struct perf_event *event, *partial_group = NULL;
bd275681 2577 struct pmu *pmu = group_event->pmu_ctx->pmu;
6751b71e 2578
cdd6c482 2579 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2580 return 0;
2581
fbbe0701 2582 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2583
bd275681 2584 if (event_sched_in(group_event, ctx))
251ff2d4 2585 goto error;
6751b71e
PM
2586
2587 /*
2588 * Schedule in siblings as one group (if any):
2589 */
edb39592 2590 for_each_sibling_event(event, group_event) {
bd275681 2591 if (event_sched_in(event, ctx)) {
cdd6c482 2592 partial_group = event;
6751b71e
PM
2593 goto group_error;
2594 }
2595 }
2596
9ffcfa6f 2597 if (!pmu->commit_txn(pmu))
6e85158c 2598 return 0;
9ffcfa6f 2599
6751b71e
PM
2600group_error:
2601 /*
2602 * Groups can be scheduled in as one unit only, so undo any
2603 * partial group before returning:
0d3d73aa 2604 * The events up to the failed event are scheduled out normally.
6751b71e 2605 */
edb39592 2606 for_each_sibling_event(event, group_event) {
cdd6c482 2607 if (event == partial_group)
0d3d73aa 2608 break;
d7842da4 2609
bd275681 2610 event_sched_out(event, ctx);
6751b71e 2611 }
bd275681 2612 event_sched_out(group_event, ctx);
6751b71e 2613
251ff2d4 2614error:
ad5133b7 2615 pmu->cancel_txn(pmu);
6751b71e
PM
2616 return -EAGAIN;
2617}
2618
3b6f9e5c 2619/*
cdd6c482 2620 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2621 */
bd275681 2622static int group_can_go_on(struct perf_event *event, int can_add_hw)
3b6f9e5c 2623{
bd275681
PZ
2624 struct perf_event_pmu_context *epc = event->pmu_ctx;
2625 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2626
3b6f9e5c 2627 /*
cdd6c482 2628 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2629 */
4ff6a8de 2630 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2631 return 1;
2632 /*
2633 * If an exclusive group is already on, no other hardware
cdd6c482 2634 * events can go on.
3b6f9e5c 2635 */
bd275681 2636 if (cpc->exclusive)
3b6f9e5c
PM
2637 return 0;
2638 /*
2639 * If this group is exclusive and there are already
cdd6c482 2640 * events on the CPU, it can't go on.
3b6f9e5c 2641 */
1908dc91 2642 if (event->attr.exclusive && !list_empty(get_event_list(event)))
3b6f9e5c
PM
2643 return 0;
2644 /*
2645 * Otherwise, try to add it if all previous groups were able
2646 * to go on.
2647 */
2648 return can_add_hw;
2649}
2650
cdd6c482
IM
2651static void add_event_to_ctx(struct perf_event *event,
2652 struct perf_event_context *ctx)
53cfbf59 2653{
cdd6c482 2654 list_add_event(event, ctx);
8a49542c 2655 perf_group_attach(event);
53cfbf59
PM
2656}
2657
bd275681
PZ
2658static void task_ctx_sched_out(struct perf_event_context *ctx,
2659 enum event_type_t event_type)
bd2afa49 2660{
bd275681
PZ
2661 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2662
bd2afa49
PZ
2663 if (!cpuctx->task_ctx)
2664 return;
2665
2666 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2667 return;
2668
bd275681 2669 ctx_sched_out(ctx, event_type);
bd2afa49
PZ
2670}
2671
dce5855b 2672static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
a0827713 2673 struct perf_event_context *ctx)
dce5855b 2674{
bd275681 2675 ctx_sched_in(&cpuctx->ctx, EVENT_PINNED);
dce5855b 2676 if (ctx)
bd275681
PZ
2677 ctx_sched_in(ctx, EVENT_PINNED);
2678 ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE);
dce5855b 2679 if (ctx)
bd275681 2680 ctx_sched_in(ctx, EVENT_FLEXIBLE);
dce5855b
PZ
2681}
2682
487f05e1
AS
2683/*
2684 * We want to maintain the following priority of scheduling:
2685 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2686 * - task pinned (EVENT_PINNED)
2687 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2688 * - task flexible (EVENT_FLEXIBLE).
2689 *
2690 * In order to avoid unscheduling and scheduling back in everything every
2691 * time an event is added, only do it for the groups of equal priority and
2692 * below.
2693 *
2694 * This can be called after a batch operation on task events, in which case
2695 * event_type is a bit mask of the types of events involved. For CPU events,
2696 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2697 */
bd275681
PZ
2698/*
2699 * XXX: ctx_resched() reschedule entire perf_event_context while adding new
2700 * event to the context or enabling existing event in the context. We can
2701 * probably optimize it by rescheduling only affected pmu_ctx.
2702 */
3e349507 2703static void ctx_resched(struct perf_cpu_context *cpuctx,
487f05e1
AS
2704 struct perf_event_context *task_ctx,
2705 enum event_type_t event_type)
0017960f 2706{
487f05e1
AS
2707 bool cpu_event = !!(event_type & EVENT_CPU);
2708
2709 /*
2710 * If pinned groups are involved, flexible groups also need to be
2711 * scheduled out.
2712 */
2713 if (event_type & EVENT_PINNED)
2714 event_type |= EVENT_FLEXIBLE;
2715
bd275681 2716 event_type &= EVENT_ALL;
bd903afe 2717
f06cc667 2718 perf_ctx_disable(&cpuctx->ctx, false);
bd275681 2719 if (task_ctx) {
f06cc667 2720 perf_ctx_disable(task_ctx, false);
bd275681
PZ
2721 task_ctx_sched_out(task_ctx, event_type);
2722 }
487f05e1
AS
2723
2724 /*
2725 * Decide which cpu ctx groups to schedule out based on the types
2726 * of events that caused rescheduling:
2727 * - EVENT_CPU: schedule out corresponding groups;
2728 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2729 * - otherwise, do nothing more.
2730 */
2731 if (cpu_event)
bd275681
PZ
2732 ctx_sched_out(&cpuctx->ctx, event_type);
2733 else if (event_type & EVENT_PINNED)
2734 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
487f05e1 2735
a0827713 2736 perf_event_sched_in(cpuctx, task_ctx);
bd275681 2737
f06cc667 2738 perf_ctx_enable(&cpuctx->ctx, false);
bd275681 2739 if (task_ctx)
f06cc667 2740 perf_ctx_enable(task_ctx, false);
0017960f
PZ
2741}
2742
c68d224e
SE
2743void perf_pmu_resched(struct pmu *pmu)
2744{
bd275681 2745 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
c68d224e
SE
2746 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2747
2748 perf_ctx_lock(cpuctx, task_ctx);
2749 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2750 perf_ctx_unlock(cpuctx, task_ctx);
2751}
2752
0793a61d 2753/*
cdd6c482 2754 * Cross CPU call to install and enable a performance event
682076ae 2755 *
a096309b
PZ
2756 * Very similar to remote_function() + event_function() but cannot assume that
2757 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2758 */
fe4b04fa 2759static int __perf_install_in_context(void *info)
0793a61d 2760{
a096309b
PZ
2761 struct perf_event *event = info;
2762 struct perf_event_context *ctx = event->ctx;
bd275681 2763 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2c29ef0f 2764 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2765 bool reprogram = true;
a096309b 2766 int ret = 0;
0793a61d 2767
63b6da39 2768 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2769 if (ctx->task) {
b58f6b0d
PZ
2770 raw_spin_lock(&ctx->lock);
2771 task_ctx = ctx;
a096309b 2772
63cae12b 2773 reprogram = (ctx->task == current);
b58f6b0d 2774
39a43640 2775 /*
63cae12b
PZ
2776 * If the task is running, it must be running on this CPU,
2777 * otherwise we cannot reprogram things.
2778 *
2779 * If its not running, we don't care, ctx->lock will
2780 * serialize against it becoming runnable.
39a43640 2781 */
63cae12b
PZ
2782 if (task_curr(ctx->task) && !reprogram) {
2783 ret = -ESRCH;
2784 goto unlock;
2785 }
a096309b 2786
63cae12b 2787 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2788 } else if (task_ctx) {
2789 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2790 }
b58f6b0d 2791
33801b94 2792#ifdef CONFIG_CGROUP_PERF
33238c50 2793 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
33801b94 2794 /*
2795 * If the current cgroup doesn't match the event's
2796 * cgroup, we should not try to schedule it.
2797 */
2798 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2799 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2800 event->cgrp->css.cgroup);
2801 }
2802#endif
2803
63cae12b 2804 if (reprogram) {
bd275681 2805 ctx_sched_out(ctx, EVENT_TIME);
a096309b 2806 add_event_to_ctx(event, ctx);
487f05e1 2807 ctx_resched(cpuctx, task_ctx, get_event_type(event));
a096309b
PZ
2808 } else {
2809 add_event_to_ctx(event, ctx);
2810 }
2811
63b6da39 2812unlock:
2c29ef0f 2813 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2814
a096309b 2815 return ret;
0793a61d
TG
2816}
2817
8a58ddae
AS
2818static bool exclusive_event_installable(struct perf_event *event,
2819 struct perf_event_context *ctx);
2820
0793a61d 2821/*
a096309b
PZ
2822 * Attach a performance event to a context.
2823 *
2824 * Very similar to event_function_call, see comment there.
0793a61d
TG
2825 */
2826static void
cdd6c482
IM
2827perf_install_in_context(struct perf_event_context *ctx,
2828 struct perf_event *event,
0793a61d
TG
2829 int cpu)
2830{
a096309b 2831 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2832
fe4b04fa
PZ
2833 lockdep_assert_held(&ctx->mutex);
2834
8a58ddae
AS
2835 WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2836
0cda4c02 2837 if (event->cpu != -1)
bd275681 2838 WARN_ON_ONCE(event->cpu != cpu);
c3f00c70 2839
0b8f1e2e
PZ
2840 /*
2841 * Ensures that if we can observe event->ctx, both the event and ctx
2842 * will be 'complete'. See perf_iterate_sb_cpu().
2843 */
2844 smp_store_release(&event->ctx, ctx);
2845
db0503e4
PZ
2846 /*
2847 * perf_event_attr::disabled events will not run and can be initialized
2848 * without IPI. Except when this is the first event for the context, in
2849 * that case we need the magic of the IPI to set ctx->is_active.
2850 *
2851 * The IOC_ENABLE that is sure to follow the creation of a disabled
2852 * event will issue the IPI and reprogram the hardware.
2853 */
c5de60cd
NK
2854 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2855 ctx->nr_events && !is_cgroup_event(event)) {
db0503e4
PZ
2856 raw_spin_lock_irq(&ctx->lock);
2857 if (ctx->task == TASK_TOMBSTONE) {
2858 raw_spin_unlock_irq(&ctx->lock);
2859 return;
2860 }
2861 add_event_to_ctx(event, ctx);
2862 raw_spin_unlock_irq(&ctx->lock);
2863 return;
2864 }
2865
a096309b
PZ
2866 if (!task) {
2867 cpu_function_call(cpu, __perf_install_in_context, event);
2868 return;
2869 }
2870
2871 /*
2872 * Should not happen, we validate the ctx is still alive before calling.
2873 */
2874 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2875 return;
2876
39a43640
PZ
2877 /*
2878 * Installing events is tricky because we cannot rely on ctx->is_active
2879 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2880 *
2881 * Instead we use task_curr(), which tells us if the task is running.
2882 * However, since we use task_curr() outside of rq::lock, we can race
2883 * against the actual state. This means the result can be wrong.
2884 *
2885 * If we get a false positive, we retry, this is harmless.
2886 *
2887 * If we get a false negative, things are complicated. If we are after
2888 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2889 * value must be correct. If we're before, it doesn't matter since
2890 * perf_event_context_sched_in() will program the counter.
2891 *
2892 * However, this hinges on the remote context switch having observed
2893 * our task->perf_event_ctxp[] store, such that it will in fact take
2894 * ctx::lock in perf_event_context_sched_in().
2895 *
2896 * We do this by task_function_call(), if the IPI fails to hit the task
2897 * we know any future context switch of task must see the
2898 * perf_event_ctpx[] store.
39a43640 2899 */
63cae12b 2900
63b6da39 2901 /*
63cae12b
PZ
2902 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2903 * task_cpu() load, such that if the IPI then does not find the task
2904 * running, a future context switch of that task must observe the
2905 * store.
63b6da39 2906 */
63cae12b
PZ
2907 smp_mb();
2908again:
2909 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2910 return;
2911
2912 raw_spin_lock_irq(&ctx->lock);
2913 task = ctx->task;
84c4e620 2914 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2915 /*
2916 * Cannot happen because we already checked above (which also
2917 * cannot happen), and we hold ctx->mutex, which serializes us
2918 * against perf_event_exit_task_context().
2919 */
63b6da39
PZ
2920 raw_spin_unlock_irq(&ctx->lock);
2921 return;
2922 }
39a43640 2923 /*
63cae12b
PZ
2924 * If the task is not running, ctx->lock will avoid it becoming so,
2925 * thus we can safely install the event.
39a43640 2926 */
63cae12b
PZ
2927 if (task_curr(task)) {
2928 raw_spin_unlock_irq(&ctx->lock);
2929 goto again;
2930 }
2931 add_event_to_ctx(event, ctx);
2932 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2933}
2934
d859e29f 2935/*
cdd6c482 2936 * Cross CPU call to enable a performance event
d859e29f 2937 */
fae3fde6
PZ
2938static void __perf_event_enable(struct perf_event *event,
2939 struct perf_cpu_context *cpuctx,
2940 struct perf_event_context *ctx,
2941 void *info)
04289bb9 2942{
cdd6c482 2943 struct perf_event *leader = event->group_leader;
fae3fde6 2944 struct perf_event_context *task_ctx;
04289bb9 2945
6e801e01
PZ
2946 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2947 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2948 return;
3cbed429 2949
bd2afa49 2950 if (ctx->is_active)
bd275681 2951 ctx_sched_out(ctx, EVENT_TIME);
bd2afa49 2952
0d3d73aa 2953 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
33238c50 2954 perf_cgroup_event_enable(event, ctx);
04289bb9 2955
fae3fde6
PZ
2956 if (!ctx->is_active)
2957 return;
2958
e5d1367f 2959 if (!event_filter_match(event)) {
bd275681 2960 ctx_sched_in(ctx, EVENT_TIME);
fae3fde6 2961 return;
e5d1367f 2962 }
f4c4176f 2963
04289bb9 2964 /*
cdd6c482 2965 * If the event is in a group and isn't the group leader,
d859e29f 2966 * then don't put it on unless the group is on.
04289bb9 2967 */
bd2afa49 2968 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
bd275681 2969 ctx_sched_in(ctx, EVENT_TIME);
fae3fde6 2970 return;
bd2afa49 2971 }
fe4b04fa 2972
fae3fde6
PZ
2973 task_ctx = cpuctx->task_ctx;
2974 if (ctx->task)
2975 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2976
487f05e1 2977 ctx_resched(cpuctx, task_ctx, get_event_type(event));
7b648018
PZ
2978}
2979
d859e29f 2980/*
788faab7 2981 * Enable an event.
c93f7669 2982 *
cdd6c482
IM
2983 * If event->ctx is a cloned context, callers must make sure that
2984 * every task struct that event->ctx->task could possibly point to
c93f7669 2985 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2986 * perf_event_for_each_child or perf_event_for_each as described
2987 * for perf_event_disable.
d859e29f 2988 */
f63a8daa 2989static void _perf_event_enable(struct perf_event *event)
d859e29f 2990{
cdd6c482 2991 struct perf_event_context *ctx = event->ctx;
d859e29f 2992
7b648018 2993 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2994 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2995 event->state < PERF_EVENT_STATE_ERROR) {
9f0c4fa1 2996out:
7b648018 2997 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2998 return;
2999 }
3000
d859e29f 3001 /*
cdd6c482 3002 * If the event is in error state, clear that first.
7b648018
PZ
3003 *
3004 * That way, if we see the event in error state below, we know that it
3005 * has gone back into error state, as distinct from the task having
3006 * been scheduled away before the cross-call arrived.
d859e29f 3007 */
9f0c4fa1
KL
3008 if (event->state == PERF_EVENT_STATE_ERROR) {
3009 /*
3010 * Detached SIBLING events cannot leave ERROR state.
3011 */
3012 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3013 event->group_leader == event)
3014 goto out;
3015
cdd6c482 3016 event->state = PERF_EVENT_STATE_OFF;
9f0c4fa1 3017 }
e625cce1 3018 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 3019
fae3fde6 3020 event_function_call(event, __perf_event_enable, NULL);
d859e29f 3021}
f63a8daa
PZ
3022
3023/*
3024 * See perf_event_disable();
3025 */
3026void perf_event_enable(struct perf_event *event)
3027{
3028 struct perf_event_context *ctx;
3029
3030 ctx = perf_event_ctx_lock(event);
3031 _perf_event_enable(event);
3032 perf_event_ctx_unlock(event, ctx);
3033}
dcfce4a0 3034EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 3035
375637bc
AS
3036struct stop_event_data {
3037 struct perf_event *event;
3038 unsigned int restart;
3039};
3040
95ff4ca2
AS
3041static int __perf_event_stop(void *info)
3042{
375637bc
AS
3043 struct stop_event_data *sd = info;
3044 struct perf_event *event = sd->event;
95ff4ca2 3045
375637bc 3046 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
3047 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3048 return 0;
3049
3050 /* matches smp_wmb() in event_sched_in() */
3051 smp_rmb();
3052
3053 /*
3054 * There is a window with interrupts enabled before we get here,
3055 * so we need to check again lest we try to stop another CPU's event.
3056 */
3057 if (READ_ONCE(event->oncpu) != smp_processor_id())
3058 return -EAGAIN;
3059
3060 event->pmu->stop(event, PERF_EF_UPDATE);
3061
375637bc
AS
3062 /*
3063 * May race with the actual stop (through perf_pmu_output_stop()),
3064 * but it is only used for events with AUX ring buffer, and such
3065 * events will refuse to restart because of rb::aux_mmap_count==0,
3066 * see comments in perf_aux_output_begin().
3067 *
788faab7 3068 * Since this is happening on an event-local CPU, no trace is lost
375637bc
AS
3069 * while restarting.
3070 */
3071 if (sd->restart)
c9bbdd48 3072 event->pmu->start(event, 0);
375637bc 3073
95ff4ca2
AS
3074 return 0;
3075}
3076
767ae086 3077static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
3078{
3079 struct stop_event_data sd = {
3080 .event = event,
767ae086 3081 .restart = restart,
375637bc
AS
3082 };
3083 int ret = 0;
3084
3085 do {
3086 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3087 return 0;
3088
3089 /* matches smp_wmb() in event_sched_in() */
3090 smp_rmb();
3091
3092 /*
3093 * We only want to restart ACTIVE events, so if the event goes
3094 * inactive here (event->oncpu==-1), there's nothing more to do;
3095 * fall through with ret==-ENXIO.
3096 */
3097 ret = cpu_function_call(READ_ONCE(event->oncpu),
3098 __perf_event_stop, &sd);
3099 } while (ret == -EAGAIN);
3100
3101 return ret;
3102}
3103
3104/*
3105 * In order to contain the amount of racy and tricky in the address filter
3106 * configuration management, it is a two part process:
3107 *
3108 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3109 * we update the addresses of corresponding vmas in
c60f83b8 3110 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
375637bc
AS
3111 * (p2) when an event is scheduled in (pmu::add), it calls
3112 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3113 * if the generation has changed since the previous call.
3114 *
3115 * If (p1) happens while the event is active, we restart it to force (p2).
3116 *
3117 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3118 * pre-existing mappings, called once when new filters arrive via SET_FILTER
3119 * ioctl;
3120 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
c1e8d7c6 3121 * registered mapping, called for every new mmap(), with mm::mmap_lock down
375637bc
AS
3122 * for reading;
3123 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3124 * of exec.
3125 */
3126void perf_event_addr_filters_sync(struct perf_event *event)
3127{
3128 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3129
3130 if (!has_addr_filter(event))
3131 return;
3132
3133 raw_spin_lock(&ifh->lock);
3134 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3135 event->pmu->addr_filters_sync(event);
3136 event->hw.addr_filters_gen = event->addr_filters_gen;
3137 }
3138 raw_spin_unlock(&ifh->lock);
3139}
3140EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3141
f63a8daa 3142static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 3143{
2023b359 3144 /*
cdd6c482 3145 * not supported on inherited events
2023b359 3146 */
2e939d1d 3147 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
3148 return -EINVAL;
3149
cdd6c482 3150 atomic_add(refresh, &event->event_limit);
f63a8daa 3151 _perf_event_enable(event);
2023b359
PZ
3152
3153 return 0;
79f14641 3154}
f63a8daa
PZ
3155
3156/*
3157 * See perf_event_disable()
3158 */
3159int perf_event_refresh(struct perf_event *event, int refresh)
3160{
3161 struct perf_event_context *ctx;
3162 int ret;
3163
3164 ctx = perf_event_ctx_lock(event);
3165 ret = _perf_event_refresh(event, refresh);
3166 perf_event_ctx_unlock(event, ctx);
3167
3168 return ret;
3169}
26ca5c11 3170EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 3171
32ff77e8
MC
3172static int perf_event_modify_breakpoint(struct perf_event *bp,
3173 struct perf_event_attr *attr)
3174{
3175 int err;
3176
3177 _perf_event_disable(bp);
3178
3179 err = modify_user_hw_breakpoint_check(bp, attr, true);
32ff77e8 3180
bf06278c 3181 if (!bp->attr.disabled)
32ff77e8 3182 _perf_event_enable(bp);
bf06278c
JO
3183
3184 return err;
32ff77e8
MC
3185}
3186
3c25fc97
ME
3187/*
3188 * Copy event-type-independent attributes that may be modified.
3189 */
3190static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3191 const struct perf_event_attr *from)
3192{
3193 to->sig_data = from->sig_data;
3194}
3195
32ff77e8
MC
3196static int perf_event_modify_attr(struct perf_event *event,
3197 struct perf_event_attr *attr)
3198{
47f661ec
ME
3199 int (*func)(struct perf_event *, struct perf_event_attr *);
3200 struct perf_event *child;
3201 int err;
3202
32ff77e8
MC
3203 if (event->attr.type != attr->type)
3204 return -EINVAL;
3205
3206 switch (event->attr.type) {
3207 case PERF_TYPE_BREAKPOINT:
47f661ec
ME
3208 func = perf_event_modify_breakpoint;
3209 break;
32ff77e8
MC
3210 default:
3211 /* Place holder for future additions. */
3212 return -EOPNOTSUPP;
3213 }
47f661ec
ME
3214
3215 WARN_ON_ONCE(event->ctx->parent_ctx);
3216
3217 mutex_lock(&event->child_mutex);
3c25fc97
ME
3218 /*
3219 * Event-type-independent attributes must be copied before event-type
3220 * modification, which will validate that final attributes match the
3221 * source attributes after all relevant attributes have been copied.
3222 */
3223 perf_event_modify_copy_attr(&event->attr, attr);
47f661ec
ME
3224 err = func(event, attr);
3225 if (err)
3226 goto out;
3227 list_for_each_entry(child, &event->child_list, child_list) {
3c25fc97 3228 perf_event_modify_copy_attr(&child->attr, attr);
47f661ec
ME
3229 err = func(child, attr);
3230 if (err)
3231 goto out;
3232 }
3233out:
3234 mutex_unlock(&event->child_mutex);
3235 return err;
32ff77e8
MC
3236}
3237
bd275681
PZ
3238static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3239 enum event_type_t event_type)
235c7fc7 3240{
bd275681 3241 struct perf_event_context *ctx = pmu_ctx->ctx;
6668128a 3242 struct perf_event *event, *tmp;
bd275681
PZ
3243 struct pmu *pmu = pmu_ctx->pmu;
3244
3245 if (ctx->task && !ctx->is_active) {
3246 struct perf_cpu_pmu_context *cpc;
3247
3248 cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3249 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3250 cpc->task_epc = NULL;
3251 }
3252
3253 if (!event_type)
3254 return;
3255
3256 perf_pmu_disable(pmu);
3257 if (event_type & EVENT_PINNED) {
3258 list_for_each_entry_safe(event, tmp,
3259 &pmu_ctx->pinned_active,
3260 active_list)
3261 group_sched_out(event, ctx);
3262 }
3263
3264 if (event_type & EVENT_FLEXIBLE) {
3265 list_for_each_entry_safe(event, tmp,
3266 &pmu_ctx->flexible_active,
3267 active_list)
3268 group_sched_out(event, ctx);
3269 /*
3270 * Since we cleared EVENT_FLEXIBLE, also clear
3271 * rotate_necessary, is will be reset by
3272 * ctx_flexible_sched_in() when needed.
3273 */
3274 pmu_ctx->rotate_necessary = 0;
3275 }
3276 perf_pmu_enable(pmu);
3277}
3278
3279static void
3280ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type)
3281{
3282 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3283 struct perf_event_pmu_context *pmu_ctx;
db24d33e 3284 int is_active = ctx->is_active;
f06cc667
PZ
3285 bool cgroup = event_type & EVENT_CGROUP;
3286
3287 event_type &= ~EVENT_CGROUP;
235c7fc7 3288
c994d613 3289 lockdep_assert_held(&ctx->lock);
235c7fc7 3290
39a43640
PZ
3291 if (likely(!ctx->nr_events)) {
3292 /*
3293 * See __perf_remove_from_context().
3294 */
3295 WARN_ON_ONCE(ctx->is_active);
3296 if (ctx->task)
3297 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 3298 return;
39a43640
PZ
3299 }
3300
8fdc6539
PZ
3301 /*
3302 * Always update time if it was set; not only when it changes.
3303 * Otherwise we can 'forget' to update time for any but the last
3304 * context we sched out. For example:
3305 *
3306 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3307 * ctx_sched_out(.event_type = EVENT_PINNED)
3308 *
3309 * would only update time for the pinned events.
3310 */
3cbaa590
PZ
3311 if (is_active & EVENT_TIME) {
3312 /* update (and stop) ctx time */
3313 update_context_time(ctx);
09f5e7dc
PZ
3314 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3315 /*
3316 * CPU-release for the below ->is_active store,
3317 * see __load_acquire() in perf_event_time_now()
3318 */
3319 barrier();
3320 }
3321
3322 ctx->is_active &= ~event_type;
3323 if (!(ctx->is_active & EVENT_ALL))
3324 ctx->is_active = 0;
3325
3326 if (ctx->task) {
3327 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3328 if (!ctx->is_active)
3329 cpuctx->task_ctx = NULL;
3cbaa590
PZ
3330 }
3331
8fdc6539
PZ
3332 is_active ^= ctx->is_active; /* changed bits */
3333
f06cc667
PZ
3334 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3335 if (cgroup && !pmu_ctx->nr_cgroups)
3336 continue;
bd275681 3337 __pmu_ctx_sched_out(pmu_ctx, is_active);
f06cc667 3338 }
235c7fc7
IM
3339}
3340
564c2b21 3341/*
5a3126d4
PZ
3342 * Test whether two contexts are equivalent, i.e. whether they have both been
3343 * cloned from the same version of the same context.
3344 *
3345 * Equivalence is measured using a generation number in the context that is
3346 * incremented on each modification to it; see unclone_ctx(), list_add_event()
3347 * and list_del_event().
564c2b21 3348 */
cdd6c482
IM
3349static int context_equiv(struct perf_event_context *ctx1,
3350 struct perf_event_context *ctx2)
564c2b21 3351{
211de6eb
PZ
3352 lockdep_assert_held(&ctx1->lock);
3353 lockdep_assert_held(&ctx2->lock);
3354
5a3126d4
PZ
3355 /* Pinning disables the swap optimization */
3356 if (ctx1->pin_count || ctx2->pin_count)
3357 return 0;
3358
3359 /* If ctx1 is the parent of ctx2 */
3360 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3361 return 1;
3362
3363 /* If ctx2 is the parent of ctx1 */
3364 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3365 return 1;
3366
3367 /*
3368 * If ctx1 and ctx2 have the same parent; we flatten the parent
3369 * hierarchy, see perf_event_init_context().
3370 */
3371 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3372 ctx1->parent_gen == ctx2->parent_gen)
3373 return 1;
3374
3375 /* Unmatched */
3376 return 0;
564c2b21
PM
3377}
3378
cdd6c482
IM
3379static void __perf_event_sync_stat(struct perf_event *event,
3380 struct perf_event *next_event)
bfbd3381
PZ
3381{
3382 u64 value;
3383
cdd6c482 3384 if (!event->attr.inherit_stat)
bfbd3381
PZ
3385 return;
3386
3387 /*
cdd6c482 3388 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
3389 * because we're in the middle of a context switch and have IRQs
3390 * disabled, which upsets smp_call_function_single(), however
cdd6c482 3391 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
3392 * don't need to use it.
3393 */
0d3d73aa 3394 if (event->state == PERF_EVENT_STATE_ACTIVE)
3dbebf15 3395 event->pmu->read(event);
bfbd3381 3396
0d3d73aa 3397 perf_event_update_time(event);
bfbd3381
PZ
3398
3399 /*
cdd6c482 3400 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
3401 * values when we flip the contexts.
3402 */
e7850595
PZ
3403 value = local64_read(&next_event->count);
3404 value = local64_xchg(&event->count, value);
3405 local64_set(&next_event->count, value);
bfbd3381 3406
cdd6c482
IM
3407 swap(event->total_time_enabled, next_event->total_time_enabled);
3408 swap(event->total_time_running, next_event->total_time_running);
19d2e755 3409
bfbd3381 3410 /*
19d2e755 3411 * Since we swizzled the values, update the user visible data too.
bfbd3381 3412 */
cdd6c482
IM
3413 perf_event_update_userpage(event);
3414 perf_event_update_userpage(next_event);
bfbd3381
PZ
3415}
3416
cdd6c482
IM
3417static void perf_event_sync_stat(struct perf_event_context *ctx,
3418 struct perf_event_context *next_ctx)
bfbd3381 3419{
cdd6c482 3420 struct perf_event *event, *next_event;
bfbd3381
PZ
3421
3422 if (!ctx->nr_stat)
3423 return;
3424
02ffdbc8
PZ
3425 update_context_time(ctx);
3426
cdd6c482
IM
3427 event = list_first_entry(&ctx->event_list,
3428 struct perf_event, event_entry);
bfbd3381 3429
cdd6c482
IM
3430 next_event = list_first_entry(&next_ctx->event_list,
3431 struct perf_event, event_entry);
bfbd3381 3432
cdd6c482
IM
3433 while (&event->event_entry != &ctx->event_list &&
3434 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 3435
cdd6c482 3436 __perf_event_sync_stat(event, next_event);
bfbd3381 3437
cdd6c482
IM
3438 event = list_next_entry(event, event_entry);
3439 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
3440 }
3441}
3442
bd275681
PZ
3443#define double_list_for_each_entry(pos1, pos2, head1, head2, member) \
3444 for (pos1 = list_first_entry(head1, typeof(*pos1), member), \
3445 pos2 = list_first_entry(head2, typeof(*pos2), member); \
3446 !list_entry_is_head(pos1, head1, member) && \
3447 !list_entry_is_head(pos2, head2, member); \
3448 pos1 = list_next_entry(pos1, member), \
3449 pos2 = list_next_entry(pos2, member))
3450
3451static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3452 struct perf_event_context *next_ctx)
3453{
3454 struct perf_event_pmu_context *prev_epc, *next_epc;
3455
3456 if (!prev_ctx->nr_task_data)
3457 return;
3458
3459 double_list_for_each_entry(prev_epc, next_epc,
3460 &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3461 pmu_ctx_entry) {
3462
3463 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3464 continue;
3465
3466 /*
3467 * PMU specific parts of task perf context can require
3468 * additional synchronization. As an example of such
3469 * synchronization see implementation details of Intel
3470 * LBR call stack data profiling;
3471 */
3472 if (prev_epc->pmu->swap_task_ctx)
3473 prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3474 else
3475 swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3476 }
3477}
3478
3479static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3480{
3481 struct perf_event_pmu_context *pmu_ctx;
3482 struct perf_cpu_pmu_context *cpc;
3483
3484 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3485 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3486
3487 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3488 pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3489 }
3490}
3491
3492static void
3493perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
0793a61d 3494{
bd275681 3495 struct perf_event_context *ctx = task->perf_event_ctxp;
cdd6c482 3496 struct perf_event_context *next_ctx;
5a3126d4 3497 struct perf_event_context *parent, *next_parent;
c93f7669 3498 int do_switch = 1;
0793a61d 3499
108b02cf
PZ
3500 if (likely(!ctx))
3501 return;
10989fb2 3502
c93f7669 3503 rcu_read_lock();
bd275681 3504 next_ctx = rcu_dereference(next->perf_event_ctxp);
5a3126d4
PZ
3505 if (!next_ctx)
3506 goto unlock;
3507
3508 parent = rcu_dereference(ctx->parent_ctx);
3509 next_parent = rcu_dereference(next_ctx->parent_ctx);
3510
3511 /* If neither context have a parent context; they cannot be clones. */
802c8a61 3512 if (!parent && !next_parent)
5a3126d4
PZ
3513 goto unlock;
3514
3515 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
3516 /*
3517 * Looks like the two contexts are clones, so we might be
3518 * able to optimize the context switch. We lock both
3519 * contexts and check that they are clones under the
3520 * lock (including re-checking that neither has been
3521 * uncloned in the meantime). It doesn't matter which
3522 * order we take the locks because no other cpu could
3523 * be trying to lock both of these tasks.
3524 */
e625cce1
TG
3525 raw_spin_lock(&ctx->lock);
3526 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 3527 if (context_equiv(ctx, next_ctx)) {
c2b98a86 3528
f06cc667 3529 perf_ctx_disable(ctx, false);
ca6c2132
PZ
3530
3531 /* PMIs are disabled; ctx->nr_pending is stable. */
3532 if (local_read(&ctx->nr_pending) ||
3533 local_read(&next_ctx->nr_pending)) {
3534 /*
3535 * Must not swap out ctx when there's pending
3536 * events that rely on the ctx->task relation.
3537 */
3538 raw_spin_unlock(&next_ctx->lock);
3539 rcu_read_unlock();
3540 goto inside_switch;
3541 }
3542
63b6da39
PZ
3543 WRITE_ONCE(ctx->task, next);
3544 WRITE_ONCE(next_ctx->task, task);
5a158c3c 3545
bd275681
PZ
3546 perf_ctx_sched_task_cb(ctx, false);
3547 perf_event_swap_task_ctx_data(ctx, next_ctx);
5a158c3c 3548
f06cc667 3549 perf_ctx_enable(ctx, false);
44fae179 3550
63b6da39
PZ
3551 /*
3552 * RCU_INIT_POINTER here is safe because we've not
3553 * modified the ctx and the above modification of
3554 * ctx->task and ctx->task_ctx_data are immaterial
3555 * since those values are always verified under
3556 * ctx->lock which we're now holding.
3557 */
bd275681
PZ
3558 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3559 RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
63b6da39 3560
c93f7669 3561 do_switch = 0;
bfbd3381 3562
cdd6c482 3563 perf_event_sync_stat(ctx, next_ctx);
c93f7669 3564 }
e625cce1
TG
3565 raw_spin_unlock(&next_ctx->lock);
3566 raw_spin_unlock(&ctx->lock);
564c2b21 3567 }
5a3126d4 3568unlock:
c93f7669 3569 rcu_read_unlock();
564c2b21 3570
c93f7669 3571 if (do_switch) {
facc4307 3572 raw_spin_lock(&ctx->lock);
f06cc667 3573 perf_ctx_disable(ctx, false);
44fae179 3574
ca6c2132 3575inside_switch:
bd275681
PZ
3576 perf_ctx_sched_task_cb(ctx, false);
3577 task_ctx_sched_out(ctx, EVENT_ALL);
44fae179 3578
f06cc667 3579 perf_ctx_enable(ctx, false);
facc4307 3580 raw_spin_unlock(&ctx->lock);
c93f7669 3581 }
0793a61d
TG
3582}
3583
a5398bff 3584static DEFINE_PER_CPU(struct list_head, sched_cb_list);
bd275681 3585static DEFINE_PER_CPU(int, perf_sched_cb_usages);
a5398bff 3586
ba532500
YZ
3587void perf_sched_cb_dec(struct pmu *pmu)
3588{
bd275681 3589 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
e48c1788 3590
a5398bff 3591 this_cpu_dec(perf_sched_cb_usages);
bd275681 3592 barrier();
a5398bff 3593
bd275681
PZ
3594 if (!--cpc->sched_cb_usage)
3595 list_del(&cpc->sched_cb_entry);
ba532500
YZ
3596}
3597
e48c1788 3598
ba532500
YZ
3599void perf_sched_cb_inc(struct pmu *pmu)
3600{
bd275681 3601 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
e48c1788 3602
bd275681
PZ
3603 if (!cpc->sched_cb_usage++)
3604 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
a5398bff 3605
bd275681 3606 barrier();
a5398bff 3607 this_cpu_inc(perf_sched_cb_usages);
ba532500
YZ
3608}
3609
3610/*
3611 * This function provides the context switch callback to the lower code
3612 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
3613 *
3614 * This callback is relevant even to per-cpu events; for example multi event
3615 * PEBS requires this to provide PID/TID information. This requires we flush
3616 * all queued PEBS records before we context switch to a new task.
ba532500 3617 */
bd275681 3618static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
556cccad 3619{
bd275681 3620 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
556cccad
KL
3621 struct pmu *pmu;
3622
bd275681 3623 pmu = cpc->epc.pmu;
556cccad 3624
bd275681 3625 /* software PMUs will not have sched_task */
556cccad
KL
3626 if (WARN_ON_ONCE(!pmu->sched_task))
3627 return;
3628
3629 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3630 perf_pmu_disable(pmu);
3631
bd275681 3632 pmu->sched_task(cpc->task_epc, sched_in);
556cccad
KL
3633
3634 perf_pmu_enable(pmu);
3635 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3636}
3637
a5398bff
KL
3638static void perf_pmu_sched_task(struct task_struct *prev,
3639 struct task_struct *next,
3640 bool sched_in)
3641{
bd275681
PZ
3642 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3643 struct perf_cpu_pmu_context *cpc;
a5398bff 3644
bd275681
PZ
3645 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3646 if (prev == next || cpuctx->task_ctx)
a5398bff
KL
3647 return;
3648
bd275681
PZ
3649 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3650 __perf_pmu_sched_task(cpc, sched_in);
a5398bff
KL
3651}
3652
45ac1403
AH
3653static void perf_event_switch(struct task_struct *task,
3654 struct task_struct *next_prev, bool sched_in);
3655
8dc85d54
PZ
3656/*
3657 * Called from scheduler to remove the events of the current task,
3658 * with interrupts disabled.
3659 *
3660 * We stop each event and update the event value in event->count.
3661 *
3662 * This does not protect us against NMI, but disable()
3663 * sets the disabled bit in the control field of event _before_
3664 * accessing the event control register. If a NMI hits, then it will
3665 * not restart the event.
3666 */
ab0cce56
JO
3667void __perf_event_task_sched_out(struct task_struct *task,
3668 struct task_struct *next)
8dc85d54 3669{
a5398bff
KL
3670 if (__this_cpu_read(perf_sched_cb_usages))
3671 perf_pmu_sched_task(task, next, false);
3672
45ac1403
AH
3673 if (atomic_read(&nr_switch_events))
3674 perf_event_switch(task, next, false);
3675
bd275681 3676 perf_event_context_sched_out(task, next);
e5d1367f
SE
3677
3678 /*
3679 * if cgroup events exist on this CPU, then we need
3680 * to check if we have to switch out PMU state.
3681 * cgroup event are system-wide mode only
3682 */
f841b682 3683 perf_cgroup_switch(next);
8dc85d54
PZ
3684}
3685
6eef8a71 3686static bool perf_less_group_idx(const void *l, const void *r)
0793a61d 3687{
24fb6b8e
IR
3688 const struct perf_event *le = *(const struct perf_event **)l;
3689 const struct perf_event *re = *(const struct perf_event **)r;
6eef8a71
IR
3690
3691 return le->group_index < re->group_index;
3692}
3693
3694static void swap_ptr(void *l, void *r)
3695{
3696 void **lp = l, **rp = r;
3697
3698 swap(*lp, *rp);
3699}
3700
3701static const struct min_heap_callbacks perf_min_heap = {
3702 .elem_size = sizeof(struct perf_event *),
3703 .less = perf_less_group_idx,
3704 .swp = swap_ptr,
3705};
3706
3707static void __heap_add(struct min_heap *heap, struct perf_event *event)
3708{
3709 struct perf_event **itrs = heap->data;
3710
3711 if (event) {
3712 itrs[heap->nr] = event;
3713 heap->nr++;
3714 }
3715}
3716
bd275681
PZ
3717static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3718{
3719 struct perf_cpu_pmu_context *cpc;
3720
3721 if (!pmu_ctx->ctx->task)
3722 return;
3723
3724 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3725 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3726 cpc->task_epc = pmu_ctx;
3727}
3728
3729static noinline int visit_groups_merge(struct perf_event_context *ctx,
836196be 3730 struct perf_event_groups *groups, int cpu,
bd275681 3731 struct pmu *pmu,
6eef8a71
IR
3732 int (*func)(struct perf_event *, void *),
3733 void *data)
3734{
95ed6c70
IR
3735#ifdef CONFIG_CGROUP_PERF
3736 struct cgroup_subsys_state *css = NULL;
3737#endif
bd275681 3738 struct perf_cpu_context *cpuctx = NULL;
6eef8a71
IR
3739 /* Space for per CPU and/or any CPU event iterators. */
3740 struct perf_event *itrs[2];
836196be
IR
3741 struct min_heap event_heap;
3742 struct perf_event **evt;
1cac7b1a 3743 int ret;
8e1a2031 3744
bd275681
PZ
3745 if (pmu->filter && pmu->filter(pmu, cpu))
3746 return 0;
3747
3748 if (!ctx->task) {
3749 cpuctx = this_cpu_ptr(&perf_cpu_context);
836196be
IR
3750 event_heap = (struct min_heap){
3751 .data = cpuctx->heap,
3752 .nr = 0,
3753 .size = cpuctx->heap_size,
3754 };
c2283c93
IR
3755
3756 lockdep_assert_held(&cpuctx->ctx.lock);
95ed6c70
IR
3757
3758#ifdef CONFIG_CGROUP_PERF
3759 if (cpuctx->cgrp)
3760 css = &cpuctx->cgrp->css;
3761#endif
836196be
IR
3762 } else {
3763 event_heap = (struct min_heap){
3764 .data = itrs,
3765 .nr = 0,
3766 .size = ARRAY_SIZE(itrs),
3767 };
3768 /* Events not within a CPU context may be on any CPU. */
bd275681 3769 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
836196be
IR
3770 }
3771 evt = event_heap.data;
3772
bd275681 3773 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
95ed6c70
IR
3774
3775#ifdef CONFIG_CGROUP_PERF
3776 for (; css; css = css->parent)
bd275681 3777 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
95ed6c70 3778#endif
1cac7b1a 3779
bd275681
PZ
3780 if (event_heap.nr) {
3781 __link_epc((*evt)->pmu_ctx);
3782 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3783 }
3784
6eef8a71 3785 min_heapify_all(&event_heap, &perf_min_heap);
1cac7b1a 3786
6eef8a71 3787 while (event_heap.nr) {
1cac7b1a
PZ
3788 ret = func(*evt, data);
3789 if (ret)
3790 return ret;
3791
bd275681 3792 *evt = perf_event_groups_next(*evt, pmu);
6eef8a71
IR
3793 if (*evt)
3794 min_heapify(&event_heap, 0, &perf_min_heap);
3795 else
3796 min_heap_pop(&event_heap, &perf_min_heap);
8e1a2031 3797 }
0793a61d 3798
1cac7b1a
PZ
3799 return 0;
3800}
3801
09f5e7dc
PZ
3802/*
3803 * Because the userpage is strictly per-event (there is no concept of context,
3804 * so there cannot be a context indirection), every userpage must be updated
3805 * when context time starts :-(
3806 *
3807 * IOW, we must not miss EVENT_TIME edges.
3808 */
f7925653
SL
3809static inline bool event_update_userpage(struct perf_event *event)
3810{
3811 if (likely(!atomic_read(&event->mmap_count)))
3812 return false;
3813
3814 perf_event_update_time(event);
f7925653
SL
3815 perf_event_update_userpage(event);
3816
3817 return true;
3818}
3819
3820static inline void group_update_userpage(struct perf_event *group_event)
3821{
3822 struct perf_event *event;
3823
3824 if (!event_update_userpage(group_event))
3825 return;
3826
3827 for_each_sibling_event(event, group_event)
3828 event_update_userpage(event);
3829}
3830
ab6f824c 3831static int merge_sched_in(struct perf_event *event, void *data)
1cac7b1a 3832{
2c2366c7 3833 struct perf_event_context *ctx = event->ctx;
2c2366c7 3834 int *can_add_hw = data;
ab6f824c 3835
1cac7b1a
PZ
3836 if (event->state <= PERF_EVENT_STATE_OFF)
3837 return 0;
3838
3839 if (!event_filter_match(event))
3840 return 0;
3841
bd275681
PZ
3842 if (group_can_go_on(event, *can_add_hw)) {
3843 if (!group_sched_in(event, ctx))
ab6f824c 3844 list_add_tail(&event->active_list, get_event_list(event));
6668128a 3845 }
1cac7b1a 3846
ab6f824c 3847 if (event->state == PERF_EVENT_STATE_INACTIVE) {
f7925653 3848 *can_add_hw = 0;
33238c50
PZ
3849 if (event->attr.pinned) {
3850 perf_cgroup_event_disable(event, ctx);
ab6f824c 3851 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
f7925653 3852 } else {
bd275681
PZ
3853 struct perf_cpu_pmu_context *cpc;
3854
3855 event->pmu_ctx->rotate_necessary = 1;
3856 cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3857 perf_mux_hrtimer_restart(cpc);
f7925653 3858 group_update_userpage(event);
33238c50 3859 }
3b6f9e5c 3860 }
1cac7b1a
PZ
3861
3862 return 0;
5b0311e1
FW
3863}
3864
f06cc667
PZ
3865static void pmu_groups_sched_in(struct perf_event_context *ctx,
3866 struct perf_event_groups *groups,
3867 struct pmu *pmu)
5b0311e1 3868{
2c2366c7 3869 int can_add_hw = 1;
f06cc667
PZ
3870 visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3871 merge_sched_in, &can_add_hw);
1cac7b1a 3872}
8e1a2031 3873
f06cc667
PZ
3874static void ctx_groups_sched_in(struct perf_event_context *ctx,
3875 struct perf_event_groups *groups,
3876 bool cgroup)
1cac7b1a 3877{
bd275681 3878 struct perf_event_pmu_context *pmu_ctx;
0793a61d 3879
f06cc667
PZ
3880 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3881 if (cgroup && !pmu_ctx->nr_cgroups)
3882 continue;
3883 pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu);
bd275681
PZ
3884 }
3885}
836196be 3886
f06cc667
PZ
3887static void __pmu_ctx_sched_in(struct perf_event_context *ctx,
3888 struct pmu *pmu)
bd275681 3889{
f06cc667 3890 pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu);
5b0311e1
FW
3891}
3892
3893static void
bd275681 3894ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type)
5b0311e1 3895{
bd275681 3896 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
db24d33e 3897 int is_active = ctx->is_active;
f06cc667
PZ
3898 bool cgroup = event_type & EVENT_CGROUP;
3899
3900 event_type &= ~EVENT_CGROUP;
c994d613
PZ
3901
3902 lockdep_assert_held(&ctx->lock);
e5d1367f 3903
5b0311e1 3904 if (likely(!ctx->nr_events))
facc4307 3905 return;
5b0311e1 3906
baf1b12a 3907 if (!(is_active & EVENT_TIME)) {
09f5e7dc
PZ
3908 /* start ctx time */
3909 __update_context_time(ctx, false);
a0827713 3910 perf_cgroup_set_timestamp(cpuctx);
09f5e7dc
PZ
3911 /*
3912 * CPU-release for the below ->is_active store,
3913 * see __load_acquire() in perf_event_time_now()
3914 */
3915 barrier();
3916 }
3917
3cbaa590 3918 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3919 if (ctx->task) {
3920 if (!is_active)
3921 cpuctx->task_ctx = ctx;
3922 else
3923 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3924 }
3925
3cbaa590
PZ
3926 is_active ^= ctx->is_active; /* changed bits */
3927
5b0311e1
FW
3928 /*
3929 * First go through the list and put on any pinned groups
3930 * in order to give them the best chance of going on.
3931 */
3cbaa590 3932 if (is_active & EVENT_PINNED)
f06cc667 3933 ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup);
5b0311e1
FW
3934
3935 /* Then walk through the lower prio flexible groups */
3cbaa590 3936 if (is_active & EVENT_FLEXIBLE)
f06cc667 3937 ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup);
235c7fc7
IM
3938}
3939
bd275681 3940static void perf_event_context_sched_in(struct task_struct *task)
329c0e01 3941{
bd275681
PZ
3942 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3943 struct perf_event_context *ctx;
329c0e01 3944
bd275681
PZ
3945 rcu_read_lock();
3946 ctx = rcu_dereference(task->perf_event_ctxp);
3947 if (!ctx)
3948 goto rcu_unlock;
235c7fc7 3949
bd275681
PZ
3950 if (cpuctx->task_ctx == ctx) {
3951 perf_ctx_lock(cpuctx, ctx);
f06cc667 3952 perf_ctx_disable(ctx, false);
012669c7 3953
bd275681 3954 perf_ctx_sched_task_cb(ctx, true);
012669c7 3955
f06cc667 3956 perf_ctx_enable(ctx, false);
bd275681
PZ
3957 perf_ctx_unlock(cpuctx, ctx);
3958 goto rcu_unlock;
556cccad 3959 }
329c0e01 3960
facc4307 3961 perf_ctx_lock(cpuctx, ctx);
fdccc3fb 3962 /*
3963 * We must check ctx->nr_events while holding ctx->lock, such
3964 * that we serialize against perf_install_in_context().
3965 */
3966 if (!ctx->nr_events)
3967 goto unlock;
3968
f06cc667 3969 perf_ctx_disable(ctx, false);
329c0e01
FW
3970 /*
3971 * We want to keep the following priority order:
3972 * cpu pinned (that don't need to move), task pinned,
3973 * cpu flexible, task flexible.
fe45bafb
AS
3974 *
3975 * However, if task's ctx is not carrying any pinned
3976 * events, no need to flip the cpuctx's events around.
329c0e01 3977 */
bd275681 3978 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
f06cc667 3979 perf_ctx_disable(&cpuctx->ctx, false);
bd275681
PZ
3980 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
3981 }
3982
a0827713 3983 perf_event_sched_in(cpuctx, ctx);
556cccad 3984
bd275681 3985 perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
556cccad 3986
bd275681 3987 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
f06cc667 3988 perf_ctx_enable(&cpuctx->ctx, false);
bd275681 3989
f06cc667 3990 perf_ctx_enable(ctx, false);
fdccc3fb 3991
3992unlock:
facc4307 3993 perf_ctx_unlock(cpuctx, ctx);
bd275681
PZ
3994rcu_unlock:
3995 rcu_read_unlock();
235c7fc7
IM
3996}
3997
8dc85d54
PZ
3998/*
3999 * Called from scheduler to add the events of the current task
4000 * with interrupts disabled.
4001 *
4002 * We restore the event value and then enable it.
4003 *
4004 * This does not protect us against NMI, but enable()
4005 * sets the enabled bit in the control field of event _before_
4006 * accessing the event control register. If a NMI hits, then it will
4007 * keep the event running.
4008 */
ab0cce56
JO
4009void __perf_event_task_sched_in(struct task_struct *prev,
4010 struct task_struct *task)
8dc85d54 4011{
bd275681 4012 perf_event_context_sched_in(task);
d010b332 4013
45ac1403
AH
4014 if (atomic_read(&nr_switch_events))
4015 perf_event_switch(task, prev, true);
a5398bff
KL
4016
4017 if (__this_cpu_read(perf_sched_cb_usages))
4018 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
4019}
4020
abd50713
PZ
4021static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4022{
4023 u64 frequency = event->attr.sample_freq;
4024 u64 sec = NSEC_PER_SEC;
4025 u64 divisor, dividend;
4026
4027 int count_fls, nsec_fls, frequency_fls, sec_fls;
4028
4029 count_fls = fls64(count);
4030 nsec_fls = fls64(nsec);
4031 frequency_fls = fls64(frequency);
4032 sec_fls = 30;
4033
4034 /*
4035 * We got @count in @nsec, with a target of sample_freq HZ
4036 * the target period becomes:
4037 *
4038 * @count * 10^9
4039 * period = -------------------
4040 * @nsec * sample_freq
4041 *
4042 */
4043
4044 /*
4045 * Reduce accuracy by one bit such that @a and @b converge
4046 * to a similar magnitude.
4047 */
fe4b04fa 4048#define REDUCE_FLS(a, b) \
abd50713
PZ
4049do { \
4050 if (a##_fls > b##_fls) { \
4051 a >>= 1; \
4052 a##_fls--; \
4053 } else { \
4054 b >>= 1; \
4055 b##_fls--; \
4056 } \
4057} while (0)
4058
4059 /*
4060 * Reduce accuracy until either term fits in a u64, then proceed with
4061 * the other, so that finally we can do a u64/u64 division.
4062 */
4063 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4064 REDUCE_FLS(nsec, frequency);
4065 REDUCE_FLS(sec, count);
4066 }
4067
4068 if (count_fls + sec_fls > 64) {
4069 divisor = nsec * frequency;
4070
4071 while (count_fls + sec_fls > 64) {
4072 REDUCE_FLS(count, sec);
4073 divisor >>= 1;
4074 }
4075
4076 dividend = count * sec;
4077 } else {
4078 dividend = count * sec;
4079
4080 while (nsec_fls + frequency_fls > 64) {
4081 REDUCE_FLS(nsec, frequency);
4082 dividend >>= 1;
4083 }
4084
4085 divisor = nsec * frequency;
4086 }
4087
f6ab91ad
PZ
4088 if (!divisor)
4089 return dividend;
4090
abd50713
PZ
4091 return div64_u64(dividend, divisor);
4092}
4093
e050e3f0
SE
4094static DEFINE_PER_CPU(int, perf_throttled_count);
4095static DEFINE_PER_CPU(u64, perf_throttled_seq);
4096
f39d47ff 4097static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 4098{
cdd6c482 4099 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 4100 s64 period, sample_period;
bd2b5b12
PZ
4101 s64 delta;
4102
abd50713 4103 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
4104
4105 delta = (s64)(period - hwc->sample_period);
4106 delta = (delta + 7) / 8; /* low pass filter */
4107
4108 sample_period = hwc->sample_period + delta;
4109
4110 if (!sample_period)
4111 sample_period = 1;
4112
bd2b5b12 4113 hwc->sample_period = sample_period;
abd50713 4114
e7850595 4115 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
4116 if (disable)
4117 event->pmu->stop(event, PERF_EF_UPDATE);
4118
e7850595 4119 local64_set(&hwc->period_left, 0);
f39d47ff
SE
4120
4121 if (disable)
4122 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 4123 }
bd2b5b12
PZ
4124}
4125
e050e3f0
SE
4126/*
4127 * combine freq adjustment with unthrottling to avoid two passes over the
4128 * events. At the same time, make sure, having freq events does not change
4129 * the rate of unthrottling as that would introduce bias.
4130 */
bd275681
PZ
4131static void
4132perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
60db5e09 4133{
cdd6c482
IM
4134 struct perf_event *event;
4135 struct hw_perf_event *hwc;
e050e3f0 4136 u64 now, period = TICK_NSEC;
abd50713 4137 s64 delta;
60db5e09 4138
e050e3f0
SE
4139 /*
4140 * only need to iterate over all events iff:
4141 * - context have events in frequency mode (needs freq adjust)
4142 * - there are events to unthrottle on this cpu
4143 */
bd275681 4144 if (!(ctx->nr_freq || unthrottle))
0f5a2601
PZ
4145 return;
4146
e050e3f0
SE
4147 raw_spin_lock(&ctx->lock);
4148
03541f8b 4149 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 4150 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
4151 continue;
4152
bd275681 4153 // XXX use visit thingy to avoid the -1,cpu match
5632ab12 4154 if (!event_filter_match(event))
5d27c23d
PZ
4155 continue;
4156
44377277
AS
4157 perf_pmu_disable(event->pmu);
4158
cdd6c482 4159 hwc = &event->hw;
6a24ed6c 4160
ae23bff1 4161 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 4162 hwc->interrupts = 0;
cdd6c482 4163 perf_log_throttle(event, 1);
a4eaf7f1 4164 event->pmu->start(event, 0);
a78ac325
PZ
4165 }
4166
cdd6c482 4167 if (!event->attr.freq || !event->attr.sample_freq)
44377277 4168 goto next;
60db5e09 4169
e050e3f0
SE
4170 /*
4171 * stop the event and update event->count
4172 */
4173 event->pmu->stop(event, PERF_EF_UPDATE);
4174
e7850595 4175 now = local64_read(&event->count);
abd50713
PZ
4176 delta = now - hwc->freq_count_stamp;
4177 hwc->freq_count_stamp = now;
60db5e09 4178
e050e3f0
SE
4179 /*
4180 * restart the event
4181 * reload only if value has changed
f39d47ff
SE
4182 * we have stopped the event so tell that
4183 * to perf_adjust_period() to avoid stopping it
4184 * twice.
e050e3f0 4185 */
abd50713 4186 if (delta > 0)
f39d47ff 4187 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
4188
4189 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
4190 next:
4191 perf_pmu_enable(event->pmu);
60db5e09 4192 }
e050e3f0
SE
4193
4194 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
4195}
4196
235c7fc7 4197/*
8703a7cf 4198 * Move @event to the tail of the @ctx's elegible events.
235c7fc7 4199 */
8703a7cf 4200static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
0793a61d 4201{
dddd3379
TG
4202 /*
4203 * Rotate the first entry last of non-pinned groups. Rotation might be
4204 * disabled by the inheritance code.
4205 */
8703a7cf
PZ
4206 if (ctx->rotate_disable)
4207 return;
8e1a2031 4208
8703a7cf
PZ
4209 perf_event_groups_delete(&ctx->flexible_groups, event);
4210 perf_event_groups_insert(&ctx->flexible_groups, event);
235c7fc7
IM
4211}
4212
7fa343b7 4213/* pick an event from the flexible_groups to rotate */
8d5bce0c 4214static inline struct perf_event *
bd275681 4215ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
235c7fc7 4216{
7fa343b7 4217 struct perf_event *event;
bd275681
PZ
4218 struct rb_node *node;
4219 struct rb_root *tree;
4220 struct __group_key key = {
4221 .pmu = pmu_ctx->pmu,
4222 };
7fa343b7
SL
4223
4224 /* pick the first active flexible event */
bd275681 4225 event = list_first_entry_or_null(&pmu_ctx->flexible_active,
7fa343b7 4226 struct perf_event, active_list);
bd275681
PZ
4227 if (event)
4228 goto out;
7fa343b7
SL
4229
4230 /* if no active flexible event, pick the first event */
bd275681 4231 tree = &pmu_ctx->ctx->flexible_groups.tree;
7fa343b7 4232
bd275681
PZ
4233 if (!pmu_ctx->ctx->task) {
4234 key.cpu = smp_processor_id();
4235
4236 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4237 if (node)
4238 event = __node_2_pe(node);
4239 goto out;
7fa343b7
SL
4240 }
4241
bd275681
PZ
4242 key.cpu = -1;
4243 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4244 if (node) {
4245 event = __node_2_pe(node);
4246 goto out;
4247 }
4248
4249 key.cpu = smp_processor_id();
4250 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4251 if (node)
4252 event = __node_2_pe(node);
4253
4254out:
90c91dfb
PZ
4255 /*
4256 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4257 * finds there are unschedulable events, it will set it again.
4258 */
bd275681 4259 pmu_ctx->rotate_necessary = 0;
90c91dfb 4260
7fa343b7 4261 return event;
8d5bce0c
PZ
4262}
4263
bd275681 4264static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
8d5bce0c 4265{
bd275681
PZ
4266 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4267 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
8d5bce0c 4268 struct perf_event *cpu_event = NULL, *task_event = NULL;
fd7d5517 4269 int cpu_rotate, task_rotate;
bd275681 4270 struct pmu *pmu;
8d5bce0c
PZ
4271
4272 /*
4273 * Since we run this from IRQ context, nobody can install new
4274 * events, thus the event count values are stable.
4275 */
7fc23a53 4276
bd275681
PZ
4277 cpu_epc = &cpc->epc;
4278 pmu = cpu_epc->pmu;
4279 task_epc = cpc->task_epc;
4280
4281 cpu_rotate = cpu_epc->rotate_necessary;
bd275681 4282 task_rotate = task_epc ? task_epc->rotate_necessary : 0;
9717e6cd 4283
8d5bce0c
PZ
4284 if (!(cpu_rotate || task_rotate))
4285 return false;
0f5a2601 4286
facc4307 4287 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
bd275681 4288 perf_pmu_disable(pmu);
60db5e09 4289
8d5bce0c 4290 if (task_rotate)
bd275681 4291 task_event = ctx_event_to_rotate(task_epc);
8d5bce0c 4292 if (cpu_rotate)
bd275681 4293 cpu_event = ctx_event_to_rotate(cpu_epc);
8703a7cf 4294
8d5bce0c
PZ
4295 /*
4296 * As per the order given at ctx_resched() first 'pop' task flexible
4297 * and then, if needed CPU flexible.
4298 */
bd275681
PZ
4299 if (task_event || (task_epc && cpu_event)) {
4300 update_context_time(task_epc->ctx);
4301 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4302 }
0793a61d 4303
bd275681
PZ
4304 if (cpu_event) {
4305 update_context_time(&cpuctx->ctx);
4306 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
8d5bce0c 4307 rotate_ctx(&cpuctx->ctx, cpu_event);
bd275681
PZ
4308 __pmu_ctx_sched_in(&cpuctx->ctx, pmu);
4309 }
235c7fc7 4310
bd275681
PZ
4311 if (task_event)
4312 rotate_ctx(task_epc->ctx, task_event);
235c7fc7 4313
bd275681
PZ
4314 if (task_event || (task_epc && cpu_event))
4315 __pmu_ctx_sched_in(task_epc->ctx, pmu);
235c7fc7 4316
bd275681 4317 perf_pmu_enable(pmu);
0f5a2601 4318 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
9e630205 4319
8d5bce0c 4320 return true;
e9d2b064
PZ
4321}
4322
4323void perf_event_task_tick(void)
4324{
bd275681
PZ
4325 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4326 struct perf_event_context *ctx;
e050e3f0 4327 int throttled;
b5ab4cd5 4328
16444645 4329 lockdep_assert_irqs_disabled();
e9d2b064 4330
e050e3f0
SE
4331 __this_cpu_inc(perf_throttled_seq);
4332 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 4333 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 4334
bd275681
PZ
4335 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4336
4337 rcu_read_lock();
4338 ctx = rcu_dereference(current->perf_event_ctxp);
4339 if (ctx)
4340 perf_adjust_freq_unthr_context(ctx, !!throttled);
4341 rcu_read_unlock();
0793a61d
TG
4342}
4343
889ff015
FW
4344static int event_enable_on_exec(struct perf_event *event,
4345 struct perf_event_context *ctx)
4346{
4347 if (!event->attr.enable_on_exec)
4348 return 0;
4349
4350 event->attr.enable_on_exec = 0;
4351 if (event->state >= PERF_EVENT_STATE_INACTIVE)
4352 return 0;
4353
0d3d73aa 4354 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
889ff015
FW
4355
4356 return 1;
4357}
4358
57e7986e 4359/*
cdd6c482 4360 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
4361 * This expects task == current.
4362 */
bd275681 4363static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 4364{
bd275681 4365 struct perf_event_context *clone_ctx = NULL;
487f05e1 4366 enum event_type_t event_type = 0;
3e349507 4367 struct perf_cpu_context *cpuctx;
cdd6c482 4368 struct perf_event *event;
57e7986e
PM
4369 unsigned long flags;
4370 int enabled = 0;
4371
4372 local_irq_save(flags);
bd275681
PZ
4373 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4374 goto out;
4375
4376 if (!ctx->nr_events)
57e7986e
PM
4377 goto out;
4378
bd275681 4379 cpuctx = this_cpu_ptr(&perf_cpu_context);
3e349507 4380 perf_ctx_lock(cpuctx, ctx);
bd275681
PZ
4381 ctx_sched_out(ctx, EVENT_TIME);
4382
487f05e1 4383 list_for_each_entry(event, &ctx->event_list, event_entry) {
3e349507 4384 enabled |= event_enable_on_exec(event, ctx);
487f05e1
AS
4385 event_type |= get_event_type(event);
4386 }
57e7986e
PM
4387
4388 /*
3e349507 4389 * Unclone and reschedule this context if we enabled any event.
57e7986e 4390 */
3e349507 4391 if (enabled) {
211de6eb 4392 clone_ctx = unclone_ctx(ctx);
487f05e1 4393 ctx_resched(cpuctx, ctx, event_type);
7bbba0eb 4394 } else {
bd275681 4395 ctx_sched_in(ctx, EVENT_TIME);
3e349507
PZ
4396 }
4397 perf_ctx_unlock(cpuctx, ctx);
57e7986e 4398
9ed6060d 4399out:
57e7986e 4400 local_irq_restore(flags);
211de6eb
PZ
4401
4402 if (clone_ctx)
4403 put_ctx(clone_ctx);
57e7986e
PM
4404}
4405
2e498d0a
ME
4406static void perf_remove_from_owner(struct perf_event *event);
4407static void perf_event_exit_event(struct perf_event *event,
4408 struct perf_event_context *ctx);
4409
4410/*
4411 * Removes all events from the current task that have been marked
4412 * remove-on-exec, and feeds their values back to parent events.
4413 */
bd275681 4414static void perf_event_remove_on_exec(struct perf_event_context *ctx)
2e498d0a 4415{
bd275681 4416 struct perf_event_context *clone_ctx = NULL;
2e498d0a 4417 struct perf_event *event, *next;
2e498d0a
ME
4418 unsigned long flags;
4419 bool modified = false;
4420
2e498d0a
ME
4421 mutex_lock(&ctx->mutex);
4422
4423 if (WARN_ON_ONCE(ctx->task != current))
4424 goto unlock;
4425
4426 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4427 if (!event->attr.remove_on_exec)
4428 continue;
4429
4430 if (!is_kernel_event(event))
4431 perf_remove_from_owner(event);
4432
4433 modified = true;
4434
4435 perf_event_exit_event(event, ctx);
4436 }
4437
4438 raw_spin_lock_irqsave(&ctx->lock, flags);
4439 if (modified)
4440 clone_ctx = unclone_ctx(ctx);
2e498d0a
ME
4441 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4442
4443unlock:
4444 mutex_unlock(&ctx->mutex);
4445
2e498d0a
ME
4446 if (clone_ctx)
4447 put_ctx(clone_ctx);
4448}
4449
0492d4c5
PZ
4450struct perf_read_data {
4451 struct perf_event *event;
4452 bool group;
7d88962e 4453 int ret;
0492d4c5
PZ
4454};
4455
451d24d1 4456static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
d6a2f903 4457{
d6a2f903
DCC
4458 u16 local_pkg, event_pkg;
4459
1765bb61
TK
4460 if ((unsigned)event_cpu >= nr_cpu_ids)
4461 return event_cpu;
4462
d6a2f903 4463 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
451d24d1
PZ
4464 int local_cpu = smp_processor_id();
4465
4466 event_pkg = topology_physical_package_id(event_cpu);
4467 local_pkg = topology_physical_package_id(local_cpu);
d6a2f903
DCC
4468
4469 if (event_pkg == local_pkg)
4470 return local_cpu;
4471 }
4472
4473 return event_cpu;
4474}
4475
0793a61d 4476/*
cdd6c482 4477 * Cross CPU call to read the hardware event
0793a61d 4478 */
cdd6c482 4479static void __perf_event_read(void *info)
0793a61d 4480{
0492d4c5
PZ
4481 struct perf_read_data *data = info;
4482 struct perf_event *sub, *event = data->event;
cdd6c482 4483 struct perf_event_context *ctx = event->ctx;
bd275681 4484 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4a00c16e 4485 struct pmu *pmu = event->pmu;
621a01ea 4486
e1ac3614
PM
4487 /*
4488 * If this is a task context, we need to check whether it is
4489 * the current task context of this cpu. If not it has been
4490 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
4491 * event->count would have been updated to a recent sample
4492 * when the event was scheduled out.
e1ac3614
PM
4493 */
4494 if (ctx->task && cpuctx->task_ctx != ctx)
4495 return;
4496
e625cce1 4497 raw_spin_lock(&ctx->lock);
0c1cbc18 4498 if (ctx->is_active & EVENT_TIME) {
542e72fc 4499 update_context_time(ctx);
e5d1367f
SE
4500 update_cgrp_time_from_event(event);
4501 }
0492d4c5 4502
0d3d73aa
PZ
4503 perf_event_update_time(event);
4504 if (data->group)
4505 perf_event_update_sibling_time(event);
0c1cbc18 4506
4a00c16e
SB
4507 if (event->state != PERF_EVENT_STATE_ACTIVE)
4508 goto unlock;
0492d4c5 4509
4a00c16e
SB
4510 if (!data->group) {
4511 pmu->read(event);
4512 data->ret = 0;
0492d4c5 4513 goto unlock;
4a00c16e
SB
4514 }
4515
4516 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4517
4518 pmu->read(event);
0492d4c5 4519
edb39592 4520 for_each_sibling_event(sub, event) {
4a00c16e
SB
4521 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4522 /*
4523 * Use sibling's PMU rather than @event's since
4524 * sibling could be on different (eg: software) PMU.
4525 */
0492d4c5 4526 sub->pmu->read(sub);
4a00c16e 4527 }
0492d4c5 4528 }
4a00c16e
SB
4529
4530 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
4531
4532unlock:
e625cce1 4533 raw_spin_unlock(&ctx->lock);
0793a61d
TG
4534}
4535
b5e58793
PZ
4536static inline u64 perf_event_count(struct perf_event *event)
4537{
c39a0e2c 4538 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
4539}
4540
09f5e7dc
PZ
4541static void calc_timer_values(struct perf_event *event,
4542 u64 *now,
4543 u64 *enabled,
4544 u64 *running)
4545{
4546 u64 ctx_time;
4547
4548 *now = perf_clock();
4549 ctx_time = perf_event_time_now(event, *now);
4550 __perf_update_times(event, ctx_time, enabled, running);
4551}
4552
ffe8690c
KX
4553/*
4554 * NMI-safe method to read a local event, that is an event that
4555 * is:
4556 * - either for the current task, or for this CPU
4557 * - does not have inherit set, for inherited task events
4558 * will not be local and we cannot read them atomically
4559 * - must not have a pmu::count method
4560 */
7d9285e8
YS
4561int perf_event_read_local(struct perf_event *event, u64 *value,
4562 u64 *enabled, u64 *running)
ffe8690c
KX
4563{
4564 unsigned long flags;
1765bb61
TK
4565 int event_oncpu;
4566 int event_cpu;
f91840a3 4567 int ret = 0;
ffe8690c
KX
4568
4569 /*
4570 * Disabling interrupts avoids all counter scheduling (context
4571 * switches, timer based rotation and IPIs).
4572 */
4573 local_irq_save(flags);
4574
ffe8690c
KX
4575 /*
4576 * It must not be an event with inherit set, we cannot read
4577 * all child counters from atomic context.
4578 */
f91840a3
AS
4579 if (event->attr.inherit) {
4580 ret = -EOPNOTSUPP;
4581 goto out;
4582 }
ffe8690c 4583
f91840a3
AS
4584 /* If this is a per-task event, it must be for current */
4585 if ((event->attach_state & PERF_ATTACH_TASK) &&
4586 event->hw.target != current) {
4587 ret = -EINVAL;
4588 goto out;
4589 }
4590
1765bb61
TK
4591 /*
4592 * Get the event CPU numbers, and adjust them to local if the event is
4593 * a per-package event that can be read locally
4594 */
4595 event_oncpu = __perf_event_read_cpu(event, event->oncpu);
4596 event_cpu = __perf_event_read_cpu(event, event->cpu);
4597
f91840a3
AS
4598 /* If this is a per-CPU event, it must be for this CPU */
4599 if (!(event->attach_state & PERF_ATTACH_TASK) &&
1765bb61 4600 event_cpu != smp_processor_id()) {
f91840a3
AS
4601 ret = -EINVAL;
4602 goto out;
4603 }
ffe8690c 4604
befb1b3c 4605 /* If this is a pinned event it must be running on this CPU */
1765bb61 4606 if (event->attr.pinned && event_oncpu != smp_processor_id()) {
befb1b3c
RC
4607 ret = -EBUSY;
4608 goto out;
4609 }
4610
ffe8690c
KX
4611 /*
4612 * If the event is currently on this CPU, its either a per-task event,
4613 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4614 * oncpu == -1).
4615 */
1765bb61 4616 if (event_oncpu == smp_processor_id())
ffe8690c
KX
4617 event->pmu->read(event);
4618
f91840a3 4619 *value = local64_read(&event->count);
0d3d73aa 4620 if (enabled || running) {
99643bab 4621 u64 __enabled, __running, __now;
0d3d73aa 4622
09f5e7dc 4623 calc_timer_values(event, &__now, &__enabled, &__running);
0d3d73aa
PZ
4624 if (enabled)
4625 *enabled = __enabled;
4626 if (running)
4627 *running = __running;
4628 }
f91840a3 4629out:
ffe8690c
KX
4630 local_irq_restore(flags);
4631
f91840a3 4632 return ret;
ffe8690c
KX
4633}
4634
7d88962e 4635static int perf_event_read(struct perf_event *event, bool group)
0793a61d 4636{
0c1cbc18 4637 enum perf_event_state state = READ_ONCE(event->state);
451d24d1 4638 int event_cpu, ret = 0;
7d88962e 4639
0793a61d 4640 /*
cdd6c482
IM
4641 * If event is enabled and currently active on a CPU, update the
4642 * value in the event structure:
0793a61d 4643 */
0c1cbc18
PZ
4644again:
4645 if (state == PERF_EVENT_STATE_ACTIVE) {
4646 struct perf_read_data data;
4647
4648 /*
4649 * Orders the ->state and ->oncpu loads such that if we see
4650 * ACTIVE we must also see the right ->oncpu.
4651 *
4652 * Matches the smp_wmb() from event_sched_in().
4653 */
4654 smp_rmb();
d6a2f903 4655
451d24d1
PZ
4656 event_cpu = READ_ONCE(event->oncpu);
4657 if ((unsigned)event_cpu >= nr_cpu_ids)
4658 return 0;
4659
0c1cbc18
PZ
4660 data = (struct perf_read_data){
4661 .event = event,
4662 .group = group,
4663 .ret = 0,
4664 };
4665
451d24d1
PZ
4666 preempt_disable();
4667 event_cpu = __perf_event_read_cpu(event, event_cpu);
d6a2f903 4668
58763148
PZ
4669 /*
4670 * Purposely ignore the smp_call_function_single() return
4671 * value.
4672 *
451d24d1 4673 * If event_cpu isn't a valid CPU it means the event got
58763148
PZ
4674 * scheduled out and that will have updated the event count.
4675 *
4676 * Therefore, either way, we'll have an up-to-date event count
4677 * after this.
4678 */
451d24d1
PZ
4679 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4680 preempt_enable();
58763148 4681 ret = data.ret;
0c1cbc18
PZ
4682
4683 } else if (state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
4684 struct perf_event_context *ctx = event->ctx;
4685 unsigned long flags;
4686
e625cce1 4687 raw_spin_lock_irqsave(&ctx->lock, flags);
0c1cbc18
PZ
4688 state = event->state;
4689 if (state != PERF_EVENT_STATE_INACTIVE) {
4690 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4691 goto again;
4692 }
4693
c530ccd9 4694 /*
0c1cbc18
PZ
4695 * May read while context is not active (e.g., thread is
4696 * blocked), in that case we cannot update context time
c530ccd9 4697 */
0c1cbc18 4698 if (ctx->is_active & EVENT_TIME) {
c530ccd9 4699 update_context_time(ctx);
e5d1367f
SE
4700 update_cgrp_time_from_event(event);
4701 }
0c1cbc18 4702
0d3d73aa 4703 perf_event_update_time(event);
0492d4c5 4704 if (group)
0d3d73aa 4705 perf_event_update_sibling_time(event);
e625cce1 4706 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 4707 }
7d88962e
SB
4708
4709 return ret;
0793a61d
TG
4710}
4711
a63eaf34 4712/*
cdd6c482 4713 * Initialize the perf_event context in a task_struct:
a63eaf34 4714 */
eb184479 4715static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 4716{
e625cce1 4717 raw_spin_lock_init(&ctx->lock);
a63eaf34 4718 mutex_init(&ctx->mutex);
bd275681 4719 INIT_LIST_HEAD(&ctx->pmu_ctx_list);
8e1a2031
AB
4720 perf_event_groups_init(&ctx->pinned_groups);
4721 perf_event_groups_init(&ctx->flexible_groups);
a63eaf34 4722 INIT_LIST_HEAD(&ctx->event_list);
8c94abbb 4723 refcount_set(&ctx->refcount, 1);
eb184479
PZ
4724}
4725
bd275681
PZ
4726static void
4727__perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4728{
4729 epc->pmu = pmu;
4730 INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4731 INIT_LIST_HEAD(&epc->pinned_active);
4732 INIT_LIST_HEAD(&epc->flexible_active);
4733 atomic_set(&epc->refcount, 1);
4734}
4735
eb184479 4736static struct perf_event_context *
bd275681 4737alloc_perf_context(struct task_struct *task)
eb184479
PZ
4738{
4739 struct perf_event_context *ctx;
4740
4741 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4742 if (!ctx)
4743 return NULL;
4744
4745 __perf_event_init_context(ctx);
7b3c92b8
MWO
4746 if (task)
4747 ctx->task = get_task_struct(task);
eb184479
PZ
4748
4749 return ctx;
a63eaf34
PM
4750}
4751
2ebd4ffb
MH
4752static struct task_struct *
4753find_lively_task_by_vpid(pid_t vpid)
4754{
4755 struct task_struct *task;
0793a61d
TG
4756
4757 rcu_read_lock();
2ebd4ffb 4758 if (!vpid)
0793a61d
TG
4759 task = current;
4760 else
2ebd4ffb 4761 task = find_task_by_vpid(vpid);
0793a61d
TG
4762 if (task)
4763 get_task_struct(task);
4764 rcu_read_unlock();
4765
4766 if (!task)
4767 return ERR_PTR(-ESRCH);
4768
2ebd4ffb 4769 return task;
2ebd4ffb
MH
4770}
4771
fe4b04fa
PZ
4772/*
4773 * Returns a matching context with refcount and pincount.
4774 */
108b02cf 4775static struct perf_event_context *
bd275681 4776find_get_context(struct task_struct *task, struct perf_event *event)
0793a61d 4777{
211de6eb 4778 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 4779 struct perf_cpu_context *cpuctx;
25346b93 4780 unsigned long flags;
bd275681 4781 int err;
0793a61d 4782
22a4ec72 4783 if (!task) {
cdd6c482 4784 /* Must be root to operate on a CPU event: */
da97e184
JFG
4785 err = perf_allow_cpu(&event->attr);
4786 if (err)
4787 return ERR_PTR(err);
0793a61d 4788
bd275681 4789 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
0793a61d 4790 ctx = &cpuctx->ctx;
c93f7669 4791 get_ctx(ctx);
6c605f83 4792 raw_spin_lock_irqsave(&ctx->lock, flags);
fe4b04fa 4793 ++ctx->pin_count;
6c605f83 4794 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 4795
0793a61d
TG
4796 return ctx;
4797 }
4798
8dc85d54 4799 err = -EINVAL;
9ed6060d 4800retry:
bd275681 4801 ctx = perf_lock_task_context(task, &flags);
c93f7669 4802 if (ctx) {
211de6eb 4803 clone_ctx = unclone_ctx(ctx);
fe4b04fa 4804 ++ctx->pin_count;
4af57ef2 4805
e625cce1 4806 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
4807
4808 if (clone_ctx)
4809 put_ctx(clone_ctx);
9137fb28 4810 } else {
bd275681 4811 ctx = alloc_perf_context(task);
c93f7669
PM
4812 err = -ENOMEM;
4813 if (!ctx)
4814 goto errout;
eb184479 4815
dbe08d82
ON
4816 err = 0;
4817 mutex_lock(&task->perf_event_mutex);
4818 /*
4819 * If it has already passed perf_event_exit_task().
4820 * we must see PF_EXITING, it takes this mutex too.
4821 */
4822 if (task->flags & PF_EXITING)
4823 err = -ESRCH;
bd275681 4824 else if (task->perf_event_ctxp)
dbe08d82 4825 err = -EAGAIN;
fe4b04fa 4826 else {
9137fb28 4827 get_ctx(ctx);
fe4b04fa 4828 ++ctx->pin_count;
bd275681 4829 rcu_assign_pointer(task->perf_event_ctxp, ctx);
fe4b04fa 4830 }
dbe08d82
ON
4831 mutex_unlock(&task->perf_event_mutex);
4832
4833 if (unlikely(err)) {
9137fb28 4834 put_ctx(ctx);
dbe08d82
ON
4835
4836 if (err == -EAGAIN)
4837 goto retry;
4838 goto errout;
a63eaf34
PM
4839 }
4840 }
4841
0793a61d 4842 return ctx;
c93f7669 4843
9ed6060d 4844errout:
c93f7669 4845 return ERR_PTR(err);
0793a61d
TG
4846}
4847
bd275681
PZ
4848static struct perf_event_pmu_context *
4849find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4850 struct perf_event *event)
4851{
4852 struct perf_event_pmu_context *new = NULL, *epc;
4853 void *task_ctx_data = NULL;
4854
4855 if (!ctx->task) {
889c58b3
PZ
4856 /*
4857 * perf_pmu_migrate_context() / __perf_pmu_install_event()
4858 * relies on the fact that find_get_pmu_context() cannot fail
4859 * for CPU contexts.
4860 */
bd275681
PZ
4861 struct perf_cpu_pmu_context *cpc;
4862
4863 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4864 epc = &cpc->epc;
4f64a6c9 4865 raw_spin_lock_irq(&ctx->lock);
bd275681
PZ
4866 if (!epc->ctx) {
4867 atomic_set(&epc->refcount, 1);
4868 epc->embedded = 1;
bd275681
PZ
4869 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4870 epc->ctx = ctx;
bd275681
PZ
4871 } else {
4872 WARN_ON_ONCE(epc->ctx != ctx);
4873 atomic_inc(&epc->refcount);
4874 }
4f64a6c9 4875 raw_spin_unlock_irq(&ctx->lock);
bd275681
PZ
4876 return epc;
4877 }
4878
4879 new = kzalloc(sizeof(*epc), GFP_KERNEL);
4880 if (!new)
4881 return ERR_PTR(-ENOMEM);
4882
4883 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4884 task_ctx_data = alloc_task_ctx_data(pmu);
4885 if (!task_ctx_data) {
4886 kfree(new);
4887 return ERR_PTR(-ENOMEM);
4888 }
4889 }
4890
4891 __perf_init_event_pmu_context(new, pmu);
4892
4893 /*
4894 * XXX
4895 *
4896 * lockdep_assert_held(&ctx->mutex);
4897 *
4898 * can't because perf_event_init_task() doesn't actually hold the
4899 * child_ctx->mutex.
4900 */
4901
4902 raw_spin_lock_irq(&ctx->lock);
4903 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4904 if (epc->pmu == pmu) {
4905 WARN_ON_ONCE(epc->ctx != ctx);
4906 atomic_inc(&epc->refcount);
4907 goto found_epc;
4908 }
4909 }
4910
4911 epc = new;
4912 new = NULL;
4913
4914 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4915 epc->ctx = ctx;
4916
4917found_epc:
4918 if (task_ctx_data && !epc->task_ctx_data) {
4919 epc->task_ctx_data = task_ctx_data;
4920 task_ctx_data = NULL;
4921 ctx->nr_task_data++;
4922 }
4923 raw_spin_unlock_irq(&ctx->lock);
4924
4925 free_task_ctx_data(pmu, task_ctx_data);
4926 kfree(new);
4927
4928 return epc;
4929}
4930
4931static void get_pmu_ctx(struct perf_event_pmu_context *epc)
4932{
4933 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
4934}
4935
4936static void free_epc_rcu(struct rcu_head *head)
4937{
4938 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
4939
4940 kfree(epc->task_ctx_data);
4941 kfree(epc);
4942}
4943
4944static void put_pmu_ctx(struct perf_event_pmu_context *epc)
4945{
4f64a6c9 4946 struct perf_event_context *ctx = epc->ctx;
bd275681
PZ
4947 unsigned long flags;
4948
4f64a6c9
JC
4949 /*
4950 * XXX
4951 *
4952 * lockdep_assert_held(&ctx->mutex);
4953 *
4954 * can't because of the call-site in _free_event()/put_event()
4955 * which isn't always called under ctx->mutex.
4956 */
4957 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
bd275681
PZ
4958 return;
4959
4f64a6c9 4960 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
bd275681 4961
4f64a6c9
JC
4962 list_del_init(&epc->pmu_ctx_entry);
4963 epc->ctx = NULL;
bd275681
PZ
4964
4965 WARN_ON_ONCE(!list_empty(&epc->pinned_active));
4966 WARN_ON_ONCE(!list_empty(&epc->flexible_active));
4967
4f64a6c9
JC
4968 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4969
bd275681
PZ
4970 if (epc->embedded)
4971 return;
4972
4973 call_rcu(&epc->rcu_head, free_epc_rcu);
4974}
4975
6fb2915d
LZ
4976static void perf_event_free_filter(struct perf_event *event);
4977
cdd6c482 4978static void free_event_rcu(struct rcu_head *head)
592903cd 4979{
bd275681 4980 struct perf_event *event = container_of(head, typeof(*event), rcu_head);
592903cd 4981
cdd6c482
IM
4982 if (event->ns)
4983 put_pid_ns(event->ns);
6fb2915d 4984 perf_event_free_filter(event);
bdacfaf2 4985 kmem_cache_free(perf_event_cache, event);
592903cd
PZ
4986}
4987
b69cf536 4988static void ring_buffer_attach(struct perf_event *event,
56de4e8f 4989 struct perf_buffer *rb);
925d519a 4990
f2fb6bef
KL
4991static void detach_sb_event(struct perf_event *event)
4992{
4993 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4994
4995 raw_spin_lock(&pel->lock);
4996 list_del_rcu(&event->sb_list);
4997 raw_spin_unlock(&pel->lock);
4998}
4999
a4f144eb 5000static bool is_sb_event(struct perf_event *event)
f2fb6bef 5001{
a4f144eb
DCC
5002 struct perf_event_attr *attr = &event->attr;
5003
f2fb6bef 5004 if (event->parent)
a4f144eb 5005 return false;
f2fb6bef
KL
5006
5007 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 5008 return false;
f2fb6bef 5009
a4f144eb
DCC
5010 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
5011 attr->comm || attr->comm_exec ||
76193a94 5012 attr->task || attr->ksymbol ||
e17d43b9 5013 attr->context_switch || attr->text_poke ||
21038f2b 5014 attr->bpf_event)
a4f144eb
DCC
5015 return true;
5016 return false;
5017}
5018
5019static void unaccount_pmu_sb_event(struct perf_event *event)
5020{
5021 if (is_sb_event(event))
5022 detach_sb_event(event);
f2fb6bef
KL
5023}
5024
555e0c1e
FW
5025#ifdef CONFIG_NO_HZ_FULL
5026static DEFINE_SPINLOCK(nr_freq_lock);
5027#endif
5028
5029static void unaccount_freq_event_nohz(void)
5030{
5031#ifdef CONFIG_NO_HZ_FULL
5032 spin_lock(&nr_freq_lock);
5033 if (atomic_dec_and_test(&nr_freq_events))
5034 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5035 spin_unlock(&nr_freq_lock);
5036#endif
5037}
5038
5039static void unaccount_freq_event(void)
5040{
5041 if (tick_nohz_full_enabled())
5042 unaccount_freq_event_nohz();
5043 else
5044 atomic_dec(&nr_freq_events);
5045}
5046
4beb31f3
FW
5047static void unaccount_event(struct perf_event *event)
5048{
25432ae9
PZ
5049 bool dec = false;
5050
4beb31f3
FW
5051 if (event->parent)
5052 return;
5053
a5398bff 5054 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
25432ae9 5055 dec = true;
4beb31f3
FW
5056 if (event->attr.mmap || event->attr.mmap_data)
5057 atomic_dec(&nr_mmap_events);
88a16a13
JO
5058 if (event->attr.build_id)
5059 atomic_dec(&nr_build_id_events);
4beb31f3
FW
5060 if (event->attr.comm)
5061 atomic_dec(&nr_comm_events);
e4222673
HB
5062 if (event->attr.namespaces)
5063 atomic_dec(&nr_namespaces_events);
96aaab68
NK
5064 if (event->attr.cgroup)
5065 atomic_dec(&nr_cgroup_events);
4beb31f3
FW
5066 if (event->attr.task)
5067 atomic_dec(&nr_task_events);
948b26b6 5068 if (event->attr.freq)
555e0c1e 5069 unaccount_freq_event();
45ac1403 5070 if (event->attr.context_switch) {
25432ae9 5071 dec = true;
45ac1403
AH
5072 atomic_dec(&nr_switch_events);
5073 }
4beb31f3 5074 if (is_cgroup_event(event))
25432ae9 5075 dec = true;
4beb31f3 5076 if (has_branch_stack(event))
25432ae9 5077 dec = true;
76193a94
SL
5078 if (event->attr.ksymbol)
5079 atomic_dec(&nr_ksymbol_events);
6ee52e2a
SL
5080 if (event->attr.bpf_event)
5081 atomic_dec(&nr_bpf_events);
e17d43b9
AH
5082 if (event->attr.text_poke)
5083 atomic_dec(&nr_text_poke_events);
25432ae9 5084
9107c89e
PZ
5085 if (dec) {
5086 if (!atomic_add_unless(&perf_sched_count, -1, 1))
5087 schedule_delayed_work(&perf_sched_work, HZ);
5088 }
4beb31f3 5089
f2fb6bef 5090 unaccount_pmu_sb_event(event);
4beb31f3 5091}
925d519a 5092
9107c89e
PZ
5093static void perf_sched_delayed(struct work_struct *work)
5094{
5095 mutex_lock(&perf_sched_mutex);
5096 if (atomic_dec_and_test(&perf_sched_count))
5097 static_branch_disable(&perf_sched_events);
5098 mutex_unlock(&perf_sched_mutex);
5099}
5100
bed5b25a
AS
5101/*
5102 * The following implement mutual exclusion of events on "exclusive" pmus
5103 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5104 * at a time, so we disallow creating events that might conflict, namely:
5105 *
5106 * 1) cpu-wide events in the presence of per-task events,
5107 * 2) per-task events in the presence of cpu-wide events,
bd275681 5108 * 3) two matching events on the same perf_event_context.
bed5b25a
AS
5109 *
5110 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 5111 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
5112 */
5113static int exclusive_event_init(struct perf_event *event)
5114{
5115 struct pmu *pmu = event->pmu;
5116
8a58ddae 5117 if (!is_exclusive_pmu(pmu))
bed5b25a
AS
5118 return 0;
5119
5120 /*
5121 * Prevent co-existence of per-task and cpu-wide events on the
5122 * same exclusive pmu.
5123 *
5124 * Negative pmu::exclusive_cnt means there are cpu-wide
5125 * events on this "exclusive" pmu, positive means there are
5126 * per-task events.
5127 *
5128 * Since this is called in perf_event_alloc() path, event::ctx
5129 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5130 * to mean "per-task event", because unlike other attach states it
5131 * never gets cleared.
5132 */
5133 if (event->attach_state & PERF_ATTACH_TASK) {
5134 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5135 return -EBUSY;
5136 } else {
5137 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5138 return -EBUSY;
5139 }
5140
5141 return 0;
5142}
5143
5144static void exclusive_event_destroy(struct perf_event *event)
5145{
5146 struct pmu *pmu = event->pmu;
5147
8a58ddae 5148 if (!is_exclusive_pmu(pmu))
bed5b25a
AS
5149 return;
5150
5151 /* see comment in exclusive_event_init() */
5152 if (event->attach_state & PERF_ATTACH_TASK)
5153 atomic_dec(&pmu->exclusive_cnt);
5154 else
5155 atomic_inc(&pmu->exclusive_cnt);
5156}
5157
5158static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5159{
3bf6215a 5160 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
5161 (e1->cpu == e2->cpu ||
5162 e1->cpu == -1 ||
5163 e2->cpu == -1))
5164 return true;
5165 return false;
5166}
5167
bed5b25a
AS
5168static bool exclusive_event_installable(struct perf_event *event,
5169 struct perf_event_context *ctx)
5170{
5171 struct perf_event *iter_event;
5172 struct pmu *pmu = event->pmu;
5173
8a58ddae
AS
5174 lockdep_assert_held(&ctx->mutex);
5175
5176 if (!is_exclusive_pmu(pmu))
bed5b25a
AS
5177 return true;
5178
5179 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5180 if (exclusive_event_match(iter_event, event))
5181 return false;
5182 }
5183
5184 return true;
5185}
5186
375637bc
AS
5187static void perf_addr_filters_splice(struct perf_event *event,
5188 struct list_head *head);
5189
683ede43 5190static void _free_event(struct perf_event *event)
f1600952 5191{
ca6c2132 5192 irq_work_sync(&event->pending_irq);
925d519a 5193
4beb31f3 5194 unaccount_event(event);
9ee318a7 5195
da97e184
JFG
5196 security_perf_event_free(event);
5197
76369139 5198 if (event->rb) {
9bb5d40c
PZ
5199 /*
5200 * Can happen when we close an event with re-directed output.
5201 *
5202 * Since we have a 0 refcount, perf_mmap_close() will skip
5203 * over us; possibly making our ring_buffer_put() the last.
5204 */
5205 mutex_lock(&event->mmap_mutex);
b69cf536 5206 ring_buffer_attach(event, NULL);
9bb5d40c 5207 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
5208 }
5209
e5d1367f
SE
5210 if (is_cgroup_event(event))
5211 perf_detach_cgroup(event);
5212
a0733e69
PZ
5213 if (!event->parent) {
5214 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5215 put_callchain_buffers();
5216 }
5217
5218 perf_event_free_bpf_prog(event);
375637bc 5219 perf_addr_filters_splice(event, NULL);
c60f83b8 5220 kfree(event->addr_filter_ranges);
a0733e69
PZ
5221
5222 if (event->destroy)
5223 event->destroy(event);
5224
1cf8dfe8
PZ
5225 /*
5226 * Must be after ->destroy(), due to uprobe_perf_close() using
5227 * hw.target.
5228 */
621b6d2e
PB
5229 if (event->hw.target)
5230 put_task_struct(event->hw.target);
5231
bd275681
PZ
5232 if (event->pmu_ctx)
5233 put_pmu_ctx(event->pmu_ctx);
5234
1cf8dfe8
PZ
5235 /*
5236 * perf_event_free_task() relies on put_ctx() being 'last', in particular
5237 * all task references must be cleaned up.
5238 */
5239 if (event->ctx)
5240 put_ctx(event->ctx);
5241
62a92c8f
AS
5242 exclusive_event_destroy(event);
5243 module_put(event->pmu->module);
a0733e69
PZ
5244
5245 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
5246}
5247
683ede43
PZ
5248/*
5249 * Used to free events which have a known refcount of 1, such as in error paths
5250 * where the event isn't exposed yet and inherited events.
5251 */
5252static void free_event(struct perf_event *event)
0793a61d 5253{
683ede43
PZ
5254 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5255 "unexpected event refcount: %ld; ptr=%p\n",
5256 atomic_long_read(&event->refcount), event)) {
5257 /* leak to avoid use-after-free */
5258 return;
5259 }
0793a61d 5260
683ede43 5261 _free_event(event);
0793a61d
TG
5262}
5263
a66a3052 5264/*
f8697762 5265 * Remove user event from the owner task.
a66a3052 5266 */
f8697762 5267static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 5268{
8882135b 5269 struct task_struct *owner;
fb0459d7 5270
8882135b 5271 rcu_read_lock();
8882135b 5272 /*
f47c02c0
PZ
5273 * Matches the smp_store_release() in perf_event_exit_task(). If we
5274 * observe !owner it means the list deletion is complete and we can
5275 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
5276 * owner->perf_event_mutex.
5277 */
506458ef 5278 owner = READ_ONCE(event->owner);
8882135b
PZ
5279 if (owner) {
5280 /*
5281 * Since delayed_put_task_struct() also drops the last
5282 * task reference we can safely take a new reference
5283 * while holding the rcu_read_lock().
5284 */
5285 get_task_struct(owner);
5286 }
5287 rcu_read_unlock();
5288
5289 if (owner) {
f63a8daa
PZ
5290 /*
5291 * If we're here through perf_event_exit_task() we're already
5292 * holding ctx->mutex which would be an inversion wrt. the
5293 * normal lock order.
5294 *
5295 * However we can safely take this lock because its the child
5296 * ctx->mutex.
5297 */
5298 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5299
8882135b
PZ
5300 /*
5301 * We have to re-check the event->owner field, if it is cleared
5302 * we raced with perf_event_exit_task(), acquiring the mutex
5303 * ensured they're done, and we can proceed with freeing the
5304 * event.
5305 */
f47c02c0 5306 if (event->owner) {
8882135b 5307 list_del_init(&event->owner_entry);
f47c02c0
PZ
5308 smp_store_release(&event->owner, NULL);
5309 }
8882135b
PZ
5310 mutex_unlock(&owner->perf_event_mutex);
5311 put_task_struct(owner);
5312 }
f8697762
JO
5313}
5314
f8697762
JO
5315static void put_event(struct perf_event *event)
5316{
f8697762
JO
5317 if (!atomic_long_dec_and_test(&event->refcount))
5318 return;
5319
c6e5b732
PZ
5320 _free_event(event);
5321}
5322
5323/*
5324 * Kill an event dead; while event:refcount will preserve the event
5325 * object, it will not preserve its functionality. Once the last 'user'
5326 * gives up the object, we'll destroy the thing.
5327 */
5328int perf_event_release_kernel(struct perf_event *event)
5329{
a4f4bb6d 5330 struct perf_event_context *ctx = event->ctx;
c6e5b732 5331 struct perf_event *child, *tmp;
82d94856 5332 LIST_HEAD(free_list);
c6e5b732 5333
a4f4bb6d 5334 /*
bd275681
PZ
5335 * If we got here through err_alloc: free_event(event); we will not
5336 * have attached to a context yet.
a4f4bb6d
PZ
5337 */
5338 if (!ctx) {
5339 WARN_ON_ONCE(event->attach_state &
5340 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5341 goto no_ctx;
5342 }
5343
f8697762
JO
5344 if (!is_kernel_event(event))
5345 perf_remove_from_owner(event);
8882135b 5346
5fa7c8ec 5347 ctx = perf_event_ctx_lock(event);
a83fe28e 5348 WARN_ON_ONCE(ctx->parent_ctx);
683ede43 5349
683ede43 5350 /*
d8a8cfc7 5351 * Mark this event as STATE_DEAD, there is no external reference to it
a69b0ca4 5352 * anymore.
683ede43 5353 *
a69b0ca4
PZ
5354 * Anybody acquiring event->child_mutex after the below loop _must_
5355 * also see this, most importantly inherit_event() which will avoid
5356 * placing more children on the list.
683ede43 5357 *
c6e5b732
PZ
5358 * Thus this guarantees that we will in fact observe and kill _ALL_
5359 * child events.
683ede43 5360 */
517e6a30 5361 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
a69b0ca4
PZ
5362
5363 perf_event_ctx_unlock(event, ctx);
683ede43 5364
c6e5b732
PZ
5365again:
5366 mutex_lock(&event->child_mutex);
5367 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 5368
c6e5b732
PZ
5369 /*
5370 * Cannot change, child events are not migrated, see the
5371 * comment with perf_event_ctx_lock_nested().
5372 */
506458ef 5373 ctx = READ_ONCE(child->ctx);
c6e5b732
PZ
5374 /*
5375 * Since child_mutex nests inside ctx::mutex, we must jump
5376 * through hoops. We start by grabbing a reference on the ctx.
5377 *
5378 * Since the event cannot get freed while we hold the
5379 * child_mutex, the context must also exist and have a !0
5380 * reference count.
5381 */
5382 get_ctx(ctx);
5383
5384 /*
5385 * Now that we have a ctx ref, we can drop child_mutex, and
5386 * acquire ctx::mutex without fear of it going away. Then we
5387 * can re-acquire child_mutex.
5388 */
5389 mutex_unlock(&event->child_mutex);
5390 mutex_lock(&ctx->mutex);
5391 mutex_lock(&event->child_mutex);
5392
5393 /*
5394 * Now that we hold ctx::mutex and child_mutex, revalidate our
5395 * state, if child is still the first entry, it didn't get freed
5396 * and we can continue doing so.
5397 */
5398 tmp = list_first_entry_or_null(&event->child_list,
5399 struct perf_event, child_list);
5400 if (tmp == child) {
5401 perf_remove_from_context(child, DETACH_GROUP);
82d94856 5402 list_move(&child->child_list, &free_list);
c6e5b732
PZ
5403 /*
5404 * This matches the refcount bump in inherit_event();
5405 * this can't be the last reference.
5406 */
5407 put_event(event);
5408 }
5409
5410 mutex_unlock(&event->child_mutex);
5411 mutex_unlock(&ctx->mutex);
5412 put_ctx(ctx);
5413 goto again;
5414 }
5415 mutex_unlock(&event->child_mutex);
5416
82d94856 5417 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
1cf8dfe8
PZ
5418 void *var = &child->ctx->refcount;
5419
82d94856
PZ
5420 list_del(&child->child_list);
5421 free_event(child);
1cf8dfe8
PZ
5422
5423 /*
5424 * Wake any perf_event_free_task() waiting for this event to be
5425 * freed.
5426 */
5427 smp_mb(); /* pairs with wait_var_event() */
5428 wake_up_var(var);
82d94856
PZ
5429 }
5430
a4f4bb6d
PZ
5431no_ctx:
5432 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
5433 return 0;
5434}
5435EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5436
8b10c5e2
PZ
5437/*
5438 * Called when the last reference to the file is gone.
5439 */
a6fa941d
AV
5440static int perf_release(struct inode *inode, struct file *file)
5441{
c6e5b732 5442 perf_event_release_kernel(file->private_data);
a6fa941d 5443 return 0;
fb0459d7 5444}
fb0459d7 5445
ca0dd44c 5446static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 5447{
cdd6c482 5448 struct perf_event *child;
e53c0994
PZ
5449 u64 total = 0;
5450
59ed446f
PZ
5451 *enabled = 0;
5452 *running = 0;
5453
6f10581a 5454 mutex_lock(&event->child_mutex);
01add3ea 5455
7d88962e 5456 (void)perf_event_read(event, false);
01add3ea
SB
5457 total += perf_event_count(event);
5458
59ed446f
PZ
5459 *enabled += event->total_time_enabled +
5460 atomic64_read(&event->child_total_time_enabled);
5461 *running += event->total_time_running +
5462 atomic64_read(&event->child_total_time_running);
5463
5464 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 5465 (void)perf_event_read(child, false);
01add3ea 5466 total += perf_event_count(child);
59ed446f
PZ
5467 *enabled += child->total_time_enabled;
5468 *running += child->total_time_running;
5469 }
6f10581a 5470 mutex_unlock(&event->child_mutex);
e53c0994
PZ
5471
5472 return total;
5473}
ca0dd44c
PZ
5474
5475u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5476{
5477 struct perf_event_context *ctx;
5478 u64 count;
5479
5480 ctx = perf_event_ctx_lock(event);
5481 count = __perf_event_read_value(event, enabled, running);
5482 perf_event_ctx_unlock(event, ctx);
5483
5484 return count;
5485}
fb0459d7 5486EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 5487
7d88962e 5488static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 5489 u64 read_format, u64 *values)
3dab77fb 5490{
2aeb1883 5491 struct perf_event_context *ctx = leader->ctx;
32671e37 5492 struct perf_event *sub, *parent;
2aeb1883 5493 unsigned long flags;
fa8c2693 5494 int n = 1; /* skip @nr */
7d88962e 5495 int ret;
f63a8daa 5496
7d88962e
SB
5497 ret = perf_event_read(leader, true);
5498 if (ret)
5499 return ret;
abf4868b 5500
a9cd8194 5501 raw_spin_lock_irqsave(&ctx->lock, flags);
32671e37
PZ
5502 /*
5503 * Verify the grouping between the parent and child (inherited)
5504 * events is still in tact.
5505 *
5506 * Specifically:
5507 * - leader->ctx->lock pins leader->sibling_list
5508 * - parent->child_mutex pins parent->child_list
5509 * - parent->ctx->mutex pins parent->sibling_list
5510 *
5511 * Because parent->ctx != leader->ctx (and child_list nests inside
5512 * ctx->mutex), group destruction is not atomic between children, also
5513 * see perf_event_release_kernel(). Additionally, parent can grow the
5514 * group.
5515 *
5516 * Therefore it is possible to have parent and child groups in a
5517 * different configuration and summing over such a beast makes no sense
5518 * what so ever.
5519 *
5520 * Reject this.
5521 */
5522 parent = leader->parent;
5523 if (parent &&
5524 (parent->group_generation != leader->group_generation ||
5525 parent->nr_siblings != leader->nr_siblings)) {
5526 ret = -ECHILD;
5527 goto unlock;
5528 }
a9cd8194 5529
fa8c2693
PZ
5530 /*
5531 * Since we co-schedule groups, {enabled,running} times of siblings
5532 * will be identical to those of the leader, so we only publish one
5533 * set.
5534 */
5535 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5536 values[n++] += leader->total_time_enabled +
5537 atomic64_read(&leader->child_total_time_enabled);
5538 }
3dab77fb 5539
fa8c2693
PZ
5540 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5541 values[n++] += leader->total_time_running +
5542 atomic64_read(&leader->child_total_time_running);
5543 }
5544
5545 /*
5546 * Write {count,id} tuples for every sibling.
5547 */
5548 values[n++] += perf_event_count(leader);
abf4868b
PZ
5549 if (read_format & PERF_FORMAT_ID)
5550 values[n++] = primary_event_id(leader);
119a784c
NK
5551 if (read_format & PERF_FORMAT_LOST)
5552 values[n++] = atomic64_read(&leader->lost_samples);
3dab77fb 5553
edb39592 5554 for_each_sibling_event(sub, leader) {
fa8c2693
PZ
5555 values[n++] += perf_event_count(sub);
5556 if (read_format & PERF_FORMAT_ID)
5557 values[n++] = primary_event_id(sub);
119a784c
NK
5558 if (read_format & PERF_FORMAT_LOST)
5559 values[n++] = atomic64_read(&sub->lost_samples);
fa8c2693 5560 }
7d88962e 5561
32671e37 5562unlock:
2aeb1883 5563 raw_spin_unlock_irqrestore(&ctx->lock, flags);
32671e37 5564 return ret;
fa8c2693 5565}
3dab77fb 5566
fa8c2693
PZ
5567static int perf_read_group(struct perf_event *event,
5568 u64 read_format, char __user *buf)
5569{
5570 struct perf_event *leader = event->group_leader, *child;
5571 struct perf_event_context *ctx = leader->ctx;
7d88962e 5572 int ret;
fa8c2693 5573 u64 *values;
3dab77fb 5574
fa8c2693 5575 lockdep_assert_held(&ctx->mutex);
3dab77fb 5576
fa8c2693
PZ
5577 values = kzalloc(event->read_size, GFP_KERNEL);
5578 if (!values)
5579 return -ENOMEM;
3dab77fb 5580
fa8c2693
PZ
5581 values[0] = 1 + leader->nr_siblings;
5582
fa8c2693 5583 mutex_lock(&leader->child_mutex);
abf4868b 5584
7d88962e
SB
5585 ret = __perf_read_group_add(leader, read_format, values);
5586 if (ret)
5587 goto unlock;
5588
5589 list_for_each_entry(child, &leader->child_list, child_list) {
5590 ret = __perf_read_group_add(child, read_format, values);
5591 if (ret)
5592 goto unlock;
5593 }
abf4868b 5594
fa8c2693 5595 mutex_unlock(&leader->child_mutex);
abf4868b 5596
7d88962e 5597 ret = event->read_size;
fa8c2693
PZ
5598 if (copy_to_user(buf, values, event->read_size))
5599 ret = -EFAULT;
7d88962e 5600 goto out;
fa8c2693 5601
7d88962e
SB
5602unlock:
5603 mutex_unlock(&leader->child_mutex);
5604out:
fa8c2693 5605 kfree(values);
abf4868b 5606 return ret;
3dab77fb
PZ
5607}
5608
b15f495b 5609static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
5610 u64 read_format, char __user *buf)
5611{
59ed446f 5612 u64 enabled, running;
119a784c 5613 u64 values[5];
3dab77fb
PZ
5614 int n = 0;
5615
ca0dd44c 5616 values[n++] = __perf_event_read_value(event, &enabled, &running);
59ed446f
PZ
5617 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5618 values[n++] = enabled;
5619 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5620 values[n++] = running;
3dab77fb 5621 if (read_format & PERF_FORMAT_ID)
cdd6c482 5622 values[n++] = primary_event_id(event);
119a784c
NK
5623 if (read_format & PERF_FORMAT_LOST)
5624 values[n++] = atomic64_read(&event->lost_samples);
3dab77fb
PZ
5625
5626 if (copy_to_user(buf, values, n * sizeof(u64)))
5627 return -EFAULT;
5628
5629 return n * sizeof(u64);
5630}
5631
dc633982
JO
5632static bool is_event_hup(struct perf_event *event)
5633{
5634 bool no_children;
5635
a69b0ca4 5636 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
5637 return false;
5638
5639 mutex_lock(&event->child_mutex);
5640 no_children = list_empty(&event->child_list);
5641 mutex_unlock(&event->child_mutex);
5642 return no_children;
5643}
5644
0793a61d 5645/*
cdd6c482 5646 * Read the performance event - simple non blocking version for now
0793a61d
TG
5647 */
5648static ssize_t
b15f495b 5649__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 5650{
cdd6c482 5651 u64 read_format = event->attr.read_format;
3dab77fb 5652 int ret;
0793a61d 5653
3b6f9e5c 5654 /*
788faab7 5655 * Return end-of-file for a read on an event that is in
3b6f9e5c
PM
5656 * error state (i.e. because it was pinned but it couldn't be
5657 * scheduled on to the CPU at some point).
5658 */
cdd6c482 5659 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
5660 return 0;
5661
c320c7b7 5662 if (count < event->read_size)
3dab77fb
PZ
5663 return -ENOSPC;
5664
cdd6c482 5665 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 5666 if (read_format & PERF_FORMAT_GROUP)
b15f495b 5667 ret = perf_read_group(event, read_format, buf);
3dab77fb 5668 else
b15f495b 5669 ret = perf_read_one(event, read_format, buf);
0793a61d 5670
3dab77fb 5671 return ret;
0793a61d
TG
5672}
5673
0793a61d
TG
5674static ssize_t
5675perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5676{
cdd6c482 5677 struct perf_event *event = file->private_data;
f63a8daa
PZ
5678 struct perf_event_context *ctx;
5679 int ret;
0793a61d 5680
da97e184
JFG
5681 ret = security_perf_event_read(event);
5682 if (ret)
5683 return ret;
5684
f63a8daa 5685 ctx = perf_event_ctx_lock(event);
b15f495b 5686 ret = __perf_read(event, buf, count);
f63a8daa
PZ
5687 perf_event_ctx_unlock(event, ctx);
5688
5689 return ret;
0793a61d
TG
5690}
5691
9dd95748 5692static __poll_t perf_poll(struct file *file, poll_table *wait)
0793a61d 5693{
cdd6c482 5694 struct perf_event *event = file->private_data;
56de4e8f 5695 struct perf_buffer *rb;
a9a08845 5696 __poll_t events = EPOLLHUP;
c7138f37 5697
e708d7ad 5698 poll_wait(file, &event->waitq, wait);
179033b3 5699
dc633982 5700 if (is_event_hup(event))
179033b3 5701 return events;
c7138f37 5702
10c6db11 5703 /*
9bb5d40c
PZ
5704 * Pin the event->rb by taking event->mmap_mutex; otherwise
5705 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
5706 */
5707 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
5708 rb = event->rb;
5709 if (rb)
76369139 5710 events = atomic_xchg(&rb->poll, 0);
10c6db11 5711 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
5712 return events;
5713}
5714
f63a8daa 5715static void _perf_event_reset(struct perf_event *event)
6de6a7b9 5716{
7d88962e 5717 (void)perf_event_read(event, false);
e7850595 5718 local64_set(&event->count, 0);
cdd6c482 5719 perf_event_update_userpage(event);
3df5edad
PZ
5720}
5721
52ba4b0b
LX
5722/* Assume it's not an event with inherit set. */
5723u64 perf_event_pause(struct perf_event *event, bool reset)
5724{
5725 struct perf_event_context *ctx;
5726 u64 count;
5727
5728 ctx = perf_event_ctx_lock(event);
5729 WARN_ON_ONCE(event->attr.inherit);
5730 _perf_event_disable(event);
5731 count = local64_read(&event->count);
5732 if (reset)
5733 local64_set(&event->count, 0);
5734 perf_event_ctx_unlock(event, ctx);
5735
5736 return count;
5737}
5738EXPORT_SYMBOL_GPL(perf_event_pause);
5739
c93f7669 5740/*
cdd6c482
IM
5741 * Holding the top-level event's child_mutex means that any
5742 * descendant process that has inherited this event will block
8ba289b8 5743 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 5744 * task existence requirements of perf_event_enable/disable.
c93f7669 5745 */
cdd6c482
IM
5746static void perf_event_for_each_child(struct perf_event *event,
5747 void (*func)(struct perf_event *))
3df5edad 5748{
cdd6c482 5749 struct perf_event *child;
3df5edad 5750
cdd6c482 5751 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 5752
cdd6c482
IM
5753 mutex_lock(&event->child_mutex);
5754 func(event);
5755 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 5756 func(child);
cdd6c482 5757 mutex_unlock(&event->child_mutex);
3df5edad
PZ
5758}
5759
cdd6c482
IM
5760static void perf_event_for_each(struct perf_event *event,
5761 void (*func)(struct perf_event *))
3df5edad 5762{
cdd6c482
IM
5763 struct perf_event_context *ctx = event->ctx;
5764 struct perf_event *sibling;
3df5edad 5765
f63a8daa
PZ
5766 lockdep_assert_held(&ctx->mutex);
5767
cdd6c482 5768 event = event->group_leader;
75f937f2 5769
cdd6c482 5770 perf_event_for_each_child(event, func);
edb39592 5771 for_each_sibling_event(sibling, event)
724b6daa 5772 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
5773}
5774
fae3fde6
PZ
5775static void __perf_event_period(struct perf_event *event,
5776 struct perf_cpu_context *cpuctx,
5777 struct perf_event_context *ctx,
5778 void *info)
c7999c6f 5779{
fae3fde6 5780 u64 value = *((u64 *)info);
c7999c6f 5781 bool active;
08247e31 5782
cdd6c482 5783 if (event->attr.freq) {
cdd6c482 5784 event->attr.sample_freq = value;
08247e31 5785 } else {
cdd6c482
IM
5786 event->attr.sample_period = value;
5787 event->hw.sample_period = value;
08247e31 5788 }
bad7192b
PZ
5789
5790 active = (event->state == PERF_EVENT_STATE_ACTIVE);
5791 if (active) {
bd275681 5792 perf_pmu_disable(event->pmu);
1e02cd40
PZ
5793 /*
5794 * We could be throttled; unthrottle now to avoid the tick
5795 * trying to unthrottle while we already re-started the event.
5796 */
5797 if (event->hw.interrupts == MAX_INTERRUPTS) {
5798 event->hw.interrupts = 0;
5799 perf_log_throttle(event, 1);
5800 }
bad7192b
PZ
5801 event->pmu->stop(event, PERF_EF_UPDATE);
5802 }
5803
5804 local64_set(&event->hw.period_left, 0);
5805
5806 if (active) {
5807 event->pmu->start(event, PERF_EF_RELOAD);
bd275681 5808 perf_pmu_enable(event->pmu);
bad7192b 5809 }
c7999c6f
PZ
5810}
5811
81ec3f3c
JO
5812static int perf_event_check_period(struct perf_event *event, u64 value)
5813{
5814 return event->pmu->check_period(event, value);
5815}
5816
3ca270fc 5817static int _perf_event_period(struct perf_event *event, u64 value)
c7999c6f 5818{
c7999c6f
PZ
5819 if (!is_sampling_event(event))
5820 return -EINVAL;
5821
c7999c6f
PZ
5822 if (!value)
5823 return -EINVAL;
5824
5825 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5826 return -EINVAL;
5827
81ec3f3c
JO
5828 if (perf_event_check_period(event, value))
5829 return -EINVAL;
5830
913a90bc
RB
5831 if (!event->attr.freq && (value & (1ULL << 63)))
5832 return -EINVAL;
5833
fae3fde6 5834 event_function_call(event, __perf_event_period, &value);
08247e31 5835
c7999c6f 5836 return 0;
08247e31
PZ
5837}
5838
3ca270fc
LX
5839int perf_event_period(struct perf_event *event, u64 value)
5840{
5841 struct perf_event_context *ctx;
5842 int ret;
5843
5844 ctx = perf_event_ctx_lock(event);
5845 ret = _perf_event_period(event, value);
5846 perf_event_ctx_unlock(event, ctx);
5847
5848 return ret;
5849}
5850EXPORT_SYMBOL_GPL(perf_event_period);
5851
ac9721f3
PZ
5852static const struct file_operations perf_fops;
5853
2903ff01 5854static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 5855{
2903ff01
AV
5856 struct fd f = fdget(fd);
5857 if (!f.file)
5858 return -EBADF;
ac9721f3 5859
2903ff01
AV
5860 if (f.file->f_op != &perf_fops) {
5861 fdput(f);
5862 return -EBADF;
ac9721f3 5863 }
2903ff01
AV
5864 *p = f;
5865 return 0;
ac9721f3
PZ
5866}
5867
5868static int perf_event_set_output(struct perf_event *event,
5869 struct perf_event *output_event);
6fb2915d 5870static int perf_event_set_filter(struct perf_event *event, void __user *arg);
32ff77e8
MC
5871static int perf_copy_attr(struct perf_event_attr __user *uattr,
5872 struct perf_event_attr *attr);
a4be7c27 5873
f63a8daa 5874static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 5875{
cdd6c482 5876 void (*func)(struct perf_event *);
3df5edad 5877 u32 flags = arg;
d859e29f
PM
5878
5879 switch (cmd) {
cdd6c482 5880 case PERF_EVENT_IOC_ENABLE:
f63a8daa 5881 func = _perf_event_enable;
d859e29f 5882 break;
cdd6c482 5883 case PERF_EVENT_IOC_DISABLE:
f63a8daa 5884 func = _perf_event_disable;
79f14641 5885 break;
cdd6c482 5886 case PERF_EVENT_IOC_RESET:
f63a8daa 5887 func = _perf_event_reset;
6de6a7b9 5888 break;
3df5edad 5889
cdd6c482 5890 case PERF_EVENT_IOC_REFRESH:
f63a8daa 5891 return _perf_event_refresh(event, arg);
08247e31 5892
cdd6c482 5893 case PERF_EVENT_IOC_PERIOD:
3ca270fc
LX
5894 {
5895 u64 value;
08247e31 5896
3ca270fc
LX
5897 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5898 return -EFAULT;
08247e31 5899
3ca270fc
LX
5900 return _perf_event_period(event, value);
5901 }
cf4957f1
JO
5902 case PERF_EVENT_IOC_ID:
5903 {
5904 u64 id = primary_event_id(event);
5905
5906 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5907 return -EFAULT;
5908 return 0;
5909 }
5910
cdd6c482 5911 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 5912 {
ac9721f3 5913 int ret;
ac9721f3 5914 if (arg != -1) {
2903ff01
AV
5915 struct perf_event *output_event;
5916 struct fd output;
5917 ret = perf_fget_light(arg, &output);
5918 if (ret)
5919 return ret;
5920 output_event = output.file->private_data;
5921 ret = perf_event_set_output(event, output_event);
5922 fdput(output);
5923 } else {
5924 ret = perf_event_set_output(event, NULL);
ac9721f3 5925 }
ac9721f3
PZ
5926 return ret;
5927 }
a4be7c27 5928
6fb2915d
LZ
5929 case PERF_EVENT_IOC_SET_FILTER:
5930 return perf_event_set_filter(event, (void __user *)arg);
5931
2541517c 5932 case PERF_EVENT_IOC_SET_BPF:
652c1b17
AN
5933 {
5934 struct bpf_prog *prog;
5935 int err;
5936
5937 prog = bpf_prog_get(arg);
5938 if (IS_ERR(prog))
5939 return PTR_ERR(prog);
5940
82e6b1ee 5941 err = perf_event_set_bpf_prog(event, prog, 0);
652c1b17
AN
5942 if (err) {
5943 bpf_prog_put(prog);
5944 return err;
5945 }
5946
5947 return 0;
5948 }
2541517c 5949
86e7972f 5950 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
56de4e8f 5951 struct perf_buffer *rb;
86e7972f
WN
5952
5953 rcu_read_lock();
5954 rb = rcu_dereference(event->rb);
5955 if (!rb || !rb->nr_pages) {
5956 rcu_read_unlock();
5957 return -EINVAL;
5958 }
5959 rb_toggle_paused(rb, !!arg);
5960 rcu_read_unlock();
5961 return 0;
5962 }
f371b304
YS
5963
5964 case PERF_EVENT_IOC_QUERY_BPF:
f4e2298e 5965 return perf_event_query_prog_array(event, (void __user *)arg);
32ff77e8
MC
5966
5967 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5968 struct perf_event_attr new_attr;
5969 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5970 &new_attr);
5971
5972 if (err)
5973 return err;
5974
5975 return perf_event_modify_attr(event, &new_attr);
5976 }
d859e29f 5977 default:
3df5edad 5978 return -ENOTTY;
d859e29f 5979 }
3df5edad
PZ
5980
5981 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 5982 perf_event_for_each(event, func);
3df5edad 5983 else
cdd6c482 5984 perf_event_for_each_child(event, func);
3df5edad
PZ
5985
5986 return 0;
d859e29f
PM
5987}
5988
f63a8daa
PZ
5989static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5990{
5991 struct perf_event *event = file->private_data;
5992 struct perf_event_context *ctx;
5993 long ret;
5994
da97e184
JFG
5995 /* Treat ioctl like writes as it is likely a mutating operation. */
5996 ret = security_perf_event_write(event);
5997 if (ret)
5998 return ret;
5999
f63a8daa
PZ
6000 ctx = perf_event_ctx_lock(event);
6001 ret = _perf_ioctl(event, cmd, arg);
6002 perf_event_ctx_unlock(event, ctx);
6003
6004 return ret;
6005}
6006
b3f20785
PM
6007#ifdef CONFIG_COMPAT
6008static long perf_compat_ioctl(struct file *file, unsigned int cmd,
6009 unsigned long arg)
6010{
6011 switch (_IOC_NR(cmd)) {
6012 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6013 case _IOC_NR(PERF_EVENT_IOC_ID):
82489c5f
ES
6014 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6015 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
b3f20785
PM
6016 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6017 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6018 cmd &= ~IOCSIZE_MASK;
6019 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6020 }
6021 break;
6022 }
6023 return perf_ioctl(file, cmd, arg);
6024}
6025#else
6026# define perf_compat_ioctl NULL
6027#endif
6028
cdd6c482 6029int perf_event_task_enable(void)
771d7cde 6030{
f63a8daa 6031 struct perf_event_context *ctx;
cdd6c482 6032 struct perf_event *event;
771d7cde 6033
cdd6c482 6034 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
6035 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6036 ctx = perf_event_ctx_lock(event);
6037 perf_event_for_each_child(event, _perf_event_enable);
6038 perf_event_ctx_unlock(event, ctx);
6039 }
cdd6c482 6040 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
6041
6042 return 0;
6043}
6044
cdd6c482 6045int perf_event_task_disable(void)
771d7cde 6046{
f63a8daa 6047 struct perf_event_context *ctx;
cdd6c482 6048 struct perf_event *event;
771d7cde 6049
cdd6c482 6050 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
6051 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6052 ctx = perf_event_ctx_lock(event);
6053 perf_event_for_each_child(event, _perf_event_disable);
6054 perf_event_ctx_unlock(event, ctx);
6055 }
cdd6c482 6056 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
6057
6058 return 0;
6059}
6060
cdd6c482 6061static int perf_event_index(struct perf_event *event)
194002b2 6062{
a4eaf7f1
PZ
6063 if (event->hw.state & PERF_HES_STOPPED)
6064 return 0;
6065
cdd6c482 6066 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
6067 return 0;
6068
35edc2a5 6069 return event->pmu->event_idx(event);
194002b2
PZ
6070}
6071
fa731587
PZ
6072static void perf_event_init_userpage(struct perf_event *event)
6073{
6074 struct perf_event_mmap_page *userpg;
56de4e8f 6075 struct perf_buffer *rb;
fa731587
PZ
6076
6077 rcu_read_lock();
6078 rb = rcu_dereference(event->rb);
6079 if (!rb)
6080 goto unlock;
6081
6082 userpg = rb->user_page;
6083
6084 /* Allow new userspace to detect that bit 0 is deprecated */
6085 userpg->cap_bit0_is_deprecated = 1;
6086 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
6087 userpg->data_offset = PAGE_SIZE;
6088 userpg->data_size = perf_data_size(rb);
fa731587
PZ
6089
6090unlock:
6091 rcu_read_unlock();
6092}
6093
c1317ec2
AL
6094void __weak arch_perf_update_userpage(
6095 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
6096{
6097}
6098
38ff667b
PZ
6099/*
6100 * Callers need to ensure there can be no nesting of this function, otherwise
6101 * the seqlock logic goes bad. We can not serialize this because the arch
6102 * code calls this from NMI context.
6103 */
cdd6c482 6104void perf_event_update_userpage(struct perf_event *event)
37d81828 6105{
cdd6c482 6106 struct perf_event_mmap_page *userpg;
56de4e8f 6107 struct perf_buffer *rb;
e3f3541c 6108 u64 enabled, running, now;
38ff667b
PZ
6109
6110 rcu_read_lock();
5ec4c599
PZ
6111 rb = rcu_dereference(event->rb);
6112 if (!rb)
6113 goto unlock;
6114
0d641208
EM
6115 /*
6116 * compute total_time_enabled, total_time_running
6117 * based on snapshot values taken when the event
6118 * was last scheduled in.
6119 *
6120 * we cannot simply called update_context_time()
6121 * because of locking issue as we can be called in
6122 * NMI context
6123 */
e3f3541c 6124 calc_timer_values(event, &now, &enabled, &running);
38ff667b 6125
76369139 6126 userpg = rb->user_page;
7b732a75 6127 /*
9d2dcc8f
MF
6128 * Disable preemption to guarantee consistent time stamps are stored to
6129 * the user page.
7b732a75
PZ
6130 */
6131 preempt_disable();
37d81828 6132 ++userpg->lock;
92f22a38 6133 barrier();
cdd6c482 6134 userpg->index = perf_event_index(event);
b5e58793 6135 userpg->offset = perf_event_count(event);
365a4038 6136 if (userpg->index)
e7850595 6137 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 6138
0d641208 6139 userpg->time_enabled = enabled +
cdd6c482 6140 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 6141
0d641208 6142 userpg->time_running = running +
cdd6c482 6143 atomic64_read(&event->child_total_time_running);
7f8b4e4e 6144
c1317ec2 6145 arch_perf_update_userpage(event, userpg, now);
e3f3541c 6146
92f22a38 6147 barrier();
37d81828 6148 ++userpg->lock;
7b732a75 6149 preempt_enable();
38ff667b 6150unlock:
7b732a75 6151 rcu_read_unlock();
37d81828 6152}
82975c46 6153EXPORT_SYMBOL_GPL(perf_event_update_userpage);
37d81828 6154
9e3ed2d7 6155static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
906010b2 6156{
11bac800 6157 struct perf_event *event = vmf->vma->vm_file->private_data;
56de4e8f 6158 struct perf_buffer *rb;
9e3ed2d7 6159 vm_fault_t ret = VM_FAULT_SIGBUS;
906010b2
PZ
6160
6161 if (vmf->flags & FAULT_FLAG_MKWRITE) {
6162 if (vmf->pgoff == 0)
6163 ret = 0;
6164 return ret;
6165 }
6166
6167 rcu_read_lock();
76369139
FW
6168 rb = rcu_dereference(event->rb);
6169 if (!rb)
906010b2
PZ
6170 goto unlock;
6171
6172 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
6173 goto unlock;
6174
76369139 6175 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
6176 if (!vmf->page)
6177 goto unlock;
6178
6179 get_page(vmf->page);
11bac800 6180 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
906010b2
PZ
6181 vmf->page->index = vmf->pgoff;
6182
6183 ret = 0;
6184unlock:
6185 rcu_read_unlock();
6186
6187 return ret;
6188}
6189
10c6db11 6190static void ring_buffer_attach(struct perf_event *event,
56de4e8f 6191 struct perf_buffer *rb)
10c6db11 6192{
56de4e8f 6193 struct perf_buffer *old_rb = NULL;
10c6db11
PZ
6194 unsigned long flags;
6195
961c3912
JC
6196 WARN_ON_ONCE(event->parent);
6197
b69cf536
PZ
6198 if (event->rb) {
6199 /*
6200 * Should be impossible, we set this when removing
6201 * event->rb_entry and wait/clear when adding event->rb_entry.
6202 */
6203 WARN_ON_ONCE(event->rcu_pending);
10c6db11 6204
b69cf536 6205 old_rb = event->rb;
b69cf536
PZ
6206 spin_lock_irqsave(&old_rb->event_lock, flags);
6207 list_del_rcu(&event->rb_entry);
6208 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 6209
2f993cf0
ON
6210 event->rcu_batches = get_state_synchronize_rcu();
6211 event->rcu_pending = 1;
b69cf536 6212 }
10c6db11 6213
b69cf536 6214 if (rb) {
2f993cf0
ON
6215 if (event->rcu_pending) {
6216 cond_synchronize_rcu(event->rcu_batches);
6217 event->rcu_pending = 0;
6218 }
6219
b69cf536
PZ
6220 spin_lock_irqsave(&rb->event_lock, flags);
6221 list_add_rcu(&event->rb_entry, &rb->event_list);
6222 spin_unlock_irqrestore(&rb->event_lock, flags);
6223 }
6224
767ae086
AS
6225 /*
6226 * Avoid racing with perf_mmap_close(AUX): stop the event
6227 * before swizzling the event::rb pointer; if it's getting
6228 * unmapped, its aux_mmap_count will be 0 and it won't
6229 * restart. See the comment in __perf_pmu_output_stop().
6230 *
6231 * Data will inevitably be lost when set_output is done in
6232 * mid-air, but then again, whoever does it like this is
6233 * not in for the data anyway.
6234 */
6235 if (has_aux(event))
6236 perf_event_stop(event, 0);
6237
b69cf536
PZ
6238 rcu_assign_pointer(event->rb, rb);
6239
6240 if (old_rb) {
6241 ring_buffer_put(old_rb);
6242 /*
6243 * Since we detached before setting the new rb, so that we
6244 * could attach the new rb, we could have missed a wakeup.
6245 * Provide it now.
6246 */
6247 wake_up_all(&event->waitq);
6248 }
10c6db11
PZ
6249}
6250
6251static void ring_buffer_wakeup(struct perf_event *event)
6252{
56de4e8f 6253 struct perf_buffer *rb;
10c6db11 6254
961c3912
JC
6255 if (event->parent)
6256 event = event->parent;
6257
10c6db11
PZ
6258 rcu_read_lock();
6259 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
6260 if (rb) {
6261 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6262 wake_up_all(&event->waitq);
6263 }
10c6db11
PZ
6264 rcu_read_unlock();
6265}
6266
56de4e8f 6267struct perf_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 6268{
56de4e8f 6269 struct perf_buffer *rb;
7b732a75 6270
961c3912
JC
6271 if (event->parent)
6272 event = event->parent;
6273
ac9721f3 6274 rcu_read_lock();
76369139
FW
6275 rb = rcu_dereference(event->rb);
6276 if (rb) {
fecb8ed2 6277 if (!refcount_inc_not_zero(&rb->refcount))
76369139 6278 rb = NULL;
ac9721f3
PZ
6279 }
6280 rcu_read_unlock();
6281
76369139 6282 return rb;
ac9721f3
PZ
6283}
6284
56de4e8f 6285void ring_buffer_put(struct perf_buffer *rb)
ac9721f3 6286{
fecb8ed2 6287 if (!refcount_dec_and_test(&rb->refcount))
ac9721f3 6288 return;
7b732a75 6289
9bb5d40c 6290 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 6291
76369139 6292 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
6293}
6294
6295static void perf_mmap_open(struct vm_area_struct *vma)
6296{
cdd6c482 6297 struct perf_event *event = vma->vm_file->private_data;
7b732a75 6298
cdd6c482 6299 atomic_inc(&event->mmap_count);
9bb5d40c 6300 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 6301
45bfb2e5
PZ
6302 if (vma->vm_pgoff)
6303 atomic_inc(&event->rb->aux_mmap_count);
6304
1e0fb9ec 6305 if (event->pmu->event_mapped)
bfe33492 6306 event->pmu->event_mapped(event, vma->vm_mm);
7b732a75
PZ
6307}
6308
95ff4ca2
AS
6309static void perf_pmu_output_stop(struct perf_event *event);
6310
9bb5d40c
PZ
6311/*
6312 * A buffer can be mmap()ed multiple times; either directly through the same
6313 * event, or through other events by use of perf_event_set_output().
6314 *
6315 * In order to undo the VM accounting done by perf_mmap() we need to destroy
6316 * the buffer here, where we still have a VM context. This means we need
6317 * to detach all events redirecting to us.
6318 */
7b732a75
PZ
6319static void perf_mmap_close(struct vm_area_struct *vma)
6320{
cdd6c482 6321 struct perf_event *event = vma->vm_file->private_data;
56de4e8f 6322 struct perf_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
6323 struct user_struct *mmap_user = rb->mmap_user;
6324 int mmap_locked = rb->mmap_locked;
6325 unsigned long size = perf_data_size(rb);
f91072ed 6326 bool detach_rest = false;
789f90fc 6327
1e0fb9ec 6328 if (event->pmu->event_unmapped)
bfe33492 6329 event->pmu->event_unmapped(event, vma->vm_mm);
1e0fb9ec 6330
45bfb2e5
PZ
6331 /*
6332 * rb->aux_mmap_count will always drop before rb->mmap_count and
6333 * event->mmap_count, so it is ok to use event->mmap_mutex to
6334 * serialize with perf_mmap here.
6335 */
6336 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6337 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
6338 /*
6339 * Stop all AUX events that are writing to this buffer,
6340 * so that we can free its AUX pages and corresponding PMU
6341 * data. Note that after rb::aux_mmap_count dropped to zero,
6342 * they won't start any more (see perf_aux_output_begin()).
6343 */
6344 perf_pmu_output_stop(event);
6345
6346 /* now it's safe to free the pages */
36b3db03
AS
6347 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6348 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
45bfb2e5 6349
95ff4ca2 6350 /* this has to be the last one */
45bfb2e5 6351 rb_free_aux(rb);
ca3bb3d0 6352 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
95ff4ca2 6353
45bfb2e5
PZ
6354 mutex_unlock(&event->mmap_mutex);
6355 }
6356
f91072ed
JO
6357 if (atomic_dec_and_test(&rb->mmap_count))
6358 detach_rest = true;
9bb5d40c
PZ
6359
6360 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 6361 goto out_put;
9bb5d40c 6362
b69cf536 6363 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
6364 mutex_unlock(&event->mmap_mutex);
6365
6366 /* If there's still other mmap()s of this buffer, we're done. */
f91072ed 6367 if (!detach_rest)
b69cf536 6368 goto out_put;
ac9721f3 6369
9bb5d40c
PZ
6370 /*
6371 * No other mmap()s, detach from all other events that might redirect
6372 * into the now unreachable buffer. Somewhat complicated by the
6373 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6374 */
6375again:
6376 rcu_read_lock();
6377 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6378 if (!atomic_long_inc_not_zero(&event->refcount)) {
6379 /*
6380 * This event is en-route to free_event() which will
6381 * detach it and remove it from the list.
6382 */
6383 continue;
6384 }
6385 rcu_read_unlock();
789f90fc 6386
9bb5d40c
PZ
6387 mutex_lock(&event->mmap_mutex);
6388 /*
6389 * Check we didn't race with perf_event_set_output() which can
6390 * swizzle the rb from under us while we were waiting to
6391 * acquire mmap_mutex.
6392 *
6393 * If we find a different rb; ignore this event, a next
6394 * iteration will no longer find it on the list. We have to
6395 * still restart the iteration to make sure we're not now
6396 * iterating the wrong list.
6397 */
b69cf536
PZ
6398 if (event->rb == rb)
6399 ring_buffer_attach(event, NULL);
6400
cdd6c482 6401 mutex_unlock(&event->mmap_mutex);
9bb5d40c 6402 put_event(event);
ac9721f3 6403
9bb5d40c
PZ
6404 /*
6405 * Restart the iteration; either we're on the wrong list or
6406 * destroyed its integrity by doing a deletion.
6407 */
6408 goto again;
7b732a75 6409 }
9bb5d40c
PZ
6410 rcu_read_unlock();
6411
6412 /*
6413 * It could be there's still a few 0-ref events on the list; they'll
6414 * get cleaned up by free_event() -- they'll also still have their
6415 * ref on the rb and will free it whenever they are done with it.
6416 *
6417 * Aside from that, this buffer is 'fully' detached and unmapped,
6418 * undo the VM accounting.
6419 */
6420
d44248a4
SL
6421 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6422 &mmap_user->locked_vm);
70f8a3ca 6423 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
9bb5d40c
PZ
6424 free_uid(mmap_user);
6425
b69cf536 6426out_put:
9bb5d40c 6427 ring_buffer_put(rb); /* could be last */
37d81828
PM
6428}
6429
f0f37e2f 6430static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 6431 .open = perf_mmap_open,
fca0c116 6432 .close = perf_mmap_close, /* non mergeable */
43a21ea8
PZ
6433 .fault = perf_mmap_fault,
6434 .page_mkwrite = perf_mmap_fault,
37d81828
PM
6435};
6436
6437static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6438{
cdd6c482 6439 struct perf_event *event = file->private_data;
22a4f650 6440 unsigned long user_locked, user_lock_limit;
789f90fc 6441 struct user_struct *user = current_user();
56de4e8f 6442 struct perf_buffer *rb = NULL;
22a4f650 6443 unsigned long locked, lock_limit;
7b732a75
PZ
6444 unsigned long vma_size;
6445 unsigned long nr_pages;
45bfb2e5 6446 long user_extra = 0, extra = 0;
d57e34fd 6447 int ret = 0, flags = 0;
37d81828 6448
c7920614
PZ
6449 /*
6450 * Don't allow mmap() of inherited per-task counters. This would
6451 * create a performance issue due to all children writing to the
76369139 6452 * same rb.
c7920614
PZ
6453 */
6454 if (event->cpu == -1 && event->attr.inherit)
6455 return -EINVAL;
6456
43a21ea8 6457 if (!(vma->vm_flags & VM_SHARED))
37d81828 6458 return -EINVAL;
7b732a75 6459
da97e184
JFG
6460 ret = security_perf_event_read(event);
6461 if (ret)
6462 return ret;
6463
7b732a75 6464 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
6465
6466 if (vma->vm_pgoff == 0) {
6467 nr_pages = (vma_size / PAGE_SIZE) - 1;
6468 } else {
6469 /*
6470 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6471 * mapped, all subsequent mappings should have the same size
6472 * and offset. Must be above the normal perf buffer.
6473 */
6474 u64 aux_offset, aux_size;
6475
6476 if (!event->rb)
6477 return -EINVAL;
6478
6479 nr_pages = vma_size / PAGE_SIZE;
6480
6481 mutex_lock(&event->mmap_mutex);
6482 ret = -EINVAL;
6483
6484 rb = event->rb;
6485 if (!rb)
6486 goto aux_unlock;
6487
6aa7de05
MR
6488 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6489 aux_size = READ_ONCE(rb->user_page->aux_size);
45bfb2e5
PZ
6490
6491 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6492 goto aux_unlock;
6493
6494 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6495 goto aux_unlock;
6496
6497 /* already mapped with a different offset */
6498 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6499 goto aux_unlock;
6500
6501 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6502 goto aux_unlock;
6503
6504 /* already mapped with a different size */
6505 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6506 goto aux_unlock;
6507
6508 if (!is_power_of_2(nr_pages))
6509 goto aux_unlock;
6510
6511 if (!atomic_inc_not_zero(&rb->mmap_count))
6512 goto aux_unlock;
6513
6514 if (rb_has_aux(rb)) {
6515 atomic_inc(&rb->aux_mmap_count);
6516 ret = 0;
6517 goto unlock;
6518 }
6519
6520 atomic_set(&rb->aux_mmap_count, 1);
6521 user_extra = nr_pages;
6522
6523 goto accounting;
6524 }
7b732a75 6525
7730d865 6526 /*
76369139 6527 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
6528 * can do bitmasks instead of modulo.
6529 */
2ed11312 6530 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
6531 return -EINVAL;
6532
7b732a75 6533 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
6534 return -EINVAL;
6535
cdd6c482 6536 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 6537again:
cdd6c482 6538 mutex_lock(&event->mmap_mutex);
76369139 6539 if (event->rb) {
60490e79 6540 if (data_page_nr(event->rb) != nr_pages) {
ebb3c4c4 6541 ret = -EINVAL;
9bb5d40c
PZ
6542 goto unlock;
6543 }
6544
6545 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6546 /*
68e3c698
PZ
6547 * Raced against perf_mmap_close(); remove the
6548 * event and try again.
9bb5d40c 6549 */
68e3c698 6550 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
6551 mutex_unlock(&event->mmap_mutex);
6552 goto again;
6553 }
6554
ebb3c4c4
PZ
6555 goto unlock;
6556 }
6557
789f90fc 6558 user_extra = nr_pages + 1;
45bfb2e5
PZ
6559
6560accounting:
cdd6c482 6561 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
6562
6563 /*
6564 * Increase the limit linearly with more CPUs:
6565 */
6566 user_lock_limit *= num_online_cpus();
6567
00346155
SL
6568 user_locked = atomic_long_read(&user->locked_vm);
6569
6570 /*
6571 * sysctl_perf_event_mlock may have changed, so that
6572 * user->locked_vm > user_lock_limit
6573 */
6574 if (user_locked > user_lock_limit)
6575 user_locked = user_lock_limit;
6576 user_locked += user_extra;
c5078f78 6577
c4b75479 6578 if (user_locked > user_lock_limit) {
d44248a4
SL
6579 /*
6580 * charge locked_vm until it hits user_lock_limit;
6581 * charge the rest from pinned_vm
6582 */
789f90fc 6583 extra = user_locked - user_lock_limit;
d44248a4
SL
6584 user_extra -= extra;
6585 }
7b732a75 6586
78d7d407 6587 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 6588 lock_limit >>= PAGE_SHIFT;
70f8a3ca 6589 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
7b732a75 6590
da97e184 6591 if ((locked > lock_limit) && perf_is_paranoid() &&
459ec28a 6592 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
6593 ret = -EPERM;
6594 goto unlock;
6595 }
7b732a75 6596
45bfb2e5 6597 WARN_ON(!rb && event->rb);
906010b2 6598
d57e34fd 6599 if (vma->vm_flags & VM_WRITE)
76369139 6600 flags |= RING_BUFFER_WRITABLE;
d57e34fd 6601
76369139 6602 if (!rb) {
45bfb2e5
PZ
6603 rb = rb_alloc(nr_pages,
6604 event->attr.watermark ? event->attr.wakeup_watermark : 0,
6605 event->cpu, flags);
26cb63ad 6606
45bfb2e5
PZ
6607 if (!rb) {
6608 ret = -ENOMEM;
6609 goto unlock;
6610 }
43a21ea8 6611
45bfb2e5
PZ
6612 atomic_set(&rb->mmap_count, 1);
6613 rb->mmap_user = get_current_user();
6614 rb->mmap_locked = extra;
26cb63ad 6615
45bfb2e5 6616 ring_buffer_attach(event, rb);
ac9721f3 6617
f7925653 6618 perf_event_update_time(event);
45bfb2e5
PZ
6619 perf_event_init_userpage(event);
6620 perf_event_update_userpage(event);
6621 } else {
1a594131
AS
6622 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6623 event->attr.aux_watermark, flags);
45bfb2e5
PZ
6624 if (!ret)
6625 rb->aux_mmap_locked = extra;
6626 }
9a0f05cb 6627
ebb3c4c4 6628unlock:
45bfb2e5
PZ
6629 if (!ret) {
6630 atomic_long_add(user_extra, &user->locked_vm);
70f8a3ca 6631 atomic64_add(extra, &vma->vm_mm->pinned_vm);
45bfb2e5 6632
ac9721f3 6633 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
6634 } else if (rb) {
6635 atomic_dec(&rb->mmap_count);
6636 }
6637aux_unlock:
cdd6c482 6638 mutex_unlock(&event->mmap_mutex);
37d81828 6639
9bb5d40c
PZ
6640 /*
6641 * Since pinned accounting is per vm we cannot allow fork() to copy our
6642 * vma.
6643 */
1c71222e 6644 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
37d81828 6645 vma->vm_ops = &perf_mmap_vmops;
7b732a75 6646
1e0fb9ec 6647 if (event->pmu->event_mapped)
bfe33492 6648 event->pmu->event_mapped(event, vma->vm_mm);
1e0fb9ec 6649
7b732a75 6650 return ret;
37d81828
PM
6651}
6652
3c446b3d
PZ
6653static int perf_fasync(int fd, struct file *filp, int on)
6654{
496ad9aa 6655 struct inode *inode = file_inode(filp);
cdd6c482 6656 struct perf_event *event = filp->private_data;
3c446b3d
PZ
6657 int retval;
6658
5955102c 6659 inode_lock(inode);
cdd6c482 6660 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 6661 inode_unlock(inode);
3c446b3d
PZ
6662
6663 if (retval < 0)
6664 return retval;
6665
6666 return 0;
6667}
6668
0793a61d 6669static const struct file_operations perf_fops = {
3326c1ce 6670 .llseek = no_llseek,
0793a61d
TG
6671 .release = perf_release,
6672 .read = perf_read,
6673 .poll = perf_poll,
d859e29f 6674 .unlocked_ioctl = perf_ioctl,
b3f20785 6675 .compat_ioctl = perf_compat_ioctl,
37d81828 6676 .mmap = perf_mmap,
3c446b3d 6677 .fasync = perf_fasync,
0793a61d
TG
6678};
6679
925d519a 6680/*
cdd6c482 6681 * Perf event wakeup
925d519a
PZ
6682 *
6683 * If there's data, ensure we set the poll() state and publish everything
6684 * to user-space before waking everybody up.
6685 */
6686
fed66e2c
PZ
6687static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6688{
6689 /* only the parent has fasync state */
6690 if (event->parent)
6691 event = event->parent;
6692 return &event->fasync;
6693}
6694
cdd6c482 6695void perf_event_wakeup(struct perf_event *event)
925d519a 6696{
10c6db11 6697 ring_buffer_wakeup(event);
4c9e2542 6698
cdd6c482 6699 if (event->pending_kill) {
fed66e2c 6700 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 6701 event->pending_kill = 0;
4c9e2542 6702 }
925d519a
PZ
6703}
6704
97ba62b2
ME
6705static void perf_sigtrap(struct perf_event *event)
6706{
97ba62b2
ME
6707 /*
6708 * We'd expect this to only occur if the irq_work is delayed and either
6709 * ctx->task or current has changed in the meantime. This can be the
6710 * case on architectures that do not implement arch_irq_work_raise().
6711 */
6712 if (WARN_ON_ONCE(event->ctx->task != current))
6713 return;
6714
6715 /*
ca6c2132
PZ
6716 * Both perf_pending_task() and perf_pending_irq() can race with the
6717 * task exiting.
97ba62b2
ME
6718 */
6719 if (current->flags & PF_EXITING)
6720 return;
6721
78ed93d7 6722 send_sig_perf((void __user *)event->pending_addr,
0d6d062c 6723 event->orig_type, event->attr.sig_data);
97ba62b2
ME
6724}
6725
ca6c2132
PZ
6726/*
6727 * Deliver the pending work in-event-context or follow the context.
6728 */
6729static void __perf_pending_irq(struct perf_event *event)
1d54ad94 6730{
ca6c2132 6731 int cpu = READ_ONCE(event->oncpu);
1d54ad94 6732
ca6c2132
PZ
6733 /*
6734 * If the event isn't running; we done. event_sched_out() will have
6735 * taken care of things.
6736 */
1d54ad94
PZ
6737 if (cpu < 0)
6738 return;
6739
ca6c2132
PZ
6740 /*
6741 * Yay, we hit home and are in the context of the event.
6742 */
1d54ad94 6743 if (cpu == smp_processor_id()) {
ca6c2132
PZ
6744 if (event->pending_sigtrap) {
6745 event->pending_sigtrap = 0;
97ba62b2 6746 perf_sigtrap(event);
ca6c2132
PZ
6747 local_dec(&event->ctx->nr_pending);
6748 }
6749 if (event->pending_disable) {
6750 event->pending_disable = 0;
6751 perf_event_disable_local(event);
97ba62b2 6752 }
1d54ad94
PZ
6753 return;
6754 }
6755
6756 /*
6757 * CPU-A CPU-B
6758 *
6759 * perf_event_disable_inatomic()
6760 * @pending_disable = CPU-A;
6761 * irq_work_queue();
6762 *
6763 * sched-out
6764 * @pending_disable = -1;
6765 *
6766 * sched-in
6767 * perf_event_disable_inatomic()
6768 * @pending_disable = CPU-B;
6769 * irq_work_queue(); // FAILS
6770 *
6771 * irq_work_run()
ca6c2132 6772 * perf_pending_irq()
1d54ad94
PZ
6773 *
6774 * But the event runs on CPU-B and wants disabling there.
6775 */
ca6c2132 6776 irq_work_queue_on(&event->pending_irq, cpu);
1d54ad94
PZ
6777}
6778
ca6c2132 6779static void perf_pending_irq(struct irq_work *entry)
79f14641 6780{
ca6c2132 6781 struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
d525211f
PZ
6782 int rctx;
6783
d525211f
PZ
6784 /*
6785 * If we 'fail' here, that's OK, it means recursion is already disabled
6786 * and we won't recurse 'further'.
6787 */
ca6c2132 6788 rctx = perf_swevent_get_recursion_context();
79f14641 6789
ca6c2132
PZ
6790 /*
6791 * The wakeup isn't bound to the context of the event -- it can happen
6792 * irrespective of where the event is.
6793 */
cdd6c482
IM
6794 if (event->pending_wakeup) {
6795 event->pending_wakeup = 0;
6796 perf_event_wakeup(event);
79f14641 6797 }
d525211f 6798
ca6c2132
PZ
6799 __perf_pending_irq(event);
6800
d525211f
PZ
6801 if (rctx >= 0)
6802 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
6803}
6804
ca6c2132
PZ
6805static void perf_pending_task(struct callback_head *head)
6806{
6807 struct perf_event *event = container_of(head, struct perf_event, pending_task);
6808 int rctx;
6809
6810 /*
6811 * If we 'fail' here, that's OK, it means recursion is already disabled
6812 * and we won't recurse 'further'.
6813 */
6814 preempt_disable_notrace();
6815 rctx = perf_swevent_get_recursion_context();
6816
6817 if (event->pending_work) {
6818 event->pending_work = 0;
6819 perf_sigtrap(event);
6820 local_dec(&event->ctx->nr_pending);
6821 }
6822
6823 if (rctx >= 0)
6824 perf_swevent_put_recursion_context(rctx);
6825 preempt_enable_notrace();
517e6a30
PZ
6826
6827 put_event(event);
ca6c2132
PZ
6828}
6829
2aef6f30 6830#ifdef CONFIG_GUEST_PERF_EVENTS
ff083a2d 6831struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
39447b38 6832
87b940a0
SC
6833DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6834DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6835DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
39447b38 6836
2934e3d0 6837void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
39447b38 6838{
ff083a2d 6839 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
2934e3d0 6840 return;
ff083a2d
SC
6841
6842 rcu_assign_pointer(perf_guest_cbs, cbs);
87b940a0
SC
6843 static_call_update(__perf_guest_state, cbs->state);
6844 static_call_update(__perf_guest_get_ip, cbs->get_ip);
6845
6846 /* Implementing ->handle_intel_pt_intr is optional. */
6847 if (cbs->handle_intel_pt_intr)
6848 static_call_update(__perf_guest_handle_intel_pt_intr,
6849 cbs->handle_intel_pt_intr);
39447b38
ZY
6850}
6851EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6852
2934e3d0 6853void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
39447b38 6854{
ff083a2d 6855 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
2934e3d0 6856 return;
ff083a2d
SC
6857
6858 rcu_assign_pointer(perf_guest_cbs, NULL);
87b940a0
SC
6859 static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6860 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6861 static_call_update(__perf_guest_handle_intel_pt_intr,
6862 (void *)&__static_call_return0);
ff083a2d 6863 synchronize_rcu();
39447b38
ZY
6864}
6865EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
2aef6f30 6866#endif
39447b38 6867
4018994f
JO
6868static void
6869perf_output_sample_regs(struct perf_output_handle *handle,
6870 struct pt_regs *regs, u64 mask)
6871{
6872 int bit;
29dd3288 6873 DECLARE_BITMAP(_mask, 64);
4018994f 6874
29dd3288
MS
6875 bitmap_from_u64(_mask, mask);
6876 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
6877 u64 val;
6878
6879 val = perf_reg_value(regs, bit);
6880 perf_output_put(handle, val);
6881 }
6882}
6883
60e2364e 6884static void perf_sample_regs_user(struct perf_regs *regs_user,
76a4efa8 6885 struct pt_regs *regs)
4018994f 6886{
88a7c26a
AL
6887 if (user_mode(regs)) {
6888 regs_user->abi = perf_reg_abi(current);
2565711f 6889 regs_user->regs = regs;
085ebfe9 6890 } else if (!(current->flags & PF_KTHREAD)) {
76a4efa8 6891 perf_get_regs_user(regs_user, regs);
2565711f
PZ
6892 } else {
6893 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6894 regs_user->regs = NULL;
4018994f
JO
6895 }
6896}
6897
60e2364e
SE
6898static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6899 struct pt_regs *regs)
6900{
6901 regs_intr->regs = regs;
6902 regs_intr->abi = perf_reg_abi(current);
6903}
6904
6905
c5ebcedb
JO
6906/*
6907 * Get remaining task size from user stack pointer.
6908 *
6909 * It'd be better to take stack vma map and limit this more
9f014e3a 6910 * precisely, but there's no way to get it safely under interrupt,
c5ebcedb
JO
6911 * so using TASK_SIZE as limit.
6912 */
6913static u64 perf_ustack_task_size(struct pt_regs *regs)
6914{
6915 unsigned long addr = perf_user_stack_pointer(regs);
6916
6917 if (!addr || addr >= TASK_SIZE)
6918 return 0;
6919
6920 return TASK_SIZE - addr;
6921}
6922
6923static u16
6924perf_sample_ustack_size(u16 stack_size, u16 header_size,
6925 struct pt_regs *regs)
6926{
6927 u64 task_size;
6928
6929 /* No regs, no stack pointer, no dump. */
6930 if (!regs)
6931 return 0;
6932
6933 /*
6934 * Check if we fit in with the requested stack size into the:
6935 * - TASK_SIZE
6936 * If we don't, we limit the size to the TASK_SIZE.
6937 *
6938 * - remaining sample size
6939 * If we don't, we customize the stack size to
6940 * fit in to the remaining sample size.
6941 */
6942
6943 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6944 stack_size = min(stack_size, (u16) task_size);
6945
6946 /* Current header size plus static size and dynamic size. */
6947 header_size += 2 * sizeof(u64);
6948
6949 /* Do we fit in with the current stack dump size? */
6950 if ((u16) (header_size + stack_size) < header_size) {
6951 /*
6952 * If we overflow the maximum size for the sample,
6953 * we customize the stack dump size to fit in.
6954 */
6955 stack_size = USHRT_MAX - header_size - sizeof(u64);
6956 stack_size = round_up(stack_size, sizeof(u64));
6957 }
6958
6959 return stack_size;
6960}
6961
6962static void
6963perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6964 struct pt_regs *regs)
6965{
6966 /* Case of a kernel thread, nothing to dump */
6967 if (!regs) {
6968 u64 size = 0;
6969 perf_output_put(handle, size);
6970 } else {
6971 unsigned long sp;
6972 unsigned int rem;
6973 u64 dyn_size;
6974
6975 /*
6976 * We dump:
6977 * static size
6978 * - the size requested by user or the best one we can fit
6979 * in to the sample max size
6980 * data
6981 * - user stack dump data
6982 * dynamic size
6983 * - the actual dumped size
6984 */
6985
6986 /* Static size. */
6987 perf_output_put(handle, dump_size);
6988
6989 /* Data. */
6990 sp = perf_user_stack_pointer(regs);
6991 rem = __output_copy_user(handle, (void *) sp, dump_size);
6992 dyn_size = dump_size - rem;
6993
6994 perf_output_skip(handle, rem);
6995
6996 /* Dynamic size. */
6997 perf_output_put(handle, dyn_size);
6998 }
6999}
7000
a4faf00d
AS
7001static unsigned long perf_prepare_sample_aux(struct perf_event *event,
7002 struct perf_sample_data *data,
7003 size_t size)
7004{
7005 struct perf_event *sampler = event->aux_event;
56de4e8f 7006 struct perf_buffer *rb;
a4faf00d
AS
7007
7008 data->aux_size = 0;
7009
7010 if (!sampler)
7011 goto out;
7012
7013 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7014 goto out;
7015
7016 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7017 goto out;
7018
961c3912 7019 rb = ring_buffer_get(sampler);
a4faf00d
AS
7020 if (!rb)
7021 goto out;
7022
7023 /*
7024 * If this is an NMI hit inside sampling code, don't take
7025 * the sample. See also perf_aux_sample_output().
7026 */
7027 if (READ_ONCE(rb->aux_in_sampling)) {
7028 data->aux_size = 0;
7029 } else {
7030 size = min_t(size_t, size, perf_aux_size(rb));
7031 data->aux_size = ALIGN(size, sizeof(u64));
7032 }
7033 ring_buffer_put(rb);
7034
7035out:
7036 return data->aux_size;
7037}
7038
32961aec
HX
7039static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7040 struct perf_event *event,
7041 struct perf_output_handle *handle,
7042 unsigned long size)
a4faf00d
AS
7043{
7044 unsigned long flags;
7045 long ret;
7046
7047 /*
7048 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7049 * paths. If we start calling them in NMI context, they may race with
7050 * the IRQ ones, that is, for example, re-starting an event that's just
7051 * been stopped, which is why we're using a separate callback that
7052 * doesn't change the event state.
7053 *
7054 * IRQs need to be disabled to prevent IPIs from racing with us.
7055 */
7056 local_irq_save(flags);
7057 /*
7058 * Guard against NMI hits inside the critical section;
7059 * see also perf_prepare_sample_aux().
7060 */
7061 WRITE_ONCE(rb->aux_in_sampling, 1);
7062 barrier();
7063
7064 ret = event->pmu->snapshot_aux(event, handle, size);
7065
7066 barrier();
7067 WRITE_ONCE(rb->aux_in_sampling, 0);
7068 local_irq_restore(flags);
7069
7070 return ret;
7071}
7072
7073static void perf_aux_sample_output(struct perf_event *event,
7074 struct perf_output_handle *handle,
7075 struct perf_sample_data *data)
7076{
7077 struct perf_event *sampler = event->aux_event;
56de4e8f 7078 struct perf_buffer *rb;
a4faf00d 7079 unsigned long pad;
a4faf00d
AS
7080 long size;
7081
7082 if (WARN_ON_ONCE(!sampler || !data->aux_size))
7083 return;
7084
961c3912 7085 rb = ring_buffer_get(sampler);
a4faf00d
AS
7086 if (!rb)
7087 return;
7088
7089 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7090
7091 /*
7092 * An error here means that perf_output_copy() failed (returned a
7093 * non-zero surplus that it didn't copy), which in its current
7094 * enlightened implementation is not possible. If that changes, we'd
7095 * like to know.
7096 */
7097 if (WARN_ON_ONCE(size < 0))
7098 goto out_put;
7099
7100 /*
7101 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7102 * perf_prepare_sample_aux(), so should not be more than that.
7103 */
7104 pad = data->aux_size - size;
7105 if (WARN_ON_ONCE(pad >= sizeof(u64)))
7106 pad = 8;
7107
7108 if (pad) {
7109 u64 zero = 0;
7110 perf_output_copy(handle, &zero, pad);
7111 }
7112
7113out_put:
7114 ring_buffer_put(rb);
7115}
7116
bb447c27
NK
7117/*
7118 * A set of common sample data types saved even for non-sample records
7119 * when event->attr.sample_id_all is set.
7120 */
7121#define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \
7122 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \
7123 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7124
a7c8d0da 7125static void __perf_event_header__init_id(struct perf_sample_data *data,
3aac580d
KL
7126 struct perf_event *event,
7127 u64 sample_type)
6844c09d 7128{
3aac580d 7129 data->type = event->attr.sample_type;
bb447c27 7130 data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
6844c09d
ACM
7131
7132 if (sample_type & PERF_SAMPLE_TID) {
7133 /* namespace issues */
7134 data->tid_entry.pid = perf_event_pid(event, current);
7135 data->tid_entry.tid = perf_event_tid(event, current);
7136 }
7137
7138 if (sample_type & PERF_SAMPLE_TIME)
34f43927 7139 data->time = perf_event_clock(event);
6844c09d 7140
ff3d527c 7141 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
7142 data->id = primary_event_id(event);
7143
7144 if (sample_type & PERF_SAMPLE_STREAM_ID)
7145 data->stream_id = event->id;
7146
7147 if (sample_type & PERF_SAMPLE_CPU) {
7148 data->cpu_entry.cpu = raw_smp_processor_id();
7149 data->cpu_entry.reserved = 0;
7150 }
7151}
7152
76369139
FW
7153void perf_event_header__init_id(struct perf_event_header *header,
7154 struct perf_sample_data *data,
7155 struct perf_event *event)
c980d109 7156{
a7c8d0da
NK
7157 if (event->attr.sample_id_all) {
7158 header->size += event->id_header_size;
7159 __perf_event_header__init_id(data, event, event->attr.sample_type);
7160 }
c980d109
ACM
7161}
7162
7163static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7164 struct perf_sample_data *data)
7165{
7166 u64 sample_type = data->type;
7167
7168 if (sample_type & PERF_SAMPLE_TID)
7169 perf_output_put(handle, data->tid_entry);
7170
7171 if (sample_type & PERF_SAMPLE_TIME)
7172 perf_output_put(handle, data->time);
7173
7174 if (sample_type & PERF_SAMPLE_ID)
7175 perf_output_put(handle, data->id);
7176
7177 if (sample_type & PERF_SAMPLE_STREAM_ID)
7178 perf_output_put(handle, data->stream_id);
7179
7180 if (sample_type & PERF_SAMPLE_CPU)
7181 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
7182
7183 if (sample_type & PERF_SAMPLE_IDENTIFIER)
7184 perf_output_put(handle, data->id);
c980d109
ACM
7185}
7186
76369139
FW
7187void perf_event__output_id_sample(struct perf_event *event,
7188 struct perf_output_handle *handle,
7189 struct perf_sample_data *sample)
c980d109
ACM
7190{
7191 if (event->attr.sample_id_all)
7192 __perf_event__output_id_sample(handle, sample);
7193}
7194
3dab77fb 7195static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
7196 struct perf_event *event,
7197 u64 enabled, u64 running)
3dab77fb 7198{
cdd6c482 7199 u64 read_format = event->attr.read_format;
119a784c 7200 u64 values[5];
3dab77fb
PZ
7201 int n = 0;
7202
b5e58793 7203 values[n++] = perf_event_count(event);
3dab77fb 7204 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 7205 values[n++] = enabled +
cdd6c482 7206 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
7207 }
7208 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 7209 values[n++] = running +
cdd6c482 7210 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
7211 }
7212 if (read_format & PERF_FORMAT_ID)
cdd6c482 7213 values[n++] = primary_event_id(event);
119a784c
NK
7214 if (read_format & PERF_FORMAT_LOST)
7215 values[n++] = atomic64_read(&event->lost_samples);
3dab77fb 7216
76369139 7217 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
7218}
7219
3dab77fb 7220static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
7221 struct perf_event *event,
7222 u64 enabled, u64 running)
3dab77fb 7223{
cdd6c482
IM
7224 struct perf_event *leader = event->group_leader, *sub;
7225 u64 read_format = event->attr.read_format;
6b959ba2 7226 unsigned long flags;
119a784c 7227 u64 values[6];
3dab77fb
PZ
7228 int n = 0;
7229
6b959ba2
YJ
7230 /*
7231 * Disabling interrupts avoids all counter scheduling
7232 * (context switches, timer based rotation and IPIs).
7233 */
7234 local_irq_save(flags);
7235
3dab77fb
PZ
7236 values[n++] = 1 + leader->nr_siblings;
7237
7238 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 7239 values[n++] = enabled;
3dab77fb
PZ
7240
7241 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 7242 values[n++] = running;
3dab77fb 7243
9e5b127d
PZ
7244 if ((leader != event) &&
7245 (leader->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
7246 leader->pmu->read(leader);
7247
b5e58793 7248 values[n++] = perf_event_count(leader);
3dab77fb 7249 if (read_format & PERF_FORMAT_ID)
cdd6c482 7250 values[n++] = primary_event_id(leader);
119a784c
NK
7251 if (read_format & PERF_FORMAT_LOST)
7252 values[n++] = atomic64_read(&leader->lost_samples);
3dab77fb 7253
76369139 7254 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 7255
edb39592 7256 for_each_sibling_event(sub, leader) {
3dab77fb
PZ
7257 n = 0;
7258
6f5ab001
JO
7259 if ((sub != event) &&
7260 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
7261 sub->pmu->read(sub);
7262
b5e58793 7263 values[n++] = perf_event_count(sub);
3dab77fb 7264 if (read_format & PERF_FORMAT_ID)
cdd6c482 7265 values[n++] = primary_event_id(sub);
119a784c
NK
7266 if (read_format & PERF_FORMAT_LOST)
7267 values[n++] = atomic64_read(&sub->lost_samples);
3dab77fb 7268
76369139 7269 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 7270 }
6b959ba2
YJ
7271
7272 local_irq_restore(flags);
3dab77fb
PZ
7273}
7274
eed01528
SE
7275#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7276 PERF_FORMAT_TOTAL_TIME_RUNNING)
7277
ba5213ae
PZ
7278/*
7279 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7280 *
7281 * The problem is that its both hard and excessively expensive to iterate the
7282 * child list, not to mention that its impossible to IPI the children running
7283 * on another CPU, from interrupt/NMI context.
7284 */
3dab77fb 7285static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 7286 struct perf_event *event)
3dab77fb 7287{
e3f3541c 7288 u64 enabled = 0, running = 0, now;
eed01528
SE
7289 u64 read_format = event->attr.read_format;
7290
7291 /*
7292 * compute total_time_enabled, total_time_running
7293 * based on snapshot values taken when the event
7294 * was last scheduled in.
7295 *
7296 * we cannot simply called update_context_time()
7297 * because of locking issue as we are called in
7298 * NMI context
7299 */
c4794295 7300 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 7301 calc_timer_values(event, &now, &enabled, &running);
eed01528 7302
cdd6c482 7303 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 7304 perf_output_read_group(handle, event, enabled, running);
3dab77fb 7305 else
eed01528 7306 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
7307}
7308
5622f295
MM
7309void perf_output_sample(struct perf_output_handle *handle,
7310 struct perf_event_header *header,
7311 struct perf_sample_data *data,
cdd6c482 7312 struct perf_event *event)
5622f295
MM
7313{
7314 u64 sample_type = data->type;
7315
7316 perf_output_put(handle, *header);
7317
ff3d527c
AH
7318 if (sample_type & PERF_SAMPLE_IDENTIFIER)
7319 perf_output_put(handle, data->id);
7320
5622f295
MM
7321 if (sample_type & PERF_SAMPLE_IP)
7322 perf_output_put(handle, data->ip);
7323
7324 if (sample_type & PERF_SAMPLE_TID)
7325 perf_output_put(handle, data->tid_entry);
7326
7327 if (sample_type & PERF_SAMPLE_TIME)
7328 perf_output_put(handle, data->time);
7329
7330 if (sample_type & PERF_SAMPLE_ADDR)
7331 perf_output_put(handle, data->addr);
7332
7333 if (sample_type & PERF_SAMPLE_ID)
7334 perf_output_put(handle, data->id);
7335
7336 if (sample_type & PERF_SAMPLE_STREAM_ID)
7337 perf_output_put(handle, data->stream_id);
7338
7339 if (sample_type & PERF_SAMPLE_CPU)
7340 perf_output_put(handle, data->cpu_entry);
7341
7342 if (sample_type & PERF_SAMPLE_PERIOD)
7343 perf_output_put(handle, data->period);
7344
7345 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 7346 perf_output_read(handle, event);
5622f295
MM
7347
7348 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
99e818cc 7349 int size = 1;
5622f295 7350
99e818cc
JO
7351 size += data->callchain->nr;
7352 size *= sizeof(u64);
7353 __output_copy(handle, data->callchain, size);
5622f295
MM
7354 }
7355
7356 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
7357 struct perf_raw_record *raw = data->raw;
7358
7359 if (raw) {
7360 struct perf_raw_frag *frag = &raw->frag;
7361
7362 perf_output_put(handle, raw->size);
7363 do {
7364 if (frag->copy) {
7365 __output_custom(handle, frag->copy,
7366 frag->data, frag->size);
7367 } else {
7368 __output_copy(handle, frag->data,
7369 frag->size);
7370 }
7371 if (perf_raw_frag_last(frag))
7372 break;
7373 frag = frag->next;
7374 } while (1);
7375 if (frag->pad)
7376 __output_skip(handle, NULL, frag->pad);
5622f295
MM
7377 } else {
7378 struct {
7379 u32 size;
7380 u32 data;
7381 } raw = {
7382 .size = sizeof(u32),
7383 .data = 0,
7384 };
7385 perf_output_put(handle, raw);
7386 }
7387 }
a7ac67ea 7388
bce38cd5 7389 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
eb55b455 7390 if (data->br_stack) {
bce38cd5
SE
7391 size_t size;
7392
7393 size = data->br_stack->nr
7394 * sizeof(struct perf_branch_entry);
7395
7396 perf_output_put(handle, data->br_stack->nr);
03b02db9 7397 if (branch_sample_hw_index(event))
bbfd5e4f 7398 perf_output_put(handle, data->br_stack->hw_idx);
bce38cd5 7399 perf_output_copy(handle, data->br_stack->entries, size);
571d91dc
KL
7400 /*
7401 * Add the extension space which is appended
7402 * right after the struct perf_branch_stack.
7403 */
7404 if (data->br_stack_cntr) {
7405 size = data->br_stack->nr * sizeof(u64);
7406 perf_output_copy(handle, data->br_stack_cntr, size);
7407 }
bce38cd5
SE
7408 } else {
7409 /*
7410 * we always store at least the value of nr
7411 */
7412 u64 nr = 0;
7413 perf_output_put(handle, nr);
7414 }
7415 }
4018994f
JO
7416
7417 if (sample_type & PERF_SAMPLE_REGS_USER) {
7418 u64 abi = data->regs_user.abi;
7419
7420 /*
7421 * If there are no regs to dump, notice it through
7422 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7423 */
7424 perf_output_put(handle, abi);
7425
7426 if (abi) {
7427 u64 mask = event->attr.sample_regs_user;
7428 perf_output_sample_regs(handle,
7429 data->regs_user.regs,
7430 mask);
7431 }
7432 }
c5ebcedb 7433
a5cdd40c 7434 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
7435 perf_output_sample_ustack(handle,
7436 data->stack_user_size,
7437 data->regs_user.regs);
a5cdd40c 7438 }
c3feedf2 7439
2a6c6b7d
KL
7440 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7441 perf_output_put(handle, data->weight.full);
d6be9ad6
SE
7442
7443 if (sample_type & PERF_SAMPLE_DATA_SRC)
7444 perf_output_put(handle, data->data_src.val);
a5cdd40c 7445
fdfbbd07
AK
7446 if (sample_type & PERF_SAMPLE_TRANSACTION)
7447 perf_output_put(handle, data->txn);
7448
60e2364e
SE
7449 if (sample_type & PERF_SAMPLE_REGS_INTR) {
7450 u64 abi = data->regs_intr.abi;
7451 /*
7452 * If there are no regs to dump, notice it through
7453 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7454 */
7455 perf_output_put(handle, abi);
7456
7457 if (abi) {
7458 u64 mask = event->attr.sample_regs_intr;
7459
7460 perf_output_sample_regs(handle,
7461 data->regs_intr.regs,
7462 mask);
7463 }
7464 }
7465
fc7ce9c7
KL
7466 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7467 perf_output_put(handle, data->phys_addr);
7468
6546b19f
NK
7469 if (sample_type & PERF_SAMPLE_CGROUP)
7470 perf_output_put(handle, data->cgroup);
7471
8d97e718
KL
7472 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7473 perf_output_put(handle, data->data_page_size);
7474
995f088e
SE
7475 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7476 perf_output_put(handle, data->code_page_size);
7477
a4faf00d
AS
7478 if (sample_type & PERF_SAMPLE_AUX) {
7479 perf_output_put(handle, data->aux_size);
7480
7481 if (data->aux_size)
7482 perf_aux_sample_output(event, handle, data);
7483 }
7484
a5cdd40c
PZ
7485 if (!event->attr.watermark) {
7486 int wakeup_events = event->attr.wakeup_events;
7487
7488 if (wakeup_events) {
56de4e8f 7489 struct perf_buffer *rb = handle->rb;
a5cdd40c
PZ
7490 int events = local_inc_return(&rb->events);
7491
7492 if (events >= wakeup_events) {
7493 local_sub(wakeup_events, &rb->events);
7494 local_inc(&rb->wakeup);
7495 }
7496 }
7497 }
5622f295
MM
7498}
7499
fc7ce9c7
KL
7500static u64 perf_virt_to_phys(u64 virt)
7501{
7502 u64 phys_addr = 0;
fc7ce9c7
KL
7503
7504 if (!virt)
7505 return 0;
7506
7507 if (virt >= TASK_SIZE) {
7508 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7509 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7510 !(virt >= VMALLOC_START && virt < VMALLOC_END))
7511 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7512 } else {
7513 /*
7514 * Walking the pages tables for user address.
7515 * Interrupts are disabled, so it prevents any tear down
7516 * of the page tables.
dadbb612 7517 * Try IRQ-safe get_user_page_fast_only first.
fc7ce9c7
KL
7518 * If failed, leave phys_addr as 0.
7519 */
d3296fb3 7520 if (current->mm != NULL) {
4716023a
GT
7521 struct page *p;
7522
d3296fb3 7523 pagefault_disable();
4716023a 7524 if (get_user_page_fast_only(virt, 0, &p)) {
d3296fb3 7525 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
4716023a
GT
7526 put_page(p);
7527 }
d3296fb3
JO
7528 pagefault_enable();
7529 }
fc7ce9c7
KL
7530 }
7531
7532 return phys_addr;
7533}
7534
8d97e718 7535/*
8af26be0 7536 * Return the pagetable size of a given virtual address.
8d97e718 7537 */
8af26be0 7538static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
8d97e718 7539{
8af26be0 7540 u64 size = 0;
8d97e718 7541
8af26be0
PZ
7542#ifdef CONFIG_HAVE_FAST_GUP
7543 pgd_t *pgdp, pgd;
7544 p4d_t *p4dp, p4d;
7545 pud_t *pudp, pud;
7546 pmd_t *pmdp, pmd;
7547 pte_t *ptep, pte;
8d97e718 7548
8af26be0
PZ
7549 pgdp = pgd_offset(mm, addr);
7550 pgd = READ_ONCE(*pgdp);
7551 if (pgd_none(pgd))
8d97e718
KL
7552 return 0;
7553
8af26be0
PZ
7554 if (pgd_leaf(pgd))
7555 return pgd_leaf_size(pgd);
8d97e718 7556
8af26be0
PZ
7557 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7558 p4d = READ_ONCE(*p4dp);
7559 if (!p4d_present(p4d))
8d97e718
KL
7560 return 0;
7561
8af26be0
PZ
7562 if (p4d_leaf(p4d))
7563 return p4d_leaf_size(p4d);
8d97e718 7564
8af26be0
PZ
7565 pudp = pud_offset_lockless(p4dp, p4d, addr);
7566 pud = READ_ONCE(*pudp);
7567 if (!pud_present(pud))
8d97e718
KL
7568 return 0;
7569
8af26be0
PZ
7570 if (pud_leaf(pud))
7571 return pud_leaf_size(pud);
8d97e718 7572
8af26be0 7573 pmdp = pmd_offset_lockless(pudp, pud, addr);
a92cbb82 7574again:
1180e732 7575 pmd = pmdp_get_lockless(pmdp);
8af26be0 7576 if (!pmd_present(pmd))
8d97e718 7577 return 0;
8d97e718 7578
8af26be0
PZ
7579 if (pmd_leaf(pmd))
7580 return pmd_leaf_size(pmd);
51b646b2 7581
8af26be0 7582 ptep = pte_offset_map(&pmd, addr);
a92cbb82
HD
7583 if (!ptep)
7584 goto again;
7585
8af26be0
PZ
7586 pte = ptep_get_lockless(ptep);
7587 if (pte_present(pte))
7588 size = pte_leaf_size(pte);
7589 pte_unmap(ptep);
7590#endif /* CONFIG_HAVE_FAST_GUP */
8d97e718 7591
8af26be0 7592 return size;
8d97e718
KL
7593}
7594
8d97e718
KL
7595static u64 perf_get_page_size(unsigned long addr)
7596{
7597 struct mm_struct *mm;
7598 unsigned long flags;
7599 u64 size;
7600
7601 if (!addr)
7602 return 0;
7603
7604 /*
7605 * Software page-table walkers must disable IRQs,
7606 * which prevents any tear down of the page tables.
7607 */
7608 local_irq_save(flags);
7609
7610 mm = current->mm;
7611 if (!mm) {
7612 /*
7613 * For kernel threads and the like, use init_mm so that
7614 * we can find kernel memory.
7615 */
7616 mm = &init_mm;
7617 }
7618
8af26be0 7619 size = perf_get_pgtable_size(mm, addr);
8d97e718
KL
7620
7621 local_irq_restore(flags);
7622
7623 return size;
7624}
7625
99e818cc
JO
7626static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7627
6cbc304f 7628struct perf_callchain_entry *
8cf7e0e2
JO
7629perf_callchain(struct perf_event *event, struct pt_regs *regs)
7630{
7631 bool kernel = !event->attr.exclude_callchain_kernel;
7632 bool user = !event->attr.exclude_callchain_user;
7633 /* Disallow cross-task user callchains. */
7634 bool crosstask = event->ctx->task && event->ctx->task != current;
7635 const u32 max_stack = event->attr.sample_max_stack;
99e818cc 7636 struct perf_callchain_entry *callchain;
8cf7e0e2
JO
7637
7638 if (!kernel && !user)
99e818cc 7639 return &__empty_callchain;
8cf7e0e2 7640
99e818cc
JO
7641 callchain = get_perf_callchain(regs, 0, kernel, user,
7642 max_stack, crosstask, true);
7643 return callchain ?: &__empty_callchain;
8cf7e0e2
JO
7644}
7645
bb447c27
NK
7646static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7647{
7648 return d * !!(flags & s);
7649}
7650
f6e70715 7651void perf_prepare_sample(struct perf_sample_data *data,
cdd6c482 7652 struct perf_event *event,
5622f295 7653 struct pt_regs *regs)
7b732a75 7654{
cdd6c482 7655 u64 sample_type = event->attr.sample_type;
3aac580d 7656 u64 filtered_sample_type;
7b732a75 7657
3aac580d 7658 /*
bb447c27
NK
7659 * Add the sample flags that are dependent to others. And clear the
7660 * sample flags that have already been done by the PMU driver.
3aac580d 7661 */
bb447c27
NK
7662 filtered_sample_type = sample_type;
7663 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7664 PERF_SAMPLE_IP);
7665 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7666 PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7667 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7668 PERF_SAMPLE_REGS_USER);
7669 filtered_sample_type &= ~data->sample_flags;
6844c09d 7670
f6e70715
NK
7671 if (filtered_sample_type == 0) {
7672 /* Make sure it has the correct data->type for output */
7673 data->type = event->attr.sample_type;
7674 return;
394ee076
PZ
7675 }
7676
a7c8d0da 7677 __perf_event_header__init_id(data, event, filtered_sample_type);
7e3f977e 7678
bb447c27 7679 if (filtered_sample_type & PERF_SAMPLE_IP) {
5622f295 7680 data->ip = perf_instruction_pointer(regs);
bb447c27
NK
7681 data->sample_flags |= PERF_SAMPLE_IP;
7682 }
7e3f977e 7683
31046500
NK
7684 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7685 perf_sample_save_callchain(data, event, regs);
a044560c 7686
0a9081cf
NK
7687 if (filtered_sample_type & PERF_SAMPLE_RAW) {
7688 data->raw = NULL;
7689 data->dyn_size += sizeof(u64);
7690 data->sample_flags |= PERF_SAMPLE_RAW;
7f453c24 7691 }
bce38cd5 7692
eb55b455
NK
7693 if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7694 data->br_stack = NULL;
7695 data->dyn_size += sizeof(u64);
7696 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
bce38cd5 7697 }
4018994f 7698
bb447c27 7699 if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
76a4efa8 7700 perf_sample_regs_user(&data->regs_user, regs);
2565711f 7701
bb447c27
NK
7702 /*
7703 * It cannot use the filtered_sample_type here as REGS_USER can be set
7704 * by STACK_USER (using __cond_set() above) and we don't want to update
7705 * the dyn_size if it's not requested by users.
7706 */
7707 if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
4018994f
JO
7708 /* regs dump ABI info */
7709 int size = sizeof(u64);
7710
4018994f
JO
7711 if (data->regs_user.regs) {
7712 u64 mask = event->attr.sample_regs_user;
7713 size += hweight64(mask) * sizeof(u64);
7714 }
7715
4cf7a136 7716 data->dyn_size += size;
bb447c27 7717 data->sample_flags |= PERF_SAMPLE_REGS_USER;
4018994f 7718 }
c5ebcedb 7719
bb447c27 7720 if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb 7721 /*
9f014e3a 7722 * Either we need PERF_SAMPLE_STACK_USER bit to be always
c5ebcedb
JO
7723 * processed as the last one or have additional check added
7724 * in case new sample type is added, because we could eat
7725 * up the rest of the sample size.
7726 */
c5ebcedb 7727 u16 stack_size = event->attr.sample_stack_user;
f6e70715 7728 u16 header_size = perf_sample_data_size(data, event);
c5ebcedb
JO
7729 u16 size = sizeof(u64);
7730
f6e70715 7731 stack_size = perf_sample_ustack_size(stack_size, header_size,
2565711f 7732 data->regs_user.regs);
c5ebcedb
JO
7733
7734 /*
7735 * If there is something to dump, add space for the dump
7736 * itself and for the field that tells the dynamic size,
7737 * which is how many have been actually dumped.
7738 */
7739 if (stack_size)
7740 size += sizeof(u64) + stack_size;
7741
7742 data->stack_user_size = stack_size;
4cf7a136 7743 data->dyn_size += size;
bb447c27 7744 data->sample_flags |= PERF_SAMPLE_STACK_USER;
c5ebcedb 7745 }
60e2364e 7746
bb447c27 7747 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
2abe681d 7748 data->weight.full = 0;
bb447c27
NK
7749 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7750 }
2abe681d 7751
bb447c27 7752 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
e16fd7f2 7753 data->data_src.val = PERF_MEM_NA;
bb447c27
NK
7754 data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7755 }
e16fd7f2 7756
bb447c27 7757 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
ee9db0e1 7758 data->txn = 0;
bb447c27
NK
7759 data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7760 }
ee9db0e1 7761
bb447c27
NK
7762 if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7763 data->addr = 0;
7764 data->sample_flags |= PERF_SAMPLE_ADDR;
7b084630
NK
7765 }
7766
bb447c27 7767 if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
60e2364e
SE
7768 /* regs dump ABI info */
7769 int size = sizeof(u64);
7770
7771 perf_sample_regs_intr(&data->regs_intr, regs);
7772
7773 if (data->regs_intr.regs) {
7774 u64 mask = event->attr.sample_regs_intr;
7775
7776 size += hweight64(mask) * sizeof(u64);
7777 }
7778
4cf7a136 7779 data->dyn_size += size;
bb447c27 7780 data->sample_flags |= PERF_SAMPLE_REGS_INTR;
60e2364e 7781 }
fc7ce9c7 7782
bb447c27 7783 if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
fc7ce9c7 7784 data->phys_addr = perf_virt_to_phys(data->addr);
bb447c27
NK
7785 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
7786 }
a4faf00d 7787
6546b19f 7788#ifdef CONFIG_CGROUP_PERF
bb447c27 7789 if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
6546b19f
NK
7790 struct cgroup *cgrp;
7791
7792 /* protected by RCU */
7793 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7794 data->cgroup = cgroup_id(cgrp);
bb447c27 7795 data->sample_flags |= PERF_SAMPLE_CGROUP;
6546b19f
NK
7796 }
7797#endif
7798
8d97e718
KL
7799 /*
7800 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7801 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7802 * but the value will not dump to the userspace.
7803 */
bb447c27 7804 if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
8d97e718 7805 data->data_page_size = perf_get_page_size(data->addr);
bb447c27
NK
7806 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
7807 }
8d97e718 7808
bb447c27 7809 if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
995f088e 7810 data->code_page_size = perf_get_page_size(data->ip);
bb447c27
NK
7811 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
7812 }
995f088e 7813
bb447c27 7814 if (filtered_sample_type & PERF_SAMPLE_AUX) {
a4faf00d 7815 u64 size;
f6e70715 7816 u16 header_size = perf_sample_data_size(data, event);
a4faf00d 7817
f6e70715 7818 header_size += sizeof(u64); /* size */
a4faf00d
AS
7819
7820 /*
7821 * Given the 16bit nature of header::size, an AUX sample can
7822 * easily overflow it, what with all the preceding sample bits.
7823 * Make sure this doesn't happen by using up to U16_MAX bytes
7824 * per sample in total (rounded down to 8 byte boundary).
7825 */
f6e70715 7826 size = min_t(size_t, U16_MAX - header_size,
a4faf00d
AS
7827 event->attr.aux_sample_size);
7828 size = rounddown(size, 8);
7829 size = perf_prepare_sample_aux(event, data, size);
7830
f6e70715 7831 WARN_ON_ONCE(size + header_size > U16_MAX);
4cf7a136 7832 data->dyn_size += size + sizeof(u64); /* size above */
bb447c27 7833 data->sample_flags |= PERF_SAMPLE_AUX;
a4faf00d 7834 }
f6e70715 7835}
4cf7a136 7836
f6e70715
NK
7837void perf_prepare_header(struct perf_event_header *header,
7838 struct perf_sample_data *data,
7839 struct perf_event *event,
7840 struct pt_regs *regs)
7841{
7842 header->type = PERF_RECORD_SAMPLE;
7843 header->size = perf_sample_data_size(data, event);
7844 header->misc = perf_misc_flags(regs);
4cf7a136 7845
a4faf00d
AS
7846 /*
7847 * If you're adding more sample types here, you likely need to do
7848 * something about the overflowing header::size, like repurpose the
7849 * lowest 3 bits of size, which should be always zero at the moment.
7850 * This raises a more important question, do we really need 512k sized
7851 * samples and why, so good argumentation is in order for whatever you
7852 * do here next.
7853 */
7854 WARN_ON_ONCE(header->size & 7);
5622f295 7855}
7f453c24 7856
56201969 7857static __always_inline int
9ecda41a
WN
7858__perf_event_output(struct perf_event *event,
7859 struct perf_sample_data *data,
7860 struct pt_regs *regs,
7861 int (*output_begin)(struct perf_output_handle *,
267fb273 7862 struct perf_sample_data *,
9ecda41a
WN
7863 struct perf_event *,
7864 unsigned int))
5622f295
MM
7865{
7866 struct perf_output_handle handle;
7867 struct perf_event_header header;
56201969 7868 int err;
689802b2 7869
927c7a9e
FW
7870 /* protect the callchain buffers */
7871 rcu_read_lock();
7872
f6e70715
NK
7873 perf_prepare_sample(data, event, regs);
7874 perf_prepare_header(&header, data, event, regs);
5c148194 7875
267fb273 7876 err = output_begin(&handle, data, event, header.size);
56201969 7877 if (err)
927c7a9e 7878 goto exit;
0322cd6e 7879
cdd6c482 7880 perf_output_sample(&handle, &header, data, event);
f413cdb8 7881
8a057d84 7882 perf_output_end(&handle);
927c7a9e
FW
7883
7884exit:
7885 rcu_read_unlock();
56201969 7886 return err;
0322cd6e
PZ
7887}
7888
9ecda41a
WN
7889void
7890perf_event_output_forward(struct perf_event *event,
7891 struct perf_sample_data *data,
7892 struct pt_regs *regs)
7893{
7894 __perf_event_output(event, data, regs, perf_output_begin_forward);
7895}
7896
7897void
7898perf_event_output_backward(struct perf_event *event,
7899 struct perf_sample_data *data,
7900 struct pt_regs *regs)
7901{
7902 __perf_event_output(event, data, regs, perf_output_begin_backward);
7903}
7904
56201969 7905int
9ecda41a
WN
7906perf_event_output(struct perf_event *event,
7907 struct perf_sample_data *data,
7908 struct pt_regs *regs)
7909{
56201969 7910 return __perf_event_output(event, data, regs, perf_output_begin);
9ecda41a
WN
7911}
7912
38b200d6 7913/*
cdd6c482 7914 * read event_id
38b200d6
PZ
7915 */
7916
7917struct perf_read_event {
7918 struct perf_event_header header;
7919
7920 u32 pid;
7921 u32 tid;
38b200d6
PZ
7922};
7923
7924static void
cdd6c482 7925perf_event_read_event(struct perf_event *event,
38b200d6
PZ
7926 struct task_struct *task)
7927{
7928 struct perf_output_handle handle;
c980d109 7929 struct perf_sample_data sample;
dfc65094 7930 struct perf_read_event read_event = {
38b200d6 7931 .header = {
cdd6c482 7932 .type = PERF_RECORD_READ,
38b200d6 7933 .misc = 0,
c320c7b7 7934 .size = sizeof(read_event) + event->read_size,
38b200d6 7935 },
cdd6c482
IM
7936 .pid = perf_event_pid(event, task),
7937 .tid = perf_event_tid(event, task),
38b200d6 7938 };
3dab77fb 7939 int ret;
38b200d6 7940
c980d109 7941 perf_event_header__init_id(&read_event.header, &sample, event);
267fb273 7942 ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
38b200d6
PZ
7943 if (ret)
7944 return;
7945
dfc65094 7946 perf_output_put(&handle, read_event);
cdd6c482 7947 perf_output_read(&handle, event);
c980d109 7948 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 7949
38b200d6
PZ
7950 perf_output_end(&handle);
7951}
7952
aab5b71e 7953typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
7954
7955static void
aab5b71e
PZ
7956perf_iterate_ctx(struct perf_event_context *ctx,
7957 perf_iterate_f output,
b73e4fef 7958 void *data, bool all)
52d857a8
JO
7959{
7960 struct perf_event *event;
7961
7962 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
7963 if (!all) {
7964 if (event->state < PERF_EVENT_STATE_INACTIVE)
7965 continue;
7966 if (!event_filter_match(event))
7967 continue;
7968 }
7969
67516844 7970 output(event, data);
52d857a8
JO
7971 }
7972}
7973
aab5b71e 7974static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
7975{
7976 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7977 struct perf_event *event;
7978
7979 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
7980 /*
7981 * Skip events that are not fully formed yet; ensure that
7982 * if we observe event->ctx, both event and ctx will be
7983 * complete enough. See perf_install_in_context().
7984 */
7985 if (!smp_load_acquire(&event->ctx))
7986 continue;
7987
f2fb6bef
KL
7988 if (event->state < PERF_EVENT_STATE_INACTIVE)
7989 continue;
7990 if (!event_filter_match(event))
7991 continue;
7992 output(event, data);
7993 }
7994}
7995
aab5b71e
PZ
7996/*
7997 * Iterate all events that need to receive side-band events.
7998 *
7999 * For new callers; ensure that account_pmu_sb_event() includes
8000 * your event, otherwise it might not get delivered.
8001 */
52d857a8 8002static void
aab5b71e 8003perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
8004 struct perf_event_context *task_ctx)
8005{
52d857a8 8006 struct perf_event_context *ctx;
52d857a8 8007
aab5b71e
PZ
8008 rcu_read_lock();
8009 preempt_disable();
8010
4e93ad60 8011 /*
aab5b71e
PZ
8012 * If we have task_ctx != NULL we only notify the task context itself.
8013 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
8014 * context.
8015 */
8016 if (task_ctx) {
aab5b71e
PZ
8017 perf_iterate_ctx(task_ctx, output, data, false);
8018 goto done;
4e93ad60
JO
8019 }
8020
aab5b71e 8021 perf_iterate_sb_cpu(output, data);
f2fb6bef 8022
bd275681
PZ
8023 ctx = rcu_dereference(current->perf_event_ctxp);
8024 if (ctx)
8025 perf_iterate_ctx(ctx, output, data, false);
aab5b71e 8026done:
f2fb6bef 8027 preempt_enable();
52d857a8 8028 rcu_read_unlock();
95ff4ca2
AS
8029}
8030
375637bc
AS
8031/*
8032 * Clear all file-based filters at exec, they'll have to be
8033 * re-instated when/if these objects are mmapped again.
8034 */
8035static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8036{
8037 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8038 struct perf_addr_filter *filter;
8039 unsigned int restart = 0, count = 0;
8040 unsigned long flags;
8041
8042 if (!has_addr_filter(event))
8043 return;
8044
8045 raw_spin_lock_irqsave(&ifh->lock, flags);
8046 list_for_each_entry(filter, &ifh->list, entry) {
9511bce9 8047 if (filter->path.dentry) {
c60f83b8
AS
8048 event->addr_filter_ranges[count].start = 0;
8049 event->addr_filter_ranges[count].size = 0;
375637bc
AS
8050 restart++;
8051 }
8052
8053 count++;
8054 }
8055
8056 if (restart)
8057 event->addr_filters_gen++;
8058 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8059
8060 if (restart)
767ae086 8061 perf_event_stop(event, 1);
375637bc
AS
8062}
8063
8064void perf_event_exec(void)
8065{
8066 struct perf_event_context *ctx;
375637bc 8067
bd275681
PZ
8068 ctx = perf_pin_task_context(current);
8069 if (!ctx)
8070 return;
375637bc 8071
bd275681
PZ
8072 perf_event_enable_on_exec(ctx);
8073 perf_event_remove_on_exec(ctx);
8074 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
375637bc 8075
bd275681
PZ
8076 perf_unpin_context(ctx);
8077 put_ctx(ctx);
375637bc
AS
8078}
8079
95ff4ca2 8080struct remote_output {
56de4e8f 8081 struct perf_buffer *rb;
95ff4ca2
AS
8082 int err;
8083};
8084
8085static void __perf_event_output_stop(struct perf_event *event, void *data)
8086{
8087 struct perf_event *parent = event->parent;
8088 struct remote_output *ro = data;
56de4e8f 8089 struct perf_buffer *rb = ro->rb;
375637bc
AS
8090 struct stop_event_data sd = {
8091 .event = event,
8092 };
95ff4ca2
AS
8093
8094 if (!has_aux(event))
8095 return;
8096
8097 if (!parent)
8098 parent = event;
8099
8100 /*
8101 * In case of inheritance, it will be the parent that links to the
767ae086
AS
8102 * ring-buffer, but it will be the child that's actually using it.
8103 *
8104 * We are using event::rb to determine if the event should be stopped,
8105 * however this may race with ring_buffer_attach() (through set_output),
8106 * which will make us skip the event that actually needs to be stopped.
8107 * So ring_buffer_attach() has to stop an aux event before re-assigning
8108 * its rb pointer.
95ff4ca2
AS
8109 */
8110 if (rcu_dereference(parent->rb) == rb)
375637bc 8111 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
8112}
8113
8114static int __perf_pmu_output_stop(void *info)
8115{
8116 struct perf_event *event = info;
bd275681 8117 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
95ff4ca2
AS
8118 struct remote_output ro = {
8119 .rb = event->rb,
8120 };
8121
8122 rcu_read_lock();
aab5b71e 8123 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 8124 if (cpuctx->task_ctx)
aab5b71e 8125 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 8126 &ro, false);
95ff4ca2
AS
8127 rcu_read_unlock();
8128
8129 return ro.err;
8130}
8131
8132static void perf_pmu_output_stop(struct perf_event *event)
8133{
8134 struct perf_event *iter;
8135 int err, cpu;
8136
8137restart:
8138 rcu_read_lock();
8139 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8140 /*
8141 * For per-CPU events, we need to make sure that neither they
8142 * nor their children are running; for cpu==-1 events it's
8143 * sufficient to stop the event itself if it's active, since
8144 * it can't have children.
8145 */
8146 cpu = iter->cpu;
8147 if (cpu == -1)
8148 cpu = READ_ONCE(iter->oncpu);
8149
8150 if (cpu == -1)
8151 continue;
8152
8153 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8154 if (err == -EAGAIN) {
8155 rcu_read_unlock();
8156 goto restart;
8157 }
8158 }
8159 rcu_read_unlock();
52d857a8
JO
8160}
8161
60313ebe 8162/*
9f498cc5
PZ
8163 * task tracking -- fork/exit
8164 *
13d7a241 8165 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
8166 */
8167
9f498cc5 8168struct perf_task_event {
3a80b4a3 8169 struct task_struct *task;
cdd6c482 8170 struct perf_event_context *task_ctx;
60313ebe
PZ
8171
8172 struct {
8173 struct perf_event_header header;
8174
8175 u32 pid;
8176 u32 ppid;
9f498cc5
PZ
8177 u32 tid;
8178 u32 ptid;
393b2ad8 8179 u64 time;
cdd6c482 8180 } event_id;
60313ebe
PZ
8181};
8182
67516844
JO
8183static int perf_event_task_match(struct perf_event *event)
8184{
13d7a241
SE
8185 return event->attr.comm || event->attr.mmap ||
8186 event->attr.mmap2 || event->attr.mmap_data ||
8187 event->attr.task;
67516844
JO
8188}
8189
cdd6c482 8190static void perf_event_task_output(struct perf_event *event,
52d857a8 8191 void *data)
60313ebe 8192{
52d857a8 8193 struct perf_task_event *task_event = data;
60313ebe 8194 struct perf_output_handle handle;
c980d109 8195 struct perf_sample_data sample;
9f498cc5 8196 struct task_struct *task = task_event->task;
c980d109 8197 int ret, size = task_event->event_id.header.size;
8bb39f9a 8198
67516844
JO
8199 if (!perf_event_task_match(event))
8200 return;
8201
c980d109 8202 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 8203
267fb273 8204 ret = perf_output_begin(&handle, &sample, event,
a7ac67ea 8205 task_event->event_id.header.size);
ef60777c 8206 if (ret)
c980d109 8207 goto out;
60313ebe 8208
cdd6c482 8209 task_event->event_id.pid = perf_event_pid(event, task);
cdd6c482 8210 task_event->event_id.tid = perf_event_tid(event, task);
f3bed55e
IR
8211
8212 if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8213 task_event->event_id.ppid = perf_event_pid(event,
8214 task->real_parent);
8215 task_event->event_id.ptid = perf_event_pid(event,
8216 task->real_parent);
8217 } else { /* PERF_RECORD_FORK */
8218 task_event->event_id.ppid = perf_event_pid(event, current);
8219 task_event->event_id.ptid = perf_event_tid(event, current);
8220 }
9f498cc5 8221
34f43927
PZ
8222 task_event->event_id.time = perf_event_clock(event);
8223
cdd6c482 8224 perf_output_put(&handle, task_event->event_id);
393b2ad8 8225
c980d109
ACM
8226 perf_event__output_id_sample(event, &handle, &sample);
8227
60313ebe 8228 perf_output_end(&handle);
c980d109
ACM
8229out:
8230 task_event->event_id.header.size = size;
60313ebe
PZ
8231}
8232
cdd6c482
IM
8233static void perf_event_task(struct task_struct *task,
8234 struct perf_event_context *task_ctx,
3a80b4a3 8235 int new)
60313ebe 8236{
9f498cc5 8237 struct perf_task_event task_event;
60313ebe 8238
cdd6c482
IM
8239 if (!atomic_read(&nr_comm_events) &&
8240 !atomic_read(&nr_mmap_events) &&
8241 !atomic_read(&nr_task_events))
60313ebe
PZ
8242 return;
8243
9f498cc5 8244 task_event = (struct perf_task_event){
3a80b4a3
PZ
8245 .task = task,
8246 .task_ctx = task_ctx,
cdd6c482 8247 .event_id = {
60313ebe 8248 .header = {
cdd6c482 8249 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 8250 .misc = 0,
cdd6c482 8251 .size = sizeof(task_event.event_id),
60313ebe 8252 },
573402db
PZ
8253 /* .pid */
8254 /* .ppid */
9f498cc5
PZ
8255 /* .tid */
8256 /* .ptid */
34f43927 8257 /* .time */
60313ebe
PZ
8258 },
8259 };
8260
aab5b71e 8261 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
8262 &task_event,
8263 task_ctx);
9f498cc5
PZ
8264}
8265
cdd6c482 8266void perf_event_fork(struct task_struct *task)
9f498cc5 8267{
cdd6c482 8268 perf_event_task(task, NULL, 1);
e4222673 8269 perf_event_namespaces(task);
60313ebe
PZ
8270}
8271
8d1b2d93
PZ
8272/*
8273 * comm tracking
8274 */
8275
8276struct perf_comm_event {
22a4f650
IM
8277 struct task_struct *task;
8278 char *comm;
8d1b2d93
PZ
8279 int comm_size;
8280
8281 struct {
8282 struct perf_event_header header;
8283
8284 u32 pid;
8285 u32 tid;
cdd6c482 8286 } event_id;
8d1b2d93
PZ
8287};
8288
67516844
JO
8289static int perf_event_comm_match(struct perf_event *event)
8290{
8291 return event->attr.comm;
8292}
8293
cdd6c482 8294static void perf_event_comm_output(struct perf_event *event,
52d857a8 8295 void *data)
8d1b2d93 8296{
52d857a8 8297 struct perf_comm_event *comm_event = data;
8d1b2d93 8298 struct perf_output_handle handle;
c980d109 8299 struct perf_sample_data sample;
cdd6c482 8300 int size = comm_event->event_id.header.size;
c980d109
ACM
8301 int ret;
8302
67516844
JO
8303 if (!perf_event_comm_match(event))
8304 return;
8305
c980d109 8306 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
267fb273 8307 ret = perf_output_begin(&handle, &sample, event,
a7ac67ea 8308 comm_event->event_id.header.size);
8d1b2d93
PZ
8309
8310 if (ret)
c980d109 8311 goto out;
8d1b2d93 8312
cdd6c482
IM
8313 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8314 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 8315
cdd6c482 8316 perf_output_put(&handle, comm_event->event_id);
76369139 8317 __output_copy(&handle, comm_event->comm,
8d1b2d93 8318 comm_event->comm_size);
c980d109
ACM
8319
8320 perf_event__output_id_sample(event, &handle, &sample);
8321
8d1b2d93 8322 perf_output_end(&handle);
c980d109
ACM
8323out:
8324 comm_event->event_id.header.size = size;
8d1b2d93
PZ
8325}
8326
cdd6c482 8327static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 8328{
413ee3b4 8329 char comm[TASK_COMM_LEN];
8d1b2d93 8330 unsigned int size;
8d1b2d93 8331
413ee3b4 8332 memset(comm, 0, sizeof(comm));
c9732f14 8333 strscpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 8334 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
8335
8336 comm_event->comm = comm;
8337 comm_event->comm_size = size;
8338
cdd6c482 8339 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 8340
aab5b71e 8341 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
8342 comm_event,
8343 NULL);
8d1b2d93
PZ
8344}
8345
82b89778 8346void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 8347{
9ee318a7
PZ
8348 struct perf_comm_event comm_event;
8349
cdd6c482 8350 if (!atomic_read(&nr_comm_events))
9ee318a7 8351 return;
a63eaf34 8352
9ee318a7 8353 comm_event = (struct perf_comm_event){
8d1b2d93 8354 .task = task,
573402db
PZ
8355 /* .comm */
8356 /* .comm_size */
cdd6c482 8357 .event_id = {
573402db 8358 .header = {
cdd6c482 8359 .type = PERF_RECORD_COMM,
82b89778 8360 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
8361 /* .size */
8362 },
8363 /* .pid */
8364 /* .tid */
8d1b2d93
PZ
8365 },
8366 };
8367
cdd6c482 8368 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
8369}
8370
e4222673
HB
8371/*
8372 * namespaces tracking
8373 */
8374
8375struct perf_namespaces_event {
8376 struct task_struct *task;
8377
8378 struct {
8379 struct perf_event_header header;
8380
8381 u32 pid;
8382 u32 tid;
8383 u64 nr_namespaces;
8384 struct perf_ns_link_info link_info[NR_NAMESPACES];
8385 } event_id;
8386};
8387
8388static int perf_event_namespaces_match(struct perf_event *event)
8389{
8390 return event->attr.namespaces;
8391}
8392
8393static void perf_event_namespaces_output(struct perf_event *event,
8394 void *data)
8395{
8396 struct perf_namespaces_event *namespaces_event = data;
8397 struct perf_output_handle handle;
8398 struct perf_sample_data sample;
34900ec5 8399 u16 header_size = namespaces_event->event_id.header.size;
e4222673
HB
8400 int ret;
8401
8402 if (!perf_event_namespaces_match(event))
8403 return;
8404
8405 perf_event_header__init_id(&namespaces_event->event_id.header,
8406 &sample, event);
267fb273 8407 ret = perf_output_begin(&handle, &sample, event,
e4222673
HB
8408 namespaces_event->event_id.header.size);
8409 if (ret)
34900ec5 8410 goto out;
e4222673
HB
8411
8412 namespaces_event->event_id.pid = perf_event_pid(event,
8413 namespaces_event->task);
8414 namespaces_event->event_id.tid = perf_event_tid(event,
8415 namespaces_event->task);
8416
8417 perf_output_put(&handle, namespaces_event->event_id);
8418
8419 perf_event__output_id_sample(event, &handle, &sample);
8420
8421 perf_output_end(&handle);
34900ec5
JO
8422out:
8423 namespaces_event->event_id.header.size = header_size;
e4222673
HB
8424}
8425
8426static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8427 struct task_struct *task,
8428 const struct proc_ns_operations *ns_ops)
8429{
8430 struct path ns_path;
8431 struct inode *ns_inode;
ce623f89 8432 int error;
e4222673
HB
8433
8434 error = ns_get_path(&ns_path, task, ns_ops);
8435 if (!error) {
8436 ns_inode = ns_path.dentry->d_inode;
8437 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8438 ns_link_info->ino = ns_inode->i_ino;
0e18dd12 8439 path_put(&ns_path);
e4222673
HB
8440 }
8441}
8442
8443void perf_event_namespaces(struct task_struct *task)
8444{
8445 struct perf_namespaces_event namespaces_event;
8446 struct perf_ns_link_info *ns_link_info;
8447
8448 if (!atomic_read(&nr_namespaces_events))
8449 return;
8450
8451 namespaces_event = (struct perf_namespaces_event){
8452 .task = task,
8453 .event_id = {
8454 .header = {
8455 .type = PERF_RECORD_NAMESPACES,
8456 .misc = 0,
8457 .size = sizeof(namespaces_event.event_id),
8458 },
8459 /* .pid */
8460 /* .tid */
8461 .nr_namespaces = NR_NAMESPACES,
8462 /* .link_info[NR_NAMESPACES] */
8463 },
8464 };
8465
8466 ns_link_info = namespaces_event.event_id.link_info;
8467
8468 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8469 task, &mntns_operations);
8470
8471#ifdef CONFIG_USER_NS
8472 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8473 task, &userns_operations);
8474#endif
8475#ifdef CONFIG_NET_NS
8476 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8477 task, &netns_operations);
8478#endif
8479#ifdef CONFIG_UTS_NS
8480 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8481 task, &utsns_operations);
8482#endif
8483#ifdef CONFIG_IPC_NS
8484 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8485 task, &ipcns_operations);
8486#endif
8487#ifdef CONFIG_PID_NS
8488 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8489 task, &pidns_operations);
8490#endif
8491#ifdef CONFIG_CGROUPS
8492 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8493 task, &cgroupns_operations);
8494#endif
8495
8496 perf_iterate_sb(perf_event_namespaces_output,
8497 &namespaces_event,
8498 NULL);
8499}
8500
96aaab68
NK
8501/*
8502 * cgroup tracking
8503 */
8504#ifdef CONFIG_CGROUP_PERF
8505
8506struct perf_cgroup_event {
8507 char *path;
8508 int path_size;
8509 struct {
8510 struct perf_event_header header;
8511 u64 id;
8512 char path[];
8513 } event_id;
8514};
8515
8516static int perf_event_cgroup_match(struct perf_event *event)
8517{
8518 return event->attr.cgroup;
8519}
8520
8521static void perf_event_cgroup_output(struct perf_event *event, void *data)
8522{
8523 struct perf_cgroup_event *cgroup_event = data;
8524 struct perf_output_handle handle;
8525 struct perf_sample_data sample;
8526 u16 header_size = cgroup_event->event_id.header.size;
8527 int ret;
8528
8529 if (!perf_event_cgroup_match(event))
8530 return;
8531
8532 perf_event_header__init_id(&cgroup_event->event_id.header,
8533 &sample, event);
267fb273 8534 ret = perf_output_begin(&handle, &sample, event,
96aaab68
NK
8535 cgroup_event->event_id.header.size);
8536 if (ret)
8537 goto out;
8538
8539 perf_output_put(&handle, cgroup_event->event_id);
8540 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8541
8542 perf_event__output_id_sample(event, &handle, &sample);
8543
8544 perf_output_end(&handle);
8545out:
8546 cgroup_event->event_id.header.size = header_size;
8547}
8548
8549static void perf_event_cgroup(struct cgroup *cgrp)
8550{
8551 struct perf_cgroup_event cgroup_event;
8552 char path_enomem[16] = "//enomem";
8553 char *pathname;
8554 size_t size;
8555
8556 if (!atomic_read(&nr_cgroup_events))
8557 return;
8558
8559 cgroup_event = (struct perf_cgroup_event){
8560 .event_id = {
8561 .header = {
8562 .type = PERF_RECORD_CGROUP,
8563 .misc = 0,
8564 .size = sizeof(cgroup_event.event_id),
8565 },
8566 .id = cgroup_id(cgrp),
8567 },
8568 };
8569
8570 pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8571 if (pathname == NULL) {
8572 cgroup_event.path = path_enomem;
8573 } else {
8574 /* just to be sure to have enough space for alignment */
8575 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8576 cgroup_event.path = pathname;
8577 }
8578
8579 /*
8580 * Since our buffer works in 8 byte units we need to align our string
8581 * size to a multiple of 8. However, we must guarantee the tail end is
8582 * zero'd out to avoid leaking random bits to userspace.
8583 */
8584 size = strlen(cgroup_event.path) + 1;
8585 while (!IS_ALIGNED(size, sizeof(u64)))
8586 cgroup_event.path[size++] = '\0';
8587
8588 cgroup_event.event_id.header.size += size;
8589 cgroup_event.path_size = size;
8590
8591 perf_iterate_sb(perf_event_cgroup_output,
8592 &cgroup_event,
8593 NULL);
8594
8595 kfree(pathname);
8596}
8597
8598#endif
8599
0a4a9391
PZ
8600/*
8601 * mmap tracking
8602 */
8603
8604struct perf_mmap_event {
089dd79d
PZ
8605 struct vm_area_struct *vma;
8606
8607 const char *file_name;
8608 int file_size;
13d7a241
SE
8609 int maj, min;
8610 u64 ino;
8611 u64 ino_generation;
f972eb63 8612 u32 prot, flags;
88a16a13
JO
8613 u8 build_id[BUILD_ID_SIZE_MAX];
8614 u32 build_id_size;
0a4a9391
PZ
8615
8616 struct {
8617 struct perf_event_header header;
8618
8619 u32 pid;
8620 u32 tid;
8621 u64 start;
8622 u64 len;
8623 u64 pgoff;
cdd6c482 8624 } event_id;
0a4a9391
PZ
8625};
8626
67516844
JO
8627static int perf_event_mmap_match(struct perf_event *event,
8628 void *data)
8629{
8630 struct perf_mmap_event *mmap_event = data;
8631 struct vm_area_struct *vma = mmap_event->vma;
8632 int executable = vma->vm_flags & VM_EXEC;
8633
8634 return (!executable && event->attr.mmap_data) ||
13d7a241 8635 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
8636}
8637
cdd6c482 8638static void perf_event_mmap_output(struct perf_event *event,
52d857a8 8639 void *data)
0a4a9391 8640{
52d857a8 8641 struct perf_mmap_event *mmap_event = data;
0a4a9391 8642 struct perf_output_handle handle;
c980d109 8643 struct perf_sample_data sample;
cdd6c482 8644 int size = mmap_event->event_id.header.size;
d9c1bb2f 8645 u32 type = mmap_event->event_id.header.type;
88a16a13 8646 bool use_build_id;
c980d109 8647 int ret;
0a4a9391 8648
67516844
JO
8649 if (!perf_event_mmap_match(event, data))
8650 return;
8651
13d7a241
SE
8652 if (event->attr.mmap2) {
8653 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8654 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8655 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8656 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 8657 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
8658 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8659 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
8660 }
8661
c980d109 8662 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
267fb273 8663 ret = perf_output_begin(&handle, &sample, event,
a7ac67ea 8664 mmap_event->event_id.header.size);
0a4a9391 8665 if (ret)
c980d109 8666 goto out;
0a4a9391 8667
cdd6c482
IM
8668 mmap_event->event_id.pid = perf_event_pid(event, current);
8669 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 8670
88a16a13
JO
8671 use_build_id = event->attr.build_id && mmap_event->build_id_size;
8672
8673 if (event->attr.mmap2 && use_build_id)
8674 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8675
cdd6c482 8676 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
8677
8678 if (event->attr.mmap2) {
88a16a13
JO
8679 if (use_build_id) {
8680 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8681
8682 __output_copy(&handle, size, 4);
8683 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8684 } else {
8685 perf_output_put(&handle, mmap_event->maj);
8686 perf_output_put(&handle, mmap_event->min);
8687 perf_output_put(&handle, mmap_event->ino);
8688 perf_output_put(&handle, mmap_event->ino_generation);
8689 }
f972eb63
PZ
8690 perf_output_put(&handle, mmap_event->prot);
8691 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
8692 }
8693
76369139 8694 __output_copy(&handle, mmap_event->file_name,
0a4a9391 8695 mmap_event->file_size);
c980d109
ACM
8696
8697 perf_event__output_id_sample(event, &handle, &sample);
8698
78d613eb 8699 perf_output_end(&handle);
c980d109
ACM
8700out:
8701 mmap_event->event_id.header.size = size;
d9c1bb2f 8702 mmap_event->event_id.header.type = type;
0a4a9391
PZ
8703}
8704
cdd6c482 8705static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 8706{
089dd79d
PZ
8707 struct vm_area_struct *vma = mmap_event->vma;
8708 struct file *file = vma->vm_file;
13d7a241
SE
8709 int maj = 0, min = 0;
8710 u64 ino = 0, gen = 0;
f972eb63 8711 u32 prot = 0, flags = 0;
0a4a9391
PZ
8712 unsigned int size;
8713 char tmp[16];
8714 char *buf = NULL;
549f5c77 8715 char *name = NULL;
413ee3b4 8716
0b3589be
PZ
8717 if (vma->vm_flags & VM_READ)
8718 prot |= PROT_READ;
8719 if (vma->vm_flags & VM_WRITE)
8720 prot |= PROT_WRITE;
8721 if (vma->vm_flags & VM_EXEC)
8722 prot |= PROT_EXEC;
8723
8724 if (vma->vm_flags & VM_MAYSHARE)
8725 flags = MAP_SHARED;
8726 else
8727 flags = MAP_PRIVATE;
8728
0b3589be
PZ
8729 if (vma->vm_flags & VM_LOCKED)
8730 flags |= MAP_LOCKED;
03911132 8731 if (is_vm_hugetlb_page(vma))
0b3589be
PZ
8732 flags |= MAP_HUGETLB;
8733
0a4a9391 8734 if (file) {
13d7a241
SE
8735 struct inode *inode;
8736 dev_t dev;
3ea2f2b9 8737
2c42cfbf 8738 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 8739 if (!buf) {
c7e548b4
ON
8740 name = "//enomem";
8741 goto cpy_name;
0a4a9391 8742 }
413ee3b4 8743 /*
3ea2f2b9 8744 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
8745 * need to add enough zero bytes after the string to handle
8746 * the 64bit alignment we do later.
8747 */
9bf39ab2 8748 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 8749 if (IS_ERR(name)) {
c7e548b4
ON
8750 name = "//toolong";
8751 goto cpy_name;
0a4a9391 8752 }
13d7a241
SE
8753 inode = file_inode(vma->vm_file);
8754 dev = inode->i_sb->s_dev;
8755 ino = inode->i_ino;
8756 gen = inode->i_generation;
8757 maj = MAJOR(dev);
8758 min = MINOR(dev);
f972eb63 8759
c7e548b4 8760 goto got_name;
0a4a9391 8761 } else {
549f5c77 8762 if (vma->vm_ops && vma->vm_ops->name)
fbe26abe 8763 name = (char *) vma->vm_ops->name(vma);
549f5c77
KW
8764 if (!name)
8765 name = (char *)arch_vma_name(vma);
8766 if (!name) {
8767 if (vma_is_initial_heap(vma))
8768 name = "[heap]";
8769 else if (vma_is_initial_stack(vma))
8770 name = "[stack]";
8771 else
8772 name = "//anon";
fbe26abe 8773 }
0a4a9391
PZ
8774 }
8775
c7e548b4 8776cpy_name:
c9732f14 8777 strscpy(tmp, name, sizeof(tmp));
c7e548b4 8778 name = tmp;
0a4a9391 8779got_name:
2c42cfbf
PZ
8780 /*
8781 * Since our buffer works in 8 byte units we need to align our string
8782 * size to a multiple of 8. However, we must guarantee the tail end is
8783 * zero'd out to avoid leaking random bits to userspace.
8784 */
8785 size = strlen(name)+1;
8786 while (!IS_ALIGNED(size, sizeof(u64)))
8787 name[size++] = '\0';
0a4a9391
PZ
8788
8789 mmap_event->file_name = name;
8790 mmap_event->file_size = size;
13d7a241
SE
8791 mmap_event->maj = maj;
8792 mmap_event->min = min;
8793 mmap_event->ino = ino;
8794 mmap_event->ino_generation = gen;
f972eb63
PZ
8795 mmap_event->prot = prot;
8796 mmap_event->flags = flags;
0a4a9391 8797
2fe85427
SE
8798 if (!(vma->vm_flags & VM_EXEC))
8799 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8800
cdd6c482 8801 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 8802
88a16a13
JO
8803 if (atomic_read(&nr_build_id_events))
8804 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8805
aab5b71e 8806 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
8807 mmap_event,
8808 NULL);
665c2142 8809
0a4a9391
PZ
8810 kfree(buf);
8811}
8812
375637bc
AS
8813/*
8814 * Check whether inode and address range match filter criteria.
8815 */
8816static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8817 struct file *file, unsigned long offset,
8818 unsigned long size)
8819{
7f635ff1
MP
8820 /* d_inode(NULL) won't be equal to any mapped user-space file */
8821 if (!filter->path.dentry)
8822 return false;
8823
9511bce9 8824 if (d_inode(filter->path.dentry) != file_inode(file))
375637bc
AS
8825 return false;
8826
8827 if (filter->offset > offset + size)
8828 return false;
8829
8830 if (filter->offset + filter->size < offset)
8831 return false;
8832
8833 return true;
8834}
8835
c60f83b8
AS
8836static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8837 struct vm_area_struct *vma,
8838 struct perf_addr_filter_range *fr)
8839{
8840 unsigned long vma_size = vma->vm_end - vma->vm_start;
8841 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8842 struct file *file = vma->vm_file;
8843
8844 if (!perf_addr_filter_match(filter, file, off, vma_size))
8845 return false;
8846
8847 if (filter->offset < off) {
8848 fr->start = vma->vm_start;
8849 fr->size = min(vma_size, filter->size - (off - filter->offset));
8850 } else {
8851 fr->start = vma->vm_start + filter->offset - off;
8852 fr->size = min(vma->vm_end - fr->start, filter->size);
8853 }
8854
8855 return true;
8856}
8857
375637bc
AS
8858static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8859{
8860 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8861 struct vm_area_struct *vma = data;
375637bc
AS
8862 struct perf_addr_filter *filter;
8863 unsigned int restart = 0, count = 0;
c60f83b8 8864 unsigned long flags;
375637bc
AS
8865
8866 if (!has_addr_filter(event))
8867 return;
8868
c60f83b8 8869 if (!vma->vm_file)
375637bc
AS
8870 return;
8871
8872 raw_spin_lock_irqsave(&ifh->lock, flags);
8873 list_for_each_entry(filter, &ifh->list, entry) {
c60f83b8
AS
8874 if (perf_addr_filter_vma_adjust(filter, vma,
8875 &event->addr_filter_ranges[count]))
375637bc 8876 restart++;
375637bc
AS
8877
8878 count++;
8879 }
8880
8881 if (restart)
8882 event->addr_filters_gen++;
8883 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8884
8885 if (restart)
767ae086 8886 perf_event_stop(event, 1);
375637bc
AS
8887}
8888
8889/*
8890 * Adjust all task's events' filters to the new vma
8891 */
8892static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8893{
8894 struct perf_event_context *ctx;
375637bc 8895
12b40a23
MP
8896 /*
8897 * Data tracing isn't supported yet and as such there is no need
8898 * to keep track of anything that isn't related to executable code:
8899 */
8900 if (!(vma->vm_flags & VM_EXEC))
8901 return;
8902
375637bc 8903 rcu_read_lock();
bd275681
PZ
8904 ctx = rcu_dereference(current->perf_event_ctxp);
8905 if (ctx)
aab5b71e 8906 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
8907 rcu_read_unlock();
8908}
8909
3af9e859 8910void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 8911{
9ee318a7
PZ
8912 struct perf_mmap_event mmap_event;
8913
cdd6c482 8914 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
8915 return;
8916
8917 mmap_event = (struct perf_mmap_event){
089dd79d 8918 .vma = vma,
573402db
PZ
8919 /* .file_name */
8920 /* .file_size */
cdd6c482 8921 .event_id = {
573402db 8922 .header = {
cdd6c482 8923 .type = PERF_RECORD_MMAP,
39447b38 8924 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
8925 /* .size */
8926 },
8927 /* .pid */
8928 /* .tid */
089dd79d
PZ
8929 .start = vma->vm_start,
8930 .len = vma->vm_end - vma->vm_start,
3a0304e9 8931 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 8932 },
13d7a241
SE
8933 /* .maj (attr_mmap2 only) */
8934 /* .min (attr_mmap2 only) */
8935 /* .ino (attr_mmap2 only) */
8936 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
8937 /* .prot (attr_mmap2 only) */
8938 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
8939 };
8940
375637bc 8941 perf_addr_filters_adjust(vma);
cdd6c482 8942 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
8943}
8944
68db7e98
AS
8945void perf_event_aux_event(struct perf_event *event, unsigned long head,
8946 unsigned long size, u64 flags)
8947{
8948 struct perf_output_handle handle;
8949 struct perf_sample_data sample;
8950 struct perf_aux_event {
8951 struct perf_event_header header;
8952 u64 offset;
8953 u64 size;
8954 u64 flags;
8955 } rec = {
8956 .header = {
8957 .type = PERF_RECORD_AUX,
8958 .misc = 0,
8959 .size = sizeof(rec),
8960 },
8961 .offset = head,
8962 .size = size,
8963 .flags = flags,
8964 };
8965 int ret;
8966
8967 perf_event_header__init_id(&rec.header, &sample, event);
267fb273 8968 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
68db7e98
AS
8969
8970 if (ret)
8971 return;
8972
8973 perf_output_put(&handle, rec);
8974 perf_event__output_id_sample(event, &handle, &sample);
8975
8976 perf_output_end(&handle);
8977}
8978
f38b0dbb
KL
8979/*
8980 * Lost/dropped samples logging
8981 */
8982void perf_log_lost_samples(struct perf_event *event, u64 lost)
8983{
8984 struct perf_output_handle handle;
8985 struct perf_sample_data sample;
8986 int ret;
8987
8988 struct {
8989 struct perf_event_header header;
8990 u64 lost;
8991 } lost_samples_event = {
8992 .header = {
8993 .type = PERF_RECORD_LOST_SAMPLES,
8994 .misc = 0,
8995 .size = sizeof(lost_samples_event),
8996 },
8997 .lost = lost,
8998 };
8999
9000 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
9001
267fb273 9002 ret = perf_output_begin(&handle, &sample, event,
f38b0dbb
KL
9003 lost_samples_event.header.size);
9004 if (ret)
9005 return;
9006
9007 perf_output_put(&handle, lost_samples_event);
9008 perf_event__output_id_sample(event, &handle, &sample);
9009 perf_output_end(&handle);
9010}
9011
45ac1403
AH
9012/*
9013 * context_switch tracking
9014 */
9015
9016struct perf_switch_event {
9017 struct task_struct *task;
9018 struct task_struct *next_prev;
9019
9020 struct {
9021 struct perf_event_header header;
9022 u32 next_prev_pid;
9023 u32 next_prev_tid;
9024 } event_id;
9025};
9026
9027static int perf_event_switch_match(struct perf_event *event)
9028{
9029 return event->attr.context_switch;
9030}
9031
9032static void perf_event_switch_output(struct perf_event *event, void *data)
9033{
9034 struct perf_switch_event *se = data;
9035 struct perf_output_handle handle;
9036 struct perf_sample_data sample;
9037 int ret;
9038
9039 if (!perf_event_switch_match(event))
9040 return;
9041
9042 /* Only CPU-wide events are allowed to see next/prev pid/tid */
9043 if (event->ctx->task) {
9044 se->event_id.header.type = PERF_RECORD_SWITCH;
9045 se->event_id.header.size = sizeof(se->event_id.header);
9046 } else {
9047 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9048 se->event_id.header.size = sizeof(se->event_id);
9049 se->event_id.next_prev_pid =
9050 perf_event_pid(event, se->next_prev);
9051 se->event_id.next_prev_tid =
9052 perf_event_tid(event, se->next_prev);
9053 }
9054
9055 perf_event_header__init_id(&se->event_id.header, &sample, event);
9056
267fb273 9057 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
45ac1403
AH
9058 if (ret)
9059 return;
9060
9061 if (event->ctx->task)
9062 perf_output_put(&handle, se->event_id.header);
9063 else
9064 perf_output_put(&handle, se->event_id);
9065
9066 perf_event__output_id_sample(event, &handle, &sample);
9067
9068 perf_output_end(&handle);
9069}
9070
9071static void perf_event_switch(struct task_struct *task,
9072 struct task_struct *next_prev, bool sched_in)
9073{
9074 struct perf_switch_event switch_event;
9075
9076 /* N.B. caller checks nr_switch_events != 0 */
9077
9078 switch_event = (struct perf_switch_event){
9079 .task = task,
9080 .next_prev = next_prev,
9081 .event_id = {
9082 .header = {
9083 /* .type */
9084 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9085 /* .size */
9086 },
9087 /* .next_prev_pid */
9088 /* .next_prev_tid */
9089 },
9090 };
9091
3ba9f93b 9092 if (!sched_in && task->on_rq) {
101592b4
AB
9093 switch_event.event_id.header.misc |=
9094 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
3ba9f93b 9095 }
101592b4 9096
3ba9f93b 9097 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
45ac1403
AH
9098}
9099
a78ac325
PZ
9100/*
9101 * IRQ throttle logging
9102 */
9103
cdd6c482 9104static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
9105{
9106 struct perf_output_handle handle;
c980d109 9107 struct perf_sample_data sample;
a78ac325
PZ
9108 int ret;
9109
9110 struct {
9111 struct perf_event_header header;
9112 u64 time;
cca3f454 9113 u64 id;
7f453c24 9114 u64 stream_id;
a78ac325
PZ
9115 } throttle_event = {
9116 .header = {
cdd6c482 9117 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
9118 .misc = 0,
9119 .size = sizeof(throttle_event),
9120 },
34f43927 9121 .time = perf_event_clock(event),
cdd6c482
IM
9122 .id = primary_event_id(event),
9123 .stream_id = event->id,
a78ac325
PZ
9124 };
9125
966ee4d6 9126 if (enable)
cdd6c482 9127 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 9128
c980d109
ACM
9129 perf_event_header__init_id(&throttle_event.header, &sample, event);
9130
267fb273 9131 ret = perf_output_begin(&handle, &sample, event,
a7ac67ea 9132 throttle_event.header.size);
a78ac325
PZ
9133 if (ret)
9134 return;
9135
9136 perf_output_put(&handle, throttle_event);
c980d109 9137 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
9138 perf_output_end(&handle);
9139}
9140
76193a94
SL
9141/*
9142 * ksymbol register/unregister tracking
9143 */
9144
9145struct perf_ksymbol_event {
9146 const char *name;
9147 int name_len;
9148 struct {
9149 struct perf_event_header header;
9150 u64 addr;
9151 u32 len;
9152 u16 ksym_type;
9153 u16 flags;
9154 } event_id;
9155};
9156
9157static int perf_event_ksymbol_match(struct perf_event *event)
9158{
9159 return event->attr.ksymbol;
9160}
9161
9162static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9163{
9164 struct perf_ksymbol_event *ksymbol_event = data;
9165 struct perf_output_handle handle;
9166 struct perf_sample_data sample;
9167 int ret;
9168
9169 if (!perf_event_ksymbol_match(event))
9170 return;
9171
9172 perf_event_header__init_id(&ksymbol_event->event_id.header,
9173 &sample, event);
267fb273 9174 ret = perf_output_begin(&handle, &sample, event,
76193a94
SL
9175 ksymbol_event->event_id.header.size);
9176 if (ret)
9177 return;
9178
9179 perf_output_put(&handle, ksymbol_event->event_id);
9180 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9181 perf_event__output_id_sample(event, &handle, &sample);
9182
9183 perf_output_end(&handle);
9184}
9185
9186void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9187 const char *sym)
9188{
9189 struct perf_ksymbol_event ksymbol_event;
9190 char name[KSYM_NAME_LEN];
9191 u16 flags = 0;
9192 int name_len;
9193
9194 if (!atomic_read(&nr_ksymbol_events))
9195 return;
9196
9197 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9198 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9199 goto err;
9200
c9732f14 9201 strscpy(name, sym, KSYM_NAME_LEN);
76193a94
SL
9202 name_len = strlen(name) + 1;
9203 while (!IS_ALIGNED(name_len, sizeof(u64)))
9204 name[name_len++] = '\0';
9205 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9206
9207 if (unregister)
9208 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9209
9210 ksymbol_event = (struct perf_ksymbol_event){
9211 .name = name,
9212 .name_len = name_len,
9213 .event_id = {
9214 .header = {
9215 .type = PERF_RECORD_KSYMBOL,
9216 .size = sizeof(ksymbol_event.event_id) +
9217 name_len,
9218 },
9219 .addr = addr,
9220 .len = len,
9221 .ksym_type = ksym_type,
9222 .flags = flags,
9223 },
9224 };
9225
9226 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9227 return;
9228err:
9229 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9230}
9231
6ee52e2a
SL
9232/*
9233 * bpf program load/unload tracking
9234 */
9235
9236struct perf_bpf_event {
9237 struct bpf_prog *prog;
9238 struct {
9239 struct perf_event_header header;
9240 u16 type;
9241 u16 flags;
9242 u32 id;
9243 u8 tag[BPF_TAG_SIZE];
9244 } event_id;
9245};
9246
9247static int perf_event_bpf_match(struct perf_event *event)
9248{
9249 return event->attr.bpf_event;
9250}
9251
9252static void perf_event_bpf_output(struct perf_event *event, void *data)
9253{
9254 struct perf_bpf_event *bpf_event = data;
9255 struct perf_output_handle handle;
9256 struct perf_sample_data sample;
9257 int ret;
9258
9259 if (!perf_event_bpf_match(event))
9260 return;
9261
9262 perf_event_header__init_id(&bpf_event->event_id.header,
9263 &sample, event);
eb81a2ed 9264 ret = perf_output_begin(&handle, &sample, event,
6ee52e2a
SL
9265 bpf_event->event_id.header.size);
9266 if (ret)
9267 return;
9268
9269 perf_output_put(&handle, bpf_event->event_id);
9270 perf_event__output_id_sample(event, &handle, &sample);
9271
9272 perf_output_end(&handle);
9273}
9274
9275static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9276 enum perf_bpf_event_type type)
9277{
9278 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
6ee52e2a
SL
9279 int i;
9280
9281 if (prog->aux->func_cnt == 0) {
6ee52e2a
SL
9282 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9283 (u64)(unsigned long)prog->bpf_func,
bfea9a85
JO
9284 prog->jited_len, unregister,
9285 prog->aux->ksym.name);
6ee52e2a
SL
9286 } else {
9287 for (i = 0; i < prog->aux->func_cnt; i++) {
9288 struct bpf_prog *subprog = prog->aux->func[i];
9289
6ee52e2a
SL
9290 perf_event_ksymbol(
9291 PERF_RECORD_KSYMBOL_TYPE_BPF,
9292 (u64)(unsigned long)subprog->bpf_func,
bfea9a85 9293 subprog->jited_len, unregister,
47df8a2f 9294 subprog->aux->ksym.name);
6ee52e2a
SL
9295 }
9296 }
9297}
9298
9299void perf_event_bpf_event(struct bpf_prog *prog,
9300 enum perf_bpf_event_type type,
9301 u16 flags)
9302{
9303 struct perf_bpf_event bpf_event;
9304
6ee52e2a
SL
9305 switch (type) {
9306 case PERF_BPF_EVENT_PROG_LOAD:
9307 case PERF_BPF_EVENT_PROG_UNLOAD:
9308 if (atomic_read(&nr_ksymbol_events))
9309 perf_event_bpf_emit_ksymbols(prog, type);
9310 break;
9311 default:
aecaa3ed 9312 return;
6ee52e2a
SL
9313 }
9314
9315 if (!atomic_read(&nr_bpf_events))
9316 return;
9317
9318 bpf_event = (struct perf_bpf_event){
9319 .prog = prog,
9320 .event_id = {
9321 .header = {
9322 .type = PERF_RECORD_BPF_EVENT,
9323 .size = sizeof(bpf_event.event_id),
9324 },
9325 .type = type,
9326 .flags = flags,
9327 .id = prog->aux->id,
9328 },
9329 };
9330
9331 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9332
9333 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9334 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9335}
9336
e17d43b9
AH
9337struct perf_text_poke_event {
9338 const void *old_bytes;
9339 const void *new_bytes;
9340 size_t pad;
9341 u16 old_len;
9342 u16 new_len;
9343
9344 struct {
9345 struct perf_event_header header;
9346
9347 u64 addr;
9348 } event_id;
9349};
9350
9351static int perf_event_text_poke_match(struct perf_event *event)
9352{
9353 return event->attr.text_poke;
9354}
9355
9356static void perf_event_text_poke_output(struct perf_event *event, void *data)
9357{
9358 struct perf_text_poke_event *text_poke_event = data;
9359 struct perf_output_handle handle;
9360 struct perf_sample_data sample;
9361 u64 padding = 0;
9362 int ret;
9363
9364 if (!perf_event_text_poke_match(event))
9365 return;
9366
9367 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9368
267fb273
PZ
9369 ret = perf_output_begin(&handle, &sample, event,
9370 text_poke_event->event_id.header.size);
e17d43b9
AH
9371 if (ret)
9372 return;
9373
9374 perf_output_put(&handle, text_poke_event->event_id);
9375 perf_output_put(&handle, text_poke_event->old_len);
9376 perf_output_put(&handle, text_poke_event->new_len);
9377
9378 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9379 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9380
9381 if (text_poke_event->pad)
9382 __output_copy(&handle, &padding, text_poke_event->pad);
9383
9384 perf_event__output_id_sample(event, &handle, &sample);
9385
9386 perf_output_end(&handle);
9387}
9388
9389void perf_event_text_poke(const void *addr, const void *old_bytes,
9390 size_t old_len, const void *new_bytes, size_t new_len)
9391{
9392 struct perf_text_poke_event text_poke_event;
9393 size_t tot, pad;
9394
9395 if (!atomic_read(&nr_text_poke_events))
9396 return;
9397
9398 tot = sizeof(text_poke_event.old_len) + old_len;
9399 tot += sizeof(text_poke_event.new_len) + new_len;
9400 pad = ALIGN(tot, sizeof(u64)) - tot;
9401
9402 text_poke_event = (struct perf_text_poke_event){
9403 .old_bytes = old_bytes,
9404 .new_bytes = new_bytes,
9405 .pad = pad,
9406 .old_len = old_len,
9407 .new_len = new_len,
9408 .event_id = {
9409 .header = {
9410 .type = PERF_RECORD_TEXT_POKE,
9411 .misc = PERF_RECORD_MISC_KERNEL,
9412 .size = sizeof(text_poke_event.event_id) + tot + pad,
9413 },
9414 .addr = (unsigned long)addr,
9415 },
9416 };
9417
9418 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9419}
9420
8d4e6c4c
AS
9421void perf_event_itrace_started(struct perf_event *event)
9422{
9423 event->attach_state |= PERF_ATTACH_ITRACE;
9424}
9425
ec0d7729
AS
9426static void perf_log_itrace_start(struct perf_event *event)
9427{
9428 struct perf_output_handle handle;
9429 struct perf_sample_data sample;
9430 struct perf_aux_event {
9431 struct perf_event_header header;
9432 u32 pid;
9433 u32 tid;
9434 } rec;
9435 int ret;
9436
9437 if (event->parent)
9438 event = event->parent;
9439
9440 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8d4e6c4c 9441 event->attach_state & PERF_ATTACH_ITRACE)
ec0d7729
AS
9442 return;
9443
ec0d7729
AS
9444 rec.header.type = PERF_RECORD_ITRACE_START;
9445 rec.header.misc = 0;
9446 rec.header.size = sizeof(rec);
9447 rec.pid = perf_event_pid(event, current);
9448 rec.tid = perf_event_tid(event, current);
9449
9450 perf_event_header__init_id(&rec.header, &sample, event);
267fb273 9451 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
ec0d7729
AS
9452
9453 if (ret)
9454 return;
9455
9456 perf_output_put(&handle, rec);
9457 perf_event__output_id_sample(event, &handle, &sample);
9458
9459 perf_output_end(&handle);
9460}
9461
8b8ff8cc
AH
9462void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9463{
9464 struct perf_output_handle handle;
9465 struct perf_sample_data sample;
9466 struct perf_aux_event {
9467 struct perf_event_header header;
9468 u64 hw_id;
9469 } rec;
9470 int ret;
9471
9472 if (event->parent)
9473 event = event->parent;
9474
9475 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID;
9476 rec.header.misc = 0;
9477 rec.header.size = sizeof(rec);
9478 rec.hw_id = hw_id;
9479
9480 perf_event_header__init_id(&rec.header, &sample, event);
9481 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9482
9483 if (ret)
9484 return;
9485
9486 perf_output_put(&handle, rec);
9487 perf_event__output_id_sample(event, &handle, &sample);
9488
9489 perf_output_end(&handle);
9490}
7d30d480 9491EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
8b8ff8cc 9492
475113d9
JO
9493static int
9494__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 9495{
cdd6c482 9496 struct hw_perf_event *hwc = &event->hw;
79f14641 9497 int ret = 0;
475113d9 9498 u64 seq;
96398826 9499
e050e3f0
SE
9500 seq = __this_cpu_read(perf_throttled_seq);
9501 if (seq != hwc->interrupts_seq) {
9502 hwc->interrupts_seq = seq;
9503 hwc->interrupts = 1;
9504 } else {
9505 hwc->interrupts++;
15def34e
YJ
9506 if (unlikely(throttle &&
9507 hwc->interrupts > max_samples_per_tick)) {
e050e3f0 9508 __this_cpu_inc(perf_throttled_count);
555e0c1e 9509 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
9510 hwc->interrupts = MAX_INTERRUPTS;
9511 perf_log_throttle(event, 0);
a78ac325
PZ
9512 ret = 1;
9513 }
e050e3f0 9514 }
60db5e09 9515
cdd6c482 9516 if (event->attr.freq) {
def0a9b2 9517 u64 now = perf_clock();
abd50713 9518 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 9519
abd50713 9520 hwc->freq_time_stamp = now;
bd2b5b12 9521
abd50713 9522 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 9523 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
9524 }
9525
475113d9
JO
9526 return ret;
9527}
9528
9529int perf_event_account_interrupt(struct perf_event *event)
9530{
9531 return __perf_event_account_interrupt(event, 1);
9532}
9533
030a976e
PZ
9534static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9535{
9536 /*
9537 * Due to interrupt latency (AKA "skid"), we may enter the
9538 * kernel before taking an overflow, even if the PMU is only
9539 * counting user events.
9540 */
9541 if (event->attr.exclude_kernel && !user_mode(regs))
9542 return false;
9543
9544 return true;
9545}
9546
475113d9
JO
9547/*
9548 * Generic event overflow handling, sampling.
9549 */
9550
9551static int __perf_event_overflow(struct perf_event *event,
ca6c2132
PZ
9552 int throttle, struct perf_sample_data *data,
9553 struct pt_regs *regs)
475113d9
JO
9554{
9555 int events = atomic_read(&event->event_limit);
9556 int ret = 0;
9557
9558 /*
9559 * Non-sampling counters might still use the PMI to fold short
9560 * hardware counters, ignore those.
9561 */
9562 if (unlikely(!is_sampling_event(event)))
9563 return 0;
9564
9565 ret = __perf_event_account_interrupt(event, throttle);
cc1582c2 9566
2023b359
PZ
9567 /*
9568 * XXX event_limit might not quite work as expected on inherited
cdd6c482 9569 * events
2023b359
PZ
9570 */
9571
cdd6c482
IM
9572 event->pending_kill = POLL_IN;
9573 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 9574 ret = 1;
cdd6c482 9575 event->pending_kill = POLL_HUP;
5aab90ce 9576 perf_event_disable_inatomic(event);
79f14641
PZ
9577 }
9578
ca6c2132 9579 if (event->attr.sigtrap) {
030a976e
PZ
9580 /*
9581 * The desired behaviour of sigtrap vs invalid samples is a bit
9582 * tricky; on the one hand, one should not loose the SIGTRAP if
9583 * it is the first event, on the other hand, we should also not
9584 * trigger the WARN or override the data address.
9585 */
9586 bool valid_sample = sample_is_allowed(event, regs);
bb88f969
ME
9587 unsigned int pending_id = 1;
9588
9589 if (regs)
9590 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
ca6c2132 9591 if (!event->pending_sigtrap) {
bb88f969 9592 event->pending_sigtrap = pending_id;
ca6c2132 9593 local_inc(&event->ctx->nr_pending);
030a976e 9594 } else if (event->attr.exclude_kernel && valid_sample) {
bb88f969
ME
9595 /*
9596 * Should not be able to return to user space without
9597 * consuming pending_sigtrap; with exceptions:
9598 *
9599 * 1. Where !exclude_kernel, events can overflow again
9600 * in the kernel without returning to user space.
9601 *
9602 * 2. Events that can overflow again before the IRQ-
9603 * work without user space progress (e.g. hrtimer).
9604 * To approximate progress (with false negatives),
9605 * check 32-bit hash of the current IP.
9606 */
9607 WARN_ON_ONCE(event->pending_sigtrap != pending_id);
ca6c2132 9608 }
af169b77
PZ
9609
9610 event->pending_addr = 0;
030a976e 9611 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
af169b77 9612 event->pending_addr = data->addr;
ca6c2132
PZ
9613 irq_work_queue(&event->pending_irq);
9614 }
9615
aa6a5f3c 9616 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 9617
fed66e2c 9618 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17 9619 event->pending_wakeup = 1;
ca6c2132 9620 irq_work_queue(&event->pending_irq);
f506b3dc
PZ
9621 }
9622
79f14641 9623 return ret;
f6c7d5fe
PZ
9624}
9625
a8b0ca17 9626int perf_event_overflow(struct perf_event *event,
ca6c2132
PZ
9627 struct perf_sample_data *data,
9628 struct pt_regs *regs)
850bc73f 9629{
a8b0ca17 9630 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
9631}
9632
15dbf27c 9633/*
cdd6c482 9634 * Generic software event infrastructure
15dbf27c
PZ
9635 */
9636
b28ab83c
PZ
9637struct swevent_htable {
9638 struct swevent_hlist *swevent_hlist;
9639 struct mutex hlist_mutex;
9640 int hlist_refcount;
9641
9642 /* Recursion avoidance in each contexts */
9643 int recursion[PERF_NR_CONTEXTS];
9644};
9645
9646static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9647
7b4b6658 9648/*
cdd6c482
IM
9649 * We directly increment event->count and keep a second value in
9650 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
9651 * is kept in the range [-sample_period, 0] so that we can use the
9652 * sign as trigger.
9653 */
9654
ab573844 9655u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 9656{
cdd6c482 9657 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
9658 u64 period = hwc->last_period;
9659 u64 nr, offset;
9660 s64 old, val;
9661
9662 hwc->last_period = hwc->sample_period;
15dbf27c 9663
28fd85a1
UB
9664 old = local64_read(&hwc->period_left);
9665 do {
9666 val = old;
9667 if (val < 0)
9668 return 0;
15dbf27c 9669
28fd85a1
UB
9670 nr = div64_u64(period + val, period);
9671 offset = nr * period;
9672 val -= offset;
9673 } while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
15dbf27c 9674
7b4b6658 9675 return nr;
15dbf27c
PZ
9676}
9677
0cff784a 9678static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 9679 struct perf_sample_data *data,
5622f295 9680 struct pt_regs *regs)
15dbf27c 9681{
cdd6c482 9682 struct hw_perf_event *hwc = &event->hw;
850bc73f 9683 int throttle = 0;
15dbf27c 9684
0cff784a
PZ
9685 if (!overflow)
9686 overflow = perf_swevent_set_period(event);
15dbf27c 9687
7b4b6658
PZ
9688 if (hwc->interrupts == MAX_INTERRUPTS)
9689 return;
15dbf27c 9690
7b4b6658 9691 for (; overflow; overflow--) {
a8b0ca17 9692 if (__perf_event_overflow(event, throttle,
5622f295 9693 data, regs)) {
7b4b6658
PZ
9694 /*
9695 * We inhibit the overflow from happening when
9696 * hwc->interrupts == MAX_INTERRUPTS.
9697 */
9698 break;
9699 }
cf450a73 9700 throttle = 1;
7b4b6658 9701 }
15dbf27c
PZ
9702}
9703
a4eaf7f1 9704static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 9705 struct perf_sample_data *data,
5622f295 9706 struct pt_regs *regs)
7b4b6658 9707{
cdd6c482 9708 struct hw_perf_event *hwc = &event->hw;
d6d020e9 9709
e7850595 9710 local64_add(nr, &event->count);
d6d020e9 9711
0cff784a
PZ
9712 if (!regs)
9713 return;
9714
6c7e550f 9715 if (!is_sampling_event(event))
7b4b6658 9716 return;
d6d020e9 9717
5d81e5cf
AV
9718 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9719 data->period = nr;
9720 return perf_swevent_overflow(event, 1, data, regs);
9721 } else
9722 data->period = event->hw.last_period;
9723
0cff784a 9724 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 9725 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 9726
e7850595 9727 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 9728 return;
df1a132b 9729
a8b0ca17 9730 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
9731}
9732
f5ffe02e
FW
9733static int perf_exclude_event(struct perf_event *event,
9734 struct pt_regs *regs)
9735{
a4eaf7f1 9736 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 9737 return 1;
a4eaf7f1 9738
f5ffe02e
FW
9739 if (regs) {
9740 if (event->attr.exclude_user && user_mode(regs))
9741 return 1;
9742
9743 if (event->attr.exclude_kernel && !user_mode(regs))
9744 return 1;
9745 }
9746
9747 return 0;
9748}
9749
cdd6c482 9750static int perf_swevent_match(struct perf_event *event,
1c432d89 9751 enum perf_type_id type,
6fb2915d
LZ
9752 u32 event_id,
9753 struct perf_sample_data *data,
9754 struct pt_regs *regs)
15dbf27c 9755{
cdd6c482 9756 if (event->attr.type != type)
a21ca2ca 9757 return 0;
f5ffe02e 9758
cdd6c482 9759 if (event->attr.config != event_id)
15dbf27c
PZ
9760 return 0;
9761
f5ffe02e
FW
9762 if (perf_exclude_event(event, regs))
9763 return 0;
15dbf27c
PZ
9764
9765 return 1;
9766}
9767
76e1d904
FW
9768static inline u64 swevent_hash(u64 type, u32 event_id)
9769{
9770 u64 val = event_id | (type << 32);
9771
9772 return hash_64(val, SWEVENT_HLIST_BITS);
9773}
9774
49f135ed
FW
9775static inline struct hlist_head *
9776__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 9777{
49f135ed
FW
9778 u64 hash = swevent_hash(type, event_id);
9779
9780 return &hlist->heads[hash];
9781}
76e1d904 9782
49f135ed
FW
9783/* For the read side: events when they trigger */
9784static inline struct hlist_head *
b28ab83c 9785find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
9786{
9787 struct swevent_hlist *hlist;
76e1d904 9788
b28ab83c 9789 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
9790 if (!hlist)
9791 return NULL;
9792
49f135ed
FW
9793 return __find_swevent_head(hlist, type, event_id);
9794}
9795
9796/* For the event head insertion and removal in the hlist */
9797static inline struct hlist_head *
b28ab83c 9798find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
9799{
9800 struct swevent_hlist *hlist;
9801 u32 event_id = event->attr.config;
9802 u64 type = event->attr.type;
9803
9804 /*
9805 * Event scheduling is always serialized against hlist allocation
9806 * and release. Which makes the protected version suitable here.
9807 * The context lock guarantees that.
9808 */
b28ab83c 9809 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
9810 lockdep_is_held(&event->ctx->lock));
9811 if (!hlist)
9812 return NULL;
9813
9814 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
9815}
9816
9817static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 9818 u64 nr,
76e1d904
FW
9819 struct perf_sample_data *data,
9820 struct pt_regs *regs)
15dbf27c 9821{
4a32fea9 9822 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 9823 struct perf_event *event;
76e1d904 9824 struct hlist_head *head;
15dbf27c 9825
76e1d904 9826 rcu_read_lock();
b28ab83c 9827 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
9828 if (!head)
9829 goto end;
9830
b67bfe0d 9831 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 9832 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 9833 perf_swevent_event(event, nr, data, regs);
15dbf27c 9834 }
76e1d904
FW
9835end:
9836 rcu_read_unlock();
15dbf27c
PZ
9837}
9838
86038c5e
PZI
9839DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9840
4ed7c92d 9841int perf_swevent_get_recursion_context(void)
96f6d444 9842{
4a32fea9 9843 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 9844
b28ab83c 9845 return get_recursion_context(swhash->recursion);
96f6d444 9846}
645e8cc0 9847EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 9848
98b5c2c6 9849void perf_swevent_put_recursion_context(int rctx)
15dbf27c 9850{
4a32fea9 9851 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 9852
b28ab83c 9853 put_recursion_context(swhash->recursion, rctx);
ce71b9df 9854}
15dbf27c 9855
86038c5e 9856void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 9857{
a4234bfc 9858 struct perf_sample_data data;
4ed7c92d 9859
86038c5e 9860 if (WARN_ON_ONCE(!regs))
4ed7c92d 9861 return;
a4234bfc 9862
fd0d000b 9863 perf_sample_data_init(&data, addr, 0);
a8b0ca17 9864 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
9865}
9866
9867void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9868{
9869 int rctx;
9870
9871 preempt_disable_notrace();
9872 rctx = perf_swevent_get_recursion_context();
9873 if (unlikely(rctx < 0))
9874 goto fail;
9875
9876 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
9877
9878 perf_swevent_put_recursion_context(rctx);
86038c5e 9879fail:
1c024eca 9880 preempt_enable_notrace();
b8e83514
PZ
9881}
9882
cdd6c482 9883static void perf_swevent_read(struct perf_event *event)
15dbf27c 9884{
15dbf27c
PZ
9885}
9886
a4eaf7f1 9887static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 9888{
4a32fea9 9889 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 9890 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
9891 struct hlist_head *head;
9892
6c7e550f 9893 if (is_sampling_event(event)) {
7b4b6658 9894 hwc->last_period = hwc->sample_period;
cdd6c482 9895 perf_swevent_set_period(event);
7b4b6658 9896 }
76e1d904 9897
a4eaf7f1
PZ
9898 hwc->state = !(flags & PERF_EF_START);
9899
b28ab83c 9900 head = find_swevent_head(swhash, event);
12ca6ad2 9901 if (WARN_ON_ONCE(!head))
76e1d904
FW
9902 return -EINVAL;
9903
9904 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 9905 perf_event_update_userpage(event);
76e1d904 9906
15dbf27c
PZ
9907 return 0;
9908}
9909
a4eaf7f1 9910static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 9911{
76e1d904 9912 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
9913}
9914
a4eaf7f1 9915static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 9916{
a4eaf7f1 9917 event->hw.state = 0;
d6d020e9 9918}
aa9c4c0f 9919
a4eaf7f1 9920static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 9921{
a4eaf7f1 9922 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
9923}
9924
49f135ed
FW
9925/* Deref the hlist from the update side */
9926static inline struct swevent_hlist *
b28ab83c 9927swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 9928{
b28ab83c
PZ
9929 return rcu_dereference_protected(swhash->swevent_hlist,
9930 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
9931}
9932
b28ab83c 9933static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 9934{
b28ab83c 9935 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 9936
49f135ed 9937 if (!hlist)
76e1d904
FW
9938 return;
9939
70691d4a 9940 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 9941 kfree_rcu(hlist, rcu_head);
76e1d904
FW
9942}
9943
3b364d7b 9944static void swevent_hlist_put_cpu(int cpu)
76e1d904 9945{
b28ab83c 9946 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 9947
b28ab83c 9948 mutex_lock(&swhash->hlist_mutex);
76e1d904 9949
b28ab83c
PZ
9950 if (!--swhash->hlist_refcount)
9951 swevent_hlist_release(swhash);
76e1d904 9952
b28ab83c 9953 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
9954}
9955
3b364d7b 9956static void swevent_hlist_put(void)
76e1d904
FW
9957{
9958 int cpu;
9959
76e1d904 9960 for_each_possible_cpu(cpu)
3b364d7b 9961 swevent_hlist_put_cpu(cpu);
76e1d904
FW
9962}
9963
3b364d7b 9964static int swevent_hlist_get_cpu(int cpu)
76e1d904 9965{
b28ab83c 9966 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
9967 int err = 0;
9968
b28ab83c 9969 mutex_lock(&swhash->hlist_mutex);
a63fbed7
TG
9970 if (!swevent_hlist_deref(swhash) &&
9971 cpumask_test_cpu(cpu, perf_online_mask)) {
76e1d904
FW
9972 struct swevent_hlist *hlist;
9973
9974 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9975 if (!hlist) {
9976 err = -ENOMEM;
9977 goto exit;
9978 }
b28ab83c 9979 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 9980 }
b28ab83c 9981 swhash->hlist_refcount++;
9ed6060d 9982exit:
b28ab83c 9983 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
9984
9985 return err;
9986}
9987
3b364d7b 9988static int swevent_hlist_get(void)
76e1d904 9989{
3b364d7b 9990 int err, cpu, failed_cpu;
76e1d904 9991
a63fbed7 9992 mutex_lock(&pmus_lock);
76e1d904 9993 for_each_possible_cpu(cpu) {
3b364d7b 9994 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
9995 if (err) {
9996 failed_cpu = cpu;
9997 goto fail;
9998 }
9999 }
a63fbed7 10000 mutex_unlock(&pmus_lock);
76e1d904 10001 return 0;
9ed6060d 10002fail:
76e1d904
FW
10003 for_each_possible_cpu(cpu) {
10004 if (cpu == failed_cpu)
10005 break;
3b364d7b 10006 swevent_hlist_put_cpu(cpu);
76e1d904 10007 }
a63fbed7 10008 mutex_unlock(&pmus_lock);
76e1d904
FW
10009 return err;
10010}
10011
c5905afb 10012struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 10013
b0a873eb
PZ
10014static void sw_perf_event_destroy(struct perf_event *event)
10015{
10016 u64 event_id = event->attr.config;
95476b64 10017
b0a873eb
PZ
10018 WARN_ON(event->parent);
10019
c5905afb 10020 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 10021 swevent_hlist_put();
b0a873eb
PZ
10022}
10023
0d6d062c
RB
10024static struct pmu perf_cpu_clock; /* fwd declaration */
10025static struct pmu perf_task_clock;
10026
b0a873eb
PZ
10027static int perf_swevent_init(struct perf_event *event)
10028{
8176cced 10029 u64 event_id = event->attr.config;
b0a873eb
PZ
10030
10031 if (event->attr.type != PERF_TYPE_SOFTWARE)
10032 return -ENOENT;
10033
2481c5fa
SE
10034 /*
10035 * no branch sampling for software events
10036 */
10037 if (has_branch_stack(event))
10038 return -EOPNOTSUPP;
10039
b0a873eb
PZ
10040 switch (event_id) {
10041 case PERF_COUNT_SW_CPU_CLOCK:
0d6d062c
RB
10042 event->attr.type = perf_cpu_clock.type;
10043 return -ENOENT;
b0a873eb 10044 case PERF_COUNT_SW_TASK_CLOCK:
0d6d062c 10045 event->attr.type = perf_task_clock.type;
b0a873eb
PZ
10046 return -ENOENT;
10047
10048 default:
10049 break;
10050 }
10051
ce677831 10052 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
10053 return -ENOENT;
10054
10055 if (!event->parent) {
10056 int err;
10057
3b364d7b 10058 err = swevent_hlist_get();
b0a873eb
PZ
10059 if (err)
10060 return err;
10061
c5905afb 10062 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
10063 event->destroy = sw_perf_event_destroy;
10064 }
10065
10066 return 0;
10067}
10068
10069static struct pmu perf_swevent = {
89a1e187 10070 .task_ctx_nr = perf_sw_context,
95476b64 10071
34f43927
PZ
10072 .capabilities = PERF_PMU_CAP_NO_NMI,
10073
b0a873eb 10074 .event_init = perf_swevent_init,
a4eaf7f1
PZ
10075 .add = perf_swevent_add,
10076 .del = perf_swevent_del,
10077 .start = perf_swevent_start,
10078 .stop = perf_swevent_stop,
1c024eca 10079 .read = perf_swevent_read,
1c024eca
PZ
10080};
10081
b0a873eb
PZ
10082#ifdef CONFIG_EVENT_TRACING
10083
571f97f7
RB
10084static void tp_perf_event_destroy(struct perf_event *event)
10085{
10086 perf_trace_destroy(event);
10087}
10088
10089static int perf_tp_event_init(struct perf_event *event)
10090{
10091 int err;
10092
10093 if (event->attr.type != PERF_TYPE_TRACEPOINT)
10094 return -ENOENT;
10095
10096 /*
10097 * no branch sampling for tracepoint events
10098 */
10099 if (has_branch_stack(event))
10100 return -EOPNOTSUPP;
10101
10102 err = perf_trace_init(event);
10103 if (err)
10104 return err;
10105
10106 event->destroy = tp_perf_event_destroy;
10107
10108 return 0;
10109}
10110
10111static struct pmu perf_tracepoint = {
10112 .task_ctx_nr = perf_sw_context,
10113
10114 .event_init = perf_tp_event_init,
10115 .add = perf_trace_add,
10116 .del = perf_trace_del,
10117 .start = perf_swevent_start,
10118 .stop = perf_swevent_stop,
10119 .read = perf_swevent_read,
10120};
10121
1c024eca
PZ
10122static int perf_tp_filter_match(struct perf_event *event,
10123 struct perf_sample_data *data)
10124{
7e3f977e 10125 void *record = data->raw->frag.data;
1c024eca 10126
b71b437e
PZ
10127 /* only top level events have filters set */
10128 if (event->parent)
10129 event = event->parent;
10130
1c024eca
PZ
10131 if (likely(!event->filter) || filter_match_preds(event->filter, record))
10132 return 1;
10133 return 0;
10134}
10135
10136static int perf_tp_event_match(struct perf_event *event,
10137 struct perf_sample_data *data,
10138 struct pt_regs *regs)
10139{
a0f7d0f7
FW
10140 if (event->hw.state & PERF_HES_STOPPED)
10141 return 0;
580d607c 10142 /*
9fd2e48b 10143 * If exclude_kernel, only trace user-space tracepoints (uprobes)
580d607c 10144 */
9fd2e48b 10145 if (event->attr.exclude_kernel && !user_mode(regs))
1c024eca
PZ
10146 return 0;
10147
10148 if (!perf_tp_filter_match(event, data))
10149 return 0;
10150
10151 return 1;
10152}
10153
85b67bcb
AS
10154void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10155 struct trace_event_call *call, u64 count,
10156 struct pt_regs *regs, struct hlist_head *head,
10157 struct task_struct *task)
10158{
e87c6bc3 10159 if (bpf_prog_array_valid(call)) {
85b67bcb 10160 *(struct pt_regs **)raw_data = regs;
e87c6bc3 10161 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
85b67bcb
AS
10162 perf_swevent_put_recursion_context(rctx);
10163 return;
10164 }
10165 }
10166 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8fd0fbbe 10167 rctx, task);
85b67bcb
AS
10168}
10169EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10170
571f97f7
RB
10171static void __perf_tp_event_target_task(u64 count, void *record,
10172 struct pt_regs *regs,
10173 struct perf_sample_data *data,
10174 struct perf_event *event)
10175{
10176 struct trace_entry *entry = record;
10177
10178 if (event->attr.config != entry->type)
10179 return;
10180 /* Cannot deliver synchronous signal to other task. */
10181 if (event->attr.sigtrap)
10182 return;
10183 if (perf_tp_event_match(event, data, regs))
10184 perf_swevent_event(event, count, data, regs);
10185}
10186
10187static void perf_tp_event_target_task(u64 count, void *record,
10188 struct pt_regs *regs,
10189 struct perf_sample_data *data,
10190 struct perf_event_context *ctx)
10191{
10192 unsigned int cpu = smp_processor_id();
10193 struct pmu *pmu = &perf_tracepoint;
10194 struct perf_event *event, *sibling;
10195
10196 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10197 __perf_tp_event_target_task(count, record, regs, data, event);
10198 for_each_sibling_event(sibling, event)
10199 __perf_tp_event_target_task(count, record, regs, data, sibling);
10200 }
10201
10202 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10203 __perf_tp_event_target_task(count, record, regs, data, event);
10204 for_each_sibling_event(sibling, event)
10205 __perf_tp_event_target_task(count, record, regs, data, sibling);
10206 }
10207}
10208
1e1dcd93 10209void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff 10210 struct pt_regs *regs, struct hlist_head *head, int rctx,
8fd0fbbe 10211 struct task_struct *task)
95476b64
FW
10212{
10213 struct perf_sample_data data;
8fd0fbbe 10214 struct perf_event *event;
1c024eca 10215
95476b64 10216 struct perf_raw_record raw = {
7e3f977e
DB
10217 .frag = {
10218 .size = entry_size,
10219 .data = record,
10220 },
95476b64
FW
10221 };
10222
1e1dcd93 10223 perf_sample_data_init(&data, 0, 0);
0a9081cf 10224 perf_sample_save_raw_data(&data, &raw);
95476b64 10225
1e1dcd93
AS
10226 perf_trace_buf_update(record, event_type);
10227
8fd0fbbe 10228 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1d1bfe30 10229 if (perf_tp_event_match(event, &data, regs)) {
a8b0ca17 10230 perf_swevent_event(event, count, &data, regs);
1d1bfe30
YJ
10231
10232 /*
10233 * Here use the same on-stack perf_sample_data,
10234 * some members in data are event-specific and
10235 * need to be re-computed for different sweveents.
10236 * Re-initialize data->sample_flags safely to avoid
10237 * the problem that next event skips preparing data
10238 * because data->sample_flags is set.
10239 */
10240 perf_sample_data_init(&data, 0, 0);
10241 perf_sample_save_raw_data(&data, &raw);
10242 }
4f41c013 10243 }
ecc55f84 10244
e6dab5ff
AV
10245 /*
10246 * If we got specified a target task, also iterate its context and
10247 * deliver this event there too.
10248 */
10249 if (task && task != current) {
10250 struct perf_event_context *ctx;
e6dab5ff
AV
10251
10252 rcu_read_lock();
bd275681 10253 ctx = rcu_dereference(task->perf_event_ctxp);
e6dab5ff
AV
10254 if (!ctx)
10255 goto unlock;
10256
571f97f7
RB
10257 raw_spin_lock(&ctx->lock);
10258 perf_tp_event_target_task(count, record, regs, &data, ctx);
10259 raw_spin_unlock(&ctx->lock);
e6dab5ff
AV
10260unlock:
10261 rcu_read_unlock();
10262 }
10263
ecc55f84 10264 perf_swevent_put_recursion_context(rctx);
95476b64
FW
10265}
10266EXPORT_SYMBOL_GPL(perf_tp_event);
10267
33ea4b24 10268#if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
e12f03d7
SL
10269/*
10270 * Flags in config, used by dynamic PMU kprobe and uprobe
10271 * The flags should match following PMU_FORMAT_ATTR().
10272 *
10273 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10274 * if not set, create kprobe/uprobe
a6ca88b2
SL
10275 *
10276 * The following values specify a reference counter (or semaphore in the
10277 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10278 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10279 *
10280 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
10281 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
e12f03d7
SL
10282 */
10283enum perf_probe_config {
10284 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
a6ca88b2
SL
10285 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10286 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
e12f03d7
SL
10287};
10288
10289PMU_FORMAT_ATTR(retprobe, "config:0");
a6ca88b2 10290#endif
e12f03d7 10291
a6ca88b2
SL
10292#ifdef CONFIG_KPROBE_EVENTS
10293static struct attribute *kprobe_attrs[] = {
e12f03d7
SL
10294 &format_attr_retprobe.attr,
10295 NULL,
10296};
10297
a6ca88b2 10298static struct attribute_group kprobe_format_group = {
e12f03d7 10299 .name = "format",
a6ca88b2 10300 .attrs = kprobe_attrs,
e12f03d7
SL
10301};
10302
a6ca88b2
SL
10303static const struct attribute_group *kprobe_attr_groups[] = {
10304 &kprobe_format_group,
e12f03d7
SL
10305 NULL,
10306};
10307
10308static int perf_kprobe_event_init(struct perf_event *event);
10309static struct pmu perf_kprobe = {
10310 .task_ctx_nr = perf_sw_context,
10311 .event_init = perf_kprobe_event_init,
10312 .add = perf_trace_add,
10313 .del = perf_trace_del,
10314 .start = perf_swevent_start,
10315 .stop = perf_swevent_stop,
10316 .read = perf_swevent_read,
a6ca88b2 10317 .attr_groups = kprobe_attr_groups,
e12f03d7
SL
10318};
10319
10320static int perf_kprobe_event_init(struct perf_event *event)
10321{
10322 int err;
10323 bool is_retprobe;
10324
10325 if (event->attr.type != perf_kprobe.type)
10326 return -ENOENT;
32e6e967 10327
c9e0924e 10328 if (!perfmon_capable())
32e6e967
SL
10329 return -EACCES;
10330
e12f03d7
SL
10331 /*
10332 * no branch sampling for probe events
10333 */
10334 if (has_branch_stack(event))
10335 return -EOPNOTSUPP;
10336
10337 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10338 err = perf_kprobe_init(event, is_retprobe);
10339 if (err)
10340 return err;
10341
10342 event->destroy = perf_kprobe_destroy;
10343
10344 return 0;
10345}
10346#endif /* CONFIG_KPROBE_EVENTS */
10347
33ea4b24 10348#ifdef CONFIG_UPROBE_EVENTS
a6ca88b2
SL
10349PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10350
10351static struct attribute *uprobe_attrs[] = {
10352 &format_attr_retprobe.attr,
10353 &format_attr_ref_ctr_offset.attr,
10354 NULL,
10355};
10356
10357static struct attribute_group uprobe_format_group = {
10358 .name = "format",
10359 .attrs = uprobe_attrs,
10360};
10361
10362static const struct attribute_group *uprobe_attr_groups[] = {
10363 &uprobe_format_group,
10364 NULL,
10365};
10366
33ea4b24
SL
10367static int perf_uprobe_event_init(struct perf_event *event);
10368static struct pmu perf_uprobe = {
10369 .task_ctx_nr = perf_sw_context,
10370 .event_init = perf_uprobe_event_init,
10371 .add = perf_trace_add,
10372 .del = perf_trace_del,
10373 .start = perf_swevent_start,
10374 .stop = perf_swevent_stop,
10375 .read = perf_swevent_read,
a6ca88b2 10376 .attr_groups = uprobe_attr_groups,
33ea4b24
SL
10377};
10378
10379static int perf_uprobe_event_init(struct perf_event *event)
10380{
10381 int err;
a6ca88b2 10382 unsigned long ref_ctr_offset;
33ea4b24
SL
10383 bool is_retprobe;
10384
10385 if (event->attr.type != perf_uprobe.type)
10386 return -ENOENT;
32e6e967 10387
c9e0924e 10388 if (!perfmon_capable())
32e6e967
SL
10389 return -EACCES;
10390
33ea4b24
SL
10391 /*
10392 * no branch sampling for probe events
10393 */
10394 if (has_branch_stack(event))
10395 return -EOPNOTSUPP;
10396
10397 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
a6ca88b2
SL
10398 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10399 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
33ea4b24
SL
10400 if (err)
10401 return err;
10402
10403 event->destroy = perf_uprobe_destroy;
10404
10405 return 0;
10406}
10407#endif /* CONFIG_UPROBE_EVENTS */
10408
b0a873eb
PZ
10409static inline void perf_tp_register(void)
10410{
2e80a82a 10411 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e12f03d7
SL
10412#ifdef CONFIG_KPROBE_EVENTS
10413 perf_pmu_register(&perf_kprobe, "kprobe", -1);
10414#endif
33ea4b24
SL
10415#ifdef CONFIG_UPROBE_EVENTS
10416 perf_pmu_register(&perf_uprobe, "uprobe", -1);
10417#endif
e077df4f 10418}
6fb2915d 10419
6fb2915d
LZ
10420static void perf_event_free_filter(struct perf_event *event)
10421{
10422 ftrace_profile_free_filter(event);
10423}
10424
aa6a5f3c
AS
10425#ifdef CONFIG_BPF_SYSCALL
10426static void bpf_overflow_handler(struct perf_event *event,
10427 struct perf_sample_data *data,
10428 struct pt_regs *regs)
10429{
10430 struct bpf_perf_event_data_kern ctx = {
10431 .data = data,
7d9285e8 10432 .event = event,
aa6a5f3c 10433 };
594286b7 10434 struct bpf_prog *prog;
aa6a5f3c
AS
10435 int ret = 0;
10436
c895f6f7 10437 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
aa6a5f3c
AS
10438 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10439 goto out;
10440 rcu_read_lock();
594286b7 10441 prog = READ_ONCE(event->prog);
16817ad7 10442 if (prog) {
0eed2822 10443 perf_prepare_sample(data, event, regs);
594286b7 10444 ret = bpf_prog_run(prog, &ctx);
16817ad7 10445 }
aa6a5f3c
AS
10446 rcu_read_unlock();
10447out:
10448 __this_cpu_dec(bpf_prog_active);
aa6a5f3c
AS
10449 if (!ret)
10450 return;
10451
10452 event->orig_overflow_handler(event, data, regs);
10453}
10454
82e6b1ee
AN
10455static int perf_event_set_bpf_handler(struct perf_event *event,
10456 struct bpf_prog *prog,
10457 u64 bpf_cookie)
aa6a5f3c 10458{
aa6a5f3c
AS
10459 if (event->overflow_handler_context)
10460 /* hw breakpoint or kernel counter */
10461 return -EINVAL;
10462
10463 if (event->prog)
10464 return -EEXIST;
10465
652c1b17
AN
10466 if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10467 return -EINVAL;
aa6a5f3c 10468
5d99cb2c
SL
10469 if (event->attr.precise_ip &&
10470 prog->call_get_stack &&
16817ad7 10471 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
5d99cb2c
SL
10472 event->attr.exclude_callchain_kernel ||
10473 event->attr.exclude_callchain_user)) {
10474 /*
10475 * On perf_event with precise_ip, calling bpf_get_stack()
10476 * may trigger unwinder warnings and occasional crashes.
10477 * bpf_get_[stack|stackid] works around this issue by using
10478 * callchain attached to perf_sample_data. If the
10479 * perf_event does not full (kernel and user) callchain
10480 * attached to perf_sample_data, do not allow attaching BPF
10481 * program that calls bpf_get_[stack|stackid].
10482 */
5d99cb2c
SL
10483 return -EPROTO;
10484 }
10485
aa6a5f3c 10486 event->prog = prog;
82e6b1ee 10487 event->bpf_cookie = bpf_cookie;
aa6a5f3c
AS
10488 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10489 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10490 return 0;
10491}
10492
10493static void perf_event_free_bpf_handler(struct perf_event *event)
10494{
10495 struct bpf_prog *prog = event->prog;
10496
10497 if (!prog)
10498 return;
10499
10500 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10501 event->prog = NULL;
10502 bpf_prog_put(prog);
10503}
10504#else
82e6b1ee
AN
10505static int perf_event_set_bpf_handler(struct perf_event *event,
10506 struct bpf_prog *prog,
10507 u64 bpf_cookie)
aa6a5f3c
AS
10508{
10509 return -EOPNOTSUPP;
10510}
10511static void perf_event_free_bpf_handler(struct perf_event *event)
10512{
10513}
10514#endif
10515
e12f03d7
SL
10516/*
10517 * returns true if the event is a tracepoint, or a kprobe/upprobe created
10518 * with perf_event_open()
10519 */
10520static inline bool perf_event_is_tracing(struct perf_event *event)
10521{
10522 if (event->pmu == &perf_tracepoint)
10523 return true;
10524#ifdef CONFIG_KPROBE_EVENTS
10525 if (event->pmu == &perf_kprobe)
10526 return true;
33ea4b24
SL
10527#endif
10528#ifdef CONFIG_UPROBE_EVENTS
10529 if (event->pmu == &perf_uprobe)
10530 return true;
e12f03d7
SL
10531#endif
10532 return false;
10533}
10534
82e6b1ee
AN
10535int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10536 u64 bpf_cookie)
2541517c 10537{
64ad7556 10538 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
2541517c 10539
e12f03d7 10540 if (!perf_event_is_tracing(event))
82e6b1ee 10541 return perf_event_set_bpf_handler(event, prog, bpf_cookie);
2541517c 10542
64ad7556
DK
10543 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10544 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
98b5c2c6 10545 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
cf5f5cea 10546 is_syscall_tp = is_syscall_trace_event(event->tp_event);
64ad7556 10547 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
98b5c2c6 10548 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
10549 return -EINVAL;
10550
64ad7556 10551 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
cf5f5cea 10552 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
652c1b17 10553 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
2541517c 10554 return -EINVAL;
2541517c 10555
64ad7556
DK
10556 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe)
10557 /* only uprobe programs are allowed to be sleepable */
10558 return -EINVAL;
10559
9802d865 10560 /* Kprobe override only works for kprobes, not uprobes. */
64ad7556 10561 if (prog->kprobe_override && !is_kprobe)
9802d865 10562 return -EINVAL;
9802d865 10563
cf5f5cea 10564 if (is_tracepoint || is_syscall_tp) {
32bbe007
AS
10565 int off = trace_event_get_offsets(event->tp_event);
10566
652c1b17 10567 if (prog->aux->max_ctx_offset > off)
32bbe007 10568 return -EACCES;
32bbe007 10569 }
2541517c 10570
82e6b1ee 10571 return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
2541517c
AS
10572}
10573
b89fbfbb 10574void perf_event_free_bpf_prog(struct perf_event *event)
2541517c 10575{
e12f03d7 10576 if (!perf_event_is_tracing(event)) {
0b4c6841 10577 perf_event_free_bpf_handler(event);
2541517c 10578 return;
2541517c 10579 }
e87c6bc3 10580 perf_event_detach_bpf_prog(event);
2541517c
AS
10581}
10582
e077df4f 10583#else
6fb2915d 10584
b0a873eb 10585static inline void perf_tp_register(void)
e077df4f 10586{
e077df4f 10587}
6fb2915d 10588
6fb2915d
LZ
10589static void perf_event_free_filter(struct perf_event *event)
10590{
10591}
10592
82e6b1ee
AN
10593int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10594 u64 bpf_cookie)
2541517c
AS
10595{
10596 return -ENOENT;
10597}
10598
b89fbfbb 10599void perf_event_free_bpf_prog(struct perf_event *event)
2541517c
AS
10600{
10601}
07b139c8 10602#endif /* CONFIG_EVENT_TRACING */
e077df4f 10603
24f1e32c 10604#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 10605void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 10606{
f5ffe02e
FW
10607 struct perf_sample_data sample;
10608 struct pt_regs *regs = data;
10609
fd0d000b 10610 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 10611
a4eaf7f1 10612 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 10613 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
10614}
10615#endif
10616
375637bc
AS
10617/*
10618 * Allocate a new address filter
10619 */
10620static struct perf_addr_filter *
10621perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10622{
10623 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10624 struct perf_addr_filter *filter;
10625
10626 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10627 if (!filter)
10628 return NULL;
10629
10630 INIT_LIST_HEAD(&filter->entry);
10631 list_add_tail(&filter->entry, filters);
10632
10633 return filter;
10634}
10635
10636static void free_filters_list(struct list_head *filters)
10637{
10638 struct perf_addr_filter *filter, *iter;
10639
10640 list_for_each_entry_safe(filter, iter, filters, entry) {
9511bce9 10641 path_put(&filter->path);
375637bc
AS
10642 list_del(&filter->entry);
10643 kfree(filter);
10644 }
10645}
10646
10647/*
10648 * Free existing address filters and optionally install new ones
10649 */
10650static void perf_addr_filters_splice(struct perf_event *event,
10651 struct list_head *head)
10652{
10653 unsigned long flags;
10654 LIST_HEAD(list);
10655
10656 if (!has_addr_filter(event))
10657 return;
10658
10659 /* don't bother with children, they don't have their own filters */
10660 if (event->parent)
10661 return;
10662
10663 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10664
10665 list_splice_init(&event->addr_filters.list, &list);
10666 if (head)
10667 list_splice(head, &event->addr_filters.list);
10668
10669 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10670
10671 free_filters_list(&list);
10672}
10673
10674/*
10675 * Scan through mm's vmas and see if one of them matches the
10676 * @filter; if so, adjust filter's address range.
c1e8d7c6 10677 * Called with mm::mmap_lock down for reading.
375637bc 10678 */
c60f83b8
AS
10679static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10680 struct mm_struct *mm,
10681 struct perf_addr_filter_range *fr)
375637bc
AS
10682{
10683 struct vm_area_struct *vma;
fcb72a58 10684 VMA_ITERATOR(vmi, mm, 0);
375637bc 10685
fcb72a58 10686 for_each_vma(vmi, vma) {
c60f83b8 10687 if (!vma->vm_file)
375637bc
AS
10688 continue;
10689
c60f83b8
AS
10690 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10691 return;
375637bc 10692 }
375637bc
AS
10693}
10694
10695/*
10696 * Update event's address range filters based on the
10697 * task's existing mappings, if any.
10698 */
10699static void perf_event_addr_filters_apply(struct perf_event *event)
10700{
10701 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10702 struct task_struct *task = READ_ONCE(event->ctx->task);
10703 struct perf_addr_filter *filter;
10704 struct mm_struct *mm = NULL;
10705 unsigned int count = 0;
10706 unsigned long flags;
10707
10708 /*
10709 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10710 * will stop on the parent's child_mutex that our caller is also holding
10711 */
10712 if (task == TASK_TOMBSTONE)
10713 return;
10714
52a44f83 10715 if (ifh->nr_file_filters) {
b89a05b2 10716 mm = get_task_mm(task);
52a44f83
AS
10717 if (!mm)
10718 goto restart;
375637bc 10719
d8ed45c5 10720 mmap_read_lock(mm);
52a44f83 10721 }
375637bc
AS
10722
10723 raw_spin_lock_irqsave(&ifh->lock, flags);
10724 list_for_each_entry(filter, &ifh->list, entry) {
52a44f83
AS
10725 if (filter->path.dentry) {
10726 /*
10727 * Adjust base offset if the filter is associated to a
10728 * binary that needs to be mapped:
10729 */
10730 event->addr_filter_ranges[count].start = 0;
10731 event->addr_filter_ranges[count].size = 0;
375637bc 10732
c60f83b8 10733 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
52a44f83
AS
10734 } else {
10735 event->addr_filter_ranges[count].start = filter->offset;
10736 event->addr_filter_ranges[count].size = filter->size;
10737 }
375637bc
AS
10738
10739 count++;
10740 }
10741
10742 event->addr_filters_gen++;
10743 raw_spin_unlock_irqrestore(&ifh->lock, flags);
10744
52a44f83 10745 if (ifh->nr_file_filters) {
d8ed45c5 10746 mmap_read_unlock(mm);
375637bc 10747
52a44f83
AS
10748 mmput(mm);
10749 }
375637bc
AS
10750
10751restart:
767ae086 10752 perf_event_stop(event, 1);
375637bc
AS
10753}
10754
10755/*
10756 * Address range filtering: limiting the data to certain
10757 * instruction address ranges. Filters are ioctl()ed to us from
10758 * userspace as ascii strings.
10759 *
10760 * Filter string format:
10761 *
10762 * ACTION RANGE_SPEC
10763 * where ACTION is one of the
10764 * * "filter": limit the trace to this region
10765 * * "start": start tracing from this address
10766 * * "stop": stop tracing at this address/region;
10767 * RANGE_SPEC is
10768 * * for kernel addresses: <start address>[/<size>]
10769 * * for object files: <start address>[/<size>]@</path/to/object/file>
10770 *
6ed70cf3
AS
10771 * if <size> is not specified or is zero, the range is treated as a single
10772 * address; not valid for ACTION=="filter".
375637bc
AS
10773 */
10774enum {
e96271f3 10775 IF_ACT_NONE = -1,
375637bc
AS
10776 IF_ACT_FILTER,
10777 IF_ACT_START,
10778 IF_ACT_STOP,
10779 IF_SRC_FILE,
10780 IF_SRC_KERNEL,
10781 IF_SRC_FILEADDR,
10782 IF_SRC_KERNELADDR,
10783};
10784
10785enum {
10786 IF_STATE_ACTION = 0,
10787 IF_STATE_SOURCE,
10788 IF_STATE_END,
10789};
10790
10791static const match_table_t if_tokens = {
10792 { IF_ACT_FILTER, "filter" },
10793 { IF_ACT_START, "start" },
10794 { IF_ACT_STOP, "stop" },
10795 { IF_SRC_FILE, "%u/%u@%s" },
10796 { IF_SRC_KERNEL, "%u/%u" },
10797 { IF_SRC_FILEADDR, "%u@%s" },
10798 { IF_SRC_KERNELADDR, "%u" },
e96271f3 10799 { IF_ACT_NONE, NULL },
375637bc
AS
10800};
10801
10802/*
10803 * Address filter string parser
10804 */
10805static int
10806perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10807 struct list_head *filters)
10808{
10809 struct perf_addr_filter *filter = NULL;
10810 char *start, *orig, *filename = NULL;
375637bc
AS
10811 substring_t args[MAX_OPT_ARGS];
10812 int state = IF_STATE_ACTION, token;
10813 unsigned int kernel = 0;
10814 int ret = -EINVAL;
10815
10816 orig = fstr = kstrdup(fstr, GFP_KERNEL);
10817 if (!fstr)
10818 return -ENOMEM;
10819
10820 while ((start = strsep(&fstr, " ,\n")) != NULL) {
6ed70cf3
AS
10821 static const enum perf_addr_filter_action_t actions[] = {
10822 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10823 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
10824 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
10825 };
375637bc
AS
10826 ret = -EINVAL;
10827
10828 if (!*start)
10829 continue;
10830
10831 /* filter definition begins */
10832 if (state == IF_STATE_ACTION) {
10833 filter = perf_addr_filter_new(event, filters);
10834 if (!filter)
10835 goto fail;
10836 }
10837
10838 token = match_token(start, if_tokens, args);
10839 switch (token) {
10840 case IF_ACT_FILTER:
10841 case IF_ACT_START:
375637bc
AS
10842 case IF_ACT_STOP:
10843 if (state != IF_STATE_ACTION)
10844 goto fail;
10845
6ed70cf3 10846 filter->action = actions[token];
375637bc
AS
10847 state = IF_STATE_SOURCE;
10848 break;
10849
10850 case IF_SRC_KERNELADDR:
10851 case IF_SRC_KERNEL:
10852 kernel = 1;
df561f66 10853 fallthrough;
375637bc
AS
10854
10855 case IF_SRC_FILEADDR:
10856 case IF_SRC_FILE:
10857 if (state != IF_STATE_SOURCE)
10858 goto fail;
10859
375637bc
AS
10860 *args[0].to = 0;
10861 ret = kstrtoul(args[0].from, 0, &filter->offset);
10862 if (ret)
10863 goto fail;
10864
6ed70cf3 10865 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
375637bc
AS
10866 *args[1].to = 0;
10867 ret = kstrtoul(args[1].from, 0, &filter->size);
10868 if (ret)
10869 goto fail;
10870 }
10871
4059ffd0 10872 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
6ed70cf3 10873 int fpos = token == IF_SRC_FILE ? 2 : 1;
4059ffd0 10874
7bdb157c 10875 kfree(filename);
4059ffd0 10876 filename = match_strdup(&args[fpos]);
375637bc
AS
10877 if (!filename) {
10878 ret = -ENOMEM;
10879 goto fail;
10880 }
10881 }
10882
10883 state = IF_STATE_END;
10884 break;
10885
10886 default:
10887 goto fail;
10888 }
10889
10890 /*
10891 * Filter definition is fully parsed, validate and install it.
10892 * Make sure that it doesn't contradict itself or the event's
10893 * attribute.
10894 */
10895 if (state == IF_STATE_END) {
9ccbfbb1 10896 ret = -EINVAL;
375637bc 10897
6ed70cf3
AS
10898 /*
10899 * ACTION "filter" must have a non-zero length region
10900 * specified.
10901 */
10902 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10903 !filter->size)
10904 goto fail;
10905
375637bc
AS
10906 if (!kernel) {
10907 if (!filename)
10908 goto fail;
10909
6ce77bfd
AS
10910 /*
10911 * For now, we only support file-based filters
10912 * in per-task events; doing so for CPU-wide
10913 * events requires additional context switching
10914 * trickery, since same object code will be
10915 * mapped at different virtual addresses in
10916 * different processes.
10917 */
10918 ret = -EOPNOTSUPP;
10919 if (!event->ctx->task)
7bdb157c 10920 goto fail;
6ce77bfd 10921
375637bc 10922 /* look up the path and grab its inode */
9511bce9
SL
10923 ret = kern_path(filename, LOOKUP_FOLLOW,
10924 &filter->path);
375637bc 10925 if (ret)
7bdb157c 10926 goto fail;
375637bc
AS
10927
10928 ret = -EINVAL;
9511bce9
SL
10929 if (!filter->path.dentry ||
10930 !S_ISREG(d_inode(filter->path.dentry)
10931 ->i_mode))
375637bc 10932 goto fail;
6ce77bfd
AS
10933
10934 event->addr_filters.nr_file_filters++;
375637bc
AS
10935 }
10936
10937 /* ready to consume more filters */
d680ff24
AH
10938 kfree(filename);
10939 filename = NULL;
375637bc
AS
10940 state = IF_STATE_ACTION;
10941 filter = NULL;
d680ff24 10942 kernel = 0;
375637bc
AS
10943 }
10944 }
10945
10946 if (state != IF_STATE_ACTION)
10947 goto fail;
10948
7bdb157c 10949 kfree(filename);
375637bc
AS
10950 kfree(orig);
10951
10952 return 0;
10953
375637bc 10954fail:
7bdb157c 10955 kfree(filename);
375637bc
AS
10956 free_filters_list(filters);
10957 kfree(orig);
10958
10959 return ret;
10960}
10961
10962static int
10963perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10964{
10965 LIST_HEAD(filters);
10966 int ret;
10967
10968 /*
10969 * Since this is called in perf_ioctl() path, we're already holding
10970 * ctx::mutex.
10971 */
10972 lockdep_assert_held(&event->ctx->mutex);
10973
10974 if (WARN_ON_ONCE(event->parent))
10975 return -EINVAL;
10976
375637bc
AS
10977 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10978 if (ret)
6ce77bfd 10979 goto fail_clear_files;
375637bc
AS
10980
10981 ret = event->pmu->addr_filters_validate(&filters);
6ce77bfd
AS
10982 if (ret)
10983 goto fail_free_filters;
375637bc
AS
10984
10985 /* remove existing filters, if any */
10986 perf_addr_filters_splice(event, &filters);
10987
10988 /* install new filters */
10989 perf_event_for_each_child(event, perf_event_addr_filters_apply);
10990
6ce77bfd
AS
10991 return ret;
10992
10993fail_free_filters:
10994 free_filters_list(&filters);
10995
10996fail_clear_files:
10997 event->addr_filters.nr_file_filters = 0;
10998
375637bc
AS
10999 return ret;
11000}
11001
c796bbbe
AS
11002static int perf_event_set_filter(struct perf_event *event, void __user *arg)
11003{
c796bbbe 11004 int ret = -EINVAL;
e12f03d7 11005 char *filter_str;
c796bbbe
AS
11006
11007 filter_str = strndup_user(arg, PAGE_SIZE);
11008 if (IS_ERR(filter_str))
11009 return PTR_ERR(filter_str);
11010
e12f03d7
SL
11011#ifdef CONFIG_EVENT_TRACING
11012 if (perf_event_is_tracing(event)) {
11013 struct perf_event_context *ctx = event->ctx;
11014
11015 /*
11016 * Beware, here be dragons!!
11017 *
11018 * the tracepoint muck will deadlock against ctx->mutex, but
11019 * the tracepoint stuff does not actually need it. So
11020 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11021 * already have a reference on ctx.
11022 *
11023 * This can result in event getting moved to a different ctx,
11024 * but that does not affect the tracepoint state.
11025 */
11026 mutex_unlock(&ctx->mutex);
11027 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11028 mutex_lock(&ctx->mutex);
11029 } else
11030#endif
11031 if (has_addr_filter(event))
375637bc 11032 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
11033
11034 kfree(filter_str);
11035 return ret;
11036}
11037
b0a873eb
PZ
11038/*
11039 * hrtimer based swevent callback
11040 */
f29ac756 11041
b0a873eb 11042static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 11043{
b0a873eb
PZ
11044 enum hrtimer_restart ret = HRTIMER_RESTART;
11045 struct perf_sample_data data;
11046 struct pt_regs *regs;
11047 struct perf_event *event;
11048 u64 period;
f29ac756 11049
b0a873eb 11050 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
11051
11052 if (event->state != PERF_EVENT_STATE_ACTIVE)
11053 return HRTIMER_NORESTART;
11054
b0a873eb 11055 event->pmu->read(event);
f344011c 11056
fd0d000b 11057 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
11058 regs = get_irq_regs();
11059
11060 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 11061 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 11062 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
11063 ret = HRTIMER_NORESTART;
11064 }
24f1e32c 11065
b0a873eb
PZ
11066 period = max_t(u64, 10000, event->hw.sample_period);
11067 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 11068
b0a873eb 11069 return ret;
f29ac756
PZ
11070}
11071
b0a873eb 11072static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 11073{
b0a873eb 11074 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
11075 s64 period;
11076
11077 if (!is_sampling_event(event))
11078 return;
f5ffe02e 11079
5d508e82
FBH
11080 period = local64_read(&hwc->period_left);
11081 if (period) {
11082 if (period < 0)
11083 period = 10000;
fa407f35 11084
5d508e82
FBH
11085 local64_set(&hwc->period_left, 0);
11086 } else {
11087 period = max_t(u64, 10000, hwc->sample_period);
11088 }
3497d206 11089 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
30f9028b 11090 HRTIMER_MODE_REL_PINNED_HARD);
24f1e32c 11091}
b0a873eb
PZ
11092
11093static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 11094{
b0a873eb
PZ
11095 struct hw_perf_event *hwc = &event->hw;
11096
6c7e550f 11097 if (is_sampling_event(event)) {
b0a873eb 11098 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 11099 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
11100
11101 hrtimer_cancel(&hwc->hrtimer);
11102 }
24f1e32c
FW
11103}
11104
ba3dd36c
PZ
11105static void perf_swevent_init_hrtimer(struct perf_event *event)
11106{
11107 struct hw_perf_event *hwc = &event->hw;
11108
11109 if (!is_sampling_event(event))
11110 return;
11111
30f9028b 11112 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
ba3dd36c
PZ
11113 hwc->hrtimer.function = perf_swevent_hrtimer;
11114
11115 /*
11116 * Since hrtimers have a fixed rate, we can do a static freq->period
11117 * mapping and avoid the whole period adjust feedback stuff.
11118 */
11119 if (event->attr.freq) {
11120 long freq = event->attr.sample_freq;
11121
11122 event->attr.sample_period = NSEC_PER_SEC / freq;
11123 hwc->sample_period = event->attr.sample_period;
11124 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 11125 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
11126 event->attr.freq = 0;
11127 }
11128}
11129
b0a873eb
PZ
11130/*
11131 * Software event: cpu wall time clock
11132 */
11133
11134static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 11135{
b0a873eb
PZ
11136 s64 prev;
11137 u64 now;
11138
a4eaf7f1 11139 now = local_clock();
b0a873eb
PZ
11140 prev = local64_xchg(&event->hw.prev_count, now);
11141 local64_add(now - prev, &event->count);
24f1e32c 11142}
24f1e32c 11143
a4eaf7f1 11144static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 11145{
a4eaf7f1 11146 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 11147 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
11148}
11149
a4eaf7f1 11150static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 11151{
b0a873eb
PZ
11152 perf_swevent_cancel_hrtimer(event);
11153 cpu_clock_event_update(event);
11154}
f29ac756 11155
a4eaf7f1
PZ
11156static int cpu_clock_event_add(struct perf_event *event, int flags)
11157{
11158 if (flags & PERF_EF_START)
11159 cpu_clock_event_start(event, flags);
6a694a60 11160 perf_event_update_userpage(event);
a4eaf7f1
PZ
11161
11162 return 0;
11163}
11164
11165static void cpu_clock_event_del(struct perf_event *event, int flags)
11166{
11167 cpu_clock_event_stop(event, flags);
11168}
11169
b0a873eb
PZ
11170static void cpu_clock_event_read(struct perf_event *event)
11171{
11172 cpu_clock_event_update(event);
11173}
f344011c 11174
b0a873eb
PZ
11175static int cpu_clock_event_init(struct perf_event *event)
11176{
0d6d062c 11177 if (event->attr.type != perf_cpu_clock.type)
b0a873eb
PZ
11178 return -ENOENT;
11179
11180 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11181 return -ENOENT;
11182
2481c5fa
SE
11183 /*
11184 * no branch sampling for software events
11185 */
11186 if (has_branch_stack(event))
11187 return -EOPNOTSUPP;
11188
ba3dd36c
PZ
11189 perf_swevent_init_hrtimer(event);
11190
b0a873eb 11191 return 0;
f29ac756
PZ
11192}
11193
b0a873eb 11194static struct pmu perf_cpu_clock = {
89a1e187
PZ
11195 .task_ctx_nr = perf_sw_context,
11196
34f43927 11197 .capabilities = PERF_PMU_CAP_NO_NMI,
0d6d062c 11198 .dev = PMU_NULL_DEV,
34f43927 11199
b0a873eb 11200 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
11201 .add = cpu_clock_event_add,
11202 .del = cpu_clock_event_del,
11203 .start = cpu_clock_event_start,
11204 .stop = cpu_clock_event_stop,
b0a873eb
PZ
11205 .read = cpu_clock_event_read,
11206};
11207
11208/*
11209 * Software event: task time clock
11210 */
11211
11212static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 11213{
b0a873eb
PZ
11214 u64 prev;
11215 s64 delta;
5c92d124 11216
b0a873eb
PZ
11217 prev = local64_xchg(&event->hw.prev_count, now);
11218 delta = now - prev;
11219 local64_add(delta, &event->count);
11220}
5c92d124 11221
a4eaf7f1 11222static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 11223{
a4eaf7f1 11224 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 11225 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
11226}
11227
a4eaf7f1 11228static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
11229{
11230 perf_swevent_cancel_hrtimer(event);
11231 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
11232}
11233
11234static int task_clock_event_add(struct perf_event *event, int flags)
11235{
11236 if (flags & PERF_EF_START)
11237 task_clock_event_start(event, flags);
6a694a60 11238 perf_event_update_userpage(event);
b0a873eb 11239
a4eaf7f1
PZ
11240 return 0;
11241}
11242
11243static void task_clock_event_del(struct perf_event *event, int flags)
11244{
11245 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
11246}
11247
11248static void task_clock_event_read(struct perf_event *event)
11249{
768a06e2
PZ
11250 u64 now = perf_clock();
11251 u64 delta = now - event->ctx->timestamp;
11252 u64 time = event->ctx->time + delta;
b0a873eb
PZ
11253
11254 task_clock_event_update(event, time);
11255}
11256
11257static int task_clock_event_init(struct perf_event *event)
6fb2915d 11258{
0d6d062c 11259 if (event->attr.type != perf_task_clock.type)
b0a873eb
PZ
11260 return -ENOENT;
11261
11262 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11263 return -ENOENT;
11264
2481c5fa
SE
11265 /*
11266 * no branch sampling for software events
11267 */
11268 if (has_branch_stack(event))
11269 return -EOPNOTSUPP;
11270
ba3dd36c
PZ
11271 perf_swevent_init_hrtimer(event);
11272
b0a873eb 11273 return 0;
6fb2915d
LZ
11274}
11275
b0a873eb 11276static struct pmu perf_task_clock = {
89a1e187
PZ
11277 .task_ctx_nr = perf_sw_context,
11278
34f43927 11279 .capabilities = PERF_PMU_CAP_NO_NMI,
0d6d062c 11280 .dev = PMU_NULL_DEV,
34f43927 11281
b0a873eb 11282 .event_init = task_clock_event_init,
a4eaf7f1
PZ
11283 .add = task_clock_event_add,
11284 .del = task_clock_event_del,
11285 .start = task_clock_event_start,
11286 .stop = task_clock_event_stop,
b0a873eb
PZ
11287 .read = task_clock_event_read,
11288};
6fb2915d 11289
ad5133b7 11290static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 11291{
e077df4f 11292}
6fb2915d 11293
fbbe0701
SB
11294static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11295{
11296}
11297
ad5133b7 11298static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 11299{
ad5133b7 11300 return 0;
6fb2915d
LZ
11301}
11302
81ec3f3c
JO
11303static int perf_event_nop_int(struct perf_event *event, u64 value)
11304{
11305 return 0;
11306}
11307
18ab2cd3 11308static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
11309
11310static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 11311{
fbbe0701
SB
11312 __this_cpu_write(nop_txn_flags, flags);
11313
11314 if (flags & ~PERF_PMU_TXN_ADD)
11315 return;
11316
ad5133b7 11317 perf_pmu_disable(pmu);
6fb2915d
LZ
11318}
11319
ad5133b7
PZ
11320static int perf_pmu_commit_txn(struct pmu *pmu)
11321{
fbbe0701
SB
11322 unsigned int flags = __this_cpu_read(nop_txn_flags);
11323
11324 __this_cpu_write(nop_txn_flags, 0);
11325
11326 if (flags & ~PERF_PMU_TXN_ADD)
11327 return 0;
11328
ad5133b7
PZ
11329 perf_pmu_enable(pmu);
11330 return 0;
11331}
e077df4f 11332
ad5133b7 11333static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 11334{
fbbe0701
SB
11335 unsigned int flags = __this_cpu_read(nop_txn_flags);
11336
11337 __this_cpu_write(nop_txn_flags, 0);
11338
11339 if (flags & ~PERF_PMU_TXN_ADD)
11340 return;
11341
ad5133b7 11342 perf_pmu_enable(pmu);
24f1e32c
FW
11343}
11344
35edc2a5
PZ
11345static int perf_event_idx_default(struct perf_event *event)
11346{
c719f560 11347 return 0;
35edc2a5
PZ
11348}
11349
51676957
PZ
11350static void free_pmu_context(struct pmu *pmu)
11351{
bd275681 11352 free_percpu(pmu->cpu_pmu_context);
24f1e32c 11353}
6e855cd4 11354
8dc85d54 11355/*
6e855cd4 11356 * Let userspace know that this PMU supports address range filtering:
8dc85d54 11357 */
6e855cd4
AS
11358static ssize_t nr_addr_filters_show(struct device *dev,
11359 struct device_attribute *attr,
11360 char *page)
24f1e32c 11361{
6e855cd4
AS
11362 struct pmu *pmu = dev_get_drvdata(dev);
11363
dca6344d 11364 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
6e855cd4
AS
11365}
11366DEVICE_ATTR_RO(nr_addr_filters);
11367
2e80a82a 11368static struct idr pmu_idr;
d6d020e9 11369
abe43400
PZ
11370static ssize_t
11371type_show(struct device *dev, struct device_attribute *attr, char *page)
11372{
11373 struct pmu *pmu = dev_get_drvdata(dev);
11374
dca6344d 11375 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
abe43400 11376}
90826ca7 11377static DEVICE_ATTR_RO(type);
abe43400 11378
62b85639
SE
11379static ssize_t
11380perf_event_mux_interval_ms_show(struct device *dev,
11381 struct device_attribute *attr,
11382 char *page)
11383{
11384 struct pmu *pmu = dev_get_drvdata(dev);
11385
dca6344d 11386 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
62b85639
SE
11387}
11388
272325c4
PZ
11389static DEFINE_MUTEX(mux_interval_mutex);
11390
62b85639
SE
11391static ssize_t
11392perf_event_mux_interval_ms_store(struct device *dev,
11393 struct device_attribute *attr,
11394 const char *buf, size_t count)
11395{
11396 struct pmu *pmu = dev_get_drvdata(dev);
11397 int timer, cpu, ret;
11398
11399 ret = kstrtoint(buf, 0, &timer);
11400 if (ret)
11401 return ret;
11402
11403 if (timer < 1)
11404 return -EINVAL;
11405
11406 /* same value, noting to do */
11407 if (timer == pmu->hrtimer_interval_ms)
11408 return count;
11409
272325c4 11410 mutex_lock(&mux_interval_mutex);
62b85639
SE
11411 pmu->hrtimer_interval_ms = timer;
11412
11413 /* update all cpuctx for this PMU */
a63fbed7 11414 cpus_read_lock();
272325c4 11415 for_each_online_cpu(cpu) {
bd275681
PZ
11416 struct perf_cpu_pmu_context *cpc;
11417 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11418 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
62b85639 11419
1af6239d 11420 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
62b85639 11421 }
a63fbed7 11422 cpus_read_unlock();
272325c4 11423 mutex_unlock(&mux_interval_mutex);
62b85639
SE
11424
11425 return count;
11426}
90826ca7 11427static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 11428
90826ca7
GKH
11429static struct attribute *pmu_dev_attrs[] = {
11430 &dev_attr_type.attr,
11431 &dev_attr_perf_event_mux_interval_ms.attr,
652ffc21
GK
11432 &dev_attr_nr_addr_filters.attr,
11433 NULL,
11434};
11435
11436static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
11437{
11438 struct device *dev = kobj_to_dev(kobj);
11439 struct pmu *pmu = dev_get_drvdata(dev);
11440
388a1fb7 11441 if (n == 2 && !pmu->nr_addr_filters)
652ffc21
GK
11442 return 0;
11443
11444 return a->mode;
652ffc21
GK
11445}
11446
11447static struct attribute_group pmu_dev_attr_group = {
11448 .is_visible = pmu_dev_is_visible,
11449 .attrs = pmu_dev_attrs,
11450};
11451
11452static const struct attribute_group *pmu_dev_groups[] = {
11453 &pmu_dev_attr_group,
90826ca7 11454 NULL,
abe43400
PZ
11455};
11456
11457static int pmu_bus_running;
11458static struct bus_type pmu_bus = {
11459 .name = "event_source",
90826ca7 11460 .dev_groups = pmu_dev_groups,
abe43400
PZ
11461};
11462
11463static void pmu_dev_release(struct device *dev)
11464{
11465 kfree(dev);
11466}
11467
11468static int pmu_dev_alloc(struct pmu *pmu)
11469{
11470 int ret = -ENOMEM;
11471
11472 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11473 if (!pmu->dev)
11474 goto out;
11475
0c9d42ed 11476 pmu->dev->groups = pmu->attr_groups;
abe43400 11477 device_initialize(pmu->dev);
abe43400
PZ
11478
11479 dev_set_drvdata(pmu->dev, pmu);
11480 pmu->dev->bus = &pmu_bus;
143f83e2 11481 pmu->dev->parent = pmu->parent;
abe43400 11482 pmu->dev->release = pmu_dev_release;
e8d7a90c
CZ
11483
11484 ret = dev_set_name(pmu->dev, "%s", pmu->name);
11485 if (ret)
11486 goto free_dev;
11487
abe43400
PZ
11488 ret = device_add(pmu->dev);
11489 if (ret)
11490 goto free_dev;
11491
652ffc21 11492 if (pmu->attr_update) {
f3a3a825 11493 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
652ffc21
GK
11494 if (ret)
11495 goto del_dev;
11496 }
f3a3a825 11497
abe43400
PZ
11498out:
11499 return ret;
11500
6e855cd4
AS
11501del_dev:
11502 device_del(pmu->dev);
11503
abe43400
PZ
11504free_dev:
11505 put_device(pmu->dev);
11506 goto out;
11507}
11508
547e9fd7 11509static struct lock_class_key cpuctx_mutex;
facc4307 11510static struct lock_class_key cpuctx_lock;
547e9fd7 11511
03d8e80b 11512int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 11513{
66d258c5 11514 int cpu, ret, max = PERF_TYPE_MAX;
24f1e32c 11515
b0a873eb 11516 mutex_lock(&pmus_lock);
33696fc0
PZ
11517 ret = -ENOMEM;
11518 pmu->pmu_disable_count = alloc_percpu(int);
11519 if (!pmu->pmu_disable_count)
11520 goto unlock;
f29ac756 11521
2e80a82a 11522 pmu->type = -1;
0d6d062c
RB
11523 if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11524 ret = -EINVAL;
11525 goto free_pdc;
11526 }
11527
2e80a82a
PZ
11528 pmu->name = name;
11529
0d6d062c
RB
11530 if (type >= 0)
11531 max = type;
66d258c5 11532
0d6d062c
RB
11533 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11534 if (ret < 0)
11535 goto free_pdc;
66d258c5 11536
0d6d062c 11537 WARN_ON(type >= 0 && ret != type);
66d258c5 11538
0d6d062c 11539 type = ret;
2e80a82a
PZ
11540 pmu->type = type;
11541
0d6d062c 11542 if (pmu_bus_running && !pmu->dev) {
abe43400
PZ
11543 ret = pmu_dev_alloc(pmu);
11544 if (ret)
11545 goto free_idr;
11546 }
11547
c4814202 11548 ret = -ENOMEM;
bd275681
PZ
11549 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11550 if (!pmu->cpu_pmu_context)
abe43400 11551 goto free_dev;
f344011c 11552
108b02cf 11553 for_each_possible_cpu(cpu) {
bd275681 11554 struct perf_cpu_pmu_context *cpc;
9e630205 11555
bd275681
PZ
11556 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11557 __perf_init_event_pmu_context(&cpc->epc, pmu);
11558 __perf_mux_hrtimer_init(cpc, cpu);
108b02cf 11559 }
76e1d904 11560
ad5133b7
PZ
11561 if (!pmu->start_txn) {
11562 if (pmu->pmu_enable) {
11563 /*
11564 * If we have pmu_enable/pmu_disable calls, install
11565 * transaction stubs that use that to try and batch
11566 * hardware accesses.
11567 */
11568 pmu->start_txn = perf_pmu_start_txn;
11569 pmu->commit_txn = perf_pmu_commit_txn;
11570 pmu->cancel_txn = perf_pmu_cancel_txn;
11571 } else {
fbbe0701 11572 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
11573 pmu->commit_txn = perf_pmu_nop_int;
11574 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 11575 }
5c92d124 11576 }
15dbf27c 11577
ad5133b7
PZ
11578 if (!pmu->pmu_enable) {
11579 pmu->pmu_enable = perf_pmu_nop_void;
11580 pmu->pmu_disable = perf_pmu_nop_void;
11581 }
11582
81ec3f3c
JO
11583 if (!pmu->check_period)
11584 pmu->check_period = perf_event_nop_int;
11585
35edc2a5
PZ
11586 if (!pmu->event_idx)
11587 pmu->event_idx = perf_event_idx_default;
11588
0d6d062c 11589 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 11590 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
11591 ret = 0;
11592unlock:
b0a873eb
PZ
11593 mutex_unlock(&pmus_lock);
11594
33696fc0 11595 return ret;
108b02cf 11596
abe43400 11597free_dev:
0d6d062c
RB
11598 if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11599 device_del(pmu->dev);
11600 put_device(pmu->dev);
11601 }
abe43400 11602
2e80a82a 11603free_idr:
0d6d062c 11604 idr_remove(&pmu_idr, pmu->type);
2e80a82a 11605
108b02cf
PZ
11606free_pdc:
11607 free_percpu(pmu->pmu_disable_count);
11608 goto unlock;
f29ac756 11609}
c464c76e 11610EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 11611
b0a873eb 11612void perf_pmu_unregister(struct pmu *pmu)
5c92d124 11613{
b0a873eb
PZ
11614 mutex_lock(&pmus_lock);
11615 list_del_rcu(&pmu->entry);
5c92d124 11616
0475f9ea 11617 /*
cde8e884
PZ
11618 * We dereference the pmu list under both SRCU and regular RCU, so
11619 * synchronize against both of those.
0475f9ea 11620 */
b0a873eb 11621 synchronize_srcu(&pmus_srcu);
cde8e884 11622 synchronize_rcu();
d6d020e9 11623
33696fc0 11624 free_percpu(pmu->pmu_disable_count);
0d6d062c
RB
11625 idr_remove(&pmu_idr, pmu->type);
11626 if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
0933840a
JO
11627 if (pmu->nr_addr_filters)
11628 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11629 device_del(pmu->dev);
11630 put_device(pmu->dev);
11631 }
51676957 11632 free_pmu_context(pmu);
a9f97721 11633 mutex_unlock(&pmus_lock);
b0a873eb 11634}
c464c76e 11635EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 11636
e321d02d
KL
11637static inline bool has_extended_regs(struct perf_event *event)
11638{
11639 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11640 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11641}
11642
cc34b98b
MR
11643static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11644{
ccd41c86 11645 struct perf_event_context *ctx = NULL;
cc34b98b
MR
11646 int ret;
11647
11648 if (!try_module_get(pmu->module))
11649 return -ENODEV;
ccd41c86 11650
0c7296ca
PZ
11651 /*
11652 * A number of pmu->event_init() methods iterate the sibling_list to,
11653 * for example, validate if the group fits on the PMU. Therefore,
11654 * if this is a sibling event, acquire the ctx->mutex to protect
11655 * the sibling_list.
11656 */
11657 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
8b10c5e2
PZ
11658 /*
11659 * This ctx->mutex can nest when we're called through
11660 * inheritance. See the perf_event_ctx_lock_nested() comment.
11661 */
11662 ctx = perf_event_ctx_lock_nested(event->group_leader,
11663 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
11664 BUG_ON(!ctx);
11665 }
11666
cc34b98b
MR
11667 event->pmu = pmu;
11668 ret = pmu->event_init(event);
ccd41c86
PZ
11669
11670 if (ctx)
11671 perf_event_ctx_unlock(event->group_leader, ctx);
11672
cc6795ae 11673 if (!ret) {
e321d02d
KL
11674 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11675 has_extended_regs(event))
11676 ret = -EOPNOTSUPP;
11677
cc6795ae 11678 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
e321d02d 11679 event_has_any_exclude_flag(event))
cc6795ae 11680 ret = -EINVAL;
e321d02d
KL
11681
11682 if (ret && event->destroy)
11683 event->destroy(event);
cc6795ae
AM
11684 }
11685
cc34b98b
MR
11686 if (ret)
11687 module_put(pmu->module);
11688
11689 return ret;
11690}
11691
18ab2cd3 11692static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb 11693{
55bcf6ef 11694 bool extended_type = false;
66d258c5 11695 int idx, type, ret;
85c617ab 11696 struct pmu *pmu;
b0a873eb
PZ
11697
11698 idx = srcu_read_lock(&pmus_srcu);
2e80a82a 11699
0d6d062c
RB
11700 /*
11701 * Save original type before calling pmu->event_init() since certain
11702 * pmus overwrites event->attr.type to forward event to another pmu.
11703 */
11704 event->orig_type = event->attr.type;
11705
40999312
KL
11706 /* Try parent's PMU first: */
11707 if (event->parent && event->parent->pmu) {
11708 pmu = event->parent->pmu;
11709 ret = perf_try_init_event(pmu, event);
11710 if (!ret)
11711 goto unlock;
11712 }
11713
66d258c5
PZ
11714 /*
11715 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11716 * are often aliases for PERF_TYPE_RAW.
11717 */
11718 type = event->attr.type;
55bcf6ef
KL
11719 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11720 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11721 if (!type) {
11722 type = PERF_TYPE_RAW;
11723 } else {
11724 extended_type = true;
11725 event->attr.config &= PERF_HW_EVENT_MASK;
11726 }
11727 }
66d258c5
PZ
11728
11729again:
2e80a82a 11730 rcu_read_lock();
66d258c5 11731 pmu = idr_find(&pmu_idr, type);
2e80a82a 11732 rcu_read_unlock();
940c5b29 11733 if (pmu) {
55bcf6ef
KL
11734 if (event->attr.type != type && type != PERF_TYPE_RAW &&
11735 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11736 goto fail;
11737
cc34b98b 11738 ret = perf_try_init_event(pmu, event);
55bcf6ef 11739 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
66d258c5
PZ
11740 type = event->attr.type;
11741 goto again;
11742 }
11743
940c5b29
LM
11744 if (ret)
11745 pmu = ERR_PTR(ret);
66d258c5 11746
2e80a82a 11747 goto unlock;
940c5b29 11748 }
2e80a82a 11749
9f0bff11 11750 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
cc34b98b 11751 ret = perf_try_init_event(pmu, event);
b0a873eb 11752 if (!ret)
e5f4d339 11753 goto unlock;
76e1d904 11754
b0a873eb
PZ
11755 if (ret != -ENOENT) {
11756 pmu = ERR_PTR(ret);
e5f4d339 11757 goto unlock;
f344011c 11758 }
5c92d124 11759 }
55bcf6ef 11760fail:
e5f4d339
PZ
11761 pmu = ERR_PTR(-ENOENT);
11762unlock:
b0a873eb 11763 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 11764
4aeb0b42 11765 return pmu;
5c92d124
IM
11766}
11767
f2fb6bef
KL
11768static void attach_sb_event(struct perf_event *event)
11769{
11770 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11771
11772 raw_spin_lock(&pel->lock);
11773 list_add_rcu(&event->sb_list, &pel->list);
11774 raw_spin_unlock(&pel->lock);
11775}
11776
aab5b71e
PZ
11777/*
11778 * We keep a list of all !task (and therefore per-cpu) events
11779 * that need to receive side-band records.
11780 *
11781 * This avoids having to scan all the various PMU per-cpu contexts
11782 * looking for them.
11783 */
f2fb6bef
KL
11784static void account_pmu_sb_event(struct perf_event *event)
11785{
a4f144eb 11786 if (is_sb_event(event))
f2fb6bef
KL
11787 attach_sb_event(event);
11788}
11789
555e0c1e
FW
11790/* Freq events need the tick to stay alive (see perf_event_task_tick). */
11791static void account_freq_event_nohz(void)
11792{
11793#ifdef CONFIG_NO_HZ_FULL
11794 /* Lock so we don't race with concurrent unaccount */
11795 spin_lock(&nr_freq_lock);
11796 if (atomic_inc_return(&nr_freq_events) == 1)
11797 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11798 spin_unlock(&nr_freq_lock);
11799#endif
11800}
11801
11802static void account_freq_event(void)
11803{
11804 if (tick_nohz_full_enabled())
11805 account_freq_event_nohz();
11806 else
11807 atomic_inc(&nr_freq_events);
11808}
11809
11810
766d6c07
FW
11811static void account_event(struct perf_event *event)
11812{
25432ae9
PZ
11813 bool inc = false;
11814
4beb31f3
FW
11815 if (event->parent)
11816 return;
11817
a5398bff 11818 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
25432ae9 11819 inc = true;
766d6c07
FW
11820 if (event->attr.mmap || event->attr.mmap_data)
11821 atomic_inc(&nr_mmap_events);
88a16a13
JO
11822 if (event->attr.build_id)
11823 atomic_inc(&nr_build_id_events);
766d6c07
FW
11824 if (event->attr.comm)
11825 atomic_inc(&nr_comm_events);
e4222673
HB
11826 if (event->attr.namespaces)
11827 atomic_inc(&nr_namespaces_events);
96aaab68
NK
11828 if (event->attr.cgroup)
11829 atomic_inc(&nr_cgroup_events);
766d6c07
FW
11830 if (event->attr.task)
11831 atomic_inc(&nr_task_events);
555e0c1e
FW
11832 if (event->attr.freq)
11833 account_freq_event();
45ac1403
AH
11834 if (event->attr.context_switch) {
11835 atomic_inc(&nr_switch_events);
25432ae9 11836 inc = true;
45ac1403 11837 }
4beb31f3 11838 if (has_branch_stack(event))
25432ae9 11839 inc = true;
4beb31f3 11840 if (is_cgroup_event(event))
25432ae9 11841 inc = true;
76193a94
SL
11842 if (event->attr.ksymbol)
11843 atomic_inc(&nr_ksymbol_events);
6ee52e2a
SL
11844 if (event->attr.bpf_event)
11845 atomic_inc(&nr_bpf_events);
e17d43b9
AH
11846 if (event->attr.text_poke)
11847 atomic_inc(&nr_text_poke_events);
25432ae9 11848
9107c89e 11849 if (inc) {
5bce9db1
AS
11850 /*
11851 * We need the mutex here because static_branch_enable()
11852 * must complete *before* the perf_sched_count increment
11853 * becomes visible.
11854 */
9107c89e
PZ
11855 if (atomic_inc_not_zero(&perf_sched_count))
11856 goto enabled;
11857
11858 mutex_lock(&perf_sched_mutex);
11859 if (!atomic_read(&perf_sched_count)) {
11860 static_branch_enable(&perf_sched_events);
11861 /*
11862 * Guarantee that all CPUs observe they key change and
11863 * call the perf scheduling hooks before proceeding to
11864 * install events that need them.
11865 */
0809d954 11866 synchronize_rcu();
9107c89e
PZ
11867 }
11868 /*
11869 * Now that we have waited for the sync_sched(), allow further
11870 * increments to by-pass the mutex.
11871 */
11872 atomic_inc(&perf_sched_count);
11873 mutex_unlock(&perf_sched_mutex);
11874 }
11875enabled:
4beb31f3 11876
f2fb6bef 11877 account_pmu_sb_event(event);
766d6c07
FW
11878}
11879
0793a61d 11880/*
788faab7 11881 * Allocate and initialize an event structure
0793a61d 11882 */
cdd6c482 11883static struct perf_event *
c3f00c70 11884perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
11885 struct task_struct *task,
11886 struct perf_event *group_leader,
11887 struct perf_event *parent_event,
4dc0da86 11888 perf_overflow_handler_t overflow_handler,
79dff51e 11889 void *context, int cgroup_fd)
0793a61d 11890{
51b0fe39 11891 struct pmu *pmu;
cdd6c482
IM
11892 struct perf_event *event;
11893 struct hw_perf_event *hwc;
90983b16 11894 long err = -EINVAL;
ff65338e 11895 int node;
0793a61d 11896
66832eb4
ON
11897 if ((unsigned)cpu >= nr_cpu_ids) {
11898 if (!task || cpu != -1)
11899 return ERR_PTR(-EINVAL);
11900 }
97ba62b2
ME
11901 if (attr->sigtrap && !task) {
11902 /* Requires a task: avoid signalling random tasks. */
11903 return ERR_PTR(-EINVAL);
11904 }
66832eb4 11905
ff65338e
NK
11906 node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11907 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11908 node);
cdd6c482 11909 if (!event)
d5d2bc0d 11910 return ERR_PTR(-ENOMEM);
0793a61d 11911
04289bb9 11912 /*
cdd6c482 11913 * Single events are their own group leaders, with an
04289bb9
IM
11914 * empty sibling list:
11915 */
11916 if (!group_leader)
cdd6c482 11917 group_leader = event;
04289bb9 11918
cdd6c482
IM
11919 mutex_init(&event->child_mutex);
11920 INIT_LIST_HEAD(&event->child_list);
fccc714b 11921
cdd6c482
IM
11922 INIT_LIST_HEAD(&event->event_entry);
11923 INIT_LIST_HEAD(&event->sibling_list);
6668128a 11924 INIT_LIST_HEAD(&event->active_list);
8e1a2031 11925 init_event_group(event);
10c6db11 11926 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 11927 INIT_LIST_HEAD(&event->active_entry);
375637bc 11928 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
11929 INIT_HLIST_NODE(&event->hlist_entry);
11930
10c6db11 11931
cdd6c482 11932 init_waitqueue_head(&event->waitq);
ca6c2132
PZ
11933 init_irq_work(&event->pending_irq, perf_pending_irq);
11934 init_task_work(&event->pending_task, perf_pending_task);
0793a61d 11935
cdd6c482 11936 mutex_init(&event->mmap_mutex);
375637bc 11937 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 11938
a6fa941d 11939 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
11940 event->cpu = cpu;
11941 event->attr = *attr;
11942 event->group_leader = group_leader;
11943 event->pmu = NULL;
cdd6c482 11944 event->oncpu = -1;
a96bbc16 11945
cdd6c482 11946 event->parent = parent_event;
b84fbc9f 11947
17cf22c3 11948 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 11949 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 11950
cdd6c482 11951 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 11952
e3265a43
NK
11953 if (parent_event)
11954 event->event_caps = parent_event->event_caps;
11955
d580ff86
PZ
11956 if (task) {
11957 event->attach_state = PERF_ATTACH_TASK;
d580ff86 11958 /*
50f16a8b
PZ
11959 * XXX pmu::event_init needs to know what task to account to
11960 * and we cannot use the ctx information because we need the
11961 * pmu before we get a ctx.
d580ff86 11962 */
7b3c92b8 11963 event->hw.target = get_task_struct(task);
d580ff86
PZ
11964 }
11965
34f43927
PZ
11966 event->clock = &local_clock;
11967 if (parent_event)
11968 event->clock = parent_event->clock;
11969
4dc0da86 11970 if (!overflow_handler && parent_event) {
b326e956 11971 overflow_handler = parent_event->overflow_handler;
4dc0da86 11972 context = parent_event->overflow_handler_context;
f1e4ba5b 11973#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c 11974 if (overflow_handler == bpf_overflow_handler) {
85192dbf 11975 struct bpf_prog *prog = parent_event->prog;
aa6a5f3c 11976
85192dbf 11977 bpf_prog_inc(prog);
aa6a5f3c
AS
11978 event->prog = prog;
11979 event->orig_overflow_handler =
11980 parent_event->orig_overflow_handler;
11981 }
11982#endif
4dc0da86 11983 }
66832eb4 11984
1879445d
WN
11985 if (overflow_handler) {
11986 event->overflow_handler = overflow_handler;
11987 event->overflow_handler_context = context;
9ecda41a
WN
11988 } else if (is_write_backward(event)){
11989 event->overflow_handler = perf_event_output_backward;
11990 event->overflow_handler_context = NULL;
1879445d 11991 } else {
9ecda41a 11992 event->overflow_handler = perf_event_output_forward;
1879445d
WN
11993 event->overflow_handler_context = NULL;
11994 }
97eaf530 11995
0231bb53 11996 perf_event__state_init(event);
a86ed508 11997
4aeb0b42 11998 pmu = NULL;
b8e83514 11999
cdd6c482 12000 hwc = &event->hw;
bd2b5b12 12001 hwc->sample_period = attr->sample_period;
0d48696f 12002 if (attr->freq && attr->sample_freq)
bd2b5b12 12003 hwc->sample_period = 1;
eced1dfc 12004 hwc->last_period = hwc->sample_period;
bd2b5b12 12005
e7850595 12006 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 12007
2023b359 12008 /*
ba5213ae
PZ
12009 * We currently do not support PERF_SAMPLE_READ on inherited events.
12010 * See perf_output_read().
2023b359 12011 */
ba5213ae 12012 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
90983b16 12013 goto err_ns;
a46a2300
YZ
12014
12015 if (!has_branch_stack(event))
12016 event->attr.branch_sample_type = 0;
2023b359 12017
b0a873eb 12018 pmu = perf_init_event(event);
85c617ab 12019 if (IS_ERR(pmu)) {
4aeb0b42 12020 err = PTR_ERR(pmu);
90983b16 12021 goto err_ns;
621a01ea 12022 }
d5d2bc0d 12023
09f4e8f0 12024 /*
bd275681
PZ
12025 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
12026 * events (they don't make sense as the cgroup will be different
12027 * on other CPUs in the uncore mask).
09f4e8f0 12028 */
bd275681 12029 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
09f4e8f0
PZ
12030 err = -EINVAL;
12031 goto err_pmu;
12032 }
12033
ab43762e
AS
12034 if (event->attr.aux_output &&
12035 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
12036 err = -EOPNOTSUPP;
12037 goto err_pmu;
12038 }
12039
98add2af
PZ
12040 if (cgroup_fd != -1) {
12041 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
12042 if (err)
12043 goto err_pmu;
12044 }
12045
bed5b25a
AS
12046 err = exclusive_event_init(event);
12047 if (err)
12048 goto err_pmu;
12049
375637bc 12050 if (has_addr_filter(event)) {
c60f83b8
AS
12051 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12052 sizeof(struct perf_addr_filter_range),
12053 GFP_KERNEL);
12054 if (!event->addr_filter_ranges) {
36cc2b92 12055 err = -ENOMEM;
375637bc 12056 goto err_per_task;
36cc2b92 12057 }
375637bc 12058
18736eef
AS
12059 /*
12060 * Clone the parent's vma offsets: they are valid until exec()
12061 * even if the mm is not shared with the parent.
12062 */
12063 if (event->parent) {
12064 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12065
12066 raw_spin_lock_irq(&ifh->lock);
c60f83b8
AS
12067 memcpy(event->addr_filter_ranges,
12068 event->parent->addr_filter_ranges,
12069 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
18736eef
AS
12070 raw_spin_unlock_irq(&ifh->lock);
12071 }
12072
375637bc
AS
12073 /* force hw sync on the address filters */
12074 event->addr_filters_gen = 1;
12075 }
12076
cdd6c482 12077 if (!event->parent) {
927c7a9e 12078 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 12079 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 12080 if (err)
375637bc 12081 goto err_addr_filters;
d010b332 12082 }
f344011c 12083 }
9ee318a7 12084
da97e184
JFG
12085 err = security_perf_event_alloc(event);
12086 if (err)
12087 goto err_callchain_buffer;
12088
927a5570
AS
12089 /* symmetric to unaccount_event() in _free_event() */
12090 account_event(event);
12091
cdd6c482 12092 return event;
90983b16 12093
da97e184
JFG
12094err_callchain_buffer:
12095 if (!event->parent) {
12096 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
12097 put_callchain_buffers();
12098 }
375637bc 12099err_addr_filters:
c60f83b8 12100 kfree(event->addr_filter_ranges);
375637bc 12101
bed5b25a
AS
12102err_per_task:
12103 exclusive_event_destroy(event);
12104
90983b16 12105err_pmu:
98add2af
PZ
12106 if (is_cgroup_event(event))
12107 perf_detach_cgroup(event);
90983b16
FW
12108 if (event->destroy)
12109 event->destroy(event);
c464c76e 12110 module_put(pmu->module);
90983b16 12111err_ns:
621b6d2e
PB
12112 if (event->hw.target)
12113 put_task_struct(event->hw.target);
4674ffe2 12114 call_rcu(&event->rcu_head, free_event_rcu);
90983b16
FW
12115
12116 return ERR_PTR(err);
0793a61d
TG
12117}
12118
cdd6c482
IM
12119static int perf_copy_attr(struct perf_event_attr __user *uattr,
12120 struct perf_event_attr *attr)
974802ea 12121{
974802ea 12122 u32 size;
cdf8073d 12123 int ret;
974802ea 12124
c2ba8f41 12125 /* Zero the full structure, so that a short copy will be nice. */
974802ea
PZ
12126 memset(attr, 0, sizeof(*attr));
12127
12128 ret = get_user(size, &uattr->size);
12129 if (ret)
12130 return ret;
12131
c2ba8f41
AS
12132 /* ABI compatibility quirk: */
12133 if (!size)
974802ea 12134 size = PERF_ATTR_SIZE_VER0;
c2ba8f41 12135 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
974802ea
PZ
12136 goto err_size;
12137
c2ba8f41
AS
12138 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12139 if (ret) {
12140 if (ret == -E2BIG)
12141 goto err_size;
12142 return ret;
974802ea
PZ
12143 }
12144
f12f42ac
MX
12145 attr->size = size;
12146
a4faf00d 12147 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
974802ea
PZ
12148 return -EINVAL;
12149
12150 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12151 return -EINVAL;
12152
12153 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12154 return -EINVAL;
12155
bce38cd5
SE
12156 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12157 u64 mask = attr->branch_sample_type;
12158
12159 /* only using defined bits */
12160 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12161 return -EINVAL;
12162
12163 /* at least one branch bit must be set */
12164 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12165 return -EINVAL;
12166
bce38cd5
SE
12167 /* propagate priv level, when not set for branch */
12168 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12169
12170 /* exclude_kernel checked on syscall entry */
12171 if (!attr->exclude_kernel)
12172 mask |= PERF_SAMPLE_BRANCH_KERNEL;
12173
12174 if (!attr->exclude_user)
12175 mask |= PERF_SAMPLE_BRANCH_USER;
12176
12177 if (!attr->exclude_hv)
12178 mask |= PERF_SAMPLE_BRANCH_HV;
12179 /*
12180 * adjust user setting (for HW filter setup)
12181 */
12182 attr->branch_sample_type = mask;
12183 }
e712209a 12184 /* privileged levels capture (kernel, hv): check permissions */
da97e184
JFG
12185 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12186 ret = perf_allow_kernel(attr);
12187 if (ret)
12188 return ret;
12189 }
bce38cd5 12190 }
4018994f 12191
c5ebcedb 12192 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 12193 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
12194 if (ret)
12195 return ret;
12196 }
12197
12198 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12199 if (!arch_perf_have_user_stack_dump())
12200 return -ENOSYS;
12201
12202 /*
12203 * We have __u32 type for the size, but so far
12204 * we can only use __u16 as maximum due to the
12205 * __u16 sample size limit.
12206 */
12207 if (attr->sample_stack_user >= USHRT_MAX)
78b562fb 12208 return -EINVAL;
c5ebcedb 12209 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
78b562fb 12210 return -EINVAL;
c5ebcedb 12211 }
4018994f 12212
5f970521
JO
12213 if (!attr->sample_max_stack)
12214 attr->sample_max_stack = sysctl_perf_event_max_stack;
12215
60e2364e
SE
12216 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12217 ret = perf_reg_validate(attr->sample_regs_intr);
6546b19f
NK
12218
12219#ifndef CONFIG_CGROUP_PERF
12220 if (attr->sample_type & PERF_SAMPLE_CGROUP)
12221 return -EINVAL;
12222#endif
2a6c6b7d
KL
12223 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12224 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12225 return -EINVAL;
6546b19f 12226
2b26f0aa
ME
12227 if (!attr->inherit && attr->inherit_thread)
12228 return -EINVAL;
12229
2e498d0a
ME
12230 if (attr->remove_on_exec && attr->enable_on_exec)
12231 return -EINVAL;
12232
97ba62b2
ME
12233 if (attr->sigtrap && !attr->remove_on_exec)
12234 return -EINVAL;
12235
974802ea
PZ
12236out:
12237 return ret;
12238
12239err_size:
12240 put_user(sizeof(*attr), &uattr->size);
12241 ret = -E2BIG;
12242 goto out;
12243}
12244
68e3c698
PZ
12245static void mutex_lock_double(struct mutex *a, struct mutex *b)
12246{
12247 if (b < a)
12248 swap(a, b);
12249
12250 mutex_lock(a);
12251 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12252}
12253
ac9721f3
PZ
12254static int
12255perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 12256{
56de4e8f 12257 struct perf_buffer *rb = NULL;
a4be7c27
PZ
12258 int ret = -EINVAL;
12259
68e3c698
PZ
12260 if (!output_event) {
12261 mutex_lock(&event->mmap_mutex);
a4be7c27 12262 goto set;
68e3c698 12263 }
a4be7c27 12264
ac9721f3
PZ
12265 /* don't allow circular references */
12266 if (event == output_event)
a4be7c27
PZ
12267 goto out;
12268
0f139300
PZ
12269 /*
12270 * Don't allow cross-cpu buffers
12271 */
12272 if (output_event->cpu != event->cpu)
12273 goto out;
12274
12275 /*
76369139 12276 * If its not a per-cpu rb, it must be the same task.
0f139300 12277 */
24d3ae2f 12278 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
0f139300
PZ
12279 goto out;
12280
34f43927
PZ
12281 /*
12282 * Mixing clocks in the same buffer is trouble you don't need.
12283 */
12284 if (output_event->clock != event->clock)
12285 goto out;
12286
9ecda41a
WN
12287 /*
12288 * Either writing ring buffer from beginning or from end.
12289 * Mixing is not allowed.
12290 */
12291 if (is_write_backward(output_event) != is_write_backward(event))
12292 goto out;
12293
45bfb2e5
PZ
12294 /*
12295 * If both events generate aux data, they must be on the same PMU
12296 */
12297 if (has_aux(event) && has_aux(output_event) &&
12298 event->pmu != output_event->pmu)
12299 goto out;
12300
68e3c698
PZ
12301 /*
12302 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since
12303 * output_event is already on rb->event_list, and the list iteration
12304 * restarts after every removal, it is guaranteed this new event is
12305 * observed *OR* if output_event is already removed, it's guaranteed we
12306 * observe !rb->mmap_count.
12307 */
12308 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
a4be7c27 12309set:
ac9721f3
PZ
12310 /* Can't redirect output if we've got an active mmap() */
12311 if (atomic_read(&event->mmap_count))
12312 goto unlock;
a4be7c27 12313
ac9721f3 12314 if (output_event) {
76369139
FW
12315 /* get the rb we want to redirect to */
12316 rb = ring_buffer_get(output_event);
12317 if (!rb)
ac9721f3 12318 goto unlock;
68e3c698
PZ
12319
12320 /* did we race against perf_mmap_close() */
12321 if (!atomic_read(&rb->mmap_count)) {
12322 ring_buffer_put(rb);
12323 goto unlock;
12324 }
a4be7c27
PZ
12325 }
12326
b69cf536 12327 ring_buffer_attach(event, rb);
9bb5d40c 12328
a4be7c27 12329 ret = 0;
ac9721f3
PZ
12330unlock:
12331 mutex_unlock(&event->mmap_mutex);
68e3c698
PZ
12332 if (output_event)
12333 mutex_unlock(&output_event->mmap_mutex);
ac9721f3 12334
a4be7c27 12335out:
a4be7c27
PZ
12336 return ret;
12337}
12338
34f43927
PZ
12339static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12340{
12341 bool nmi_safe = false;
12342
12343 switch (clk_id) {
12344 case CLOCK_MONOTONIC:
12345 event->clock = &ktime_get_mono_fast_ns;
12346 nmi_safe = true;
12347 break;
12348
12349 case CLOCK_MONOTONIC_RAW:
12350 event->clock = &ktime_get_raw_fast_ns;
12351 nmi_safe = true;
12352 break;
12353
12354 case CLOCK_REALTIME:
12355 event->clock = &ktime_get_real_ns;
12356 break;
12357
12358 case CLOCK_BOOTTIME:
9285ec4c 12359 event->clock = &ktime_get_boottime_ns;
34f43927
PZ
12360 break;
12361
12362 case CLOCK_TAI:
9285ec4c 12363 event->clock = &ktime_get_clocktai_ns;
34f43927
PZ
12364 break;
12365
12366 default:
12367 return -EINVAL;
12368 }
12369
12370 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12371 return -EINVAL;
12372
12373 return 0;
12374}
12375
b068fc04
ME
12376static bool
12377perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12378{
12379 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12380 bool is_capable = perfmon_capable();
12381
12382 if (attr->sigtrap) {
12383 /*
12384 * perf_event_attr::sigtrap sends signals to the other task.
12385 * Require the current task to also have CAP_KILL.
12386 */
12387 rcu_read_lock();
12388 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12389 rcu_read_unlock();
12390
12391 /*
12392 * If the required capabilities aren't available, checks for
12393 * ptrace permissions: upgrade to ATTACH, since sending signals
12394 * can effectively change the target task.
12395 */
12396 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12397 }
12398
12399 /*
12400 * Preserve ptrace permission check for backwards compatibility. The
12401 * ptrace check also includes checks that the current task and other
12402 * task have matching uids, and is therefore not done here explicitly.
12403 */
12404 return is_capable || ptrace_may_access(task, ptrace_mode);
12405}
12406
0793a61d 12407/**
cdd6c482 12408 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 12409 *
cdd6c482 12410 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 12411 * @pid: target pid
9f66a381 12412 * @cpu: target cpu
cdd6c482 12413 * @group_fd: group leader event fd
a1ddf524 12414 * @flags: perf event open flags
0793a61d 12415 */
cdd6c482
IM
12416SYSCALL_DEFINE5(perf_event_open,
12417 struct perf_event_attr __user *, attr_uptr,
2743a5b0 12418 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 12419{
b04243ef 12420 struct perf_event *group_leader = NULL, *output_event = NULL;
bd275681 12421 struct perf_event_pmu_context *pmu_ctx;
b04243ef 12422 struct perf_event *event, *sibling;
cdd6c482 12423 struct perf_event_attr attr;
bd275681 12424 struct perf_event_context *ctx;
cdd6c482 12425 struct file *event_file = NULL;
2903ff01 12426 struct fd group = {NULL, 0};
38a81da2 12427 struct task_struct *task = NULL;
89a1e187 12428 struct pmu *pmu;
ea635c64 12429 int event_fd;
b04243ef 12430 int move_group = 0;
dc86cabe 12431 int err;
a21b0b35 12432 int f_flags = O_RDWR;
79dff51e 12433 int cgroup_fd = -1;
0793a61d 12434
2743a5b0 12435 /* for future expandability... */
e5d1367f 12436 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
12437 return -EINVAL;
12438
0a041ebc 12439 err = perf_copy_attr(attr_uptr, &attr);
da97e184
JFG
12440 if (err)
12441 return err;
12442
0a041ebc
NK
12443 /* Do we allow access to perf_event_open(2) ? */
12444 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
dc86cabe
IM
12445 if (err)
12446 return err;
eab656ae 12447
0764771d 12448 if (!attr.exclude_kernel) {
da97e184
JFG
12449 err = perf_allow_kernel(&attr);
12450 if (err)
12451 return err;
0764771d
PZ
12452 }
12453
e4222673 12454 if (attr.namespaces) {
18aa1856 12455 if (!perfmon_capable())
e4222673
HB
12456 return -EACCES;
12457 }
12458
df58ab24 12459 if (attr.freq) {
cdd6c482 12460 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 12461 return -EINVAL;
0819b2e3
PZ
12462 } else {
12463 if (attr.sample_period & (1ULL << 63))
12464 return -EINVAL;
df58ab24
PZ
12465 }
12466
fc7ce9c7 12467 /* Only privileged users can get physical addresses */
da97e184
JFG
12468 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12469 err = perf_allow_kernel(&attr);
12470 if (err)
12471 return err;
12472 }
fc7ce9c7 12473
08ef1af4
OM
12474 /* REGS_INTR can leak data, lockdown must prevent this */
12475 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12476 err = security_locked_down(LOCKDOWN_PERF);
12477 if (err)
12478 return err;
12479 }
b0c8fdc7 12480
e5d1367f
SE
12481 /*
12482 * In cgroup mode, the pid argument is used to pass the fd
12483 * opened to the cgroup directory in cgroupfs. The cpu argument
12484 * designates the cpu on which to monitor threads from that
12485 * cgroup.
12486 */
12487 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12488 return -EINVAL;
12489
a21b0b35
YD
12490 if (flags & PERF_FLAG_FD_CLOEXEC)
12491 f_flags |= O_CLOEXEC;
12492
12493 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
12494 if (event_fd < 0)
12495 return event_fd;
12496
ac9721f3 12497 if (group_fd != -1) {
2903ff01
AV
12498 err = perf_fget_light(group_fd, &group);
12499 if (err)
d14b12d7 12500 goto err_fd;
2903ff01 12501 group_leader = group.file->private_data;
ac9721f3
PZ
12502 if (flags & PERF_FLAG_FD_OUTPUT)
12503 output_event = group_leader;
12504 if (flags & PERF_FLAG_FD_NO_GROUP)
12505 group_leader = NULL;
12506 }
12507
e5d1367f 12508 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
12509 task = find_lively_task_by_vpid(pid);
12510 if (IS_ERR(task)) {
12511 err = PTR_ERR(task);
12512 goto err_group_fd;
12513 }
12514 }
12515
1f4ee503
PZ
12516 if (task && group_leader &&
12517 group_leader->attr.inherit != attr.inherit) {
12518 err = -EINVAL;
12519 goto err_task;
12520 }
12521
79dff51e
MF
12522 if (flags & PERF_FLAG_PID_CGROUP)
12523 cgroup_fd = pid;
12524
4dc0da86 12525 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 12526 NULL, NULL, cgroup_fd);
d14b12d7
SE
12527 if (IS_ERR(event)) {
12528 err = PTR_ERR(event);
78af4dc9 12529 goto err_task;
d14b12d7
SE
12530 }
12531
53b25335
VW
12532 if (is_sampling_event(event)) {
12533 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 12534 err = -EOPNOTSUPP;
53b25335
VW
12535 goto err_alloc;
12536 }
12537 }
12538
89a1e187
PZ
12539 /*
12540 * Special case software events and allow them to be part of
12541 * any hardware group.
12542 */
12543 pmu = event->pmu;
b04243ef 12544
34f43927
PZ
12545 if (attr.use_clockid) {
12546 err = perf_event_set_clock(event, attr.clockid);
12547 if (err)
12548 goto err_alloc;
12549 }
12550
4ff6a8de
DCC
12551 if (pmu->task_ctx_nr == perf_sw_context)
12552 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12553
bd275681
PZ
12554 if (task) {
12555 err = down_read_interruptible(&task->signal->exec_update_lock);
12556 if (err)
12557 goto err_alloc;
12558
12559 /*
12560 * We must hold exec_update_lock across this and any potential
12561 * perf_install_in_context() call for this new event to
12562 * serialize against exec() altering our credentials (and the
12563 * perf_event_exit_task() that could imply).
12564 */
12565 err = -EACCES;
12566 if (!perf_check_permission(&attr, task))
12567 goto err_cred;
b04243ef 12568 }
89a1e187
PZ
12569
12570 /*
12571 * Get the target context (task or percpu):
12572 */
bd275681 12573 ctx = find_get_context(task, event);
89a1e187
PZ
12574 if (IS_ERR(ctx)) {
12575 err = PTR_ERR(ctx);
bd275681
PZ
12576 goto err_cred;
12577 }
12578
12579 mutex_lock(&ctx->mutex);
12580
12581 if (ctx->task == TASK_TOMBSTONE) {
12582 err = -ESRCH;
12583 goto err_locked;
12584 }
12585
12586 if (!task) {
12587 /*
12588 * Check if the @cpu we're creating an event for is online.
12589 *
12590 * We use the perf_cpu_context::ctx::mutex to serialize against
12591 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12592 */
12593 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12594
12595 if (!cpuctx->online) {
12596 err = -ENODEV;
12597 goto err_locked;
12598 }
89a1e187
PZ
12599 }
12600
ac9721f3 12601 if (group_leader) {
dc86cabe 12602 err = -EINVAL;
04289bb9 12603
04289bb9 12604 /*
ccff286d
IM
12605 * Do not allow a recursive hierarchy (this new sibling
12606 * becoming part of another group-sibling):
12607 */
12608 if (group_leader->group_leader != group_leader)
bd275681 12609 goto err_locked;
34f43927
PZ
12610
12611 /* All events in a group should have the same clock */
12612 if (group_leader->clock != event->clock)
bd275681 12613 goto err_locked;
34f43927 12614
ccff286d 12615 /*
64aee2a9
MR
12616 * Make sure we're both events for the same CPU;
12617 * grouping events for different CPUs is broken; since
12618 * you can never concurrently schedule them anyhow.
04289bb9 12619 */
64aee2a9 12620 if (group_leader->cpu != event->cpu)
bd275681 12621 goto err_locked;
64aee2a9
MR
12622
12623 /*
bd275681 12624 * Make sure we're both on the same context; either task or cpu.
64aee2a9 12625 */
bd275681
PZ
12626 if (group_leader->ctx != ctx)
12627 goto err_locked;
b04243ef 12628
3b6f9e5c
PM
12629 /*
12630 * Only a group leader can be exclusive or pinned
12631 */
0d48696f 12632 if (attr.exclusive || attr.pinned)
84c4e620 12633 goto err_locked;
321027c1 12634
bd275681
PZ
12635 if (is_software_event(event) &&
12636 !in_software_context(group_leader)) {
321027c1 12637 /*
bd275681
PZ
12638 * If the event is a sw event, but the group_leader
12639 * is on hw context.
12640 *
12641 * Allow the addition of software events to hw
12642 * groups, this is safe because software events
12643 * never fail to schedule.
12644 *
12645 * Note the comment that goes with struct
12646 * perf_event_pmu_context.
321027c1 12647 */
bd275681 12648 pmu = group_leader->pmu_ctx->pmu;
bf480f93
RB
12649 } else if (!is_software_event(event)) {
12650 if (is_software_event(group_leader) &&
12651 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12652 /*
12653 * In case the group is a pure software group, and we
12654 * try to add a hardware event, move the whole group to
12655 * the hardware context.
12656 */
12657 move_group = 1;
321027c1 12658 }
8a58ddae 12659
bf480f93
RB
12660 /* Don't allow group of multiple hw events from different pmus */
12661 if (!in_software_context(group_leader) &&
12662 group_leader->pmu_ctx->pmu != pmu)
8a58ddae
AS
12663 goto err_locked;
12664 }
f55fc2a5
PZ
12665 }
12666
bd275681
PZ
12667 /*
12668 * Now that we're certain of the pmu; find the pmu_ctx.
12669 */
12670 pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12671 if (IS_ERR(pmu_ctx)) {
12672 err = PTR_ERR(pmu_ctx);
84c4e620
PZ
12673 goto err_locked;
12674 }
bd275681 12675 event->pmu_ctx = pmu_ctx;
84c4e620 12676
bd275681
PZ
12677 if (output_event) {
12678 err = perf_event_set_output(event, output_event);
12679 if (err)
12680 goto err_context;
a723968c
PZ
12681 }
12682
bd275681
PZ
12683 if (!perf_event_validate_size(event)) {
12684 err = -E2BIG;
12685 goto err_context;
a63fbed7
TG
12686 }
12687
da9ec3d3
MR
12688 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12689 err = -EINVAL;
bd275681 12690 goto err_context;
da9ec3d3 12691 }
a63fbed7 12692
f55fc2a5
PZ
12693 /*
12694 * Must be under the same ctx::mutex as perf_install_in_context(),
12695 * because we need to serialize with concurrent event creation.
12696 */
12697 if (!exclusive_event_installable(event, ctx)) {
f55fc2a5 12698 err = -EBUSY;
bd275681 12699 goto err_context;
f55fc2a5 12700 }
f63a8daa 12701
f55fc2a5
PZ
12702 WARN_ON_ONCE(ctx->parent_ctx);
12703
bd275681
PZ
12704 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
12705 if (IS_ERR(event_file)) {
12706 err = PTR_ERR(event_file);
12707 event_file = NULL;
12708 goto err_context;
12709 }
12710
79c9ce57
PZ
12711 /*
12712 * This is the point on no return; we cannot fail hereafter. This is
12713 * where we start modifying current state.
12714 */
12715
f55fc2a5 12716 if (move_group) {
45a0e07a 12717 perf_remove_from_context(group_leader, 0);
bd275681 12718 put_pmu_ctx(group_leader->pmu_ctx);
0231bb53 12719
edb39592 12720 for_each_sibling_event(sibling, group_leader) {
45a0e07a 12721 perf_remove_from_context(sibling, 0);
bd275681 12722 put_pmu_ctx(sibling->pmu_ctx);
b04243ef 12723 }
b04243ef 12724
8f95b435
PZI
12725 /*
12726 * Install the group siblings before the group leader.
12727 *
12728 * Because a group leader will try and install the entire group
12729 * (through the sibling list, which is still in-tact), we can
12730 * end up with siblings installed in the wrong context.
12731 *
12732 * By installing siblings first we NO-OP because they're not
12733 * reachable through the group lists.
12734 */
edb39592 12735 for_each_sibling_event(sibling, group_leader) {
bd275681
PZ
12736 sibling->pmu_ctx = pmu_ctx;
12737 get_pmu_ctx(pmu_ctx);
8f95b435 12738 perf_event__state_init(sibling);
9fc81d87 12739 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef 12740 }
8f95b435
PZI
12741
12742 /*
12743 * Removing from the context ends up with disabled
12744 * event. What we want here is event in the initial
12745 * startup state, ready to be add into new context.
12746 */
bd275681
PZ
12747 group_leader->pmu_ctx = pmu_ctx;
12748 get_pmu_ctx(pmu_ctx);
8f95b435
PZI
12749 perf_event__state_init(group_leader);
12750 perf_install_in_context(ctx, group_leader, group_leader->cpu);
bed5b25a
AS
12751 }
12752
f73e22ab
PZ
12753 /*
12754 * Precalculate sample_data sizes; do while holding ctx::mutex such
12755 * that we're serialized against further additions and before
12756 * perf_install_in_context() which is the point the event is active and
12757 * can use these values.
12758 */
12759 perf_event__header_size(event);
12760 perf_event__id_header_size(event);
12761
78cd2c74
PZ
12762 event->owner = current;
12763
e2d37cd2 12764 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 12765 perf_unpin_context(ctx);
f63a8daa 12766
d859e29f 12767 mutex_unlock(&ctx->mutex);
9b51f66d 12768
79c9ce57 12769 if (task) {
f7cfd871 12770 up_read(&task->signal->exec_update_lock);
79c9ce57
PZ
12771 put_task_struct(task);
12772 }
12773
cdd6c482
IM
12774 mutex_lock(&current->perf_event_mutex);
12775 list_add_tail(&event->owner_entry, &current->perf_event_list);
12776 mutex_unlock(&current->perf_event_mutex);
082ff5a2 12777
8a49542c
PZ
12778 /*
12779 * Drop the reference on the group_event after placing the
12780 * new event on the sibling_list. This ensures destruction
12781 * of the group leader will find the pointer to itself in
12782 * perf_group_detach().
12783 */
2903ff01 12784 fdput(group);
ea635c64
AV
12785 fd_install(event_fd, event_file);
12786 return event_fd;
0793a61d 12787
bd275681 12788err_context:
a551844e
PZ
12789 put_pmu_ctx(event->pmu_ctx);
12790 event->pmu_ctx = NULL; /* _free_event() */
f55fc2a5 12791err_locked:
f55fc2a5 12792 mutex_unlock(&ctx->mutex);
bd275681
PZ
12793 perf_unpin_context(ctx);
12794 put_ctx(ctx);
78af4dc9 12795err_cred:
12796 if (task)
d01e7f10 12797 up_read(&task->signal->exec_update_lock);
c6be5a5c 12798err_alloc:
bd275681 12799 free_event(event);
1f4ee503 12800err_task:
e7d0bc04
PZ
12801 if (task)
12802 put_task_struct(task);
89a1e187 12803err_group_fd:
2903ff01 12804 fdput(group);
ea635c64
AV
12805err_fd:
12806 put_unused_fd(event_fd);
dc86cabe 12807 return err;
0793a61d
TG
12808}
12809
fb0459d7
AV
12810/**
12811 * perf_event_create_kernel_counter
12812 *
12813 * @attr: attributes of the counter to create
12814 * @cpu: cpu in which the counter is bound
38a81da2 12815 * @task: task to profile (NULL for percpu)
a1ddf524
HX
12816 * @overflow_handler: callback to trigger when we hit the event
12817 * @context: context data could be used in overflow_handler callback
fb0459d7
AV
12818 */
12819struct perf_event *
12820perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 12821 struct task_struct *task,
4dc0da86
AK
12822 perf_overflow_handler_t overflow_handler,
12823 void *context)
fb0459d7 12824{
bd275681 12825 struct perf_event_pmu_context *pmu_ctx;
fb0459d7 12826 struct perf_event_context *ctx;
c3f00c70 12827 struct perf_event *event;
bd275681 12828 struct pmu *pmu;
fb0459d7 12829 int err;
d859e29f 12830
dce5affb
AS
12831 /*
12832 * Grouping is not supported for kernel events, neither is 'AUX',
12833 * make sure the caller's intentions are adjusted.
12834 */
12835 if (attr->aux_output)
12836 return ERR_PTR(-EINVAL);
12837
4dc0da86 12838 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 12839 overflow_handler, context, -1);
c3f00c70
PZ
12840 if (IS_ERR(event)) {
12841 err = PTR_ERR(event);
12842 goto err;
12843 }
d859e29f 12844
f8697762 12845 /* Mark owner so we could distinguish it from user events. */
63b6da39 12846 event->owner = TASK_TOMBSTONE;
bd275681
PZ
12847 pmu = event->pmu;
12848
12849 if (pmu->task_ctx_nr == perf_sw_context)
12850 event->event_caps |= PERF_EV_CAP_SOFTWARE;
f8697762 12851
f25d8ba9
AS
12852 /*
12853 * Get the target context (task or percpu):
12854 */
bd275681 12855 ctx = find_get_context(task, event);
c6567f64
FW
12856 if (IS_ERR(ctx)) {
12857 err = PTR_ERR(ctx);
bd275681 12858 goto err_alloc;
d859e29f 12859 }
fb0459d7 12860
fb0459d7
AV
12861 WARN_ON_ONCE(ctx->parent_ctx);
12862 mutex_lock(&ctx->mutex);
84c4e620
PZ
12863 if (ctx->task == TASK_TOMBSTONE) {
12864 err = -ESRCH;
12865 goto err_unlock;
12866 }
12867
bd275681
PZ
12868 pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12869 if (IS_ERR(pmu_ctx)) {
12870 err = PTR_ERR(pmu_ctx);
12871 goto err_unlock;
12872 }
12873 event->pmu_ctx = pmu_ctx;
12874
a63fbed7
TG
12875 if (!task) {
12876 /*
12877 * Check if the @cpu we're creating an event for is online.
12878 *
12879 * We use the perf_cpu_context::ctx::mutex to serialize against
12880 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12881 */
12882 struct perf_cpu_context *cpuctx =
12883 container_of(ctx, struct perf_cpu_context, ctx);
12884 if (!cpuctx->online) {
12885 err = -ENODEV;
bd275681 12886 goto err_pmu_ctx;
a63fbed7
TG
12887 }
12888 }
12889
bed5b25a 12890 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 12891 err = -EBUSY;
bd275681 12892 goto err_pmu_ctx;
bed5b25a
AS
12893 }
12894
4ce54af8 12895 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 12896 perf_unpin_context(ctx);
fb0459d7
AV
12897 mutex_unlock(&ctx->mutex);
12898
fb0459d7
AV
12899 return event;
12900
bd275681
PZ
12901err_pmu_ctx:
12902 put_pmu_ctx(pmu_ctx);
a551844e 12903 event->pmu_ctx = NULL; /* _free_event() */
84c4e620
PZ
12904err_unlock:
12905 mutex_unlock(&ctx->mutex);
12906 perf_unpin_context(ctx);
12907 put_ctx(ctx);
bd275681 12908err_alloc:
c3f00c70
PZ
12909 free_event(event);
12910err:
c6567f64 12911 return ERR_PTR(err);
9b51f66d 12912}
fb0459d7 12913EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 12914
bd275681
PZ
12915static void __perf_pmu_remove(struct perf_event_context *ctx,
12916 int cpu, struct pmu *pmu,
12917 struct perf_event_groups *groups,
12918 struct list_head *events)
0cda4c02 12919{
bd275681 12920 struct perf_event *event, *sibling;
0cda4c02 12921
bd275681 12922 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
45a0e07a 12923 perf_remove_from_context(event, 0);
bd275681
PZ
12924 put_pmu_ctx(event->pmu_ctx);
12925 list_add(&event->migrate_entry, events);
12926
12927 for_each_sibling_event(sibling, event) {
12928 perf_remove_from_context(sibling, 0);
bd275681
PZ
12929 put_pmu_ctx(sibling->pmu_ctx);
12930 list_add(&sibling->migrate_entry, events);
12931 }
0cda4c02 12932 }
bd275681 12933}
0cda4c02 12934
bd275681
PZ
12935static void __perf_pmu_install_event(struct pmu *pmu,
12936 struct perf_event_context *ctx,
12937 int cpu, struct perf_event *event)
12938{
12939 struct perf_event_pmu_context *epc;
889c58b3
PZ
12940 struct perf_event_context *old_ctx = event->ctx;
12941
12942 get_ctx(ctx); /* normally find_get_context() */
bd275681
PZ
12943
12944 event->cpu = cpu;
12945 epc = find_get_pmu_context(pmu, ctx, event);
12946 event->pmu_ctx = epc;
12947
12948 if (event->state >= PERF_EVENT_STATE_OFF)
12949 event->state = PERF_EVENT_STATE_INACTIVE;
bd275681 12950 perf_install_in_context(ctx, event, cpu);
889c58b3
PZ
12951
12952 /*
12953 * Now that event->ctx is updated and visible, put the old ctx.
12954 */
12955 put_ctx(old_ctx);
bd275681
PZ
12956}
12957
12958static void __perf_pmu_install(struct perf_event_context *ctx,
12959 int cpu, struct pmu *pmu, struct list_head *events)
12960{
12961 struct perf_event *event, *tmp;
0cda4c02 12962
8f95b435
PZI
12963 /*
12964 * Re-instate events in 2 passes.
12965 *
12966 * Skip over group leaders and only install siblings on this first
12967 * pass, siblings will not get enabled without a leader, however a
12968 * leader will enable its siblings, even if those are still on the old
12969 * context.
12970 */
bd275681 12971 list_for_each_entry_safe(event, tmp, events, migrate_entry) {
8f95b435
PZI
12972 if (event->group_leader == event)
12973 continue;
12974
12975 list_del(&event->migrate_entry);
bd275681 12976 __perf_pmu_install_event(pmu, ctx, cpu, event);
8f95b435
PZI
12977 }
12978
12979 /*
12980 * Once all the siblings are setup properly, install the group leaders
12981 * to make it go.
12982 */
bd275681 12983 list_for_each_entry_safe(event, tmp, events, migrate_entry) {
9886167d 12984 list_del(&event->migrate_entry);
bd275681 12985 __perf_pmu_install_event(pmu, ctx, cpu, event);
0cda4c02 12986 }
bd275681
PZ
12987}
12988
12989void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12990{
12991 struct perf_event_context *src_ctx, *dst_ctx;
12992 LIST_HEAD(events);
12993
889c58b3
PZ
12994 /*
12995 * Since per-cpu context is persistent, no need to grab an extra
12996 * reference.
12997 */
bd275681
PZ
12998 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
12999 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
13000
13001 /*
13002 * See perf_event_ctx_lock() for comments on the details
13003 * of swizzling perf_event::ctx.
13004 */
13005 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
13006
13007 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
13008 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
13009
b1680989
PZ
13010 if (!list_empty(&events)) {
13011 /*
13012 * Wait for the events to quiesce before re-instating them.
13013 */
13014 synchronize_rcu();
bd275681 13015
b1680989
PZ
13016 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
13017 }
bd275681 13018
0cda4c02 13019 mutex_unlock(&dst_ctx->mutex);
f63a8daa 13020 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
13021}
13022EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
13023
ef54c1a4 13024static void sync_child_event(struct perf_event *child_event)
d859e29f 13025{
cdd6c482 13026 struct perf_event *parent_event = child_event->parent;
8bc20959 13027 u64 child_val;
d859e29f 13028
ef54c1a4
PZ
13029 if (child_event->attr.inherit_stat) {
13030 struct task_struct *task = child_event->ctx->task;
13031
13032 if (task && task != TASK_TOMBSTONE)
13033 perf_event_read_event(child_event, task);
13034 }
38b200d6 13035
b5e58793 13036 child_val = perf_event_count(child_event);
d859e29f
PM
13037
13038 /*
13039 * Add back the child's count to the parent's count:
13040 */
a6e6dea6 13041 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
13042 atomic64_add(child_event->total_time_enabled,
13043 &parent_event->child_total_time_enabled);
13044 atomic64_add(child_event->total_time_running,
13045 &parent_event->child_total_time_running);
d859e29f
PM
13046}
13047
9b51f66d 13048static void
ef54c1a4 13049perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
9b51f66d 13050{
ef54c1a4
PZ
13051 struct perf_event *parent_event = event->parent;
13052 unsigned long detach_flags = 0;
8ba289b8 13053
ef54c1a4
PZ
13054 if (parent_event) {
13055 /*
13056 * Do not destroy the 'original' grouping; because of the
13057 * context switch optimization the original events could've
13058 * ended up in a random child task.
13059 *
13060 * If we were to destroy the original group, all group related
13061 * operations would cease to function properly after this
13062 * random child dies.
13063 *
13064 * Do destroy all inherited groups, we don't care about those
13065 * and being thorough is better.
13066 */
13067 detach_flags = DETACH_GROUP | DETACH_CHILD;
13068 mutex_lock(&parent_event->child_mutex);
13069 }
32132a3d 13070
ef54c1a4
PZ
13071 perf_remove_from_context(event, detach_flags);
13072
13073 raw_spin_lock_irq(&ctx->lock);
13074 if (event->state > PERF_EVENT_STATE_EXIT)
13075 perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
13076 raw_spin_unlock_irq(&ctx->lock);
0cc0c027 13077
9b51f66d 13078 /*
ef54c1a4 13079 * Child events can be freed.
9b51f66d 13080 */
ef54c1a4
PZ
13081 if (parent_event) {
13082 mutex_unlock(&parent_event->child_mutex);
13083 /*
13084 * Kick perf_poll() for is_event_hup();
13085 */
13086 perf_event_wakeup(parent_event);
13087 free_event(event);
13088 put_event(parent_event);
8ba289b8 13089 return;
4bcf349a 13090 }
8ba289b8
PZ
13091
13092 /*
ef54c1a4 13093 * Parent events are governed by their filedesc, retain them.
8ba289b8 13094 */
ef54c1a4 13095 perf_event_wakeup(event);
9b51f66d
IM
13096}
13097
bd275681 13098static void perf_event_exit_task_context(struct task_struct *child)
9b51f66d 13099{
211de6eb 13100 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 13101 struct perf_event *child_event, *next;
63b6da39
PZ
13102
13103 WARN_ON_ONCE(child != current);
9b51f66d 13104
bd275681 13105 child_ctx = perf_pin_task_context(child);
63b6da39 13106 if (!child_ctx)
9b51f66d
IM
13107 return;
13108
ad3a37de 13109 /*
6a3351b6
PZ
13110 * In order to reduce the amount of tricky in ctx tear-down, we hold
13111 * ctx::mutex over the entire thing. This serializes against almost
13112 * everything that wants to access the ctx.
13113 *
13114 * The exception is sys_perf_event_open() /
13115 * perf_event_create_kernel_count() which does find_get_context()
13116 * without ctx::mutex (it cannot because of the move_group double mutex
13117 * lock thing). See the comments in perf_install_in_context().
ad3a37de 13118 */
6a3351b6 13119 mutex_lock(&child_ctx->mutex);
c93f7669
PM
13120
13121 /*
6a3351b6
PZ
13122 * In a single ctx::lock section, de-schedule the events and detach the
13123 * context from the task such that we cannot ever get it scheduled back
13124 * in.
c93f7669 13125 */
6a3351b6 13126 raw_spin_lock_irq(&child_ctx->lock);
bd275681 13127 task_ctx_sched_out(child_ctx, EVENT_ALL);
4a1c0f26 13128
71a851b4 13129 /*
63b6da39
PZ
13130 * Now that the context is inactive, destroy the task <-> ctx relation
13131 * and mark the context dead.
71a851b4 13132 */
bd275681 13133 RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
63b6da39
PZ
13134 put_ctx(child_ctx); /* cannot be last */
13135 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13136 put_task_struct(current); /* cannot be last */
4a1c0f26 13137
211de6eb 13138 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 13139 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 13140
211de6eb
PZ
13141 if (clone_ctx)
13142 put_ctx(clone_ctx);
4a1c0f26 13143
9f498cc5 13144 /*
cdd6c482
IM
13145 * Report the task dead after unscheduling the events so that we
13146 * won't get any samples after PERF_RECORD_EXIT. We can however still
13147 * get a few PERF_RECORD_READ events.
9f498cc5 13148 */
cdd6c482 13149 perf_event_task(child, child_ctx, 0);
a63eaf34 13150
ebf905fc 13151 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
ef54c1a4 13152 perf_event_exit_event(child_event, child_ctx);
8bc20959 13153
a63eaf34
PM
13154 mutex_unlock(&child_ctx->mutex);
13155
13156 put_ctx(child_ctx);
9b51f66d
IM
13157}
13158
8dc85d54
PZ
13159/*
13160 * When a child task exits, feed back event values to parent events.
79c9ce57 13161 *
f7cfd871 13162 * Can be called with exec_update_lock held when called from
96ecee29 13163 * setup_new_exec().
8dc85d54
PZ
13164 */
13165void perf_event_exit_task(struct task_struct *child)
13166{
8882135b 13167 struct perf_event *event, *tmp;
8dc85d54 13168
8882135b
PZ
13169 mutex_lock(&child->perf_event_mutex);
13170 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13171 owner_entry) {
13172 list_del_init(&event->owner_entry);
13173
13174 /*
13175 * Ensure the list deletion is visible before we clear
13176 * the owner, closes a race against perf_release() where
13177 * we need to serialize on the owner->perf_event_mutex.
13178 */
f47c02c0 13179 smp_store_release(&event->owner, NULL);
8882135b
PZ
13180 }
13181 mutex_unlock(&child->perf_event_mutex);
13182
bd275681 13183 perf_event_exit_task_context(child);
4e93ad60
JO
13184
13185 /*
13186 * The perf_event_exit_task_context calls perf_event_task
13187 * with child's task_ctx, which generates EXIT events for
13188 * child contexts and sets child->perf_event_ctxp[] to NULL.
13189 * At this point we need to send EXIT events to cpu contexts.
13190 */
13191 perf_event_task(child, NULL, 0);
8dc85d54
PZ
13192}
13193
889ff015
FW
13194static void perf_free_event(struct perf_event *event,
13195 struct perf_event_context *ctx)
13196{
13197 struct perf_event *parent = event->parent;
13198
13199 if (WARN_ON_ONCE(!parent))
13200 return;
13201
13202 mutex_lock(&parent->child_mutex);
13203 list_del_init(&event->child_list);
13204 mutex_unlock(&parent->child_mutex);
13205
a6fa941d 13206 put_event(parent);
889ff015 13207
652884fe 13208 raw_spin_lock_irq(&ctx->lock);
8a49542c 13209 perf_group_detach(event);
889ff015 13210 list_del_event(event, ctx);
652884fe 13211 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
13212 free_event(event);
13213}
13214
bbbee908 13215/*
1cf8dfe8
PZ
13216 * Free a context as created by inheritance by perf_event_init_task() below,
13217 * used by fork() in case of fail.
652884fe 13218 *
1cf8dfe8
PZ
13219 * Even though the task has never lived, the context and events have been
13220 * exposed through the child_list, so we must take care tearing it all down.
bbbee908 13221 */
cdd6c482 13222void perf_event_free_task(struct task_struct *task)
bbbee908 13223{
8dc85d54 13224 struct perf_event_context *ctx;
cdd6c482 13225 struct perf_event *event, *tmp;
bbbee908 13226
bd275681
PZ
13227 ctx = rcu_access_pointer(task->perf_event_ctxp);
13228 if (!ctx)
13229 return;
bbbee908 13230
bd275681
PZ
13231 mutex_lock(&ctx->mutex);
13232 raw_spin_lock_irq(&ctx->lock);
13233 /*
13234 * Destroy the task <-> ctx relation and mark the context dead.
13235 *
13236 * This is important because even though the task hasn't been
13237 * exposed yet the context has been (through child_list).
13238 */
13239 RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13240 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13241 put_task_struct(task); /* cannot be last */
13242 raw_spin_unlock_irq(&ctx->lock);
bbbee908 13243
bbbee908 13244
bd275681
PZ
13245 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13246 perf_free_event(event, ctx);
1cf8dfe8 13247
bd275681
PZ
13248 mutex_unlock(&ctx->mutex);
13249
13250 /*
13251 * perf_event_release_kernel() could've stolen some of our
13252 * child events and still have them on its free_list. In that
13253 * case we must wait for these events to have been freed (in
13254 * particular all their references to this task must've been
13255 * dropped).
13256 *
13257 * Without this copy_process() will unconditionally free this
13258 * task (irrespective of its reference count) and
13259 * _free_event()'s put_task_struct(event->hw.target) will be a
13260 * use-after-free.
13261 *
13262 * Wait for all events to drop their context reference.
13263 */
13264 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13265 put_ctx(ctx); /* must be last */
889ff015
FW
13266}
13267
4e231c79
PZ
13268void perf_event_delayed_put(struct task_struct *task)
13269{
bd275681 13270 WARN_ON_ONCE(task->perf_event_ctxp);
4e231c79
PZ
13271}
13272
e03e7ee3 13273struct file *perf_event_get(unsigned int fd)
ffe8690c 13274{
02e5ad97 13275 struct file *file = fget(fd);
e03e7ee3
AS
13276 if (!file)
13277 return ERR_PTR(-EBADF);
ffe8690c 13278
e03e7ee3
AS
13279 if (file->f_op != &perf_fops) {
13280 fput(file);
13281 return ERR_PTR(-EBADF);
13282 }
ffe8690c 13283
e03e7ee3 13284 return file;
ffe8690c
KX
13285}
13286
f8d959a5
YS
13287const struct perf_event *perf_get_event(struct file *file)
13288{
13289 if (file->f_op != &perf_fops)
13290 return ERR_PTR(-EINVAL);
13291
13292 return file->private_data;
13293}
13294
ffe8690c
KX
13295const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13296{
13297 if (!event)
13298 return ERR_PTR(-EINVAL);
13299
13300 return &event->attr;
13301}
13302
97dee4f3 13303/*
788faab7 13304 * Inherit an event from parent task to child task.
d8a8cfc7
PZ
13305 *
13306 * Returns:
13307 * - valid pointer on success
13308 * - NULL for orphaned events
13309 * - IS_ERR() on error
97dee4f3
PZ
13310 */
13311static struct perf_event *
13312inherit_event(struct perf_event *parent_event,
13313 struct task_struct *parent,
13314 struct perf_event_context *parent_ctx,
13315 struct task_struct *child,
13316 struct perf_event *group_leader,
13317 struct perf_event_context *child_ctx)
13318{
8ca2bd41 13319 enum perf_event_state parent_state = parent_event->state;
bd275681 13320 struct perf_event_pmu_context *pmu_ctx;
97dee4f3 13321 struct perf_event *child_event;
cee010ec 13322 unsigned long flags;
97dee4f3
PZ
13323
13324 /*
13325 * Instead of creating recursive hierarchies of events,
13326 * we link inherited events back to the original parent,
13327 * which has a filp for sure, which we use as the reference
13328 * count:
13329 */
13330 if (parent_event->parent)
13331 parent_event = parent_event->parent;
13332
13333 child_event = perf_event_alloc(&parent_event->attr,
13334 parent_event->cpu,
d580ff86 13335 child,
97dee4f3 13336 group_leader, parent_event,
79dff51e 13337 NULL, NULL, -1);
97dee4f3
PZ
13338 if (IS_ERR(child_event))
13339 return child_event;
a6fa941d 13340
bd275681 13341 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
c55bfbb3 13342 if (IS_ERR(pmu_ctx)) {
bd275681 13343 free_event(child_event);
e2d37148 13344 return ERR_CAST(pmu_ctx);
313ccb96 13345 }
bd275681 13346 child_event->pmu_ctx = pmu_ctx;
313ccb96 13347
c6e5b732
PZ
13348 /*
13349 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13350 * must be under the same lock in order to serialize against
13351 * perf_event_release_kernel(), such that either we must observe
13352 * is_orphaned_event() or they will observe us on the child_list.
13353 */
13354 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
13355 if (is_orphaned_event(parent_event) ||
13356 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 13357 mutex_unlock(&parent_event->child_mutex);
313ccb96 13358 /* task_ctx_data is freed with child_ctx */
a6fa941d
AV
13359 free_event(child_event);
13360 return NULL;
13361 }
13362
97dee4f3
PZ
13363 get_ctx(child_ctx);
13364
13365 /*
13366 * Make the child state follow the state of the parent event,
13367 * not its attr.disabled bit. We hold the parent's mutex,
13368 * so we won't race with perf_event_{en, dis}able_family.
13369 */
1929def9 13370 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
13371 child_event->state = PERF_EVENT_STATE_INACTIVE;
13372 else
13373 child_event->state = PERF_EVENT_STATE_OFF;
13374
13375 if (parent_event->attr.freq) {
13376 u64 sample_period = parent_event->hw.sample_period;
13377 struct hw_perf_event *hwc = &child_event->hw;
13378
13379 hwc->sample_period = sample_period;
13380 hwc->last_period = sample_period;
13381
13382 local64_set(&hwc->period_left, sample_period);
13383 }
13384
13385 child_event->ctx = child_ctx;
13386 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
13387 child_event->overflow_handler_context
13388 = parent_event->overflow_handler_context;
97dee4f3 13389
614b6780
TG
13390 /*
13391 * Precalculate sample_data sizes
13392 */
13393 perf_event__header_size(child_event);
6844c09d 13394 perf_event__id_header_size(child_event);
614b6780 13395
97dee4f3
PZ
13396 /*
13397 * Link it up in the child's context:
13398 */
cee010ec 13399 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 13400 add_event_to_ctx(child_event, child_ctx);
ef54c1a4 13401 child_event->attach_state |= PERF_ATTACH_CHILD;
cee010ec 13402 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 13403
97dee4f3
PZ
13404 /*
13405 * Link this into the parent event's child list
13406 */
97dee4f3
PZ
13407 list_add_tail(&child_event->child_list, &parent_event->child_list);
13408 mutex_unlock(&parent_event->child_mutex);
13409
13410 return child_event;
13411}
13412
d8a8cfc7
PZ
13413/*
13414 * Inherits an event group.
13415 *
13416 * This will quietly suppress orphaned events; !inherit_event() is not an error.
13417 * This matches with perf_event_release_kernel() removing all child events.
13418 *
13419 * Returns:
13420 * - 0 on success
13421 * - <0 on error
13422 */
97dee4f3
PZ
13423static int inherit_group(struct perf_event *parent_event,
13424 struct task_struct *parent,
13425 struct perf_event_context *parent_ctx,
13426 struct task_struct *child,
13427 struct perf_event_context *child_ctx)
13428{
13429 struct perf_event *leader;
13430 struct perf_event *sub;
13431 struct perf_event *child_ctr;
13432
13433 leader = inherit_event(parent_event, parent, parent_ctx,
13434 child, NULL, child_ctx);
13435 if (IS_ERR(leader))
13436 return PTR_ERR(leader);
d8a8cfc7
PZ
13437 /*
13438 * @leader can be NULL here because of is_orphaned_event(). In this
13439 * case inherit_event() will create individual events, similar to what
13440 * perf_group_detach() would do anyway.
13441 */
edb39592 13442 for_each_sibling_event(sub, parent_event) {
97dee4f3
PZ
13443 child_ctr = inherit_event(sub, parent, parent_ctx,
13444 child, leader, child_ctx);
13445 if (IS_ERR(child_ctr))
13446 return PTR_ERR(child_ctr);
f733c6b5 13447
00496fe5 13448 if (sub->aux_event == parent_event && child_ctr &&
f733c6b5
AS
13449 !perf_get_aux_event(child_ctr, leader))
13450 return -EINVAL;
97dee4f3 13451 }
a71ef314
PZ
13452 if (leader)
13453 leader->group_generation = parent_event->group_generation;
97dee4f3 13454 return 0;
889ff015
FW
13455}
13456
d8a8cfc7
PZ
13457/*
13458 * Creates the child task context and tries to inherit the event-group.
13459 *
13460 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13461 * inherited_all set when we 'fail' to inherit an orphaned event; this is
13462 * consistent with perf_event_release_kernel() removing all child events.
13463 *
13464 * Returns:
13465 * - 0 on success
13466 * - <0 on error
13467 */
889ff015
FW
13468static int
13469inherit_task_group(struct perf_event *event, struct task_struct *parent,
13470 struct perf_event_context *parent_ctx,
bd275681 13471 struct task_struct *child,
2b26f0aa 13472 u64 clone_flags, int *inherited_all)
889ff015 13473{
8dc85d54 13474 struct perf_event_context *child_ctx;
bd275681 13475 int ret;
889ff015 13476
2b26f0aa 13477 if (!event->attr.inherit ||
97ba62b2
ME
13478 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13479 /* Do not inherit if sigtrap and signal handlers were cleared. */
13480 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
889ff015
FW
13481 *inherited_all = 0;
13482 return 0;
bbbee908
PZ
13483 }
13484
bd275681 13485 child_ctx = child->perf_event_ctxp;
889ff015
FW
13486 if (!child_ctx) {
13487 /*
13488 * This is executed from the parent task context, so
13489 * inherit events that have been marked for cloning.
13490 * First allocate and initialize a context for the
13491 * child.
13492 */
bd275681 13493 child_ctx = alloc_perf_context(child);
889ff015
FW
13494 if (!child_ctx)
13495 return -ENOMEM;
bbbee908 13496
bd275681 13497 child->perf_event_ctxp = child_ctx;
889ff015
FW
13498 }
13499
bd275681 13500 ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
889ff015
FW
13501 if (ret)
13502 *inherited_all = 0;
13503
13504 return ret;
bbbee908
PZ
13505}
13506
9b51f66d 13507/*
cdd6c482 13508 * Initialize the perf_event context in task_struct
9b51f66d 13509 */
bd275681 13510static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
9b51f66d 13511{
889ff015 13512 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
13513 struct perf_event_context *cloned_ctx;
13514 struct perf_event *event;
9b51f66d 13515 struct task_struct *parent = current;
564c2b21 13516 int inherited_all = 1;
dddd3379 13517 unsigned long flags;
6ab423e0 13518 int ret = 0;
9b51f66d 13519
bd275681 13520 if (likely(!parent->perf_event_ctxp))
6ab423e0
PZ
13521 return 0;
13522
ad3a37de 13523 /*
25346b93
PM
13524 * If the parent's context is a clone, pin it so it won't get
13525 * swapped under us.
ad3a37de 13526 */
bd275681 13527 parent_ctx = perf_pin_task_context(parent);
ffb4ef21
PZ
13528 if (!parent_ctx)
13529 return 0;
25346b93 13530
ad3a37de
PM
13531 /*
13532 * No need to check if parent_ctx != NULL here; since we saw
13533 * it non-NULL earlier, the only reason for it to become NULL
13534 * is if we exit, and since we're currently in the middle of
13535 * a fork we can't be exiting at the same time.
13536 */
ad3a37de 13537
9b51f66d
IM
13538 /*
13539 * Lock the parent list. No need to lock the child - not PID
13540 * hashed yet and not running, so nobody can access it.
13541 */
d859e29f 13542 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
13543
13544 /*
13545 * We dont have to disable NMIs - we are only looking at
13546 * the list, not manipulating it:
13547 */
6e6804d2 13548 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
8dc85d54 13549 ret = inherit_task_group(event, parent, parent_ctx,
bd275681 13550 child, clone_flags, &inherited_all);
889ff015 13551 if (ret)
e7cc4865 13552 goto out_unlock;
889ff015 13553 }
b93f7978 13554
dddd3379
TG
13555 /*
13556 * We can't hold ctx->lock when iterating the ->flexible_group list due
13557 * to allocations, but we need to prevent rotation because
13558 * rotate_ctx() will change the list from interrupt context.
13559 */
13560 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13561 parent_ctx->rotate_disable = 1;
13562 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13563
6e6804d2 13564 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
8dc85d54 13565 ret = inherit_task_group(event, parent, parent_ctx,
bd275681 13566 child, clone_flags, &inherited_all);
889ff015 13567 if (ret)
e7cc4865 13568 goto out_unlock;
564c2b21
PM
13569 }
13570
dddd3379
TG
13571 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13572 parent_ctx->rotate_disable = 0;
dddd3379 13573
bd275681 13574 child_ctx = child->perf_event_ctxp;
889ff015 13575
05cbaa28 13576 if (child_ctx && inherited_all) {
564c2b21
PM
13577 /*
13578 * Mark the child context as a clone of the parent
13579 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
13580 *
13581 * Note that if the parent is a clone, the holding of
13582 * parent_ctx->lock avoids it from being uncloned.
564c2b21 13583 */
c5ed5145 13584 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
13585 if (cloned_ctx) {
13586 child_ctx->parent_ctx = cloned_ctx;
25346b93 13587 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
13588 } else {
13589 child_ctx->parent_ctx = parent_ctx;
13590 child_ctx->parent_gen = parent_ctx->generation;
13591 }
13592 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
13593 }
13594
c5ed5145 13595 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
e7cc4865 13596out_unlock:
d859e29f 13597 mutex_unlock(&parent_ctx->mutex);
6ab423e0 13598
25346b93 13599 perf_unpin_context(parent_ctx);
fe4b04fa 13600 put_ctx(parent_ctx);
ad3a37de 13601
6ab423e0 13602 return ret;
9b51f66d
IM
13603}
13604
8dc85d54
PZ
13605/*
13606 * Initialize the perf_event context in task_struct
13607 */
2b26f0aa 13608int perf_event_init_task(struct task_struct *child, u64 clone_flags)
8dc85d54 13609{
bd275681 13610 int ret;
8dc85d54 13611
bd275681 13612 child->perf_event_ctxp = NULL;
8550d7cb
ON
13613 mutex_init(&child->perf_event_mutex);
13614 INIT_LIST_HEAD(&child->perf_event_list);
13615
bd275681
PZ
13616 ret = perf_event_init_context(child, clone_flags);
13617 if (ret) {
13618 perf_event_free_task(child);
13619 return ret;
8dc85d54
PZ
13620 }
13621
13622 return 0;
13623}
13624
220b140b
PM
13625static void __init perf_event_init_all_cpus(void)
13626{
b28ab83c 13627 struct swevent_htable *swhash;
bd275681 13628 struct perf_cpu_context *cpuctx;
220b140b 13629 int cpu;
220b140b 13630
a63fbed7
TG
13631 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13632
220b140b 13633 for_each_possible_cpu(cpu) {
b28ab83c
PZ
13634 swhash = &per_cpu(swevent_htable, cpu);
13635 mutex_init(&swhash->hlist_mutex);
f2fb6bef
KL
13636
13637 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13638 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788 13639
a5398bff 13640 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
bd275681
PZ
13641
13642 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13643 __perf_event_init_context(&cpuctx->ctx);
13644 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
13645 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
13646 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
13647 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
13648 cpuctx->heap = cpuctx->heap_default;
220b140b
PM
13649 }
13650}
13651
d18bf422 13652static void perf_swevent_init_cpu(unsigned int cpu)
0793a61d 13653{
108b02cf 13654 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 13655
b28ab83c 13656 mutex_lock(&swhash->hlist_mutex);
059fcd8c 13657 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
13658 struct swevent_hlist *hlist;
13659
b28ab83c
PZ
13660 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13661 WARN_ON(!hlist);
13662 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 13663 }
b28ab83c 13664 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
13665}
13666
2965faa5 13667#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 13668static void __perf_event_exit_context(void *__info)
0793a61d 13669{
bd275681 13670 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
108b02cf 13671 struct perf_event_context *ctx = __info;
fae3fde6 13672 struct perf_event *event;
0793a61d 13673
fae3fde6 13674 raw_spin_lock(&ctx->lock);
bd275681 13675 ctx_sched_out(ctx, EVENT_TIME);
fae3fde6 13676 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 13677 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 13678 raw_spin_unlock(&ctx->lock);
0793a61d 13679}
108b02cf
PZ
13680
13681static void perf_event_exit_cpu_context(int cpu)
13682{
a63fbed7 13683 struct perf_cpu_context *cpuctx;
108b02cf 13684 struct perf_event_context *ctx;
108b02cf 13685
bd275681 13686 // XXX simplify cpuctx->online
a63fbed7 13687 mutex_lock(&pmus_lock);
bd275681
PZ
13688 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13689 ctx = &cpuctx->ctx;
108b02cf 13690
bd275681
PZ
13691 mutex_lock(&ctx->mutex);
13692 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13693 cpuctx->online = 0;
13694 mutex_unlock(&ctx->mutex);
a63fbed7
TG
13695 cpumask_clear_cpu(cpu, perf_online_mask);
13696 mutex_unlock(&pmus_lock);
108b02cf 13697}
00e16c3d
TG
13698#else
13699
13700static void perf_event_exit_cpu_context(int cpu) { }
13701
13702#endif
108b02cf 13703
a63fbed7
TG
13704int perf_event_init_cpu(unsigned int cpu)
13705{
13706 struct perf_cpu_context *cpuctx;
13707 struct perf_event_context *ctx;
a63fbed7
TG
13708
13709 perf_swevent_init_cpu(cpu);
13710
13711 mutex_lock(&pmus_lock);
13712 cpumask_set_cpu(cpu, perf_online_mask);
bd275681
PZ
13713 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13714 ctx = &cpuctx->ctx;
a63fbed7 13715
bd275681
PZ
13716 mutex_lock(&ctx->mutex);
13717 cpuctx->online = 1;
13718 mutex_unlock(&ctx->mutex);
a63fbed7
TG
13719 mutex_unlock(&pmus_lock);
13720
13721 return 0;
13722}
13723
00e16c3d 13724int perf_event_exit_cpu(unsigned int cpu)
0793a61d 13725{
e3703f8c 13726 perf_event_exit_cpu_context(cpu);
00e16c3d 13727 return 0;
0793a61d 13728}
0793a61d 13729
c277443c
PZ
13730static int
13731perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13732{
13733 int cpu;
13734
13735 for_each_online_cpu(cpu)
13736 perf_event_exit_cpu(cpu);
13737
13738 return NOTIFY_OK;
13739}
13740
13741/*
13742 * Run the perf reboot notifier at the very last possible moment so that
13743 * the generic watchdog code runs as long as possible.
13744 */
13745static struct notifier_block perf_reboot_notifier = {
13746 .notifier_call = perf_reboot,
13747 .priority = INT_MIN,
13748};
13749
cdd6c482 13750void __init perf_event_init(void)
0793a61d 13751{
3c502e7a
JW
13752 int ret;
13753
2e80a82a
PZ
13754 idr_init(&pmu_idr);
13755
220b140b 13756 perf_event_init_all_cpus();
b0a873eb 13757 init_srcu_struct(&pmus_srcu);
2e80a82a 13758 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
0d6d062c
RB
13759 perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
13760 perf_pmu_register(&perf_task_clock, "task_clock", -1);
b0a873eb 13761 perf_tp_register();
00e16c3d 13762 perf_event_init_cpu(smp_processor_id());
c277443c 13763 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
13764
13765 ret = init_hw_breakpoint();
13766 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 13767
bdacfaf2
NK
13768 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13769
b01c3a00
JO
13770 /*
13771 * Build time assertion that we keep the data_head at the intended
13772 * location. IOW, validation we got the __reserved[] size right.
13773 */
13774 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13775 != 1024);
0793a61d 13776}
abe43400 13777
fd979c01
CS
13778ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13779 char *page)
13780{
13781 struct perf_pmu_events_attr *pmu_attr =
13782 container_of(attr, struct perf_pmu_events_attr, attr);
13783
13784 if (pmu_attr->event_str)
13785 return sprintf(page, "%s\n", pmu_attr->event_str);
13786
13787 return 0;
13788}
675965b0 13789EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 13790
abe43400
PZ
13791static int __init perf_event_sysfs_init(void)
13792{
13793 struct pmu *pmu;
13794 int ret;
13795
13796 mutex_lock(&pmus_lock);
13797
13798 ret = bus_register(&pmu_bus);
13799 if (ret)
13800 goto unlock;
13801
13802 list_for_each_entry(pmu, &pmus, entry) {
0d6d062c 13803 if (pmu->dev)
abe43400
PZ
13804 continue;
13805
13806 ret = pmu_dev_alloc(pmu);
13807 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13808 }
13809 pmu_bus_running = 1;
13810 ret = 0;
13811
13812unlock:
13813 mutex_unlock(&pmus_lock);
13814
13815 return ret;
13816}
13817device_initcall(perf_event_sysfs_init);
e5d1367f
SE
13818
13819#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
13820static struct cgroup_subsys_state *
13821perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
13822{
13823 struct perf_cgroup *jc;
e5d1367f 13824
1b15d055 13825 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
13826 if (!jc)
13827 return ERR_PTR(-ENOMEM);
13828
e5d1367f
SE
13829 jc->info = alloc_percpu(struct perf_cgroup_info);
13830 if (!jc->info) {
13831 kfree(jc);
13832 return ERR_PTR(-ENOMEM);
13833 }
13834
e5d1367f
SE
13835 return &jc->css;
13836}
13837
eb95419b 13838static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 13839{
eb95419b
TH
13840 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13841
e5d1367f
SE
13842 free_percpu(jc->info);
13843 kfree(jc);
13844}
13845
96aaab68
NK
13846static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13847{
13848 perf_event_cgroup(css->cgroup);
13849 return 0;
13850}
13851
e5d1367f
SE
13852static int __perf_cgroup_move(void *info)
13853{
13854 struct task_struct *task = info;
bd275681
PZ
13855
13856 preempt_disable();
f841b682 13857 perf_cgroup_switch(task);
bd275681
PZ
13858 preempt_enable();
13859
e5d1367f
SE
13860 return 0;
13861}
13862
1f7dd3e5 13863static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 13864{
bb9d97b6 13865 struct task_struct *task;
1f7dd3e5 13866 struct cgroup_subsys_state *css;
bb9d97b6 13867
1f7dd3e5 13868 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 13869 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
13870}
13871
073219e9 13872struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
13873 .css_alloc = perf_cgroup_css_alloc,
13874 .css_free = perf_cgroup_css_free,
96aaab68 13875 .css_online = perf_cgroup_css_online,
bb9d97b6 13876 .attach = perf_cgroup_attach,
968ebff1
TH
13877 /*
13878 * Implicitly enable on dfl hierarchy so that perf events can
13879 * always be filtered by cgroup2 path as long as perf_event
13880 * controller is not mounted on a legacy hierarchy.
13881 */
13882 .implicit_on_dfl = true,
8cfd8147 13883 .threaded = true,
e5d1367f
SE
13884};
13885#endif /* CONFIG_CGROUP_PERF */
c22ac2a3
SL
13886
13887DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);