perf: Fix cloning
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
0793a61d 47
76369139
FW
48#include "internal.h"
49
4e193bd4
TB
50#include <asm/irq_regs.h>
51
272325c4
PZ
52typedef int (*remote_function_f)(void *);
53
fe4b04fa 54struct remote_function_call {
e7e7ee2e 55 struct task_struct *p;
272325c4 56 remote_function_f func;
e7e7ee2e
IM
57 void *info;
58 int ret;
fe4b04fa
PZ
59};
60
61static void remote_function(void *data)
62{
63 struct remote_function_call *tfc = data;
64 struct task_struct *p = tfc->p;
65
66 if (p) {
67 tfc->ret = -EAGAIN;
68 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
69 return;
70 }
71
72 tfc->ret = tfc->func(tfc->info);
73}
74
75/**
76 * task_function_call - call a function on the cpu on which a task runs
77 * @p: the task to evaluate
78 * @func: the function to be called
79 * @info: the function call argument
80 *
81 * Calls the function @func when the task is currently running. This might
82 * be on the current CPU, which just calls the function directly
83 *
84 * returns: @func return value, or
85 * -ESRCH - when the process isn't running
86 * -EAGAIN - when the process moved away
87 */
88static int
272325c4 89task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
90{
91 struct remote_function_call data = {
e7e7ee2e
IM
92 .p = p,
93 .func = func,
94 .info = info,
95 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
96 };
97
98 if (task_curr(p))
99 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
100
101 return data.ret;
102}
103
104/**
105 * cpu_function_call - call a function on the cpu
106 * @func: the function to be called
107 * @info: the function call argument
108 *
109 * Calls the function @func on the remote cpu.
110 *
111 * returns: @func return value or -ENXIO when the cpu is offline
112 */
272325c4 113static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
114{
115 struct remote_function_call data = {
e7e7ee2e
IM
116 .p = NULL,
117 .func = func,
118 .info = info,
119 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
120 };
121
122 smp_call_function_single(cpu, remote_function, &data, 1);
123
124 return data.ret;
125}
126
fae3fde6
PZ
127static inline struct perf_cpu_context *
128__get_cpu_context(struct perf_event_context *ctx)
129{
130 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
131}
132
133static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
134 struct perf_event_context *ctx)
0017960f 135{
fae3fde6
PZ
136 raw_spin_lock(&cpuctx->ctx.lock);
137 if (ctx)
138 raw_spin_lock(&ctx->lock);
139}
140
141static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
142 struct perf_event_context *ctx)
143{
144 if (ctx)
145 raw_spin_unlock(&ctx->lock);
146 raw_spin_unlock(&cpuctx->ctx.lock);
147}
148
63b6da39
PZ
149#define TASK_TOMBSTONE ((void *)-1L)
150
151static bool is_kernel_event(struct perf_event *event)
152{
f47c02c0 153 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
154}
155
39a43640
PZ
156/*
157 * On task ctx scheduling...
158 *
159 * When !ctx->nr_events a task context will not be scheduled. This means
160 * we can disable the scheduler hooks (for performance) without leaving
161 * pending task ctx state.
162 *
163 * This however results in two special cases:
164 *
165 * - removing the last event from a task ctx; this is relatively straight
166 * forward and is done in __perf_remove_from_context.
167 *
168 * - adding the first event to a task ctx; this is tricky because we cannot
169 * rely on ctx->is_active and therefore cannot use event_function_call().
170 * See perf_install_in_context().
171 *
172 * This is because we need a ctx->lock serialized variable (ctx->is_active)
173 * to reliably determine if a particular task/context is scheduled in. The
174 * task_curr() use in task_function_call() is racy in that a remote context
175 * switch is not a single atomic operation.
176 *
177 * As is, the situation is 'safe' because we set rq->curr before we do the
178 * actual context switch. This means that task_curr() will fail early, but
179 * we'll continue spinning on ctx->is_active until we've passed
180 * perf_event_task_sched_out().
181 *
182 * Without this ctx->lock serialized variable we could have race where we find
183 * the task (and hence the context) would not be active while in fact they are.
184 *
185 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
186 */
187
fae3fde6
PZ
188typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
189 struct perf_event_context *, void *);
190
191struct event_function_struct {
192 struct perf_event *event;
193 event_f func;
194 void *data;
195};
196
197static int event_function(void *info)
198{
199 struct event_function_struct *efs = info;
200 struct perf_event *event = efs->event;
0017960f 201 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
202 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
203 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 204 int ret = 0;
fae3fde6
PZ
205
206 WARN_ON_ONCE(!irqs_disabled());
207
63b6da39 208 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
209 /*
210 * Since we do the IPI call without holding ctx->lock things can have
211 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
212 */
213 if (ctx->task) {
63b6da39
PZ
214 if (ctx->task != current) {
215 ret = -EAGAIN;
216 goto unlock;
217 }
fae3fde6 218
fae3fde6
PZ
219 /*
220 * We only use event_function_call() on established contexts,
221 * and event_function() is only ever called when active (or
222 * rather, we'll have bailed in task_function_call() or the
223 * above ctx->task != current test), therefore we must have
224 * ctx->is_active here.
225 */
226 WARN_ON_ONCE(!ctx->is_active);
227 /*
228 * And since we have ctx->is_active, cpuctx->task_ctx must
229 * match.
230 */
63b6da39
PZ
231 WARN_ON_ONCE(task_ctx != ctx);
232 } else {
233 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 234 }
63b6da39 235
fae3fde6 236 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 237unlock:
fae3fde6
PZ
238 perf_ctx_unlock(cpuctx, task_ctx);
239
63b6da39 240 return ret;
fae3fde6
PZ
241}
242
243static void event_function_local(struct perf_event *event, event_f func, void *data)
244{
245 struct event_function_struct efs = {
246 .event = event,
247 .func = func,
248 .data = data,
249 };
250
251 int ret = event_function(&efs);
252 WARN_ON_ONCE(ret);
253}
254
255static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
256{
257 struct perf_event_context *ctx = event->ctx;
63b6da39 258 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
259 struct event_function_struct efs = {
260 .event = event,
261 .func = func,
262 .data = data,
263 };
0017960f 264
c97f4736
PZ
265 if (!event->parent) {
266 /*
267 * If this is a !child event, we must hold ctx::mutex to
268 * stabilize the the event->ctx relation. See
269 * perf_event_ctx_lock().
270 */
271 lockdep_assert_held(&ctx->mutex);
272 }
0017960f
PZ
273
274 if (!task) {
fae3fde6 275 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
276 return;
277 }
278
279again:
63b6da39
PZ
280 if (task == TASK_TOMBSTONE)
281 return;
282
fae3fde6 283 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
284 return;
285
286 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
287 /*
288 * Reload the task pointer, it might have been changed by
289 * a concurrent perf_event_context_sched_out().
290 */
291 task = ctx->task;
292 if (task != TASK_TOMBSTONE) {
293 if (ctx->is_active) {
294 raw_spin_unlock_irq(&ctx->lock);
295 goto again;
296 }
297 func(event, NULL, ctx, data);
0017960f 298 }
0017960f
PZ
299 raw_spin_unlock_irq(&ctx->lock);
300}
301
e5d1367f
SE
302#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
303 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
304 PERF_FLAG_PID_CGROUP |\
305 PERF_FLAG_FD_CLOEXEC)
e5d1367f 306
bce38cd5
SE
307/*
308 * branch priv levels that need permission checks
309 */
310#define PERF_SAMPLE_BRANCH_PERM_PLM \
311 (PERF_SAMPLE_BRANCH_KERNEL |\
312 PERF_SAMPLE_BRANCH_HV)
313
0b3fcf17
SE
314enum event_type_t {
315 EVENT_FLEXIBLE = 0x1,
316 EVENT_PINNED = 0x2,
317 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
318};
319
e5d1367f
SE
320/*
321 * perf_sched_events : >0 events exist
322 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
323 */
c5905afb 324struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 325static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 326static DEFINE_PER_CPU(int, perf_sched_cb_usages);
e5d1367f 327
cdd6c482
IM
328static atomic_t nr_mmap_events __read_mostly;
329static atomic_t nr_comm_events __read_mostly;
330static atomic_t nr_task_events __read_mostly;
948b26b6 331static atomic_t nr_freq_events __read_mostly;
45ac1403 332static atomic_t nr_switch_events __read_mostly;
9ee318a7 333
108b02cf
PZ
334static LIST_HEAD(pmus);
335static DEFINE_MUTEX(pmus_lock);
336static struct srcu_struct pmus_srcu;
337
0764771d 338/*
cdd6c482 339 * perf event paranoia level:
0fbdea19
IM
340 * -1 - not paranoid at all
341 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 342 * 1 - disallow cpu events for unpriv
0fbdea19 343 * 2 - disallow kernel profiling for unpriv
0764771d 344 */
cdd6c482 345int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 346
20443384
FW
347/* Minimum for 512 kiB + 1 user control page */
348int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
349
350/*
cdd6c482 351 * max perf event sample rate
df58ab24 352 */
14c63f17
DH
353#define DEFAULT_MAX_SAMPLE_RATE 100000
354#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
355#define DEFAULT_CPU_TIME_MAX_PERCENT 25
356
357int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
358
359static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
360static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
361
d9494cb4
PZ
362static int perf_sample_allowed_ns __read_mostly =
363 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 364
18ab2cd3 365static void update_perf_cpu_limits(void)
14c63f17
DH
366{
367 u64 tmp = perf_sample_period_ns;
368
369 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 370 do_div(tmp, 100);
d9494cb4 371 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
14c63f17 372}
163ec435 373
9e630205
SE
374static int perf_rotate_context(struct perf_cpu_context *cpuctx);
375
163ec435
PZ
376int perf_proc_update_handler(struct ctl_table *table, int write,
377 void __user *buffer, size_t *lenp,
378 loff_t *ppos)
379{
723478c8 380 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
381
382 if (ret || !write)
383 return ret;
384
385 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
386 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
387 update_perf_cpu_limits();
388
389 return 0;
390}
391
392int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
393
394int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
395 void __user *buffer, size_t *lenp,
396 loff_t *ppos)
397{
398 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
399
400 if (ret || !write)
401 return ret;
402
403 update_perf_cpu_limits();
163ec435
PZ
404
405 return 0;
406}
1ccd1549 407
14c63f17
DH
408/*
409 * perf samples are done in some very critical code paths (NMIs).
410 * If they take too much CPU time, the system can lock up and not
411 * get any real work done. This will drop the sample rate when
412 * we detect that events are taking too long.
413 */
414#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 415static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 416
6a02ad66 417static void perf_duration_warn(struct irq_work *w)
14c63f17 418{
6a02ad66 419 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
14c63f17 420 u64 avg_local_sample_len;
e5302920 421 u64 local_samples_len;
6a02ad66 422
4a32fea9 423 local_samples_len = __this_cpu_read(running_sample_length);
6a02ad66
PZ
424 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
425
426 printk_ratelimited(KERN_WARNING
427 "perf interrupt took too long (%lld > %lld), lowering "
428 "kernel.perf_event_max_sample_rate to %d\n",
cd578abb 429 avg_local_sample_len, allowed_ns >> 1,
6a02ad66
PZ
430 sysctl_perf_event_sample_rate);
431}
432
433static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
434
435void perf_sample_event_took(u64 sample_len_ns)
436{
d9494cb4 437 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
6a02ad66
PZ
438 u64 avg_local_sample_len;
439 u64 local_samples_len;
14c63f17 440
d9494cb4 441 if (allowed_ns == 0)
14c63f17
DH
442 return;
443
444 /* decay the counter by 1 average sample */
4a32fea9 445 local_samples_len = __this_cpu_read(running_sample_length);
14c63f17
DH
446 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
447 local_samples_len += sample_len_ns;
4a32fea9 448 __this_cpu_write(running_sample_length, local_samples_len);
14c63f17
DH
449
450 /*
451 * note: this will be biased artifically low until we have
452 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
453 * from having to maintain a count.
454 */
455 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
456
d9494cb4 457 if (avg_local_sample_len <= allowed_ns)
14c63f17
DH
458 return;
459
460 if (max_samples_per_tick <= 1)
461 return;
462
463 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
464 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
465 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
466
14c63f17 467 update_perf_cpu_limits();
6a02ad66 468
cd578abb
PZ
469 if (!irq_work_queue(&perf_duration_work)) {
470 early_printk("perf interrupt took too long (%lld > %lld), lowering "
471 "kernel.perf_event_max_sample_rate to %d\n",
472 avg_local_sample_len, allowed_ns >> 1,
473 sysctl_perf_event_sample_rate);
474 }
14c63f17
DH
475}
476
cdd6c482 477static atomic64_t perf_event_id;
a96bbc16 478
0b3fcf17
SE
479static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
480 enum event_type_t event_type);
481
482static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
483 enum event_type_t event_type,
484 struct task_struct *task);
485
486static void update_context_time(struct perf_event_context *ctx);
487static u64 perf_event_time(struct perf_event *event);
0b3fcf17 488
cdd6c482 489void __weak perf_event_print_debug(void) { }
0793a61d 490
84c79910 491extern __weak const char *perf_pmu_name(void)
0793a61d 492{
84c79910 493 return "pmu";
0793a61d
TG
494}
495
0b3fcf17
SE
496static inline u64 perf_clock(void)
497{
498 return local_clock();
499}
500
34f43927
PZ
501static inline u64 perf_event_clock(struct perf_event *event)
502{
503 return event->clock();
504}
505
e5d1367f
SE
506#ifdef CONFIG_CGROUP_PERF
507
e5d1367f
SE
508static inline bool
509perf_cgroup_match(struct perf_event *event)
510{
511 struct perf_event_context *ctx = event->ctx;
512 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
513
ef824fa1
TH
514 /* @event doesn't care about cgroup */
515 if (!event->cgrp)
516 return true;
517
518 /* wants specific cgroup scope but @cpuctx isn't associated with any */
519 if (!cpuctx->cgrp)
520 return false;
521
522 /*
523 * Cgroup scoping is recursive. An event enabled for a cgroup is
524 * also enabled for all its descendant cgroups. If @cpuctx's
525 * cgroup is a descendant of @event's (the test covers identity
526 * case), it's a match.
527 */
528 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
529 event->cgrp->css.cgroup);
e5d1367f
SE
530}
531
e5d1367f
SE
532static inline void perf_detach_cgroup(struct perf_event *event)
533{
4e2ba650 534 css_put(&event->cgrp->css);
e5d1367f
SE
535 event->cgrp = NULL;
536}
537
538static inline int is_cgroup_event(struct perf_event *event)
539{
540 return event->cgrp != NULL;
541}
542
543static inline u64 perf_cgroup_event_time(struct perf_event *event)
544{
545 struct perf_cgroup_info *t;
546
547 t = per_cpu_ptr(event->cgrp->info, event->cpu);
548 return t->time;
549}
550
551static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
552{
553 struct perf_cgroup_info *info;
554 u64 now;
555
556 now = perf_clock();
557
558 info = this_cpu_ptr(cgrp->info);
559
560 info->time += now - info->timestamp;
561 info->timestamp = now;
562}
563
564static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
565{
566 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
567 if (cgrp_out)
568 __update_cgrp_time(cgrp_out);
569}
570
571static inline void update_cgrp_time_from_event(struct perf_event *event)
572{
3f7cce3c
SE
573 struct perf_cgroup *cgrp;
574
e5d1367f 575 /*
3f7cce3c
SE
576 * ensure we access cgroup data only when needed and
577 * when we know the cgroup is pinned (css_get)
e5d1367f 578 */
3f7cce3c 579 if (!is_cgroup_event(event))
e5d1367f
SE
580 return;
581
614e4c4e 582 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
583 /*
584 * Do not update time when cgroup is not active
585 */
586 if (cgrp == event->cgrp)
587 __update_cgrp_time(event->cgrp);
e5d1367f
SE
588}
589
590static inline void
3f7cce3c
SE
591perf_cgroup_set_timestamp(struct task_struct *task,
592 struct perf_event_context *ctx)
e5d1367f
SE
593{
594 struct perf_cgroup *cgrp;
595 struct perf_cgroup_info *info;
596
3f7cce3c
SE
597 /*
598 * ctx->lock held by caller
599 * ensure we do not access cgroup data
600 * unless we have the cgroup pinned (css_get)
601 */
602 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
603 return;
604
614e4c4e 605 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 606 info = this_cpu_ptr(cgrp->info);
3f7cce3c 607 info->timestamp = ctx->timestamp;
e5d1367f
SE
608}
609
610#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
611#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
612
613/*
614 * reschedule events based on the cgroup constraint of task.
615 *
616 * mode SWOUT : schedule out everything
617 * mode SWIN : schedule in based on cgroup for next
618 */
18ab2cd3 619static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
620{
621 struct perf_cpu_context *cpuctx;
622 struct pmu *pmu;
623 unsigned long flags;
624
625 /*
626 * disable interrupts to avoid geting nr_cgroup
627 * changes via __perf_event_disable(). Also
628 * avoids preemption.
629 */
630 local_irq_save(flags);
631
632 /*
633 * we reschedule only in the presence of cgroup
634 * constrained events.
635 */
e5d1367f
SE
636
637 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 638 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
639 if (cpuctx->unique_pmu != pmu)
640 continue; /* ensure we process each cpuctx once */
e5d1367f 641
e5d1367f
SE
642 /*
643 * perf_cgroup_events says at least one
644 * context on this CPU has cgroup events.
645 *
646 * ctx->nr_cgroups reports the number of cgroup
647 * events for a context.
648 */
649 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
650 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
651 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
652
653 if (mode & PERF_CGROUP_SWOUT) {
654 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
655 /*
656 * must not be done before ctxswout due
657 * to event_filter_match() in event_sched_out()
658 */
659 cpuctx->cgrp = NULL;
660 }
661
662 if (mode & PERF_CGROUP_SWIN) {
e566b76e 663 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
664 /*
665 * set cgrp before ctxsw in to allow
666 * event_filter_match() to not have to pass
667 * task around
614e4c4e
SE
668 * we pass the cpuctx->ctx to perf_cgroup_from_task()
669 * because cgorup events are only per-cpu
e5d1367f 670 */
614e4c4e 671 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
e5d1367f
SE
672 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
673 }
facc4307
PZ
674 perf_pmu_enable(cpuctx->ctx.pmu);
675 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 676 }
e5d1367f
SE
677 }
678
e5d1367f
SE
679 local_irq_restore(flags);
680}
681
a8d757ef
SE
682static inline void perf_cgroup_sched_out(struct task_struct *task,
683 struct task_struct *next)
e5d1367f 684{
a8d757ef
SE
685 struct perf_cgroup *cgrp1;
686 struct perf_cgroup *cgrp2 = NULL;
687
ddaaf4e2 688 rcu_read_lock();
a8d757ef
SE
689 /*
690 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
691 * we do not need to pass the ctx here because we know
692 * we are holding the rcu lock
a8d757ef 693 */
614e4c4e 694 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 695 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
696
697 /*
698 * only schedule out current cgroup events if we know
699 * that we are switching to a different cgroup. Otherwise,
700 * do no touch the cgroup events.
701 */
702 if (cgrp1 != cgrp2)
703 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
704
705 rcu_read_unlock();
e5d1367f
SE
706}
707
a8d757ef
SE
708static inline void perf_cgroup_sched_in(struct task_struct *prev,
709 struct task_struct *task)
e5d1367f 710{
a8d757ef
SE
711 struct perf_cgroup *cgrp1;
712 struct perf_cgroup *cgrp2 = NULL;
713
ddaaf4e2 714 rcu_read_lock();
a8d757ef
SE
715 /*
716 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
717 * we do not need to pass the ctx here because we know
718 * we are holding the rcu lock
a8d757ef 719 */
614e4c4e 720 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 721 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
722
723 /*
724 * only need to schedule in cgroup events if we are changing
725 * cgroup during ctxsw. Cgroup events were not scheduled
726 * out of ctxsw out if that was not the case.
727 */
728 if (cgrp1 != cgrp2)
729 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
730
731 rcu_read_unlock();
e5d1367f
SE
732}
733
734static inline int perf_cgroup_connect(int fd, struct perf_event *event,
735 struct perf_event_attr *attr,
736 struct perf_event *group_leader)
737{
738 struct perf_cgroup *cgrp;
739 struct cgroup_subsys_state *css;
2903ff01
AV
740 struct fd f = fdget(fd);
741 int ret = 0;
e5d1367f 742
2903ff01 743 if (!f.file)
e5d1367f
SE
744 return -EBADF;
745
b583043e 746 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 747 &perf_event_cgrp_subsys);
3db272c0
LZ
748 if (IS_ERR(css)) {
749 ret = PTR_ERR(css);
750 goto out;
751 }
e5d1367f
SE
752
753 cgrp = container_of(css, struct perf_cgroup, css);
754 event->cgrp = cgrp;
755
756 /*
757 * all events in a group must monitor
758 * the same cgroup because a task belongs
759 * to only one perf cgroup at a time
760 */
761 if (group_leader && group_leader->cgrp != cgrp) {
762 perf_detach_cgroup(event);
763 ret = -EINVAL;
e5d1367f 764 }
3db272c0 765out:
2903ff01 766 fdput(f);
e5d1367f
SE
767 return ret;
768}
769
770static inline void
771perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
772{
773 struct perf_cgroup_info *t;
774 t = per_cpu_ptr(event->cgrp->info, event->cpu);
775 event->shadow_ctx_time = now - t->timestamp;
776}
777
778static inline void
779perf_cgroup_defer_enabled(struct perf_event *event)
780{
781 /*
782 * when the current task's perf cgroup does not match
783 * the event's, we need to remember to call the
784 * perf_mark_enable() function the first time a task with
785 * a matching perf cgroup is scheduled in.
786 */
787 if (is_cgroup_event(event) && !perf_cgroup_match(event))
788 event->cgrp_defer_enabled = 1;
789}
790
791static inline void
792perf_cgroup_mark_enabled(struct perf_event *event,
793 struct perf_event_context *ctx)
794{
795 struct perf_event *sub;
796 u64 tstamp = perf_event_time(event);
797
798 if (!event->cgrp_defer_enabled)
799 return;
800
801 event->cgrp_defer_enabled = 0;
802
803 event->tstamp_enabled = tstamp - event->total_time_enabled;
804 list_for_each_entry(sub, &event->sibling_list, group_entry) {
805 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
806 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
807 sub->cgrp_defer_enabled = 0;
808 }
809 }
810}
811#else /* !CONFIG_CGROUP_PERF */
812
813static inline bool
814perf_cgroup_match(struct perf_event *event)
815{
816 return true;
817}
818
819static inline void perf_detach_cgroup(struct perf_event *event)
820{}
821
822static inline int is_cgroup_event(struct perf_event *event)
823{
824 return 0;
825}
826
827static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
828{
829 return 0;
830}
831
832static inline void update_cgrp_time_from_event(struct perf_event *event)
833{
834}
835
836static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
837{
838}
839
a8d757ef
SE
840static inline void perf_cgroup_sched_out(struct task_struct *task,
841 struct task_struct *next)
e5d1367f
SE
842{
843}
844
a8d757ef
SE
845static inline void perf_cgroup_sched_in(struct task_struct *prev,
846 struct task_struct *task)
e5d1367f
SE
847{
848}
849
850static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
851 struct perf_event_attr *attr,
852 struct perf_event *group_leader)
853{
854 return -EINVAL;
855}
856
857static inline void
3f7cce3c
SE
858perf_cgroup_set_timestamp(struct task_struct *task,
859 struct perf_event_context *ctx)
e5d1367f
SE
860{
861}
862
863void
864perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
865{
866}
867
868static inline void
869perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
870{
871}
872
873static inline u64 perf_cgroup_event_time(struct perf_event *event)
874{
875 return 0;
876}
877
878static inline void
879perf_cgroup_defer_enabled(struct perf_event *event)
880{
881}
882
883static inline void
884perf_cgroup_mark_enabled(struct perf_event *event,
885 struct perf_event_context *ctx)
886{
887}
888#endif
889
9e630205
SE
890/*
891 * set default to be dependent on timer tick just
892 * like original code
893 */
894#define PERF_CPU_HRTIMER (1000 / HZ)
895/*
896 * function must be called with interrupts disbled
897 */
272325c4 898static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
899{
900 struct perf_cpu_context *cpuctx;
9e630205
SE
901 int rotations = 0;
902
903 WARN_ON(!irqs_disabled());
904
905 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
906 rotations = perf_rotate_context(cpuctx);
907
4cfafd30
PZ
908 raw_spin_lock(&cpuctx->hrtimer_lock);
909 if (rotations)
9e630205 910 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
911 else
912 cpuctx->hrtimer_active = 0;
913 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 914
4cfafd30 915 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
916}
917
272325c4 918static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 919{
272325c4 920 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 921 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 922 u64 interval;
9e630205
SE
923
924 /* no multiplexing needed for SW PMU */
925 if (pmu->task_ctx_nr == perf_sw_context)
926 return;
927
62b85639
SE
928 /*
929 * check default is sane, if not set then force to
930 * default interval (1/tick)
931 */
272325c4
PZ
932 interval = pmu->hrtimer_interval_ms;
933 if (interval < 1)
934 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 935
272325c4 936 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 937
4cfafd30
PZ
938 raw_spin_lock_init(&cpuctx->hrtimer_lock);
939 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 940 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
941}
942
272325c4 943static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 944{
272325c4 945 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 946 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 947 unsigned long flags;
9e630205
SE
948
949 /* not for SW PMU */
950 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 951 return 0;
9e630205 952
4cfafd30
PZ
953 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
954 if (!cpuctx->hrtimer_active) {
955 cpuctx->hrtimer_active = 1;
956 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
957 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
958 }
959 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 960
272325c4 961 return 0;
9e630205
SE
962}
963
33696fc0 964void perf_pmu_disable(struct pmu *pmu)
9e35ad38 965{
33696fc0
PZ
966 int *count = this_cpu_ptr(pmu->pmu_disable_count);
967 if (!(*count)++)
968 pmu->pmu_disable(pmu);
9e35ad38 969}
9e35ad38 970
33696fc0 971void perf_pmu_enable(struct pmu *pmu)
9e35ad38 972{
33696fc0
PZ
973 int *count = this_cpu_ptr(pmu->pmu_disable_count);
974 if (!--(*count))
975 pmu->pmu_enable(pmu);
9e35ad38 976}
9e35ad38 977
2fde4f94 978static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
979
980/*
2fde4f94
MR
981 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
982 * perf_event_task_tick() are fully serialized because they're strictly cpu
983 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
984 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 985 */
2fde4f94 986static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 987{
2fde4f94 988 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 989
e9d2b064 990 WARN_ON(!irqs_disabled());
b5ab4cd5 991
2fde4f94
MR
992 WARN_ON(!list_empty(&ctx->active_ctx_list));
993
994 list_add(&ctx->active_ctx_list, head);
995}
996
997static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
998{
999 WARN_ON(!irqs_disabled());
1000
1001 WARN_ON(list_empty(&ctx->active_ctx_list));
1002
1003 list_del_init(&ctx->active_ctx_list);
9e35ad38 1004}
9e35ad38 1005
cdd6c482 1006static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1007{
e5289d4a 1008 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1009}
1010
4af57ef2
YZ
1011static void free_ctx(struct rcu_head *head)
1012{
1013 struct perf_event_context *ctx;
1014
1015 ctx = container_of(head, struct perf_event_context, rcu_head);
1016 kfree(ctx->task_ctx_data);
1017 kfree(ctx);
1018}
1019
cdd6c482 1020static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1021{
564c2b21
PM
1022 if (atomic_dec_and_test(&ctx->refcount)) {
1023 if (ctx->parent_ctx)
1024 put_ctx(ctx->parent_ctx);
63b6da39 1025 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1026 put_task_struct(ctx->task);
4af57ef2 1027 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1028 }
a63eaf34
PM
1029}
1030
f63a8daa
PZ
1031/*
1032 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1033 * perf_pmu_migrate_context() we need some magic.
1034 *
1035 * Those places that change perf_event::ctx will hold both
1036 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1037 *
8b10c5e2
PZ
1038 * Lock ordering is by mutex address. There are two other sites where
1039 * perf_event_context::mutex nests and those are:
1040 *
1041 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1042 * perf_event_exit_event()
1043 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1044 *
1045 * - perf_event_init_context() [ parent, 0 ]
1046 * inherit_task_group()
1047 * inherit_group()
1048 * inherit_event()
1049 * perf_event_alloc()
1050 * perf_init_event()
1051 * perf_try_init_event() [ child , 1 ]
1052 *
1053 * While it appears there is an obvious deadlock here -- the parent and child
1054 * nesting levels are inverted between the two. This is in fact safe because
1055 * life-time rules separate them. That is an exiting task cannot fork, and a
1056 * spawning task cannot (yet) exit.
1057 *
1058 * But remember that that these are parent<->child context relations, and
1059 * migration does not affect children, therefore these two orderings should not
1060 * interact.
f63a8daa
PZ
1061 *
1062 * The change in perf_event::ctx does not affect children (as claimed above)
1063 * because the sys_perf_event_open() case will install a new event and break
1064 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1065 * concerned with cpuctx and that doesn't have children.
1066 *
1067 * The places that change perf_event::ctx will issue:
1068 *
1069 * perf_remove_from_context();
1070 * synchronize_rcu();
1071 * perf_install_in_context();
1072 *
1073 * to affect the change. The remove_from_context() + synchronize_rcu() should
1074 * quiesce the event, after which we can install it in the new location. This
1075 * means that only external vectors (perf_fops, prctl) can perturb the event
1076 * while in transit. Therefore all such accessors should also acquire
1077 * perf_event_context::mutex to serialize against this.
1078 *
1079 * However; because event->ctx can change while we're waiting to acquire
1080 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1081 * function.
1082 *
1083 * Lock order:
1084 * task_struct::perf_event_mutex
1085 * perf_event_context::mutex
f63a8daa 1086 * perf_event::child_mutex;
07c4a776 1087 * perf_event_context::lock
f63a8daa
PZ
1088 * perf_event::mmap_mutex
1089 * mmap_sem
1090 */
a83fe28e
PZ
1091static struct perf_event_context *
1092perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1093{
1094 struct perf_event_context *ctx;
1095
1096again:
1097 rcu_read_lock();
1098 ctx = ACCESS_ONCE(event->ctx);
1099 if (!atomic_inc_not_zero(&ctx->refcount)) {
1100 rcu_read_unlock();
1101 goto again;
1102 }
1103 rcu_read_unlock();
1104
a83fe28e 1105 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1106 if (event->ctx != ctx) {
1107 mutex_unlock(&ctx->mutex);
1108 put_ctx(ctx);
1109 goto again;
1110 }
1111
1112 return ctx;
1113}
1114
a83fe28e
PZ
1115static inline struct perf_event_context *
1116perf_event_ctx_lock(struct perf_event *event)
1117{
1118 return perf_event_ctx_lock_nested(event, 0);
1119}
1120
f63a8daa
PZ
1121static void perf_event_ctx_unlock(struct perf_event *event,
1122 struct perf_event_context *ctx)
1123{
1124 mutex_unlock(&ctx->mutex);
1125 put_ctx(ctx);
1126}
1127
211de6eb
PZ
1128/*
1129 * This must be done under the ctx->lock, such as to serialize against
1130 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1131 * calling scheduler related locks and ctx->lock nests inside those.
1132 */
1133static __must_check struct perf_event_context *
1134unclone_ctx(struct perf_event_context *ctx)
71a851b4 1135{
211de6eb
PZ
1136 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1137
1138 lockdep_assert_held(&ctx->lock);
1139
1140 if (parent_ctx)
71a851b4 1141 ctx->parent_ctx = NULL;
5a3126d4 1142 ctx->generation++;
211de6eb
PZ
1143
1144 return parent_ctx;
71a851b4
PZ
1145}
1146
6844c09d
ACM
1147static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1148{
1149 /*
1150 * only top level events have the pid namespace they were created in
1151 */
1152 if (event->parent)
1153 event = event->parent;
1154
1155 return task_tgid_nr_ns(p, event->ns);
1156}
1157
1158static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1159{
1160 /*
1161 * only top level events have the pid namespace they were created in
1162 */
1163 if (event->parent)
1164 event = event->parent;
1165
1166 return task_pid_nr_ns(p, event->ns);
1167}
1168
7f453c24 1169/*
cdd6c482 1170 * If we inherit events we want to return the parent event id
7f453c24
PZ
1171 * to userspace.
1172 */
cdd6c482 1173static u64 primary_event_id(struct perf_event *event)
7f453c24 1174{
cdd6c482 1175 u64 id = event->id;
7f453c24 1176
cdd6c482
IM
1177 if (event->parent)
1178 id = event->parent->id;
7f453c24
PZ
1179
1180 return id;
1181}
1182
25346b93 1183/*
cdd6c482 1184 * Get the perf_event_context for a task and lock it.
63b6da39 1185 *
25346b93
PM
1186 * This has to cope with with the fact that until it is locked,
1187 * the context could get moved to another task.
1188 */
cdd6c482 1189static struct perf_event_context *
8dc85d54 1190perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1191{
cdd6c482 1192 struct perf_event_context *ctx;
25346b93 1193
9ed6060d 1194retry:
058ebd0e
PZ
1195 /*
1196 * One of the few rules of preemptible RCU is that one cannot do
1197 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1198 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1199 * rcu_read_unlock_special().
1200 *
1201 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1202 * side critical section has interrupts disabled.
058ebd0e 1203 */
2fd59077 1204 local_irq_save(*flags);
058ebd0e 1205 rcu_read_lock();
8dc85d54 1206 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1207 if (ctx) {
1208 /*
1209 * If this context is a clone of another, it might
1210 * get swapped for another underneath us by
cdd6c482 1211 * perf_event_task_sched_out, though the
25346b93
PM
1212 * rcu_read_lock() protects us from any context
1213 * getting freed. Lock the context and check if it
1214 * got swapped before we could get the lock, and retry
1215 * if so. If we locked the right context, then it
1216 * can't get swapped on us any more.
1217 */
2fd59077 1218 raw_spin_lock(&ctx->lock);
8dc85d54 1219 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1220 raw_spin_unlock(&ctx->lock);
058ebd0e 1221 rcu_read_unlock();
2fd59077 1222 local_irq_restore(*flags);
25346b93
PM
1223 goto retry;
1224 }
b49a9e7e 1225
63b6da39
PZ
1226 if (ctx->task == TASK_TOMBSTONE ||
1227 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1228 raw_spin_unlock(&ctx->lock);
b49a9e7e 1229 ctx = NULL;
828b6f0e
PZ
1230 } else {
1231 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1232 }
25346b93
PM
1233 }
1234 rcu_read_unlock();
2fd59077
PM
1235 if (!ctx)
1236 local_irq_restore(*flags);
25346b93
PM
1237 return ctx;
1238}
1239
1240/*
1241 * Get the context for a task and increment its pin_count so it
1242 * can't get swapped to another task. This also increments its
1243 * reference count so that the context can't get freed.
1244 */
8dc85d54
PZ
1245static struct perf_event_context *
1246perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1247{
cdd6c482 1248 struct perf_event_context *ctx;
25346b93
PM
1249 unsigned long flags;
1250
8dc85d54 1251 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1252 if (ctx) {
1253 ++ctx->pin_count;
e625cce1 1254 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1255 }
1256 return ctx;
1257}
1258
cdd6c482 1259static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1260{
1261 unsigned long flags;
1262
e625cce1 1263 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1264 --ctx->pin_count;
e625cce1 1265 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1266}
1267
f67218c3
PZ
1268/*
1269 * Update the record of the current time in a context.
1270 */
1271static void update_context_time(struct perf_event_context *ctx)
1272{
1273 u64 now = perf_clock();
1274
1275 ctx->time += now - ctx->timestamp;
1276 ctx->timestamp = now;
1277}
1278
4158755d
SE
1279static u64 perf_event_time(struct perf_event *event)
1280{
1281 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1282
1283 if (is_cgroup_event(event))
1284 return perf_cgroup_event_time(event);
1285
4158755d
SE
1286 return ctx ? ctx->time : 0;
1287}
1288
f67218c3
PZ
1289/*
1290 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1291 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1292 */
1293static void update_event_times(struct perf_event *event)
1294{
1295 struct perf_event_context *ctx = event->ctx;
1296 u64 run_end;
1297
1298 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1299 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1300 return;
e5d1367f
SE
1301 /*
1302 * in cgroup mode, time_enabled represents
1303 * the time the event was enabled AND active
1304 * tasks were in the monitored cgroup. This is
1305 * independent of the activity of the context as
1306 * there may be a mix of cgroup and non-cgroup events.
1307 *
1308 * That is why we treat cgroup events differently
1309 * here.
1310 */
1311 if (is_cgroup_event(event))
46cd6a7f 1312 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1313 else if (ctx->is_active)
1314 run_end = ctx->time;
acd1d7c1
PZ
1315 else
1316 run_end = event->tstamp_stopped;
1317
1318 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1319
1320 if (event->state == PERF_EVENT_STATE_INACTIVE)
1321 run_end = event->tstamp_stopped;
1322 else
4158755d 1323 run_end = perf_event_time(event);
f67218c3
PZ
1324
1325 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1326
f67218c3
PZ
1327}
1328
96c21a46
PZ
1329/*
1330 * Update total_time_enabled and total_time_running for all events in a group.
1331 */
1332static void update_group_times(struct perf_event *leader)
1333{
1334 struct perf_event *event;
1335
1336 update_event_times(leader);
1337 list_for_each_entry(event, &leader->sibling_list, group_entry)
1338 update_event_times(event);
1339}
1340
889ff015
FW
1341static struct list_head *
1342ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1343{
1344 if (event->attr.pinned)
1345 return &ctx->pinned_groups;
1346 else
1347 return &ctx->flexible_groups;
1348}
1349
fccc714b 1350/*
cdd6c482 1351 * Add a event from the lists for its context.
fccc714b
PZ
1352 * Must be called with ctx->mutex and ctx->lock held.
1353 */
04289bb9 1354static void
cdd6c482 1355list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1356{
c994d613
PZ
1357 lockdep_assert_held(&ctx->lock);
1358
8a49542c
PZ
1359 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1360 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1361
1362 /*
8a49542c
PZ
1363 * If we're a stand alone event or group leader, we go to the context
1364 * list, group events are kept attached to the group so that
1365 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1366 */
8a49542c 1367 if (event->group_leader == event) {
889ff015
FW
1368 struct list_head *list;
1369
d6f962b5
FW
1370 if (is_software_event(event))
1371 event->group_flags |= PERF_GROUP_SOFTWARE;
1372
889ff015
FW
1373 list = ctx_group_list(event, ctx);
1374 list_add_tail(&event->group_entry, list);
5c148194 1375 }
592903cd 1376
08309379 1377 if (is_cgroup_event(event))
e5d1367f 1378 ctx->nr_cgroups++;
e5d1367f 1379
cdd6c482
IM
1380 list_add_rcu(&event->event_entry, &ctx->event_list);
1381 ctx->nr_events++;
1382 if (event->attr.inherit_stat)
bfbd3381 1383 ctx->nr_stat++;
5a3126d4
PZ
1384
1385 ctx->generation++;
04289bb9
IM
1386}
1387
0231bb53
JO
1388/*
1389 * Initialize event state based on the perf_event_attr::disabled.
1390 */
1391static inline void perf_event__state_init(struct perf_event *event)
1392{
1393 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1394 PERF_EVENT_STATE_INACTIVE;
1395}
1396
a723968c 1397static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1398{
1399 int entry = sizeof(u64); /* value */
1400 int size = 0;
1401 int nr = 1;
1402
1403 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1404 size += sizeof(u64);
1405
1406 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1407 size += sizeof(u64);
1408
1409 if (event->attr.read_format & PERF_FORMAT_ID)
1410 entry += sizeof(u64);
1411
1412 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1413 nr += nr_siblings;
c320c7b7
ACM
1414 size += sizeof(u64);
1415 }
1416
1417 size += entry * nr;
1418 event->read_size = size;
1419}
1420
a723968c 1421static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1422{
1423 struct perf_sample_data *data;
c320c7b7
ACM
1424 u16 size = 0;
1425
c320c7b7
ACM
1426 if (sample_type & PERF_SAMPLE_IP)
1427 size += sizeof(data->ip);
1428
6844c09d
ACM
1429 if (sample_type & PERF_SAMPLE_ADDR)
1430 size += sizeof(data->addr);
1431
1432 if (sample_type & PERF_SAMPLE_PERIOD)
1433 size += sizeof(data->period);
1434
c3feedf2
AK
1435 if (sample_type & PERF_SAMPLE_WEIGHT)
1436 size += sizeof(data->weight);
1437
6844c09d
ACM
1438 if (sample_type & PERF_SAMPLE_READ)
1439 size += event->read_size;
1440
d6be9ad6
SE
1441 if (sample_type & PERF_SAMPLE_DATA_SRC)
1442 size += sizeof(data->data_src.val);
1443
fdfbbd07
AK
1444 if (sample_type & PERF_SAMPLE_TRANSACTION)
1445 size += sizeof(data->txn);
1446
6844c09d
ACM
1447 event->header_size = size;
1448}
1449
a723968c
PZ
1450/*
1451 * Called at perf_event creation and when events are attached/detached from a
1452 * group.
1453 */
1454static void perf_event__header_size(struct perf_event *event)
1455{
1456 __perf_event_read_size(event,
1457 event->group_leader->nr_siblings);
1458 __perf_event_header_size(event, event->attr.sample_type);
1459}
1460
6844c09d
ACM
1461static void perf_event__id_header_size(struct perf_event *event)
1462{
1463 struct perf_sample_data *data;
1464 u64 sample_type = event->attr.sample_type;
1465 u16 size = 0;
1466
c320c7b7
ACM
1467 if (sample_type & PERF_SAMPLE_TID)
1468 size += sizeof(data->tid_entry);
1469
1470 if (sample_type & PERF_SAMPLE_TIME)
1471 size += sizeof(data->time);
1472
ff3d527c
AH
1473 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1474 size += sizeof(data->id);
1475
c320c7b7
ACM
1476 if (sample_type & PERF_SAMPLE_ID)
1477 size += sizeof(data->id);
1478
1479 if (sample_type & PERF_SAMPLE_STREAM_ID)
1480 size += sizeof(data->stream_id);
1481
1482 if (sample_type & PERF_SAMPLE_CPU)
1483 size += sizeof(data->cpu_entry);
1484
6844c09d 1485 event->id_header_size = size;
c320c7b7
ACM
1486}
1487
a723968c
PZ
1488static bool perf_event_validate_size(struct perf_event *event)
1489{
1490 /*
1491 * The values computed here will be over-written when we actually
1492 * attach the event.
1493 */
1494 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1495 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1496 perf_event__id_header_size(event);
1497
1498 /*
1499 * Sum the lot; should not exceed the 64k limit we have on records.
1500 * Conservative limit to allow for callchains and other variable fields.
1501 */
1502 if (event->read_size + event->header_size +
1503 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1504 return false;
1505
1506 return true;
1507}
1508
8a49542c
PZ
1509static void perf_group_attach(struct perf_event *event)
1510{
c320c7b7 1511 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1512
74c3337c
PZ
1513 /*
1514 * We can have double attach due to group movement in perf_event_open.
1515 */
1516 if (event->attach_state & PERF_ATTACH_GROUP)
1517 return;
1518
8a49542c
PZ
1519 event->attach_state |= PERF_ATTACH_GROUP;
1520
1521 if (group_leader == event)
1522 return;
1523
652884fe
PZ
1524 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1525
8a49542c
PZ
1526 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1527 !is_software_event(event))
1528 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1529
1530 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1531 group_leader->nr_siblings++;
c320c7b7
ACM
1532
1533 perf_event__header_size(group_leader);
1534
1535 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1536 perf_event__header_size(pos);
8a49542c
PZ
1537}
1538
a63eaf34 1539/*
cdd6c482 1540 * Remove a event from the lists for its context.
fccc714b 1541 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1542 */
04289bb9 1543static void
cdd6c482 1544list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1545{
68cacd29 1546 struct perf_cpu_context *cpuctx;
652884fe
PZ
1547
1548 WARN_ON_ONCE(event->ctx != ctx);
1549 lockdep_assert_held(&ctx->lock);
1550
8a49542c
PZ
1551 /*
1552 * We can have double detach due to exit/hot-unplug + close.
1553 */
1554 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1555 return;
8a49542c
PZ
1556
1557 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1558
68cacd29 1559 if (is_cgroup_event(event)) {
e5d1367f 1560 ctx->nr_cgroups--;
70a01657
PZ
1561 /*
1562 * Because cgroup events are always per-cpu events, this will
1563 * always be called from the right CPU.
1564 */
68cacd29
SE
1565 cpuctx = __get_cpu_context(ctx);
1566 /*
70a01657
PZ
1567 * If there are no more cgroup events then clear cgrp to avoid
1568 * stale pointer in update_cgrp_time_from_cpuctx().
68cacd29
SE
1569 */
1570 if (!ctx->nr_cgroups)
1571 cpuctx->cgrp = NULL;
1572 }
e5d1367f 1573
cdd6c482
IM
1574 ctx->nr_events--;
1575 if (event->attr.inherit_stat)
bfbd3381 1576 ctx->nr_stat--;
8bc20959 1577
cdd6c482 1578 list_del_rcu(&event->event_entry);
04289bb9 1579
8a49542c
PZ
1580 if (event->group_leader == event)
1581 list_del_init(&event->group_entry);
5c148194 1582
96c21a46 1583 update_group_times(event);
b2e74a26
SE
1584
1585 /*
1586 * If event was in error state, then keep it
1587 * that way, otherwise bogus counts will be
1588 * returned on read(). The only way to get out
1589 * of error state is by explicit re-enabling
1590 * of the event
1591 */
1592 if (event->state > PERF_EVENT_STATE_OFF)
1593 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1594
1595 ctx->generation++;
050735b0
PZ
1596}
1597
8a49542c 1598static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1599{
1600 struct perf_event *sibling, *tmp;
8a49542c
PZ
1601 struct list_head *list = NULL;
1602
1603 /*
1604 * We can have double detach due to exit/hot-unplug + close.
1605 */
1606 if (!(event->attach_state & PERF_ATTACH_GROUP))
1607 return;
1608
1609 event->attach_state &= ~PERF_ATTACH_GROUP;
1610
1611 /*
1612 * If this is a sibling, remove it from its group.
1613 */
1614 if (event->group_leader != event) {
1615 list_del_init(&event->group_entry);
1616 event->group_leader->nr_siblings--;
c320c7b7 1617 goto out;
8a49542c
PZ
1618 }
1619
1620 if (!list_empty(&event->group_entry))
1621 list = &event->group_entry;
2e2af50b 1622
04289bb9 1623 /*
cdd6c482
IM
1624 * If this was a group event with sibling events then
1625 * upgrade the siblings to singleton events by adding them
8a49542c 1626 * to whatever list we are on.
04289bb9 1627 */
cdd6c482 1628 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1629 if (list)
1630 list_move_tail(&sibling->group_entry, list);
04289bb9 1631 sibling->group_leader = sibling;
d6f962b5
FW
1632
1633 /* Inherit group flags from the previous leader */
1634 sibling->group_flags = event->group_flags;
652884fe
PZ
1635
1636 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1637 }
c320c7b7
ACM
1638
1639out:
1640 perf_event__header_size(event->group_leader);
1641
1642 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1643 perf_event__header_size(tmp);
04289bb9
IM
1644}
1645
fadfe7be
JO
1646static bool is_orphaned_event(struct perf_event *event)
1647{
a69b0ca4 1648 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1649}
1650
66eb579e
MR
1651static inline int pmu_filter_match(struct perf_event *event)
1652{
1653 struct pmu *pmu = event->pmu;
1654 return pmu->filter_match ? pmu->filter_match(event) : 1;
1655}
1656
fa66f07a
SE
1657static inline int
1658event_filter_match(struct perf_event *event)
1659{
e5d1367f 1660 return (event->cpu == -1 || event->cpu == smp_processor_id())
66eb579e 1661 && perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1662}
1663
9ffcfa6f
SE
1664static void
1665event_sched_out(struct perf_event *event,
3b6f9e5c 1666 struct perf_cpu_context *cpuctx,
cdd6c482 1667 struct perf_event_context *ctx)
3b6f9e5c 1668{
4158755d 1669 u64 tstamp = perf_event_time(event);
fa66f07a 1670 u64 delta;
652884fe
PZ
1671
1672 WARN_ON_ONCE(event->ctx != ctx);
1673 lockdep_assert_held(&ctx->lock);
1674
fa66f07a
SE
1675 /*
1676 * An event which could not be activated because of
1677 * filter mismatch still needs to have its timings
1678 * maintained, otherwise bogus information is return
1679 * via read() for time_enabled, time_running:
1680 */
1681 if (event->state == PERF_EVENT_STATE_INACTIVE
1682 && !event_filter_match(event)) {
e5d1367f 1683 delta = tstamp - event->tstamp_stopped;
fa66f07a 1684 event->tstamp_running += delta;
4158755d 1685 event->tstamp_stopped = tstamp;
fa66f07a
SE
1686 }
1687
cdd6c482 1688 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1689 return;
3b6f9e5c 1690
44377277
AS
1691 perf_pmu_disable(event->pmu);
1692
cdd6c482
IM
1693 event->state = PERF_EVENT_STATE_INACTIVE;
1694 if (event->pending_disable) {
1695 event->pending_disable = 0;
1696 event->state = PERF_EVENT_STATE_OFF;
970892a9 1697 }
4158755d 1698 event->tstamp_stopped = tstamp;
a4eaf7f1 1699 event->pmu->del(event, 0);
cdd6c482 1700 event->oncpu = -1;
3b6f9e5c 1701
cdd6c482 1702 if (!is_software_event(event))
3b6f9e5c 1703 cpuctx->active_oncpu--;
2fde4f94
MR
1704 if (!--ctx->nr_active)
1705 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1706 if (event->attr.freq && event->attr.sample_freq)
1707 ctx->nr_freq--;
cdd6c482 1708 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1709 cpuctx->exclusive = 0;
44377277
AS
1710
1711 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1712}
1713
d859e29f 1714static void
cdd6c482 1715group_sched_out(struct perf_event *group_event,
d859e29f 1716 struct perf_cpu_context *cpuctx,
cdd6c482 1717 struct perf_event_context *ctx)
d859e29f 1718{
cdd6c482 1719 struct perf_event *event;
fa66f07a 1720 int state = group_event->state;
d859e29f 1721
cdd6c482 1722 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1723
1724 /*
1725 * Schedule out siblings (if any):
1726 */
cdd6c482
IM
1727 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1728 event_sched_out(event, cpuctx, ctx);
d859e29f 1729
fa66f07a 1730 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1731 cpuctx->exclusive = 0;
1732}
1733
45a0e07a 1734#define DETACH_GROUP 0x01UL
0017960f 1735
0793a61d 1736/*
cdd6c482 1737 * Cross CPU call to remove a performance event
0793a61d 1738 *
cdd6c482 1739 * We disable the event on the hardware level first. After that we
0793a61d
TG
1740 * remove it from the context list.
1741 */
fae3fde6
PZ
1742static void
1743__perf_remove_from_context(struct perf_event *event,
1744 struct perf_cpu_context *cpuctx,
1745 struct perf_event_context *ctx,
1746 void *info)
0793a61d 1747{
45a0e07a 1748 unsigned long flags = (unsigned long)info;
0793a61d 1749
cdd6c482 1750 event_sched_out(event, cpuctx, ctx);
45a0e07a 1751 if (flags & DETACH_GROUP)
46ce0fe9 1752 perf_group_detach(event);
cdd6c482 1753 list_del_event(event, ctx);
39a43640
PZ
1754
1755 if (!ctx->nr_events && ctx->is_active) {
64ce3126 1756 ctx->is_active = 0;
39a43640
PZ
1757 if (ctx->task) {
1758 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1759 cpuctx->task_ctx = NULL;
1760 }
64ce3126 1761 }
0793a61d
TG
1762}
1763
0793a61d 1764/*
cdd6c482 1765 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1766 *
cdd6c482
IM
1767 * If event->ctx is a cloned context, callers must make sure that
1768 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1769 * remains valid. This is OK when called from perf_release since
1770 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1771 * When called from perf_event_exit_task, it's OK because the
c93f7669 1772 * context has been detached from its task.
0793a61d 1773 */
45a0e07a 1774static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 1775{
fae3fde6 1776 lockdep_assert_held(&event->ctx->mutex);
0793a61d 1777
45a0e07a 1778 event_function_call(event, __perf_remove_from_context, (void *)flags);
0793a61d
TG
1779}
1780
d859e29f 1781/*
cdd6c482 1782 * Cross CPU call to disable a performance event
d859e29f 1783 */
fae3fde6
PZ
1784static void __perf_event_disable(struct perf_event *event,
1785 struct perf_cpu_context *cpuctx,
1786 struct perf_event_context *ctx,
1787 void *info)
7b648018 1788{
fae3fde6
PZ
1789 if (event->state < PERF_EVENT_STATE_INACTIVE)
1790 return;
7b648018 1791
fae3fde6
PZ
1792 update_context_time(ctx);
1793 update_cgrp_time_from_event(event);
1794 update_group_times(event);
1795 if (event == event->group_leader)
1796 group_sched_out(event, cpuctx, ctx);
1797 else
1798 event_sched_out(event, cpuctx, ctx);
1799 event->state = PERF_EVENT_STATE_OFF;
7b648018
PZ
1800}
1801
d859e29f 1802/*
cdd6c482 1803 * Disable a event.
c93f7669 1804 *
cdd6c482
IM
1805 * If event->ctx is a cloned context, callers must make sure that
1806 * every task struct that event->ctx->task could possibly point to
c93f7669 1807 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1808 * perf_event_for_each_child or perf_event_for_each because they
1809 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
1810 * goes to exit will block in perf_event_exit_event().
1811 *
cdd6c482 1812 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1813 * is the current context on this CPU and preemption is disabled,
cdd6c482 1814 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1815 */
f63a8daa 1816static void _perf_event_disable(struct perf_event *event)
d859e29f 1817{
cdd6c482 1818 struct perf_event_context *ctx = event->ctx;
d859e29f 1819
e625cce1 1820 raw_spin_lock_irq(&ctx->lock);
7b648018 1821 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1822 raw_spin_unlock_irq(&ctx->lock);
7b648018 1823 return;
53cfbf59 1824 }
e625cce1 1825 raw_spin_unlock_irq(&ctx->lock);
7b648018 1826
fae3fde6
PZ
1827 event_function_call(event, __perf_event_disable, NULL);
1828}
1829
1830void perf_event_disable_local(struct perf_event *event)
1831{
1832 event_function_local(event, __perf_event_disable, NULL);
d859e29f 1833}
f63a8daa
PZ
1834
1835/*
1836 * Strictly speaking kernel users cannot create groups and therefore this
1837 * interface does not need the perf_event_ctx_lock() magic.
1838 */
1839void perf_event_disable(struct perf_event *event)
1840{
1841 struct perf_event_context *ctx;
1842
1843 ctx = perf_event_ctx_lock(event);
1844 _perf_event_disable(event);
1845 perf_event_ctx_unlock(event, ctx);
1846}
dcfce4a0 1847EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1848
e5d1367f
SE
1849static void perf_set_shadow_time(struct perf_event *event,
1850 struct perf_event_context *ctx,
1851 u64 tstamp)
1852{
1853 /*
1854 * use the correct time source for the time snapshot
1855 *
1856 * We could get by without this by leveraging the
1857 * fact that to get to this function, the caller
1858 * has most likely already called update_context_time()
1859 * and update_cgrp_time_xx() and thus both timestamp
1860 * are identical (or very close). Given that tstamp is,
1861 * already adjusted for cgroup, we could say that:
1862 * tstamp - ctx->timestamp
1863 * is equivalent to
1864 * tstamp - cgrp->timestamp.
1865 *
1866 * Then, in perf_output_read(), the calculation would
1867 * work with no changes because:
1868 * - event is guaranteed scheduled in
1869 * - no scheduled out in between
1870 * - thus the timestamp would be the same
1871 *
1872 * But this is a bit hairy.
1873 *
1874 * So instead, we have an explicit cgroup call to remain
1875 * within the time time source all along. We believe it
1876 * is cleaner and simpler to understand.
1877 */
1878 if (is_cgroup_event(event))
1879 perf_cgroup_set_shadow_time(event, tstamp);
1880 else
1881 event->shadow_ctx_time = tstamp - ctx->timestamp;
1882}
1883
4fe757dd
PZ
1884#define MAX_INTERRUPTS (~0ULL)
1885
1886static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 1887static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 1888
235c7fc7 1889static int
9ffcfa6f 1890event_sched_in(struct perf_event *event,
235c7fc7 1891 struct perf_cpu_context *cpuctx,
6e37738a 1892 struct perf_event_context *ctx)
235c7fc7 1893{
4158755d 1894 u64 tstamp = perf_event_time(event);
44377277 1895 int ret = 0;
4158755d 1896
63342411
PZ
1897 lockdep_assert_held(&ctx->lock);
1898
cdd6c482 1899 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1900 return 0;
1901
cdd6c482 1902 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1903 event->oncpu = smp_processor_id();
4fe757dd
PZ
1904
1905 /*
1906 * Unthrottle events, since we scheduled we might have missed several
1907 * ticks already, also for a heavily scheduling task there is little
1908 * guarantee it'll get a tick in a timely manner.
1909 */
1910 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1911 perf_log_throttle(event, 1);
1912 event->hw.interrupts = 0;
1913 }
1914
235c7fc7
IM
1915 /*
1916 * The new state must be visible before we turn it on in the hardware:
1917 */
1918 smp_wmb();
1919
44377277
AS
1920 perf_pmu_disable(event->pmu);
1921
72f669c0
SL
1922 perf_set_shadow_time(event, ctx, tstamp);
1923
ec0d7729
AS
1924 perf_log_itrace_start(event);
1925
a4eaf7f1 1926 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1927 event->state = PERF_EVENT_STATE_INACTIVE;
1928 event->oncpu = -1;
44377277
AS
1929 ret = -EAGAIN;
1930 goto out;
235c7fc7
IM
1931 }
1932
00a2916f
PZ
1933 event->tstamp_running += tstamp - event->tstamp_stopped;
1934
cdd6c482 1935 if (!is_software_event(event))
3b6f9e5c 1936 cpuctx->active_oncpu++;
2fde4f94
MR
1937 if (!ctx->nr_active++)
1938 perf_event_ctx_activate(ctx);
0f5a2601
PZ
1939 if (event->attr.freq && event->attr.sample_freq)
1940 ctx->nr_freq++;
235c7fc7 1941
cdd6c482 1942 if (event->attr.exclusive)
3b6f9e5c
PM
1943 cpuctx->exclusive = 1;
1944
44377277
AS
1945out:
1946 perf_pmu_enable(event->pmu);
1947
1948 return ret;
235c7fc7
IM
1949}
1950
6751b71e 1951static int
cdd6c482 1952group_sched_in(struct perf_event *group_event,
6751b71e 1953 struct perf_cpu_context *cpuctx,
6e37738a 1954 struct perf_event_context *ctx)
6751b71e 1955{
6bde9b6c 1956 struct perf_event *event, *partial_group = NULL;
4a234593 1957 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1958 u64 now = ctx->time;
1959 bool simulate = false;
6751b71e 1960
cdd6c482 1961 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1962 return 0;
1963
fbbe0701 1964 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 1965
9ffcfa6f 1966 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1967 pmu->cancel_txn(pmu);
272325c4 1968 perf_mux_hrtimer_restart(cpuctx);
6751b71e 1969 return -EAGAIN;
90151c35 1970 }
6751b71e
PM
1971
1972 /*
1973 * Schedule in siblings as one group (if any):
1974 */
cdd6c482 1975 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1976 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1977 partial_group = event;
6751b71e
PM
1978 goto group_error;
1979 }
1980 }
1981
9ffcfa6f 1982 if (!pmu->commit_txn(pmu))
6e85158c 1983 return 0;
9ffcfa6f 1984
6751b71e
PM
1985group_error:
1986 /*
1987 * Groups can be scheduled in as one unit only, so undo any
1988 * partial group before returning:
d7842da4
SE
1989 * The events up to the failed event are scheduled out normally,
1990 * tstamp_stopped will be updated.
1991 *
1992 * The failed events and the remaining siblings need to have
1993 * their timings updated as if they had gone thru event_sched_in()
1994 * and event_sched_out(). This is required to get consistent timings
1995 * across the group. This also takes care of the case where the group
1996 * could never be scheduled by ensuring tstamp_stopped is set to mark
1997 * the time the event was actually stopped, such that time delta
1998 * calculation in update_event_times() is correct.
6751b71e 1999 */
cdd6c482
IM
2000 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2001 if (event == partial_group)
d7842da4
SE
2002 simulate = true;
2003
2004 if (simulate) {
2005 event->tstamp_running += now - event->tstamp_stopped;
2006 event->tstamp_stopped = now;
2007 } else {
2008 event_sched_out(event, cpuctx, ctx);
2009 }
6751b71e 2010 }
9ffcfa6f 2011 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2012
ad5133b7 2013 pmu->cancel_txn(pmu);
90151c35 2014
272325c4 2015 perf_mux_hrtimer_restart(cpuctx);
9e630205 2016
6751b71e
PM
2017 return -EAGAIN;
2018}
2019
3b6f9e5c 2020/*
cdd6c482 2021 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2022 */
cdd6c482 2023static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2024 struct perf_cpu_context *cpuctx,
2025 int can_add_hw)
2026{
2027 /*
cdd6c482 2028 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2029 */
d6f962b5 2030 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
2031 return 1;
2032 /*
2033 * If an exclusive group is already on, no other hardware
cdd6c482 2034 * events can go on.
3b6f9e5c
PM
2035 */
2036 if (cpuctx->exclusive)
2037 return 0;
2038 /*
2039 * If this group is exclusive and there are already
cdd6c482 2040 * events on the CPU, it can't go on.
3b6f9e5c 2041 */
cdd6c482 2042 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2043 return 0;
2044 /*
2045 * Otherwise, try to add it if all previous groups were able
2046 * to go on.
2047 */
2048 return can_add_hw;
2049}
2050
cdd6c482
IM
2051static void add_event_to_ctx(struct perf_event *event,
2052 struct perf_event_context *ctx)
53cfbf59 2053{
4158755d
SE
2054 u64 tstamp = perf_event_time(event);
2055
cdd6c482 2056 list_add_event(event, ctx);
8a49542c 2057 perf_group_attach(event);
4158755d
SE
2058 event->tstamp_enabled = tstamp;
2059 event->tstamp_running = tstamp;
2060 event->tstamp_stopped = tstamp;
53cfbf59
PM
2061}
2062
3e349507
PZ
2063static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2064 struct perf_event_context *ctx);
2c29ef0f
PZ
2065static void
2066ctx_sched_in(struct perf_event_context *ctx,
2067 struct perf_cpu_context *cpuctx,
2068 enum event_type_t event_type,
2069 struct task_struct *task);
fe4b04fa 2070
dce5855b
PZ
2071static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2072 struct perf_event_context *ctx,
2073 struct task_struct *task)
2074{
2075 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2076 if (ctx)
2077 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2078 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2079 if (ctx)
2080 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2081}
2082
3e349507
PZ
2083static void ctx_resched(struct perf_cpu_context *cpuctx,
2084 struct perf_event_context *task_ctx)
0017960f 2085{
3e349507
PZ
2086 perf_pmu_disable(cpuctx->ctx.pmu);
2087 if (task_ctx)
2088 task_ctx_sched_out(cpuctx, task_ctx);
2089 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2090 perf_event_sched_in(cpuctx, task_ctx, current);
2091 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2092}
2093
0793a61d 2094/*
cdd6c482 2095 * Cross CPU call to install and enable a performance event
682076ae
PZ
2096 *
2097 * Must be called with ctx->mutex held
0793a61d 2098 */
fe4b04fa 2099static int __perf_install_in_context(void *info)
0793a61d 2100{
39a43640 2101 struct perf_event_context *ctx = info;
108b02cf 2102 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2103 struct perf_event_context *task_ctx = cpuctx->task_ctx;
0793a61d 2104
63b6da39 2105 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2106 if (ctx->task) {
b58f6b0d 2107 raw_spin_lock(&ctx->lock);
39a43640
PZ
2108 /*
2109 * If we hit the 'wrong' task, we've since scheduled and
2110 * everything should be sorted, nothing to do!
2111 */
b58f6b0d 2112 task_ctx = ctx;
39a43640 2113 if (ctx->task != current)
63b6da39 2114 goto unlock;
b58f6b0d 2115
39a43640
PZ
2116 /*
2117 * If task_ctx is set, it had better be to us.
2118 */
2119 WARN_ON_ONCE(cpuctx->task_ctx != ctx && cpuctx->task_ctx);
63b6da39
PZ
2120 } else if (task_ctx) {
2121 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2122 }
b58f6b0d 2123
39a43640 2124 ctx_resched(cpuctx, task_ctx);
63b6da39 2125unlock:
2c29ef0f 2126 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
2127
2128 return 0;
0793a61d
TG
2129}
2130
2131/*
cdd6c482 2132 * Attach a performance event to a context
0793a61d
TG
2133 */
2134static void
cdd6c482
IM
2135perf_install_in_context(struct perf_event_context *ctx,
2136 struct perf_event *event,
0793a61d
TG
2137 int cpu)
2138{
39a43640
PZ
2139 struct task_struct *task = NULL;
2140
fe4b04fa
PZ
2141 lockdep_assert_held(&ctx->mutex);
2142
c3f00c70 2143 event->ctx = ctx;
0cda4c02
YZ
2144 if (event->cpu != -1)
2145 event->cpu = cpu;
c3f00c70 2146
39a43640
PZ
2147 /*
2148 * Installing events is tricky because we cannot rely on ctx->is_active
2149 * to be set in case this is the nr_events 0 -> 1 transition.
2150 *
2151 * So what we do is we add the event to the list here, which will allow
2152 * a future context switch to DTRT and then send a racy IPI. If the IPI
2153 * fails to hit the right task, this means a context switch must have
2154 * happened and that will have taken care of business.
2155 */
2156 raw_spin_lock_irq(&ctx->lock);
63b6da39 2157 task = ctx->task;
84c4e620 2158
63b6da39 2159 /*
84c4e620
PZ
2160 * If between ctx = find_get_context() and mutex_lock(&ctx->mutex) the
2161 * ctx gets destroyed, we must not install an event into it.
2162 *
2163 * This is normally tested for after we acquire the mutex, so this is
2164 * a sanity check.
63b6da39 2165 */
84c4e620 2166 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
63b6da39
PZ
2167 raw_spin_unlock_irq(&ctx->lock);
2168 return;
2169 }
6f932e5b
PZ
2170
2171 if (ctx->is_active) {
2172 update_context_time(ctx);
2173 update_cgrp_time_from_event(event);
2174 }
2175
39a43640 2176 add_event_to_ctx(event, ctx);
39a43640
PZ
2177 raw_spin_unlock_irq(&ctx->lock);
2178
2179 if (task)
2180 task_function_call(task, __perf_install_in_context, ctx);
2181 else
2182 cpu_function_call(cpu, __perf_install_in_context, ctx);
0793a61d
TG
2183}
2184
fa289bec 2185/*
cdd6c482 2186 * Put a event into inactive state and update time fields.
fa289bec
PM
2187 * Enabling the leader of a group effectively enables all
2188 * the group members that aren't explicitly disabled, so we
2189 * have to update their ->tstamp_enabled also.
2190 * Note: this works for group members as well as group leaders
2191 * since the non-leader members' sibling_lists will be empty.
2192 */
1d9b482e 2193static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2194{
cdd6c482 2195 struct perf_event *sub;
4158755d 2196 u64 tstamp = perf_event_time(event);
fa289bec 2197
cdd6c482 2198 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2199 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2200 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2201 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2202 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2203 }
fa289bec
PM
2204}
2205
d859e29f 2206/*
cdd6c482 2207 * Cross CPU call to enable a performance event
d859e29f 2208 */
fae3fde6
PZ
2209static void __perf_event_enable(struct perf_event *event,
2210 struct perf_cpu_context *cpuctx,
2211 struct perf_event_context *ctx,
2212 void *info)
04289bb9 2213{
cdd6c482 2214 struct perf_event *leader = event->group_leader;
fae3fde6 2215 struct perf_event_context *task_ctx;
04289bb9 2216
6e801e01
PZ
2217 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2218 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2219 return;
3cbed429 2220
4af4998b 2221 update_context_time(ctx);
1d9b482e 2222 __perf_event_mark_enabled(event);
04289bb9 2223
fae3fde6
PZ
2224 if (!ctx->is_active)
2225 return;
2226
e5d1367f 2227 if (!event_filter_match(event)) {
fae3fde6
PZ
2228 if (is_cgroup_event(event)) {
2229 perf_cgroup_set_timestamp(current, ctx); // XXX ?
e5d1367f 2230 perf_cgroup_defer_enabled(event);
fae3fde6
PZ
2231 }
2232 return;
e5d1367f 2233 }
f4c4176f 2234
04289bb9 2235 /*
cdd6c482 2236 * If the event is in a group and isn't the group leader,
d859e29f 2237 * then don't put it on unless the group is on.
04289bb9 2238 */
cdd6c482 2239 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
fae3fde6 2240 return;
fe4b04fa 2241
fae3fde6
PZ
2242 task_ctx = cpuctx->task_ctx;
2243 if (ctx->task)
2244 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2245
fae3fde6 2246 ctx_resched(cpuctx, task_ctx);
7b648018
PZ
2247}
2248
d859e29f 2249/*
cdd6c482 2250 * Enable a event.
c93f7669 2251 *
cdd6c482
IM
2252 * If event->ctx is a cloned context, callers must make sure that
2253 * every task struct that event->ctx->task could possibly point to
c93f7669 2254 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2255 * perf_event_for_each_child or perf_event_for_each as described
2256 * for perf_event_disable.
d859e29f 2257 */
f63a8daa 2258static void _perf_event_enable(struct perf_event *event)
d859e29f 2259{
cdd6c482 2260 struct perf_event_context *ctx = event->ctx;
d859e29f 2261
7b648018 2262 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2263 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2264 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2265 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2266 return;
2267 }
2268
d859e29f 2269 /*
cdd6c482 2270 * If the event is in error state, clear that first.
7b648018
PZ
2271 *
2272 * That way, if we see the event in error state below, we know that it
2273 * has gone back into error state, as distinct from the task having
2274 * been scheduled away before the cross-call arrived.
d859e29f 2275 */
cdd6c482
IM
2276 if (event->state == PERF_EVENT_STATE_ERROR)
2277 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2278 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2279
fae3fde6 2280 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2281}
f63a8daa
PZ
2282
2283/*
2284 * See perf_event_disable();
2285 */
2286void perf_event_enable(struct perf_event *event)
2287{
2288 struct perf_event_context *ctx;
2289
2290 ctx = perf_event_ctx_lock(event);
2291 _perf_event_enable(event);
2292 perf_event_ctx_unlock(event, ctx);
2293}
dcfce4a0 2294EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2295
f63a8daa 2296static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2297{
2023b359 2298 /*
cdd6c482 2299 * not supported on inherited events
2023b359 2300 */
2e939d1d 2301 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2302 return -EINVAL;
2303
cdd6c482 2304 atomic_add(refresh, &event->event_limit);
f63a8daa 2305 _perf_event_enable(event);
2023b359
PZ
2306
2307 return 0;
79f14641 2308}
f63a8daa
PZ
2309
2310/*
2311 * See perf_event_disable()
2312 */
2313int perf_event_refresh(struct perf_event *event, int refresh)
2314{
2315 struct perf_event_context *ctx;
2316 int ret;
2317
2318 ctx = perf_event_ctx_lock(event);
2319 ret = _perf_event_refresh(event, refresh);
2320 perf_event_ctx_unlock(event, ctx);
2321
2322 return ret;
2323}
26ca5c11 2324EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2325
5b0311e1
FW
2326static void ctx_sched_out(struct perf_event_context *ctx,
2327 struct perf_cpu_context *cpuctx,
2328 enum event_type_t event_type)
235c7fc7 2329{
db24d33e 2330 int is_active = ctx->is_active;
c994d613 2331 struct perf_event *event;
235c7fc7 2332
c994d613 2333 lockdep_assert_held(&ctx->lock);
235c7fc7 2334
39a43640
PZ
2335 if (likely(!ctx->nr_events)) {
2336 /*
2337 * See __perf_remove_from_context().
2338 */
2339 WARN_ON_ONCE(ctx->is_active);
2340 if (ctx->task)
2341 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2342 return;
39a43640
PZ
2343 }
2344
db24d33e 2345 ctx->is_active &= ~event_type;
63e30d3e
PZ
2346 if (ctx->task) {
2347 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2348 if (!ctx->is_active)
2349 cpuctx->task_ctx = NULL;
2350 }
facc4307 2351
4af4998b 2352 update_context_time(ctx);
e5d1367f 2353 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2354 if (!ctx->nr_active)
facc4307 2355 return;
5b0311e1 2356
075e0b00 2357 perf_pmu_disable(ctx->pmu);
db24d33e 2358 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2359 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2360 group_sched_out(event, cpuctx, ctx);
9ed6060d 2361 }
889ff015 2362
db24d33e 2363 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2364 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2365 group_sched_out(event, cpuctx, ctx);
9ed6060d 2366 }
1b9a644f 2367 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2368}
2369
564c2b21 2370/*
5a3126d4
PZ
2371 * Test whether two contexts are equivalent, i.e. whether they have both been
2372 * cloned from the same version of the same context.
2373 *
2374 * Equivalence is measured using a generation number in the context that is
2375 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2376 * and list_del_event().
564c2b21 2377 */
cdd6c482
IM
2378static int context_equiv(struct perf_event_context *ctx1,
2379 struct perf_event_context *ctx2)
564c2b21 2380{
211de6eb
PZ
2381 lockdep_assert_held(&ctx1->lock);
2382 lockdep_assert_held(&ctx2->lock);
2383
5a3126d4
PZ
2384 /* Pinning disables the swap optimization */
2385 if (ctx1->pin_count || ctx2->pin_count)
2386 return 0;
2387
2388 /* If ctx1 is the parent of ctx2 */
2389 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2390 return 1;
2391
2392 /* If ctx2 is the parent of ctx1 */
2393 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2394 return 1;
2395
2396 /*
2397 * If ctx1 and ctx2 have the same parent; we flatten the parent
2398 * hierarchy, see perf_event_init_context().
2399 */
2400 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2401 ctx1->parent_gen == ctx2->parent_gen)
2402 return 1;
2403
2404 /* Unmatched */
2405 return 0;
564c2b21
PM
2406}
2407
cdd6c482
IM
2408static void __perf_event_sync_stat(struct perf_event *event,
2409 struct perf_event *next_event)
bfbd3381
PZ
2410{
2411 u64 value;
2412
cdd6c482 2413 if (!event->attr.inherit_stat)
bfbd3381
PZ
2414 return;
2415
2416 /*
cdd6c482 2417 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2418 * because we're in the middle of a context switch and have IRQs
2419 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2420 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2421 * don't need to use it.
2422 */
cdd6c482
IM
2423 switch (event->state) {
2424 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2425 event->pmu->read(event);
2426 /* fall-through */
bfbd3381 2427
cdd6c482
IM
2428 case PERF_EVENT_STATE_INACTIVE:
2429 update_event_times(event);
bfbd3381
PZ
2430 break;
2431
2432 default:
2433 break;
2434 }
2435
2436 /*
cdd6c482 2437 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2438 * values when we flip the contexts.
2439 */
e7850595
PZ
2440 value = local64_read(&next_event->count);
2441 value = local64_xchg(&event->count, value);
2442 local64_set(&next_event->count, value);
bfbd3381 2443
cdd6c482
IM
2444 swap(event->total_time_enabled, next_event->total_time_enabled);
2445 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2446
bfbd3381 2447 /*
19d2e755 2448 * Since we swizzled the values, update the user visible data too.
bfbd3381 2449 */
cdd6c482
IM
2450 perf_event_update_userpage(event);
2451 perf_event_update_userpage(next_event);
bfbd3381
PZ
2452}
2453
cdd6c482
IM
2454static void perf_event_sync_stat(struct perf_event_context *ctx,
2455 struct perf_event_context *next_ctx)
bfbd3381 2456{
cdd6c482 2457 struct perf_event *event, *next_event;
bfbd3381
PZ
2458
2459 if (!ctx->nr_stat)
2460 return;
2461
02ffdbc8
PZ
2462 update_context_time(ctx);
2463
cdd6c482
IM
2464 event = list_first_entry(&ctx->event_list,
2465 struct perf_event, event_entry);
bfbd3381 2466
cdd6c482
IM
2467 next_event = list_first_entry(&next_ctx->event_list,
2468 struct perf_event, event_entry);
bfbd3381 2469
cdd6c482
IM
2470 while (&event->event_entry != &ctx->event_list &&
2471 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2472
cdd6c482 2473 __perf_event_sync_stat(event, next_event);
bfbd3381 2474
cdd6c482
IM
2475 event = list_next_entry(event, event_entry);
2476 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2477 }
2478}
2479
fe4b04fa
PZ
2480static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2481 struct task_struct *next)
0793a61d 2482{
8dc85d54 2483 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2484 struct perf_event_context *next_ctx;
5a3126d4 2485 struct perf_event_context *parent, *next_parent;
108b02cf 2486 struct perf_cpu_context *cpuctx;
c93f7669 2487 int do_switch = 1;
0793a61d 2488
108b02cf
PZ
2489 if (likely(!ctx))
2490 return;
10989fb2 2491
108b02cf
PZ
2492 cpuctx = __get_cpu_context(ctx);
2493 if (!cpuctx->task_ctx)
0793a61d
TG
2494 return;
2495
c93f7669 2496 rcu_read_lock();
8dc85d54 2497 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2498 if (!next_ctx)
2499 goto unlock;
2500
2501 parent = rcu_dereference(ctx->parent_ctx);
2502 next_parent = rcu_dereference(next_ctx->parent_ctx);
2503
2504 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2505 if (!parent && !next_parent)
5a3126d4
PZ
2506 goto unlock;
2507
2508 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2509 /*
2510 * Looks like the two contexts are clones, so we might be
2511 * able to optimize the context switch. We lock both
2512 * contexts and check that they are clones under the
2513 * lock (including re-checking that neither has been
2514 * uncloned in the meantime). It doesn't matter which
2515 * order we take the locks because no other cpu could
2516 * be trying to lock both of these tasks.
2517 */
e625cce1
TG
2518 raw_spin_lock(&ctx->lock);
2519 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2520 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
2521 WRITE_ONCE(ctx->task, next);
2522 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
2523
2524 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2525
63b6da39
PZ
2526 /*
2527 * RCU_INIT_POINTER here is safe because we've not
2528 * modified the ctx and the above modification of
2529 * ctx->task and ctx->task_ctx_data are immaterial
2530 * since those values are always verified under
2531 * ctx->lock which we're now holding.
2532 */
2533 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2534 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2535
c93f7669 2536 do_switch = 0;
bfbd3381 2537
cdd6c482 2538 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2539 }
e625cce1
TG
2540 raw_spin_unlock(&next_ctx->lock);
2541 raw_spin_unlock(&ctx->lock);
564c2b21 2542 }
5a3126d4 2543unlock:
c93f7669 2544 rcu_read_unlock();
564c2b21 2545
c93f7669 2546 if (do_switch) {
facc4307 2547 raw_spin_lock(&ctx->lock);
8833d0e2 2548 task_ctx_sched_out(cpuctx, ctx);
facc4307 2549 raw_spin_unlock(&ctx->lock);
c93f7669 2550 }
0793a61d
TG
2551}
2552
ba532500
YZ
2553void perf_sched_cb_dec(struct pmu *pmu)
2554{
2555 this_cpu_dec(perf_sched_cb_usages);
2556}
2557
2558void perf_sched_cb_inc(struct pmu *pmu)
2559{
2560 this_cpu_inc(perf_sched_cb_usages);
2561}
2562
2563/*
2564 * This function provides the context switch callback to the lower code
2565 * layer. It is invoked ONLY when the context switch callback is enabled.
2566 */
2567static void perf_pmu_sched_task(struct task_struct *prev,
2568 struct task_struct *next,
2569 bool sched_in)
2570{
2571 struct perf_cpu_context *cpuctx;
2572 struct pmu *pmu;
2573 unsigned long flags;
2574
2575 if (prev == next)
2576 return;
2577
2578 local_irq_save(flags);
2579
2580 rcu_read_lock();
2581
2582 list_for_each_entry_rcu(pmu, &pmus, entry) {
2583 if (pmu->sched_task) {
2584 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2585
2586 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2587
2588 perf_pmu_disable(pmu);
2589
2590 pmu->sched_task(cpuctx->task_ctx, sched_in);
2591
2592 perf_pmu_enable(pmu);
2593
2594 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2595 }
2596 }
2597
2598 rcu_read_unlock();
2599
2600 local_irq_restore(flags);
2601}
2602
45ac1403
AH
2603static void perf_event_switch(struct task_struct *task,
2604 struct task_struct *next_prev, bool sched_in);
2605
8dc85d54
PZ
2606#define for_each_task_context_nr(ctxn) \
2607 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2608
2609/*
2610 * Called from scheduler to remove the events of the current task,
2611 * with interrupts disabled.
2612 *
2613 * We stop each event and update the event value in event->count.
2614 *
2615 * This does not protect us against NMI, but disable()
2616 * sets the disabled bit in the control field of event _before_
2617 * accessing the event control register. If a NMI hits, then it will
2618 * not restart the event.
2619 */
ab0cce56
JO
2620void __perf_event_task_sched_out(struct task_struct *task,
2621 struct task_struct *next)
8dc85d54
PZ
2622{
2623 int ctxn;
2624
ba532500
YZ
2625 if (__this_cpu_read(perf_sched_cb_usages))
2626 perf_pmu_sched_task(task, next, false);
2627
45ac1403
AH
2628 if (atomic_read(&nr_switch_events))
2629 perf_event_switch(task, next, false);
2630
8dc85d54
PZ
2631 for_each_task_context_nr(ctxn)
2632 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2633
2634 /*
2635 * if cgroup events exist on this CPU, then we need
2636 * to check if we have to switch out PMU state.
2637 * cgroup event are system-wide mode only
2638 */
4a32fea9 2639 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2640 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2641}
2642
3e349507
PZ
2643static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2644 struct perf_event_context *ctx)
a08b159f 2645{
a63eaf34
PM
2646 if (!cpuctx->task_ctx)
2647 return;
012b84da
IM
2648
2649 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2650 return;
2651
04dc2dbb 2652 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2653}
2654
5b0311e1
FW
2655/*
2656 * Called with IRQs disabled
2657 */
2658static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2659 enum event_type_t event_type)
2660{
2661 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2662}
2663
235c7fc7 2664static void
5b0311e1 2665ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2666 struct perf_cpu_context *cpuctx)
0793a61d 2667{
cdd6c482 2668 struct perf_event *event;
0793a61d 2669
889ff015
FW
2670 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2671 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2672 continue;
5632ab12 2673 if (!event_filter_match(event))
3b6f9e5c
PM
2674 continue;
2675
e5d1367f
SE
2676 /* may need to reset tstamp_enabled */
2677 if (is_cgroup_event(event))
2678 perf_cgroup_mark_enabled(event, ctx);
2679
8c9ed8e1 2680 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2681 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2682
2683 /*
2684 * If this pinned group hasn't been scheduled,
2685 * put it in error state.
2686 */
cdd6c482
IM
2687 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2688 update_group_times(event);
2689 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2690 }
3b6f9e5c 2691 }
5b0311e1
FW
2692}
2693
2694static void
2695ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2696 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2697{
2698 struct perf_event *event;
2699 int can_add_hw = 1;
3b6f9e5c 2700
889ff015
FW
2701 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2702 /* Ignore events in OFF or ERROR state */
2703 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2704 continue;
04289bb9
IM
2705 /*
2706 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2707 * of events:
04289bb9 2708 */
5632ab12 2709 if (!event_filter_match(event))
0793a61d
TG
2710 continue;
2711
e5d1367f
SE
2712 /* may need to reset tstamp_enabled */
2713 if (is_cgroup_event(event))
2714 perf_cgroup_mark_enabled(event, ctx);
2715
9ed6060d 2716 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2717 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2718 can_add_hw = 0;
9ed6060d 2719 }
0793a61d 2720 }
5b0311e1
FW
2721}
2722
2723static void
2724ctx_sched_in(struct perf_event_context *ctx,
2725 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2726 enum event_type_t event_type,
2727 struct task_struct *task)
5b0311e1 2728{
db24d33e 2729 int is_active = ctx->is_active;
c994d613
PZ
2730 u64 now;
2731
2732 lockdep_assert_held(&ctx->lock);
e5d1367f 2733
5b0311e1 2734 if (likely(!ctx->nr_events))
facc4307 2735 return;
5b0311e1 2736
db24d33e 2737 ctx->is_active |= event_type;
63e30d3e
PZ
2738 if (ctx->task) {
2739 if (!is_active)
2740 cpuctx->task_ctx = ctx;
2741 else
2742 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2743 }
2744
e5d1367f
SE
2745 now = perf_clock();
2746 ctx->timestamp = now;
3f7cce3c 2747 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2748 /*
2749 * First go through the list and put on any pinned groups
2750 * in order to give them the best chance of going on.
2751 */
db24d33e 2752 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2753 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2754
2755 /* Then walk through the lower prio flexible groups */
db24d33e 2756 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2757 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2758}
2759
329c0e01 2760static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2761 enum event_type_t event_type,
2762 struct task_struct *task)
329c0e01
FW
2763{
2764 struct perf_event_context *ctx = &cpuctx->ctx;
2765
e5d1367f 2766 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2767}
2768
e5d1367f
SE
2769static void perf_event_context_sched_in(struct perf_event_context *ctx,
2770 struct task_struct *task)
235c7fc7 2771{
108b02cf 2772 struct perf_cpu_context *cpuctx;
235c7fc7 2773
108b02cf 2774 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2775 if (cpuctx->task_ctx == ctx)
2776 return;
2777
facc4307 2778 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2779 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2780 /*
2781 * We want to keep the following priority order:
2782 * cpu pinned (that don't need to move), task pinned,
2783 * cpu flexible, task flexible.
2784 */
2785 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 2786 perf_event_sched_in(cpuctx, ctx, task);
facc4307
PZ
2787 perf_pmu_enable(ctx->pmu);
2788 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
2789}
2790
8dc85d54
PZ
2791/*
2792 * Called from scheduler to add the events of the current task
2793 * with interrupts disabled.
2794 *
2795 * We restore the event value and then enable it.
2796 *
2797 * This does not protect us against NMI, but enable()
2798 * sets the enabled bit in the control field of event _before_
2799 * accessing the event control register. If a NMI hits, then it will
2800 * keep the event running.
2801 */
ab0cce56
JO
2802void __perf_event_task_sched_in(struct task_struct *prev,
2803 struct task_struct *task)
8dc85d54
PZ
2804{
2805 struct perf_event_context *ctx;
2806 int ctxn;
2807
7e41d177
PZ
2808 /*
2809 * If cgroup events exist on this CPU, then we need to check if we have
2810 * to switch in PMU state; cgroup event are system-wide mode only.
2811 *
2812 * Since cgroup events are CPU events, we must schedule these in before
2813 * we schedule in the task events.
2814 */
2815 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2816 perf_cgroup_sched_in(prev, task);
2817
8dc85d54
PZ
2818 for_each_task_context_nr(ctxn) {
2819 ctx = task->perf_event_ctxp[ctxn];
2820 if (likely(!ctx))
2821 continue;
2822
e5d1367f 2823 perf_event_context_sched_in(ctx, task);
8dc85d54 2824 }
d010b332 2825
45ac1403
AH
2826 if (atomic_read(&nr_switch_events))
2827 perf_event_switch(task, prev, true);
2828
ba532500
YZ
2829 if (__this_cpu_read(perf_sched_cb_usages))
2830 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
2831}
2832
abd50713
PZ
2833static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2834{
2835 u64 frequency = event->attr.sample_freq;
2836 u64 sec = NSEC_PER_SEC;
2837 u64 divisor, dividend;
2838
2839 int count_fls, nsec_fls, frequency_fls, sec_fls;
2840
2841 count_fls = fls64(count);
2842 nsec_fls = fls64(nsec);
2843 frequency_fls = fls64(frequency);
2844 sec_fls = 30;
2845
2846 /*
2847 * We got @count in @nsec, with a target of sample_freq HZ
2848 * the target period becomes:
2849 *
2850 * @count * 10^9
2851 * period = -------------------
2852 * @nsec * sample_freq
2853 *
2854 */
2855
2856 /*
2857 * Reduce accuracy by one bit such that @a and @b converge
2858 * to a similar magnitude.
2859 */
fe4b04fa 2860#define REDUCE_FLS(a, b) \
abd50713
PZ
2861do { \
2862 if (a##_fls > b##_fls) { \
2863 a >>= 1; \
2864 a##_fls--; \
2865 } else { \
2866 b >>= 1; \
2867 b##_fls--; \
2868 } \
2869} while (0)
2870
2871 /*
2872 * Reduce accuracy until either term fits in a u64, then proceed with
2873 * the other, so that finally we can do a u64/u64 division.
2874 */
2875 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2876 REDUCE_FLS(nsec, frequency);
2877 REDUCE_FLS(sec, count);
2878 }
2879
2880 if (count_fls + sec_fls > 64) {
2881 divisor = nsec * frequency;
2882
2883 while (count_fls + sec_fls > 64) {
2884 REDUCE_FLS(count, sec);
2885 divisor >>= 1;
2886 }
2887
2888 dividend = count * sec;
2889 } else {
2890 dividend = count * sec;
2891
2892 while (nsec_fls + frequency_fls > 64) {
2893 REDUCE_FLS(nsec, frequency);
2894 dividend >>= 1;
2895 }
2896
2897 divisor = nsec * frequency;
2898 }
2899
f6ab91ad
PZ
2900 if (!divisor)
2901 return dividend;
2902
abd50713
PZ
2903 return div64_u64(dividend, divisor);
2904}
2905
e050e3f0
SE
2906static DEFINE_PER_CPU(int, perf_throttled_count);
2907static DEFINE_PER_CPU(u64, perf_throttled_seq);
2908
f39d47ff 2909static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2910{
cdd6c482 2911 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2912 s64 period, sample_period;
bd2b5b12
PZ
2913 s64 delta;
2914
abd50713 2915 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2916
2917 delta = (s64)(period - hwc->sample_period);
2918 delta = (delta + 7) / 8; /* low pass filter */
2919
2920 sample_period = hwc->sample_period + delta;
2921
2922 if (!sample_period)
2923 sample_period = 1;
2924
bd2b5b12 2925 hwc->sample_period = sample_period;
abd50713 2926
e7850595 2927 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2928 if (disable)
2929 event->pmu->stop(event, PERF_EF_UPDATE);
2930
e7850595 2931 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2932
2933 if (disable)
2934 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2935 }
bd2b5b12
PZ
2936}
2937
e050e3f0
SE
2938/*
2939 * combine freq adjustment with unthrottling to avoid two passes over the
2940 * events. At the same time, make sure, having freq events does not change
2941 * the rate of unthrottling as that would introduce bias.
2942 */
2943static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2944 int needs_unthr)
60db5e09 2945{
cdd6c482
IM
2946 struct perf_event *event;
2947 struct hw_perf_event *hwc;
e050e3f0 2948 u64 now, period = TICK_NSEC;
abd50713 2949 s64 delta;
60db5e09 2950
e050e3f0
SE
2951 /*
2952 * only need to iterate over all events iff:
2953 * - context have events in frequency mode (needs freq adjust)
2954 * - there are events to unthrottle on this cpu
2955 */
2956 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2957 return;
2958
e050e3f0 2959 raw_spin_lock(&ctx->lock);
f39d47ff 2960 perf_pmu_disable(ctx->pmu);
e050e3f0 2961
03541f8b 2962 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2963 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2964 continue;
2965
5632ab12 2966 if (!event_filter_match(event))
5d27c23d
PZ
2967 continue;
2968
44377277
AS
2969 perf_pmu_disable(event->pmu);
2970
cdd6c482 2971 hwc = &event->hw;
6a24ed6c 2972
ae23bff1 2973 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 2974 hwc->interrupts = 0;
cdd6c482 2975 perf_log_throttle(event, 1);
a4eaf7f1 2976 event->pmu->start(event, 0);
a78ac325
PZ
2977 }
2978
cdd6c482 2979 if (!event->attr.freq || !event->attr.sample_freq)
44377277 2980 goto next;
60db5e09 2981
e050e3f0
SE
2982 /*
2983 * stop the event and update event->count
2984 */
2985 event->pmu->stop(event, PERF_EF_UPDATE);
2986
e7850595 2987 now = local64_read(&event->count);
abd50713
PZ
2988 delta = now - hwc->freq_count_stamp;
2989 hwc->freq_count_stamp = now;
60db5e09 2990
e050e3f0
SE
2991 /*
2992 * restart the event
2993 * reload only if value has changed
f39d47ff
SE
2994 * we have stopped the event so tell that
2995 * to perf_adjust_period() to avoid stopping it
2996 * twice.
e050e3f0 2997 */
abd50713 2998 if (delta > 0)
f39d47ff 2999 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3000
3001 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3002 next:
3003 perf_pmu_enable(event->pmu);
60db5e09 3004 }
e050e3f0 3005
f39d47ff 3006 perf_pmu_enable(ctx->pmu);
e050e3f0 3007 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3008}
3009
235c7fc7 3010/*
cdd6c482 3011 * Round-robin a context's events:
235c7fc7 3012 */
cdd6c482 3013static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3014{
dddd3379
TG
3015 /*
3016 * Rotate the first entry last of non-pinned groups. Rotation might be
3017 * disabled by the inheritance code.
3018 */
3019 if (!ctx->rotate_disable)
3020 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3021}
3022
9e630205 3023static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3024{
8dc85d54 3025 struct perf_event_context *ctx = NULL;
2fde4f94 3026 int rotate = 0;
7fc23a53 3027
b5ab4cd5 3028 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3029 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3030 rotate = 1;
3031 }
235c7fc7 3032
8dc85d54 3033 ctx = cpuctx->task_ctx;
b5ab4cd5 3034 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3035 if (ctx->nr_events != ctx->nr_active)
3036 rotate = 1;
3037 }
9717e6cd 3038
e050e3f0 3039 if (!rotate)
0f5a2601
PZ
3040 goto done;
3041
facc4307 3042 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3043 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3044
e050e3f0
SE
3045 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3046 if (ctx)
3047 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3048
e050e3f0
SE
3049 rotate_ctx(&cpuctx->ctx);
3050 if (ctx)
3051 rotate_ctx(ctx);
235c7fc7 3052
e050e3f0 3053 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3054
0f5a2601
PZ
3055 perf_pmu_enable(cpuctx->ctx.pmu);
3056 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3057done:
9e630205
SE
3058
3059 return rotate;
e9d2b064
PZ
3060}
3061
026249ef
FW
3062#ifdef CONFIG_NO_HZ_FULL
3063bool perf_event_can_stop_tick(void)
3064{
948b26b6 3065 if (atomic_read(&nr_freq_events) ||
d84153d6 3066 __this_cpu_read(perf_throttled_count))
026249ef 3067 return false;
d84153d6
FW
3068 else
3069 return true;
026249ef
FW
3070}
3071#endif
3072
e9d2b064
PZ
3073void perf_event_task_tick(void)
3074{
2fde4f94
MR
3075 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3076 struct perf_event_context *ctx, *tmp;
e050e3f0 3077 int throttled;
b5ab4cd5 3078
e9d2b064
PZ
3079 WARN_ON(!irqs_disabled());
3080
e050e3f0
SE
3081 __this_cpu_inc(perf_throttled_seq);
3082 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3083
2fde4f94 3084 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3085 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3086}
3087
889ff015
FW
3088static int event_enable_on_exec(struct perf_event *event,
3089 struct perf_event_context *ctx)
3090{
3091 if (!event->attr.enable_on_exec)
3092 return 0;
3093
3094 event->attr.enable_on_exec = 0;
3095 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3096 return 0;
3097
1d9b482e 3098 __perf_event_mark_enabled(event);
889ff015
FW
3099
3100 return 1;
3101}
3102
57e7986e 3103/*
cdd6c482 3104 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3105 * This expects task == current.
3106 */
c1274499 3107static void perf_event_enable_on_exec(int ctxn)
57e7986e 3108{
c1274499 3109 struct perf_event_context *ctx, *clone_ctx = NULL;
3e349507 3110 struct perf_cpu_context *cpuctx;
cdd6c482 3111 struct perf_event *event;
57e7986e
PM
3112 unsigned long flags;
3113 int enabled = 0;
3114
3115 local_irq_save(flags);
c1274499 3116 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3117 if (!ctx || !ctx->nr_events)
57e7986e
PM
3118 goto out;
3119
3e349507
PZ
3120 cpuctx = __get_cpu_context(ctx);
3121 perf_ctx_lock(cpuctx, ctx);
3122 list_for_each_entry(event, &ctx->event_list, event_entry)
3123 enabled |= event_enable_on_exec(event, ctx);
57e7986e
PM
3124
3125 /*
3e349507 3126 * Unclone and reschedule this context if we enabled any event.
57e7986e 3127 */
3e349507 3128 if (enabled) {
211de6eb 3129 clone_ctx = unclone_ctx(ctx);
3e349507
PZ
3130 ctx_resched(cpuctx, ctx);
3131 }
3132 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3133
9ed6060d 3134out:
57e7986e 3135 local_irq_restore(flags);
211de6eb
PZ
3136
3137 if (clone_ctx)
3138 put_ctx(clone_ctx);
57e7986e
PM
3139}
3140
e041e328
PZ
3141void perf_event_exec(void)
3142{
e041e328
PZ
3143 int ctxn;
3144
3145 rcu_read_lock();
c1274499
PZ
3146 for_each_task_context_nr(ctxn)
3147 perf_event_enable_on_exec(ctxn);
e041e328
PZ
3148 rcu_read_unlock();
3149}
3150
0492d4c5
PZ
3151struct perf_read_data {
3152 struct perf_event *event;
3153 bool group;
7d88962e 3154 int ret;
0492d4c5
PZ
3155};
3156
0793a61d 3157/*
cdd6c482 3158 * Cross CPU call to read the hardware event
0793a61d 3159 */
cdd6c482 3160static void __perf_event_read(void *info)
0793a61d 3161{
0492d4c5
PZ
3162 struct perf_read_data *data = info;
3163 struct perf_event *sub, *event = data->event;
cdd6c482 3164 struct perf_event_context *ctx = event->ctx;
108b02cf 3165 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3166 struct pmu *pmu = event->pmu;
621a01ea 3167
e1ac3614
PM
3168 /*
3169 * If this is a task context, we need to check whether it is
3170 * the current task context of this cpu. If not it has been
3171 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3172 * event->count would have been updated to a recent sample
3173 * when the event was scheduled out.
e1ac3614
PM
3174 */
3175 if (ctx->task && cpuctx->task_ctx != ctx)
3176 return;
3177
e625cce1 3178 raw_spin_lock(&ctx->lock);
e5d1367f 3179 if (ctx->is_active) {
542e72fc 3180 update_context_time(ctx);
e5d1367f
SE
3181 update_cgrp_time_from_event(event);
3182 }
0492d4c5 3183
cdd6c482 3184 update_event_times(event);
4a00c16e
SB
3185 if (event->state != PERF_EVENT_STATE_ACTIVE)
3186 goto unlock;
0492d4c5 3187
4a00c16e
SB
3188 if (!data->group) {
3189 pmu->read(event);
3190 data->ret = 0;
0492d4c5 3191 goto unlock;
4a00c16e
SB
3192 }
3193
3194 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3195
3196 pmu->read(event);
0492d4c5
PZ
3197
3198 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3199 update_event_times(sub);
4a00c16e
SB
3200 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3201 /*
3202 * Use sibling's PMU rather than @event's since
3203 * sibling could be on different (eg: software) PMU.
3204 */
0492d4c5 3205 sub->pmu->read(sub);
4a00c16e 3206 }
0492d4c5 3207 }
4a00c16e
SB
3208
3209 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3210
3211unlock:
e625cce1 3212 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3213}
3214
b5e58793
PZ
3215static inline u64 perf_event_count(struct perf_event *event)
3216{
eacd3ecc
MF
3217 if (event->pmu->count)
3218 return event->pmu->count(event);
3219
3220 return __perf_event_count(event);
b5e58793
PZ
3221}
3222
ffe8690c
KX
3223/*
3224 * NMI-safe method to read a local event, that is an event that
3225 * is:
3226 * - either for the current task, or for this CPU
3227 * - does not have inherit set, for inherited task events
3228 * will not be local and we cannot read them atomically
3229 * - must not have a pmu::count method
3230 */
3231u64 perf_event_read_local(struct perf_event *event)
3232{
3233 unsigned long flags;
3234 u64 val;
3235
3236 /*
3237 * Disabling interrupts avoids all counter scheduling (context
3238 * switches, timer based rotation and IPIs).
3239 */
3240 local_irq_save(flags);
3241
3242 /* If this is a per-task event, it must be for current */
3243 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3244 event->hw.target != current);
3245
3246 /* If this is a per-CPU event, it must be for this CPU */
3247 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3248 event->cpu != smp_processor_id());
3249
3250 /*
3251 * It must not be an event with inherit set, we cannot read
3252 * all child counters from atomic context.
3253 */
3254 WARN_ON_ONCE(event->attr.inherit);
3255
3256 /*
3257 * It must not have a pmu::count method, those are not
3258 * NMI safe.
3259 */
3260 WARN_ON_ONCE(event->pmu->count);
3261
3262 /*
3263 * If the event is currently on this CPU, its either a per-task event,
3264 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3265 * oncpu == -1).
3266 */
3267 if (event->oncpu == smp_processor_id())
3268 event->pmu->read(event);
3269
3270 val = local64_read(&event->count);
3271 local_irq_restore(flags);
3272
3273 return val;
3274}
3275
7d88962e 3276static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3277{
7d88962e
SB
3278 int ret = 0;
3279
0793a61d 3280 /*
cdd6c482
IM
3281 * If event is enabled and currently active on a CPU, update the
3282 * value in the event structure:
0793a61d 3283 */
cdd6c482 3284 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3285 struct perf_read_data data = {
3286 .event = event,
3287 .group = group,
7d88962e 3288 .ret = 0,
0492d4c5 3289 };
cdd6c482 3290 smp_call_function_single(event->oncpu,
0492d4c5 3291 __perf_event_read, &data, 1);
7d88962e 3292 ret = data.ret;
cdd6c482 3293 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3294 struct perf_event_context *ctx = event->ctx;
3295 unsigned long flags;
3296
e625cce1 3297 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3298 /*
3299 * may read while context is not active
3300 * (e.g., thread is blocked), in that case
3301 * we cannot update context time
3302 */
e5d1367f 3303 if (ctx->is_active) {
c530ccd9 3304 update_context_time(ctx);
e5d1367f
SE
3305 update_cgrp_time_from_event(event);
3306 }
0492d4c5
PZ
3307 if (group)
3308 update_group_times(event);
3309 else
3310 update_event_times(event);
e625cce1 3311 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3312 }
7d88962e
SB
3313
3314 return ret;
0793a61d
TG
3315}
3316
a63eaf34 3317/*
cdd6c482 3318 * Initialize the perf_event context in a task_struct:
a63eaf34 3319 */
eb184479 3320static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3321{
e625cce1 3322 raw_spin_lock_init(&ctx->lock);
a63eaf34 3323 mutex_init(&ctx->mutex);
2fde4f94 3324 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3325 INIT_LIST_HEAD(&ctx->pinned_groups);
3326 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3327 INIT_LIST_HEAD(&ctx->event_list);
3328 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3329}
3330
3331static struct perf_event_context *
3332alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3333{
3334 struct perf_event_context *ctx;
3335
3336 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3337 if (!ctx)
3338 return NULL;
3339
3340 __perf_event_init_context(ctx);
3341 if (task) {
3342 ctx->task = task;
3343 get_task_struct(task);
0793a61d 3344 }
eb184479
PZ
3345 ctx->pmu = pmu;
3346
3347 return ctx;
a63eaf34
PM
3348}
3349
2ebd4ffb
MH
3350static struct task_struct *
3351find_lively_task_by_vpid(pid_t vpid)
3352{
3353 struct task_struct *task;
3354 int err;
0793a61d
TG
3355
3356 rcu_read_lock();
2ebd4ffb 3357 if (!vpid)
0793a61d
TG
3358 task = current;
3359 else
2ebd4ffb 3360 task = find_task_by_vpid(vpid);
0793a61d
TG
3361 if (task)
3362 get_task_struct(task);
3363 rcu_read_unlock();
3364
3365 if (!task)
3366 return ERR_PTR(-ESRCH);
3367
0793a61d 3368 /* Reuse ptrace permission checks for now. */
c93f7669 3369 err = -EACCES;
caaee623 3370 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
c93f7669
PM
3371 goto errout;
3372
2ebd4ffb
MH
3373 return task;
3374errout:
3375 put_task_struct(task);
3376 return ERR_PTR(err);
3377
3378}
3379
fe4b04fa
PZ
3380/*
3381 * Returns a matching context with refcount and pincount.
3382 */
108b02cf 3383static struct perf_event_context *
4af57ef2
YZ
3384find_get_context(struct pmu *pmu, struct task_struct *task,
3385 struct perf_event *event)
0793a61d 3386{
211de6eb 3387 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3388 struct perf_cpu_context *cpuctx;
4af57ef2 3389 void *task_ctx_data = NULL;
25346b93 3390 unsigned long flags;
8dc85d54 3391 int ctxn, err;
4af57ef2 3392 int cpu = event->cpu;
0793a61d 3393
22a4ec72 3394 if (!task) {
cdd6c482 3395 /* Must be root to operate on a CPU event: */
0764771d 3396 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3397 return ERR_PTR(-EACCES);
3398
0793a61d 3399 /*
cdd6c482 3400 * We could be clever and allow to attach a event to an
0793a61d
TG
3401 * offline CPU and activate it when the CPU comes up, but
3402 * that's for later.
3403 */
f6325e30 3404 if (!cpu_online(cpu))
0793a61d
TG
3405 return ERR_PTR(-ENODEV);
3406
108b02cf 3407 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3408 ctx = &cpuctx->ctx;
c93f7669 3409 get_ctx(ctx);
fe4b04fa 3410 ++ctx->pin_count;
0793a61d 3411
0793a61d
TG
3412 return ctx;
3413 }
3414
8dc85d54
PZ
3415 err = -EINVAL;
3416 ctxn = pmu->task_ctx_nr;
3417 if (ctxn < 0)
3418 goto errout;
3419
4af57ef2
YZ
3420 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3421 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3422 if (!task_ctx_data) {
3423 err = -ENOMEM;
3424 goto errout;
3425 }
3426 }
3427
9ed6060d 3428retry:
8dc85d54 3429 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3430 if (ctx) {
211de6eb 3431 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3432 ++ctx->pin_count;
4af57ef2
YZ
3433
3434 if (task_ctx_data && !ctx->task_ctx_data) {
3435 ctx->task_ctx_data = task_ctx_data;
3436 task_ctx_data = NULL;
3437 }
e625cce1 3438 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3439
3440 if (clone_ctx)
3441 put_ctx(clone_ctx);
9137fb28 3442 } else {
eb184479 3443 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3444 err = -ENOMEM;
3445 if (!ctx)
3446 goto errout;
eb184479 3447
4af57ef2
YZ
3448 if (task_ctx_data) {
3449 ctx->task_ctx_data = task_ctx_data;
3450 task_ctx_data = NULL;
3451 }
3452
dbe08d82
ON
3453 err = 0;
3454 mutex_lock(&task->perf_event_mutex);
3455 /*
3456 * If it has already passed perf_event_exit_task().
3457 * we must see PF_EXITING, it takes this mutex too.
3458 */
3459 if (task->flags & PF_EXITING)
3460 err = -ESRCH;
3461 else if (task->perf_event_ctxp[ctxn])
3462 err = -EAGAIN;
fe4b04fa 3463 else {
9137fb28 3464 get_ctx(ctx);
fe4b04fa 3465 ++ctx->pin_count;
dbe08d82 3466 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3467 }
dbe08d82
ON
3468 mutex_unlock(&task->perf_event_mutex);
3469
3470 if (unlikely(err)) {
9137fb28 3471 put_ctx(ctx);
dbe08d82
ON
3472
3473 if (err == -EAGAIN)
3474 goto retry;
3475 goto errout;
a63eaf34
PM
3476 }
3477 }
3478
4af57ef2 3479 kfree(task_ctx_data);
0793a61d 3480 return ctx;
c93f7669 3481
9ed6060d 3482errout:
4af57ef2 3483 kfree(task_ctx_data);
c93f7669 3484 return ERR_PTR(err);
0793a61d
TG
3485}
3486
6fb2915d 3487static void perf_event_free_filter(struct perf_event *event);
2541517c 3488static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3489
cdd6c482 3490static void free_event_rcu(struct rcu_head *head)
592903cd 3491{
cdd6c482 3492 struct perf_event *event;
592903cd 3493
cdd6c482
IM
3494 event = container_of(head, struct perf_event, rcu_head);
3495 if (event->ns)
3496 put_pid_ns(event->ns);
6fb2915d 3497 perf_event_free_filter(event);
cdd6c482 3498 kfree(event);
592903cd
PZ
3499}
3500
b69cf536
PZ
3501static void ring_buffer_attach(struct perf_event *event,
3502 struct ring_buffer *rb);
925d519a 3503
4beb31f3 3504static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3505{
4beb31f3
FW
3506 if (event->parent)
3507 return;
3508
4beb31f3
FW
3509 if (is_cgroup_event(event))
3510 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3511}
925d519a 3512
4beb31f3
FW
3513static void unaccount_event(struct perf_event *event)
3514{
25432ae9
PZ
3515 bool dec = false;
3516
4beb31f3
FW
3517 if (event->parent)
3518 return;
3519
3520 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 3521 dec = true;
4beb31f3
FW
3522 if (event->attr.mmap || event->attr.mmap_data)
3523 atomic_dec(&nr_mmap_events);
3524 if (event->attr.comm)
3525 atomic_dec(&nr_comm_events);
3526 if (event->attr.task)
3527 atomic_dec(&nr_task_events);
948b26b6
FW
3528 if (event->attr.freq)
3529 atomic_dec(&nr_freq_events);
45ac1403 3530 if (event->attr.context_switch) {
25432ae9 3531 dec = true;
45ac1403
AH
3532 atomic_dec(&nr_switch_events);
3533 }
4beb31f3 3534 if (is_cgroup_event(event))
25432ae9 3535 dec = true;
4beb31f3 3536 if (has_branch_stack(event))
25432ae9
PZ
3537 dec = true;
3538
3539 if (dec)
4beb31f3
FW
3540 static_key_slow_dec_deferred(&perf_sched_events);
3541
3542 unaccount_event_cpu(event, event->cpu);
3543}
925d519a 3544
bed5b25a
AS
3545/*
3546 * The following implement mutual exclusion of events on "exclusive" pmus
3547 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3548 * at a time, so we disallow creating events that might conflict, namely:
3549 *
3550 * 1) cpu-wide events in the presence of per-task events,
3551 * 2) per-task events in the presence of cpu-wide events,
3552 * 3) two matching events on the same context.
3553 *
3554 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 3555 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
3556 */
3557static int exclusive_event_init(struct perf_event *event)
3558{
3559 struct pmu *pmu = event->pmu;
3560
3561 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3562 return 0;
3563
3564 /*
3565 * Prevent co-existence of per-task and cpu-wide events on the
3566 * same exclusive pmu.
3567 *
3568 * Negative pmu::exclusive_cnt means there are cpu-wide
3569 * events on this "exclusive" pmu, positive means there are
3570 * per-task events.
3571 *
3572 * Since this is called in perf_event_alloc() path, event::ctx
3573 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3574 * to mean "per-task event", because unlike other attach states it
3575 * never gets cleared.
3576 */
3577 if (event->attach_state & PERF_ATTACH_TASK) {
3578 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3579 return -EBUSY;
3580 } else {
3581 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3582 return -EBUSY;
3583 }
3584
3585 return 0;
3586}
3587
3588static void exclusive_event_destroy(struct perf_event *event)
3589{
3590 struct pmu *pmu = event->pmu;
3591
3592 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3593 return;
3594
3595 /* see comment in exclusive_event_init() */
3596 if (event->attach_state & PERF_ATTACH_TASK)
3597 atomic_dec(&pmu->exclusive_cnt);
3598 else
3599 atomic_inc(&pmu->exclusive_cnt);
3600}
3601
3602static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3603{
3604 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3605 (e1->cpu == e2->cpu ||
3606 e1->cpu == -1 ||
3607 e2->cpu == -1))
3608 return true;
3609 return false;
3610}
3611
3612/* Called under the same ctx::mutex as perf_install_in_context() */
3613static bool exclusive_event_installable(struct perf_event *event,
3614 struct perf_event_context *ctx)
3615{
3616 struct perf_event *iter_event;
3617 struct pmu *pmu = event->pmu;
3618
3619 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3620 return true;
3621
3622 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3623 if (exclusive_event_match(iter_event, event))
3624 return false;
3625 }
3626
3627 return true;
3628}
3629
683ede43 3630static void _free_event(struct perf_event *event)
f1600952 3631{
e360adbe 3632 irq_work_sync(&event->pending);
925d519a 3633
4beb31f3 3634 unaccount_event(event);
9ee318a7 3635
76369139 3636 if (event->rb) {
9bb5d40c
PZ
3637 /*
3638 * Can happen when we close an event with re-directed output.
3639 *
3640 * Since we have a 0 refcount, perf_mmap_close() will skip
3641 * over us; possibly making our ring_buffer_put() the last.
3642 */
3643 mutex_lock(&event->mmap_mutex);
b69cf536 3644 ring_buffer_attach(event, NULL);
9bb5d40c 3645 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3646 }
3647
e5d1367f
SE
3648 if (is_cgroup_event(event))
3649 perf_detach_cgroup(event);
3650
a0733e69
PZ
3651 if (!event->parent) {
3652 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3653 put_callchain_buffers();
3654 }
3655
3656 perf_event_free_bpf_prog(event);
3657
3658 if (event->destroy)
3659 event->destroy(event);
3660
3661 if (event->ctx)
3662 put_ctx(event->ctx);
3663
3664 if (event->pmu) {
3665 exclusive_event_destroy(event);
3666 module_put(event->pmu->module);
3667 }
3668
3669 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
3670}
3671
683ede43
PZ
3672/*
3673 * Used to free events which have a known refcount of 1, such as in error paths
3674 * where the event isn't exposed yet and inherited events.
3675 */
3676static void free_event(struct perf_event *event)
0793a61d 3677{
683ede43
PZ
3678 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3679 "unexpected event refcount: %ld; ptr=%p\n",
3680 atomic_long_read(&event->refcount), event)) {
3681 /* leak to avoid use-after-free */
3682 return;
3683 }
0793a61d 3684
683ede43 3685 _free_event(event);
0793a61d
TG
3686}
3687
a66a3052 3688/*
f8697762 3689 * Remove user event from the owner task.
a66a3052 3690 */
f8697762 3691static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3692{
8882135b 3693 struct task_struct *owner;
fb0459d7 3694
8882135b 3695 rcu_read_lock();
8882135b 3696 /*
f47c02c0
PZ
3697 * Matches the smp_store_release() in perf_event_exit_task(). If we
3698 * observe !owner it means the list deletion is complete and we can
3699 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
3700 * owner->perf_event_mutex.
3701 */
f47c02c0 3702 owner = lockless_dereference(event->owner);
8882135b
PZ
3703 if (owner) {
3704 /*
3705 * Since delayed_put_task_struct() also drops the last
3706 * task reference we can safely take a new reference
3707 * while holding the rcu_read_lock().
3708 */
3709 get_task_struct(owner);
3710 }
3711 rcu_read_unlock();
3712
3713 if (owner) {
f63a8daa
PZ
3714 /*
3715 * If we're here through perf_event_exit_task() we're already
3716 * holding ctx->mutex which would be an inversion wrt. the
3717 * normal lock order.
3718 *
3719 * However we can safely take this lock because its the child
3720 * ctx->mutex.
3721 */
3722 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3723
8882135b
PZ
3724 /*
3725 * We have to re-check the event->owner field, if it is cleared
3726 * we raced with perf_event_exit_task(), acquiring the mutex
3727 * ensured they're done, and we can proceed with freeing the
3728 * event.
3729 */
f47c02c0 3730 if (event->owner) {
8882135b 3731 list_del_init(&event->owner_entry);
f47c02c0
PZ
3732 smp_store_release(&event->owner, NULL);
3733 }
8882135b
PZ
3734 mutex_unlock(&owner->perf_event_mutex);
3735 put_task_struct(owner);
3736 }
f8697762
JO
3737}
3738
f8697762
JO
3739static void put_event(struct perf_event *event)
3740{
f8697762
JO
3741 if (!atomic_long_dec_and_test(&event->refcount))
3742 return;
3743
c6e5b732
PZ
3744 _free_event(event);
3745}
3746
3747/*
3748 * Kill an event dead; while event:refcount will preserve the event
3749 * object, it will not preserve its functionality. Once the last 'user'
3750 * gives up the object, we'll destroy the thing.
3751 */
3752int perf_event_release_kernel(struct perf_event *event)
3753{
a4f4bb6d 3754 struct perf_event_context *ctx = event->ctx;
c6e5b732
PZ
3755 struct perf_event *child, *tmp;
3756
a4f4bb6d
PZ
3757 /*
3758 * If we got here through err_file: fput(event_file); we will not have
3759 * attached to a context yet.
3760 */
3761 if (!ctx) {
3762 WARN_ON_ONCE(event->attach_state &
3763 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
3764 goto no_ctx;
3765 }
3766
f8697762
JO
3767 if (!is_kernel_event(event))
3768 perf_remove_from_owner(event);
8882135b 3769
5fa7c8ec 3770 ctx = perf_event_ctx_lock(event);
a83fe28e 3771 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 3772 perf_remove_from_context(event, DETACH_GROUP);
683ede43 3773
a69b0ca4 3774 raw_spin_lock_irq(&ctx->lock);
683ede43 3775 /*
a69b0ca4
PZ
3776 * Mark this even as STATE_DEAD, there is no external reference to it
3777 * anymore.
683ede43 3778 *
a69b0ca4
PZ
3779 * Anybody acquiring event->child_mutex after the below loop _must_
3780 * also see this, most importantly inherit_event() which will avoid
3781 * placing more children on the list.
683ede43 3782 *
c6e5b732
PZ
3783 * Thus this guarantees that we will in fact observe and kill _ALL_
3784 * child events.
683ede43 3785 */
a69b0ca4
PZ
3786 event->state = PERF_EVENT_STATE_DEAD;
3787 raw_spin_unlock_irq(&ctx->lock);
3788
3789 perf_event_ctx_unlock(event, ctx);
683ede43 3790
c6e5b732
PZ
3791again:
3792 mutex_lock(&event->child_mutex);
3793 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 3794
c6e5b732
PZ
3795 /*
3796 * Cannot change, child events are not migrated, see the
3797 * comment with perf_event_ctx_lock_nested().
3798 */
3799 ctx = lockless_dereference(child->ctx);
3800 /*
3801 * Since child_mutex nests inside ctx::mutex, we must jump
3802 * through hoops. We start by grabbing a reference on the ctx.
3803 *
3804 * Since the event cannot get freed while we hold the
3805 * child_mutex, the context must also exist and have a !0
3806 * reference count.
3807 */
3808 get_ctx(ctx);
3809
3810 /*
3811 * Now that we have a ctx ref, we can drop child_mutex, and
3812 * acquire ctx::mutex without fear of it going away. Then we
3813 * can re-acquire child_mutex.
3814 */
3815 mutex_unlock(&event->child_mutex);
3816 mutex_lock(&ctx->mutex);
3817 mutex_lock(&event->child_mutex);
3818
3819 /*
3820 * Now that we hold ctx::mutex and child_mutex, revalidate our
3821 * state, if child is still the first entry, it didn't get freed
3822 * and we can continue doing so.
3823 */
3824 tmp = list_first_entry_or_null(&event->child_list,
3825 struct perf_event, child_list);
3826 if (tmp == child) {
3827 perf_remove_from_context(child, DETACH_GROUP);
3828 list_del(&child->child_list);
3829 free_event(child);
3830 /*
3831 * This matches the refcount bump in inherit_event();
3832 * this can't be the last reference.
3833 */
3834 put_event(event);
3835 }
3836
3837 mutex_unlock(&event->child_mutex);
3838 mutex_unlock(&ctx->mutex);
3839 put_ctx(ctx);
3840 goto again;
3841 }
3842 mutex_unlock(&event->child_mutex);
3843
a4f4bb6d
PZ
3844no_ctx:
3845 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
3846 return 0;
3847}
3848EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3849
8b10c5e2
PZ
3850/*
3851 * Called when the last reference to the file is gone.
3852 */
a6fa941d
AV
3853static int perf_release(struct inode *inode, struct file *file)
3854{
c6e5b732 3855 perf_event_release_kernel(file->private_data);
a6fa941d 3856 return 0;
fb0459d7 3857}
fb0459d7 3858
59ed446f 3859u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3860{
cdd6c482 3861 struct perf_event *child;
e53c0994
PZ
3862 u64 total = 0;
3863
59ed446f
PZ
3864 *enabled = 0;
3865 *running = 0;
3866
6f10581a 3867 mutex_lock(&event->child_mutex);
01add3ea 3868
7d88962e 3869 (void)perf_event_read(event, false);
01add3ea
SB
3870 total += perf_event_count(event);
3871
59ed446f
PZ
3872 *enabled += event->total_time_enabled +
3873 atomic64_read(&event->child_total_time_enabled);
3874 *running += event->total_time_running +
3875 atomic64_read(&event->child_total_time_running);
3876
3877 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 3878 (void)perf_event_read(child, false);
01add3ea 3879 total += perf_event_count(child);
59ed446f
PZ
3880 *enabled += child->total_time_enabled;
3881 *running += child->total_time_running;
3882 }
6f10581a 3883 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3884
3885 return total;
3886}
fb0459d7 3887EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3888
7d88962e 3889static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 3890 u64 read_format, u64 *values)
3dab77fb 3891{
fa8c2693
PZ
3892 struct perf_event *sub;
3893 int n = 1; /* skip @nr */
7d88962e 3894 int ret;
f63a8daa 3895
7d88962e
SB
3896 ret = perf_event_read(leader, true);
3897 if (ret)
3898 return ret;
abf4868b 3899
fa8c2693
PZ
3900 /*
3901 * Since we co-schedule groups, {enabled,running} times of siblings
3902 * will be identical to those of the leader, so we only publish one
3903 * set.
3904 */
3905 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3906 values[n++] += leader->total_time_enabled +
3907 atomic64_read(&leader->child_total_time_enabled);
3908 }
3dab77fb 3909
fa8c2693
PZ
3910 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3911 values[n++] += leader->total_time_running +
3912 atomic64_read(&leader->child_total_time_running);
3913 }
3914
3915 /*
3916 * Write {count,id} tuples for every sibling.
3917 */
3918 values[n++] += perf_event_count(leader);
abf4868b
PZ
3919 if (read_format & PERF_FORMAT_ID)
3920 values[n++] = primary_event_id(leader);
3dab77fb 3921
fa8c2693
PZ
3922 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3923 values[n++] += perf_event_count(sub);
3924 if (read_format & PERF_FORMAT_ID)
3925 values[n++] = primary_event_id(sub);
3926 }
7d88962e
SB
3927
3928 return 0;
fa8c2693 3929}
3dab77fb 3930
fa8c2693
PZ
3931static int perf_read_group(struct perf_event *event,
3932 u64 read_format, char __user *buf)
3933{
3934 struct perf_event *leader = event->group_leader, *child;
3935 struct perf_event_context *ctx = leader->ctx;
7d88962e 3936 int ret;
fa8c2693 3937 u64 *values;
3dab77fb 3938
fa8c2693 3939 lockdep_assert_held(&ctx->mutex);
3dab77fb 3940
fa8c2693
PZ
3941 values = kzalloc(event->read_size, GFP_KERNEL);
3942 if (!values)
3943 return -ENOMEM;
3dab77fb 3944
fa8c2693
PZ
3945 values[0] = 1 + leader->nr_siblings;
3946
3947 /*
3948 * By locking the child_mutex of the leader we effectively
3949 * lock the child list of all siblings.. XXX explain how.
3950 */
3951 mutex_lock(&leader->child_mutex);
abf4868b 3952
7d88962e
SB
3953 ret = __perf_read_group_add(leader, read_format, values);
3954 if (ret)
3955 goto unlock;
3956
3957 list_for_each_entry(child, &leader->child_list, child_list) {
3958 ret = __perf_read_group_add(child, read_format, values);
3959 if (ret)
3960 goto unlock;
3961 }
abf4868b 3962
fa8c2693 3963 mutex_unlock(&leader->child_mutex);
abf4868b 3964
7d88962e 3965 ret = event->read_size;
fa8c2693
PZ
3966 if (copy_to_user(buf, values, event->read_size))
3967 ret = -EFAULT;
7d88962e 3968 goto out;
fa8c2693 3969
7d88962e
SB
3970unlock:
3971 mutex_unlock(&leader->child_mutex);
3972out:
fa8c2693 3973 kfree(values);
abf4868b 3974 return ret;
3dab77fb
PZ
3975}
3976
b15f495b 3977static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
3978 u64 read_format, char __user *buf)
3979{
59ed446f 3980 u64 enabled, running;
3dab77fb
PZ
3981 u64 values[4];
3982 int n = 0;
3983
59ed446f
PZ
3984 values[n++] = perf_event_read_value(event, &enabled, &running);
3985 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3986 values[n++] = enabled;
3987 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3988 values[n++] = running;
3dab77fb 3989 if (read_format & PERF_FORMAT_ID)
cdd6c482 3990 values[n++] = primary_event_id(event);
3dab77fb
PZ
3991
3992 if (copy_to_user(buf, values, n * sizeof(u64)))
3993 return -EFAULT;
3994
3995 return n * sizeof(u64);
3996}
3997
dc633982
JO
3998static bool is_event_hup(struct perf_event *event)
3999{
4000 bool no_children;
4001
a69b0ca4 4002 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4003 return false;
4004
4005 mutex_lock(&event->child_mutex);
4006 no_children = list_empty(&event->child_list);
4007 mutex_unlock(&event->child_mutex);
4008 return no_children;
4009}
4010
0793a61d 4011/*
cdd6c482 4012 * Read the performance event - simple non blocking version for now
0793a61d
TG
4013 */
4014static ssize_t
b15f495b 4015__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4016{
cdd6c482 4017 u64 read_format = event->attr.read_format;
3dab77fb 4018 int ret;
0793a61d 4019
3b6f9e5c 4020 /*
cdd6c482 4021 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4022 * error state (i.e. because it was pinned but it couldn't be
4023 * scheduled on to the CPU at some point).
4024 */
cdd6c482 4025 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4026 return 0;
4027
c320c7b7 4028 if (count < event->read_size)
3dab77fb
PZ
4029 return -ENOSPC;
4030
cdd6c482 4031 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4032 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4033 ret = perf_read_group(event, read_format, buf);
3dab77fb 4034 else
b15f495b 4035 ret = perf_read_one(event, read_format, buf);
0793a61d 4036
3dab77fb 4037 return ret;
0793a61d
TG
4038}
4039
0793a61d
TG
4040static ssize_t
4041perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4042{
cdd6c482 4043 struct perf_event *event = file->private_data;
f63a8daa
PZ
4044 struct perf_event_context *ctx;
4045 int ret;
0793a61d 4046
f63a8daa 4047 ctx = perf_event_ctx_lock(event);
b15f495b 4048 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4049 perf_event_ctx_unlock(event, ctx);
4050
4051 return ret;
0793a61d
TG
4052}
4053
4054static unsigned int perf_poll(struct file *file, poll_table *wait)
4055{
cdd6c482 4056 struct perf_event *event = file->private_data;
76369139 4057 struct ring_buffer *rb;
61b67684 4058 unsigned int events = POLLHUP;
c7138f37 4059
e708d7ad 4060 poll_wait(file, &event->waitq, wait);
179033b3 4061
dc633982 4062 if (is_event_hup(event))
179033b3 4063 return events;
c7138f37 4064
10c6db11 4065 /*
9bb5d40c
PZ
4066 * Pin the event->rb by taking event->mmap_mutex; otherwise
4067 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4068 */
4069 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4070 rb = event->rb;
4071 if (rb)
76369139 4072 events = atomic_xchg(&rb->poll, 0);
10c6db11 4073 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4074 return events;
4075}
4076
f63a8daa 4077static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4078{
7d88962e 4079 (void)perf_event_read(event, false);
e7850595 4080 local64_set(&event->count, 0);
cdd6c482 4081 perf_event_update_userpage(event);
3df5edad
PZ
4082}
4083
c93f7669 4084/*
cdd6c482
IM
4085 * Holding the top-level event's child_mutex means that any
4086 * descendant process that has inherited this event will block
8ba289b8 4087 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4088 * task existence requirements of perf_event_enable/disable.
c93f7669 4089 */
cdd6c482
IM
4090static void perf_event_for_each_child(struct perf_event *event,
4091 void (*func)(struct perf_event *))
3df5edad 4092{
cdd6c482 4093 struct perf_event *child;
3df5edad 4094
cdd6c482 4095 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4096
cdd6c482
IM
4097 mutex_lock(&event->child_mutex);
4098 func(event);
4099 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4100 func(child);
cdd6c482 4101 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4102}
4103
cdd6c482
IM
4104static void perf_event_for_each(struct perf_event *event,
4105 void (*func)(struct perf_event *))
3df5edad 4106{
cdd6c482
IM
4107 struct perf_event_context *ctx = event->ctx;
4108 struct perf_event *sibling;
3df5edad 4109
f63a8daa
PZ
4110 lockdep_assert_held(&ctx->mutex);
4111
cdd6c482 4112 event = event->group_leader;
75f937f2 4113
cdd6c482 4114 perf_event_for_each_child(event, func);
cdd6c482 4115 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4116 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4117}
4118
fae3fde6
PZ
4119static void __perf_event_period(struct perf_event *event,
4120 struct perf_cpu_context *cpuctx,
4121 struct perf_event_context *ctx,
4122 void *info)
c7999c6f 4123{
fae3fde6 4124 u64 value = *((u64 *)info);
c7999c6f 4125 bool active;
08247e31 4126
cdd6c482 4127 if (event->attr.freq) {
cdd6c482 4128 event->attr.sample_freq = value;
08247e31 4129 } else {
cdd6c482
IM
4130 event->attr.sample_period = value;
4131 event->hw.sample_period = value;
08247e31 4132 }
bad7192b
PZ
4133
4134 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4135 if (active) {
4136 perf_pmu_disable(ctx->pmu);
4137 event->pmu->stop(event, PERF_EF_UPDATE);
4138 }
4139
4140 local64_set(&event->hw.period_left, 0);
4141
4142 if (active) {
4143 event->pmu->start(event, PERF_EF_RELOAD);
4144 perf_pmu_enable(ctx->pmu);
4145 }
c7999c6f
PZ
4146}
4147
4148static int perf_event_period(struct perf_event *event, u64 __user *arg)
4149{
c7999c6f
PZ
4150 u64 value;
4151
4152 if (!is_sampling_event(event))
4153 return -EINVAL;
4154
4155 if (copy_from_user(&value, arg, sizeof(value)))
4156 return -EFAULT;
4157
4158 if (!value)
4159 return -EINVAL;
4160
4161 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4162 return -EINVAL;
4163
fae3fde6 4164 event_function_call(event, __perf_event_period, &value);
08247e31 4165
c7999c6f 4166 return 0;
08247e31
PZ
4167}
4168
ac9721f3
PZ
4169static const struct file_operations perf_fops;
4170
2903ff01 4171static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4172{
2903ff01
AV
4173 struct fd f = fdget(fd);
4174 if (!f.file)
4175 return -EBADF;
ac9721f3 4176
2903ff01
AV
4177 if (f.file->f_op != &perf_fops) {
4178 fdput(f);
4179 return -EBADF;
ac9721f3 4180 }
2903ff01
AV
4181 *p = f;
4182 return 0;
ac9721f3
PZ
4183}
4184
4185static int perf_event_set_output(struct perf_event *event,
4186 struct perf_event *output_event);
6fb2915d 4187static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4188static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4189
f63a8daa 4190static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4191{
cdd6c482 4192 void (*func)(struct perf_event *);
3df5edad 4193 u32 flags = arg;
d859e29f
PM
4194
4195 switch (cmd) {
cdd6c482 4196 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4197 func = _perf_event_enable;
d859e29f 4198 break;
cdd6c482 4199 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4200 func = _perf_event_disable;
79f14641 4201 break;
cdd6c482 4202 case PERF_EVENT_IOC_RESET:
f63a8daa 4203 func = _perf_event_reset;
6de6a7b9 4204 break;
3df5edad 4205
cdd6c482 4206 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4207 return _perf_event_refresh(event, arg);
08247e31 4208
cdd6c482
IM
4209 case PERF_EVENT_IOC_PERIOD:
4210 return perf_event_period(event, (u64 __user *)arg);
08247e31 4211
cf4957f1
JO
4212 case PERF_EVENT_IOC_ID:
4213 {
4214 u64 id = primary_event_id(event);
4215
4216 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4217 return -EFAULT;
4218 return 0;
4219 }
4220
cdd6c482 4221 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4222 {
ac9721f3 4223 int ret;
ac9721f3 4224 if (arg != -1) {
2903ff01
AV
4225 struct perf_event *output_event;
4226 struct fd output;
4227 ret = perf_fget_light(arg, &output);
4228 if (ret)
4229 return ret;
4230 output_event = output.file->private_data;
4231 ret = perf_event_set_output(event, output_event);
4232 fdput(output);
4233 } else {
4234 ret = perf_event_set_output(event, NULL);
ac9721f3 4235 }
ac9721f3
PZ
4236 return ret;
4237 }
a4be7c27 4238
6fb2915d
LZ
4239 case PERF_EVENT_IOC_SET_FILTER:
4240 return perf_event_set_filter(event, (void __user *)arg);
4241
2541517c
AS
4242 case PERF_EVENT_IOC_SET_BPF:
4243 return perf_event_set_bpf_prog(event, arg);
4244
d859e29f 4245 default:
3df5edad 4246 return -ENOTTY;
d859e29f 4247 }
3df5edad
PZ
4248
4249 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4250 perf_event_for_each(event, func);
3df5edad 4251 else
cdd6c482 4252 perf_event_for_each_child(event, func);
3df5edad
PZ
4253
4254 return 0;
d859e29f
PM
4255}
4256
f63a8daa
PZ
4257static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4258{
4259 struct perf_event *event = file->private_data;
4260 struct perf_event_context *ctx;
4261 long ret;
4262
4263 ctx = perf_event_ctx_lock(event);
4264 ret = _perf_ioctl(event, cmd, arg);
4265 perf_event_ctx_unlock(event, ctx);
4266
4267 return ret;
4268}
4269
b3f20785
PM
4270#ifdef CONFIG_COMPAT
4271static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4272 unsigned long arg)
4273{
4274 switch (_IOC_NR(cmd)) {
4275 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4276 case _IOC_NR(PERF_EVENT_IOC_ID):
4277 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4278 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4279 cmd &= ~IOCSIZE_MASK;
4280 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4281 }
4282 break;
4283 }
4284 return perf_ioctl(file, cmd, arg);
4285}
4286#else
4287# define perf_compat_ioctl NULL
4288#endif
4289
cdd6c482 4290int perf_event_task_enable(void)
771d7cde 4291{
f63a8daa 4292 struct perf_event_context *ctx;
cdd6c482 4293 struct perf_event *event;
771d7cde 4294
cdd6c482 4295 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4296 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4297 ctx = perf_event_ctx_lock(event);
4298 perf_event_for_each_child(event, _perf_event_enable);
4299 perf_event_ctx_unlock(event, ctx);
4300 }
cdd6c482 4301 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4302
4303 return 0;
4304}
4305
cdd6c482 4306int perf_event_task_disable(void)
771d7cde 4307{
f63a8daa 4308 struct perf_event_context *ctx;
cdd6c482 4309 struct perf_event *event;
771d7cde 4310
cdd6c482 4311 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4312 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4313 ctx = perf_event_ctx_lock(event);
4314 perf_event_for_each_child(event, _perf_event_disable);
4315 perf_event_ctx_unlock(event, ctx);
4316 }
cdd6c482 4317 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4318
4319 return 0;
4320}
4321
cdd6c482 4322static int perf_event_index(struct perf_event *event)
194002b2 4323{
a4eaf7f1
PZ
4324 if (event->hw.state & PERF_HES_STOPPED)
4325 return 0;
4326
cdd6c482 4327 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4328 return 0;
4329
35edc2a5 4330 return event->pmu->event_idx(event);
194002b2
PZ
4331}
4332
c4794295 4333static void calc_timer_values(struct perf_event *event,
e3f3541c 4334 u64 *now,
7f310a5d
EM
4335 u64 *enabled,
4336 u64 *running)
c4794295 4337{
e3f3541c 4338 u64 ctx_time;
c4794295 4339
e3f3541c
PZ
4340 *now = perf_clock();
4341 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4342 *enabled = ctx_time - event->tstamp_enabled;
4343 *running = ctx_time - event->tstamp_running;
4344}
4345
fa731587
PZ
4346static void perf_event_init_userpage(struct perf_event *event)
4347{
4348 struct perf_event_mmap_page *userpg;
4349 struct ring_buffer *rb;
4350
4351 rcu_read_lock();
4352 rb = rcu_dereference(event->rb);
4353 if (!rb)
4354 goto unlock;
4355
4356 userpg = rb->user_page;
4357
4358 /* Allow new userspace to detect that bit 0 is deprecated */
4359 userpg->cap_bit0_is_deprecated = 1;
4360 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4361 userpg->data_offset = PAGE_SIZE;
4362 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4363
4364unlock:
4365 rcu_read_unlock();
4366}
4367
c1317ec2
AL
4368void __weak arch_perf_update_userpage(
4369 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4370{
4371}
4372
38ff667b
PZ
4373/*
4374 * Callers need to ensure there can be no nesting of this function, otherwise
4375 * the seqlock logic goes bad. We can not serialize this because the arch
4376 * code calls this from NMI context.
4377 */
cdd6c482 4378void perf_event_update_userpage(struct perf_event *event)
37d81828 4379{
cdd6c482 4380 struct perf_event_mmap_page *userpg;
76369139 4381 struct ring_buffer *rb;
e3f3541c 4382 u64 enabled, running, now;
38ff667b
PZ
4383
4384 rcu_read_lock();
5ec4c599
PZ
4385 rb = rcu_dereference(event->rb);
4386 if (!rb)
4387 goto unlock;
4388
0d641208
EM
4389 /*
4390 * compute total_time_enabled, total_time_running
4391 * based on snapshot values taken when the event
4392 * was last scheduled in.
4393 *
4394 * we cannot simply called update_context_time()
4395 * because of locking issue as we can be called in
4396 * NMI context
4397 */
e3f3541c 4398 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4399
76369139 4400 userpg = rb->user_page;
7b732a75
PZ
4401 /*
4402 * Disable preemption so as to not let the corresponding user-space
4403 * spin too long if we get preempted.
4404 */
4405 preempt_disable();
37d81828 4406 ++userpg->lock;
92f22a38 4407 barrier();
cdd6c482 4408 userpg->index = perf_event_index(event);
b5e58793 4409 userpg->offset = perf_event_count(event);
365a4038 4410 if (userpg->index)
e7850595 4411 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4412
0d641208 4413 userpg->time_enabled = enabled +
cdd6c482 4414 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4415
0d641208 4416 userpg->time_running = running +
cdd6c482 4417 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4418
c1317ec2 4419 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4420
92f22a38 4421 barrier();
37d81828 4422 ++userpg->lock;
7b732a75 4423 preempt_enable();
38ff667b 4424unlock:
7b732a75 4425 rcu_read_unlock();
37d81828
PM
4426}
4427
906010b2
PZ
4428static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4429{
4430 struct perf_event *event = vma->vm_file->private_data;
76369139 4431 struct ring_buffer *rb;
906010b2
PZ
4432 int ret = VM_FAULT_SIGBUS;
4433
4434 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4435 if (vmf->pgoff == 0)
4436 ret = 0;
4437 return ret;
4438 }
4439
4440 rcu_read_lock();
76369139
FW
4441 rb = rcu_dereference(event->rb);
4442 if (!rb)
906010b2
PZ
4443 goto unlock;
4444
4445 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4446 goto unlock;
4447
76369139 4448 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4449 if (!vmf->page)
4450 goto unlock;
4451
4452 get_page(vmf->page);
4453 vmf->page->mapping = vma->vm_file->f_mapping;
4454 vmf->page->index = vmf->pgoff;
4455
4456 ret = 0;
4457unlock:
4458 rcu_read_unlock();
4459
4460 return ret;
4461}
4462
10c6db11
PZ
4463static void ring_buffer_attach(struct perf_event *event,
4464 struct ring_buffer *rb)
4465{
b69cf536 4466 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4467 unsigned long flags;
4468
b69cf536
PZ
4469 if (event->rb) {
4470 /*
4471 * Should be impossible, we set this when removing
4472 * event->rb_entry and wait/clear when adding event->rb_entry.
4473 */
4474 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4475
b69cf536 4476 old_rb = event->rb;
b69cf536
PZ
4477 spin_lock_irqsave(&old_rb->event_lock, flags);
4478 list_del_rcu(&event->rb_entry);
4479 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4480
2f993cf0
ON
4481 event->rcu_batches = get_state_synchronize_rcu();
4482 event->rcu_pending = 1;
b69cf536 4483 }
10c6db11 4484
b69cf536 4485 if (rb) {
2f993cf0
ON
4486 if (event->rcu_pending) {
4487 cond_synchronize_rcu(event->rcu_batches);
4488 event->rcu_pending = 0;
4489 }
4490
b69cf536
PZ
4491 spin_lock_irqsave(&rb->event_lock, flags);
4492 list_add_rcu(&event->rb_entry, &rb->event_list);
4493 spin_unlock_irqrestore(&rb->event_lock, flags);
4494 }
4495
4496 rcu_assign_pointer(event->rb, rb);
4497
4498 if (old_rb) {
4499 ring_buffer_put(old_rb);
4500 /*
4501 * Since we detached before setting the new rb, so that we
4502 * could attach the new rb, we could have missed a wakeup.
4503 * Provide it now.
4504 */
4505 wake_up_all(&event->waitq);
4506 }
10c6db11
PZ
4507}
4508
4509static void ring_buffer_wakeup(struct perf_event *event)
4510{
4511 struct ring_buffer *rb;
4512
4513 rcu_read_lock();
4514 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4515 if (rb) {
4516 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4517 wake_up_all(&event->waitq);
4518 }
10c6db11
PZ
4519 rcu_read_unlock();
4520}
4521
fdc26706 4522struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4523{
76369139 4524 struct ring_buffer *rb;
7b732a75 4525
ac9721f3 4526 rcu_read_lock();
76369139
FW
4527 rb = rcu_dereference(event->rb);
4528 if (rb) {
4529 if (!atomic_inc_not_zero(&rb->refcount))
4530 rb = NULL;
ac9721f3
PZ
4531 }
4532 rcu_read_unlock();
4533
76369139 4534 return rb;
ac9721f3
PZ
4535}
4536
fdc26706 4537void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4538{
76369139 4539 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4540 return;
7b732a75 4541
9bb5d40c 4542 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4543
76369139 4544 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4545}
4546
4547static void perf_mmap_open(struct vm_area_struct *vma)
4548{
cdd6c482 4549 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4550
cdd6c482 4551 atomic_inc(&event->mmap_count);
9bb5d40c 4552 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 4553
45bfb2e5
PZ
4554 if (vma->vm_pgoff)
4555 atomic_inc(&event->rb->aux_mmap_count);
4556
1e0fb9ec
AL
4557 if (event->pmu->event_mapped)
4558 event->pmu->event_mapped(event);
7b732a75
PZ
4559}
4560
9bb5d40c
PZ
4561/*
4562 * A buffer can be mmap()ed multiple times; either directly through the same
4563 * event, or through other events by use of perf_event_set_output().
4564 *
4565 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4566 * the buffer here, where we still have a VM context. This means we need
4567 * to detach all events redirecting to us.
4568 */
7b732a75
PZ
4569static void perf_mmap_close(struct vm_area_struct *vma)
4570{
cdd6c482 4571 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4572
b69cf536 4573 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4574 struct user_struct *mmap_user = rb->mmap_user;
4575 int mmap_locked = rb->mmap_locked;
4576 unsigned long size = perf_data_size(rb);
789f90fc 4577
1e0fb9ec
AL
4578 if (event->pmu->event_unmapped)
4579 event->pmu->event_unmapped(event);
4580
45bfb2e5
PZ
4581 /*
4582 * rb->aux_mmap_count will always drop before rb->mmap_count and
4583 * event->mmap_count, so it is ok to use event->mmap_mutex to
4584 * serialize with perf_mmap here.
4585 */
4586 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4587 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4588 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4589 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4590
4591 rb_free_aux(rb);
4592 mutex_unlock(&event->mmap_mutex);
4593 }
4594
9bb5d40c
PZ
4595 atomic_dec(&rb->mmap_count);
4596
4597 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4598 goto out_put;
9bb5d40c 4599
b69cf536 4600 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4601 mutex_unlock(&event->mmap_mutex);
4602
4603 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4604 if (atomic_read(&rb->mmap_count))
4605 goto out_put;
ac9721f3 4606
9bb5d40c
PZ
4607 /*
4608 * No other mmap()s, detach from all other events that might redirect
4609 * into the now unreachable buffer. Somewhat complicated by the
4610 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4611 */
4612again:
4613 rcu_read_lock();
4614 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4615 if (!atomic_long_inc_not_zero(&event->refcount)) {
4616 /*
4617 * This event is en-route to free_event() which will
4618 * detach it and remove it from the list.
4619 */
4620 continue;
4621 }
4622 rcu_read_unlock();
789f90fc 4623
9bb5d40c
PZ
4624 mutex_lock(&event->mmap_mutex);
4625 /*
4626 * Check we didn't race with perf_event_set_output() which can
4627 * swizzle the rb from under us while we were waiting to
4628 * acquire mmap_mutex.
4629 *
4630 * If we find a different rb; ignore this event, a next
4631 * iteration will no longer find it on the list. We have to
4632 * still restart the iteration to make sure we're not now
4633 * iterating the wrong list.
4634 */
b69cf536
PZ
4635 if (event->rb == rb)
4636 ring_buffer_attach(event, NULL);
4637
cdd6c482 4638 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4639 put_event(event);
ac9721f3 4640
9bb5d40c
PZ
4641 /*
4642 * Restart the iteration; either we're on the wrong list or
4643 * destroyed its integrity by doing a deletion.
4644 */
4645 goto again;
7b732a75 4646 }
9bb5d40c
PZ
4647 rcu_read_unlock();
4648
4649 /*
4650 * It could be there's still a few 0-ref events on the list; they'll
4651 * get cleaned up by free_event() -- they'll also still have their
4652 * ref on the rb and will free it whenever they are done with it.
4653 *
4654 * Aside from that, this buffer is 'fully' detached and unmapped,
4655 * undo the VM accounting.
4656 */
4657
4658 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4659 vma->vm_mm->pinned_vm -= mmap_locked;
4660 free_uid(mmap_user);
4661
b69cf536 4662out_put:
9bb5d40c 4663 ring_buffer_put(rb); /* could be last */
37d81828
PM
4664}
4665
f0f37e2f 4666static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 4667 .open = perf_mmap_open,
45bfb2e5 4668 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
4669 .fault = perf_mmap_fault,
4670 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4671};
4672
4673static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4674{
cdd6c482 4675 struct perf_event *event = file->private_data;
22a4f650 4676 unsigned long user_locked, user_lock_limit;
789f90fc 4677 struct user_struct *user = current_user();
22a4f650 4678 unsigned long locked, lock_limit;
45bfb2e5 4679 struct ring_buffer *rb = NULL;
7b732a75
PZ
4680 unsigned long vma_size;
4681 unsigned long nr_pages;
45bfb2e5 4682 long user_extra = 0, extra = 0;
d57e34fd 4683 int ret = 0, flags = 0;
37d81828 4684
c7920614
PZ
4685 /*
4686 * Don't allow mmap() of inherited per-task counters. This would
4687 * create a performance issue due to all children writing to the
76369139 4688 * same rb.
c7920614
PZ
4689 */
4690 if (event->cpu == -1 && event->attr.inherit)
4691 return -EINVAL;
4692
43a21ea8 4693 if (!(vma->vm_flags & VM_SHARED))
37d81828 4694 return -EINVAL;
7b732a75
PZ
4695
4696 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
4697
4698 if (vma->vm_pgoff == 0) {
4699 nr_pages = (vma_size / PAGE_SIZE) - 1;
4700 } else {
4701 /*
4702 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4703 * mapped, all subsequent mappings should have the same size
4704 * and offset. Must be above the normal perf buffer.
4705 */
4706 u64 aux_offset, aux_size;
4707
4708 if (!event->rb)
4709 return -EINVAL;
4710
4711 nr_pages = vma_size / PAGE_SIZE;
4712
4713 mutex_lock(&event->mmap_mutex);
4714 ret = -EINVAL;
4715
4716 rb = event->rb;
4717 if (!rb)
4718 goto aux_unlock;
4719
4720 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4721 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4722
4723 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4724 goto aux_unlock;
4725
4726 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4727 goto aux_unlock;
4728
4729 /* already mapped with a different offset */
4730 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4731 goto aux_unlock;
4732
4733 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4734 goto aux_unlock;
4735
4736 /* already mapped with a different size */
4737 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4738 goto aux_unlock;
4739
4740 if (!is_power_of_2(nr_pages))
4741 goto aux_unlock;
4742
4743 if (!atomic_inc_not_zero(&rb->mmap_count))
4744 goto aux_unlock;
4745
4746 if (rb_has_aux(rb)) {
4747 atomic_inc(&rb->aux_mmap_count);
4748 ret = 0;
4749 goto unlock;
4750 }
4751
4752 atomic_set(&rb->aux_mmap_count, 1);
4753 user_extra = nr_pages;
4754
4755 goto accounting;
4756 }
7b732a75 4757
7730d865 4758 /*
76369139 4759 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4760 * can do bitmasks instead of modulo.
4761 */
2ed11312 4762 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4763 return -EINVAL;
4764
7b732a75 4765 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4766 return -EINVAL;
4767
cdd6c482 4768 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4769again:
cdd6c482 4770 mutex_lock(&event->mmap_mutex);
76369139 4771 if (event->rb) {
9bb5d40c 4772 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4773 ret = -EINVAL;
9bb5d40c
PZ
4774 goto unlock;
4775 }
4776
4777 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4778 /*
4779 * Raced against perf_mmap_close() through
4780 * perf_event_set_output(). Try again, hope for better
4781 * luck.
4782 */
4783 mutex_unlock(&event->mmap_mutex);
4784 goto again;
4785 }
4786
ebb3c4c4
PZ
4787 goto unlock;
4788 }
4789
789f90fc 4790 user_extra = nr_pages + 1;
45bfb2e5
PZ
4791
4792accounting:
cdd6c482 4793 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4794
4795 /*
4796 * Increase the limit linearly with more CPUs:
4797 */
4798 user_lock_limit *= num_online_cpus();
4799
789f90fc 4800 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4801
789f90fc
PZ
4802 if (user_locked > user_lock_limit)
4803 extra = user_locked - user_lock_limit;
7b732a75 4804
78d7d407 4805 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4806 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4807 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4808
459ec28a
IM
4809 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4810 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4811 ret = -EPERM;
4812 goto unlock;
4813 }
7b732a75 4814
45bfb2e5 4815 WARN_ON(!rb && event->rb);
906010b2 4816
d57e34fd 4817 if (vma->vm_flags & VM_WRITE)
76369139 4818 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4819
76369139 4820 if (!rb) {
45bfb2e5
PZ
4821 rb = rb_alloc(nr_pages,
4822 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4823 event->cpu, flags);
26cb63ad 4824
45bfb2e5
PZ
4825 if (!rb) {
4826 ret = -ENOMEM;
4827 goto unlock;
4828 }
43a21ea8 4829
45bfb2e5
PZ
4830 atomic_set(&rb->mmap_count, 1);
4831 rb->mmap_user = get_current_user();
4832 rb->mmap_locked = extra;
26cb63ad 4833
45bfb2e5 4834 ring_buffer_attach(event, rb);
ac9721f3 4835
45bfb2e5
PZ
4836 perf_event_init_userpage(event);
4837 perf_event_update_userpage(event);
4838 } else {
1a594131
AS
4839 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4840 event->attr.aux_watermark, flags);
45bfb2e5
PZ
4841 if (!ret)
4842 rb->aux_mmap_locked = extra;
4843 }
9a0f05cb 4844
ebb3c4c4 4845unlock:
45bfb2e5
PZ
4846 if (!ret) {
4847 atomic_long_add(user_extra, &user->locked_vm);
4848 vma->vm_mm->pinned_vm += extra;
4849
ac9721f3 4850 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
4851 } else if (rb) {
4852 atomic_dec(&rb->mmap_count);
4853 }
4854aux_unlock:
cdd6c482 4855 mutex_unlock(&event->mmap_mutex);
37d81828 4856
9bb5d40c
PZ
4857 /*
4858 * Since pinned accounting is per vm we cannot allow fork() to copy our
4859 * vma.
4860 */
26cb63ad 4861 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4862 vma->vm_ops = &perf_mmap_vmops;
7b732a75 4863
1e0fb9ec
AL
4864 if (event->pmu->event_mapped)
4865 event->pmu->event_mapped(event);
4866
7b732a75 4867 return ret;
37d81828
PM
4868}
4869
3c446b3d
PZ
4870static int perf_fasync(int fd, struct file *filp, int on)
4871{
496ad9aa 4872 struct inode *inode = file_inode(filp);
cdd6c482 4873 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4874 int retval;
4875
5955102c 4876 inode_lock(inode);
cdd6c482 4877 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 4878 inode_unlock(inode);
3c446b3d
PZ
4879
4880 if (retval < 0)
4881 return retval;
4882
4883 return 0;
4884}
4885
0793a61d 4886static const struct file_operations perf_fops = {
3326c1ce 4887 .llseek = no_llseek,
0793a61d
TG
4888 .release = perf_release,
4889 .read = perf_read,
4890 .poll = perf_poll,
d859e29f 4891 .unlocked_ioctl = perf_ioctl,
b3f20785 4892 .compat_ioctl = perf_compat_ioctl,
37d81828 4893 .mmap = perf_mmap,
3c446b3d 4894 .fasync = perf_fasync,
0793a61d
TG
4895};
4896
925d519a 4897/*
cdd6c482 4898 * Perf event wakeup
925d519a
PZ
4899 *
4900 * If there's data, ensure we set the poll() state and publish everything
4901 * to user-space before waking everybody up.
4902 */
4903
fed66e2c
PZ
4904static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4905{
4906 /* only the parent has fasync state */
4907 if (event->parent)
4908 event = event->parent;
4909 return &event->fasync;
4910}
4911
cdd6c482 4912void perf_event_wakeup(struct perf_event *event)
925d519a 4913{
10c6db11 4914 ring_buffer_wakeup(event);
4c9e2542 4915
cdd6c482 4916 if (event->pending_kill) {
fed66e2c 4917 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 4918 event->pending_kill = 0;
4c9e2542 4919 }
925d519a
PZ
4920}
4921
e360adbe 4922static void perf_pending_event(struct irq_work *entry)
79f14641 4923{
cdd6c482
IM
4924 struct perf_event *event = container_of(entry,
4925 struct perf_event, pending);
d525211f
PZ
4926 int rctx;
4927
4928 rctx = perf_swevent_get_recursion_context();
4929 /*
4930 * If we 'fail' here, that's OK, it means recursion is already disabled
4931 * and we won't recurse 'further'.
4932 */
79f14641 4933
cdd6c482
IM
4934 if (event->pending_disable) {
4935 event->pending_disable = 0;
fae3fde6 4936 perf_event_disable_local(event);
79f14641
PZ
4937 }
4938
cdd6c482
IM
4939 if (event->pending_wakeup) {
4940 event->pending_wakeup = 0;
4941 perf_event_wakeup(event);
79f14641 4942 }
d525211f
PZ
4943
4944 if (rctx >= 0)
4945 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
4946}
4947
39447b38
ZY
4948/*
4949 * We assume there is only KVM supporting the callbacks.
4950 * Later on, we might change it to a list if there is
4951 * another virtualization implementation supporting the callbacks.
4952 */
4953struct perf_guest_info_callbacks *perf_guest_cbs;
4954
4955int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4956{
4957 perf_guest_cbs = cbs;
4958 return 0;
4959}
4960EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4961
4962int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4963{
4964 perf_guest_cbs = NULL;
4965 return 0;
4966}
4967EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4968
4018994f
JO
4969static void
4970perf_output_sample_regs(struct perf_output_handle *handle,
4971 struct pt_regs *regs, u64 mask)
4972{
4973 int bit;
4974
4975 for_each_set_bit(bit, (const unsigned long *) &mask,
4976 sizeof(mask) * BITS_PER_BYTE) {
4977 u64 val;
4978
4979 val = perf_reg_value(regs, bit);
4980 perf_output_put(handle, val);
4981 }
4982}
4983
60e2364e 4984static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
4985 struct pt_regs *regs,
4986 struct pt_regs *regs_user_copy)
4018994f 4987{
88a7c26a
AL
4988 if (user_mode(regs)) {
4989 regs_user->abi = perf_reg_abi(current);
2565711f 4990 regs_user->regs = regs;
88a7c26a
AL
4991 } else if (current->mm) {
4992 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
4993 } else {
4994 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4995 regs_user->regs = NULL;
4018994f
JO
4996 }
4997}
4998
60e2364e
SE
4999static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5000 struct pt_regs *regs)
5001{
5002 regs_intr->regs = regs;
5003 regs_intr->abi = perf_reg_abi(current);
5004}
5005
5006
c5ebcedb
JO
5007/*
5008 * Get remaining task size from user stack pointer.
5009 *
5010 * It'd be better to take stack vma map and limit this more
5011 * precisly, but there's no way to get it safely under interrupt,
5012 * so using TASK_SIZE as limit.
5013 */
5014static u64 perf_ustack_task_size(struct pt_regs *regs)
5015{
5016 unsigned long addr = perf_user_stack_pointer(regs);
5017
5018 if (!addr || addr >= TASK_SIZE)
5019 return 0;
5020
5021 return TASK_SIZE - addr;
5022}
5023
5024static u16
5025perf_sample_ustack_size(u16 stack_size, u16 header_size,
5026 struct pt_regs *regs)
5027{
5028 u64 task_size;
5029
5030 /* No regs, no stack pointer, no dump. */
5031 if (!regs)
5032 return 0;
5033
5034 /*
5035 * Check if we fit in with the requested stack size into the:
5036 * - TASK_SIZE
5037 * If we don't, we limit the size to the TASK_SIZE.
5038 *
5039 * - remaining sample size
5040 * If we don't, we customize the stack size to
5041 * fit in to the remaining sample size.
5042 */
5043
5044 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5045 stack_size = min(stack_size, (u16) task_size);
5046
5047 /* Current header size plus static size and dynamic size. */
5048 header_size += 2 * sizeof(u64);
5049
5050 /* Do we fit in with the current stack dump size? */
5051 if ((u16) (header_size + stack_size) < header_size) {
5052 /*
5053 * If we overflow the maximum size for the sample,
5054 * we customize the stack dump size to fit in.
5055 */
5056 stack_size = USHRT_MAX - header_size - sizeof(u64);
5057 stack_size = round_up(stack_size, sizeof(u64));
5058 }
5059
5060 return stack_size;
5061}
5062
5063static void
5064perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5065 struct pt_regs *regs)
5066{
5067 /* Case of a kernel thread, nothing to dump */
5068 if (!regs) {
5069 u64 size = 0;
5070 perf_output_put(handle, size);
5071 } else {
5072 unsigned long sp;
5073 unsigned int rem;
5074 u64 dyn_size;
5075
5076 /*
5077 * We dump:
5078 * static size
5079 * - the size requested by user or the best one we can fit
5080 * in to the sample max size
5081 * data
5082 * - user stack dump data
5083 * dynamic size
5084 * - the actual dumped size
5085 */
5086
5087 /* Static size. */
5088 perf_output_put(handle, dump_size);
5089
5090 /* Data. */
5091 sp = perf_user_stack_pointer(regs);
5092 rem = __output_copy_user(handle, (void *) sp, dump_size);
5093 dyn_size = dump_size - rem;
5094
5095 perf_output_skip(handle, rem);
5096
5097 /* Dynamic size. */
5098 perf_output_put(handle, dyn_size);
5099 }
5100}
5101
c980d109
ACM
5102static void __perf_event_header__init_id(struct perf_event_header *header,
5103 struct perf_sample_data *data,
5104 struct perf_event *event)
6844c09d
ACM
5105{
5106 u64 sample_type = event->attr.sample_type;
5107
5108 data->type = sample_type;
5109 header->size += event->id_header_size;
5110
5111 if (sample_type & PERF_SAMPLE_TID) {
5112 /* namespace issues */
5113 data->tid_entry.pid = perf_event_pid(event, current);
5114 data->tid_entry.tid = perf_event_tid(event, current);
5115 }
5116
5117 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5118 data->time = perf_event_clock(event);
6844c09d 5119
ff3d527c 5120 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5121 data->id = primary_event_id(event);
5122
5123 if (sample_type & PERF_SAMPLE_STREAM_ID)
5124 data->stream_id = event->id;
5125
5126 if (sample_type & PERF_SAMPLE_CPU) {
5127 data->cpu_entry.cpu = raw_smp_processor_id();
5128 data->cpu_entry.reserved = 0;
5129 }
5130}
5131
76369139
FW
5132void perf_event_header__init_id(struct perf_event_header *header,
5133 struct perf_sample_data *data,
5134 struct perf_event *event)
c980d109
ACM
5135{
5136 if (event->attr.sample_id_all)
5137 __perf_event_header__init_id(header, data, event);
5138}
5139
5140static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5141 struct perf_sample_data *data)
5142{
5143 u64 sample_type = data->type;
5144
5145 if (sample_type & PERF_SAMPLE_TID)
5146 perf_output_put(handle, data->tid_entry);
5147
5148 if (sample_type & PERF_SAMPLE_TIME)
5149 perf_output_put(handle, data->time);
5150
5151 if (sample_type & PERF_SAMPLE_ID)
5152 perf_output_put(handle, data->id);
5153
5154 if (sample_type & PERF_SAMPLE_STREAM_ID)
5155 perf_output_put(handle, data->stream_id);
5156
5157 if (sample_type & PERF_SAMPLE_CPU)
5158 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5159
5160 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5161 perf_output_put(handle, data->id);
c980d109
ACM
5162}
5163
76369139
FW
5164void perf_event__output_id_sample(struct perf_event *event,
5165 struct perf_output_handle *handle,
5166 struct perf_sample_data *sample)
c980d109
ACM
5167{
5168 if (event->attr.sample_id_all)
5169 __perf_event__output_id_sample(handle, sample);
5170}
5171
3dab77fb 5172static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5173 struct perf_event *event,
5174 u64 enabled, u64 running)
3dab77fb 5175{
cdd6c482 5176 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5177 u64 values[4];
5178 int n = 0;
5179
b5e58793 5180 values[n++] = perf_event_count(event);
3dab77fb 5181 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5182 values[n++] = enabled +
cdd6c482 5183 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5184 }
5185 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5186 values[n++] = running +
cdd6c482 5187 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5188 }
5189 if (read_format & PERF_FORMAT_ID)
cdd6c482 5190 values[n++] = primary_event_id(event);
3dab77fb 5191
76369139 5192 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5193}
5194
5195/*
cdd6c482 5196 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5197 */
5198static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5199 struct perf_event *event,
5200 u64 enabled, u64 running)
3dab77fb 5201{
cdd6c482
IM
5202 struct perf_event *leader = event->group_leader, *sub;
5203 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5204 u64 values[5];
5205 int n = 0;
5206
5207 values[n++] = 1 + leader->nr_siblings;
5208
5209 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5210 values[n++] = enabled;
3dab77fb
PZ
5211
5212 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5213 values[n++] = running;
3dab77fb 5214
cdd6c482 5215 if (leader != event)
3dab77fb
PZ
5216 leader->pmu->read(leader);
5217
b5e58793 5218 values[n++] = perf_event_count(leader);
3dab77fb 5219 if (read_format & PERF_FORMAT_ID)
cdd6c482 5220 values[n++] = primary_event_id(leader);
3dab77fb 5221
76369139 5222 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5223
65abc865 5224 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5225 n = 0;
5226
6f5ab001
JO
5227 if ((sub != event) &&
5228 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5229 sub->pmu->read(sub);
5230
b5e58793 5231 values[n++] = perf_event_count(sub);
3dab77fb 5232 if (read_format & PERF_FORMAT_ID)
cdd6c482 5233 values[n++] = primary_event_id(sub);
3dab77fb 5234
76369139 5235 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5236 }
5237}
5238
eed01528
SE
5239#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5240 PERF_FORMAT_TOTAL_TIME_RUNNING)
5241
3dab77fb 5242static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5243 struct perf_event *event)
3dab77fb 5244{
e3f3541c 5245 u64 enabled = 0, running = 0, now;
eed01528
SE
5246 u64 read_format = event->attr.read_format;
5247
5248 /*
5249 * compute total_time_enabled, total_time_running
5250 * based on snapshot values taken when the event
5251 * was last scheduled in.
5252 *
5253 * we cannot simply called update_context_time()
5254 * because of locking issue as we are called in
5255 * NMI context
5256 */
c4794295 5257 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5258 calc_timer_values(event, &now, &enabled, &running);
eed01528 5259
cdd6c482 5260 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5261 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5262 else
eed01528 5263 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5264}
5265
5622f295
MM
5266void perf_output_sample(struct perf_output_handle *handle,
5267 struct perf_event_header *header,
5268 struct perf_sample_data *data,
cdd6c482 5269 struct perf_event *event)
5622f295
MM
5270{
5271 u64 sample_type = data->type;
5272
5273 perf_output_put(handle, *header);
5274
ff3d527c
AH
5275 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5276 perf_output_put(handle, data->id);
5277
5622f295
MM
5278 if (sample_type & PERF_SAMPLE_IP)
5279 perf_output_put(handle, data->ip);
5280
5281 if (sample_type & PERF_SAMPLE_TID)
5282 perf_output_put(handle, data->tid_entry);
5283
5284 if (sample_type & PERF_SAMPLE_TIME)
5285 perf_output_put(handle, data->time);
5286
5287 if (sample_type & PERF_SAMPLE_ADDR)
5288 perf_output_put(handle, data->addr);
5289
5290 if (sample_type & PERF_SAMPLE_ID)
5291 perf_output_put(handle, data->id);
5292
5293 if (sample_type & PERF_SAMPLE_STREAM_ID)
5294 perf_output_put(handle, data->stream_id);
5295
5296 if (sample_type & PERF_SAMPLE_CPU)
5297 perf_output_put(handle, data->cpu_entry);
5298
5299 if (sample_type & PERF_SAMPLE_PERIOD)
5300 perf_output_put(handle, data->period);
5301
5302 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5303 perf_output_read(handle, event);
5622f295
MM
5304
5305 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5306 if (data->callchain) {
5307 int size = 1;
5308
5309 if (data->callchain)
5310 size += data->callchain->nr;
5311
5312 size *= sizeof(u64);
5313
76369139 5314 __output_copy(handle, data->callchain, size);
5622f295
MM
5315 } else {
5316 u64 nr = 0;
5317 perf_output_put(handle, nr);
5318 }
5319 }
5320
5321 if (sample_type & PERF_SAMPLE_RAW) {
5322 if (data->raw) {
fa128e6a
AS
5323 u32 raw_size = data->raw->size;
5324 u32 real_size = round_up(raw_size + sizeof(u32),
5325 sizeof(u64)) - sizeof(u32);
5326 u64 zero = 0;
5327
5328 perf_output_put(handle, real_size);
5329 __output_copy(handle, data->raw->data, raw_size);
5330 if (real_size - raw_size)
5331 __output_copy(handle, &zero, real_size - raw_size);
5622f295
MM
5332 } else {
5333 struct {
5334 u32 size;
5335 u32 data;
5336 } raw = {
5337 .size = sizeof(u32),
5338 .data = 0,
5339 };
5340 perf_output_put(handle, raw);
5341 }
5342 }
a7ac67ea 5343
bce38cd5
SE
5344 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5345 if (data->br_stack) {
5346 size_t size;
5347
5348 size = data->br_stack->nr
5349 * sizeof(struct perf_branch_entry);
5350
5351 perf_output_put(handle, data->br_stack->nr);
5352 perf_output_copy(handle, data->br_stack->entries, size);
5353 } else {
5354 /*
5355 * we always store at least the value of nr
5356 */
5357 u64 nr = 0;
5358 perf_output_put(handle, nr);
5359 }
5360 }
4018994f
JO
5361
5362 if (sample_type & PERF_SAMPLE_REGS_USER) {
5363 u64 abi = data->regs_user.abi;
5364
5365 /*
5366 * If there are no regs to dump, notice it through
5367 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5368 */
5369 perf_output_put(handle, abi);
5370
5371 if (abi) {
5372 u64 mask = event->attr.sample_regs_user;
5373 perf_output_sample_regs(handle,
5374 data->regs_user.regs,
5375 mask);
5376 }
5377 }
c5ebcedb 5378
a5cdd40c 5379 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5380 perf_output_sample_ustack(handle,
5381 data->stack_user_size,
5382 data->regs_user.regs);
a5cdd40c 5383 }
c3feedf2
AK
5384
5385 if (sample_type & PERF_SAMPLE_WEIGHT)
5386 perf_output_put(handle, data->weight);
d6be9ad6
SE
5387
5388 if (sample_type & PERF_SAMPLE_DATA_SRC)
5389 perf_output_put(handle, data->data_src.val);
a5cdd40c 5390
fdfbbd07
AK
5391 if (sample_type & PERF_SAMPLE_TRANSACTION)
5392 perf_output_put(handle, data->txn);
5393
60e2364e
SE
5394 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5395 u64 abi = data->regs_intr.abi;
5396 /*
5397 * If there are no regs to dump, notice it through
5398 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5399 */
5400 perf_output_put(handle, abi);
5401
5402 if (abi) {
5403 u64 mask = event->attr.sample_regs_intr;
5404
5405 perf_output_sample_regs(handle,
5406 data->regs_intr.regs,
5407 mask);
5408 }
5409 }
5410
a5cdd40c
PZ
5411 if (!event->attr.watermark) {
5412 int wakeup_events = event->attr.wakeup_events;
5413
5414 if (wakeup_events) {
5415 struct ring_buffer *rb = handle->rb;
5416 int events = local_inc_return(&rb->events);
5417
5418 if (events >= wakeup_events) {
5419 local_sub(wakeup_events, &rb->events);
5420 local_inc(&rb->wakeup);
5421 }
5422 }
5423 }
5622f295
MM
5424}
5425
5426void perf_prepare_sample(struct perf_event_header *header,
5427 struct perf_sample_data *data,
cdd6c482 5428 struct perf_event *event,
5622f295 5429 struct pt_regs *regs)
7b732a75 5430{
cdd6c482 5431 u64 sample_type = event->attr.sample_type;
7b732a75 5432
cdd6c482 5433 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5434 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5435
5436 header->misc = 0;
5437 header->misc |= perf_misc_flags(regs);
6fab0192 5438
c980d109 5439 __perf_event_header__init_id(header, data, event);
6844c09d 5440
c320c7b7 5441 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5442 data->ip = perf_instruction_pointer(regs);
5443
b23f3325 5444 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5445 int size = 1;
394ee076 5446
e6dab5ff 5447 data->callchain = perf_callchain(event, regs);
5622f295
MM
5448
5449 if (data->callchain)
5450 size += data->callchain->nr;
5451
5452 header->size += size * sizeof(u64);
394ee076
PZ
5453 }
5454
3a43ce68 5455 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
5456 int size = sizeof(u32);
5457
5458 if (data->raw)
5459 size += data->raw->size;
5460 else
5461 size += sizeof(u32);
5462
fa128e6a 5463 header->size += round_up(size, sizeof(u64));
7f453c24 5464 }
bce38cd5
SE
5465
5466 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5467 int size = sizeof(u64); /* nr */
5468 if (data->br_stack) {
5469 size += data->br_stack->nr
5470 * sizeof(struct perf_branch_entry);
5471 }
5472 header->size += size;
5473 }
4018994f 5474
2565711f 5475 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5476 perf_sample_regs_user(&data->regs_user, regs,
5477 &data->regs_user_copy);
2565711f 5478
4018994f
JO
5479 if (sample_type & PERF_SAMPLE_REGS_USER) {
5480 /* regs dump ABI info */
5481 int size = sizeof(u64);
5482
4018994f
JO
5483 if (data->regs_user.regs) {
5484 u64 mask = event->attr.sample_regs_user;
5485 size += hweight64(mask) * sizeof(u64);
5486 }
5487
5488 header->size += size;
5489 }
c5ebcedb
JO
5490
5491 if (sample_type & PERF_SAMPLE_STACK_USER) {
5492 /*
5493 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5494 * processed as the last one or have additional check added
5495 * in case new sample type is added, because we could eat
5496 * up the rest of the sample size.
5497 */
c5ebcedb
JO
5498 u16 stack_size = event->attr.sample_stack_user;
5499 u16 size = sizeof(u64);
5500
c5ebcedb 5501 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5502 data->regs_user.regs);
c5ebcedb
JO
5503
5504 /*
5505 * If there is something to dump, add space for the dump
5506 * itself and for the field that tells the dynamic size,
5507 * which is how many have been actually dumped.
5508 */
5509 if (stack_size)
5510 size += sizeof(u64) + stack_size;
5511
5512 data->stack_user_size = stack_size;
5513 header->size += size;
5514 }
60e2364e
SE
5515
5516 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5517 /* regs dump ABI info */
5518 int size = sizeof(u64);
5519
5520 perf_sample_regs_intr(&data->regs_intr, regs);
5521
5522 if (data->regs_intr.regs) {
5523 u64 mask = event->attr.sample_regs_intr;
5524
5525 size += hweight64(mask) * sizeof(u64);
5526 }
5527
5528 header->size += size;
5529 }
5622f295 5530}
7f453c24 5531
21509084
YZ
5532void perf_event_output(struct perf_event *event,
5533 struct perf_sample_data *data,
5534 struct pt_regs *regs)
5622f295
MM
5535{
5536 struct perf_output_handle handle;
5537 struct perf_event_header header;
689802b2 5538
927c7a9e
FW
5539 /* protect the callchain buffers */
5540 rcu_read_lock();
5541
cdd6c482 5542 perf_prepare_sample(&header, data, event, regs);
5c148194 5543
a7ac67ea 5544 if (perf_output_begin(&handle, event, header.size))
927c7a9e 5545 goto exit;
0322cd6e 5546
cdd6c482 5547 perf_output_sample(&handle, &header, data, event);
f413cdb8 5548
8a057d84 5549 perf_output_end(&handle);
927c7a9e
FW
5550
5551exit:
5552 rcu_read_unlock();
0322cd6e
PZ
5553}
5554
38b200d6 5555/*
cdd6c482 5556 * read event_id
38b200d6
PZ
5557 */
5558
5559struct perf_read_event {
5560 struct perf_event_header header;
5561
5562 u32 pid;
5563 u32 tid;
38b200d6
PZ
5564};
5565
5566static void
cdd6c482 5567perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5568 struct task_struct *task)
5569{
5570 struct perf_output_handle handle;
c980d109 5571 struct perf_sample_data sample;
dfc65094 5572 struct perf_read_event read_event = {
38b200d6 5573 .header = {
cdd6c482 5574 .type = PERF_RECORD_READ,
38b200d6 5575 .misc = 0,
c320c7b7 5576 .size = sizeof(read_event) + event->read_size,
38b200d6 5577 },
cdd6c482
IM
5578 .pid = perf_event_pid(event, task),
5579 .tid = perf_event_tid(event, task),
38b200d6 5580 };
3dab77fb 5581 int ret;
38b200d6 5582
c980d109 5583 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 5584 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
5585 if (ret)
5586 return;
5587
dfc65094 5588 perf_output_put(&handle, read_event);
cdd6c482 5589 perf_output_read(&handle, event);
c980d109 5590 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5591
38b200d6
PZ
5592 perf_output_end(&handle);
5593}
5594
52d857a8
JO
5595typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5596
5597static void
5598perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
5599 perf_event_aux_output_cb output,
5600 void *data)
5601{
5602 struct perf_event *event;
5603
5604 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5605 if (event->state < PERF_EVENT_STATE_INACTIVE)
5606 continue;
5607 if (!event_filter_match(event))
5608 continue;
67516844 5609 output(event, data);
52d857a8
JO
5610 }
5611}
5612
4e93ad60
JO
5613static void
5614perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5615 struct perf_event_context *task_ctx)
5616{
5617 rcu_read_lock();
5618 preempt_disable();
5619 perf_event_aux_ctx(task_ctx, output, data);
5620 preempt_enable();
5621 rcu_read_unlock();
5622}
5623
52d857a8 5624static void
67516844 5625perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
5626 struct perf_event_context *task_ctx)
5627{
5628 struct perf_cpu_context *cpuctx;
5629 struct perf_event_context *ctx;
5630 struct pmu *pmu;
5631 int ctxn;
5632
4e93ad60
JO
5633 /*
5634 * If we have task_ctx != NULL we only notify
5635 * the task context itself. The task_ctx is set
5636 * only for EXIT events before releasing task
5637 * context.
5638 */
5639 if (task_ctx) {
5640 perf_event_aux_task_ctx(output, data, task_ctx);
5641 return;
5642 }
5643
52d857a8
JO
5644 rcu_read_lock();
5645 list_for_each_entry_rcu(pmu, &pmus, entry) {
5646 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5647 if (cpuctx->unique_pmu != pmu)
5648 goto next;
67516844 5649 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
5650 ctxn = pmu->task_ctx_nr;
5651 if (ctxn < 0)
5652 goto next;
5653 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5654 if (ctx)
67516844 5655 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
5656next:
5657 put_cpu_ptr(pmu->pmu_cpu_context);
5658 }
52d857a8
JO
5659 rcu_read_unlock();
5660}
5661
60313ebe 5662/*
9f498cc5
PZ
5663 * task tracking -- fork/exit
5664 *
13d7a241 5665 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
5666 */
5667
9f498cc5 5668struct perf_task_event {
3a80b4a3 5669 struct task_struct *task;
cdd6c482 5670 struct perf_event_context *task_ctx;
60313ebe
PZ
5671
5672 struct {
5673 struct perf_event_header header;
5674
5675 u32 pid;
5676 u32 ppid;
9f498cc5
PZ
5677 u32 tid;
5678 u32 ptid;
393b2ad8 5679 u64 time;
cdd6c482 5680 } event_id;
60313ebe
PZ
5681};
5682
67516844
JO
5683static int perf_event_task_match(struct perf_event *event)
5684{
13d7a241
SE
5685 return event->attr.comm || event->attr.mmap ||
5686 event->attr.mmap2 || event->attr.mmap_data ||
5687 event->attr.task;
67516844
JO
5688}
5689
cdd6c482 5690static void perf_event_task_output(struct perf_event *event,
52d857a8 5691 void *data)
60313ebe 5692{
52d857a8 5693 struct perf_task_event *task_event = data;
60313ebe 5694 struct perf_output_handle handle;
c980d109 5695 struct perf_sample_data sample;
9f498cc5 5696 struct task_struct *task = task_event->task;
c980d109 5697 int ret, size = task_event->event_id.header.size;
8bb39f9a 5698
67516844
JO
5699 if (!perf_event_task_match(event))
5700 return;
5701
c980d109 5702 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 5703
c980d109 5704 ret = perf_output_begin(&handle, event,
a7ac67ea 5705 task_event->event_id.header.size);
ef60777c 5706 if (ret)
c980d109 5707 goto out;
60313ebe 5708
cdd6c482
IM
5709 task_event->event_id.pid = perf_event_pid(event, task);
5710 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 5711
cdd6c482
IM
5712 task_event->event_id.tid = perf_event_tid(event, task);
5713 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 5714
34f43927
PZ
5715 task_event->event_id.time = perf_event_clock(event);
5716
cdd6c482 5717 perf_output_put(&handle, task_event->event_id);
393b2ad8 5718
c980d109
ACM
5719 perf_event__output_id_sample(event, &handle, &sample);
5720
60313ebe 5721 perf_output_end(&handle);
c980d109
ACM
5722out:
5723 task_event->event_id.header.size = size;
60313ebe
PZ
5724}
5725
cdd6c482
IM
5726static void perf_event_task(struct task_struct *task,
5727 struct perf_event_context *task_ctx,
3a80b4a3 5728 int new)
60313ebe 5729{
9f498cc5 5730 struct perf_task_event task_event;
60313ebe 5731
cdd6c482
IM
5732 if (!atomic_read(&nr_comm_events) &&
5733 !atomic_read(&nr_mmap_events) &&
5734 !atomic_read(&nr_task_events))
60313ebe
PZ
5735 return;
5736
9f498cc5 5737 task_event = (struct perf_task_event){
3a80b4a3
PZ
5738 .task = task,
5739 .task_ctx = task_ctx,
cdd6c482 5740 .event_id = {
60313ebe 5741 .header = {
cdd6c482 5742 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 5743 .misc = 0,
cdd6c482 5744 .size = sizeof(task_event.event_id),
60313ebe 5745 },
573402db
PZ
5746 /* .pid */
5747 /* .ppid */
9f498cc5
PZ
5748 /* .tid */
5749 /* .ptid */
34f43927 5750 /* .time */
60313ebe
PZ
5751 },
5752 };
5753
67516844 5754 perf_event_aux(perf_event_task_output,
52d857a8
JO
5755 &task_event,
5756 task_ctx);
9f498cc5
PZ
5757}
5758
cdd6c482 5759void perf_event_fork(struct task_struct *task)
9f498cc5 5760{
cdd6c482 5761 perf_event_task(task, NULL, 1);
60313ebe
PZ
5762}
5763
8d1b2d93
PZ
5764/*
5765 * comm tracking
5766 */
5767
5768struct perf_comm_event {
22a4f650
IM
5769 struct task_struct *task;
5770 char *comm;
8d1b2d93
PZ
5771 int comm_size;
5772
5773 struct {
5774 struct perf_event_header header;
5775
5776 u32 pid;
5777 u32 tid;
cdd6c482 5778 } event_id;
8d1b2d93
PZ
5779};
5780
67516844
JO
5781static int perf_event_comm_match(struct perf_event *event)
5782{
5783 return event->attr.comm;
5784}
5785
cdd6c482 5786static void perf_event_comm_output(struct perf_event *event,
52d857a8 5787 void *data)
8d1b2d93 5788{
52d857a8 5789 struct perf_comm_event *comm_event = data;
8d1b2d93 5790 struct perf_output_handle handle;
c980d109 5791 struct perf_sample_data sample;
cdd6c482 5792 int size = comm_event->event_id.header.size;
c980d109
ACM
5793 int ret;
5794
67516844
JO
5795 if (!perf_event_comm_match(event))
5796 return;
5797
c980d109
ACM
5798 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5799 ret = perf_output_begin(&handle, event,
a7ac67ea 5800 comm_event->event_id.header.size);
8d1b2d93
PZ
5801
5802 if (ret)
c980d109 5803 goto out;
8d1b2d93 5804
cdd6c482
IM
5805 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5806 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 5807
cdd6c482 5808 perf_output_put(&handle, comm_event->event_id);
76369139 5809 __output_copy(&handle, comm_event->comm,
8d1b2d93 5810 comm_event->comm_size);
c980d109
ACM
5811
5812 perf_event__output_id_sample(event, &handle, &sample);
5813
8d1b2d93 5814 perf_output_end(&handle);
c980d109
ACM
5815out:
5816 comm_event->event_id.header.size = size;
8d1b2d93
PZ
5817}
5818
cdd6c482 5819static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 5820{
413ee3b4 5821 char comm[TASK_COMM_LEN];
8d1b2d93 5822 unsigned int size;
8d1b2d93 5823
413ee3b4 5824 memset(comm, 0, sizeof(comm));
96b02d78 5825 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 5826 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
5827
5828 comm_event->comm = comm;
5829 comm_event->comm_size = size;
5830
cdd6c482 5831 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5832
67516844 5833 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5834 comm_event,
5835 NULL);
8d1b2d93
PZ
5836}
5837
82b89778 5838void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 5839{
9ee318a7
PZ
5840 struct perf_comm_event comm_event;
5841
cdd6c482 5842 if (!atomic_read(&nr_comm_events))
9ee318a7 5843 return;
a63eaf34 5844
9ee318a7 5845 comm_event = (struct perf_comm_event){
8d1b2d93 5846 .task = task,
573402db
PZ
5847 /* .comm */
5848 /* .comm_size */
cdd6c482 5849 .event_id = {
573402db 5850 .header = {
cdd6c482 5851 .type = PERF_RECORD_COMM,
82b89778 5852 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
5853 /* .size */
5854 },
5855 /* .pid */
5856 /* .tid */
8d1b2d93
PZ
5857 },
5858 };
5859
cdd6c482 5860 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5861}
5862
0a4a9391
PZ
5863/*
5864 * mmap tracking
5865 */
5866
5867struct perf_mmap_event {
089dd79d
PZ
5868 struct vm_area_struct *vma;
5869
5870 const char *file_name;
5871 int file_size;
13d7a241
SE
5872 int maj, min;
5873 u64 ino;
5874 u64 ino_generation;
f972eb63 5875 u32 prot, flags;
0a4a9391
PZ
5876
5877 struct {
5878 struct perf_event_header header;
5879
5880 u32 pid;
5881 u32 tid;
5882 u64 start;
5883 u64 len;
5884 u64 pgoff;
cdd6c482 5885 } event_id;
0a4a9391
PZ
5886};
5887
67516844
JO
5888static int perf_event_mmap_match(struct perf_event *event,
5889 void *data)
5890{
5891 struct perf_mmap_event *mmap_event = data;
5892 struct vm_area_struct *vma = mmap_event->vma;
5893 int executable = vma->vm_flags & VM_EXEC;
5894
5895 return (!executable && event->attr.mmap_data) ||
13d7a241 5896 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5897}
5898
cdd6c482 5899static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5900 void *data)
0a4a9391 5901{
52d857a8 5902 struct perf_mmap_event *mmap_event = data;
0a4a9391 5903 struct perf_output_handle handle;
c980d109 5904 struct perf_sample_data sample;
cdd6c482 5905 int size = mmap_event->event_id.header.size;
c980d109 5906 int ret;
0a4a9391 5907
67516844
JO
5908 if (!perf_event_mmap_match(event, data))
5909 return;
5910
13d7a241
SE
5911 if (event->attr.mmap2) {
5912 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5913 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5914 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5915 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5916 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
5917 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5918 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
5919 }
5920
c980d109
ACM
5921 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5922 ret = perf_output_begin(&handle, event,
a7ac67ea 5923 mmap_event->event_id.header.size);
0a4a9391 5924 if (ret)
c980d109 5925 goto out;
0a4a9391 5926
cdd6c482
IM
5927 mmap_event->event_id.pid = perf_event_pid(event, current);
5928 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5929
cdd6c482 5930 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
5931
5932 if (event->attr.mmap2) {
5933 perf_output_put(&handle, mmap_event->maj);
5934 perf_output_put(&handle, mmap_event->min);
5935 perf_output_put(&handle, mmap_event->ino);
5936 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
5937 perf_output_put(&handle, mmap_event->prot);
5938 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
5939 }
5940
76369139 5941 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5942 mmap_event->file_size);
c980d109
ACM
5943
5944 perf_event__output_id_sample(event, &handle, &sample);
5945
78d613eb 5946 perf_output_end(&handle);
c980d109
ACM
5947out:
5948 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5949}
5950
cdd6c482 5951static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5952{
089dd79d
PZ
5953 struct vm_area_struct *vma = mmap_event->vma;
5954 struct file *file = vma->vm_file;
13d7a241
SE
5955 int maj = 0, min = 0;
5956 u64 ino = 0, gen = 0;
f972eb63 5957 u32 prot = 0, flags = 0;
0a4a9391
PZ
5958 unsigned int size;
5959 char tmp[16];
5960 char *buf = NULL;
2c42cfbf 5961 char *name;
413ee3b4 5962
0a4a9391 5963 if (file) {
13d7a241
SE
5964 struct inode *inode;
5965 dev_t dev;
3ea2f2b9 5966
2c42cfbf 5967 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 5968 if (!buf) {
c7e548b4
ON
5969 name = "//enomem";
5970 goto cpy_name;
0a4a9391 5971 }
413ee3b4 5972 /*
3ea2f2b9 5973 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
5974 * need to add enough zero bytes after the string to handle
5975 * the 64bit alignment we do later.
5976 */
9bf39ab2 5977 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 5978 if (IS_ERR(name)) {
c7e548b4
ON
5979 name = "//toolong";
5980 goto cpy_name;
0a4a9391 5981 }
13d7a241
SE
5982 inode = file_inode(vma->vm_file);
5983 dev = inode->i_sb->s_dev;
5984 ino = inode->i_ino;
5985 gen = inode->i_generation;
5986 maj = MAJOR(dev);
5987 min = MINOR(dev);
f972eb63
PZ
5988
5989 if (vma->vm_flags & VM_READ)
5990 prot |= PROT_READ;
5991 if (vma->vm_flags & VM_WRITE)
5992 prot |= PROT_WRITE;
5993 if (vma->vm_flags & VM_EXEC)
5994 prot |= PROT_EXEC;
5995
5996 if (vma->vm_flags & VM_MAYSHARE)
5997 flags = MAP_SHARED;
5998 else
5999 flags = MAP_PRIVATE;
6000
6001 if (vma->vm_flags & VM_DENYWRITE)
6002 flags |= MAP_DENYWRITE;
6003 if (vma->vm_flags & VM_MAYEXEC)
6004 flags |= MAP_EXECUTABLE;
6005 if (vma->vm_flags & VM_LOCKED)
6006 flags |= MAP_LOCKED;
6007 if (vma->vm_flags & VM_HUGETLB)
6008 flags |= MAP_HUGETLB;
6009
c7e548b4 6010 goto got_name;
0a4a9391 6011 } else {
fbe26abe
JO
6012 if (vma->vm_ops && vma->vm_ops->name) {
6013 name = (char *) vma->vm_ops->name(vma);
6014 if (name)
6015 goto cpy_name;
6016 }
6017
2c42cfbf 6018 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6019 if (name)
6020 goto cpy_name;
089dd79d 6021
32c5fb7e 6022 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6023 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6024 name = "[heap]";
6025 goto cpy_name;
32c5fb7e
ON
6026 }
6027 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6028 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6029 name = "[stack]";
6030 goto cpy_name;
089dd79d
PZ
6031 }
6032
c7e548b4
ON
6033 name = "//anon";
6034 goto cpy_name;
0a4a9391
PZ
6035 }
6036
c7e548b4
ON
6037cpy_name:
6038 strlcpy(tmp, name, sizeof(tmp));
6039 name = tmp;
0a4a9391 6040got_name:
2c42cfbf
PZ
6041 /*
6042 * Since our buffer works in 8 byte units we need to align our string
6043 * size to a multiple of 8. However, we must guarantee the tail end is
6044 * zero'd out to avoid leaking random bits to userspace.
6045 */
6046 size = strlen(name)+1;
6047 while (!IS_ALIGNED(size, sizeof(u64)))
6048 name[size++] = '\0';
0a4a9391
PZ
6049
6050 mmap_event->file_name = name;
6051 mmap_event->file_size = size;
13d7a241
SE
6052 mmap_event->maj = maj;
6053 mmap_event->min = min;
6054 mmap_event->ino = ino;
6055 mmap_event->ino_generation = gen;
f972eb63
PZ
6056 mmap_event->prot = prot;
6057 mmap_event->flags = flags;
0a4a9391 6058
2fe85427
SE
6059 if (!(vma->vm_flags & VM_EXEC))
6060 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6061
cdd6c482 6062 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6063
67516844 6064 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
6065 mmap_event,
6066 NULL);
665c2142 6067
0a4a9391
PZ
6068 kfree(buf);
6069}
6070
3af9e859 6071void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 6072{
9ee318a7
PZ
6073 struct perf_mmap_event mmap_event;
6074
cdd6c482 6075 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
6076 return;
6077
6078 mmap_event = (struct perf_mmap_event){
089dd79d 6079 .vma = vma,
573402db
PZ
6080 /* .file_name */
6081 /* .file_size */
cdd6c482 6082 .event_id = {
573402db 6083 .header = {
cdd6c482 6084 .type = PERF_RECORD_MMAP,
39447b38 6085 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
6086 /* .size */
6087 },
6088 /* .pid */
6089 /* .tid */
089dd79d
PZ
6090 .start = vma->vm_start,
6091 .len = vma->vm_end - vma->vm_start,
3a0304e9 6092 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 6093 },
13d7a241
SE
6094 /* .maj (attr_mmap2 only) */
6095 /* .min (attr_mmap2 only) */
6096 /* .ino (attr_mmap2 only) */
6097 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
6098 /* .prot (attr_mmap2 only) */
6099 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
6100 };
6101
cdd6c482 6102 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
6103}
6104
68db7e98
AS
6105void perf_event_aux_event(struct perf_event *event, unsigned long head,
6106 unsigned long size, u64 flags)
6107{
6108 struct perf_output_handle handle;
6109 struct perf_sample_data sample;
6110 struct perf_aux_event {
6111 struct perf_event_header header;
6112 u64 offset;
6113 u64 size;
6114 u64 flags;
6115 } rec = {
6116 .header = {
6117 .type = PERF_RECORD_AUX,
6118 .misc = 0,
6119 .size = sizeof(rec),
6120 },
6121 .offset = head,
6122 .size = size,
6123 .flags = flags,
6124 };
6125 int ret;
6126
6127 perf_event_header__init_id(&rec.header, &sample, event);
6128 ret = perf_output_begin(&handle, event, rec.header.size);
6129
6130 if (ret)
6131 return;
6132
6133 perf_output_put(&handle, rec);
6134 perf_event__output_id_sample(event, &handle, &sample);
6135
6136 perf_output_end(&handle);
6137}
6138
f38b0dbb
KL
6139/*
6140 * Lost/dropped samples logging
6141 */
6142void perf_log_lost_samples(struct perf_event *event, u64 lost)
6143{
6144 struct perf_output_handle handle;
6145 struct perf_sample_data sample;
6146 int ret;
6147
6148 struct {
6149 struct perf_event_header header;
6150 u64 lost;
6151 } lost_samples_event = {
6152 .header = {
6153 .type = PERF_RECORD_LOST_SAMPLES,
6154 .misc = 0,
6155 .size = sizeof(lost_samples_event),
6156 },
6157 .lost = lost,
6158 };
6159
6160 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6161
6162 ret = perf_output_begin(&handle, event,
6163 lost_samples_event.header.size);
6164 if (ret)
6165 return;
6166
6167 perf_output_put(&handle, lost_samples_event);
6168 perf_event__output_id_sample(event, &handle, &sample);
6169 perf_output_end(&handle);
6170}
6171
45ac1403
AH
6172/*
6173 * context_switch tracking
6174 */
6175
6176struct perf_switch_event {
6177 struct task_struct *task;
6178 struct task_struct *next_prev;
6179
6180 struct {
6181 struct perf_event_header header;
6182 u32 next_prev_pid;
6183 u32 next_prev_tid;
6184 } event_id;
6185};
6186
6187static int perf_event_switch_match(struct perf_event *event)
6188{
6189 return event->attr.context_switch;
6190}
6191
6192static void perf_event_switch_output(struct perf_event *event, void *data)
6193{
6194 struct perf_switch_event *se = data;
6195 struct perf_output_handle handle;
6196 struct perf_sample_data sample;
6197 int ret;
6198
6199 if (!perf_event_switch_match(event))
6200 return;
6201
6202 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6203 if (event->ctx->task) {
6204 se->event_id.header.type = PERF_RECORD_SWITCH;
6205 se->event_id.header.size = sizeof(se->event_id.header);
6206 } else {
6207 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6208 se->event_id.header.size = sizeof(se->event_id);
6209 se->event_id.next_prev_pid =
6210 perf_event_pid(event, se->next_prev);
6211 se->event_id.next_prev_tid =
6212 perf_event_tid(event, se->next_prev);
6213 }
6214
6215 perf_event_header__init_id(&se->event_id.header, &sample, event);
6216
6217 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6218 if (ret)
6219 return;
6220
6221 if (event->ctx->task)
6222 perf_output_put(&handle, se->event_id.header);
6223 else
6224 perf_output_put(&handle, se->event_id);
6225
6226 perf_event__output_id_sample(event, &handle, &sample);
6227
6228 perf_output_end(&handle);
6229}
6230
6231static void perf_event_switch(struct task_struct *task,
6232 struct task_struct *next_prev, bool sched_in)
6233{
6234 struct perf_switch_event switch_event;
6235
6236 /* N.B. caller checks nr_switch_events != 0 */
6237
6238 switch_event = (struct perf_switch_event){
6239 .task = task,
6240 .next_prev = next_prev,
6241 .event_id = {
6242 .header = {
6243 /* .type */
6244 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6245 /* .size */
6246 },
6247 /* .next_prev_pid */
6248 /* .next_prev_tid */
6249 },
6250 };
6251
6252 perf_event_aux(perf_event_switch_output,
6253 &switch_event,
6254 NULL);
6255}
6256
a78ac325
PZ
6257/*
6258 * IRQ throttle logging
6259 */
6260
cdd6c482 6261static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
6262{
6263 struct perf_output_handle handle;
c980d109 6264 struct perf_sample_data sample;
a78ac325
PZ
6265 int ret;
6266
6267 struct {
6268 struct perf_event_header header;
6269 u64 time;
cca3f454 6270 u64 id;
7f453c24 6271 u64 stream_id;
a78ac325
PZ
6272 } throttle_event = {
6273 .header = {
cdd6c482 6274 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
6275 .misc = 0,
6276 .size = sizeof(throttle_event),
6277 },
34f43927 6278 .time = perf_event_clock(event),
cdd6c482
IM
6279 .id = primary_event_id(event),
6280 .stream_id = event->id,
a78ac325
PZ
6281 };
6282
966ee4d6 6283 if (enable)
cdd6c482 6284 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 6285
c980d109
ACM
6286 perf_event_header__init_id(&throttle_event.header, &sample, event);
6287
6288 ret = perf_output_begin(&handle, event,
a7ac67ea 6289 throttle_event.header.size);
a78ac325
PZ
6290 if (ret)
6291 return;
6292
6293 perf_output_put(&handle, throttle_event);
c980d109 6294 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
6295 perf_output_end(&handle);
6296}
6297
ec0d7729
AS
6298static void perf_log_itrace_start(struct perf_event *event)
6299{
6300 struct perf_output_handle handle;
6301 struct perf_sample_data sample;
6302 struct perf_aux_event {
6303 struct perf_event_header header;
6304 u32 pid;
6305 u32 tid;
6306 } rec;
6307 int ret;
6308
6309 if (event->parent)
6310 event = event->parent;
6311
6312 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6313 event->hw.itrace_started)
6314 return;
6315
ec0d7729
AS
6316 rec.header.type = PERF_RECORD_ITRACE_START;
6317 rec.header.misc = 0;
6318 rec.header.size = sizeof(rec);
6319 rec.pid = perf_event_pid(event, current);
6320 rec.tid = perf_event_tid(event, current);
6321
6322 perf_event_header__init_id(&rec.header, &sample, event);
6323 ret = perf_output_begin(&handle, event, rec.header.size);
6324
6325 if (ret)
6326 return;
6327
6328 perf_output_put(&handle, rec);
6329 perf_event__output_id_sample(event, &handle, &sample);
6330
6331 perf_output_end(&handle);
6332}
6333
f6c7d5fe 6334/*
cdd6c482 6335 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
6336 */
6337
a8b0ca17 6338static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
6339 int throttle, struct perf_sample_data *data,
6340 struct pt_regs *regs)
f6c7d5fe 6341{
cdd6c482
IM
6342 int events = atomic_read(&event->event_limit);
6343 struct hw_perf_event *hwc = &event->hw;
e050e3f0 6344 u64 seq;
79f14641
PZ
6345 int ret = 0;
6346
96398826
PZ
6347 /*
6348 * Non-sampling counters might still use the PMI to fold short
6349 * hardware counters, ignore those.
6350 */
6351 if (unlikely(!is_sampling_event(event)))
6352 return 0;
6353
e050e3f0
SE
6354 seq = __this_cpu_read(perf_throttled_seq);
6355 if (seq != hwc->interrupts_seq) {
6356 hwc->interrupts_seq = seq;
6357 hwc->interrupts = 1;
6358 } else {
6359 hwc->interrupts++;
6360 if (unlikely(throttle
6361 && hwc->interrupts >= max_samples_per_tick)) {
6362 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
6363 hwc->interrupts = MAX_INTERRUPTS;
6364 perf_log_throttle(event, 0);
d84153d6 6365 tick_nohz_full_kick();
a78ac325
PZ
6366 ret = 1;
6367 }
e050e3f0 6368 }
60db5e09 6369
cdd6c482 6370 if (event->attr.freq) {
def0a9b2 6371 u64 now = perf_clock();
abd50713 6372 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 6373
abd50713 6374 hwc->freq_time_stamp = now;
bd2b5b12 6375
abd50713 6376 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 6377 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
6378 }
6379
2023b359
PZ
6380 /*
6381 * XXX event_limit might not quite work as expected on inherited
cdd6c482 6382 * events
2023b359
PZ
6383 */
6384
cdd6c482
IM
6385 event->pending_kill = POLL_IN;
6386 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 6387 ret = 1;
cdd6c482 6388 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
6389 event->pending_disable = 1;
6390 irq_work_queue(&event->pending);
79f14641
PZ
6391 }
6392
453f19ee 6393 if (event->overflow_handler)
a8b0ca17 6394 event->overflow_handler(event, data, regs);
453f19ee 6395 else
a8b0ca17 6396 perf_event_output(event, data, regs);
453f19ee 6397
fed66e2c 6398 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
6399 event->pending_wakeup = 1;
6400 irq_work_queue(&event->pending);
f506b3dc
PZ
6401 }
6402
79f14641 6403 return ret;
f6c7d5fe
PZ
6404}
6405
a8b0ca17 6406int perf_event_overflow(struct perf_event *event,
5622f295
MM
6407 struct perf_sample_data *data,
6408 struct pt_regs *regs)
850bc73f 6409{
a8b0ca17 6410 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
6411}
6412
15dbf27c 6413/*
cdd6c482 6414 * Generic software event infrastructure
15dbf27c
PZ
6415 */
6416
b28ab83c
PZ
6417struct swevent_htable {
6418 struct swevent_hlist *swevent_hlist;
6419 struct mutex hlist_mutex;
6420 int hlist_refcount;
6421
6422 /* Recursion avoidance in each contexts */
6423 int recursion[PERF_NR_CONTEXTS];
6424};
6425
6426static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6427
7b4b6658 6428/*
cdd6c482
IM
6429 * We directly increment event->count and keep a second value in
6430 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
6431 * is kept in the range [-sample_period, 0] so that we can use the
6432 * sign as trigger.
6433 */
6434
ab573844 6435u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 6436{
cdd6c482 6437 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
6438 u64 period = hwc->last_period;
6439 u64 nr, offset;
6440 s64 old, val;
6441
6442 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
6443
6444again:
e7850595 6445 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
6446 if (val < 0)
6447 return 0;
15dbf27c 6448
7b4b6658
PZ
6449 nr = div64_u64(period + val, period);
6450 offset = nr * period;
6451 val -= offset;
e7850595 6452 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 6453 goto again;
15dbf27c 6454
7b4b6658 6455 return nr;
15dbf27c
PZ
6456}
6457
0cff784a 6458static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 6459 struct perf_sample_data *data,
5622f295 6460 struct pt_regs *regs)
15dbf27c 6461{
cdd6c482 6462 struct hw_perf_event *hwc = &event->hw;
850bc73f 6463 int throttle = 0;
15dbf27c 6464
0cff784a
PZ
6465 if (!overflow)
6466 overflow = perf_swevent_set_period(event);
15dbf27c 6467
7b4b6658
PZ
6468 if (hwc->interrupts == MAX_INTERRUPTS)
6469 return;
15dbf27c 6470
7b4b6658 6471 for (; overflow; overflow--) {
a8b0ca17 6472 if (__perf_event_overflow(event, throttle,
5622f295 6473 data, regs)) {
7b4b6658
PZ
6474 /*
6475 * We inhibit the overflow from happening when
6476 * hwc->interrupts == MAX_INTERRUPTS.
6477 */
6478 break;
6479 }
cf450a73 6480 throttle = 1;
7b4b6658 6481 }
15dbf27c
PZ
6482}
6483
a4eaf7f1 6484static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 6485 struct perf_sample_data *data,
5622f295 6486 struct pt_regs *regs)
7b4b6658 6487{
cdd6c482 6488 struct hw_perf_event *hwc = &event->hw;
d6d020e9 6489
e7850595 6490 local64_add(nr, &event->count);
d6d020e9 6491
0cff784a
PZ
6492 if (!regs)
6493 return;
6494
6c7e550f 6495 if (!is_sampling_event(event))
7b4b6658 6496 return;
d6d020e9 6497
5d81e5cf
AV
6498 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6499 data->period = nr;
6500 return perf_swevent_overflow(event, 1, data, regs);
6501 } else
6502 data->period = event->hw.last_period;
6503
0cff784a 6504 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 6505 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 6506
e7850595 6507 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 6508 return;
df1a132b 6509
a8b0ca17 6510 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
6511}
6512
f5ffe02e
FW
6513static int perf_exclude_event(struct perf_event *event,
6514 struct pt_regs *regs)
6515{
a4eaf7f1 6516 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 6517 return 1;
a4eaf7f1 6518
f5ffe02e
FW
6519 if (regs) {
6520 if (event->attr.exclude_user && user_mode(regs))
6521 return 1;
6522
6523 if (event->attr.exclude_kernel && !user_mode(regs))
6524 return 1;
6525 }
6526
6527 return 0;
6528}
6529
cdd6c482 6530static int perf_swevent_match(struct perf_event *event,
1c432d89 6531 enum perf_type_id type,
6fb2915d
LZ
6532 u32 event_id,
6533 struct perf_sample_data *data,
6534 struct pt_regs *regs)
15dbf27c 6535{
cdd6c482 6536 if (event->attr.type != type)
a21ca2ca 6537 return 0;
f5ffe02e 6538
cdd6c482 6539 if (event->attr.config != event_id)
15dbf27c
PZ
6540 return 0;
6541
f5ffe02e
FW
6542 if (perf_exclude_event(event, regs))
6543 return 0;
15dbf27c
PZ
6544
6545 return 1;
6546}
6547
76e1d904
FW
6548static inline u64 swevent_hash(u64 type, u32 event_id)
6549{
6550 u64 val = event_id | (type << 32);
6551
6552 return hash_64(val, SWEVENT_HLIST_BITS);
6553}
6554
49f135ed
FW
6555static inline struct hlist_head *
6556__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 6557{
49f135ed
FW
6558 u64 hash = swevent_hash(type, event_id);
6559
6560 return &hlist->heads[hash];
6561}
76e1d904 6562
49f135ed
FW
6563/* For the read side: events when they trigger */
6564static inline struct hlist_head *
b28ab83c 6565find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
6566{
6567 struct swevent_hlist *hlist;
76e1d904 6568
b28ab83c 6569 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
6570 if (!hlist)
6571 return NULL;
6572
49f135ed
FW
6573 return __find_swevent_head(hlist, type, event_id);
6574}
6575
6576/* For the event head insertion and removal in the hlist */
6577static inline struct hlist_head *
b28ab83c 6578find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
6579{
6580 struct swevent_hlist *hlist;
6581 u32 event_id = event->attr.config;
6582 u64 type = event->attr.type;
6583
6584 /*
6585 * Event scheduling is always serialized against hlist allocation
6586 * and release. Which makes the protected version suitable here.
6587 * The context lock guarantees that.
6588 */
b28ab83c 6589 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
6590 lockdep_is_held(&event->ctx->lock));
6591 if (!hlist)
6592 return NULL;
6593
6594 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
6595}
6596
6597static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 6598 u64 nr,
76e1d904
FW
6599 struct perf_sample_data *data,
6600 struct pt_regs *regs)
15dbf27c 6601{
4a32fea9 6602 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6603 struct perf_event *event;
76e1d904 6604 struct hlist_head *head;
15dbf27c 6605
76e1d904 6606 rcu_read_lock();
b28ab83c 6607 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
6608 if (!head)
6609 goto end;
6610
b67bfe0d 6611 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 6612 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 6613 perf_swevent_event(event, nr, data, regs);
15dbf27c 6614 }
76e1d904
FW
6615end:
6616 rcu_read_unlock();
15dbf27c
PZ
6617}
6618
86038c5e
PZI
6619DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6620
4ed7c92d 6621int perf_swevent_get_recursion_context(void)
96f6d444 6622{
4a32fea9 6623 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 6624
b28ab83c 6625 return get_recursion_context(swhash->recursion);
96f6d444 6626}
645e8cc0 6627EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 6628
fa9f90be 6629inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 6630{
4a32fea9 6631 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 6632
b28ab83c 6633 put_recursion_context(swhash->recursion, rctx);
ce71b9df 6634}
15dbf27c 6635
86038c5e 6636void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 6637{
a4234bfc 6638 struct perf_sample_data data;
4ed7c92d 6639
86038c5e 6640 if (WARN_ON_ONCE(!regs))
4ed7c92d 6641 return;
a4234bfc 6642
fd0d000b 6643 perf_sample_data_init(&data, addr, 0);
a8b0ca17 6644 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
6645}
6646
6647void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6648{
6649 int rctx;
6650
6651 preempt_disable_notrace();
6652 rctx = perf_swevent_get_recursion_context();
6653 if (unlikely(rctx < 0))
6654 goto fail;
6655
6656 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
6657
6658 perf_swevent_put_recursion_context(rctx);
86038c5e 6659fail:
1c024eca 6660 preempt_enable_notrace();
b8e83514
PZ
6661}
6662
cdd6c482 6663static void perf_swevent_read(struct perf_event *event)
15dbf27c 6664{
15dbf27c
PZ
6665}
6666
a4eaf7f1 6667static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 6668{
4a32fea9 6669 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6670 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
6671 struct hlist_head *head;
6672
6c7e550f 6673 if (is_sampling_event(event)) {
7b4b6658 6674 hwc->last_period = hwc->sample_period;
cdd6c482 6675 perf_swevent_set_period(event);
7b4b6658 6676 }
76e1d904 6677
a4eaf7f1
PZ
6678 hwc->state = !(flags & PERF_EF_START);
6679
b28ab83c 6680 head = find_swevent_head(swhash, event);
12ca6ad2 6681 if (WARN_ON_ONCE(!head))
76e1d904
FW
6682 return -EINVAL;
6683
6684 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 6685 perf_event_update_userpage(event);
76e1d904 6686
15dbf27c
PZ
6687 return 0;
6688}
6689
a4eaf7f1 6690static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 6691{
76e1d904 6692 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
6693}
6694
a4eaf7f1 6695static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 6696{
a4eaf7f1 6697 event->hw.state = 0;
d6d020e9 6698}
aa9c4c0f 6699
a4eaf7f1 6700static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 6701{
a4eaf7f1 6702 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
6703}
6704
49f135ed
FW
6705/* Deref the hlist from the update side */
6706static inline struct swevent_hlist *
b28ab83c 6707swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 6708{
b28ab83c
PZ
6709 return rcu_dereference_protected(swhash->swevent_hlist,
6710 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
6711}
6712
b28ab83c 6713static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 6714{
b28ab83c 6715 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 6716
49f135ed 6717 if (!hlist)
76e1d904
FW
6718 return;
6719
70691d4a 6720 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 6721 kfree_rcu(hlist, rcu_head);
76e1d904
FW
6722}
6723
6724static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6725{
b28ab83c 6726 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 6727
b28ab83c 6728 mutex_lock(&swhash->hlist_mutex);
76e1d904 6729
b28ab83c
PZ
6730 if (!--swhash->hlist_refcount)
6731 swevent_hlist_release(swhash);
76e1d904 6732
b28ab83c 6733 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6734}
6735
6736static void swevent_hlist_put(struct perf_event *event)
6737{
6738 int cpu;
6739
76e1d904
FW
6740 for_each_possible_cpu(cpu)
6741 swevent_hlist_put_cpu(event, cpu);
6742}
6743
6744static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6745{
b28ab83c 6746 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
6747 int err = 0;
6748
b28ab83c 6749 mutex_lock(&swhash->hlist_mutex);
b28ab83c 6750 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
6751 struct swevent_hlist *hlist;
6752
6753 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6754 if (!hlist) {
6755 err = -ENOMEM;
6756 goto exit;
6757 }
b28ab83c 6758 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 6759 }
b28ab83c 6760 swhash->hlist_refcount++;
9ed6060d 6761exit:
b28ab83c 6762 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6763
6764 return err;
6765}
6766
6767static int swevent_hlist_get(struct perf_event *event)
6768{
6769 int err;
6770 int cpu, failed_cpu;
6771
76e1d904
FW
6772 get_online_cpus();
6773 for_each_possible_cpu(cpu) {
6774 err = swevent_hlist_get_cpu(event, cpu);
6775 if (err) {
6776 failed_cpu = cpu;
6777 goto fail;
6778 }
6779 }
6780 put_online_cpus();
6781
6782 return 0;
9ed6060d 6783fail:
76e1d904
FW
6784 for_each_possible_cpu(cpu) {
6785 if (cpu == failed_cpu)
6786 break;
6787 swevent_hlist_put_cpu(event, cpu);
6788 }
6789
6790 put_online_cpus();
6791 return err;
6792}
6793
c5905afb 6794struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 6795
b0a873eb
PZ
6796static void sw_perf_event_destroy(struct perf_event *event)
6797{
6798 u64 event_id = event->attr.config;
95476b64 6799
b0a873eb
PZ
6800 WARN_ON(event->parent);
6801
c5905afb 6802 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6803 swevent_hlist_put(event);
6804}
6805
6806static int perf_swevent_init(struct perf_event *event)
6807{
8176cced 6808 u64 event_id = event->attr.config;
b0a873eb
PZ
6809
6810 if (event->attr.type != PERF_TYPE_SOFTWARE)
6811 return -ENOENT;
6812
2481c5fa
SE
6813 /*
6814 * no branch sampling for software events
6815 */
6816 if (has_branch_stack(event))
6817 return -EOPNOTSUPP;
6818
b0a873eb
PZ
6819 switch (event_id) {
6820 case PERF_COUNT_SW_CPU_CLOCK:
6821 case PERF_COUNT_SW_TASK_CLOCK:
6822 return -ENOENT;
6823
6824 default:
6825 break;
6826 }
6827
ce677831 6828 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
6829 return -ENOENT;
6830
6831 if (!event->parent) {
6832 int err;
6833
6834 err = swevent_hlist_get(event);
6835 if (err)
6836 return err;
6837
c5905afb 6838 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6839 event->destroy = sw_perf_event_destroy;
6840 }
6841
6842 return 0;
6843}
6844
6845static struct pmu perf_swevent = {
89a1e187 6846 .task_ctx_nr = perf_sw_context,
95476b64 6847
34f43927
PZ
6848 .capabilities = PERF_PMU_CAP_NO_NMI,
6849
b0a873eb 6850 .event_init = perf_swevent_init,
a4eaf7f1
PZ
6851 .add = perf_swevent_add,
6852 .del = perf_swevent_del,
6853 .start = perf_swevent_start,
6854 .stop = perf_swevent_stop,
1c024eca 6855 .read = perf_swevent_read,
1c024eca
PZ
6856};
6857
b0a873eb
PZ
6858#ifdef CONFIG_EVENT_TRACING
6859
1c024eca
PZ
6860static int perf_tp_filter_match(struct perf_event *event,
6861 struct perf_sample_data *data)
6862{
6863 void *record = data->raw->data;
6864
b71b437e
PZ
6865 /* only top level events have filters set */
6866 if (event->parent)
6867 event = event->parent;
6868
1c024eca
PZ
6869 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6870 return 1;
6871 return 0;
6872}
6873
6874static int perf_tp_event_match(struct perf_event *event,
6875 struct perf_sample_data *data,
6876 struct pt_regs *regs)
6877{
a0f7d0f7
FW
6878 if (event->hw.state & PERF_HES_STOPPED)
6879 return 0;
580d607c
PZ
6880 /*
6881 * All tracepoints are from kernel-space.
6882 */
6883 if (event->attr.exclude_kernel)
1c024eca
PZ
6884 return 0;
6885
6886 if (!perf_tp_filter_match(event, data))
6887 return 0;
6888
6889 return 1;
6890}
6891
6892void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
6893 struct pt_regs *regs, struct hlist_head *head, int rctx,
6894 struct task_struct *task)
95476b64
FW
6895{
6896 struct perf_sample_data data;
1c024eca 6897 struct perf_event *event;
1c024eca 6898
95476b64
FW
6899 struct perf_raw_record raw = {
6900 .size = entry_size,
6901 .data = record,
6902 };
6903
fd0d000b 6904 perf_sample_data_init(&data, addr, 0);
95476b64
FW
6905 data.raw = &raw;
6906
b67bfe0d 6907 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 6908 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 6909 perf_swevent_event(event, count, &data, regs);
4f41c013 6910 }
ecc55f84 6911
e6dab5ff
AV
6912 /*
6913 * If we got specified a target task, also iterate its context and
6914 * deliver this event there too.
6915 */
6916 if (task && task != current) {
6917 struct perf_event_context *ctx;
6918 struct trace_entry *entry = record;
6919
6920 rcu_read_lock();
6921 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6922 if (!ctx)
6923 goto unlock;
6924
6925 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6926 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6927 continue;
6928 if (event->attr.config != entry->type)
6929 continue;
6930 if (perf_tp_event_match(event, &data, regs))
6931 perf_swevent_event(event, count, &data, regs);
6932 }
6933unlock:
6934 rcu_read_unlock();
6935 }
6936
ecc55f84 6937 perf_swevent_put_recursion_context(rctx);
95476b64
FW
6938}
6939EXPORT_SYMBOL_GPL(perf_tp_event);
6940
cdd6c482 6941static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 6942{
1c024eca 6943 perf_trace_destroy(event);
e077df4f
PZ
6944}
6945
b0a873eb 6946static int perf_tp_event_init(struct perf_event *event)
e077df4f 6947{
76e1d904
FW
6948 int err;
6949
b0a873eb
PZ
6950 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6951 return -ENOENT;
6952
2481c5fa
SE
6953 /*
6954 * no branch sampling for tracepoint events
6955 */
6956 if (has_branch_stack(event))
6957 return -EOPNOTSUPP;
6958
1c024eca
PZ
6959 err = perf_trace_init(event);
6960 if (err)
b0a873eb 6961 return err;
e077df4f 6962
cdd6c482 6963 event->destroy = tp_perf_event_destroy;
e077df4f 6964
b0a873eb
PZ
6965 return 0;
6966}
6967
6968static struct pmu perf_tracepoint = {
89a1e187
PZ
6969 .task_ctx_nr = perf_sw_context,
6970
b0a873eb 6971 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
6972 .add = perf_trace_add,
6973 .del = perf_trace_del,
6974 .start = perf_swevent_start,
6975 .stop = perf_swevent_stop,
b0a873eb 6976 .read = perf_swevent_read,
b0a873eb
PZ
6977};
6978
6979static inline void perf_tp_register(void)
6980{
2e80a82a 6981 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 6982}
6fb2915d
LZ
6983
6984static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6985{
6986 char *filter_str;
6987 int ret;
6988
6989 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6990 return -EINVAL;
6991
6992 filter_str = strndup_user(arg, PAGE_SIZE);
6993 if (IS_ERR(filter_str))
6994 return PTR_ERR(filter_str);
6995
6996 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6997
6998 kfree(filter_str);
6999 return ret;
7000}
7001
7002static void perf_event_free_filter(struct perf_event *event)
7003{
7004 ftrace_profile_free_filter(event);
7005}
7006
2541517c
AS
7007static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7008{
7009 struct bpf_prog *prog;
7010
7011 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7012 return -EINVAL;
7013
7014 if (event->tp_event->prog)
7015 return -EEXIST;
7016
04a22fae
WN
7017 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7018 /* bpf programs can only be attached to u/kprobes */
2541517c
AS
7019 return -EINVAL;
7020
7021 prog = bpf_prog_get(prog_fd);
7022 if (IS_ERR(prog))
7023 return PTR_ERR(prog);
7024
6c373ca8 7025 if (prog->type != BPF_PROG_TYPE_KPROBE) {
2541517c
AS
7026 /* valid fd, but invalid bpf program type */
7027 bpf_prog_put(prog);
7028 return -EINVAL;
7029 }
7030
7031 event->tp_event->prog = prog;
7032
7033 return 0;
7034}
7035
7036static void perf_event_free_bpf_prog(struct perf_event *event)
7037{
7038 struct bpf_prog *prog;
7039
7040 if (!event->tp_event)
7041 return;
7042
7043 prog = event->tp_event->prog;
7044 if (prog) {
7045 event->tp_event->prog = NULL;
7046 bpf_prog_put(prog);
7047 }
7048}
7049
e077df4f 7050#else
6fb2915d 7051
b0a873eb 7052static inline void perf_tp_register(void)
e077df4f 7053{
e077df4f 7054}
6fb2915d
LZ
7055
7056static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7057{
7058 return -ENOENT;
7059}
7060
7061static void perf_event_free_filter(struct perf_event *event)
7062{
7063}
7064
2541517c
AS
7065static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7066{
7067 return -ENOENT;
7068}
7069
7070static void perf_event_free_bpf_prog(struct perf_event *event)
7071{
7072}
07b139c8 7073#endif /* CONFIG_EVENT_TRACING */
e077df4f 7074
24f1e32c 7075#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 7076void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 7077{
f5ffe02e
FW
7078 struct perf_sample_data sample;
7079 struct pt_regs *regs = data;
7080
fd0d000b 7081 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 7082
a4eaf7f1 7083 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 7084 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
7085}
7086#endif
7087
b0a873eb
PZ
7088/*
7089 * hrtimer based swevent callback
7090 */
f29ac756 7091
b0a873eb 7092static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 7093{
b0a873eb
PZ
7094 enum hrtimer_restart ret = HRTIMER_RESTART;
7095 struct perf_sample_data data;
7096 struct pt_regs *regs;
7097 struct perf_event *event;
7098 u64 period;
f29ac756 7099
b0a873eb 7100 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
7101
7102 if (event->state != PERF_EVENT_STATE_ACTIVE)
7103 return HRTIMER_NORESTART;
7104
b0a873eb 7105 event->pmu->read(event);
f344011c 7106
fd0d000b 7107 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
7108 regs = get_irq_regs();
7109
7110 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 7111 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 7112 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
7113 ret = HRTIMER_NORESTART;
7114 }
24f1e32c 7115
b0a873eb
PZ
7116 period = max_t(u64, 10000, event->hw.sample_period);
7117 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 7118
b0a873eb 7119 return ret;
f29ac756
PZ
7120}
7121
b0a873eb 7122static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 7123{
b0a873eb 7124 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
7125 s64 period;
7126
7127 if (!is_sampling_event(event))
7128 return;
f5ffe02e 7129
5d508e82
FBH
7130 period = local64_read(&hwc->period_left);
7131 if (period) {
7132 if (period < 0)
7133 period = 10000;
fa407f35 7134
5d508e82
FBH
7135 local64_set(&hwc->period_left, 0);
7136 } else {
7137 period = max_t(u64, 10000, hwc->sample_period);
7138 }
3497d206
TG
7139 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7140 HRTIMER_MODE_REL_PINNED);
24f1e32c 7141}
b0a873eb
PZ
7142
7143static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 7144{
b0a873eb
PZ
7145 struct hw_perf_event *hwc = &event->hw;
7146
6c7e550f 7147 if (is_sampling_event(event)) {
b0a873eb 7148 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 7149 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
7150
7151 hrtimer_cancel(&hwc->hrtimer);
7152 }
24f1e32c
FW
7153}
7154
ba3dd36c
PZ
7155static void perf_swevent_init_hrtimer(struct perf_event *event)
7156{
7157 struct hw_perf_event *hwc = &event->hw;
7158
7159 if (!is_sampling_event(event))
7160 return;
7161
7162 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7163 hwc->hrtimer.function = perf_swevent_hrtimer;
7164
7165 /*
7166 * Since hrtimers have a fixed rate, we can do a static freq->period
7167 * mapping and avoid the whole period adjust feedback stuff.
7168 */
7169 if (event->attr.freq) {
7170 long freq = event->attr.sample_freq;
7171
7172 event->attr.sample_period = NSEC_PER_SEC / freq;
7173 hwc->sample_period = event->attr.sample_period;
7174 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 7175 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
7176 event->attr.freq = 0;
7177 }
7178}
7179
b0a873eb
PZ
7180/*
7181 * Software event: cpu wall time clock
7182 */
7183
7184static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 7185{
b0a873eb
PZ
7186 s64 prev;
7187 u64 now;
7188
a4eaf7f1 7189 now = local_clock();
b0a873eb
PZ
7190 prev = local64_xchg(&event->hw.prev_count, now);
7191 local64_add(now - prev, &event->count);
24f1e32c 7192}
24f1e32c 7193
a4eaf7f1 7194static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7195{
a4eaf7f1 7196 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 7197 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7198}
7199
a4eaf7f1 7200static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 7201{
b0a873eb
PZ
7202 perf_swevent_cancel_hrtimer(event);
7203 cpu_clock_event_update(event);
7204}
f29ac756 7205
a4eaf7f1
PZ
7206static int cpu_clock_event_add(struct perf_event *event, int flags)
7207{
7208 if (flags & PERF_EF_START)
7209 cpu_clock_event_start(event, flags);
6a694a60 7210 perf_event_update_userpage(event);
a4eaf7f1
PZ
7211
7212 return 0;
7213}
7214
7215static void cpu_clock_event_del(struct perf_event *event, int flags)
7216{
7217 cpu_clock_event_stop(event, flags);
7218}
7219
b0a873eb
PZ
7220static void cpu_clock_event_read(struct perf_event *event)
7221{
7222 cpu_clock_event_update(event);
7223}
f344011c 7224
b0a873eb
PZ
7225static int cpu_clock_event_init(struct perf_event *event)
7226{
7227 if (event->attr.type != PERF_TYPE_SOFTWARE)
7228 return -ENOENT;
7229
7230 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7231 return -ENOENT;
7232
2481c5fa
SE
7233 /*
7234 * no branch sampling for software events
7235 */
7236 if (has_branch_stack(event))
7237 return -EOPNOTSUPP;
7238
ba3dd36c
PZ
7239 perf_swevent_init_hrtimer(event);
7240
b0a873eb 7241 return 0;
f29ac756
PZ
7242}
7243
b0a873eb 7244static struct pmu perf_cpu_clock = {
89a1e187
PZ
7245 .task_ctx_nr = perf_sw_context,
7246
34f43927
PZ
7247 .capabilities = PERF_PMU_CAP_NO_NMI,
7248
b0a873eb 7249 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
7250 .add = cpu_clock_event_add,
7251 .del = cpu_clock_event_del,
7252 .start = cpu_clock_event_start,
7253 .stop = cpu_clock_event_stop,
b0a873eb
PZ
7254 .read = cpu_clock_event_read,
7255};
7256
7257/*
7258 * Software event: task time clock
7259 */
7260
7261static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 7262{
b0a873eb
PZ
7263 u64 prev;
7264 s64 delta;
5c92d124 7265
b0a873eb
PZ
7266 prev = local64_xchg(&event->hw.prev_count, now);
7267 delta = now - prev;
7268 local64_add(delta, &event->count);
7269}
5c92d124 7270
a4eaf7f1 7271static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7272{
a4eaf7f1 7273 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 7274 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7275}
7276
a4eaf7f1 7277static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
7278{
7279 perf_swevent_cancel_hrtimer(event);
7280 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
7281}
7282
7283static int task_clock_event_add(struct perf_event *event, int flags)
7284{
7285 if (flags & PERF_EF_START)
7286 task_clock_event_start(event, flags);
6a694a60 7287 perf_event_update_userpage(event);
b0a873eb 7288
a4eaf7f1
PZ
7289 return 0;
7290}
7291
7292static void task_clock_event_del(struct perf_event *event, int flags)
7293{
7294 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
7295}
7296
7297static void task_clock_event_read(struct perf_event *event)
7298{
768a06e2
PZ
7299 u64 now = perf_clock();
7300 u64 delta = now - event->ctx->timestamp;
7301 u64 time = event->ctx->time + delta;
b0a873eb
PZ
7302
7303 task_clock_event_update(event, time);
7304}
7305
7306static int task_clock_event_init(struct perf_event *event)
6fb2915d 7307{
b0a873eb
PZ
7308 if (event->attr.type != PERF_TYPE_SOFTWARE)
7309 return -ENOENT;
7310
7311 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7312 return -ENOENT;
7313
2481c5fa
SE
7314 /*
7315 * no branch sampling for software events
7316 */
7317 if (has_branch_stack(event))
7318 return -EOPNOTSUPP;
7319
ba3dd36c
PZ
7320 perf_swevent_init_hrtimer(event);
7321
b0a873eb 7322 return 0;
6fb2915d
LZ
7323}
7324
b0a873eb 7325static struct pmu perf_task_clock = {
89a1e187
PZ
7326 .task_ctx_nr = perf_sw_context,
7327
34f43927
PZ
7328 .capabilities = PERF_PMU_CAP_NO_NMI,
7329
b0a873eb 7330 .event_init = task_clock_event_init,
a4eaf7f1
PZ
7331 .add = task_clock_event_add,
7332 .del = task_clock_event_del,
7333 .start = task_clock_event_start,
7334 .stop = task_clock_event_stop,
b0a873eb
PZ
7335 .read = task_clock_event_read,
7336};
6fb2915d 7337
ad5133b7 7338static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 7339{
e077df4f 7340}
6fb2915d 7341
fbbe0701
SB
7342static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7343{
7344}
7345
ad5133b7 7346static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 7347{
ad5133b7 7348 return 0;
6fb2915d
LZ
7349}
7350
18ab2cd3 7351static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
7352
7353static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 7354{
fbbe0701
SB
7355 __this_cpu_write(nop_txn_flags, flags);
7356
7357 if (flags & ~PERF_PMU_TXN_ADD)
7358 return;
7359
ad5133b7 7360 perf_pmu_disable(pmu);
6fb2915d
LZ
7361}
7362
ad5133b7
PZ
7363static int perf_pmu_commit_txn(struct pmu *pmu)
7364{
fbbe0701
SB
7365 unsigned int flags = __this_cpu_read(nop_txn_flags);
7366
7367 __this_cpu_write(nop_txn_flags, 0);
7368
7369 if (flags & ~PERF_PMU_TXN_ADD)
7370 return 0;
7371
ad5133b7
PZ
7372 perf_pmu_enable(pmu);
7373 return 0;
7374}
e077df4f 7375
ad5133b7 7376static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 7377{
fbbe0701
SB
7378 unsigned int flags = __this_cpu_read(nop_txn_flags);
7379
7380 __this_cpu_write(nop_txn_flags, 0);
7381
7382 if (flags & ~PERF_PMU_TXN_ADD)
7383 return;
7384
ad5133b7 7385 perf_pmu_enable(pmu);
24f1e32c
FW
7386}
7387
35edc2a5
PZ
7388static int perf_event_idx_default(struct perf_event *event)
7389{
c719f560 7390 return 0;
35edc2a5
PZ
7391}
7392
8dc85d54
PZ
7393/*
7394 * Ensures all contexts with the same task_ctx_nr have the same
7395 * pmu_cpu_context too.
7396 */
9e317041 7397static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 7398{
8dc85d54 7399 struct pmu *pmu;
b326e956 7400
8dc85d54
PZ
7401 if (ctxn < 0)
7402 return NULL;
24f1e32c 7403
8dc85d54
PZ
7404 list_for_each_entry(pmu, &pmus, entry) {
7405 if (pmu->task_ctx_nr == ctxn)
7406 return pmu->pmu_cpu_context;
7407 }
24f1e32c 7408
8dc85d54 7409 return NULL;
24f1e32c
FW
7410}
7411
51676957 7412static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 7413{
51676957
PZ
7414 int cpu;
7415
7416 for_each_possible_cpu(cpu) {
7417 struct perf_cpu_context *cpuctx;
7418
7419 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7420
3f1f3320
PZ
7421 if (cpuctx->unique_pmu == old_pmu)
7422 cpuctx->unique_pmu = pmu;
51676957
PZ
7423 }
7424}
7425
7426static void free_pmu_context(struct pmu *pmu)
7427{
7428 struct pmu *i;
f5ffe02e 7429
8dc85d54 7430 mutex_lock(&pmus_lock);
0475f9ea 7431 /*
8dc85d54 7432 * Like a real lame refcount.
0475f9ea 7433 */
51676957
PZ
7434 list_for_each_entry(i, &pmus, entry) {
7435 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7436 update_pmu_context(i, pmu);
8dc85d54 7437 goto out;
51676957 7438 }
8dc85d54 7439 }
d6d020e9 7440
51676957 7441 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
7442out:
7443 mutex_unlock(&pmus_lock);
24f1e32c 7444}
2e80a82a 7445static struct idr pmu_idr;
d6d020e9 7446
abe43400
PZ
7447static ssize_t
7448type_show(struct device *dev, struct device_attribute *attr, char *page)
7449{
7450 struct pmu *pmu = dev_get_drvdata(dev);
7451
7452 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7453}
90826ca7 7454static DEVICE_ATTR_RO(type);
abe43400 7455
62b85639
SE
7456static ssize_t
7457perf_event_mux_interval_ms_show(struct device *dev,
7458 struct device_attribute *attr,
7459 char *page)
7460{
7461 struct pmu *pmu = dev_get_drvdata(dev);
7462
7463 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7464}
7465
272325c4
PZ
7466static DEFINE_MUTEX(mux_interval_mutex);
7467
62b85639
SE
7468static ssize_t
7469perf_event_mux_interval_ms_store(struct device *dev,
7470 struct device_attribute *attr,
7471 const char *buf, size_t count)
7472{
7473 struct pmu *pmu = dev_get_drvdata(dev);
7474 int timer, cpu, ret;
7475
7476 ret = kstrtoint(buf, 0, &timer);
7477 if (ret)
7478 return ret;
7479
7480 if (timer < 1)
7481 return -EINVAL;
7482
7483 /* same value, noting to do */
7484 if (timer == pmu->hrtimer_interval_ms)
7485 return count;
7486
272325c4 7487 mutex_lock(&mux_interval_mutex);
62b85639
SE
7488 pmu->hrtimer_interval_ms = timer;
7489
7490 /* update all cpuctx for this PMU */
272325c4
PZ
7491 get_online_cpus();
7492 for_each_online_cpu(cpu) {
62b85639
SE
7493 struct perf_cpu_context *cpuctx;
7494 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7495 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7496
272325c4
PZ
7497 cpu_function_call(cpu,
7498 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 7499 }
272325c4
PZ
7500 put_online_cpus();
7501 mutex_unlock(&mux_interval_mutex);
62b85639
SE
7502
7503 return count;
7504}
90826ca7 7505static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 7506
90826ca7
GKH
7507static struct attribute *pmu_dev_attrs[] = {
7508 &dev_attr_type.attr,
7509 &dev_attr_perf_event_mux_interval_ms.attr,
7510 NULL,
abe43400 7511};
90826ca7 7512ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
7513
7514static int pmu_bus_running;
7515static struct bus_type pmu_bus = {
7516 .name = "event_source",
90826ca7 7517 .dev_groups = pmu_dev_groups,
abe43400
PZ
7518};
7519
7520static void pmu_dev_release(struct device *dev)
7521{
7522 kfree(dev);
7523}
7524
7525static int pmu_dev_alloc(struct pmu *pmu)
7526{
7527 int ret = -ENOMEM;
7528
7529 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7530 if (!pmu->dev)
7531 goto out;
7532
0c9d42ed 7533 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
7534 device_initialize(pmu->dev);
7535 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7536 if (ret)
7537 goto free_dev;
7538
7539 dev_set_drvdata(pmu->dev, pmu);
7540 pmu->dev->bus = &pmu_bus;
7541 pmu->dev->release = pmu_dev_release;
7542 ret = device_add(pmu->dev);
7543 if (ret)
7544 goto free_dev;
7545
7546out:
7547 return ret;
7548
7549free_dev:
7550 put_device(pmu->dev);
7551 goto out;
7552}
7553
547e9fd7 7554static struct lock_class_key cpuctx_mutex;
facc4307 7555static struct lock_class_key cpuctx_lock;
547e9fd7 7556
03d8e80b 7557int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 7558{
108b02cf 7559 int cpu, ret;
24f1e32c 7560
b0a873eb 7561 mutex_lock(&pmus_lock);
33696fc0
PZ
7562 ret = -ENOMEM;
7563 pmu->pmu_disable_count = alloc_percpu(int);
7564 if (!pmu->pmu_disable_count)
7565 goto unlock;
f29ac756 7566
2e80a82a
PZ
7567 pmu->type = -1;
7568 if (!name)
7569 goto skip_type;
7570 pmu->name = name;
7571
7572 if (type < 0) {
0e9c3be2
TH
7573 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7574 if (type < 0) {
7575 ret = type;
2e80a82a
PZ
7576 goto free_pdc;
7577 }
7578 }
7579 pmu->type = type;
7580
abe43400
PZ
7581 if (pmu_bus_running) {
7582 ret = pmu_dev_alloc(pmu);
7583 if (ret)
7584 goto free_idr;
7585 }
7586
2e80a82a 7587skip_type:
8dc85d54
PZ
7588 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7589 if (pmu->pmu_cpu_context)
7590 goto got_cpu_context;
f29ac756 7591
c4814202 7592 ret = -ENOMEM;
108b02cf
PZ
7593 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7594 if (!pmu->pmu_cpu_context)
abe43400 7595 goto free_dev;
f344011c 7596
108b02cf
PZ
7597 for_each_possible_cpu(cpu) {
7598 struct perf_cpu_context *cpuctx;
7599
7600 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 7601 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 7602 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 7603 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 7604 cpuctx->ctx.pmu = pmu;
9e630205 7605
272325c4 7606 __perf_mux_hrtimer_init(cpuctx, cpu);
9e630205 7607
3f1f3320 7608 cpuctx->unique_pmu = pmu;
108b02cf 7609 }
76e1d904 7610
8dc85d54 7611got_cpu_context:
ad5133b7
PZ
7612 if (!pmu->start_txn) {
7613 if (pmu->pmu_enable) {
7614 /*
7615 * If we have pmu_enable/pmu_disable calls, install
7616 * transaction stubs that use that to try and batch
7617 * hardware accesses.
7618 */
7619 pmu->start_txn = perf_pmu_start_txn;
7620 pmu->commit_txn = perf_pmu_commit_txn;
7621 pmu->cancel_txn = perf_pmu_cancel_txn;
7622 } else {
fbbe0701 7623 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
7624 pmu->commit_txn = perf_pmu_nop_int;
7625 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 7626 }
5c92d124 7627 }
15dbf27c 7628
ad5133b7
PZ
7629 if (!pmu->pmu_enable) {
7630 pmu->pmu_enable = perf_pmu_nop_void;
7631 pmu->pmu_disable = perf_pmu_nop_void;
7632 }
7633
35edc2a5
PZ
7634 if (!pmu->event_idx)
7635 pmu->event_idx = perf_event_idx_default;
7636
b0a873eb 7637 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 7638 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
7639 ret = 0;
7640unlock:
b0a873eb
PZ
7641 mutex_unlock(&pmus_lock);
7642
33696fc0 7643 return ret;
108b02cf 7644
abe43400
PZ
7645free_dev:
7646 device_del(pmu->dev);
7647 put_device(pmu->dev);
7648
2e80a82a
PZ
7649free_idr:
7650 if (pmu->type >= PERF_TYPE_MAX)
7651 idr_remove(&pmu_idr, pmu->type);
7652
108b02cf
PZ
7653free_pdc:
7654 free_percpu(pmu->pmu_disable_count);
7655 goto unlock;
f29ac756 7656}
c464c76e 7657EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 7658
b0a873eb 7659void perf_pmu_unregister(struct pmu *pmu)
5c92d124 7660{
b0a873eb
PZ
7661 mutex_lock(&pmus_lock);
7662 list_del_rcu(&pmu->entry);
7663 mutex_unlock(&pmus_lock);
5c92d124 7664
0475f9ea 7665 /*
cde8e884
PZ
7666 * We dereference the pmu list under both SRCU and regular RCU, so
7667 * synchronize against both of those.
0475f9ea 7668 */
b0a873eb 7669 synchronize_srcu(&pmus_srcu);
cde8e884 7670 synchronize_rcu();
d6d020e9 7671
33696fc0 7672 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
7673 if (pmu->type >= PERF_TYPE_MAX)
7674 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
7675 device_del(pmu->dev);
7676 put_device(pmu->dev);
51676957 7677 free_pmu_context(pmu);
b0a873eb 7678}
c464c76e 7679EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 7680
cc34b98b
MR
7681static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7682{
ccd41c86 7683 struct perf_event_context *ctx = NULL;
cc34b98b
MR
7684 int ret;
7685
7686 if (!try_module_get(pmu->module))
7687 return -ENODEV;
ccd41c86
PZ
7688
7689 if (event->group_leader != event) {
8b10c5e2
PZ
7690 /*
7691 * This ctx->mutex can nest when we're called through
7692 * inheritance. See the perf_event_ctx_lock_nested() comment.
7693 */
7694 ctx = perf_event_ctx_lock_nested(event->group_leader,
7695 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
7696 BUG_ON(!ctx);
7697 }
7698
cc34b98b
MR
7699 event->pmu = pmu;
7700 ret = pmu->event_init(event);
ccd41c86
PZ
7701
7702 if (ctx)
7703 perf_event_ctx_unlock(event->group_leader, ctx);
7704
cc34b98b
MR
7705 if (ret)
7706 module_put(pmu->module);
7707
7708 return ret;
7709}
7710
18ab2cd3 7711static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb
PZ
7712{
7713 struct pmu *pmu = NULL;
7714 int idx;
940c5b29 7715 int ret;
b0a873eb
PZ
7716
7717 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
7718
7719 rcu_read_lock();
7720 pmu = idr_find(&pmu_idr, event->attr.type);
7721 rcu_read_unlock();
940c5b29 7722 if (pmu) {
cc34b98b 7723 ret = perf_try_init_event(pmu, event);
940c5b29
LM
7724 if (ret)
7725 pmu = ERR_PTR(ret);
2e80a82a 7726 goto unlock;
940c5b29 7727 }
2e80a82a 7728
b0a873eb 7729 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 7730 ret = perf_try_init_event(pmu, event);
b0a873eb 7731 if (!ret)
e5f4d339 7732 goto unlock;
76e1d904 7733
b0a873eb
PZ
7734 if (ret != -ENOENT) {
7735 pmu = ERR_PTR(ret);
e5f4d339 7736 goto unlock;
f344011c 7737 }
5c92d124 7738 }
e5f4d339
PZ
7739 pmu = ERR_PTR(-ENOENT);
7740unlock:
b0a873eb 7741 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 7742
4aeb0b42 7743 return pmu;
5c92d124
IM
7744}
7745
4beb31f3
FW
7746static void account_event_cpu(struct perf_event *event, int cpu)
7747{
7748 if (event->parent)
7749 return;
7750
4beb31f3
FW
7751 if (is_cgroup_event(event))
7752 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7753}
7754
766d6c07
FW
7755static void account_event(struct perf_event *event)
7756{
25432ae9
PZ
7757 bool inc = false;
7758
4beb31f3
FW
7759 if (event->parent)
7760 return;
7761
766d6c07 7762 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 7763 inc = true;
766d6c07
FW
7764 if (event->attr.mmap || event->attr.mmap_data)
7765 atomic_inc(&nr_mmap_events);
7766 if (event->attr.comm)
7767 atomic_inc(&nr_comm_events);
7768 if (event->attr.task)
7769 atomic_inc(&nr_task_events);
948b26b6
FW
7770 if (event->attr.freq) {
7771 if (atomic_inc_return(&nr_freq_events) == 1)
7772 tick_nohz_full_kick_all();
7773 }
45ac1403
AH
7774 if (event->attr.context_switch) {
7775 atomic_inc(&nr_switch_events);
25432ae9 7776 inc = true;
45ac1403 7777 }
4beb31f3 7778 if (has_branch_stack(event))
25432ae9 7779 inc = true;
4beb31f3 7780 if (is_cgroup_event(event))
25432ae9
PZ
7781 inc = true;
7782
7783 if (inc)
766d6c07 7784 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
7785
7786 account_event_cpu(event, event->cpu);
766d6c07
FW
7787}
7788
0793a61d 7789/*
cdd6c482 7790 * Allocate and initialize a event structure
0793a61d 7791 */
cdd6c482 7792static struct perf_event *
c3f00c70 7793perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
7794 struct task_struct *task,
7795 struct perf_event *group_leader,
7796 struct perf_event *parent_event,
4dc0da86 7797 perf_overflow_handler_t overflow_handler,
79dff51e 7798 void *context, int cgroup_fd)
0793a61d 7799{
51b0fe39 7800 struct pmu *pmu;
cdd6c482
IM
7801 struct perf_event *event;
7802 struct hw_perf_event *hwc;
90983b16 7803 long err = -EINVAL;
0793a61d 7804
66832eb4
ON
7805 if ((unsigned)cpu >= nr_cpu_ids) {
7806 if (!task || cpu != -1)
7807 return ERR_PTR(-EINVAL);
7808 }
7809
c3f00c70 7810 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 7811 if (!event)
d5d2bc0d 7812 return ERR_PTR(-ENOMEM);
0793a61d 7813
04289bb9 7814 /*
cdd6c482 7815 * Single events are their own group leaders, with an
04289bb9
IM
7816 * empty sibling list:
7817 */
7818 if (!group_leader)
cdd6c482 7819 group_leader = event;
04289bb9 7820
cdd6c482
IM
7821 mutex_init(&event->child_mutex);
7822 INIT_LIST_HEAD(&event->child_list);
fccc714b 7823
cdd6c482
IM
7824 INIT_LIST_HEAD(&event->group_entry);
7825 INIT_LIST_HEAD(&event->event_entry);
7826 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 7827 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 7828 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
7829 INIT_HLIST_NODE(&event->hlist_entry);
7830
10c6db11 7831
cdd6c482 7832 init_waitqueue_head(&event->waitq);
e360adbe 7833 init_irq_work(&event->pending, perf_pending_event);
0793a61d 7834
cdd6c482 7835 mutex_init(&event->mmap_mutex);
7b732a75 7836
a6fa941d 7837 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
7838 event->cpu = cpu;
7839 event->attr = *attr;
7840 event->group_leader = group_leader;
7841 event->pmu = NULL;
cdd6c482 7842 event->oncpu = -1;
a96bbc16 7843
cdd6c482 7844 event->parent = parent_event;
b84fbc9f 7845
17cf22c3 7846 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 7847 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 7848
cdd6c482 7849 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 7850
d580ff86
PZ
7851 if (task) {
7852 event->attach_state = PERF_ATTACH_TASK;
d580ff86 7853 /*
50f16a8b
PZ
7854 * XXX pmu::event_init needs to know what task to account to
7855 * and we cannot use the ctx information because we need the
7856 * pmu before we get a ctx.
d580ff86 7857 */
50f16a8b 7858 event->hw.target = task;
d580ff86
PZ
7859 }
7860
34f43927
PZ
7861 event->clock = &local_clock;
7862 if (parent_event)
7863 event->clock = parent_event->clock;
7864
4dc0da86 7865 if (!overflow_handler && parent_event) {
b326e956 7866 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7867 context = parent_event->overflow_handler_context;
7868 }
66832eb4 7869
b326e956 7870 event->overflow_handler = overflow_handler;
4dc0da86 7871 event->overflow_handler_context = context;
97eaf530 7872
0231bb53 7873 perf_event__state_init(event);
a86ed508 7874
4aeb0b42 7875 pmu = NULL;
b8e83514 7876
cdd6c482 7877 hwc = &event->hw;
bd2b5b12 7878 hwc->sample_period = attr->sample_period;
0d48696f 7879 if (attr->freq && attr->sample_freq)
bd2b5b12 7880 hwc->sample_period = 1;
eced1dfc 7881 hwc->last_period = hwc->sample_period;
bd2b5b12 7882
e7850595 7883 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 7884
2023b359 7885 /*
cdd6c482 7886 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 7887 */
3dab77fb 7888 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 7889 goto err_ns;
a46a2300
YZ
7890
7891 if (!has_branch_stack(event))
7892 event->attr.branch_sample_type = 0;
2023b359 7893
79dff51e
MF
7894 if (cgroup_fd != -1) {
7895 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7896 if (err)
7897 goto err_ns;
7898 }
7899
b0a873eb 7900 pmu = perf_init_event(event);
4aeb0b42 7901 if (!pmu)
90983b16
FW
7902 goto err_ns;
7903 else if (IS_ERR(pmu)) {
4aeb0b42 7904 err = PTR_ERR(pmu);
90983b16 7905 goto err_ns;
621a01ea 7906 }
d5d2bc0d 7907
bed5b25a
AS
7908 err = exclusive_event_init(event);
7909 if (err)
7910 goto err_pmu;
7911
cdd6c482 7912 if (!event->parent) {
927c7a9e
FW
7913 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7914 err = get_callchain_buffers();
90983b16 7915 if (err)
bed5b25a 7916 goto err_per_task;
d010b332 7917 }
f344011c 7918 }
9ee318a7 7919
cdd6c482 7920 return event;
90983b16 7921
bed5b25a
AS
7922err_per_task:
7923 exclusive_event_destroy(event);
7924
90983b16
FW
7925err_pmu:
7926 if (event->destroy)
7927 event->destroy(event);
c464c76e 7928 module_put(pmu->module);
90983b16 7929err_ns:
79dff51e
MF
7930 if (is_cgroup_event(event))
7931 perf_detach_cgroup(event);
90983b16
FW
7932 if (event->ns)
7933 put_pid_ns(event->ns);
7934 kfree(event);
7935
7936 return ERR_PTR(err);
0793a61d
TG
7937}
7938
cdd6c482
IM
7939static int perf_copy_attr(struct perf_event_attr __user *uattr,
7940 struct perf_event_attr *attr)
974802ea 7941{
974802ea 7942 u32 size;
cdf8073d 7943 int ret;
974802ea
PZ
7944
7945 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7946 return -EFAULT;
7947
7948 /*
7949 * zero the full structure, so that a short copy will be nice.
7950 */
7951 memset(attr, 0, sizeof(*attr));
7952
7953 ret = get_user(size, &uattr->size);
7954 if (ret)
7955 return ret;
7956
7957 if (size > PAGE_SIZE) /* silly large */
7958 goto err_size;
7959
7960 if (!size) /* abi compat */
7961 size = PERF_ATTR_SIZE_VER0;
7962
7963 if (size < PERF_ATTR_SIZE_VER0)
7964 goto err_size;
7965
7966 /*
7967 * If we're handed a bigger struct than we know of,
cdf8073d
IS
7968 * ensure all the unknown bits are 0 - i.e. new
7969 * user-space does not rely on any kernel feature
7970 * extensions we dont know about yet.
974802ea
PZ
7971 */
7972 if (size > sizeof(*attr)) {
cdf8073d
IS
7973 unsigned char __user *addr;
7974 unsigned char __user *end;
7975 unsigned char val;
974802ea 7976
cdf8073d
IS
7977 addr = (void __user *)uattr + sizeof(*attr);
7978 end = (void __user *)uattr + size;
974802ea 7979
cdf8073d 7980 for (; addr < end; addr++) {
974802ea
PZ
7981 ret = get_user(val, addr);
7982 if (ret)
7983 return ret;
7984 if (val)
7985 goto err_size;
7986 }
b3e62e35 7987 size = sizeof(*attr);
974802ea
PZ
7988 }
7989
7990 ret = copy_from_user(attr, uattr, size);
7991 if (ret)
7992 return -EFAULT;
7993
cd757645 7994 if (attr->__reserved_1)
974802ea
PZ
7995 return -EINVAL;
7996
7997 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7998 return -EINVAL;
7999
8000 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8001 return -EINVAL;
8002
bce38cd5
SE
8003 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8004 u64 mask = attr->branch_sample_type;
8005
8006 /* only using defined bits */
8007 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8008 return -EINVAL;
8009
8010 /* at least one branch bit must be set */
8011 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8012 return -EINVAL;
8013
bce38cd5
SE
8014 /* propagate priv level, when not set for branch */
8015 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8016
8017 /* exclude_kernel checked on syscall entry */
8018 if (!attr->exclude_kernel)
8019 mask |= PERF_SAMPLE_BRANCH_KERNEL;
8020
8021 if (!attr->exclude_user)
8022 mask |= PERF_SAMPLE_BRANCH_USER;
8023
8024 if (!attr->exclude_hv)
8025 mask |= PERF_SAMPLE_BRANCH_HV;
8026 /*
8027 * adjust user setting (for HW filter setup)
8028 */
8029 attr->branch_sample_type = mask;
8030 }
e712209a
SE
8031 /* privileged levels capture (kernel, hv): check permissions */
8032 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
8033 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8034 return -EACCES;
bce38cd5 8035 }
4018994f 8036
c5ebcedb 8037 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 8038 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
8039 if (ret)
8040 return ret;
8041 }
8042
8043 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8044 if (!arch_perf_have_user_stack_dump())
8045 return -ENOSYS;
8046
8047 /*
8048 * We have __u32 type for the size, but so far
8049 * we can only use __u16 as maximum due to the
8050 * __u16 sample size limit.
8051 */
8052 if (attr->sample_stack_user >= USHRT_MAX)
8053 ret = -EINVAL;
8054 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8055 ret = -EINVAL;
8056 }
4018994f 8057
60e2364e
SE
8058 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8059 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
8060out:
8061 return ret;
8062
8063err_size:
8064 put_user(sizeof(*attr), &uattr->size);
8065 ret = -E2BIG;
8066 goto out;
8067}
8068
ac9721f3
PZ
8069static int
8070perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 8071{
b69cf536 8072 struct ring_buffer *rb = NULL;
a4be7c27
PZ
8073 int ret = -EINVAL;
8074
ac9721f3 8075 if (!output_event)
a4be7c27
PZ
8076 goto set;
8077
ac9721f3
PZ
8078 /* don't allow circular references */
8079 if (event == output_event)
a4be7c27
PZ
8080 goto out;
8081
0f139300
PZ
8082 /*
8083 * Don't allow cross-cpu buffers
8084 */
8085 if (output_event->cpu != event->cpu)
8086 goto out;
8087
8088 /*
76369139 8089 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
8090 */
8091 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8092 goto out;
8093
34f43927
PZ
8094 /*
8095 * Mixing clocks in the same buffer is trouble you don't need.
8096 */
8097 if (output_event->clock != event->clock)
8098 goto out;
8099
45bfb2e5
PZ
8100 /*
8101 * If both events generate aux data, they must be on the same PMU
8102 */
8103 if (has_aux(event) && has_aux(output_event) &&
8104 event->pmu != output_event->pmu)
8105 goto out;
8106
a4be7c27 8107set:
cdd6c482 8108 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
8109 /* Can't redirect output if we've got an active mmap() */
8110 if (atomic_read(&event->mmap_count))
8111 goto unlock;
a4be7c27 8112
ac9721f3 8113 if (output_event) {
76369139
FW
8114 /* get the rb we want to redirect to */
8115 rb = ring_buffer_get(output_event);
8116 if (!rb)
ac9721f3 8117 goto unlock;
a4be7c27
PZ
8118 }
8119
b69cf536 8120 ring_buffer_attach(event, rb);
9bb5d40c 8121
a4be7c27 8122 ret = 0;
ac9721f3
PZ
8123unlock:
8124 mutex_unlock(&event->mmap_mutex);
8125
a4be7c27 8126out:
a4be7c27
PZ
8127 return ret;
8128}
8129
f63a8daa
PZ
8130static void mutex_lock_double(struct mutex *a, struct mutex *b)
8131{
8132 if (b < a)
8133 swap(a, b);
8134
8135 mutex_lock(a);
8136 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8137}
8138
34f43927
PZ
8139static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8140{
8141 bool nmi_safe = false;
8142
8143 switch (clk_id) {
8144 case CLOCK_MONOTONIC:
8145 event->clock = &ktime_get_mono_fast_ns;
8146 nmi_safe = true;
8147 break;
8148
8149 case CLOCK_MONOTONIC_RAW:
8150 event->clock = &ktime_get_raw_fast_ns;
8151 nmi_safe = true;
8152 break;
8153
8154 case CLOCK_REALTIME:
8155 event->clock = &ktime_get_real_ns;
8156 break;
8157
8158 case CLOCK_BOOTTIME:
8159 event->clock = &ktime_get_boot_ns;
8160 break;
8161
8162 case CLOCK_TAI:
8163 event->clock = &ktime_get_tai_ns;
8164 break;
8165
8166 default:
8167 return -EINVAL;
8168 }
8169
8170 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8171 return -EINVAL;
8172
8173 return 0;
8174}
8175
0793a61d 8176/**
cdd6c482 8177 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 8178 *
cdd6c482 8179 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 8180 * @pid: target pid
9f66a381 8181 * @cpu: target cpu
cdd6c482 8182 * @group_fd: group leader event fd
0793a61d 8183 */
cdd6c482
IM
8184SYSCALL_DEFINE5(perf_event_open,
8185 struct perf_event_attr __user *, attr_uptr,
2743a5b0 8186 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 8187{
b04243ef
PZ
8188 struct perf_event *group_leader = NULL, *output_event = NULL;
8189 struct perf_event *event, *sibling;
cdd6c482 8190 struct perf_event_attr attr;
f63a8daa 8191 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 8192 struct file *event_file = NULL;
2903ff01 8193 struct fd group = {NULL, 0};
38a81da2 8194 struct task_struct *task = NULL;
89a1e187 8195 struct pmu *pmu;
ea635c64 8196 int event_fd;
b04243ef 8197 int move_group = 0;
dc86cabe 8198 int err;
a21b0b35 8199 int f_flags = O_RDWR;
79dff51e 8200 int cgroup_fd = -1;
0793a61d 8201
2743a5b0 8202 /* for future expandability... */
e5d1367f 8203 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
8204 return -EINVAL;
8205
dc86cabe
IM
8206 err = perf_copy_attr(attr_uptr, &attr);
8207 if (err)
8208 return err;
eab656ae 8209
0764771d
PZ
8210 if (!attr.exclude_kernel) {
8211 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8212 return -EACCES;
8213 }
8214
df58ab24 8215 if (attr.freq) {
cdd6c482 8216 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 8217 return -EINVAL;
0819b2e3
PZ
8218 } else {
8219 if (attr.sample_period & (1ULL << 63))
8220 return -EINVAL;
df58ab24
PZ
8221 }
8222
e5d1367f
SE
8223 /*
8224 * In cgroup mode, the pid argument is used to pass the fd
8225 * opened to the cgroup directory in cgroupfs. The cpu argument
8226 * designates the cpu on which to monitor threads from that
8227 * cgroup.
8228 */
8229 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8230 return -EINVAL;
8231
a21b0b35
YD
8232 if (flags & PERF_FLAG_FD_CLOEXEC)
8233 f_flags |= O_CLOEXEC;
8234
8235 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
8236 if (event_fd < 0)
8237 return event_fd;
8238
ac9721f3 8239 if (group_fd != -1) {
2903ff01
AV
8240 err = perf_fget_light(group_fd, &group);
8241 if (err)
d14b12d7 8242 goto err_fd;
2903ff01 8243 group_leader = group.file->private_data;
ac9721f3
PZ
8244 if (flags & PERF_FLAG_FD_OUTPUT)
8245 output_event = group_leader;
8246 if (flags & PERF_FLAG_FD_NO_GROUP)
8247 group_leader = NULL;
8248 }
8249
e5d1367f 8250 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
8251 task = find_lively_task_by_vpid(pid);
8252 if (IS_ERR(task)) {
8253 err = PTR_ERR(task);
8254 goto err_group_fd;
8255 }
8256 }
8257
1f4ee503
PZ
8258 if (task && group_leader &&
8259 group_leader->attr.inherit != attr.inherit) {
8260 err = -EINVAL;
8261 goto err_task;
8262 }
8263
fbfc623f
YZ
8264 get_online_cpus();
8265
79dff51e
MF
8266 if (flags & PERF_FLAG_PID_CGROUP)
8267 cgroup_fd = pid;
8268
4dc0da86 8269 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 8270 NULL, NULL, cgroup_fd);
d14b12d7
SE
8271 if (IS_ERR(event)) {
8272 err = PTR_ERR(event);
1f4ee503 8273 goto err_cpus;
d14b12d7
SE
8274 }
8275
53b25335
VW
8276 if (is_sampling_event(event)) {
8277 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8278 err = -ENOTSUPP;
8279 goto err_alloc;
8280 }
8281 }
8282
766d6c07
FW
8283 account_event(event);
8284
89a1e187
PZ
8285 /*
8286 * Special case software events and allow them to be part of
8287 * any hardware group.
8288 */
8289 pmu = event->pmu;
b04243ef 8290
34f43927
PZ
8291 if (attr.use_clockid) {
8292 err = perf_event_set_clock(event, attr.clockid);
8293 if (err)
8294 goto err_alloc;
8295 }
8296
b04243ef
PZ
8297 if (group_leader &&
8298 (is_software_event(event) != is_software_event(group_leader))) {
8299 if (is_software_event(event)) {
8300 /*
8301 * If event and group_leader are not both a software
8302 * event, and event is, then group leader is not.
8303 *
8304 * Allow the addition of software events to !software
8305 * groups, this is safe because software events never
8306 * fail to schedule.
8307 */
8308 pmu = group_leader->pmu;
8309 } else if (is_software_event(group_leader) &&
8310 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8311 /*
8312 * In case the group is a pure software group, and we
8313 * try to add a hardware event, move the whole group to
8314 * the hardware context.
8315 */
8316 move_group = 1;
8317 }
8318 }
89a1e187
PZ
8319
8320 /*
8321 * Get the target context (task or percpu):
8322 */
4af57ef2 8323 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
8324 if (IS_ERR(ctx)) {
8325 err = PTR_ERR(ctx);
c6be5a5c 8326 goto err_alloc;
89a1e187
PZ
8327 }
8328
bed5b25a
AS
8329 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8330 err = -EBUSY;
8331 goto err_context;
8332 }
8333
fd1edb3a
PZ
8334 if (task) {
8335 put_task_struct(task);
8336 task = NULL;
8337 }
8338
ccff286d 8339 /*
cdd6c482 8340 * Look up the group leader (we will attach this event to it):
04289bb9 8341 */
ac9721f3 8342 if (group_leader) {
dc86cabe 8343 err = -EINVAL;
04289bb9 8344
04289bb9 8345 /*
ccff286d
IM
8346 * Do not allow a recursive hierarchy (this new sibling
8347 * becoming part of another group-sibling):
8348 */
8349 if (group_leader->group_leader != group_leader)
c3f00c70 8350 goto err_context;
34f43927
PZ
8351
8352 /* All events in a group should have the same clock */
8353 if (group_leader->clock != event->clock)
8354 goto err_context;
8355
ccff286d
IM
8356 /*
8357 * Do not allow to attach to a group in a different
8358 * task or CPU context:
04289bb9 8359 */
b04243ef 8360 if (move_group) {
c3c87e77
PZ
8361 /*
8362 * Make sure we're both on the same task, or both
8363 * per-cpu events.
8364 */
8365 if (group_leader->ctx->task != ctx->task)
8366 goto err_context;
8367
8368 /*
8369 * Make sure we're both events for the same CPU;
8370 * grouping events for different CPUs is broken; since
8371 * you can never concurrently schedule them anyhow.
8372 */
8373 if (group_leader->cpu != event->cpu)
b04243ef
PZ
8374 goto err_context;
8375 } else {
8376 if (group_leader->ctx != ctx)
8377 goto err_context;
8378 }
8379
3b6f9e5c
PM
8380 /*
8381 * Only a group leader can be exclusive or pinned
8382 */
0d48696f 8383 if (attr.exclusive || attr.pinned)
c3f00c70 8384 goto err_context;
ac9721f3
PZ
8385 }
8386
8387 if (output_event) {
8388 err = perf_event_set_output(event, output_event);
8389 if (err)
c3f00c70 8390 goto err_context;
ac9721f3 8391 }
0793a61d 8392
a21b0b35
YD
8393 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8394 f_flags);
ea635c64
AV
8395 if (IS_ERR(event_file)) {
8396 err = PTR_ERR(event_file);
c3f00c70 8397 goto err_context;
ea635c64 8398 }
9b51f66d 8399
b04243ef 8400 if (move_group) {
f63a8daa 8401 gctx = group_leader->ctx;
f55fc2a5 8402 mutex_lock_double(&gctx->mutex, &ctx->mutex);
84c4e620
PZ
8403 if (gctx->task == TASK_TOMBSTONE) {
8404 err = -ESRCH;
8405 goto err_locked;
8406 }
f55fc2a5
PZ
8407 } else {
8408 mutex_lock(&ctx->mutex);
8409 }
8410
84c4e620
PZ
8411 if (ctx->task == TASK_TOMBSTONE) {
8412 err = -ESRCH;
8413 goto err_locked;
8414 }
8415
a723968c
PZ
8416 if (!perf_event_validate_size(event)) {
8417 err = -E2BIG;
8418 goto err_locked;
8419 }
8420
f55fc2a5
PZ
8421 /*
8422 * Must be under the same ctx::mutex as perf_install_in_context(),
8423 * because we need to serialize with concurrent event creation.
8424 */
8425 if (!exclusive_event_installable(event, ctx)) {
8426 /* exclusive and group stuff are assumed mutually exclusive */
8427 WARN_ON_ONCE(move_group);
f63a8daa 8428
f55fc2a5
PZ
8429 err = -EBUSY;
8430 goto err_locked;
8431 }
f63a8daa 8432
f55fc2a5
PZ
8433 WARN_ON_ONCE(ctx->parent_ctx);
8434
8435 if (move_group) {
f63a8daa
PZ
8436 /*
8437 * See perf_event_ctx_lock() for comments on the details
8438 * of swizzling perf_event::ctx.
8439 */
45a0e07a 8440 perf_remove_from_context(group_leader, 0);
0231bb53 8441
b04243ef
PZ
8442 list_for_each_entry(sibling, &group_leader->sibling_list,
8443 group_entry) {
45a0e07a 8444 perf_remove_from_context(sibling, 0);
b04243ef
PZ
8445 put_ctx(gctx);
8446 }
b04243ef 8447
f63a8daa
PZ
8448 /*
8449 * Wait for everybody to stop referencing the events through
8450 * the old lists, before installing it on new lists.
8451 */
0cda4c02 8452 synchronize_rcu();
f63a8daa 8453
8f95b435
PZI
8454 /*
8455 * Install the group siblings before the group leader.
8456 *
8457 * Because a group leader will try and install the entire group
8458 * (through the sibling list, which is still in-tact), we can
8459 * end up with siblings installed in the wrong context.
8460 *
8461 * By installing siblings first we NO-OP because they're not
8462 * reachable through the group lists.
8463 */
b04243ef
PZ
8464 list_for_each_entry(sibling, &group_leader->sibling_list,
8465 group_entry) {
8f95b435 8466 perf_event__state_init(sibling);
9fc81d87 8467 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
8468 get_ctx(ctx);
8469 }
8f95b435
PZI
8470
8471 /*
8472 * Removing from the context ends up with disabled
8473 * event. What we want here is event in the initial
8474 * startup state, ready to be add into new context.
8475 */
8476 perf_event__state_init(group_leader);
8477 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8478 get_ctx(ctx);
b04243ef 8479
f55fc2a5
PZ
8480 /*
8481 * Now that all events are installed in @ctx, nothing
8482 * references @gctx anymore, so drop the last reference we have
8483 * on it.
8484 */
8485 put_ctx(gctx);
bed5b25a
AS
8486 }
8487
f73e22ab
PZ
8488 /*
8489 * Precalculate sample_data sizes; do while holding ctx::mutex such
8490 * that we're serialized against further additions and before
8491 * perf_install_in_context() which is the point the event is active and
8492 * can use these values.
8493 */
8494 perf_event__header_size(event);
8495 perf_event__id_header_size(event);
8496
78cd2c74
PZ
8497 event->owner = current;
8498
e2d37cd2 8499 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 8500 perf_unpin_context(ctx);
f63a8daa 8501
f55fc2a5 8502 if (move_group)
f63a8daa 8503 mutex_unlock(&gctx->mutex);
d859e29f 8504 mutex_unlock(&ctx->mutex);
9b51f66d 8505
fbfc623f
YZ
8506 put_online_cpus();
8507
cdd6c482
IM
8508 mutex_lock(&current->perf_event_mutex);
8509 list_add_tail(&event->owner_entry, &current->perf_event_list);
8510 mutex_unlock(&current->perf_event_mutex);
082ff5a2 8511
8a49542c
PZ
8512 /*
8513 * Drop the reference on the group_event after placing the
8514 * new event on the sibling_list. This ensures destruction
8515 * of the group leader will find the pointer to itself in
8516 * perf_group_detach().
8517 */
2903ff01 8518 fdput(group);
ea635c64
AV
8519 fd_install(event_fd, event_file);
8520 return event_fd;
0793a61d 8521
f55fc2a5
PZ
8522err_locked:
8523 if (move_group)
8524 mutex_unlock(&gctx->mutex);
8525 mutex_unlock(&ctx->mutex);
8526/* err_file: */
8527 fput(event_file);
c3f00c70 8528err_context:
fe4b04fa 8529 perf_unpin_context(ctx);
ea635c64 8530 put_ctx(ctx);
c6be5a5c 8531err_alloc:
13005627
PZ
8532 /*
8533 * If event_file is set, the fput() above will have called ->release()
8534 * and that will take care of freeing the event.
8535 */
8536 if (!event_file)
8537 free_event(event);
1f4ee503 8538err_cpus:
fbfc623f 8539 put_online_cpus();
1f4ee503 8540err_task:
e7d0bc04
PZ
8541 if (task)
8542 put_task_struct(task);
89a1e187 8543err_group_fd:
2903ff01 8544 fdput(group);
ea635c64
AV
8545err_fd:
8546 put_unused_fd(event_fd);
dc86cabe 8547 return err;
0793a61d
TG
8548}
8549
fb0459d7
AV
8550/**
8551 * perf_event_create_kernel_counter
8552 *
8553 * @attr: attributes of the counter to create
8554 * @cpu: cpu in which the counter is bound
38a81da2 8555 * @task: task to profile (NULL for percpu)
fb0459d7
AV
8556 */
8557struct perf_event *
8558perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 8559 struct task_struct *task,
4dc0da86
AK
8560 perf_overflow_handler_t overflow_handler,
8561 void *context)
fb0459d7 8562{
fb0459d7 8563 struct perf_event_context *ctx;
c3f00c70 8564 struct perf_event *event;
fb0459d7 8565 int err;
d859e29f 8566
fb0459d7
AV
8567 /*
8568 * Get the target context (task or percpu):
8569 */
d859e29f 8570
4dc0da86 8571 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 8572 overflow_handler, context, -1);
c3f00c70
PZ
8573 if (IS_ERR(event)) {
8574 err = PTR_ERR(event);
8575 goto err;
8576 }
d859e29f 8577
f8697762 8578 /* Mark owner so we could distinguish it from user events. */
63b6da39 8579 event->owner = TASK_TOMBSTONE;
f8697762 8580
766d6c07
FW
8581 account_event(event);
8582
4af57ef2 8583 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
8584 if (IS_ERR(ctx)) {
8585 err = PTR_ERR(ctx);
c3f00c70 8586 goto err_free;
d859e29f 8587 }
fb0459d7 8588
fb0459d7
AV
8589 WARN_ON_ONCE(ctx->parent_ctx);
8590 mutex_lock(&ctx->mutex);
84c4e620
PZ
8591 if (ctx->task == TASK_TOMBSTONE) {
8592 err = -ESRCH;
8593 goto err_unlock;
8594 }
8595
bed5b25a 8596 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 8597 err = -EBUSY;
84c4e620 8598 goto err_unlock;
bed5b25a
AS
8599 }
8600
fb0459d7 8601 perf_install_in_context(ctx, event, cpu);
fe4b04fa 8602 perf_unpin_context(ctx);
fb0459d7
AV
8603 mutex_unlock(&ctx->mutex);
8604
fb0459d7
AV
8605 return event;
8606
84c4e620
PZ
8607err_unlock:
8608 mutex_unlock(&ctx->mutex);
8609 perf_unpin_context(ctx);
8610 put_ctx(ctx);
c3f00c70
PZ
8611err_free:
8612 free_event(event);
8613err:
c6567f64 8614 return ERR_PTR(err);
9b51f66d 8615}
fb0459d7 8616EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 8617
0cda4c02
YZ
8618void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8619{
8620 struct perf_event_context *src_ctx;
8621 struct perf_event_context *dst_ctx;
8622 struct perf_event *event, *tmp;
8623 LIST_HEAD(events);
8624
8625 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8626 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8627
f63a8daa
PZ
8628 /*
8629 * See perf_event_ctx_lock() for comments on the details
8630 * of swizzling perf_event::ctx.
8631 */
8632 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
8633 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8634 event_entry) {
45a0e07a 8635 perf_remove_from_context(event, 0);
9a545de0 8636 unaccount_event_cpu(event, src_cpu);
0cda4c02 8637 put_ctx(src_ctx);
9886167d 8638 list_add(&event->migrate_entry, &events);
0cda4c02 8639 }
0cda4c02 8640
8f95b435
PZI
8641 /*
8642 * Wait for the events to quiesce before re-instating them.
8643 */
0cda4c02
YZ
8644 synchronize_rcu();
8645
8f95b435
PZI
8646 /*
8647 * Re-instate events in 2 passes.
8648 *
8649 * Skip over group leaders and only install siblings on this first
8650 * pass, siblings will not get enabled without a leader, however a
8651 * leader will enable its siblings, even if those are still on the old
8652 * context.
8653 */
8654 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8655 if (event->group_leader == event)
8656 continue;
8657
8658 list_del(&event->migrate_entry);
8659 if (event->state >= PERF_EVENT_STATE_OFF)
8660 event->state = PERF_EVENT_STATE_INACTIVE;
8661 account_event_cpu(event, dst_cpu);
8662 perf_install_in_context(dst_ctx, event, dst_cpu);
8663 get_ctx(dst_ctx);
8664 }
8665
8666 /*
8667 * Once all the siblings are setup properly, install the group leaders
8668 * to make it go.
8669 */
9886167d
PZ
8670 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8671 list_del(&event->migrate_entry);
0cda4c02
YZ
8672 if (event->state >= PERF_EVENT_STATE_OFF)
8673 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 8674 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
8675 perf_install_in_context(dst_ctx, event, dst_cpu);
8676 get_ctx(dst_ctx);
8677 }
8678 mutex_unlock(&dst_ctx->mutex);
f63a8daa 8679 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
8680}
8681EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8682
cdd6c482 8683static void sync_child_event(struct perf_event *child_event,
38b200d6 8684 struct task_struct *child)
d859e29f 8685{
cdd6c482 8686 struct perf_event *parent_event = child_event->parent;
8bc20959 8687 u64 child_val;
d859e29f 8688
cdd6c482
IM
8689 if (child_event->attr.inherit_stat)
8690 perf_event_read_event(child_event, child);
38b200d6 8691
b5e58793 8692 child_val = perf_event_count(child_event);
d859e29f
PM
8693
8694 /*
8695 * Add back the child's count to the parent's count:
8696 */
a6e6dea6 8697 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
8698 atomic64_add(child_event->total_time_enabled,
8699 &parent_event->child_total_time_enabled);
8700 atomic64_add(child_event->total_time_running,
8701 &parent_event->child_total_time_running);
d859e29f
PM
8702}
8703
9b51f66d 8704static void
8ba289b8
PZ
8705perf_event_exit_event(struct perf_event *child_event,
8706 struct perf_event_context *child_ctx,
8707 struct task_struct *child)
9b51f66d 8708{
8ba289b8
PZ
8709 struct perf_event *parent_event = child_event->parent;
8710
1903d50c
PZ
8711 /*
8712 * Do not destroy the 'original' grouping; because of the context
8713 * switch optimization the original events could've ended up in a
8714 * random child task.
8715 *
8716 * If we were to destroy the original group, all group related
8717 * operations would cease to function properly after this random
8718 * child dies.
8719 *
8720 * Do destroy all inherited groups, we don't care about those
8721 * and being thorough is better.
8722 */
32132a3d
PZ
8723 raw_spin_lock_irq(&child_ctx->lock);
8724 WARN_ON_ONCE(child_ctx->is_active);
8725
8ba289b8 8726 if (parent_event)
32132a3d
PZ
8727 perf_group_detach(child_event);
8728 list_del_event(child_event, child_ctx);
a69b0ca4 8729 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
32132a3d 8730 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 8731
9b51f66d 8732 /*
8ba289b8 8733 * Parent events are governed by their filedesc, retain them.
9b51f66d 8734 */
8ba289b8 8735 if (!parent_event) {
179033b3 8736 perf_event_wakeup(child_event);
8ba289b8 8737 return;
4bcf349a 8738 }
8ba289b8
PZ
8739 /*
8740 * Child events can be cleaned up.
8741 */
8742
8743 sync_child_event(child_event, child);
8744
8745 /*
8746 * Remove this event from the parent's list
8747 */
8748 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8749 mutex_lock(&parent_event->child_mutex);
8750 list_del_init(&child_event->child_list);
8751 mutex_unlock(&parent_event->child_mutex);
8752
8753 /*
8754 * Kick perf_poll() for is_event_hup().
8755 */
8756 perf_event_wakeup(parent_event);
8757 free_event(child_event);
8758 put_event(parent_event);
9b51f66d
IM
8759}
8760
8dc85d54 8761static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 8762{
211de6eb 8763 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 8764 struct perf_event *child_event, *next;
63b6da39
PZ
8765
8766 WARN_ON_ONCE(child != current);
9b51f66d 8767
6a3351b6 8768 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 8769 if (!child_ctx)
9b51f66d
IM
8770 return;
8771
ad3a37de 8772 /*
6a3351b6
PZ
8773 * In order to reduce the amount of tricky in ctx tear-down, we hold
8774 * ctx::mutex over the entire thing. This serializes against almost
8775 * everything that wants to access the ctx.
8776 *
8777 * The exception is sys_perf_event_open() /
8778 * perf_event_create_kernel_count() which does find_get_context()
8779 * without ctx::mutex (it cannot because of the move_group double mutex
8780 * lock thing). See the comments in perf_install_in_context().
ad3a37de 8781 */
6a3351b6 8782 mutex_lock(&child_ctx->mutex);
c93f7669
PM
8783
8784 /*
6a3351b6
PZ
8785 * In a single ctx::lock section, de-schedule the events and detach the
8786 * context from the task such that we cannot ever get it scheduled back
8787 * in.
c93f7669 8788 */
6a3351b6 8789 raw_spin_lock_irq(&child_ctx->lock);
63b6da39 8790 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
4a1c0f26 8791
71a851b4 8792 /*
63b6da39
PZ
8793 * Now that the context is inactive, destroy the task <-> ctx relation
8794 * and mark the context dead.
71a851b4 8795 */
63b6da39
PZ
8796 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
8797 put_ctx(child_ctx); /* cannot be last */
8798 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
8799 put_task_struct(current); /* cannot be last */
4a1c0f26 8800
211de6eb 8801 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 8802 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 8803
211de6eb
PZ
8804 if (clone_ctx)
8805 put_ctx(clone_ctx);
4a1c0f26 8806
9f498cc5 8807 /*
cdd6c482
IM
8808 * Report the task dead after unscheduling the events so that we
8809 * won't get any samples after PERF_RECORD_EXIT. We can however still
8810 * get a few PERF_RECORD_READ events.
9f498cc5 8811 */
cdd6c482 8812 perf_event_task(child, child_ctx, 0);
a63eaf34 8813
ebf905fc 8814 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 8815 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 8816
a63eaf34
PM
8817 mutex_unlock(&child_ctx->mutex);
8818
8819 put_ctx(child_ctx);
9b51f66d
IM
8820}
8821
8dc85d54
PZ
8822/*
8823 * When a child task exits, feed back event values to parent events.
8824 */
8825void perf_event_exit_task(struct task_struct *child)
8826{
8882135b 8827 struct perf_event *event, *tmp;
8dc85d54
PZ
8828 int ctxn;
8829
8882135b
PZ
8830 mutex_lock(&child->perf_event_mutex);
8831 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8832 owner_entry) {
8833 list_del_init(&event->owner_entry);
8834
8835 /*
8836 * Ensure the list deletion is visible before we clear
8837 * the owner, closes a race against perf_release() where
8838 * we need to serialize on the owner->perf_event_mutex.
8839 */
f47c02c0 8840 smp_store_release(&event->owner, NULL);
8882135b
PZ
8841 }
8842 mutex_unlock(&child->perf_event_mutex);
8843
8dc85d54
PZ
8844 for_each_task_context_nr(ctxn)
8845 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
8846
8847 /*
8848 * The perf_event_exit_task_context calls perf_event_task
8849 * with child's task_ctx, which generates EXIT events for
8850 * child contexts and sets child->perf_event_ctxp[] to NULL.
8851 * At this point we need to send EXIT events to cpu contexts.
8852 */
8853 perf_event_task(child, NULL, 0);
8dc85d54
PZ
8854}
8855
889ff015
FW
8856static void perf_free_event(struct perf_event *event,
8857 struct perf_event_context *ctx)
8858{
8859 struct perf_event *parent = event->parent;
8860
8861 if (WARN_ON_ONCE(!parent))
8862 return;
8863
8864 mutex_lock(&parent->child_mutex);
8865 list_del_init(&event->child_list);
8866 mutex_unlock(&parent->child_mutex);
8867
a6fa941d 8868 put_event(parent);
889ff015 8869
652884fe 8870 raw_spin_lock_irq(&ctx->lock);
8a49542c 8871 perf_group_detach(event);
889ff015 8872 list_del_event(event, ctx);
652884fe 8873 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
8874 free_event(event);
8875}
8876
bbbee908 8877/*
652884fe 8878 * Free an unexposed, unused context as created by inheritance by
8dc85d54 8879 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
8880 *
8881 * Not all locks are strictly required, but take them anyway to be nice and
8882 * help out with the lockdep assertions.
bbbee908 8883 */
cdd6c482 8884void perf_event_free_task(struct task_struct *task)
bbbee908 8885{
8dc85d54 8886 struct perf_event_context *ctx;
cdd6c482 8887 struct perf_event *event, *tmp;
8dc85d54 8888 int ctxn;
bbbee908 8889
8dc85d54
PZ
8890 for_each_task_context_nr(ctxn) {
8891 ctx = task->perf_event_ctxp[ctxn];
8892 if (!ctx)
8893 continue;
bbbee908 8894
8dc85d54 8895 mutex_lock(&ctx->mutex);
bbbee908 8896again:
8dc85d54
PZ
8897 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8898 group_entry)
8899 perf_free_event(event, ctx);
bbbee908 8900
8dc85d54
PZ
8901 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8902 group_entry)
8903 perf_free_event(event, ctx);
bbbee908 8904
8dc85d54
PZ
8905 if (!list_empty(&ctx->pinned_groups) ||
8906 !list_empty(&ctx->flexible_groups))
8907 goto again;
bbbee908 8908
8dc85d54 8909 mutex_unlock(&ctx->mutex);
bbbee908 8910
8dc85d54
PZ
8911 put_ctx(ctx);
8912 }
889ff015
FW
8913}
8914
4e231c79
PZ
8915void perf_event_delayed_put(struct task_struct *task)
8916{
8917 int ctxn;
8918
8919 for_each_task_context_nr(ctxn)
8920 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8921}
8922
e03e7ee3 8923struct file *perf_event_get(unsigned int fd)
ffe8690c 8924{
e03e7ee3 8925 struct file *file;
ffe8690c 8926
e03e7ee3
AS
8927 file = fget_raw(fd);
8928 if (!file)
8929 return ERR_PTR(-EBADF);
ffe8690c 8930
e03e7ee3
AS
8931 if (file->f_op != &perf_fops) {
8932 fput(file);
8933 return ERR_PTR(-EBADF);
8934 }
ffe8690c 8935
e03e7ee3 8936 return file;
ffe8690c
KX
8937}
8938
8939const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
8940{
8941 if (!event)
8942 return ERR_PTR(-EINVAL);
8943
8944 return &event->attr;
8945}
8946
97dee4f3
PZ
8947/*
8948 * inherit a event from parent task to child task:
8949 */
8950static struct perf_event *
8951inherit_event(struct perf_event *parent_event,
8952 struct task_struct *parent,
8953 struct perf_event_context *parent_ctx,
8954 struct task_struct *child,
8955 struct perf_event *group_leader,
8956 struct perf_event_context *child_ctx)
8957{
1929def9 8958 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 8959 struct perf_event *child_event;
cee010ec 8960 unsigned long flags;
97dee4f3
PZ
8961
8962 /*
8963 * Instead of creating recursive hierarchies of events,
8964 * we link inherited events back to the original parent,
8965 * which has a filp for sure, which we use as the reference
8966 * count:
8967 */
8968 if (parent_event->parent)
8969 parent_event = parent_event->parent;
8970
8971 child_event = perf_event_alloc(&parent_event->attr,
8972 parent_event->cpu,
d580ff86 8973 child,
97dee4f3 8974 group_leader, parent_event,
79dff51e 8975 NULL, NULL, -1);
97dee4f3
PZ
8976 if (IS_ERR(child_event))
8977 return child_event;
a6fa941d 8978
c6e5b732
PZ
8979 /*
8980 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
8981 * must be under the same lock in order to serialize against
8982 * perf_event_release_kernel(), such that either we must observe
8983 * is_orphaned_event() or they will observe us on the child_list.
8984 */
8985 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
8986 if (is_orphaned_event(parent_event) ||
8987 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 8988 mutex_unlock(&parent_event->child_mutex);
a6fa941d
AV
8989 free_event(child_event);
8990 return NULL;
8991 }
8992
97dee4f3
PZ
8993 get_ctx(child_ctx);
8994
8995 /*
8996 * Make the child state follow the state of the parent event,
8997 * not its attr.disabled bit. We hold the parent's mutex,
8998 * so we won't race with perf_event_{en, dis}able_family.
8999 */
1929def9 9000 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
9001 child_event->state = PERF_EVENT_STATE_INACTIVE;
9002 else
9003 child_event->state = PERF_EVENT_STATE_OFF;
9004
9005 if (parent_event->attr.freq) {
9006 u64 sample_period = parent_event->hw.sample_period;
9007 struct hw_perf_event *hwc = &child_event->hw;
9008
9009 hwc->sample_period = sample_period;
9010 hwc->last_period = sample_period;
9011
9012 local64_set(&hwc->period_left, sample_period);
9013 }
9014
9015 child_event->ctx = child_ctx;
9016 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
9017 child_event->overflow_handler_context
9018 = parent_event->overflow_handler_context;
97dee4f3 9019
614b6780
TG
9020 /*
9021 * Precalculate sample_data sizes
9022 */
9023 perf_event__header_size(child_event);
6844c09d 9024 perf_event__id_header_size(child_event);
614b6780 9025
97dee4f3
PZ
9026 /*
9027 * Link it up in the child's context:
9028 */
cee010ec 9029 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 9030 add_event_to_ctx(child_event, child_ctx);
cee010ec 9031 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 9032
97dee4f3
PZ
9033 /*
9034 * Link this into the parent event's child list
9035 */
97dee4f3
PZ
9036 list_add_tail(&child_event->child_list, &parent_event->child_list);
9037 mutex_unlock(&parent_event->child_mutex);
9038
9039 return child_event;
9040}
9041
9042static int inherit_group(struct perf_event *parent_event,
9043 struct task_struct *parent,
9044 struct perf_event_context *parent_ctx,
9045 struct task_struct *child,
9046 struct perf_event_context *child_ctx)
9047{
9048 struct perf_event *leader;
9049 struct perf_event *sub;
9050 struct perf_event *child_ctr;
9051
9052 leader = inherit_event(parent_event, parent, parent_ctx,
9053 child, NULL, child_ctx);
9054 if (IS_ERR(leader))
9055 return PTR_ERR(leader);
9056 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9057 child_ctr = inherit_event(sub, parent, parent_ctx,
9058 child, leader, child_ctx);
9059 if (IS_ERR(child_ctr))
9060 return PTR_ERR(child_ctr);
9061 }
9062 return 0;
889ff015
FW
9063}
9064
9065static int
9066inherit_task_group(struct perf_event *event, struct task_struct *parent,
9067 struct perf_event_context *parent_ctx,
8dc85d54 9068 struct task_struct *child, int ctxn,
889ff015
FW
9069 int *inherited_all)
9070{
9071 int ret;
8dc85d54 9072 struct perf_event_context *child_ctx;
889ff015
FW
9073
9074 if (!event->attr.inherit) {
9075 *inherited_all = 0;
9076 return 0;
bbbee908
PZ
9077 }
9078
fe4b04fa 9079 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
9080 if (!child_ctx) {
9081 /*
9082 * This is executed from the parent task context, so
9083 * inherit events that have been marked for cloning.
9084 * First allocate and initialize a context for the
9085 * child.
9086 */
bbbee908 9087
734df5ab 9088 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
9089 if (!child_ctx)
9090 return -ENOMEM;
bbbee908 9091
8dc85d54 9092 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
9093 }
9094
9095 ret = inherit_group(event, parent, parent_ctx,
9096 child, child_ctx);
9097
9098 if (ret)
9099 *inherited_all = 0;
9100
9101 return ret;
bbbee908
PZ
9102}
9103
9b51f66d 9104/*
cdd6c482 9105 * Initialize the perf_event context in task_struct
9b51f66d 9106 */
985c8dcb 9107static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 9108{
889ff015 9109 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
9110 struct perf_event_context *cloned_ctx;
9111 struct perf_event *event;
9b51f66d 9112 struct task_struct *parent = current;
564c2b21 9113 int inherited_all = 1;
dddd3379 9114 unsigned long flags;
6ab423e0 9115 int ret = 0;
9b51f66d 9116
8dc85d54 9117 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
9118 return 0;
9119
ad3a37de 9120 /*
25346b93
PM
9121 * If the parent's context is a clone, pin it so it won't get
9122 * swapped under us.
ad3a37de 9123 */
8dc85d54 9124 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
9125 if (!parent_ctx)
9126 return 0;
25346b93 9127
ad3a37de
PM
9128 /*
9129 * No need to check if parent_ctx != NULL here; since we saw
9130 * it non-NULL earlier, the only reason for it to become NULL
9131 * is if we exit, and since we're currently in the middle of
9132 * a fork we can't be exiting at the same time.
9133 */
ad3a37de 9134
9b51f66d
IM
9135 /*
9136 * Lock the parent list. No need to lock the child - not PID
9137 * hashed yet and not running, so nobody can access it.
9138 */
d859e29f 9139 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
9140
9141 /*
9142 * We dont have to disable NMIs - we are only looking at
9143 * the list, not manipulating it:
9144 */
889ff015 9145 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
9146 ret = inherit_task_group(event, parent, parent_ctx,
9147 child, ctxn, &inherited_all);
889ff015
FW
9148 if (ret)
9149 break;
9150 }
b93f7978 9151
dddd3379
TG
9152 /*
9153 * We can't hold ctx->lock when iterating the ->flexible_group list due
9154 * to allocations, but we need to prevent rotation because
9155 * rotate_ctx() will change the list from interrupt context.
9156 */
9157 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9158 parent_ctx->rotate_disable = 1;
9159 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9160
889ff015 9161 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
9162 ret = inherit_task_group(event, parent, parent_ctx,
9163 child, ctxn, &inherited_all);
889ff015 9164 if (ret)
9b51f66d 9165 break;
564c2b21
PM
9166 }
9167
dddd3379
TG
9168 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9169 parent_ctx->rotate_disable = 0;
dddd3379 9170
8dc85d54 9171 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 9172
05cbaa28 9173 if (child_ctx && inherited_all) {
564c2b21
PM
9174 /*
9175 * Mark the child context as a clone of the parent
9176 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
9177 *
9178 * Note that if the parent is a clone, the holding of
9179 * parent_ctx->lock avoids it from being uncloned.
564c2b21 9180 */
c5ed5145 9181 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
9182 if (cloned_ctx) {
9183 child_ctx->parent_ctx = cloned_ctx;
25346b93 9184 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
9185 } else {
9186 child_ctx->parent_ctx = parent_ctx;
9187 child_ctx->parent_gen = parent_ctx->generation;
9188 }
9189 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
9190 }
9191
c5ed5145 9192 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 9193 mutex_unlock(&parent_ctx->mutex);
6ab423e0 9194
25346b93 9195 perf_unpin_context(parent_ctx);
fe4b04fa 9196 put_ctx(parent_ctx);
ad3a37de 9197
6ab423e0 9198 return ret;
9b51f66d
IM
9199}
9200
8dc85d54
PZ
9201/*
9202 * Initialize the perf_event context in task_struct
9203 */
9204int perf_event_init_task(struct task_struct *child)
9205{
9206 int ctxn, ret;
9207
8550d7cb
ON
9208 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9209 mutex_init(&child->perf_event_mutex);
9210 INIT_LIST_HEAD(&child->perf_event_list);
9211
8dc85d54
PZ
9212 for_each_task_context_nr(ctxn) {
9213 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
9214 if (ret) {
9215 perf_event_free_task(child);
8dc85d54 9216 return ret;
6c72e350 9217 }
8dc85d54
PZ
9218 }
9219
9220 return 0;
9221}
9222
220b140b
PM
9223static void __init perf_event_init_all_cpus(void)
9224{
b28ab83c 9225 struct swevent_htable *swhash;
220b140b 9226 int cpu;
220b140b
PM
9227
9228 for_each_possible_cpu(cpu) {
b28ab83c
PZ
9229 swhash = &per_cpu(swevent_htable, cpu);
9230 mutex_init(&swhash->hlist_mutex);
2fde4f94 9231 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
220b140b
PM
9232 }
9233}
9234
0db0628d 9235static void perf_event_init_cpu(int cpu)
0793a61d 9236{
108b02cf 9237 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 9238
b28ab83c 9239 mutex_lock(&swhash->hlist_mutex);
059fcd8c 9240 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
9241 struct swevent_hlist *hlist;
9242
b28ab83c
PZ
9243 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9244 WARN_ON(!hlist);
9245 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 9246 }
b28ab83c 9247 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
9248}
9249
2965faa5 9250#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 9251static void __perf_event_exit_context(void *__info)
0793a61d 9252{
108b02cf 9253 struct perf_event_context *ctx = __info;
fae3fde6
PZ
9254 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
9255 struct perf_event *event;
0793a61d 9256
fae3fde6
PZ
9257 raw_spin_lock(&ctx->lock);
9258 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 9259 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 9260 raw_spin_unlock(&ctx->lock);
0793a61d 9261}
108b02cf
PZ
9262
9263static void perf_event_exit_cpu_context(int cpu)
9264{
9265 struct perf_event_context *ctx;
9266 struct pmu *pmu;
9267 int idx;
9268
9269 idx = srcu_read_lock(&pmus_srcu);
9270 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 9271 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
9272
9273 mutex_lock(&ctx->mutex);
9274 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9275 mutex_unlock(&ctx->mutex);
9276 }
9277 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
9278}
9279
cdd6c482 9280static void perf_event_exit_cpu(int cpu)
0793a61d 9281{
e3703f8c 9282 perf_event_exit_cpu_context(cpu);
0793a61d
TG
9283}
9284#else
cdd6c482 9285static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
9286#endif
9287
c277443c
PZ
9288static int
9289perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9290{
9291 int cpu;
9292
9293 for_each_online_cpu(cpu)
9294 perf_event_exit_cpu(cpu);
9295
9296 return NOTIFY_OK;
9297}
9298
9299/*
9300 * Run the perf reboot notifier at the very last possible moment so that
9301 * the generic watchdog code runs as long as possible.
9302 */
9303static struct notifier_block perf_reboot_notifier = {
9304 .notifier_call = perf_reboot,
9305 .priority = INT_MIN,
9306};
9307
0db0628d 9308static int
0793a61d
TG
9309perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9310{
9311 unsigned int cpu = (long)hcpu;
9312
4536e4d1 9313 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
9314
9315 case CPU_UP_PREPARE:
cdd6c482 9316 perf_event_init_cpu(cpu);
0793a61d
TG
9317 break;
9318
9319 case CPU_DOWN_PREPARE:
cdd6c482 9320 perf_event_exit_cpu(cpu);
0793a61d 9321 break;
0793a61d
TG
9322 default:
9323 break;
9324 }
9325
9326 return NOTIFY_OK;
9327}
9328
cdd6c482 9329void __init perf_event_init(void)
0793a61d 9330{
3c502e7a
JW
9331 int ret;
9332
2e80a82a
PZ
9333 idr_init(&pmu_idr);
9334
220b140b 9335 perf_event_init_all_cpus();
b0a873eb 9336 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
9337 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9338 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9339 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
9340 perf_tp_register();
9341 perf_cpu_notifier(perf_cpu_notify);
c277443c 9342 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
9343
9344 ret = init_hw_breakpoint();
9345 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
9346
9347 /* do not patch jump label more than once per second */
9348 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
9349
9350 /*
9351 * Build time assertion that we keep the data_head at the intended
9352 * location. IOW, validation we got the __reserved[] size right.
9353 */
9354 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9355 != 1024);
0793a61d 9356}
abe43400 9357
fd979c01
CS
9358ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9359 char *page)
9360{
9361 struct perf_pmu_events_attr *pmu_attr =
9362 container_of(attr, struct perf_pmu_events_attr, attr);
9363
9364 if (pmu_attr->event_str)
9365 return sprintf(page, "%s\n", pmu_attr->event_str);
9366
9367 return 0;
9368}
9369
abe43400
PZ
9370static int __init perf_event_sysfs_init(void)
9371{
9372 struct pmu *pmu;
9373 int ret;
9374
9375 mutex_lock(&pmus_lock);
9376
9377 ret = bus_register(&pmu_bus);
9378 if (ret)
9379 goto unlock;
9380
9381 list_for_each_entry(pmu, &pmus, entry) {
9382 if (!pmu->name || pmu->type < 0)
9383 continue;
9384
9385 ret = pmu_dev_alloc(pmu);
9386 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9387 }
9388 pmu_bus_running = 1;
9389 ret = 0;
9390
9391unlock:
9392 mutex_unlock(&pmus_lock);
9393
9394 return ret;
9395}
9396device_initcall(perf_event_sysfs_init);
e5d1367f
SE
9397
9398#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
9399static struct cgroup_subsys_state *
9400perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
9401{
9402 struct perf_cgroup *jc;
e5d1367f 9403
1b15d055 9404 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
9405 if (!jc)
9406 return ERR_PTR(-ENOMEM);
9407
e5d1367f
SE
9408 jc->info = alloc_percpu(struct perf_cgroup_info);
9409 if (!jc->info) {
9410 kfree(jc);
9411 return ERR_PTR(-ENOMEM);
9412 }
9413
e5d1367f
SE
9414 return &jc->css;
9415}
9416
eb95419b 9417static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 9418{
eb95419b
TH
9419 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9420
e5d1367f
SE
9421 free_percpu(jc->info);
9422 kfree(jc);
9423}
9424
9425static int __perf_cgroup_move(void *info)
9426{
9427 struct task_struct *task = info;
ddaaf4e2 9428 rcu_read_lock();
e5d1367f 9429 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 9430 rcu_read_unlock();
e5d1367f
SE
9431 return 0;
9432}
9433
1f7dd3e5 9434static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 9435{
bb9d97b6 9436 struct task_struct *task;
1f7dd3e5 9437 struct cgroup_subsys_state *css;
bb9d97b6 9438
1f7dd3e5 9439 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 9440 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
9441}
9442
073219e9 9443struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
9444 .css_alloc = perf_cgroup_css_alloc,
9445 .css_free = perf_cgroup_css_free,
bb9d97b6 9446 .attach = perf_cgroup_attach,
e5d1367f
SE
9447};
9448#endif /* CONFIG_CGROUP_PERF */