perf/bpf: Mark perf_event_set_bpf_handler() and perf_event_free_bpf_handler() as...
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
8e86e015 1// SPDX-License-Identifier: GPL-2.0
0793a61d 2/*
57c0c15b 3 * Performance events core code:
0793a61d 4 *
98144511 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
0793a61d
TG
9 */
10
11#include <linux/fs.h>
b9cacc7b 12#include <linux/mm.h>
0793a61d
TG
13#include <linux/cpu.h>
14#include <linux/smp.h>
2e80a82a 15#include <linux/idr.h>
04289bb9 16#include <linux/file.h>
0793a61d 17#include <linux/poll.h>
5a0e3ad6 18#include <linux/slab.h>
76e1d904 19#include <linux/hash.h>
12351ef8 20#include <linux/tick.h>
0793a61d 21#include <linux/sysfs.h>
22a4f650 22#include <linux/dcache.h>
0793a61d 23#include <linux/percpu.h>
22a4f650 24#include <linux/ptrace.h>
c277443c 25#include <linux/reboot.h>
b9cacc7b 26#include <linux/vmstat.h>
abe43400 27#include <linux/device.h>
6e5fdeed 28#include <linux/export.h>
906010b2 29#include <linux/vmalloc.h>
b9cacc7b 30#include <linux/hardirq.h>
03911132 31#include <linux/hugetlb.h>
b9cacc7b 32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
375637bc
AS
47#include <linux/namei.h>
48#include <linux/parser.h>
e6017571 49#include <linux/sched/clock.h>
6e84f315 50#include <linux/sched/mm.h>
e4222673
HB
51#include <linux/proc_ns.h>
52#include <linux/mount.h>
6eef8a71 53#include <linux/min_heap.h>
8d97e718 54#include <linux/highmem.h>
8af26be0 55#include <linux/pgtable.h>
88a16a13 56#include <linux/buildid.h>
ca6c2132 57#include <linux/task_work.h>
0793a61d 58
76369139
FW
59#include "internal.h"
60
4e193bd4
TB
61#include <asm/irq_regs.h>
62
272325c4
PZ
63typedef int (*remote_function_f)(void *);
64
fe4b04fa 65struct remote_function_call {
e7e7ee2e 66 struct task_struct *p;
272325c4 67 remote_function_f func;
e7e7ee2e
IM
68 void *info;
69 int ret;
fe4b04fa
PZ
70};
71
72static void remote_function(void *data)
73{
74 struct remote_function_call *tfc = data;
75 struct task_struct *p = tfc->p;
76
77 if (p) {
0da4cf3e
PZ
78 /* -EAGAIN */
79 if (task_cpu(p) != smp_processor_id())
80 return;
81
82 /*
83 * Now that we're on right CPU with IRQs disabled, we can test
84 * if we hit the right task without races.
85 */
86
87 tfc->ret = -ESRCH; /* No such (running) process */
88 if (p != current)
fe4b04fa
PZ
89 return;
90 }
91
92 tfc->ret = tfc->func(tfc->info);
93}
94
95/**
96 * task_function_call - call a function on the cpu on which a task runs
97 * @p: the task to evaluate
98 * @func: the function to be called
99 * @info: the function call argument
100 *
101 * Calls the function @func when the task is currently running. This might
2ed6edd3
BR
102 * be on the current CPU, which just calls the function directly. This will
103 * retry due to any failures in smp_call_function_single(), such as if the
104 * task_cpu() goes offline concurrently.
fe4b04fa 105 *
6d6b8b9f 106 * returns @func return value or -ESRCH or -ENXIO when the process isn't running
fe4b04fa
PZ
107 */
108static int
272325c4 109task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
110{
111 struct remote_function_call data = {
e7e7ee2e
IM
112 .p = p,
113 .func = func,
114 .info = info,
0da4cf3e 115 .ret = -EAGAIN,
fe4b04fa 116 };
0da4cf3e 117 int ret;
fe4b04fa 118
2ed6edd3
BR
119 for (;;) {
120 ret = smp_call_function_single(task_cpu(p), remote_function,
121 &data, 1);
6d6b8b9f
KJ
122 if (!ret)
123 ret = data.ret;
2ed6edd3
BR
124
125 if (ret != -EAGAIN)
126 break;
127
128 cond_resched();
129 }
fe4b04fa 130
0da4cf3e 131 return ret;
fe4b04fa
PZ
132}
133
134/**
135 * cpu_function_call - call a function on the cpu
a1ddf524 136 * @cpu: target cpu to queue this function
fe4b04fa
PZ
137 * @func: the function to be called
138 * @info: the function call argument
139 *
140 * Calls the function @func on the remote cpu.
141 *
142 * returns: @func return value or -ENXIO when the cpu is offline
143 */
272325c4 144static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
145{
146 struct remote_function_call data = {
e7e7ee2e
IM
147 .p = NULL,
148 .func = func,
149 .info = info,
150 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
151 };
152
153 smp_call_function_single(cpu, remote_function, &data, 1);
154
155 return data.ret;
156}
157
fae3fde6
PZ
158static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159 struct perf_event_context *ctx)
0017960f 160{
fae3fde6
PZ
161 raw_spin_lock(&cpuctx->ctx.lock);
162 if (ctx)
163 raw_spin_lock(&ctx->lock);
164}
165
166static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167 struct perf_event_context *ctx)
168{
169 if (ctx)
170 raw_spin_unlock(&ctx->lock);
171 raw_spin_unlock(&cpuctx->ctx.lock);
172}
173
63b6da39
PZ
174#define TASK_TOMBSTONE ((void *)-1L)
175
176static bool is_kernel_event(struct perf_event *event)
177{
f47c02c0 178 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
179}
180
bd275681
PZ
181static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
182
183struct perf_event_context *perf_cpu_task_ctx(void)
184{
185 lockdep_assert_irqs_disabled();
186 return this_cpu_ptr(&perf_cpu_context)->task_ctx;
187}
188
39a43640
PZ
189/*
190 * On task ctx scheduling...
191 *
192 * When !ctx->nr_events a task context will not be scheduled. This means
193 * we can disable the scheduler hooks (for performance) without leaving
194 * pending task ctx state.
195 *
196 * This however results in two special cases:
197 *
198 * - removing the last event from a task ctx; this is relatively straight
199 * forward and is done in __perf_remove_from_context.
200 *
201 * - adding the first event to a task ctx; this is tricky because we cannot
202 * rely on ctx->is_active and therefore cannot use event_function_call().
203 * See perf_install_in_context().
204 *
39a43640
PZ
205 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
206 */
207
fae3fde6
PZ
208typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
209 struct perf_event_context *, void *);
210
211struct event_function_struct {
212 struct perf_event *event;
213 event_f func;
214 void *data;
215};
216
217static int event_function(void *info)
218{
219 struct event_function_struct *efs = info;
220 struct perf_event *event = efs->event;
0017960f 221 struct perf_event_context *ctx = event->ctx;
bd275681 222 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
fae3fde6 223 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 224 int ret = 0;
fae3fde6 225
16444645 226 lockdep_assert_irqs_disabled();
fae3fde6 227
63b6da39 228 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
229 /*
230 * Since we do the IPI call without holding ctx->lock things can have
231 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
232 */
233 if (ctx->task) {
63b6da39 234 if (ctx->task != current) {
0da4cf3e 235 ret = -ESRCH;
63b6da39
PZ
236 goto unlock;
237 }
fae3fde6 238
fae3fde6
PZ
239 /*
240 * We only use event_function_call() on established contexts,
241 * and event_function() is only ever called when active (or
242 * rather, we'll have bailed in task_function_call() or the
243 * above ctx->task != current test), therefore we must have
244 * ctx->is_active here.
245 */
246 WARN_ON_ONCE(!ctx->is_active);
247 /*
248 * And since we have ctx->is_active, cpuctx->task_ctx must
249 * match.
250 */
63b6da39
PZ
251 WARN_ON_ONCE(task_ctx != ctx);
252 } else {
253 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 254 }
63b6da39 255
fae3fde6 256 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 257unlock:
fae3fde6
PZ
258 perf_ctx_unlock(cpuctx, task_ctx);
259
63b6da39 260 return ret;
fae3fde6
PZ
261}
262
fae3fde6 263static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
264{
265 struct perf_event_context *ctx = event->ctx;
63b6da39 266 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
267 struct event_function_struct efs = {
268 .event = event,
269 .func = func,
270 .data = data,
271 };
0017960f 272
c97f4736
PZ
273 if (!event->parent) {
274 /*
275 * If this is a !child event, we must hold ctx::mutex to
c034f48e 276 * stabilize the event->ctx relation. See
c97f4736
PZ
277 * perf_event_ctx_lock().
278 */
279 lockdep_assert_held(&ctx->mutex);
280 }
0017960f
PZ
281
282 if (!task) {
fae3fde6 283 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
284 return;
285 }
286
63b6da39
PZ
287 if (task == TASK_TOMBSTONE)
288 return;
289
a096309b 290again:
fae3fde6 291 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
292 return;
293
294 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
295 /*
296 * Reload the task pointer, it might have been changed by
297 * a concurrent perf_event_context_sched_out().
298 */
299 task = ctx->task;
a096309b
PZ
300 if (task == TASK_TOMBSTONE) {
301 raw_spin_unlock_irq(&ctx->lock);
302 return;
0017960f 303 }
a096309b
PZ
304 if (ctx->is_active) {
305 raw_spin_unlock_irq(&ctx->lock);
306 goto again;
307 }
308 func(event, NULL, ctx, data);
0017960f
PZ
309 raw_spin_unlock_irq(&ctx->lock);
310}
311
cca20946
PZ
312/*
313 * Similar to event_function_call() + event_function(), but hard assumes IRQs
314 * are already disabled and we're on the right CPU.
315 */
316static void event_function_local(struct perf_event *event, event_f func, void *data)
317{
318 struct perf_event_context *ctx = event->ctx;
bd275681 319 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
cca20946
PZ
320 struct task_struct *task = READ_ONCE(ctx->task);
321 struct perf_event_context *task_ctx = NULL;
322
16444645 323 lockdep_assert_irqs_disabled();
cca20946
PZ
324
325 if (task) {
326 if (task == TASK_TOMBSTONE)
327 return;
328
329 task_ctx = ctx;
330 }
331
332 perf_ctx_lock(cpuctx, task_ctx);
333
334 task = ctx->task;
335 if (task == TASK_TOMBSTONE)
336 goto unlock;
337
338 if (task) {
339 /*
340 * We must be either inactive or active and the right task,
341 * otherwise we're screwed, since we cannot IPI to somewhere
342 * else.
343 */
344 if (ctx->is_active) {
345 if (WARN_ON_ONCE(task != current))
346 goto unlock;
347
348 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
349 goto unlock;
350 }
351 } else {
352 WARN_ON_ONCE(&cpuctx->ctx != ctx);
353 }
354
355 func(event, cpuctx, ctx, data);
356unlock:
357 perf_ctx_unlock(cpuctx, task_ctx);
358}
359
e5d1367f
SE
360#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
361 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
362 PERF_FLAG_PID_CGROUP |\
363 PERF_FLAG_FD_CLOEXEC)
e5d1367f 364
bce38cd5
SE
365/*
366 * branch priv levels that need permission checks
367 */
368#define PERF_SAMPLE_BRANCH_PERM_PLM \
369 (PERF_SAMPLE_BRANCH_KERNEL |\
370 PERF_SAMPLE_BRANCH_HV)
371
0b3fcf17
SE
372enum event_type_t {
373 EVENT_FLEXIBLE = 0x1,
374 EVENT_PINNED = 0x2,
3cbaa590 375 EVENT_TIME = 0x4,
487f05e1
AS
376 /* see ctx_resched() for details */
377 EVENT_CPU = 0x8,
f06cc667 378 EVENT_CGROUP = 0x10,
0b3fcf17
SE
379 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
380};
381
e5d1367f
SE
382/*
383 * perf_sched_events : >0 events exist
e5d1367f 384 */
9107c89e
PZ
385
386static void perf_sched_delayed(struct work_struct *work);
387DEFINE_STATIC_KEY_FALSE(perf_sched_events);
388static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
389static DEFINE_MUTEX(perf_sched_mutex);
390static atomic_t perf_sched_count;
391
f2fb6bef 392static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 393
cdd6c482
IM
394static atomic_t nr_mmap_events __read_mostly;
395static atomic_t nr_comm_events __read_mostly;
e4222673 396static atomic_t nr_namespaces_events __read_mostly;
cdd6c482 397static atomic_t nr_task_events __read_mostly;
948b26b6 398static atomic_t nr_freq_events __read_mostly;
45ac1403 399static atomic_t nr_switch_events __read_mostly;
76193a94 400static atomic_t nr_ksymbol_events __read_mostly;
6ee52e2a 401static atomic_t nr_bpf_events __read_mostly;
96aaab68 402static atomic_t nr_cgroup_events __read_mostly;
e17d43b9 403static atomic_t nr_text_poke_events __read_mostly;
88a16a13 404static atomic_t nr_build_id_events __read_mostly;
9ee318a7 405
108b02cf
PZ
406static LIST_HEAD(pmus);
407static DEFINE_MUTEX(pmus_lock);
408static struct srcu_struct pmus_srcu;
a63fbed7 409static cpumask_var_t perf_online_mask;
bdacfaf2 410static struct kmem_cache *perf_event_cache;
108b02cf 411
0764771d 412/*
cdd6c482 413 * perf event paranoia level:
0fbdea19
IM
414 * -1 - not paranoid at all
415 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 416 * 1 - disallow cpu events for unpriv
0fbdea19 417 * 2 - disallow kernel profiling for unpriv
0764771d 418 */
0161028b 419int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 420
20443384
FW
421/* Minimum for 512 kiB + 1 user control page */
422int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
423
424/*
cdd6c482 425 * max perf event sample rate
df58ab24 426 */
14c63f17
DH
427#define DEFAULT_MAX_SAMPLE_RATE 100000
428#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
429#define DEFAULT_CPU_TIME_MAX_PERCENT 25
430
431int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
432
433static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
434static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
435
d9494cb4
PZ
436static int perf_sample_allowed_ns __read_mostly =
437 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 438
18ab2cd3 439static void update_perf_cpu_limits(void)
14c63f17
DH
440{
441 u64 tmp = perf_sample_period_ns;
442
443 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
444 tmp = div_u64(tmp, 100);
445 if (!tmp)
446 tmp = 1;
447
448 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 449}
163ec435 450
bd275681 451static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
9e630205 452
e6814ec3
XJ
453int perf_event_max_sample_rate_handler(struct ctl_table *table, int write,
454 void *buffer, size_t *lenp, loff_t *ppos)
163ec435 455{
1a51c5da
SE
456 int ret;
457 int perf_cpu = sysctl_perf_cpu_time_max_percent;
ab7fdefb
KL
458 /*
459 * If throttling is disabled don't allow the write:
460 */
1a51c5da 461 if (write && (perf_cpu == 100 || perf_cpu == 0))
ab7fdefb
KL
462 return -EINVAL;
463
1a51c5da
SE
464 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 if (ret || !write)
466 return ret;
467
163ec435 468 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
469 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
470 update_perf_cpu_limits();
471
472 return 0;
473}
474
475int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
476
477int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
32927393 478 void *buffer, size_t *lenp, loff_t *ppos)
14c63f17 479{
1572e45a 480 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
14c63f17
DH
481
482 if (ret || !write)
483 return ret;
484
b303e7c1
PZ
485 if (sysctl_perf_cpu_time_max_percent == 100 ||
486 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
487 printk(KERN_WARNING
488 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
489 WRITE_ONCE(perf_sample_allowed_ns, 0);
490 } else {
491 update_perf_cpu_limits();
492 }
163ec435
PZ
493
494 return 0;
495}
1ccd1549 496
14c63f17
DH
497/*
498 * perf samples are done in some very critical code paths (NMIs).
499 * If they take too much CPU time, the system can lock up and not
500 * get any real work done. This will drop the sample rate when
501 * we detect that events are taking too long.
502 */
503#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 504static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 505
91a612ee
PZ
506static u64 __report_avg;
507static u64 __report_allowed;
508
6a02ad66 509static void perf_duration_warn(struct irq_work *w)
14c63f17 510{
0d87d7ec 511 printk_ratelimited(KERN_INFO
91a612ee
PZ
512 "perf: interrupt took too long (%lld > %lld), lowering "
513 "kernel.perf_event_max_sample_rate to %d\n",
514 __report_avg, __report_allowed,
515 sysctl_perf_event_sample_rate);
6a02ad66
PZ
516}
517
518static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
519
520void perf_sample_event_took(u64 sample_len_ns)
521{
91a612ee
PZ
522 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
523 u64 running_len;
524 u64 avg_len;
525 u32 max;
14c63f17 526
91a612ee 527 if (max_len == 0)
14c63f17
DH
528 return;
529
91a612ee
PZ
530 /* Decay the counter by 1 average sample. */
531 running_len = __this_cpu_read(running_sample_length);
532 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
533 running_len += sample_len_ns;
534 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
535
536 /*
91a612ee
PZ
537 * Note: this will be biased artifically low until we have
538 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
539 * from having to maintain a count.
540 */
91a612ee
PZ
541 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
542 if (avg_len <= max_len)
14c63f17
DH
543 return;
544
91a612ee
PZ
545 __report_avg = avg_len;
546 __report_allowed = max_len;
14c63f17 547
91a612ee
PZ
548 /*
549 * Compute a throttle threshold 25% below the current duration.
550 */
551 avg_len += avg_len / 4;
552 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
553 if (avg_len < max)
554 max /= (u32)avg_len;
555 else
556 max = 1;
14c63f17 557
91a612ee
PZ
558 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
559 WRITE_ONCE(max_samples_per_tick, max);
560
561 sysctl_perf_event_sample_rate = max * HZ;
562 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 563
cd578abb 564 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 565 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 566 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 567 __report_avg, __report_allowed,
cd578abb
PZ
568 sysctl_perf_event_sample_rate);
569 }
14c63f17
DH
570}
571
cdd6c482 572static atomic64_t perf_event_id;
a96bbc16 573
e5d1367f
SE
574static void update_context_time(struct perf_event_context *ctx);
575static u64 perf_event_time(struct perf_event *event);
0b3fcf17 576
cdd6c482 577void __weak perf_event_print_debug(void) { }
0793a61d 578
0b3fcf17
SE
579static inline u64 perf_clock(void)
580{
581 return local_clock();
582}
583
34f43927
PZ
584static inline u64 perf_event_clock(struct perf_event *event)
585{
586 return event->clock();
587}
588
0d3d73aa
PZ
589/*
590 * State based event timekeeping...
591 *
592 * The basic idea is to use event->state to determine which (if any) time
593 * fields to increment with the current delta. This means we only need to
594 * update timestamps when we change state or when they are explicitly requested
595 * (read).
596 *
597 * Event groups make things a little more complicated, but not terribly so. The
598 * rules for a group are that if the group leader is OFF the entire group is
599 * OFF, irrespecive of what the group member states are. This results in
600 * __perf_effective_state().
601 *
602 * A futher ramification is that when a group leader flips between OFF and
603 * !OFF, we need to update all group member times.
604 *
605 *
606 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
607 * need to make sure the relevant context time is updated before we try and
608 * update our timestamps.
609 */
610
611static __always_inline enum perf_event_state
612__perf_effective_state(struct perf_event *event)
613{
614 struct perf_event *leader = event->group_leader;
615
616 if (leader->state <= PERF_EVENT_STATE_OFF)
617 return leader->state;
618
619 return event->state;
620}
621
622static __always_inline void
623__perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
624{
625 enum perf_event_state state = __perf_effective_state(event);
626 u64 delta = now - event->tstamp;
627
628 *enabled = event->total_time_enabled;
629 if (state >= PERF_EVENT_STATE_INACTIVE)
630 *enabled += delta;
631
632 *running = event->total_time_running;
633 if (state >= PERF_EVENT_STATE_ACTIVE)
634 *running += delta;
635}
636
637static void perf_event_update_time(struct perf_event *event)
638{
639 u64 now = perf_event_time(event);
640
641 __perf_update_times(event, now, &event->total_time_enabled,
642 &event->total_time_running);
643 event->tstamp = now;
644}
645
646static void perf_event_update_sibling_time(struct perf_event *leader)
647{
648 struct perf_event *sibling;
649
edb39592 650 for_each_sibling_event(sibling, leader)
0d3d73aa
PZ
651 perf_event_update_time(sibling);
652}
653
654static void
655perf_event_set_state(struct perf_event *event, enum perf_event_state state)
656{
657 if (event->state == state)
658 return;
659
660 perf_event_update_time(event);
661 /*
662 * If a group leader gets enabled/disabled all its siblings
663 * are affected too.
664 */
665 if ((event->state < 0) ^ (state < 0))
666 perf_event_update_sibling_time(event);
667
668 WRITE_ONCE(event->state, state);
669}
670
09f5e7dc
PZ
671/*
672 * UP store-release, load-acquire
673 */
674
675#define __store_release(ptr, val) \
676do { \
677 barrier(); \
678 WRITE_ONCE(*(ptr), (val)); \
679} while (0)
680
681#define __load_acquire(ptr) \
682({ \
683 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \
684 barrier(); \
685 ___p; \
686})
687
f06cc667 688static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
bd275681
PZ
689{
690 struct perf_event_pmu_context *pmu_ctx;
691
f06cc667
PZ
692 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
693 if (cgroup && !pmu_ctx->nr_cgroups)
694 continue;
bd275681 695 perf_pmu_disable(pmu_ctx->pmu);
f06cc667 696 }
bd275681
PZ
697}
698
f06cc667 699static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
bd275681
PZ
700{
701 struct perf_event_pmu_context *pmu_ctx;
702
f06cc667
PZ
703 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
704 if (cgroup && !pmu_ctx->nr_cgroups)
705 continue;
bd275681 706 perf_pmu_enable(pmu_ctx->pmu);
f06cc667 707 }
bd275681
PZ
708}
709
710static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type);
711static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type);
712
e5d1367f
SE
713#ifdef CONFIG_CGROUP_PERF
714
e5d1367f
SE
715static inline bool
716perf_cgroup_match(struct perf_event *event)
717{
bd275681 718 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
e5d1367f 719
ef824fa1
TH
720 /* @event doesn't care about cgroup */
721 if (!event->cgrp)
722 return true;
723
724 /* wants specific cgroup scope but @cpuctx isn't associated with any */
725 if (!cpuctx->cgrp)
726 return false;
727
728 /*
729 * Cgroup scoping is recursive. An event enabled for a cgroup is
730 * also enabled for all its descendant cgroups. If @cpuctx's
731 * cgroup is a descendant of @event's (the test covers identity
732 * case), it's a match.
733 */
734 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
735 event->cgrp->css.cgroup);
e5d1367f
SE
736}
737
e5d1367f
SE
738static inline void perf_detach_cgroup(struct perf_event *event)
739{
4e2ba650 740 css_put(&event->cgrp->css);
e5d1367f
SE
741 event->cgrp = NULL;
742}
743
744static inline int is_cgroup_event(struct perf_event *event)
745{
746 return event->cgrp != NULL;
747}
748
749static inline u64 perf_cgroup_event_time(struct perf_event *event)
750{
751 struct perf_cgroup_info *t;
752
753 t = per_cpu_ptr(event->cgrp->info, event->cpu);
754 return t->time;
755}
756
09f5e7dc 757static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
e5d1367f 758{
09f5e7dc 759 struct perf_cgroup_info *t;
e5d1367f 760
09f5e7dc
PZ
761 t = per_cpu_ptr(event->cgrp->info, event->cpu);
762 if (!__load_acquire(&t->active))
763 return t->time;
764 now += READ_ONCE(t->timeoffset);
765 return now;
766}
e5d1367f 767
09f5e7dc
PZ
768static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
769{
770 if (adv)
771 info->time += now - info->timestamp;
e5d1367f 772 info->timestamp = now;
09f5e7dc
PZ
773 /*
774 * see update_context_time()
775 */
776 WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
e5d1367f
SE
777}
778
09f5e7dc 779static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
e5d1367f 780{
c917e0f2
SL
781 struct perf_cgroup *cgrp = cpuctx->cgrp;
782 struct cgroup_subsys_state *css;
09f5e7dc 783 struct perf_cgroup_info *info;
c917e0f2
SL
784
785 if (cgrp) {
09f5e7dc
PZ
786 u64 now = perf_clock();
787
c917e0f2
SL
788 for (css = &cgrp->css; css; css = css->parent) {
789 cgrp = container_of(css, struct perf_cgroup, css);
09f5e7dc
PZ
790 info = this_cpu_ptr(cgrp->info);
791
792 __update_cgrp_time(info, now, true);
793 if (final)
794 __store_release(&info->active, 0);
c917e0f2
SL
795 }
796 }
e5d1367f
SE
797}
798
799static inline void update_cgrp_time_from_event(struct perf_event *event)
800{
09f5e7dc 801 struct perf_cgroup_info *info;
3f7cce3c 802
e5d1367f 803 /*
3f7cce3c
SE
804 * ensure we access cgroup data only when needed and
805 * when we know the cgroup is pinned (css_get)
e5d1367f 806 */
3f7cce3c 807 if (!is_cgroup_event(event))
e5d1367f
SE
808 return;
809
6875186a 810 info = this_cpu_ptr(event->cgrp->info);
3f7cce3c
SE
811 /*
812 * Do not update time when cgroup is not active
813 */
6875186a 814 if (info->active)
09f5e7dc 815 __update_cgrp_time(info, perf_clock(), true);
e5d1367f
SE
816}
817
818static inline void
a0827713 819perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
e5d1367f 820{
a0827713
CZ
821 struct perf_event_context *ctx = &cpuctx->ctx;
822 struct perf_cgroup *cgrp = cpuctx->cgrp;
e5d1367f 823 struct perf_cgroup_info *info;
c917e0f2 824 struct cgroup_subsys_state *css;
e5d1367f 825
3f7cce3c
SE
826 /*
827 * ctx->lock held by caller
828 * ensure we do not access cgroup data
829 * unless we have the cgroup pinned (css_get)
830 */
a0827713 831 if (!cgrp)
e5d1367f
SE
832 return;
833
a0827713 834 WARN_ON_ONCE(!ctx->nr_cgroups);
c917e0f2
SL
835
836 for (css = &cgrp->css; css; css = css->parent) {
837 cgrp = container_of(css, struct perf_cgroup, css);
838 info = this_cpu_ptr(cgrp->info);
09f5e7dc
PZ
839 __update_cgrp_time(info, ctx->timestamp, false);
840 __store_release(&info->active, 1);
c917e0f2 841 }
e5d1367f
SE
842}
843
e5d1367f
SE
844/*
845 * reschedule events based on the cgroup constraint of task.
e5d1367f 846 */
96492a6c 847static void perf_cgroup_switch(struct task_struct *task)
e5d1367f 848{
bd275681 849 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
96492a6c 850 struct perf_cgroup *cgrp;
e5d1367f 851
f841b682
CZ
852 /*
853 * cpuctx->cgrp is set when the first cgroup event enabled,
854 * and is cleared when the last cgroup event disabled.
855 */
856 if (READ_ONCE(cpuctx->cgrp) == NULL)
857 return;
96492a6c 858
bd275681 859 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
f841b682
CZ
860
861 cgrp = perf_cgroup_from_task(task, NULL);
bd275681
PZ
862 if (READ_ONCE(cpuctx->cgrp) == cgrp)
863 return;
e5d1367f 864
bd275681 865 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
f06cc667 866 perf_ctx_disable(&cpuctx->ctx, true);
e5d1367f 867
f06cc667 868 ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
bd275681
PZ
869 /*
870 * must not be done before ctxswout due
871 * to update_cgrp_time_from_cpuctx() in
872 * ctx_sched_out()
873 */
874 cpuctx->cgrp = cgrp;
875 /*
876 * set cgrp before ctxsw in to allow
877 * perf_cgroup_set_timestamp() in ctx_sched_in()
878 * to not have to pass task around
879 */
f06cc667 880 ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
e5d1367f 881
f06cc667 882 perf_ctx_enable(&cpuctx->ctx, true);
bd275681 883 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f
SE
884}
885
c2283c93
IR
886static int perf_cgroup_ensure_storage(struct perf_event *event,
887 struct cgroup_subsys_state *css)
888{
889 struct perf_cpu_context *cpuctx;
890 struct perf_event **storage;
891 int cpu, heap_size, ret = 0;
892
893 /*
894 * Allow storage to have sufficent space for an iterator for each
895 * possibly nested cgroup plus an iterator for events with no cgroup.
896 */
897 for (heap_size = 1; css; css = css->parent)
898 heap_size++;
899
900 for_each_possible_cpu(cpu) {
bd275681 901 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
c2283c93
IR
902 if (heap_size <= cpuctx->heap_size)
903 continue;
904
905 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
906 GFP_KERNEL, cpu_to_node(cpu));
907 if (!storage) {
908 ret = -ENOMEM;
909 break;
910 }
911
912 raw_spin_lock_irq(&cpuctx->ctx.lock);
913 if (cpuctx->heap_size < heap_size) {
914 swap(cpuctx->heap, storage);
915 if (storage == cpuctx->heap_default)
916 storage = NULL;
917 cpuctx->heap_size = heap_size;
918 }
919 raw_spin_unlock_irq(&cpuctx->ctx.lock);
920
921 kfree(storage);
922 }
923
924 return ret;
925}
926
e5d1367f
SE
927static inline int perf_cgroup_connect(int fd, struct perf_event *event,
928 struct perf_event_attr *attr,
929 struct perf_event *group_leader)
930{
931 struct perf_cgroup *cgrp;
932 struct cgroup_subsys_state *css;
2903ff01
AV
933 struct fd f = fdget(fd);
934 int ret = 0;
e5d1367f 935
2903ff01 936 if (!f.file)
e5d1367f
SE
937 return -EBADF;
938
b583043e 939 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 940 &perf_event_cgrp_subsys);
3db272c0
LZ
941 if (IS_ERR(css)) {
942 ret = PTR_ERR(css);
943 goto out;
944 }
e5d1367f 945
c2283c93
IR
946 ret = perf_cgroup_ensure_storage(event, css);
947 if (ret)
948 goto out;
949
e5d1367f
SE
950 cgrp = container_of(css, struct perf_cgroup, css);
951 event->cgrp = cgrp;
952
953 /*
954 * all events in a group must monitor
955 * the same cgroup because a task belongs
956 * to only one perf cgroup at a time
957 */
958 if (group_leader && group_leader->cgrp != cgrp) {
959 perf_detach_cgroup(event);
960 ret = -EINVAL;
e5d1367f 961 }
3db272c0 962out:
2903ff01 963 fdput(f);
e5d1367f
SE
964 return ret;
965}
966
db4a8356 967static inline void
33238c50 968perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
db4a8356
DCC
969{
970 struct perf_cpu_context *cpuctx;
971
972 if (!is_cgroup_event(event))
973 return;
974
f06cc667
PZ
975 event->pmu_ctx->nr_cgroups++;
976
db4a8356
DCC
977 /*
978 * Because cgroup events are always per-cpu events,
07c59729 979 * @ctx == &cpuctx->ctx.
db4a8356 980 */
07c59729 981 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
33801b94 982
33238c50 983 if (ctx->nr_cgroups++)
33801b94 984 return;
33238c50 985
e19cd0b6 986 cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
33238c50
PZ
987}
988
989static inline void
990perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
991{
992 struct perf_cpu_context *cpuctx;
993
994 if (!is_cgroup_event(event))
33801b94 995 return;
996
f06cc667
PZ
997 event->pmu_ctx->nr_cgroups--;
998
33238c50
PZ
999 /*
1000 * Because cgroup events are always per-cpu events,
1001 * @ctx == &cpuctx->ctx.
1002 */
1003 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1004
1005 if (--ctx->nr_cgroups)
1006 return;
1007
e19cd0b6 1008 cpuctx->cgrp = NULL;
db4a8356
DCC
1009}
1010
e5d1367f
SE
1011#else /* !CONFIG_CGROUP_PERF */
1012
1013static inline bool
1014perf_cgroup_match(struct perf_event *event)
1015{
1016 return true;
1017}
1018
1019static inline void perf_detach_cgroup(struct perf_event *event)
1020{}
1021
1022static inline int is_cgroup_event(struct perf_event *event)
1023{
1024 return 0;
1025}
1026
e5d1367f
SE
1027static inline void update_cgrp_time_from_event(struct perf_event *event)
1028{
1029}
1030
09f5e7dc
PZ
1031static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1032 bool final)
e5d1367f
SE
1033{
1034}
1035
e5d1367f
SE
1036static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1037 struct perf_event_attr *attr,
1038 struct perf_event *group_leader)
1039{
1040 return -EINVAL;
1041}
1042
1043static inline void
a0827713 1044perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
e5d1367f
SE
1045{
1046}
1047
09f5e7dc 1048static inline u64 perf_cgroup_event_time(struct perf_event *event)
e5d1367f 1049{
09f5e7dc 1050 return 0;
e5d1367f
SE
1051}
1052
09f5e7dc 1053static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
e5d1367f
SE
1054{
1055 return 0;
1056}
1057
db4a8356 1058static inline void
33238c50 1059perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
db4a8356
DCC
1060{
1061}
1062
33238c50
PZ
1063static inline void
1064perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1065{
1066}
96492a6c
CZ
1067
1068static void perf_cgroup_switch(struct task_struct *task)
1069{
1070}
e5d1367f
SE
1071#endif
1072
9e630205
SE
1073/*
1074 * set default to be dependent on timer tick just
1075 * like original code
1076 */
1077#define PERF_CPU_HRTIMER (1000 / HZ)
1078/*
8a1115ff 1079 * function must be called with interrupts disabled
9e630205 1080 */
272325c4 1081static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205 1082{
bd275681 1083 struct perf_cpu_pmu_context *cpc;
8d5bce0c 1084 bool rotations;
9e630205 1085
16444645 1086 lockdep_assert_irqs_disabled();
9e630205 1087
bd275681
PZ
1088 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1089 rotations = perf_rotate_context(cpc);
9e630205 1090
bd275681 1091 raw_spin_lock(&cpc->hrtimer_lock);
4cfafd30 1092 if (rotations)
bd275681 1093 hrtimer_forward_now(hr, cpc->hrtimer_interval);
4cfafd30 1094 else
bd275681
PZ
1095 cpc->hrtimer_active = 0;
1096 raw_spin_unlock(&cpc->hrtimer_lock);
9e630205 1097
4cfafd30 1098 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1099}
1100
bd275681 1101static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
9e630205 1102{
bd275681
PZ
1103 struct hrtimer *timer = &cpc->hrtimer;
1104 struct pmu *pmu = cpc->epc.pmu;
272325c4 1105 u64 interval;
9e630205 1106
62b85639
SE
1107 /*
1108 * check default is sane, if not set then force to
1109 * default interval (1/tick)
1110 */
272325c4
PZ
1111 interval = pmu->hrtimer_interval_ms;
1112 if (interval < 1)
1113 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1114
bd275681 1115 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1116
bd275681 1117 raw_spin_lock_init(&cpc->hrtimer_lock);
30f9028b 1118 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
272325c4 1119 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1120}
1121
bd275681 1122static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
9e630205 1123{
bd275681 1124 struct hrtimer *timer = &cpc->hrtimer;
4cfafd30 1125 unsigned long flags;
9e630205 1126
bd275681
PZ
1127 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1128 if (!cpc->hrtimer_active) {
1129 cpc->hrtimer_active = 1;
1130 hrtimer_forward_now(timer, cpc->hrtimer_interval);
30f9028b 1131 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
4cfafd30 1132 }
bd275681 1133 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
9e630205 1134
272325c4 1135 return 0;
9e630205
SE
1136}
1137
1af6239d
PZ
1138static int perf_mux_hrtimer_restart_ipi(void *arg)
1139{
1140 return perf_mux_hrtimer_restart(arg);
1141}
1142
33696fc0 1143void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1144{
33696fc0
PZ
1145 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1146 if (!(*count)++)
1147 pmu->pmu_disable(pmu);
9e35ad38 1148}
9e35ad38 1149
33696fc0 1150void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1151{
33696fc0
PZ
1152 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1153 if (!--(*count))
1154 pmu->pmu_enable(pmu);
9e35ad38 1155}
9e35ad38 1156
bd275681 1157static void perf_assert_pmu_disabled(struct pmu *pmu)
2fde4f94 1158{
bd275681 1159 WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
9e35ad38 1160}
9e35ad38 1161
cdd6c482 1162static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1163{
8c94abbb 1164 refcount_inc(&ctx->refcount);
a63eaf34
PM
1165}
1166
ff9ff926
KL
1167static void *alloc_task_ctx_data(struct pmu *pmu)
1168{
217c2a63
KL
1169 if (pmu->task_ctx_cache)
1170 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1171
5a09928d 1172 return NULL;
ff9ff926
KL
1173}
1174
1175static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1176{
217c2a63
KL
1177 if (pmu->task_ctx_cache && task_ctx_data)
1178 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
ff9ff926
KL
1179}
1180
4af57ef2
YZ
1181static void free_ctx(struct rcu_head *head)
1182{
1183 struct perf_event_context *ctx;
1184
1185 ctx = container_of(head, struct perf_event_context, rcu_head);
4af57ef2
YZ
1186 kfree(ctx);
1187}
1188
cdd6c482 1189static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1190{
8c94abbb 1191 if (refcount_dec_and_test(&ctx->refcount)) {
564c2b21
PM
1192 if (ctx->parent_ctx)
1193 put_ctx(ctx->parent_ctx);
63b6da39 1194 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1195 put_task_struct(ctx->task);
4af57ef2 1196 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1197 }
a63eaf34
PM
1198}
1199
f63a8daa
PZ
1200/*
1201 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1202 * perf_pmu_migrate_context() we need some magic.
1203 *
1204 * Those places that change perf_event::ctx will hold both
1205 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1206 *
8b10c5e2
PZ
1207 * Lock ordering is by mutex address. There are two other sites where
1208 * perf_event_context::mutex nests and those are:
1209 *
1210 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1211 * perf_event_exit_event()
1212 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1213 *
1214 * - perf_event_init_context() [ parent, 0 ]
1215 * inherit_task_group()
1216 * inherit_group()
1217 * inherit_event()
1218 * perf_event_alloc()
1219 * perf_init_event()
1220 * perf_try_init_event() [ child , 1 ]
1221 *
1222 * While it appears there is an obvious deadlock here -- the parent and child
1223 * nesting levels are inverted between the two. This is in fact safe because
1224 * life-time rules separate them. That is an exiting task cannot fork, and a
1225 * spawning task cannot (yet) exit.
1226 *
c034f48e 1227 * But remember that these are parent<->child context relations, and
8b10c5e2
PZ
1228 * migration does not affect children, therefore these two orderings should not
1229 * interact.
f63a8daa
PZ
1230 *
1231 * The change in perf_event::ctx does not affect children (as claimed above)
1232 * because the sys_perf_event_open() case will install a new event and break
1233 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1234 * concerned with cpuctx and that doesn't have children.
1235 *
1236 * The places that change perf_event::ctx will issue:
1237 *
1238 * perf_remove_from_context();
1239 * synchronize_rcu();
1240 * perf_install_in_context();
1241 *
1242 * to affect the change. The remove_from_context() + synchronize_rcu() should
1243 * quiesce the event, after which we can install it in the new location. This
1244 * means that only external vectors (perf_fops, prctl) can perturb the event
1245 * while in transit. Therefore all such accessors should also acquire
1246 * perf_event_context::mutex to serialize against this.
1247 *
1248 * However; because event->ctx can change while we're waiting to acquire
1249 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1250 * function.
1251 *
1252 * Lock order:
f7cfd871 1253 * exec_update_lock
f63a8daa
PZ
1254 * task_struct::perf_event_mutex
1255 * perf_event_context::mutex
f63a8daa 1256 * perf_event::child_mutex;
07c4a776 1257 * perf_event_context::lock
f63a8daa 1258 * perf_event::mmap_mutex
c1e8d7c6 1259 * mmap_lock
18736eef 1260 * perf_addr_filters_head::lock
82d94856
PZ
1261 *
1262 * cpu_hotplug_lock
1263 * pmus_lock
1264 * cpuctx->mutex / perf_event_context::mutex
f63a8daa 1265 */
a83fe28e
PZ
1266static struct perf_event_context *
1267perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1268{
1269 struct perf_event_context *ctx;
1270
1271again:
1272 rcu_read_lock();
6aa7de05 1273 ctx = READ_ONCE(event->ctx);
8c94abbb 1274 if (!refcount_inc_not_zero(&ctx->refcount)) {
f63a8daa
PZ
1275 rcu_read_unlock();
1276 goto again;
1277 }
1278 rcu_read_unlock();
1279
a83fe28e 1280 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1281 if (event->ctx != ctx) {
1282 mutex_unlock(&ctx->mutex);
1283 put_ctx(ctx);
1284 goto again;
1285 }
1286
1287 return ctx;
1288}
1289
a83fe28e
PZ
1290static inline struct perf_event_context *
1291perf_event_ctx_lock(struct perf_event *event)
1292{
1293 return perf_event_ctx_lock_nested(event, 0);
1294}
1295
f63a8daa
PZ
1296static void perf_event_ctx_unlock(struct perf_event *event,
1297 struct perf_event_context *ctx)
1298{
1299 mutex_unlock(&ctx->mutex);
1300 put_ctx(ctx);
1301}
1302
211de6eb
PZ
1303/*
1304 * This must be done under the ctx->lock, such as to serialize against
1305 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1306 * calling scheduler related locks and ctx->lock nests inside those.
1307 */
1308static __must_check struct perf_event_context *
1309unclone_ctx(struct perf_event_context *ctx)
71a851b4 1310{
211de6eb
PZ
1311 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1312
1313 lockdep_assert_held(&ctx->lock);
1314
1315 if (parent_ctx)
71a851b4 1316 ctx->parent_ctx = NULL;
5a3126d4 1317 ctx->generation++;
211de6eb
PZ
1318
1319 return parent_ctx;
71a851b4
PZ
1320}
1321
1d953111
ON
1322static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1323 enum pid_type type)
6844c09d 1324{
1d953111 1325 u32 nr;
6844c09d
ACM
1326 /*
1327 * only top level events have the pid namespace they were created in
1328 */
1329 if (event->parent)
1330 event = event->parent;
1331
1d953111
ON
1332 nr = __task_pid_nr_ns(p, type, event->ns);
1333 /* avoid -1 if it is idle thread or runs in another ns */
1334 if (!nr && !pid_alive(p))
1335 nr = -1;
1336 return nr;
6844c09d
ACM
1337}
1338
1d953111 1339static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
6844c09d 1340{
6883f81a 1341 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1d953111 1342}
6844c09d 1343
1d953111
ON
1344static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1345{
1346 return perf_event_pid_type(event, p, PIDTYPE_PID);
6844c09d
ACM
1347}
1348
7f453c24 1349/*
cdd6c482 1350 * If we inherit events we want to return the parent event id
7f453c24
PZ
1351 * to userspace.
1352 */
cdd6c482 1353static u64 primary_event_id(struct perf_event *event)
7f453c24 1354{
cdd6c482 1355 u64 id = event->id;
7f453c24 1356
cdd6c482
IM
1357 if (event->parent)
1358 id = event->parent->id;
7f453c24
PZ
1359
1360 return id;
1361}
1362
25346b93 1363/*
cdd6c482 1364 * Get the perf_event_context for a task and lock it.
63b6da39 1365 *
c034f48e 1366 * This has to cope with the fact that until it is locked,
25346b93
PM
1367 * the context could get moved to another task.
1368 */
cdd6c482 1369static struct perf_event_context *
bd275681 1370perf_lock_task_context(struct task_struct *task, unsigned long *flags)
25346b93 1371{
cdd6c482 1372 struct perf_event_context *ctx;
25346b93 1373
9ed6060d 1374retry:
058ebd0e
PZ
1375 /*
1376 * One of the few rules of preemptible RCU is that one cannot do
1377 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1378 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1379 * rcu_read_unlock_special().
1380 *
1381 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1382 * side critical section has interrupts disabled.
058ebd0e 1383 */
2fd59077 1384 local_irq_save(*flags);
058ebd0e 1385 rcu_read_lock();
bd275681 1386 ctx = rcu_dereference(task->perf_event_ctxp);
25346b93
PM
1387 if (ctx) {
1388 /*
1389 * If this context is a clone of another, it might
1390 * get swapped for another underneath us by
cdd6c482 1391 * perf_event_task_sched_out, though the
25346b93
PM
1392 * rcu_read_lock() protects us from any context
1393 * getting freed. Lock the context and check if it
1394 * got swapped before we could get the lock, and retry
1395 * if so. If we locked the right context, then it
1396 * can't get swapped on us any more.
1397 */
2fd59077 1398 raw_spin_lock(&ctx->lock);
bd275681 1399 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
2fd59077 1400 raw_spin_unlock(&ctx->lock);
058ebd0e 1401 rcu_read_unlock();
2fd59077 1402 local_irq_restore(*flags);
25346b93
PM
1403 goto retry;
1404 }
b49a9e7e 1405
63b6da39 1406 if (ctx->task == TASK_TOMBSTONE ||
8c94abbb 1407 !refcount_inc_not_zero(&ctx->refcount)) {
2fd59077 1408 raw_spin_unlock(&ctx->lock);
b49a9e7e 1409 ctx = NULL;
828b6f0e
PZ
1410 } else {
1411 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1412 }
25346b93
PM
1413 }
1414 rcu_read_unlock();
2fd59077
PM
1415 if (!ctx)
1416 local_irq_restore(*flags);
25346b93
PM
1417 return ctx;
1418}
1419
1420/*
1421 * Get the context for a task and increment its pin_count so it
1422 * can't get swapped to another task. This also increments its
1423 * reference count so that the context can't get freed.
1424 */
8dc85d54 1425static struct perf_event_context *
bd275681 1426perf_pin_task_context(struct task_struct *task)
25346b93 1427{
cdd6c482 1428 struct perf_event_context *ctx;
25346b93
PM
1429 unsigned long flags;
1430
bd275681 1431 ctx = perf_lock_task_context(task, &flags);
25346b93
PM
1432 if (ctx) {
1433 ++ctx->pin_count;
e625cce1 1434 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1435 }
1436 return ctx;
1437}
1438
cdd6c482 1439static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1440{
1441 unsigned long flags;
1442
e625cce1 1443 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1444 --ctx->pin_count;
e625cce1 1445 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1446}
1447
f67218c3
PZ
1448/*
1449 * Update the record of the current time in a context.
1450 */
09f5e7dc 1451static void __update_context_time(struct perf_event_context *ctx, bool adv)
f67218c3
PZ
1452{
1453 u64 now = perf_clock();
1454
f3c0eba2
PZ
1455 lockdep_assert_held(&ctx->lock);
1456
09f5e7dc
PZ
1457 if (adv)
1458 ctx->time += now - ctx->timestamp;
f67218c3 1459 ctx->timestamp = now;
09f5e7dc
PZ
1460
1461 /*
1462 * The above: time' = time + (now - timestamp), can be re-arranged
1463 * into: time` = now + (time - timestamp), which gives a single value
1464 * offset to compute future time without locks on.
1465 *
1466 * See perf_event_time_now(), which can be used from NMI context where
1467 * it's (obviously) not possible to acquire ctx->lock in order to read
1468 * both the above values in a consistent manner.
1469 */
1470 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1471}
1472
1473static void update_context_time(struct perf_event_context *ctx)
1474{
1475 __update_context_time(ctx, true);
f67218c3
PZ
1476}
1477
4158755d
SE
1478static u64 perf_event_time(struct perf_event *event)
1479{
1480 struct perf_event_context *ctx = event->ctx;
e5d1367f 1481
09f5e7dc
PZ
1482 if (unlikely(!ctx))
1483 return 0;
1484
e5d1367f
SE
1485 if (is_cgroup_event(event))
1486 return perf_cgroup_event_time(event);
1487
09f5e7dc
PZ
1488 return ctx->time;
1489}
1490
1491static u64 perf_event_time_now(struct perf_event *event, u64 now)
1492{
1493 struct perf_event_context *ctx = event->ctx;
1494
1495 if (unlikely(!ctx))
1496 return 0;
1497
1498 if (is_cgroup_event(event))
1499 return perf_cgroup_event_time_now(event, now);
1500
1501 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1502 return ctx->time;
1503
1504 now += READ_ONCE(ctx->timeoffset);
1505 return now;
4158755d
SE
1506}
1507
487f05e1
AS
1508static enum event_type_t get_event_type(struct perf_event *event)
1509{
1510 struct perf_event_context *ctx = event->ctx;
1511 enum event_type_t event_type;
1512
1513 lockdep_assert_held(&ctx->lock);
1514
3bda69c1
AS
1515 /*
1516 * It's 'group type', really, because if our group leader is
1517 * pinned, so are we.
1518 */
1519 if (event->group_leader != event)
1520 event = event->group_leader;
1521
487f05e1
AS
1522 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1523 if (!ctx->task)
1524 event_type |= EVENT_CPU;
1525
1526 return event_type;
1527}
1528
8e1a2031 1529/*
161c85fa 1530 * Helper function to initialize event group nodes.
8e1a2031 1531 */
161c85fa 1532static void init_event_group(struct perf_event *event)
8e1a2031
AB
1533{
1534 RB_CLEAR_NODE(&event->group_node);
1535 event->group_index = 0;
1536}
1537
1538/*
1539 * Extract pinned or flexible groups from the context
161c85fa 1540 * based on event attrs bits.
8e1a2031
AB
1541 */
1542static struct perf_event_groups *
1543get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
889ff015
FW
1544{
1545 if (event->attr.pinned)
1546 return &ctx->pinned_groups;
1547 else
1548 return &ctx->flexible_groups;
1549}
1550
8e1a2031 1551/*
161c85fa 1552 * Helper function to initializes perf_event_group trees.
8e1a2031 1553 */
161c85fa 1554static void perf_event_groups_init(struct perf_event_groups *groups)
8e1a2031
AB
1555{
1556 groups->tree = RB_ROOT;
1557 groups->index = 0;
1558}
1559
a3b89864
PZ
1560static inline struct cgroup *event_cgroup(const struct perf_event *event)
1561{
1562 struct cgroup *cgroup = NULL;
1563
1564#ifdef CONFIG_CGROUP_PERF
1565 if (event->cgrp)
1566 cgroup = event->cgrp->css.cgroup;
1567#endif
1568
1569 return cgroup;
1570}
1571
8e1a2031
AB
1572/*
1573 * Compare function for event groups;
161c85fa
PZ
1574 *
1575 * Implements complex key that first sorts by CPU and then by virtual index
1576 * which provides ordering when rotating groups for the same CPU.
8e1a2031 1577 */
a3b89864 1578static __always_inline int
bd275681
PZ
1579perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1580 const struct cgroup *left_cgroup, const u64 left_group_index,
1581 const struct perf_event *right)
8e1a2031 1582{
a3b89864
PZ
1583 if (left_cpu < right->cpu)
1584 return -1;
1585 if (left_cpu > right->cpu)
1586 return 1;
161c85fa 1587
bd275681
PZ
1588 if (left_pmu) {
1589 if (left_pmu < right->pmu_ctx->pmu)
1590 return -1;
1591 if (left_pmu > right->pmu_ctx->pmu)
1592 return 1;
1593 }
1594
95ed6c70 1595#ifdef CONFIG_CGROUP_PERF
a3b89864
PZ
1596 {
1597 const struct cgroup *right_cgroup = event_cgroup(right);
1598
1599 if (left_cgroup != right_cgroup) {
1600 if (!left_cgroup) {
1601 /*
1602 * Left has no cgroup but right does, no
1603 * cgroups come first.
1604 */
1605 return -1;
1606 }
1607 if (!right_cgroup) {
1608 /*
1609 * Right has no cgroup but left does, no
1610 * cgroups come first.
1611 */
1612 return 1;
1613 }
1614 /* Two dissimilar cgroups, order by id. */
1615 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1616 return -1;
1617
1618 return 1;
95ed6c70 1619 }
95ed6c70
IR
1620 }
1621#endif
1622
a3b89864
PZ
1623 if (left_group_index < right->group_index)
1624 return -1;
1625 if (left_group_index > right->group_index)
1626 return 1;
1627
1628 return 0;
1629}
161c85fa 1630
a3b89864
PZ
1631#define __node_2_pe(node) \
1632 rb_entry((node), struct perf_event, group_node)
1633
1634static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1635{
1636 struct perf_event *e = __node_2_pe(a);
bd275681
PZ
1637 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1638 e->group_index, __node_2_pe(b)) < 0;
a3b89864
PZ
1639}
1640
1641struct __group_key {
1642 int cpu;
bd275681 1643 struct pmu *pmu;
a3b89864
PZ
1644 struct cgroup *cgroup;
1645};
1646
1647static inline int __group_cmp(const void *key, const struct rb_node *node)
1648{
1649 const struct __group_key *a = key;
1650 const struct perf_event *b = __node_2_pe(node);
1651
bd275681
PZ
1652 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1653 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1654}
1655
1656static inline int
1657__group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1658{
1659 const struct __group_key *a = key;
1660 const struct perf_event *b = __node_2_pe(node);
1661
1662 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1663 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1664 b->group_index, b);
8e1a2031
AB
1665}
1666
1667/*
bd275681
PZ
1668 * Insert @event into @groups' tree; using
1669 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1670 * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
8e1a2031
AB
1671 */
1672static void
1673perf_event_groups_insert(struct perf_event_groups *groups,
161c85fa 1674 struct perf_event *event)
8e1a2031 1675{
8e1a2031
AB
1676 event->group_index = ++groups->index;
1677
a3b89864 1678 rb_add(&event->group_node, &groups->tree, __group_less);
8e1a2031
AB
1679}
1680
1681/*
161c85fa 1682 * Helper function to insert event into the pinned or flexible groups.
8e1a2031
AB
1683 */
1684static void
1685add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1686{
1687 struct perf_event_groups *groups;
1688
1689 groups = get_event_groups(event, ctx);
1690 perf_event_groups_insert(groups, event);
1691}
1692
1693/*
161c85fa 1694 * Delete a group from a tree.
8e1a2031
AB
1695 */
1696static void
1697perf_event_groups_delete(struct perf_event_groups *groups,
161c85fa 1698 struct perf_event *event)
8e1a2031 1699{
161c85fa
PZ
1700 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1701 RB_EMPTY_ROOT(&groups->tree));
8e1a2031 1702
161c85fa 1703 rb_erase(&event->group_node, &groups->tree);
8e1a2031
AB
1704 init_event_group(event);
1705}
1706
1707/*
161c85fa 1708 * Helper function to delete event from its groups.
8e1a2031
AB
1709 */
1710static void
1711del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1712{
1713 struct perf_event_groups *groups;
1714
1715 groups = get_event_groups(event, ctx);
1716 perf_event_groups_delete(groups, event);
1717}
1718
1719/*
bd275681 1720 * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
8e1a2031
AB
1721 */
1722static struct perf_event *
95ed6c70 1723perf_event_groups_first(struct perf_event_groups *groups, int cpu,
bd275681 1724 struct pmu *pmu, struct cgroup *cgrp)
8e1a2031 1725{
a3b89864
PZ
1726 struct __group_key key = {
1727 .cpu = cpu,
bd275681 1728 .pmu = pmu,
a3b89864
PZ
1729 .cgroup = cgrp,
1730 };
1731 struct rb_node *node;
95ed6c70 1732
a3b89864
PZ
1733 node = rb_find_first(&key, &groups->tree, __group_cmp);
1734 if (node)
1735 return __node_2_pe(node);
8e1a2031 1736
a3b89864 1737 return NULL;
8e1a2031
AB
1738}
1739
1cac7b1a 1740static struct perf_event *
bd275681 1741perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1cac7b1a 1742{
a3b89864
PZ
1743 struct __group_key key = {
1744 .cpu = event->cpu,
bd275681 1745 .pmu = pmu,
a3b89864
PZ
1746 .cgroup = event_cgroup(event),
1747 };
1748 struct rb_node *next;
1cac7b1a 1749
a3b89864
PZ
1750 next = rb_next_match(&key, &event->group_node, __group_cmp);
1751 if (next)
1752 return __node_2_pe(next);
95ed6c70 1753
a3b89864 1754 return NULL;
1cac7b1a
PZ
1755}
1756
bd275681
PZ
1757#define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \
1758 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \
1759 event; event = perf_event_groups_next(event, pmu))
1760
8e1a2031 1761/*
161c85fa 1762 * Iterate through the whole groups tree.
8e1a2031 1763 */
6e6804d2
PZ
1764#define perf_event_groups_for_each(event, groups) \
1765 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1766 typeof(*event), group_node); event; \
1767 event = rb_entry_safe(rb_next(&event->group_node), \
1768 typeof(*event), group_node))
8e1a2031 1769
fccc714b 1770/*
788faab7 1771 * Add an event from the lists for its context.
fccc714b
PZ
1772 * Must be called with ctx->mutex and ctx->lock held.
1773 */
04289bb9 1774static void
cdd6c482 1775list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1776{
c994d613
PZ
1777 lockdep_assert_held(&ctx->lock);
1778
8a49542c
PZ
1779 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1780 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9 1781
0d3d73aa
PZ
1782 event->tstamp = perf_event_time(event);
1783
04289bb9 1784 /*
8a49542c
PZ
1785 * If we're a stand alone event or group leader, we go to the context
1786 * list, group events are kept attached to the group so that
1787 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1788 */
8a49542c 1789 if (event->group_leader == event) {
4ff6a8de 1790 event->group_caps = event->event_caps;
8e1a2031 1791 add_event_to_groups(event, ctx);
5c148194 1792 }
592903cd 1793
cdd6c482
IM
1794 list_add_rcu(&event->event_entry, &ctx->event_list);
1795 ctx->nr_events++;
82ff0c02
RH
1796 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1797 ctx->nr_user++;
cdd6c482 1798 if (event->attr.inherit_stat)
bfbd3381 1799 ctx->nr_stat++;
5a3126d4 1800
33238c50
PZ
1801 if (event->state > PERF_EVENT_STATE_OFF)
1802 perf_cgroup_event_enable(event, ctx);
1803
5a3126d4 1804 ctx->generation++;
bd275681 1805 event->pmu_ctx->nr_events++;
04289bb9
IM
1806}
1807
0231bb53
JO
1808/*
1809 * Initialize event state based on the perf_event_attr::disabled.
1810 */
1811static inline void perf_event__state_init(struct perf_event *event)
1812{
1813 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1814 PERF_EVENT_STATE_INACTIVE;
1815}
1816
382c27f4 1817static int __perf_event_read_size(u64 read_format, int nr_siblings)
c320c7b7
ACM
1818{
1819 int entry = sizeof(u64); /* value */
1820 int size = 0;
1821 int nr = 1;
1822
382c27f4 1823 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
c320c7b7
ACM
1824 size += sizeof(u64);
1825
382c27f4 1826 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
c320c7b7
ACM
1827 size += sizeof(u64);
1828
382c27f4 1829 if (read_format & PERF_FORMAT_ID)
c320c7b7
ACM
1830 entry += sizeof(u64);
1831
382c27f4 1832 if (read_format & PERF_FORMAT_LOST)
119a784c
NK
1833 entry += sizeof(u64);
1834
382c27f4 1835 if (read_format & PERF_FORMAT_GROUP) {
a723968c 1836 nr += nr_siblings;
c320c7b7
ACM
1837 size += sizeof(u64);
1838 }
1839
382c27f4
PZ
1840 /*
1841 * Since perf_event_validate_size() limits this to 16k and inhibits
1842 * adding more siblings, this will never overflow.
1843 */
1844 return size + nr * entry;
c320c7b7
ACM
1845}
1846
a723968c 1847static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1848{
1849 struct perf_sample_data *data;
c320c7b7
ACM
1850 u16 size = 0;
1851
c320c7b7
ACM
1852 if (sample_type & PERF_SAMPLE_IP)
1853 size += sizeof(data->ip);
1854
6844c09d
ACM
1855 if (sample_type & PERF_SAMPLE_ADDR)
1856 size += sizeof(data->addr);
1857
1858 if (sample_type & PERF_SAMPLE_PERIOD)
1859 size += sizeof(data->period);
1860
2a6c6b7d
KL
1861 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1862 size += sizeof(data->weight.full);
c3feedf2 1863
6844c09d
ACM
1864 if (sample_type & PERF_SAMPLE_READ)
1865 size += event->read_size;
1866
d6be9ad6
SE
1867 if (sample_type & PERF_SAMPLE_DATA_SRC)
1868 size += sizeof(data->data_src.val);
1869
fdfbbd07
AK
1870 if (sample_type & PERF_SAMPLE_TRANSACTION)
1871 size += sizeof(data->txn);
1872
fc7ce9c7
KL
1873 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1874 size += sizeof(data->phys_addr);
1875
6546b19f
NK
1876 if (sample_type & PERF_SAMPLE_CGROUP)
1877 size += sizeof(data->cgroup);
1878
8d97e718
KL
1879 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1880 size += sizeof(data->data_page_size);
1881
995f088e
SE
1882 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1883 size += sizeof(data->code_page_size);
1884
6844c09d
ACM
1885 event->header_size = size;
1886}
1887
a723968c
PZ
1888/*
1889 * Called at perf_event creation and when events are attached/detached from a
1890 * group.
1891 */
1892static void perf_event__header_size(struct perf_event *event)
1893{
382c27f4
PZ
1894 event->read_size =
1895 __perf_event_read_size(event->attr.read_format,
1896 event->group_leader->nr_siblings);
a723968c
PZ
1897 __perf_event_header_size(event, event->attr.sample_type);
1898}
1899
6844c09d
ACM
1900static void perf_event__id_header_size(struct perf_event *event)
1901{
1902 struct perf_sample_data *data;
1903 u64 sample_type = event->attr.sample_type;
1904 u16 size = 0;
1905
c320c7b7
ACM
1906 if (sample_type & PERF_SAMPLE_TID)
1907 size += sizeof(data->tid_entry);
1908
1909 if (sample_type & PERF_SAMPLE_TIME)
1910 size += sizeof(data->time);
1911
ff3d527c
AH
1912 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1913 size += sizeof(data->id);
1914
c320c7b7
ACM
1915 if (sample_type & PERF_SAMPLE_ID)
1916 size += sizeof(data->id);
1917
1918 if (sample_type & PERF_SAMPLE_STREAM_ID)
1919 size += sizeof(data->stream_id);
1920
1921 if (sample_type & PERF_SAMPLE_CPU)
1922 size += sizeof(data->cpu_entry);
1923
6844c09d 1924 event->id_header_size = size;
c320c7b7
ACM
1925}
1926
382c27f4
PZ
1927/*
1928 * Check that adding an event to the group does not result in anybody
1929 * overflowing the 64k event limit imposed by the output buffer.
1930 *
1931 * Specifically, check that the read_size for the event does not exceed 16k,
1932 * read_size being the one term that grows with groups size. Since read_size
1933 * depends on per-event read_format, also (re)check the existing events.
1934 *
1935 * This leaves 48k for the constant size fields and things like callchains,
1936 * branch stacks and register sets.
1937 */
a723968c
PZ
1938static bool perf_event_validate_size(struct perf_event *event)
1939{
382c27f4 1940 struct perf_event *sibling, *group_leader = event->group_leader;
a723968c 1941
382c27f4
PZ
1942 if (__perf_event_read_size(event->attr.read_format,
1943 group_leader->nr_siblings + 1) > 16*1024)
a723968c
PZ
1944 return false;
1945
382c27f4
PZ
1946 if (__perf_event_read_size(group_leader->attr.read_format,
1947 group_leader->nr_siblings + 1) > 16*1024)
1948 return false;
1949
7e2c1e4b
MR
1950 /*
1951 * When creating a new group leader, group_leader->ctx is initialized
1952 * after the size has been validated, but we cannot safely use
1953 * for_each_sibling_event() until group_leader->ctx is set. A new group
1954 * leader cannot have any siblings yet, so we can safely skip checking
1955 * the non-existent siblings.
1956 */
1957 if (event == group_leader)
1958 return true;
1959
382c27f4
PZ
1960 for_each_sibling_event(sibling, group_leader) {
1961 if (__perf_event_read_size(sibling->attr.read_format,
1962 group_leader->nr_siblings + 1) > 16*1024)
1963 return false;
1964 }
1965
a723968c
PZ
1966 return true;
1967}
1968
8a49542c
PZ
1969static void perf_group_attach(struct perf_event *event)
1970{
c320c7b7 1971 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1972
a76a82a3
PZ
1973 lockdep_assert_held(&event->ctx->lock);
1974
74c3337c 1975 /*
bd275681
PZ
1976 * We can have double attach due to group movement (move_group) in
1977 * perf_event_open().
74c3337c
PZ
1978 */
1979 if (event->attach_state & PERF_ATTACH_GROUP)
1980 return;
1981
8a49542c
PZ
1982 event->attach_state |= PERF_ATTACH_GROUP;
1983
1984 if (group_leader == event)
1985 return;
1986
652884fe
PZ
1987 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1988
4ff6a8de 1989 group_leader->group_caps &= event->event_caps;
8a49542c 1990
8343aae6 1991 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
8a49542c 1992 group_leader->nr_siblings++;
32671e37 1993 group_leader->group_generation++;
c320c7b7
ACM
1994
1995 perf_event__header_size(group_leader);
1996
edb39592 1997 for_each_sibling_event(pos, group_leader)
c320c7b7 1998 perf_event__header_size(pos);
8a49542c
PZ
1999}
2000
a63eaf34 2001/*
788faab7 2002 * Remove an event from the lists for its context.
fccc714b 2003 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 2004 */
04289bb9 2005static void
cdd6c482 2006list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 2007{
652884fe
PZ
2008 WARN_ON_ONCE(event->ctx != ctx);
2009 lockdep_assert_held(&ctx->lock);
2010
8a49542c
PZ
2011 /*
2012 * We can have double detach due to exit/hot-unplug + close.
2013 */
2014 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 2015 return;
8a49542c
PZ
2016
2017 event->attach_state &= ~PERF_ATTACH_CONTEXT;
2018
cdd6c482 2019 ctx->nr_events--;
82ff0c02
RH
2020 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2021 ctx->nr_user--;
cdd6c482 2022 if (event->attr.inherit_stat)
bfbd3381 2023 ctx->nr_stat--;
8bc20959 2024
cdd6c482 2025 list_del_rcu(&event->event_entry);
04289bb9 2026
8a49542c 2027 if (event->group_leader == event)
8e1a2031 2028 del_event_from_groups(event, ctx);
5c148194 2029
b2e74a26
SE
2030 /*
2031 * If event was in error state, then keep it
2032 * that way, otherwise bogus counts will be
2033 * returned on read(). The only way to get out
2034 * of error state is by explicit re-enabling
2035 * of the event
2036 */
33238c50
PZ
2037 if (event->state > PERF_EVENT_STATE_OFF) {
2038 perf_cgroup_event_disable(event, ctx);
0d3d73aa 2039 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
33238c50 2040 }
5a3126d4
PZ
2041
2042 ctx->generation++;
bd275681 2043 event->pmu_ctx->nr_events--;
050735b0
PZ
2044}
2045
ab43762e
AS
2046static int
2047perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2048{
2049 if (!has_aux(aux_event))
2050 return 0;
2051
2052 if (!event->pmu->aux_output_match)
2053 return 0;
2054
2055 return event->pmu->aux_output_match(aux_event);
2056}
2057
2058static void put_event(struct perf_event *event);
2059static void event_sched_out(struct perf_event *event,
ab43762e
AS
2060 struct perf_event_context *ctx);
2061
2062static void perf_put_aux_event(struct perf_event *event)
2063{
2064 struct perf_event_context *ctx = event->ctx;
ab43762e
AS
2065 struct perf_event *iter;
2066
2067 /*
2068 * If event uses aux_event tear down the link
2069 */
2070 if (event->aux_event) {
2071 iter = event->aux_event;
2072 event->aux_event = NULL;
2073 put_event(iter);
2074 return;
2075 }
2076
2077 /*
2078 * If the event is an aux_event, tear down all links to
2079 * it from other events.
2080 */
2081 for_each_sibling_event(iter, event->group_leader) {
2082 if (iter->aux_event != event)
2083 continue;
2084
2085 iter->aux_event = NULL;
2086 put_event(event);
2087
2088 /*
2089 * If it's ACTIVE, schedule it out and put it into ERROR
2090 * state so that we don't try to schedule it again. Note
2091 * that perf_event_enable() will clear the ERROR status.
2092 */
bd275681 2093 event_sched_out(iter, ctx);
ab43762e
AS
2094 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2095 }
2096}
2097
a4faf00d
AS
2098static bool perf_need_aux_event(struct perf_event *event)
2099{
2100 return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2101}
2102
ab43762e
AS
2103static int perf_get_aux_event(struct perf_event *event,
2104 struct perf_event *group_leader)
2105{
2106 /*
2107 * Our group leader must be an aux event if we want to be
2108 * an aux_output. This way, the aux event will precede its
2109 * aux_output events in the group, and therefore will always
2110 * schedule first.
2111 */
2112 if (!group_leader)
2113 return 0;
2114
a4faf00d
AS
2115 /*
2116 * aux_output and aux_sample_size are mutually exclusive.
2117 */
2118 if (event->attr.aux_output && event->attr.aux_sample_size)
2119 return 0;
2120
2121 if (event->attr.aux_output &&
2122 !perf_aux_output_match(event, group_leader))
2123 return 0;
2124
2125 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
ab43762e
AS
2126 return 0;
2127
2128 if (!atomic_long_inc_not_zero(&group_leader->refcount))
2129 return 0;
2130
2131 /*
2132 * Link aux_outputs to their aux event; this is undone in
2133 * perf_group_detach() by perf_put_aux_event(). When the
2134 * group in torn down, the aux_output events loose their
2135 * link to the aux_event and can't schedule any more.
2136 */
2137 event->aux_event = group_leader;
2138
2139 return 1;
2140}
2141
ab6f824c
PZ
2142static inline struct list_head *get_event_list(struct perf_event *event)
2143{
bd275681
PZ
2144 return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2145 &event->pmu_ctx->flexible_active;
ab6f824c
PZ
2146}
2147
9f0c4fa1
KL
2148/*
2149 * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2150 * cannot exist on their own, schedule them out and move them into the ERROR
2151 * state. Also see _perf_event_enable(), it will not be able to recover
2152 * this ERROR state.
2153 */
2154static inline void perf_remove_sibling_event(struct perf_event *event)
2155{
bd275681 2156 event_sched_out(event, event->ctx);
9f0c4fa1
KL
2157 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2158}
2159
8a49542c 2160static void perf_group_detach(struct perf_event *event)
050735b0 2161{
9f0c4fa1 2162 struct perf_event *leader = event->group_leader;
050735b0 2163 struct perf_event *sibling, *tmp;
6668128a 2164 struct perf_event_context *ctx = event->ctx;
8a49542c 2165
6668128a 2166 lockdep_assert_held(&ctx->lock);
a76a82a3 2167
8a49542c
PZ
2168 /*
2169 * We can have double detach due to exit/hot-unplug + close.
2170 */
2171 if (!(event->attach_state & PERF_ATTACH_GROUP))
2172 return;
2173
2174 event->attach_state &= ~PERF_ATTACH_GROUP;
2175
ab43762e
AS
2176 perf_put_aux_event(event);
2177
8a49542c
PZ
2178 /*
2179 * If this is a sibling, remove it from its group.
2180 */
9f0c4fa1 2181 if (leader != event) {
8343aae6 2182 list_del_init(&event->sibling_list);
8a49542c 2183 event->group_leader->nr_siblings--;
32671e37 2184 event->group_leader->group_generation++;
c320c7b7 2185 goto out;
8a49542c
PZ
2186 }
2187
04289bb9 2188 /*
cdd6c482
IM
2189 * If this was a group event with sibling events then
2190 * upgrade the siblings to singleton events by adding them
8a49542c 2191 * to whatever list we are on.
04289bb9 2192 */
8343aae6 2193 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
8e1a2031 2194
9f0c4fa1
KL
2195 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2196 perf_remove_sibling_event(sibling);
2197
04289bb9 2198 sibling->group_leader = sibling;
24868367 2199 list_del_init(&sibling->sibling_list);
d6f962b5
FW
2200
2201 /* Inherit group flags from the previous leader */
4ff6a8de 2202 sibling->group_caps = event->group_caps;
652884fe 2203
fd0815f6 2204 if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
8e1a2031 2205 add_event_to_groups(sibling, event->ctx);
6668128a 2206
ab6f824c
PZ
2207 if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2208 list_add_tail(&sibling->active_list, get_event_list(sibling));
8e1a2031
AB
2209 }
2210
652884fe 2211 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 2212 }
c320c7b7
ACM
2213
2214out:
9f0c4fa1 2215 for_each_sibling_event(tmp, leader)
c320c7b7 2216 perf_event__header_size(tmp);
9f0c4fa1
KL
2217
2218 perf_event__header_size(leader);
04289bb9
IM
2219}
2220
ef54c1a4
PZ
2221static void sync_child_event(struct perf_event *child_event);
2222
2223static void perf_child_detach(struct perf_event *event)
2224{
2225 struct perf_event *parent_event = event->parent;
2226
2227 if (!(event->attach_state & PERF_ATTACH_CHILD))
2228 return;
2229
2230 event->attach_state &= ~PERF_ATTACH_CHILD;
2231
2232 if (WARN_ON_ONCE(!parent_event))
2233 return;
2234
2235 lockdep_assert_held(&parent_event->child_mutex);
2236
2237 sync_child_event(event);
2238 list_del_init(&event->child_list);
2239}
2240
fadfe7be
JO
2241static bool is_orphaned_event(struct perf_event *event)
2242{
a69b0ca4 2243 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
2244}
2245
fa66f07a
SE
2246static inline int
2247event_filter_match(struct perf_event *event)
2248{
0b8f1e2e 2249 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
bd275681 2250 perf_cgroup_match(event);
fa66f07a
SE
2251}
2252
9ffcfa6f 2253static void
bd275681 2254event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
3b6f9e5c 2255{
bd275681
PZ
2256 struct perf_event_pmu_context *epc = event->pmu_ctx;
2257 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
0d3d73aa 2258 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
652884fe 2259
bd275681
PZ
2260 // XXX cpc serialization, probably per-cpu IRQ disabled
2261
652884fe
PZ
2262 WARN_ON_ONCE(event->ctx != ctx);
2263 lockdep_assert_held(&ctx->lock);
2264
cdd6c482 2265 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 2266 return;
3b6f9e5c 2267
6668128a
PZ
2268 /*
2269 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2270 * we can schedule events _OUT_ individually through things like
2271 * __perf_remove_from_context().
2272 */
2273 list_del_init(&event->active_list);
2274
44377277
AS
2275 perf_pmu_disable(event->pmu);
2276
28a967c3
PZ
2277 event->pmu->del(event, 0);
2278 event->oncpu = -1;
0d3d73aa 2279
ca6c2132
PZ
2280 if (event->pending_disable) {
2281 event->pending_disable = 0;
33238c50 2282 perf_cgroup_event_disable(event, ctx);
0d3d73aa 2283 state = PERF_EVENT_STATE_OFF;
970892a9 2284 }
ca6c2132
PZ
2285
2286 if (event->pending_sigtrap) {
2287 bool dec = true;
2288
2289 event->pending_sigtrap = 0;
2290 if (state != PERF_EVENT_STATE_OFF &&
2291 !event->pending_work) {
2292 event->pending_work = 1;
2293 dec = false;
517e6a30 2294 WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount));
ca6c2132
PZ
2295 task_work_add(current, &event->pending_task, TWA_RESUME);
2296 }
2297 if (dec)
2298 local_dec(&event->ctx->nr_pending);
2299 }
2300
0d3d73aa 2301 perf_event_set_state(event, state);
3b6f9e5c 2302
cdd6c482 2303 if (!is_software_event(event))
bd275681 2304 cpc->active_oncpu--;
0259bf63 2305 if (event->attr.freq && event->attr.sample_freq) {
0f5a2601 2306 ctx->nr_freq--;
0259bf63
NK
2307 epc->nr_freq--;
2308 }
bd275681
PZ
2309 if (event->attr.exclusive || !cpc->active_oncpu)
2310 cpc->exclusive = 0;
44377277
AS
2311
2312 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
2313}
2314
d859e29f 2315static void
bd275681 2316group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
d859e29f 2317{
cdd6c482 2318 struct perf_event *event;
0d3d73aa
PZ
2319
2320 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2321 return;
d859e29f 2322
bd275681 2323 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
3f005e7d 2324
bd275681 2325 event_sched_out(group_event, ctx);
d859e29f
PM
2326
2327 /*
2328 * Schedule out siblings (if any):
2329 */
edb39592 2330 for_each_sibling_event(event, group_event)
bd275681 2331 event_sched_out(event, ctx);
d859e29f
PM
2332}
2333
45a0e07a 2334#define DETACH_GROUP 0x01UL
ef54c1a4 2335#define DETACH_CHILD 0x02UL
517e6a30 2336#define DETACH_DEAD 0x04UL
0017960f 2337
0793a61d 2338/*
cdd6c482 2339 * Cross CPU call to remove a performance event
0793a61d 2340 *
cdd6c482 2341 * We disable the event on the hardware level first. After that we
0793a61d
TG
2342 * remove it from the context list.
2343 */
fae3fde6
PZ
2344static void
2345__perf_remove_from_context(struct perf_event *event,
2346 struct perf_cpu_context *cpuctx,
2347 struct perf_event_context *ctx,
2348 void *info)
0793a61d 2349{
bd275681 2350 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
45a0e07a 2351 unsigned long flags = (unsigned long)info;
0793a61d 2352
3c5c8711
PZ
2353 if (ctx->is_active & EVENT_TIME) {
2354 update_context_time(ctx);
09f5e7dc 2355 update_cgrp_time_from_cpuctx(cpuctx, false);
3c5c8711
PZ
2356 }
2357
517e6a30
PZ
2358 /*
2359 * Ensure event_sched_out() switches to OFF, at the very least
2360 * this avoids raising perf_pending_task() at this time.
2361 */
2362 if (flags & DETACH_DEAD)
2363 event->pending_disable = 1;
bd275681 2364 event_sched_out(event, ctx);
45a0e07a 2365 if (flags & DETACH_GROUP)
46ce0fe9 2366 perf_group_detach(event);
ef54c1a4
PZ
2367 if (flags & DETACH_CHILD)
2368 perf_child_detach(event);
cdd6c482 2369 list_del_event(event, ctx);
517e6a30
PZ
2370 if (flags & DETACH_DEAD)
2371 event->state = PERF_EVENT_STATE_DEAD;
39a43640 2372
bd275681
PZ
2373 if (!pmu_ctx->nr_events) {
2374 pmu_ctx->rotate_necessary = 0;
2375
2376 if (ctx->task && ctx->is_active) {
2377 struct perf_cpu_pmu_context *cpc;
2378
2379 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2380 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2381 cpc->task_epc = NULL;
2382 }
2383 }
2384
39a43640 2385 if (!ctx->nr_events && ctx->is_active) {
09f5e7dc
PZ
2386 if (ctx == &cpuctx->ctx)
2387 update_cgrp_time_from_cpuctx(cpuctx, true);
2388
64ce3126 2389 ctx->is_active = 0;
39a43640
PZ
2390 if (ctx->task) {
2391 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2392 cpuctx->task_ctx = NULL;
2393 }
64ce3126 2394 }
0793a61d
TG
2395}
2396
0793a61d 2397/*
cdd6c482 2398 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 2399 *
cdd6c482
IM
2400 * If event->ctx is a cloned context, callers must make sure that
2401 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
2402 * remains valid. This is OK when called from perf_release since
2403 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 2404 * When called from perf_event_exit_task, it's OK because the
c93f7669 2405 * context has been detached from its task.
0793a61d 2406 */
45a0e07a 2407static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 2408{
a76a82a3
PZ
2409 struct perf_event_context *ctx = event->ctx;
2410
2411 lockdep_assert_held(&ctx->mutex);
0793a61d 2412
a76a82a3 2413 /*
ef54c1a4
PZ
2414 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2415 * to work in the face of TASK_TOMBSTONE, unlike every other
2416 * event_function_call() user.
a76a82a3 2417 */
ef54c1a4 2418 raw_spin_lock_irq(&ctx->lock);
bd275681
PZ
2419 if (!ctx->is_active) {
2420 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
ef54c1a4 2421 ctx, (void *)flags);
a76a82a3 2422 raw_spin_unlock_irq(&ctx->lock);
ef54c1a4 2423 return;
a76a82a3 2424 }
ef54c1a4
PZ
2425 raw_spin_unlock_irq(&ctx->lock);
2426
2427 event_function_call(event, __perf_remove_from_context, (void *)flags);
0793a61d
TG
2428}
2429
d859e29f 2430/*
cdd6c482 2431 * Cross CPU call to disable a performance event
d859e29f 2432 */
fae3fde6
PZ
2433static void __perf_event_disable(struct perf_event *event,
2434 struct perf_cpu_context *cpuctx,
2435 struct perf_event_context *ctx,
2436 void *info)
7b648018 2437{
fae3fde6
PZ
2438 if (event->state < PERF_EVENT_STATE_INACTIVE)
2439 return;
7b648018 2440
3c5c8711
PZ
2441 if (ctx->is_active & EVENT_TIME) {
2442 update_context_time(ctx);
2443 update_cgrp_time_from_event(event);
2444 }
2445
bd275681
PZ
2446 perf_pmu_disable(event->pmu_ctx->pmu);
2447
fae3fde6 2448 if (event == event->group_leader)
bd275681 2449 group_sched_out(event, ctx);
fae3fde6 2450 else
bd275681 2451 event_sched_out(event, ctx);
0d3d73aa
PZ
2452
2453 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
33238c50 2454 perf_cgroup_event_disable(event, ctx);
bd275681
PZ
2455
2456 perf_pmu_enable(event->pmu_ctx->pmu);
7b648018
PZ
2457}
2458
d859e29f 2459/*
788faab7 2460 * Disable an event.
c93f7669 2461 *
cdd6c482
IM
2462 * If event->ctx is a cloned context, callers must make sure that
2463 * every task struct that event->ctx->task could possibly point to
9f014e3a 2464 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2465 * perf_event_for_each_child or perf_event_for_each because they
2466 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
2467 * goes to exit will block in perf_event_exit_event().
2468 *
ca6c2132 2469 * When called from perf_pending_irq it's OK because event->ctx
c93f7669 2470 * is the current context on this CPU and preemption is disabled,
cdd6c482 2471 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 2472 */
f63a8daa 2473static void _perf_event_disable(struct perf_event *event)
d859e29f 2474{
cdd6c482 2475 struct perf_event_context *ctx = event->ctx;
d859e29f 2476
e625cce1 2477 raw_spin_lock_irq(&ctx->lock);
7b648018 2478 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 2479 raw_spin_unlock_irq(&ctx->lock);
7b648018 2480 return;
53cfbf59 2481 }
e625cce1 2482 raw_spin_unlock_irq(&ctx->lock);
7b648018 2483
fae3fde6
PZ
2484 event_function_call(event, __perf_event_disable, NULL);
2485}
2486
2487void perf_event_disable_local(struct perf_event *event)
2488{
2489 event_function_local(event, __perf_event_disable, NULL);
d859e29f 2490}
f63a8daa
PZ
2491
2492/*
2493 * Strictly speaking kernel users cannot create groups and therefore this
2494 * interface does not need the perf_event_ctx_lock() magic.
2495 */
2496void perf_event_disable(struct perf_event *event)
2497{
2498 struct perf_event_context *ctx;
2499
2500 ctx = perf_event_ctx_lock(event);
2501 _perf_event_disable(event);
2502 perf_event_ctx_unlock(event, ctx);
2503}
dcfce4a0 2504EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 2505
5aab90ce
JO
2506void perf_event_disable_inatomic(struct perf_event *event)
2507{
ca6c2132
PZ
2508 event->pending_disable = 1;
2509 irq_work_queue(&event->pending_irq);
5aab90ce
JO
2510}
2511
4fe757dd
PZ
2512#define MAX_INTERRUPTS (~0ULL)
2513
2514static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2515static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2516
235c7fc7 2517static int
bd275681 2518event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
235c7fc7 2519{
bd275681
PZ
2520 struct perf_event_pmu_context *epc = event->pmu_ctx;
2521 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
44377277 2522 int ret = 0;
4158755d 2523
ab6f824c
PZ
2524 WARN_ON_ONCE(event->ctx != ctx);
2525
63342411
PZ
2526 lockdep_assert_held(&ctx->lock);
2527
cdd6c482 2528 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2529 return 0;
2530
95ff4ca2
AS
2531 WRITE_ONCE(event->oncpu, smp_processor_id());
2532 /*
0c1cbc18
PZ
2533 * Order event::oncpu write to happen before the ACTIVE state is
2534 * visible. This allows perf_event_{stop,read}() to observe the correct
2535 * ->oncpu if it sees ACTIVE.
95ff4ca2
AS
2536 */
2537 smp_wmb();
0d3d73aa 2538 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2539
2540 /*
2541 * Unthrottle events, since we scheduled we might have missed several
2542 * ticks already, also for a heavily scheduling task there is little
2543 * guarantee it'll get a tick in a timely manner.
2544 */
2545 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2546 perf_log_throttle(event, 1);
2547 event->hw.interrupts = 0;
2548 }
2549
44377277
AS
2550 perf_pmu_disable(event->pmu);
2551
ec0d7729
AS
2552 perf_log_itrace_start(event);
2553
a4eaf7f1 2554 if (event->pmu->add(event, PERF_EF_START)) {
0d3d73aa 2555 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
cdd6c482 2556 event->oncpu = -1;
44377277
AS
2557 ret = -EAGAIN;
2558 goto out;
235c7fc7
IM
2559 }
2560
cdd6c482 2561 if (!is_software_event(event))
bd275681 2562 cpc->active_oncpu++;
0259bf63 2563 if (event->attr.freq && event->attr.sample_freq) {
0f5a2601 2564 ctx->nr_freq++;
0259bf63
NK
2565 epc->nr_freq++;
2566 }
cdd6c482 2567 if (event->attr.exclusive)
bd275681 2568 cpc->exclusive = 1;
3b6f9e5c 2569
44377277
AS
2570out:
2571 perf_pmu_enable(event->pmu);
2572
2573 return ret;
235c7fc7
IM
2574}
2575
6751b71e 2576static int
bd275681 2577group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
6751b71e 2578{
6bde9b6c 2579 struct perf_event *event, *partial_group = NULL;
bd275681 2580 struct pmu *pmu = group_event->pmu_ctx->pmu;
6751b71e 2581
cdd6c482 2582 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2583 return 0;
2584
fbbe0701 2585 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2586
bd275681 2587 if (event_sched_in(group_event, ctx))
251ff2d4 2588 goto error;
6751b71e
PM
2589
2590 /*
2591 * Schedule in siblings as one group (if any):
2592 */
edb39592 2593 for_each_sibling_event(event, group_event) {
bd275681 2594 if (event_sched_in(event, ctx)) {
cdd6c482 2595 partial_group = event;
6751b71e
PM
2596 goto group_error;
2597 }
2598 }
2599
9ffcfa6f 2600 if (!pmu->commit_txn(pmu))
6e85158c 2601 return 0;
9ffcfa6f 2602
6751b71e
PM
2603group_error:
2604 /*
2605 * Groups can be scheduled in as one unit only, so undo any
2606 * partial group before returning:
0d3d73aa 2607 * The events up to the failed event are scheduled out normally.
6751b71e 2608 */
edb39592 2609 for_each_sibling_event(event, group_event) {
cdd6c482 2610 if (event == partial_group)
0d3d73aa 2611 break;
d7842da4 2612
bd275681 2613 event_sched_out(event, ctx);
6751b71e 2614 }
bd275681 2615 event_sched_out(group_event, ctx);
6751b71e 2616
251ff2d4 2617error:
ad5133b7 2618 pmu->cancel_txn(pmu);
6751b71e
PM
2619 return -EAGAIN;
2620}
2621
3b6f9e5c 2622/*
cdd6c482 2623 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2624 */
bd275681 2625static int group_can_go_on(struct perf_event *event, int can_add_hw)
3b6f9e5c 2626{
bd275681
PZ
2627 struct perf_event_pmu_context *epc = event->pmu_ctx;
2628 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2629
3b6f9e5c 2630 /*
cdd6c482 2631 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2632 */
4ff6a8de 2633 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2634 return 1;
2635 /*
2636 * If an exclusive group is already on, no other hardware
cdd6c482 2637 * events can go on.
3b6f9e5c 2638 */
bd275681 2639 if (cpc->exclusive)
3b6f9e5c
PM
2640 return 0;
2641 /*
2642 * If this group is exclusive and there are already
cdd6c482 2643 * events on the CPU, it can't go on.
3b6f9e5c 2644 */
1908dc91 2645 if (event->attr.exclusive && !list_empty(get_event_list(event)))
3b6f9e5c
PM
2646 return 0;
2647 /*
2648 * Otherwise, try to add it if all previous groups were able
2649 * to go on.
2650 */
2651 return can_add_hw;
2652}
2653
cdd6c482
IM
2654static void add_event_to_ctx(struct perf_event *event,
2655 struct perf_event_context *ctx)
53cfbf59 2656{
cdd6c482 2657 list_add_event(event, ctx);
8a49542c 2658 perf_group_attach(event);
53cfbf59
PM
2659}
2660
bd275681
PZ
2661static void task_ctx_sched_out(struct perf_event_context *ctx,
2662 enum event_type_t event_type)
bd2afa49 2663{
bd275681
PZ
2664 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2665
bd2afa49
PZ
2666 if (!cpuctx->task_ctx)
2667 return;
2668
2669 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2670 return;
2671
bd275681 2672 ctx_sched_out(ctx, event_type);
bd2afa49
PZ
2673}
2674
dce5855b 2675static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
a0827713 2676 struct perf_event_context *ctx)
dce5855b 2677{
bd275681 2678 ctx_sched_in(&cpuctx->ctx, EVENT_PINNED);
dce5855b 2679 if (ctx)
bd275681
PZ
2680 ctx_sched_in(ctx, EVENT_PINNED);
2681 ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE);
dce5855b 2682 if (ctx)
bd275681 2683 ctx_sched_in(ctx, EVENT_FLEXIBLE);
dce5855b
PZ
2684}
2685
487f05e1
AS
2686/*
2687 * We want to maintain the following priority of scheduling:
2688 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2689 * - task pinned (EVENT_PINNED)
2690 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2691 * - task flexible (EVENT_FLEXIBLE).
2692 *
2693 * In order to avoid unscheduling and scheduling back in everything every
2694 * time an event is added, only do it for the groups of equal priority and
2695 * below.
2696 *
2697 * This can be called after a batch operation on task events, in which case
2698 * event_type is a bit mask of the types of events involved. For CPU events,
2699 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2700 */
bd275681
PZ
2701/*
2702 * XXX: ctx_resched() reschedule entire perf_event_context while adding new
2703 * event to the context or enabling existing event in the context. We can
2704 * probably optimize it by rescheduling only affected pmu_ctx.
2705 */
3e349507 2706static void ctx_resched(struct perf_cpu_context *cpuctx,
487f05e1
AS
2707 struct perf_event_context *task_ctx,
2708 enum event_type_t event_type)
0017960f 2709{
487f05e1
AS
2710 bool cpu_event = !!(event_type & EVENT_CPU);
2711
2712 /*
2713 * If pinned groups are involved, flexible groups also need to be
2714 * scheduled out.
2715 */
2716 if (event_type & EVENT_PINNED)
2717 event_type |= EVENT_FLEXIBLE;
2718
bd275681 2719 event_type &= EVENT_ALL;
bd903afe 2720
f06cc667 2721 perf_ctx_disable(&cpuctx->ctx, false);
bd275681 2722 if (task_ctx) {
f06cc667 2723 perf_ctx_disable(task_ctx, false);
bd275681
PZ
2724 task_ctx_sched_out(task_ctx, event_type);
2725 }
487f05e1
AS
2726
2727 /*
2728 * Decide which cpu ctx groups to schedule out based on the types
2729 * of events that caused rescheduling:
2730 * - EVENT_CPU: schedule out corresponding groups;
2731 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2732 * - otherwise, do nothing more.
2733 */
2734 if (cpu_event)
bd275681
PZ
2735 ctx_sched_out(&cpuctx->ctx, event_type);
2736 else if (event_type & EVENT_PINNED)
2737 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
487f05e1 2738
a0827713 2739 perf_event_sched_in(cpuctx, task_ctx);
bd275681 2740
f06cc667 2741 perf_ctx_enable(&cpuctx->ctx, false);
bd275681 2742 if (task_ctx)
f06cc667 2743 perf_ctx_enable(task_ctx, false);
0017960f
PZ
2744}
2745
c68d224e
SE
2746void perf_pmu_resched(struct pmu *pmu)
2747{
bd275681 2748 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
c68d224e
SE
2749 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2750
2751 perf_ctx_lock(cpuctx, task_ctx);
2752 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2753 perf_ctx_unlock(cpuctx, task_ctx);
2754}
2755
0793a61d 2756/*
cdd6c482 2757 * Cross CPU call to install and enable a performance event
682076ae 2758 *
a096309b
PZ
2759 * Very similar to remote_function() + event_function() but cannot assume that
2760 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2761 */
fe4b04fa 2762static int __perf_install_in_context(void *info)
0793a61d 2763{
a096309b
PZ
2764 struct perf_event *event = info;
2765 struct perf_event_context *ctx = event->ctx;
bd275681 2766 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2c29ef0f 2767 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2768 bool reprogram = true;
a096309b 2769 int ret = 0;
0793a61d 2770
63b6da39 2771 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2772 if (ctx->task) {
b58f6b0d
PZ
2773 raw_spin_lock(&ctx->lock);
2774 task_ctx = ctx;
a096309b 2775
63cae12b 2776 reprogram = (ctx->task == current);
b58f6b0d 2777
39a43640 2778 /*
63cae12b
PZ
2779 * If the task is running, it must be running on this CPU,
2780 * otherwise we cannot reprogram things.
2781 *
2782 * If its not running, we don't care, ctx->lock will
2783 * serialize against it becoming runnable.
39a43640 2784 */
63cae12b
PZ
2785 if (task_curr(ctx->task) && !reprogram) {
2786 ret = -ESRCH;
2787 goto unlock;
2788 }
a096309b 2789
63cae12b 2790 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2791 } else if (task_ctx) {
2792 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2793 }
b58f6b0d 2794
33801b94 2795#ifdef CONFIG_CGROUP_PERF
33238c50 2796 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
33801b94 2797 /*
2798 * If the current cgroup doesn't match the event's
2799 * cgroup, we should not try to schedule it.
2800 */
2801 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2802 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2803 event->cgrp->css.cgroup);
2804 }
2805#endif
2806
63cae12b 2807 if (reprogram) {
bd275681 2808 ctx_sched_out(ctx, EVENT_TIME);
a096309b 2809 add_event_to_ctx(event, ctx);
487f05e1 2810 ctx_resched(cpuctx, task_ctx, get_event_type(event));
a096309b
PZ
2811 } else {
2812 add_event_to_ctx(event, ctx);
2813 }
2814
63b6da39 2815unlock:
2c29ef0f 2816 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2817
a096309b 2818 return ret;
0793a61d
TG
2819}
2820
8a58ddae
AS
2821static bool exclusive_event_installable(struct perf_event *event,
2822 struct perf_event_context *ctx);
2823
0793a61d 2824/*
a096309b
PZ
2825 * Attach a performance event to a context.
2826 *
2827 * Very similar to event_function_call, see comment there.
0793a61d
TG
2828 */
2829static void
cdd6c482
IM
2830perf_install_in_context(struct perf_event_context *ctx,
2831 struct perf_event *event,
0793a61d
TG
2832 int cpu)
2833{
a096309b 2834 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2835
fe4b04fa
PZ
2836 lockdep_assert_held(&ctx->mutex);
2837
8a58ddae
AS
2838 WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2839
0cda4c02 2840 if (event->cpu != -1)
bd275681 2841 WARN_ON_ONCE(event->cpu != cpu);
c3f00c70 2842
0b8f1e2e
PZ
2843 /*
2844 * Ensures that if we can observe event->ctx, both the event and ctx
2845 * will be 'complete'. See perf_iterate_sb_cpu().
2846 */
2847 smp_store_release(&event->ctx, ctx);
2848
db0503e4
PZ
2849 /*
2850 * perf_event_attr::disabled events will not run and can be initialized
2851 * without IPI. Except when this is the first event for the context, in
2852 * that case we need the magic of the IPI to set ctx->is_active.
2853 *
2854 * The IOC_ENABLE that is sure to follow the creation of a disabled
2855 * event will issue the IPI and reprogram the hardware.
2856 */
c5de60cd
NK
2857 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2858 ctx->nr_events && !is_cgroup_event(event)) {
db0503e4
PZ
2859 raw_spin_lock_irq(&ctx->lock);
2860 if (ctx->task == TASK_TOMBSTONE) {
2861 raw_spin_unlock_irq(&ctx->lock);
2862 return;
2863 }
2864 add_event_to_ctx(event, ctx);
2865 raw_spin_unlock_irq(&ctx->lock);
2866 return;
2867 }
2868
a096309b
PZ
2869 if (!task) {
2870 cpu_function_call(cpu, __perf_install_in_context, event);
2871 return;
2872 }
2873
2874 /*
2875 * Should not happen, we validate the ctx is still alive before calling.
2876 */
2877 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2878 return;
2879
39a43640
PZ
2880 /*
2881 * Installing events is tricky because we cannot rely on ctx->is_active
2882 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2883 *
2884 * Instead we use task_curr(), which tells us if the task is running.
2885 * However, since we use task_curr() outside of rq::lock, we can race
2886 * against the actual state. This means the result can be wrong.
2887 *
2888 * If we get a false positive, we retry, this is harmless.
2889 *
2890 * If we get a false negative, things are complicated. If we are after
2891 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2892 * value must be correct. If we're before, it doesn't matter since
2893 * perf_event_context_sched_in() will program the counter.
2894 *
2895 * However, this hinges on the remote context switch having observed
2896 * our task->perf_event_ctxp[] store, such that it will in fact take
2897 * ctx::lock in perf_event_context_sched_in().
2898 *
2899 * We do this by task_function_call(), if the IPI fails to hit the task
2900 * we know any future context switch of task must see the
2901 * perf_event_ctpx[] store.
39a43640 2902 */
63cae12b 2903
63b6da39 2904 /*
63cae12b
PZ
2905 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2906 * task_cpu() load, such that if the IPI then does not find the task
2907 * running, a future context switch of that task must observe the
2908 * store.
63b6da39 2909 */
63cae12b
PZ
2910 smp_mb();
2911again:
2912 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2913 return;
2914
2915 raw_spin_lock_irq(&ctx->lock);
2916 task = ctx->task;
84c4e620 2917 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2918 /*
2919 * Cannot happen because we already checked above (which also
2920 * cannot happen), and we hold ctx->mutex, which serializes us
2921 * against perf_event_exit_task_context().
2922 */
63b6da39
PZ
2923 raw_spin_unlock_irq(&ctx->lock);
2924 return;
2925 }
39a43640 2926 /*
63cae12b
PZ
2927 * If the task is not running, ctx->lock will avoid it becoming so,
2928 * thus we can safely install the event.
39a43640 2929 */
63cae12b
PZ
2930 if (task_curr(task)) {
2931 raw_spin_unlock_irq(&ctx->lock);
2932 goto again;
2933 }
2934 add_event_to_ctx(event, ctx);
2935 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2936}
2937
d859e29f 2938/*
cdd6c482 2939 * Cross CPU call to enable a performance event
d859e29f 2940 */
fae3fde6
PZ
2941static void __perf_event_enable(struct perf_event *event,
2942 struct perf_cpu_context *cpuctx,
2943 struct perf_event_context *ctx,
2944 void *info)
04289bb9 2945{
cdd6c482 2946 struct perf_event *leader = event->group_leader;
fae3fde6 2947 struct perf_event_context *task_ctx;
04289bb9 2948
6e801e01
PZ
2949 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2950 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2951 return;
3cbed429 2952
bd2afa49 2953 if (ctx->is_active)
bd275681 2954 ctx_sched_out(ctx, EVENT_TIME);
bd2afa49 2955
0d3d73aa 2956 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
33238c50 2957 perf_cgroup_event_enable(event, ctx);
04289bb9 2958
fae3fde6
PZ
2959 if (!ctx->is_active)
2960 return;
2961
e5d1367f 2962 if (!event_filter_match(event)) {
bd275681 2963 ctx_sched_in(ctx, EVENT_TIME);
fae3fde6 2964 return;
e5d1367f 2965 }
f4c4176f 2966
04289bb9 2967 /*
cdd6c482 2968 * If the event is in a group and isn't the group leader,
d859e29f 2969 * then don't put it on unless the group is on.
04289bb9 2970 */
bd2afa49 2971 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
bd275681 2972 ctx_sched_in(ctx, EVENT_TIME);
fae3fde6 2973 return;
bd2afa49 2974 }
fe4b04fa 2975
fae3fde6
PZ
2976 task_ctx = cpuctx->task_ctx;
2977 if (ctx->task)
2978 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2979
487f05e1 2980 ctx_resched(cpuctx, task_ctx, get_event_type(event));
7b648018
PZ
2981}
2982
d859e29f 2983/*
788faab7 2984 * Enable an event.
c93f7669 2985 *
cdd6c482
IM
2986 * If event->ctx is a cloned context, callers must make sure that
2987 * every task struct that event->ctx->task could possibly point to
c93f7669 2988 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2989 * perf_event_for_each_child or perf_event_for_each as described
2990 * for perf_event_disable.
d859e29f 2991 */
f63a8daa 2992static void _perf_event_enable(struct perf_event *event)
d859e29f 2993{
cdd6c482 2994 struct perf_event_context *ctx = event->ctx;
d859e29f 2995
7b648018 2996 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2997 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2998 event->state < PERF_EVENT_STATE_ERROR) {
9f0c4fa1 2999out:
7b648018 3000 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
3001 return;
3002 }
3003
d859e29f 3004 /*
cdd6c482 3005 * If the event is in error state, clear that first.
7b648018
PZ
3006 *
3007 * That way, if we see the event in error state below, we know that it
3008 * has gone back into error state, as distinct from the task having
3009 * been scheduled away before the cross-call arrived.
d859e29f 3010 */
9f0c4fa1
KL
3011 if (event->state == PERF_EVENT_STATE_ERROR) {
3012 /*
3013 * Detached SIBLING events cannot leave ERROR state.
3014 */
3015 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3016 event->group_leader == event)
3017 goto out;
3018
cdd6c482 3019 event->state = PERF_EVENT_STATE_OFF;
9f0c4fa1 3020 }
e625cce1 3021 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 3022
fae3fde6 3023 event_function_call(event, __perf_event_enable, NULL);
d859e29f 3024}
f63a8daa
PZ
3025
3026/*
3027 * See perf_event_disable();
3028 */
3029void perf_event_enable(struct perf_event *event)
3030{
3031 struct perf_event_context *ctx;
3032
3033 ctx = perf_event_ctx_lock(event);
3034 _perf_event_enable(event);
3035 perf_event_ctx_unlock(event, ctx);
3036}
dcfce4a0 3037EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 3038
375637bc
AS
3039struct stop_event_data {
3040 struct perf_event *event;
3041 unsigned int restart;
3042};
3043
95ff4ca2
AS
3044static int __perf_event_stop(void *info)
3045{
375637bc
AS
3046 struct stop_event_data *sd = info;
3047 struct perf_event *event = sd->event;
95ff4ca2 3048
375637bc 3049 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
3050 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3051 return 0;
3052
3053 /* matches smp_wmb() in event_sched_in() */
3054 smp_rmb();
3055
3056 /*
3057 * There is a window with interrupts enabled before we get here,
3058 * so we need to check again lest we try to stop another CPU's event.
3059 */
3060 if (READ_ONCE(event->oncpu) != smp_processor_id())
3061 return -EAGAIN;
3062
3063 event->pmu->stop(event, PERF_EF_UPDATE);
3064
375637bc
AS
3065 /*
3066 * May race with the actual stop (through perf_pmu_output_stop()),
3067 * but it is only used for events with AUX ring buffer, and such
3068 * events will refuse to restart because of rb::aux_mmap_count==0,
3069 * see comments in perf_aux_output_begin().
3070 *
788faab7 3071 * Since this is happening on an event-local CPU, no trace is lost
375637bc
AS
3072 * while restarting.
3073 */
3074 if (sd->restart)
c9bbdd48 3075 event->pmu->start(event, 0);
375637bc 3076
95ff4ca2
AS
3077 return 0;
3078}
3079
767ae086 3080static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
3081{
3082 struct stop_event_data sd = {
3083 .event = event,
767ae086 3084 .restart = restart,
375637bc
AS
3085 };
3086 int ret = 0;
3087
3088 do {
3089 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3090 return 0;
3091
3092 /* matches smp_wmb() in event_sched_in() */
3093 smp_rmb();
3094
3095 /*
3096 * We only want to restart ACTIVE events, so if the event goes
3097 * inactive here (event->oncpu==-1), there's nothing more to do;
3098 * fall through with ret==-ENXIO.
3099 */
3100 ret = cpu_function_call(READ_ONCE(event->oncpu),
3101 __perf_event_stop, &sd);
3102 } while (ret == -EAGAIN);
3103
3104 return ret;
3105}
3106
3107/*
3108 * In order to contain the amount of racy and tricky in the address filter
3109 * configuration management, it is a two part process:
3110 *
3111 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3112 * we update the addresses of corresponding vmas in
c60f83b8 3113 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
375637bc
AS
3114 * (p2) when an event is scheduled in (pmu::add), it calls
3115 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3116 * if the generation has changed since the previous call.
3117 *
3118 * If (p1) happens while the event is active, we restart it to force (p2).
3119 *
3120 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3121 * pre-existing mappings, called once when new filters arrive via SET_FILTER
3122 * ioctl;
3123 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
c1e8d7c6 3124 * registered mapping, called for every new mmap(), with mm::mmap_lock down
375637bc
AS
3125 * for reading;
3126 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3127 * of exec.
3128 */
3129void perf_event_addr_filters_sync(struct perf_event *event)
3130{
3131 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3132
3133 if (!has_addr_filter(event))
3134 return;
3135
3136 raw_spin_lock(&ifh->lock);
3137 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3138 event->pmu->addr_filters_sync(event);
3139 event->hw.addr_filters_gen = event->addr_filters_gen;
3140 }
3141 raw_spin_unlock(&ifh->lock);
3142}
3143EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3144
f63a8daa 3145static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 3146{
2023b359 3147 /*
cdd6c482 3148 * not supported on inherited events
2023b359 3149 */
2e939d1d 3150 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
3151 return -EINVAL;
3152
cdd6c482 3153 atomic_add(refresh, &event->event_limit);
f63a8daa 3154 _perf_event_enable(event);
2023b359
PZ
3155
3156 return 0;
79f14641 3157}
f63a8daa
PZ
3158
3159/*
3160 * See perf_event_disable()
3161 */
3162int perf_event_refresh(struct perf_event *event, int refresh)
3163{
3164 struct perf_event_context *ctx;
3165 int ret;
3166
3167 ctx = perf_event_ctx_lock(event);
3168 ret = _perf_event_refresh(event, refresh);
3169 perf_event_ctx_unlock(event, ctx);
3170
3171 return ret;
3172}
26ca5c11 3173EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 3174
32ff77e8
MC
3175static int perf_event_modify_breakpoint(struct perf_event *bp,
3176 struct perf_event_attr *attr)
3177{
3178 int err;
3179
3180 _perf_event_disable(bp);
3181
3182 err = modify_user_hw_breakpoint_check(bp, attr, true);
32ff77e8 3183
bf06278c 3184 if (!bp->attr.disabled)
32ff77e8 3185 _perf_event_enable(bp);
bf06278c
JO
3186
3187 return err;
32ff77e8
MC
3188}
3189
3c25fc97
ME
3190/*
3191 * Copy event-type-independent attributes that may be modified.
3192 */
3193static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3194 const struct perf_event_attr *from)
3195{
3196 to->sig_data = from->sig_data;
3197}
3198
32ff77e8
MC
3199static int perf_event_modify_attr(struct perf_event *event,
3200 struct perf_event_attr *attr)
3201{
47f661ec
ME
3202 int (*func)(struct perf_event *, struct perf_event_attr *);
3203 struct perf_event *child;
3204 int err;
3205
32ff77e8
MC
3206 if (event->attr.type != attr->type)
3207 return -EINVAL;
3208
3209 switch (event->attr.type) {
3210 case PERF_TYPE_BREAKPOINT:
47f661ec
ME
3211 func = perf_event_modify_breakpoint;
3212 break;
32ff77e8
MC
3213 default:
3214 /* Place holder for future additions. */
3215 return -EOPNOTSUPP;
3216 }
47f661ec
ME
3217
3218 WARN_ON_ONCE(event->ctx->parent_ctx);
3219
3220 mutex_lock(&event->child_mutex);
3c25fc97
ME
3221 /*
3222 * Event-type-independent attributes must be copied before event-type
3223 * modification, which will validate that final attributes match the
3224 * source attributes after all relevant attributes have been copied.
3225 */
3226 perf_event_modify_copy_attr(&event->attr, attr);
47f661ec
ME
3227 err = func(event, attr);
3228 if (err)
3229 goto out;
3230 list_for_each_entry(child, &event->child_list, child_list) {
3c25fc97 3231 perf_event_modify_copy_attr(&child->attr, attr);
47f661ec
ME
3232 err = func(child, attr);
3233 if (err)
3234 goto out;
3235 }
3236out:
3237 mutex_unlock(&event->child_mutex);
3238 return err;
32ff77e8
MC
3239}
3240
bd275681
PZ
3241static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3242 enum event_type_t event_type)
235c7fc7 3243{
bd275681 3244 struct perf_event_context *ctx = pmu_ctx->ctx;
6668128a 3245 struct perf_event *event, *tmp;
bd275681
PZ
3246 struct pmu *pmu = pmu_ctx->pmu;
3247
3248 if (ctx->task && !ctx->is_active) {
3249 struct perf_cpu_pmu_context *cpc;
3250
3251 cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3252 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3253 cpc->task_epc = NULL;
3254 }
3255
3256 if (!event_type)
3257 return;
3258
3259 perf_pmu_disable(pmu);
3260 if (event_type & EVENT_PINNED) {
3261 list_for_each_entry_safe(event, tmp,
3262 &pmu_ctx->pinned_active,
3263 active_list)
3264 group_sched_out(event, ctx);
3265 }
3266
3267 if (event_type & EVENT_FLEXIBLE) {
3268 list_for_each_entry_safe(event, tmp,
3269 &pmu_ctx->flexible_active,
3270 active_list)
3271 group_sched_out(event, ctx);
3272 /*
3273 * Since we cleared EVENT_FLEXIBLE, also clear
3274 * rotate_necessary, is will be reset by
3275 * ctx_flexible_sched_in() when needed.
3276 */
3277 pmu_ctx->rotate_necessary = 0;
3278 }
3279 perf_pmu_enable(pmu);
3280}
3281
3282static void
3283ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type)
3284{
3285 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3286 struct perf_event_pmu_context *pmu_ctx;
db24d33e 3287 int is_active = ctx->is_active;
f06cc667
PZ
3288 bool cgroup = event_type & EVENT_CGROUP;
3289
3290 event_type &= ~EVENT_CGROUP;
235c7fc7 3291
c994d613 3292 lockdep_assert_held(&ctx->lock);
235c7fc7 3293
39a43640
PZ
3294 if (likely(!ctx->nr_events)) {
3295 /*
3296 * See __perf_remove_from_context().
3297 */
3298 WARN_ON_ONCE(ctx->is_active);
3299 if (ctx->task)
3300 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 3301 return;
39a43640
PZ
3302 }
3303
8fdc6539
PZ
3304 /*
3305 * Always update time if it was set; not only when it changes.
3306 * Otherwise we can 'forget' to update time for any but the last
3307 * context we sched out. For example:
3308 *
3309 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3310 * ctx_sched_out(.event_type = EVENT_PINNED)
3311 *
3312 * would only update time for the pinned events.
3313 */
3cbaa590
PZ
3314 if (is_active & EVENT_TIME) {
3315 /* update (and stop) ctx time */
3316 update_context_time(ctx);
09f5e7dc
PZ
3317 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3318 /*
3319 * CPU-release for the below ->is_active store,
3320 * see __load_acquire() in perf_event_time_now()
3321 */
3322 barrier();
3323 }
3324
3325 ctx->is_active &= ~event_type;
3326 if (!(ctx->is_active & EVENT_ALL))
3327 ctx->is_active = 0;
3328
3329 if (ctx->task) {
3330 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3331 if (!ctx->is_active)
3332 cpuctx->task_ctx = NULL;
3cbaa590
PZ
3333 }
3334
8fdc6539
PZ
3335 is_active ^= ctx->is_active; /* changed bits */
3336
f06cc667
PZ
3337 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3338 if (cgroup && !pmu_ctx->nr_cgroups)
3339 continue;
bd275681 3340 __pmu_ctx_sched_out(pmu_ctx, is_active);
f06cc667 3341 }
235c7fc7
IM
3342}
3343
564c2b21 3344/*
5a3126d4
PZ
3345 * Test whether two contexts are equivalent, i.e. whether they have both been
3346 * cloned from the same version of the same context.
3347 *
3348 * Equivalence is measured using a generation number in the context that is
3349 * incremented on each modification to it; see unclone_ctx(), list_add_event()
3350 * and list_del_event().
564c2b21 3351 */
cdd6c482
IM
3352static int context_equiv(struct perf_event_context *ctx1,
3353 struct perf_event_context *ctx2)
564c2b21 3354{
211de6eb
PZ
3355 lockdep_assert_held(&ctx1->lock);
3356 lockdep_assert_held(&ctx2->lock);
3357
5a3126d4
PZ
3358 /* Pinning disables the swap optimization */
3359 if (ctx1->pin_count || ctx2->pin_count)
3360 return 0;
3361
3362 /* If ctx1 is the parent of ctx2 */
3363 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3364 return 1;
3365
3366 /* If ctx2 is the parent of ctx1 */
3367 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3368 return 1;
3369
3370 /*
3371 * If ctx1 and ctx2 have the same parent; we flatten the parent
3372 * hierarchy, see perf_event_init_context().
3373 */
3374 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3375 ctx1->parent_gen == ctx2->parent_gen)
3376 return 1;
3377
3378 /* Unmatched */
3379 return 0;
564c2b21
PM
3380}
3381
cdd6c482
IM
3382static void __perf_event_sync_stat(struct perf_event *event,
3383 struct perf_event *next_event)
bfbd3381
PZ
3384{
3385 u64 value;
3386
cdd6c482 3387 if (!event->attr.inherit_stat)
bfbd3381
PZ
3388 return;
3389
3390 /*
cdd6c482 3391 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
3392 * because we're in the middle of a context switch and have IRQs
3393 * disabled, which upsets smp_call_function_single(), however
cdd6c482 3394 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
3395 * don't need to use it.
3396 */
0d3d73aa 3397 if (event->state == PERF_EVENT_STATE_ACTIVE)
3dbebf15 3398 event->pmu->read(event);
bfbd3381 3399
0d3d73aa 3400 perf_event_update_time(event);
bfbd3381
PZ
3401
3402 /*
cdd6c482 3403 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
3404 * values when we flip the contexts.
3405 */
e7850595
PZ
3406 value = local64_read(&next_event->count);
3407 value = local64_xchg(&event->count, value);
3408 local64_set(&next_event->count, value);
bfbd3381 3409
cdd6c482
IM
3410 swap(event->total_time_enabled, next_event->total_time_enabled);
3411 swap(event->total_time_running, next_event->total_time_running);
19d2e755 3412
bfbd3381 3413 /*
19d2e755 3414 * Since we swizzled the values, update the user visible data too.
bfbd3381 3415 */
cdd6c482
IM
3416 perf_event_update_userpage(event);
3417 perf_event_update_userpage(next_event);
bfbd3381
PZ
3418}
3419
cdd6c482
IM
3420static void perf_event_sync_stat(struct perf_event_context *ctx,
3421 struct perf_event_context *next_ctx)
bfbd3381 3422{
cdd6c482 3423 struct perf_event *event, *next_event;
bfbd3381
PZ
3424
3425 if (!ctx->nr_stat)
3426 return;
3427
02ffdbc8
PZ
3428 update_context_time(ctx);
3429
cdd6c482
IM
3430 event = list_first_entry(&ctx->event_list,
3431 struct perf_event, event_entry);
bfbd3381 3432
cdd6c482
IM
3433 next_event = list_first_entry(&next_ctx->event_list,
3434 struct perf_event, event_entry);
bfbd3381 3435
cdd6c482
IM
3436 while (&event->event_entry != &ctx->event_list &&
3437 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 3438
cdd6c482 3439 __perf_event_sync_stat(event, next_event);
bfbd3381 3440
cdd6c482
IM
3441 event = list_next_entry(event, event_entry);
3442 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
3443 }
3444}
3445
bd275681
PZ
3446#define double_list_for_each_entry(pos1, pos2, head1, head2, member) \
3447 for (pos1 = list_first_entry(head1, typeof(*pos1), member), \
3448 pos2 = list_first_entry(head2, typeof(*pos2), member); \
3449 !list_entry_is_head(pos1, head1, member) && \
3450 !list_entry_is_head(pos2, head2, member); \
3451 pos1 = list_next_entry(pos1, member), \
3452 pos2 = list_next_entry(pos2, member))
3453
3454static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3455 struct perf_event_context *next_ctx)
3456{
3457 struct perf_event_pmu_context *prev_epc, *next_epc;
3458
3459 if (!prev_ctx->nr_task_data)
3460 return;
3461
3462 double_list_for_each_entry(prev_epc, next_epc,
3463 &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3464 pmu_ctx_entry) {
3465
3466 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3467 continue;
3468
3469 /*
3470 * PMU specific parts of task perf context can require
3471 * additional synchronization. As an example of such
3472 * synchronization see implementation details of Intel
3473 * LBR call stack data profiling;
3474 */
3475 if (prev_epc->pmu->swap_task_ctx)
3476 prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3477 else
3478 swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3479 }
3480}
3481
3482static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3483{
3484 struct perf_event_pmu_context *pmu_ctx;
3485 struct perf_cpu_pmu_context *cpc;
3486
3487 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3488 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3489
3490 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3491 pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3492 }
3493}
3494
3495static void
3496perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
0793a61d 3497{
bd275681 3498 struct perf_event_context *ctx = task->perf_event_ctxp;
cdd6c482 3499 struct perf_event_context *next_ctx;
5a3126d4 3500 struct perf_event_context *parent, *next_parent;
c93f7669 3501 int do_switch = 1;
0793a61d 3502
108b02cf
PZ
3503 if (likely(!ctx))
3504 return;
10989fb2 3505
c93f7669 3506 rcu_read_lock();
bd275681 3507 next_ctx = rcu_dereference(next->perf_event_ctxp);
5a3126d4
PZ
3508 if (!next_ctx)
3509 goto unlock;
3510
3511 parent = rcu_dereference(ctx->parent_ctx);
3512 next_parent = rcu_dereference(next_ctx->parent_ctx);
3513
3514 /* If neither context have a parent context; they cannot be clones. */
802c8a61 3515 if (!parent && !next_parent)
5a3126d4
PZ
3516 goto unlock;
3517
3518 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
3519 /*
3520 * Looks like the two contexts are clones, so we might be
3521 * able to optimize the context switch. We lock both
3522 * contexts and check that they are clones under the
3523 * lock (including re-checking that neither has been
3524 * uncloned in the meantime). It doesn't matter which
3525 * order we take the locks because no other cpu could
3526 * be trying to lock both of these tasks.
3527 */
e625cce1
TG
3528 raw_spin_lock(&ctx->lock);
3529 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 3530 if (context_equiv(ctx, next_ctx)) {
c2b98a86 3531
f06cc667 3532 perf_ctx_disable(ctx, false);
ca6c2132
PZ
3533
3534 /* PMIs are disabled; ctx->nr_pending is stable. */
3535 if (local_read(&ctx->nr_pending) ||
3536 local_read(&next_ctx->nr_pending)) {
3537 /*
3538 * Must not swap out ctx when there's pending
3539 * events that rely on the ctx->task relation.
3540 */
3541 raw_spin_unlock(&next_ctx->lock);
3542 rcu_read_unlock();
3543 goto inside_switch;
3544 }
3545
63b6da39
PZ
3546 WRITE_ONCE(ctx->task, next);
3547 WRITE_ONCE(next_ctx->task, task);
5a158c3c 3548
bd275681
PZ
3549 perf_ctx_sched_task_cb(ctx, false);
3550 perf_event_swap_task_ctx_data(ctx, next_ctx);
5a158c3c 3551
f06cc667 3552 perf_ctx_enable(ctx, false);
44fae179 3553
63b6da39
PZ
3554 /*
3555 * RCU_INIT_POINTER here is safe because we've not
3556 * modified the ctx and the above modification of
3557 * ctx->task and ctx->task_ctx_data are immaterial
3558 * since those values are always verified under
3559 * ctx->lock which we're now holding.
3560 */
bd275681
PZ
3561 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3562 RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
63b6da39 3563
c93f7669 3564 do_switch = 0;
bfbd3381 3565
cdd6c482 3566 perf_event_sync_stat(ctx, next_ctx);
c93f7669 3567 }
e625cce1
TG
3568 raw_spin_unlock(&next_ctx->lock);
3569 raw_spin_unlock(&ctx->lock);
564c2b21 3570 }
5a3126d4 3571unlock:
c93f7669 3572 rcu_read_unlock();
564c2b21 3573
c93f7669 3574 if (do_switch) {
facc4307 3575 raw_spin_lock(&ctx->lock);
f06cc667 3576 perf_ctx_disable(ctx, false);
44fae179 3577
ca6c2132 3578inside_switch:
bd275681
PZ
3579 perf_ctx_sched_task_cb(ctx, false);
3580 task_ctx_sched_out(ctx, EVENT_ALL);
44fae179 3581
f06cc667 3582 perf_ctx_enable(ctx, false);
facc4307 3583 raw_spin_unlock(&ctx->lock);
c93f7669 3584 }
0793a61d
TG
3585}
3586
a5398bff 3587static DEFINE_PER_CPU(struct list_head, sched_cb_list);
bd275681 3588static DEFINE_PER_CPU(int, perf_sched_cb_usages);
a5398bff 3589
ba532500
YZ
3590void perf_sched_cb_dec(struct pmu *pmu)
3591{
bd275681 3592 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
e48c1788 3593
a5398bff 3594 this_cpu_dec(perf_sched_cb_usages);
bd275681 3595 barrier();
a5398bff 3596
bd275681
PZ
3597 if (!--cpc->sched_cb_usage)
3598 list_del(&cpc->sched_cb_entry);
ba532500
YZ
3599}
3600
e48c1788 3601
ba532500
YZ
3602void perf_sched_cb_inc(struct pmu *pmu)
3603{
bd275681 3604 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
e48c1788 3605
bd275681
PZ
3606 if (!cpc->sched_cb_usage++)
3607 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
a5398bff 3608
bd275681 3609 barrier();
a5398bff 3610 this_cpu_inc(perf_sched_cb_usages);
ba532500
YZ
3611}
3612
3613/*
3614 * This function provides the context switch callback to the lower code
3615 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
3616 *
3617 * This callback is relevant even to per-cpu events; for example multi event
3618 * PEBS requires this to provide PID/TID information. This requires we flush
3619 * all queued PEBS records before we context switch to a new task.
ba532500 3620 */
bd275681 3621static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
556cccad 3622{
bd275681 3623 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
556cccad
KL
3624 struct pmu *pmu;
3625
bd275681 3626 pmu = cpc->epc.pmu;
556cccad 3627
bd275681 3628 /* software PMUs will not have sched_task */
556cccad
KL
3629 if (WARN_ON_ONCE(!pmu->sched_task))
3630 return;
3631
3632 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3633 perf_pmu_disable(pmu);
3634
bd275681 3635 pmu->sched_task(cpc->task_epc, sched_in);
556cccad
KL
3636
3637 perf_pmu_enable(pmu);
3638 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3639}
3640
a5398bff
KL
3641static void perf_pmu_sched_task(struct task_struct *prev,
3642 struct task_struct *next,
3643 bool sched_in)
3644{
bd275681
PZ
3645 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3646 struct perf_cpu_pmu_context *cpc;
a5398bff 3647
bd275681
PZ
3648 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3649 if (prev == next || cpuctx->task_ctx)
a5398bff
KL
3650 return;
3651
bd275681
PZ
3652 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3653 __perf_pmu_sched_task(cpc, sched_in);
a5398bff
KL
3654}
3655
45ac1403
AH
3656static void perf_event_switch(struct task_struct *task,
3657 struct task_struct *next_prev, bool sched_in);
3658
8dc85d54
PZ
3659/*
3660 * Called from scheduler to remove the events of the current task,
3661 * with interrupts disabled.
3662 *
3663 * We stop each event and update the event value in event->count.
3664 *
3665 * This does not protect us against NMI, but disable()
3666 * sets the disabled bit in the control field of event _before_
3667 * accessing the event control register. If a NMI hits, then it will
3668 * not restart the event.
3669 */
ab0cce56
JO
3670void __perf_event_task_sched_out(struct task_struct *task,
3671 struct task_struct *next)
8dc85d54 3672{
a5398bff
KL
3673 if (__this_cpu_read(perf_sched_cb_usages))
3674 perf_pmu_sched_task(task, next, false);
3675
45ac1403
AH
3676 if (atomic_read(&nr_switch_events))
3677 perf_event_switch(task, next, false);
3678
bd275681 3679 perf_event_context_sched_out(task, next);
e5d1367f
SE
3680
3681 /*
3682 * if cgroup events exist on this CPU, then we need
3683 * to check if we have to switch out PMU state.
3684 * cgroup event are system-wide mode only
3685 */
f841b682 3686 perf_cgroup_switch(next);
8dc85d54
PZ
3687}
3688
6eef8a71 3689static bool perf_less_group_idx(const void *l, const void *r)
0793a61d 3690{
24fb6b8e
IR
3691 const struct perf_event *le = *(const struct perf_event **)l;
3692 const struct perf_event *re = *(const struct perf_event **)r;
6eef8a71
IR
3693
3694 return le->group_index < re->group_index;
3695}
3696
3697static void swap_ptr(void *l, void *r)
3698{
3699 void **lp = l, **rp = r;
3700
3701 swap(*lp, *rp);
3702}
3703
3704static const struct min_heap_callbacks perf_min_heap = {
3705 .elem_size = sizeof(struct perf_event *),
3706 .less = perf_less_group_idx,
3707 .swp = swap_ptr,
3708};
3709
3710static void __heap_add(struct min_heap *heap, struct perf_event *event)
3711{
3712 struct perf_event **itrs = heap->data;
3713
3714 if (event) {
3715 itrs[heap->nr] = event;
3716 heap->nr++;
3717 }
3718}
3719
bd275681
PZ
3720static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3721{
3722 struct perf_cpu_pmu_context *cpc;
3723
3724 if (!pmu_ctx->ctx->task)
3725 return;
3726
3727 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3728 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3729 cpc->task_epc = pmu_ctx;
3730}
3731
3732static noinline int visit_groups_merge(struct perf_event_context *ctx,
836196be 3733 struct perf_event_groups *groups, int cpu,
bd275681 3734 struct pmu *pmu,
6eef8a71
IR
3735 int (*func)(struct perf_event *, void *),
3736 void *data)
3737{
95ed6c70
IR
3738#ifdef CONFIG_CGROUP_PERF
3739 struct cgroup_subsys_state *css = NULL;
3740#endif
bd275681 3741 struct perf_cpu_context *cpuctx = NULL;
6eef8a71
IR
3742 /* Space for per CPU and/or any CPU event iterators. */
3743 struct perf_event *itrs[2];
836196be
IR
3744 struct min_heap event_heap;
3745 struct perf_event **evt;
1cac7b1a 3746 int ret;
8e1a2031 3747
bd275681
PZ
3748 if (pmu->filter && pmu->filter(pmu, cpu))
3749 return 0;
3750
3751 if (!ctx->task) {
3752 cpuctx = this_cpu_ptr(&perf_cpu_context);
836196be
IR
3753 event_heap = (struct min_heap){
3754 .data = cpuctx->heap,
3755 .nr = 0,
3756 .size = cpuctx->heap_size,
3757 };
c2283c93
IR
3758
3759 lockdep_assert_held(&cpuctx->ctx.lock);
95ed6c70
IR
3760
3761#ifdef CONFIG_CGROUP_PERF
3762 if (cpuctx->cgrp)
3763 css = &cpuctx->cgrp->css;
3764#endif
836196be
IR
3765 } else {
3766 event_heap = (struct min_heap){
3767 .data = itrs,
3768 .nr = 0,
3769 .size = ARRAY_SIZE(itrs),
3770 };
3771 /* Events not within a CPU context may be on any CPU. */
bd275681 3772 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
836196be
IR
3773 }
3774 evt = event_heap.data;
3775
bd275681 3776 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
95ed6c70
IR
3777
3778#ifdef CONFIG_CGROUP_PERF
3779 for (; css; css = css->parent)
bd275681 3780 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
95ed6c70 3781#endif
1cac7b1a 3782
bd275681
PZ
3783 if (event_heap.nr) {
3784 __link_epc((*evt)->pmu_ctx);
3785 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3786 }
3787
6eef8a71 3788 min_heapify_all(&event_heap, &perf_min_heap);
1cac7b1a 3789
6eef8a71 3790 while (event_heap.nr) {
1cac7b1a
PZ
3791 ret = func(*evt, data);
3792 if (ret)
3793 return ret;
3794
bd275681 3795 *evt = perf_event_groups_next(*evt, pmu);
6eef8a71
IR
3796 if (*evt)
3797 min_heapify(&event_heap, 0, &perf_min_heap);
3798 else
3799 min_heap_pop(&event_heap, &perf_min_heap);
8e1a2031 3800 }
0793a61d 3801
1cac7b1a
PZ
3802 return 0;
3803}
3804
09f5e7dc
PZ
3805/*
3806 * Because the userpage is strictly per-event (there is no concept of context,
3807 * so there cannot be a context indirection), every userpage must be updated
3808 * when context time starts :-(
3809 *
3810 * IOW, we must not miss EVENT_TIME edges.
3811 */
f7925653
SL
3812static inline bool event_update_userpage(struct perf_event *event)
3813{
3814 if (likely(!atomic_read(&event->mmap_count)))
3815 return false;
3816
3817 perf_event_update_time(event);
f7925653
SL
3818 perf_event_update_userpage(event);
3819
3820 return true;
3821}
3822
3823static inline void group_update_userpage(struct perf_event *group_event)
3824{
3825 struct perf_event *event;
3826
3827 if (!event_update_userpage(group_event))
3828 return;
3829
3830 for_each_sibling_event(event, group_event)
3831 event_update_userpage(event);
3832}
3833
ab6f824c 3834static int merge_sched_in(struct perf_event *event, void *data)
1cac7b1a 3835{
2c2366c7 3836 struct perf_event_context *ctx = event->ctx;
2c2366c7 3837 int *can_add_hw = data;
ab6f824c 3838
1cac7b1a
PZ
3839 if (event->state <= PERF_EVENT_STATE_OFF)
3840 return 0;
3841
3842 if (!event_filter_match(event))
3843 return 0;
3844
bd275681
PZ
3845 if (group_can_go_on(event, *can_add_hw)) {
3846 if (!group_sched_in(event, ctx))
ab6f824c 3847 list_add_tail(&event->active_list, get_event_list(event));
6668128a 3848 }
1cac7b1a 3849
ab6f824c 3850 if (event->state == PERF_EVENT_STATE_INACTIVE) {
f7925653 3851 *can_add_hw = 0;
33238c50
PZ
3852 if (event->attr.pinned) {
3853 perf_cgroup_event_disable(event, ctx);
ab6f824c 3854 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
f7925653 3855 } else {
bd275681
PZ
3856 struct perf_cpu_pmu_context *cpc;
3857
3858 event->pmu_ctx->rotate_necessary = 1;
3859 cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3860 perf_mux_hrtimer_restart(cpc);
f7925653 3861 group_update_userpage(event);
33238c50 3862 }
3b6f9e5c 3863 }
1cac7b1a
PZ
3864
3865 return 0;
5b0311e1
FW
3866}
3867
f06cc667
PZ
3868static void pmu_groups_sched_in(struct perf_event_context *ctx,
3869 struct perf_event_groups *groups,
3870 struct pmu *pmu)
5b0311e1 3871{
2c2366c7 3872 int can_add_hw = 1;
f06cc667
PZ
3873 visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3874 merge_sched_in, &can_add_hw);
1cac7b1a 3875}
8e1a2031 3876
f06cc667
PZ
3877static void ctx_groups_sched_in(struct perf_event_context *ctx,
3878 struct perf_event_groups *groups,
3879 bool cgroup)
1cac7b1a 3880{
bd275681 3881 struct perf_event_pmu_context *pmu_ctx;
0793a61d 3882
f06cc667
PZ
3883 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3884 if (cgroup && !pmu_ctx->nr_cgroups)
3885 continue;
3886 pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu);
bd275681
PZ
3887 }
3888}
836196be 3889
f06cc667
PZ
3890static void __pmu_ctx_sched_in(struct perf_event_context *ctx,
3891 struct pmu *pmu)
bd275681 3892{
f06cc667 3893 pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu);
5b0311e1
FW
3894}
3895
3896static void
bd275681 3897ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type)
5b0311e1 3898{
bd275681 3899 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
db24d33e 3900 int is_active = ctx->is_active;
f06cc667
PZ
3901 bool cgroup = event_type & EVENT_CGROUP;
3902
3903 event_type &= ~EVENT_CGROUP;
c994d613
PZ
3904
3905 lockdep_assert_held(&ctx->lock);
e5d1367f 3906
5b0311e1 3907 if (likely(!ctx->nr_events))
facc4307 3908 return;
5b0311e1 3909
baf1b12a 3910 if (!(is_active & EVENT_TIME)) {
09f5e7dc
PZ
3911 /* start ctx time */
3912 __update_context_time(ctx, false);
a0827713 3913 perf_cgroup_set_timestamp(cpuctx);
09f5e7dc
PZ
3914 /*
3915 * CPU-release for the below ->is_active store,
3916 * see __load_acquire() in perf_event_time_now()
3917 */
3918 barrier();
3919 }
3920
3cbaa590 3921 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3922 if (ctx->task) {
3923 if (!is_active)
3924 cpuctx->task_ctx = ctx;
3925 else
3926 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3927 }
3928
3cbaa590
PZ
3929 is_active ^= ctx->is_active; /* changed bits */
3930
5b0311e1
FW
3931 /*
3932 * First go through the list and put on any pinned groups
3933 * in order to give them the best chance of going on.
3934 */
3cbaa590 3935 if (is_active & EVENT_PINNED)
f06cc667 3936 ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup);
5b0311e1
FW
3937
3938 /* Then walk through the lower prio flexible groups */
3cbaa590 3939 if (is_active & EVENT_FLEXIBLE)
f06cc667 3940 ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup);
235c7fc7
IM
3941}
3942
bd275681 3943static void perf_event_context_sched_in(struct task_struct *task)
329c0e01 3944{
bd275681
PZ
3945 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3946 struct perf_event_context *ctx;
329c0e01 3947
bd275681
PZ
3948 rcu_read_lock();
3949 ctx = rcu_dereference(task->perf_event_ctxp);
3950 if (!ctx)
3951 goto rcu_unlock;
235c7fc7 3952
bd275681
PZ
3953 if (cpuctx->task_ctx == ctx) {
3954 perf_ctx_lock(cpuctx, ctx);
f06cc667 3955 perf_ctx_disable(ctx, false);
012669c7 3956
bd275681 3957 perf_ctx_sched_task_cb(ctx, true);
012669c7 3958
f06cc667 3959 perf_ctx_enable(ctx, false);
bd275681
PZ
3960 perf_ctx_unlock(cpuctx, ctx);
3961 goto rcu_unlock;
556cccad 3962 }
329c0e01 3963
facc4307 3964 perf_ctx_lock(cpuctx, ctx);
fdccc3fb 3965 /*
3966 * We must check ctx->nr_events while holding ctx->lock, such
3967 * that we serialize against perf_install_in_context().
3968 */
3969 if (!ctx->nr_events)
3970 goto unlock;
3971
f06cc667 3972 perf_ctx_disable(ctx, false);
329c0e01
FW
3973 /*
3974 * We want to keep the following priority order:
3975 * cpu pinned (that don't need to move), task pinned,
3976 * cpu flexible, task flexible.
fe45bafb
AS
3977 *
3978 * However, if task's ctx is not carrying any pinned
3979 * events, no need to flip the cpuctx's events around.
329c0e01 3980 */
bd275681 3981 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
f06cc667 3982 perf_ctx_disable(&cpuctx->ctx, false);
bd275681
PZ
3983 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
3984 }
3985
a0827713 3986 perf_event_sched_in(cpuctx, ctx);
556cccad 3987
bd275681 3988 perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
556cccad 3989
bd275681 3990 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
f06cc667 3991 perf_ctx_enable(&cpuctx->ctx, false);
bd275681 3992
f06cc667 3993 perf_ctx_enable(ctx, false);
fdccc3fb 3994
3995unlock:
facc4307 3996 perf_ctx_unlock(cpuctx, ctx);
bd275681
PZ
3997rcu_unlock:
3998 rcu_read_unlock();
235c7fc7
IM
3999}
4000
8dc85d54
PZ
4001/*
4002 * Called from scheduler to add the events of the current task
4003 * with interrupts disabled.
4004 *
4005 * We restore the event value and then enable it.
4006 *
4007 * This does not protect us against NMI, but enable()
4008 * sets the enabled bit in the control field of event _before_
4009 * accessing the event control register. If a NMI hits, then it will
4010 * keep the event running.
4011 */
ab0cce56
JO
4012void __perf_event_task_sched_in(struct task_struct *prev,
4013 struct task_struct *task)
8dc85d54 4014{
bd275681 4015 perf_event_context_sched_in(task);
d010b332 4016
45ac1403
AH
4017 if (atomic_read(&nr_switch_events))
4018 perf_event_switch(task, prev, true);
a5398bff
KL
4019
4020 if (__this_cpu_read(perf_sched_cb_usages))
4021 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
4022}
4023
abd50713
PZ
4024static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4025{
4026 u64 frequency = event->attr.sample_freq;
4027 u64 sec = NSEC_PER_SEC;
4028 u64 divisor, dividend;
4029
4030 int count_fls, nsec_fls, frequency_fls, sec_fls;
4031
4032 count_fls = fls64(count);
4033 nsec_fls = fls64(nsec);
4034 frequency_fls = fls64(frequency);
4035 sec_fls = 30;
4036
4037 /*
4038 * We got @count in @nsec, with a target of sample_freq HZ
4039 * the target period becomes:
4040 *
4041 * @count * 10^9
4042 * period = -------------------
4043 * @nsec * sample_freq
4044 *
4045 */
4046
4047 /*
4048 * Reduce accuracy by one bit such that @a and @b converge
4049 * to a similar magnitude.
4050 */
fe4b04fa 4051#define REDUCE_FLS(a, b) \
abd50713
PZ
4052do { \
4053 if (a##_fls > b##_fls) { \
4054 a >>= 1; \
4055 a##_fls--; \
4056 } else { \
4057 b >>= 1; \
4058 b##_fls--; \
4059 } \
4060} while (0)
4061
4062 /*
4063 * Reduce accuracy until either term fits in a u64, then proceed with
4064 * the other, so that finally we can do a u64/u64 division.
4065 */
4066 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4067 REDUCE_FLS(nsec, frequency);
4068 REDUCE_FLS(sec, count);
4069 }
4070
4071 if (count_fls + sec_fls > 64) {
4072 divisor = nsec * frequency;
4073
4074 while (count_fls + sec_fls > 64) {
4075 REDUCE_FLS(count, sec);
4076 divisor >>= 1;
4077 }
4078
4079 dividend = count * sec;
4080 } else {
4081 dividend = count * sec;
4082
4083 while (nsec_fls + frequency_fls > 64) {
4084 REDUCE_FLS(nsec, frequency);
4085 dividend >>= 1;
4086 }
4087
4088 divisor = nsec * frequency;
4089 }
4090
f6ab91ad
PZ
4091 if (!divisor)
4092 return dividend;
4093
abd50713
PZ
4094 return div64_u64(dividend, divisor);
4095}
4096
e050e3f0
SE
4097static DEFINE_PER_CPU(int, perf_throttled_count);
4098static DEFINE_PER_CPU(u64, perf_throttled_seq);
4099
f39d47ff 4100static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 4101{
cdd6c482 4102 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 4103 s64 period, sample_period;
bd2b5b12
PZ
4104 s64 delta;
4105
abd50713 4106 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
4107
4108 delta = (s64)(period - hwc->sample_period);
4109 delta = (delta + 7) / 8; /* low pass filter */
4110
4111 sample_period = hwc->sample_period + delta;
4112
4113 if (!sample_period)
4114 sample_period = 1;
4115
bd2b5b12 4116 hwc->sample_period = sample_period;
abd50713 4117
e7850595 4118 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
4119 if (disable)
4120 event->pmu->stop(event, PERF_EF_UPDATE);
4121
e7850595 4122 local64_set(&hwc->period_left, 0);
f39d47ff
SE
4123
4124 if (disable)
4125 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 4126 }
bd2b5b12
PZ
4127}
4128
0259bf63 4129static void perf_adjust_freq_unthr_events(struct list_head *event_list)
60db5e09 4130{
cdd6c482
IM
4131 struct perf_event *event;
4132 struct hw_perf_event *hwc;
e050e3f0 4133 u64 now, period = TICK_NSEC;
abd50713 4134 s64 delta;
60db5e09 4135
0259bf63 4136 list_for_each_entry(event, event_list, active_list) {
cdd6c482 4137 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
4138 continue;
4139
bd275681 4140 // XXX use visit thingy to avoid the -1,cpu match
5632ab12 4141 if (!event_filter_match(event))
5d27c23d
PZ
4142 continue;
4143
cdd6c482 4144 hwc = &event->hw;
6a24ed6c 4145
ae23bff1 4146 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 4147 hwc->interrupts = 0;
cdd6c482 4148 perf_log_throttle(event, 1);
f38628b0
NK
4149 if (!event->attr.freq || !event->attr.sample_freq)
4150 event->pmu->start(event, 0);
a78ac325
PZ
4151 }
4152
cdd6c482 4153 if (!event->attr.freq || !event->attr.sample_freq)
0259bf63 4154 continue;
60db5e09 4155
e050e3f0
SE
4156 /*
4157 * stop the event and update event->count
4158 */
4159 event->pmu->stop(event, PERF_EF_UPDATE);
4160
e7850595 4161 now = local64_read(&event->count);
abd50713
PZ
4162 delta = now - hwc->freq_count_stamp;
4163 hwc->freq_count_stamp = now;
60db5e09 4164
e050e3f0
SE
4165 /*
4166 * restart the event
4167 * reload only if value has changed
f39d47ff
SE
4168 * we have stopped the event so tell that
4169 * to perf_adjust_period() to avoid stopping it
4170 * twice.
e050e3f0 4171 */
abd50713 4172 if (delta > 0)
f39d47ff 4173 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
4174
4175 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
0259bf63
NK
4176 }
4177}
4178
4179/*
4180 * combine freq adjustment with unthrottling to avoid two passes over the
4181 * events. At the same time, make sure, having freq events does not change
4182 * the rate of unthrottling as that would introduce bias.
4183 */
4184static void
4185perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4186{
4187 struct perf_event_pmu_context *pmu_ctx;
4188
4189 /*
4190 * only need to iterate over all events iff:
4191 * - context have events in frequency mode (needs freq adjust)
4192 * - there are events to unthrottle on this cpu
4193 */
4194 if (!(ctx->nr_freq || unthrottle))
4195 return;
4196
4197 raw_spin_lock(&ctx->lock);
4198
4199 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4200 if (!(pmu_ctx->nr_freq || unthrottle))
4201 continue;
4202 if (!perf_pmu_ctx_is_active(pmu_ctx))
4203 continue;
4204 if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT)
4205 continue;
4206
4207 perf_pmu_disable(pmu_ctx->pmu);
4208 perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active);
4209 perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active);
4210 perf_pmu_enable(pmu_ctx->pmu);
60db5e09 4211 }
e050e3f0
SE
4212
4213 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
4214}
4215
235c7fc7 4216/*
8703a7cf 4217 * Move @event to the tail of the @ctx's elegible events.
235c7fc7 4218 */
8703a7cf 4219static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
0793a61d 4220{
dddd3379
TG
4221 /*
4222 * Rotate the first entry last of non-pinned groups. Rotation might be
4223 * disabled by the inheritance code.
4224 */
8703a7cf
PZ
4225 if (ctx->rotate_disable)
4226 return;
8e1a2031 4227
8703a7cf
PZ
4228 perf_event_groups_delete(&ctx->flexible_groups, event);
4229 perf_event_groups_insert(&ctx->flexible_groups, event);
235c7fc7
IM
4230}
4231
7fa343b7 4232/* pick an event from the flexible_groups to rotate */
8d5bce0c 4233static inline struct perf_event *
bd275681 4234ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
235c7fc7 4235{
7fa343b7 4236 struct perf_event *event;
bd275681
PZ
4237 struct rb_node *node;
4238 struct rb_root *tree;
4239 struct __group_key key = {
4240 .pmu = pmu_ctx->pmu,
4241 };
7fa343b7
SL
4242
4243 /* pick the first active flexible event */
bd275681 4244 event = list_first_entry_or_null(&pmu_ctx->flexible_active,
7fa343b7 4245 struct perf_event, active_list);
bd275681
PZ
4246 if (event)
4247 goto out;
7fa343b7
SL
4248
4249 /* if no active flexible event, pick the first event */
bd275681 4250 tree = &pmu_ctx->ctx->flexible_groups.tree;
7fa343b7 4251
bd275681
PZ
4252 if (!pmu_ctx->ctx->task) {
4253 key.cpu = smp_processor_id();
4254
4255 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4256 if (node)
4257 event = __node_2_pe(node);
4258 goto out;
7fa343b7
SL
4259 }
4260
bd275681
PZ
4261 key.cpu = -1;
4262 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4263 if (node) {
4264 event = __node_2_pe(node);
4265 goto out;
4266 }
4267
4268 key.cpu = smp_processor_id();
4269 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4270 if (node)
4271 event = __node_2_pe(node);
4272
4273out:
90c91dfb
PZ
4274 /*
4275 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4276 * finds there are unschedulable events, it will set it again.
4277 */
bd275681 4278 pmu_ctx->rotate_necessary = 0;
90c91dfb 4279
7fa343b7 4280 return event;
8d5bce0c
PZ
4281}
4282
bd275681 4283static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
8d5bce0c 4284{
bd275681
PZ
4285 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4286 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
8d5bce0c 4287 struct perf_event *cpu_event = NULL, *task_event = NULL;
fd7d5517 4288 int cpu_rotate, task_rotate;
bd275681 4289 struct pmu *pmu;
8d5bce0c
PZ
4290
4291 /*
4292 * Since we run this from IRQ context, nobody can install new
4293 * events, thus the event count values are stable.
4294 */
7fc23a53 4295
bd275681
PZ
4296 cpu_epc = &cpc->epc;
4297 pmu = cpu_epc->pmu;
4298 task_epc = cpc->task_epc;
4299
4300 cpu_rotate = cpu_epc->rotate_necessary;
bd275681 4301 task_rotate = task_epc ? task_epc->rotate_necessary : 0;
9717e6cd 4302
8d5bce0c
PZ
4303 if (!(cpu_rotate || task_rotate))
4304 return false;
0f5a2601 4305
facc4307 4306 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
bd275681 4307 perf_pmu_disable(pmu);
60db5e09 4308
8d5bce0c 4309 if (task_rotate)
bd275681 4310 task_event = ctx_event_to_rotate(task_epc);
8d5bce0c 4311 if (cpu_rotate)
bd275681 4312 cpu_event = ctx_event_to_rotate(cpu_epc);
8703a7cf 4313
8d5bce0c
PZ
4314 /*
4315 * As per the order given at ctx_resched() first 'pop' task flexible
4316 * and then, if needed CPU flexible.
4317 */
bd275681
PZ
4318 if (task_event || (task_epc && cpu_event)) {
4319 update_context_time(task_epc->ctx);
4320 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4321 }
0793a61d 4322
bd275681
PZ
4323 if (cpu_event) {
4324 update_context_time(&cpuctx->ctx);
4325 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
8d5bce0c 4326 rotate_ctx(&cpuctx->ctx, cpu_event);
bd275681
PZ
4327 __pmu_ctx_sched_in(&cpuctx->ctx, pmu);
4328 }
235c7fc7 4329
bd275681
PZ
4330 if (task_event)
4331 rotate_ctx(task_epc->ctx, task_event);
235c7fc7 4332
bd275681
PZ
4333 if (task_event || (task_epc && cpu_event))
4334 __pmu_ctx_sched_in(task_epc->ctx, pmu);
235c7fc7 4335
bd275681 4336 perf_pmu_enable(pmu);
0f5a2601 4337 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
9e630205 4338
8d5bce0c 4339 return true;
e9d2b064
PZ
4340}
4341
4342void perf_event_task_tick(void)
4343{
bd275681
PZ
4344 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4345 struct perf_event_context *ctx;
e050e3f0 4346 int throttled;
b5ab4cd5 4347
16444645 4348 lockdep_assert_irqs_disabled();
e9d2b064 4349
e050e3f0
SE
4350 __this_cpu_inc(perf_throttled_seq);
4351 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 4352 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 4353
bd275681
PZ
4354 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4355
4356 rcu_read_lock();
4357 ctx = rcu_dereference(current->perf_event_ctxp);
4358 if (ctx)
4359 perf_adjust_freq_unthr_context(ctx, !!throttled);
4360 rcu_read_unlock();
0793a61d
TG
4361}
4362
889ff015
FW
4363static int event_enable_on_exec(struct perf_event *event,
4364 struct perf_event_context *ctx)
4365{
4366 if (!event->attr.enable_on_exec)
4367 return 0;
4368
4369 event->attr.enable_on_exec = 0;
4370 if (event->state >= PERF_EVENT_STATE_INACTIVE)
4371 return 0;
4372
0d3d73aa 4373 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
889ff015
FW
4374
4375 return 1;
4376}
4377
57e7986e 4378/*
cdd6c482 4379 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
4380 * This expects task == current.
4381 */
bd275681 4382static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 4383{
bd275681 4384 struct perf_event_context *clone_ctx = NULL;
487f05e1 4385 enum event_type_t event_type = 0;
3e349507 4386 struct perf_cpu_context *cpuctx;
cdd6c482 4387 struct perf_event *event;
57e7986e
PM
4388 unsigned long flags;
4389 int enabled = 0;
4390
4391 local_irq_save(flags);
bd275681
PZ
4392 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4393 goto out;
4394
4395 if (!ctx->nr_events)
57e7986e
PM
4396 goto out;
4397
bd275681 4398 cpuctx = this_cpu_ptr(&perf_cpu_context);
3e349507 4399 perf_ctx_lock(cpuctx, ctx);
bd275681
PZ
4400 ctx_sched_out(ctx, EVENT_TIME);
4401
487f05e1 4402 list_for_each_entry(event, &ctx->event_list, event_entry) {
3e349507 4403 enabled |= event_enable_on_exec(event, ctx);
487f05e1
AS
4404 event_type |= get_event_type(event);
4405 }
57e7986e
PM
4406
4407 /*
3e349507 4408 * Unclone and reschedule this context if we enabled any event.
57e7986e 4409 */
3e349507 4410 if (enabled) {
211de6eb 4411 clone_ctx = unclone_ctx(ctx);
487f05e1 4412 ctx_resched(cpuctx, ctx, event_type);
7bbba0eb 4413 } else {
bd275681 4414 ctx_sched_in(ctx, EVENT_TIME);
3e349507
PZ
4415 }
4416 perf_ctx_unlock(cpuctx, ctx);
57e7986e 4417
9ed6060d 4418out:
57e7986e 4419 local_irq_restore(flags);
211de6eb
PZ
4420
4421 if (clone_ctx)
4422 put_ctx(clone_ctx);
57e7986e
PM
4423}
4424
2e498d0a
ME
4425static void perf_remove_from_owner(struct perf_event *event);
4426static void perf_event_exit_event(struct perf_event *event,
4427 struct perf_event_context *ctx);
4428
4429/*
4430 * Removes all events from the current task that have been marked
4431 * remove-on-exec, and feeds their values back to parent events.
4432 */
bd275681 4433static void perf_event_remove_on_exec(struct perf_event_context *ctx)
2e498d0a 4434{
bd275681 4435 struct perf_event_context *clone_ctx = NULL;
2e498d0a 4436 struct perf_event *event, *next;
2e498d0a
ME
4437 unsigned long flags;
4438 bool modified = false;
4439
2e498d0a
ME
4440 mutex_lock(&ctx->mutex);
4441
4442 if (WARN_ON_ONCE(ctx->task != current))
4443 goto unlock;
4444
4445 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4446 if (!event->attr.remove_on_exec)
4447 continue;
4448
4449 if (!is_kernel_event(event))
4450 perf_remove_from_owner(event);
4451
4452 modified = true;
4453
4454 perf_event_exit_event(event, ctx);
4455 }
4456
4457 raw_spin_lock_irqsave(&ctx->lock, flags);
4458 if (modified)
4459 clone_ctx = unclone_ctx(ctx);
2e498d0a
ME
4460 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4461
4462unlock:
4463 mutex_unlock(&ctx->mutex);
4464
2e498d0a
ME
4465 if (clone_ctx)
4466 put_ctx(clone_ctx);
4467}
4468
0492d4c5
PZ
4469struct perf_read_data {
4470 struct perf_event *event;
4471 bool group;
7d88962e 4472 int ret;
0492d4c5
PZ
4473};
4474
451d24d1 4475static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
d6a2f903 4476{
d6a2f903
DCC
4477 u16 local_pkg, event_pkg;
4478
1765bb61
TK
4479 if ((unsigned)event_cpu >= nr_cpu_ids)
4480 return event_cpu;
4481
d6a2f903 4482 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
451d24d1
PZ
4483 int local_cpu = smp_processor_id();
4484
4485 event_pkg = topology_physical_package_id(event_cpu);
4486 local_pkg = topology_physical_package_id(local_cpu);
d6a2f903
DCC
4487
4488 if (event_pkg == local_pkg)
4489 return local_cpu;
4490 }
4491
4492 return event_cpu;
4493}
4494
0793a61d 4495/*
cdd6c482 4496 * Cross CPU call to read the hardware event
0793a61d 4497 */
cdd6c482 4498static void __perf_event_read(void *info)
0793a61d 4499{
0492d4c5
PZ
4500 struct perf_read_data *data = info;
4501 struct perf_event *sub, *event = data->event;
cdd6c482 4502 struct perf_event_context *ctx = event->ctx;
bd275681 4503 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4a00c16e 4504 struct pmu *pmu = event->pmu;
621a01ea 4505
e1ac3614
PM
4506 /*
4507 * If this is a task context, we need to check whether it is
4508 * the current task context of this cpu. If not it has been
4509 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
4510 * event->count would have been updated to a recent sample
4511 * when the event was scheduled out.
e1ac3614
PM
4512 */
4513 if (ctx->task && cpuctx->task_ctx != ctx)
4514 return;
4515
e625cce1 4516 raw_spin_lock(&ctx->lock);
0c1cbc18 4517 if (ctx->is_active & EVENT_TIME) {
542e72fc 4518 update_context_time(ctx);
e5d1367f
SE
4519 update_cgrp_time_from_event(event);
4520 }
0492d4c5 4521
0d3d73aa
PZ
4522 perf_event_update_time(event);
4523 if (data->group)
4524 perf_event_update_sibling_time(event);
0c1cbc18 4525
4a00c16e
SB
4526 if (event->state != PERF_EVENT_STATE_ACTIVE)
4527 goto unlock;
0492d4c5 4528
4a00c16e
SB
4529 if (!data->group) {
4530 pmu->read(event);
4531 data->ret = 0;
0492d4c5 4532 goto unlock;
4a00c16e
SB
4533 }
4534
4535 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4536
4537 pmu->read(event);
0492d4c5 4538
edb39592 4539 for_each_sibling_event(sub, event) {
4a00c16e
SB
4540 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4541 /*
4542 * Use sibling's PMU rather than @event's since
4543 * sibling could be on different (eg: software) PMU.
4544 */
0492d4c5 4545 sub->pmu->read(sub);
4a00c16e 4546 }
0492d4c5 4547 }
4a00c16e
SB
4548
4549 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
4550
4551unlock:
e625cce1 4552 raw_spin_unlock(&ctx->lock);
0793a61d
TG
4553}
4554
b5e58793
PZ
4555static inline u64 perf_event_count(struct perf_event *event)
4556{
c39a0e2c 4557 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
4558}
4559
09f5e7dc
PZ
4560static void calc_timer_values(struct perf_event *event,
4561 u64 *now,
4562 u64 *enabled,
4563 u64 *running)
4564{
4565 u64 ctx_time;
4566
4567 *now = perf_clock();
4568 ctx_time = perf_event_time_now(event, *now);
4569 __perf_update_times(event, ctx_time, enabled, running);
4570}
4571
ffe8690c
KX
4572/*
4573 * NMI-safe method to read a local event, that is an event that
4574 * is:
4575 * - either for the current task, or for this CPU
4576 * - does not have inherit set, for inherited task events
4577 * will not be local and we cannot read them atomically
4578 * - must not have a pmu::count method
4579 */
7d9285e8
YS
4580int perf_event_read_local(struct perf_event *event, u64 *value,
4581 u64 *enabled, u64 *running)
ffe8690c
KX
4582{
4583 unsigned long flags;
1765bb61
TK
4584 int event_oncpu;
4585 int event_cpu;
f91840a3 4586 int ret = 0;
ffe8690c
KX
4587
4588 /*
4589 * Disabling interrupts avoids all counter scheduling (context
4590 * switches, timer based rotation and IPIs).
4591 */
4592 local_irq_save(flags);
4593
ffe8690c
KX
4594 /*
4595 * It must not be an event with inherit set, we cannot read
4596 * all child counters from atomic context.
4597 */
f91840a3
AS
4598 if (event->attr.inherit) {
4599 ret = -EOPNOTSUPP;
4600 goto out;
4601 }
ffe8690c 4602
f91840a3
AS
4603 /* If this is a per-task event, it must be for current */
4604 if ((event->attach_state & PERF_ATTACH_TASK) &&
4605 event->hw.target != current) {
4606 ret = -EINVAL;
4607 goto out;
4608 }
4609
1765bb61
TK
4610 /*
4611 * Get the event CPU numbers, and adjust them to local if the event is
4612 * a per-package event that can be read locally
4613 */
4614 event_oncpu = __perf_event_read_cpu(event, event->oncpu);
4615 event_cpu = __perf_event_read_cpu(event, event->cpu);
4616
f91840a3
AS
4617 /* If this is a per-CPU event, it must be for this CPU */
4618 if (!(event->attach_state & PERF_ATTACH_TASK) &&
1765bb61 4619 event_cpu != smp_processor_id()) {
f91840a3
AS
4620 ret = -EINVAL;
4621 goto out;
4622 }
ffe8690c 4623
befb1b3c 4624 /* If this is a pinned event it must be running on this CPU */
1765bb61 4625 if (event->attr.pinned && event_oncpu != smp_processor_id()) {
befb1b3c
RC
4626 ret = -EBUSY;
4627 goto out;
4628 }
4629
ffe8690c
KX
4630 /*
4631 * If the event is currently on this CPU, its either a per-task event,
4632 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4633 * oncpu == -1).
4634 */
1765bb61 4635 if (event_oncpu == smp_processor_id())
ffe8690c
KX
4636 event->pmu->read(event);
4637
f91840a3 4638 *value = local64_read(&event->count);
0d3d73aa 4639 if (enabled || running) {
99643bab 4640 u64 __enabled, __running, __now;
0d3d73aa 4641
09f5e7dc 4642 calc_timer_values(event, &__now, &__enabled, &__running);
0d3d73aa
PZ
4643 if (enabled)
4644 *enabled = __enabled;
4645 if (running)
4646 *running = __running;
4647 }
f91840a3 4648out:
ffe8690c
KX
4649 local_irq_restore(flags);
4650
f91840a3 4651 return ret;
ffe8690c
KX
4652}
4653
7d88962e 4654static int perf_event_read(struct perf_event *event, bool group)
0793a61d 4655{
0c1cbc18 4656 enum perf_event_state state = READ_ONCE(event->state);
451d24d1 4657 int event_cpu, ret = 0;
7d88962e 4658
0793a61d 4659 /*
cdd6c482
IM
4660 * If event is enabled and currently active on a CPU, update the
4661 * value in the event structure:
0793a61d 4662 */
0c1cbc18
PZ
4663again:
4664 if (state == PERF_EVENT_STATE_ACTIVE) {
4665 struct perf_read_data data;
4666
4667 /*
4668 * Orders the ->state and ->oncpu loads such that if we see
4669 * ACTIVE we must also see the right ->oncpu.
4670 *
4671 * Matches the smp_wmb() from event_sched_in().
4672 */
4673 smp_rmb();
d6a2f903 4674
451d24d1
PZ
4675 event_cpu = READ_ONCE(event->oncpu);
4676 if ((unsigned)event_cpu >= nr_cpu_ids)
4677 return 0;
4678
0c1cbc18
PZ
4679 data = (struct perf_read_data){
4680 .event = event,
4681 .group = group,
4682 .ret = 0,
4683 };
4684
451d24d1
PZ
4685 preempt_disable();
4686 event_cpu = __perf_event_read_cpu(event, event_cpu);
d6a2f903 4687
58763148
PZ
4688 /*
4689 * Purposely ignore the smp_call_function_single() return
4690 * value.
4691 *
451d24d1 4692 * If event_cpu isn't a valid CPU it means the event got
58763148
PZ
4693 * scheduled out and that will have updated the event count.
4694 *
4695 * Therefore, either way, we'll have an up-to-date event count
4696 * after this.
4697 */
451d24d1
PZ
4698 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4699 preempt_enable();
58763148 4700 ret = data.ret;
0c1cbc18
PZ
4701
4702 } else if (state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
4703 struct perf_event_context *ctx = event->ctx;
4704 unsigned long flags;
4705
e625cce1 4706 raw_spin_lock_irqsave(&ctx->lock, flags);
0c1cbc18
PZ
4707 state = event->state;
4708 if (state != PERF_EVENT_STATE_INACTIVE) {
4709 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4710 goto again;
4711 }
4712
c530ccd9 4713 /*
0c1cbc18
PZ
4714 * May read while context is not active (e.g., thread is
4715 * blocked), in that case we cannot update context time
c530ccd9 4716 */
0c1cbc18 4717 if (ctx->is_active & EVENT_TIME) {
c530ccd9 4718 update_context_time(ctx);
e5d1367f
SE
4719 update_cgrp_time_from_event(event);
4720 }
0c1cbc18 4721
0d3d73aa 4722 perf_event_update_time(event);
0492d4c5 4723 if (group)
0d3d73aa 4724 perf_event_update_sibling_time(event);
e625cce1 4725 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 4726 }
7d88962e
SB
4727
4728 return ret;
0793a61d
TG
4729}
4730
a63eaf34 4731/*
cdd6c482 4732 * Initialize the perf_event context in a task_struct:
a63eaf34 4733 */
eb184479 4734static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 4735{
e625cce1 4736 raw_spin_lock_init(&ctx->lock);
a63eaf34 4737 mutex_init(&ctx->mutex);
bd275681 4738 INIT_LIST_HEAD(&ctx->pmu_ctx_list);
8e1a2031
AB
4739 perf_event_groups_init(&ctx->pinned_groups);
4740 perf_event_groups_init(&ctx->flexible_groups);
a63eaf34 4741 INIT_LIST_HEAD(&ctx->event_list);
8c94abbb 4742 refcount_set(&ctx->refcount, 1);
eb184479
PZ
4743}
4744
bd275681
PZ
4745static void
4746__perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4747{
4748 epc->pmu = pmu;
4749 INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4750 INIT_LIST_HEAD(&epc->pinned_active);
4751 INIT_LIST_HEAD(&epc->flexible_active);
4752 atomic_set(&epc->refcount, 1);
4753}
4754
eb184479 4755static struct perf_event_context *
bd275681 4756alloc_perf_context(struct task_struct *task)
eb184479
PZ
4757{
4758 struct perf_event_context *ctx;
4759
4760 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4761 if (!ctx)
4762 return NULL;
4763
4764 __perf_event_init_context(ctx);
7b3c92b8
MWO
4765 if (task)
4766 ctx->task = get_task_struct(task);
eb184479
PZ
4767
4768 return ctx;
a63eaf34
PM
4769}
4770
2ebd4ffb
MH
4771static struct task_struct *
4772find_lively_task_by_vpid(pid_t vpid)
4773{
4774 struct task_struct *task;
0793a61d
TG
4775
4776 rcu_read_lock();
2ebd4ffb 4777 if (!vpid)
0793a61d
TG
4778 task = current;
4779 else
2ebd4ffb 4780 task = find_task_by_vpid(vpid);
0793a61d
TG
4781 if (task)
4782 get_task_struct(task);
4783 rcu_read_unlock();
4784
4785 if (!task)
4786 return ERR_PTR(-ESRCH);
4787
2ebd4ffb 4788 return task;
2ebd4ffb
MH
4789}
4790
fe4b04fa
PZ
4791/*
4792 * Returns a matching context with refcount and pincount.
4793 */
108b02cf 4794static struct perf_event_context *
bd275681 4795find_get_context(struct task_struct *task, struct perf_event *event)
0793a61d 4796{
211de6eb 4797 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 4798 struct perf_cpu_context *cpuctx;
25346b93 4799 unsigned long flags;
bd275681 4800 int err;
0793a61d 4801
22a4ec72 4802 if (!task) {
cdd6c482 4803 /* Must be root to operate on a CPU event: */
da97e184
JFG
4804 err = perf_allow_cpu(&event->attr);
4805 if (err)
4806 return ERR_PTR(err);
0793a61d 4807
bd275681 4808 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
0793a61d 4809 ctx = &cpuctx->ctx;
c93f7669 4810 get_ctx(ctx);
6c605f83 4811 raw_spin_lock_irqsave(&ctx->lock, flags);
fe4b04fa 4812 ++ctx->pin_count;
6c605f83 4813 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 4814
0793a61d
TG
4815 return ctx;
4816 }
4817
8dc85d54 4818 err = -EINVAL;
9ed6060d 4819retry:
bd275681 4820 ctx = perf_lock_task_context(task, &flags);
c93f7669 4821 if (ctx) {
211de6eb 4822 clone_ctx = unclone_ctx(ctx);
fe4b04fa 4823 ++ctx->pin_count;
4af57ef2 4824
e625cce1 4825 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
4826
4827 if (clone_ctx)
4828 put_ctx(clone_ctx);
9137fb28 4829 } else {
bd275681 4830 ctx = alloc_perf_context(task);
c93f7669
PM
4831 err = -ENOMEM;
4832 if (!ctx)
4833 goto errout;
eb184479 4834
dbe08d82
ON
4835 err = 0;
4836 mutex_lock(&task->perf_event_mutex);
4837 /*
4838 * If it has already passed perf_event_exit_task().
4839 * we must see PF_EXITING, it takes this mutex too.
4840 */
4841 if (task->flags & PF_EXITING)
4842 err = -ESRCH;
bd275681 4843 else if (task->perf_event_ctxp)
dbe08d82 4844 err = -EAGAIN;
fe4b04fa 4845 else {
9137fb28 4846 get_ctx(ctx);
fe4b04fa 4847 ++ctx->pin_count;
bd275681 4848 rcu_assign_pointer(task->perf_event_ctxp, ctx);
fe4b04fa 4849 }
dbe08d82
ON
4850 mutex_unlock(&task->perf_event_mutex);
4851
4852 if (unlikely(err)) {
9137fb28 4853 put_ctx(ctx);
dbe08d82
ON
4854
4855 if (err == -EAGAIN)
4856 goto retry;
4857 goto errout;
a63eaf34
PM
4858 }
4859 }
4860
0793a61d 4861 return ctx;
c93f7669 4862
9ed6060d 4863errout:
c93f7669 4864 return ERR_PTR(err);
0793a61d
TG
4865}
4866
bd275681
PZ
4867static struct perf_event_pmu_context *
4868find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4869 struct perf_event *event)
4870{
4871 struct perf_event_pmu_context *new = NULL, *epc;
4872 void *task_ctx_data = NULL;
4873
4874 if (!ctx->task) {
889c58b3
PZ
4875 /*
4876 * perf_pmu_migrate_context() / __perf_pmu_install_event()
4877 * relies on the fact that find_get_pmu_context() cannot fail
4878 * for CPU contexts.
4879 */
bd275681
PZ
4880 struct perf_cpu_pmu_context *cpc;
4881
4882 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4883 epc = &cpc->epc;
4f64a6c9 4884 raw_spin_lock_irq(&ctx->lock);
bd275681
PZ
4885 if (!epc->ctx) {
4886 atomic_set(&epc->refcount, 1);
4887 epc->embedded = 1;
bd275681
PZ
4888 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4889 epc->ctx = ctx;
bd275681
PZ
4890 } else {
4891 WARN_ON_ONCE(epc->ctx != ctx);
4892 atomic_inc(&epc->refcount);
4893 }
4f64a6c9 4894 raw_spin_unlock_irq(&ctx->lock);
bd275681
PZ
4895 return epc;
4896 }
4897
4898 new = kzalloc(sizeof(*epc), GFP_KERNEL);
4899 if (!new)
4900 return ERR_PTR(-ENOMEM);
4901
4902 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4903 task_ctx_data = alloc_task_ctx_data(pmu);
4904 if (!task_ctx_data) {
4905 kfree(new);
4906 return ERR_PTR(-ENOMEM);
4907 }
4908 }
4909
4910 __perf_init_event_pmu_context(new, pmu);
4911
4912 /*
4913 * XXX
4914 *
4915 * lockdep_assert_held(&ctx->mutex);
4916 *
4917 * can't because perf_event_init_task() doesn't actually hold the
4918 * child_ctx->mutex.
4919 */
4920
4921 raw_spin_lock_irq(&ctx->lock);
4922 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4923 if (epc->pmu == pmu) {
4924 WARN_ON_ONCE(epc->ctx != ctx);
4925 atomic_inc(&epc->refcount);
4926 goto found_epc;
4927 }
4928 }
4929
4930 epc = new;
4931 new = NULL;
4932
4933 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4934 epc->ctx = ctx;
4935
4936found_epc:
4937 if (task_ctx_data && !epc->task_ctx_data) {
4938 epc->task_ctx_data = task_ctx_data;
4939 task_ctx_data = NULL;
4940 ctx->nr_task_data++;
4941 }
4942 raw_spin_unlock_irq(&ctx->lock);
4943
4944 free_task_ctx_data(pmu, task_ctx_data);
4945 kfree(new);
4946
4947 return epc;
4948}
4949
4950static void get_pmu_ctx(struct perf_event_pmu_context *epc)
4951{
4952 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
4953}
4954
4955static void free_epc_rcu(struct rcu_head *head)
4956{
4957 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
4958
4959 kfree(epc->task_ctx_data);
4960 kfree(epc);
4961}
4962
4963static void put_pmu_ctx(struct perf_event_pmu_context *epc)
4964{
4f64a6c9 4965 struct perf_event_context *ctx = epc->ctx;
bd275681
PZ
4966 unsigned long flags;
4967
4f64a6c9
JC
4968 /*
4969 * XXX
4970 *
4971 * lockdep_assert_held(&ctx->mutex);
4972 *
4973 * can't because of the call-site in _free_event()/put_event()
4974 * which isn't always called under ctx->mutex.
4975 */
4976 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
bd275681
PZ
4977 return;
4978
4f64a6c9 4979 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
bd275681 4980
4f64a6c9
JC
4981 list_del_init(&epc->pmu_ctx_entry);
4982 epc->ctx = NULL;
bd275681
PZ
4983
4984 WARN_ON_ONCE(!list_empty(&epc->pinned_active));
4985 WARN_ON_ONCE(!list_empty(&epc->flexible_active));
4986
4f64a6c9
JC
4987 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4988
bd275681
PZ
4989 if (epc->embedded)
4990 return;
4991
4992 call_rcu(&epc->rcu_head, free_epc_rcu);
4993}
4994
6fb2915d
LZ
4995static void perf_event_free_filter(struct perf_event *event);
4996
cdd6c482 4997static void free_event_rcu(struct rcu_head *head)
592903cd 4998{
bd275681 4999 struct perf_event *event = container_of(head, typeof(*event), rcu_head);
592903cd 5000
cdd6c482
IM
5001 if (event->ns)
5002 put_pid_ns(event->ns);
6fb2915d 5003 perf_event_free_filter(event);
bdacfaf2 5004 kmem_cache_free(perf_event_cache, event);
592903cd
PZ
5005}
5006
b69cf536 5007static void ring_buffer_attach(struct perf_event *event,
56de4e8f 5008 struct perf_buffer *rb);
925d519a 5009
f2fb6bef
KL
5010static void detach_sb_event(struct perf_event *event)
5011{
5012 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
5013
5014 raw_spin_lock(&pel->lock);
5015 list_del_rcu(&event->sb_list);
5016 raw_spin_unlock(&pel->lock);
5017}
5018
a4f144eb 5019static bool is_sb_event(struct perf_event *event)
f2fb6bef 5020{
a4f144eb
DCC
5021 struct perf_event_attr *attr = &event->attr;
5022
f2fb6bef 5023 if (event->parent)
a4f144eb 5024 return false;
f2fb6bef
KL
5025
5026 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 5027 return false;
f2fb6bef 5028
a4f144eb
DCC
5029 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
5030 attr->comm || attr->comm_exec ||
76193a94 5031 attr->task || attr->ksymbol ||
e17d43b9 5032 attr->context_switch || attr->text_poke ||
21038f2b 5033 attr->bpf_event)
a4f144eb
DCC
5034 return true;
5035 return false;
5036}
5037
5038static void unaccount_pmu_sb_event(struct perf_event *event)
5039{
5040 if (is_sb_event(event))
5041 detach_sb_event(event);
f2fb6bef
KL
5042}
5043
555e0c1e
FW
5044#ifdef CONFIG_NO_HZ_FULL
5045static DEFINE_SPINLOCK(nr_freq_lock);
5046#endif
5047
5048static void unaccount_freq_event_nohz(void)
5049{
5050#ifdef CONFIG_NO_HZ_FULL
5051 spin_lock(&nr_freq_lock);
5052 if (atomic_dec_and_test(&nr_freq_events))
5053 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5054 spin_unlock(&nr_freq_lock);
5055#endif
5056}
5057
5058static void unaccount_freq_event(void)
5059{
5060 if (tick_nohz_full_enabled())
5061 unaccount_freq_event_nohz();
5062 else
5063 atomic_dec(&nr_freq_events);
5064}
5065
4beb31f3
FW
5066static void unaccount_event(struct perf_event *event)
5067{
25432ae9
PZ
5068 bool dec = false;
5069
4beb31f3
FW
5070 if (event->parent)
5071 return;
5072
a5398bff 5073 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
25432ae9 5074 dec = true;
4beb31f3
FW
5075 if (event->attr.mmap || event->attr.mmap_data)
5076 atomic_dec(&nr_mmap_events);
88a16a13
JO
5077 if (event->attr.build_id)
5078 atomic_dec(&nr_build_id_events);
4beb31f3
FW
5079 if (event->attr.comm)
5080 atomic_dec(&nr_comm_events);
e4222673
HB
5081 if (event->attr.namespaces)
5082 atomic_dec(&nr_namespaces_events);
96aaab68
NK
5083 if (event->attr.cgroup)
5084 atomic_dec(&nr_cgroup_events);
4beb31f3
FW
5085 if (event->attr.task)
5086 atomic_dec(&nr_task_events);
948b26b6 5087 if (event->attr.freq)
555e0c1e 5088 unaccount_freq_event();
45ac1403 5089 if (event->attr.context_switch) {
25432ae9 5090 dec = true;
45ac1403
AH
5091 atomic_dec(&nr_switch_events);
5092 }
4beb31f3 5093 if (is_cgroup_event(event))
25432ae9 5094 dec = true;
4beb31f3 5095 if (has_branch_stack(event))
25432ae9 5096 dec = true;
76193a94
SL
5097 if (event->attr.ksymbol)
5098 atomic_dec(&nr_ksymbol_events);
6ee52e2a
SL
5099 if (event->attr.bpf_event)
5100 atomic_dec(&nr_bpf_events);
e17d43b9
AH
5101 if (event->attr.text_poke)
5102 atomic_dec(&nr_text_poke_events);
25432ae9 5103
9107c89e
PZ
5104 if (dec) {
5105 if (!atomic_add_unless(&perf_sched_count, -1, 1))
5106 schedule_delayed_work(&perf_sched_work, HZ);
5107 }
4beb31f3 5108
f2fb6bef 5109 unaccount_pmu_sb_event(event);
4beb31f3 5110}
925d519a 5111
9107c89e
PZ
5112static void perf_sched_delayed(struct work_struct *work)
5113{
5114 mutex_lock(&perf_sched_mutex);
5115 if (atomic_dec_and_test(&perf_sched_count))
5116 static_branch_disable(&perf_sched_events);
5117 mutex_unlock(&perf_sched_mutex);
5118}
5119
bed5b25a
AS
5120/*
5121 * The following implement mutual exclusion of events on "exclusive" pmus
5122 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5123 * at a time, so we disallow creating events that might conflict, namely:
5124 *
5125 * 1) cpu-wide events in the presence of per-task events,
5126 * 2) per-task events in the presence of cpu-wide events,
bd275681 5127 * 3) two matching events on the same perf_event_context.
bed5b25a
AS
5128 *
5129 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 5130 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
5131 */
5132static int exclusive_event_init(struct perf_event *event)
5133{
5134 struct pmu *pmu = event->pmu;
5135
8a58ddae 5136 if (!is_exclusive_pmu(pmu))
bed5b25a
AS
5137 return 0;
5138
5139 /*
5140 * Prevent co-existence of per-task and cpu-wide events on the
5141 * same exclusive pmu.
5142 *
5143 * Negative pmu::exclusive_cnt means there are cpu-wide
5144 * events on this "exclusive" pmu, positive means there are
5145 * per-task events.
5146 *
5147 * Since this is called in perf_event_alloc() path, event::ctx
5148 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5149 * to mean "per-task event", because unlike other attach states it
5150 * never gets cleared.
5151 */
5152 if (event->attach_state & PERF_ATTACH_TASK) {
5153 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5154 return -EBUSY;
5155 } else {
5156 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5157 return -EBUSY;
5158 }
5159
5160 return 0;
5161}
5162
5163static void exclusive_event_destroy(struct perf_event *event)
5164{
5165 struct pmu *pmu = event->pmu;
5166
8a58ddae 5167 if (!is_exclusive_pmu(pmu))
bed5b25a
AS
5168 return;
5169
5170 /* see comment in exclusive_event_init() */
5171 if (event->attach_state & PERF_ATTACH_TASK)
5172 atomic_dec(&pmu->exclusive_cnt);
5173 else
5174 atomic_inc(&pmu->exclusive_cnt);
5175}
5176
5177static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5178{
3bf6215a 5179 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
5180 (e1->cpu == e2->cpu ||
5181 e1->cpu == -1 ||
5182 e2->cpu == -1))
5183 return true;
5184 return false;
5185}
5186
bed5b25a
AS
5187static bool exclusive_event_installable(struct perf_event *event,
5188 struct perf_event_context *ctx)
5189{
5190 struct perf_event *iter_event;
5191 struct pmu *pmu = event->pmu;
5192
8a58ddae
AS
5193 lockdep_assert_held(&ctx->mutex);
5194
5195 if (!is_exclusive_pmu(pmu))
bed5b25a
AS
5196 return true;
5197
5198 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5199 if (exclusive_event_match(iter_event, event))
5200 return false;
5201 }
5202
5203 return true;
5204}
5205
375637bc
AS
5206static void perf_addr_filters_splice(struct perf_event *event,
5207 struct list_head *head);
5208
683ede43 5209static void _free_event(struct perf_event *event)
f1600952 5210{
ca6c2132 5211 irq_work_sync(&event->pending_irq);
925d519a 5212
4beb31f3 5213 unaccount_event(event);
9ee318a7 5214
da97e184
JFG
5215 security_perf_event_free(event);
5216
76369139 5217 if (event->rb) {
9bb5d40c
PZ
5218 /*
5219 * Can happen when we close an event with re-directed output.
5220 *
5221 * Since we have a 0 refcount, perf_mmap_close() will skip
5222 * over us; possibly making our ring_buffer_put() the last.
5223 */
5224 mutex_lock(&event->mmap_mutex);
b69cf536 5225 ring_buffer_attach(event, NULL);
9bb5d40c 5226 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
5227 }
5228
e5d1367f
SE
5229 if (is_cgroup_event(event))
5230 perf_detach_cgroup(event);
5231
a0733e69
PZ
5232 if (!event->parent) {
5233 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5234 put_callchain_buffers();
5235 }
5236
5237 perf_event_free_bpf_prog(event);
375637bc 5238 perf_addr_filters_splice(event, NULL);
c60f83b8 5239 kfree(event->addr_filter_ranges);
a0733e69
PZ
5240
5241 if (event->destroy)
5242 event->destroy(event);
5243
1cf8dfe8
PZ
5244 /*
5245 * Must be after ->destroy(), due to uprobe_perf_close() using
5246 * hw.target.
5247 */
621b6d2e
PB
5248 if (event->hw.target)
5249 put_task_struct(event->hw.target);
5250
bd275681
PZ
5251 if (event->pmu_ctx)
5252 put_pmu_ctx(event->pmu_ctx);
5253
1cf8dfe8
PZ
5254 /*
5255 * perf_event_free_task() relies on put_ctx() being 'last', in particular
5256 * all task references must be cleaned up.
5257 */
5258 if (event->ctx)
5259 put_ctx(event->ctx);
5260
62a92c8f
AS
5261 exclusive_event_destroy(event);
5262 module_put(event->pmu->module);
a0733e69
PZ
5263
5264 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
5265}
5266
683ede43
PZ
5267/*
5268 * Used to free events which have a known refcount of 1, such as in error paths
5269 * where the event isn't exposed yet and inherited events.
5270 */
5271static void free_event(struct perf_event *event)
0793a61d 5272{
683ede43
PZ
5273 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5274 "unexpected event refcount: %ld; ptr=%p\n",
5275 atomic_long_read(&event->refcount), event)) {
5276 /* leak to avoid use-after-free */
5277 return;
5278 }
0793a61d 5279
683ede43 5280 _free_event(event);
0793a61d
TG
5281}
5282
a66a3052 5283/*
f8697762 5284 * Remove user event from the owner task.
a66a3052 5285 */
f8697762 5286static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 5287{
8882135b 5288 struct task_struct *owner;
fb0459d7 5289
8882135b 5290 rcu_read_lock();
8882135b 5291 /*
f47c02c0
PZ
5292 * Matches the smp_store_release() in perf_event_exit_task(). If we
5293 * observe !owner it means the list deletion is complete and we can
5294 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
5295 * owner->perf_event_mutex.
5296 */
506458ef 5297 owner = READ_ONCE(event->owner);
8882135b
PZ
5298 if (owner) {
5299 /*
5300 * Since delayed_put_task_struct() also drops the last
5301 * task reference we can safely take a new reference
5302 * while holding the rcu_read_lock().
5303 */
5304 get_task_struct(owner);
5305 }
5306 rcu_read_unlock();
5307
5308 if (owner) {
f63a8daa
PZ
5309 /*
5310 * If we're here through perf_event_exit_task() we're already
5311 * holding ctx->mutex which would be an inversion wrt. the
5312 * normal lock order.
5313 *
5314 * However we can safely take this lock because its the child
5315 * ctx->mutex.
5316 */
5317 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5318
8882135b
PZ
5319 /*
5320 * We have to re-check the event->owner field, if it is cleared
5321 * we raced with perf_event_exit_task(), acquiring the mutex
5322 * ensured they're done, and we can proceed with freeing the
5323 * event.
5324 */
f47c02c0 5325 if (event->owner) {
8882135b 5326 list_del_init(&event->owner_entry);
f47c02c0
PZ
5327 smp_store_release(&event->owner, NULL);
5328 }
8882135b
PZ
5329 mutex_unlock(&owner->perf_event_mutex);
5330 put_task_struct(owner);
5331 }
f8697762
JO
5332}
5333
f8697762
JO
5334static void put_event(struct perf_event *event)
5335{
f8697762
JO
5336 if (!atomic_long_dec_and_test(&event->refcount))
5337 return;
5338
c6e5b732
PZ
5339 _free_event(event);
5340}
5341
5342/*
5343 * Kill an event dead; while event:refcount will preserve the event
5344 * object, it will not preserve its functionality. Once the last 'user'
5345 * gives up the object, we'll destroy the thing.
5346 */
5347int perf_event_release_kernel(struct perf_event *event)
5348{
a4f4bb6d 5349 struct perf_event_context *ctx = event->ctx;
c6e5b732 5350 struct perf_event *child, *tmp;
82d94856 5351 LIST_HEAD(free_list);
c6e5b732 5352
a4f4bb6d 5353 /*
bd275681
PZ
5354 * If we got here through err_alloc: free_event(event); we will not
5355 * have attached to a context yet.
a4f4bb6d
PZ
5356 */
5357 if (!ctx) {
5358 WARN_ON_ONCE(event->attach_state &
5359 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5360 goto no_ctx;
5361 }
5362
f8697762
JO
5363 if (!is_kernel_event(event))
5364 perf_remove_from_owner(event);
8882135b 5365
5fa7c8ec 5366 ctx = perf_event_ctx_lock(event);
a83fe28e 5367 WARN_ON_ONCE(ctx->parent_ctx);
683ede43 5368
683ede43 5369 /*
d8a8cfc7 5370 * Mark this event as STATE_DEAD, there is no external reference to it
a69b0ca4 5371 * anymore.
683ede43 5372 *
a69b0ca4
PZ
5373 * Anybody acquiring event->child_mutex after the below loop _must_
5374 * also see this, most importantly inherit_event() which will avoid
5375 * placing more children on the list.
683ede43 5376 *
c6e5b732
PZ
5377 * Thus this guarantees that we will in fact observe and kill _ALL_
5378 * child events.
683ede43 5379 */
517e6a30 5380 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
a69b0ca4
PZ
5381
5382 perf_event_ctx_unlock(event, ctx);
683ede43 5383
c6e5b732
PZ
5384again:
5385 mutex_lock(&event->child_mutex);
5386 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 5387
c6e5b732
PZ
5388 /*
5389 * Cannot change, child events are not migrated, see the
5390 * comment with perf_event_ctx_lock_nested().
5391 */
506458ef 5392 ctx = READ_ONCE(child->ctx);
c6e5b732
PZ
5393 /*
5394 * Since child_mutex nests inside ctx::mutex, we must jump
5395 * through hoops. We start by grabbing a reference on the ctx.
5396 *
5397 * Since the event cannot get freed while we hold the
5398 * child_mutex, the context must also exist and have a !0
5399 * reference count.
5400 */
5401 get_ctx(ctx);
5402
5403 /*
5404 * Now that we have a ctx ref, we can drop child_mutex, and
5405 * acquire ctx::mutex without fear of it going away. Then we
5406 * can re-acquire child_mutex.
5407 */
5408 mutex_unlock(&event->child_mutex);
5409 mutex_lock(&ctx->mutex);
5410 mutex_lock(&event->child_mutex);
5411
5412 /*
5413 * Now that we hold ctx::mutex and child_mutex, revalidate our
5414 * state, if child is still the first entry, it didn't get freed
5415 * and we can continue doing so.
5416 */
5417 tmp = list_first_entry_or_null(&event->child_list,
5418 struct perf_event, child_list);
5419 if (tmp == child) {
5420 perf_remove_from_context(child, DETACH_GROUP);
82d94856 5421 list_move(&child->child_list, &free_list);
c6e5b732
PZ
5422 /*
5423 * This matches the refcount bump in inherit_event();
5424 * this can't be the last reference.
5425 */
5426 put_event(event);
5427 }
5428
5429 mutex_unlock(&event->child_mutex);
5430 mutex_unlock(&ctx->mutex);
5431 put_ctx(ctx);
5432 goto again;
5433 }
5434 mutex_unlock(&event->child_mutex);
5435
82d94856 5436 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
1cf8dfe8
PZ
5437 void *var = &child->ctx->refcount;
5438
82d94856
PZ
5439 list_del(&child->child_list);
5440 free_event(child);
1cf8dfe8
PZ
5441
5442 /*
5443 * Wake any perf_event_free_task() waiting for this event to be
5444 * freed.
5445 */
5446 smp_mb(); /* pairs with wait_var_event() */
5447 wake_up_var(var);
82d94856
PZ
5448 }
5449
a4f4bb6d
PZ
5450no_ctx:
5451 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
5452 return 0;
5453}
5454EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5455
8b10c5e2
PZ
5456/*
5457 * Called when the last reference to the file is gone.
5458 */
a6fa941d
AV
5459static int perf_release(struct inode *inode, struct file *file)
5460{
c6e5b732 5461 perf_event_release_kernel(file->private_data);
a6fa941d 5462 return 0;
fb0459d7 5463}
fb0459d7 5464
ca0dd44c 5465static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 5466{
cdd6c482 5467 struct perf_event *child;
e53c0994
PZ
5468 u64 total = 0;
5469
59ed446f
PZ
5470 *enabled = 0;
5471 *running = 0;
5472
6f10581a 5473 mutex_lock(&event->child_mutex);
01add3ea 5474
7d88962e 5475 (void)perf_event_read(event, false);
01add3ea
SB
5476 total += perf_event_count(event);
5477
59ed446f
PZ
5478 *enabled += event->total_time_enabled +
5479 atomic64_read(&event->child_total_time_enabled);
5480 *running += event->total_time_running +
5481 atomic64_read(&event->child_total_time_running);
5482
5483 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 5484 (void)perf_event_read(child, false);
01add3ea 5485 total += perf_event_count(child);
59ed446f
PZ
5486 *enabled += child->total_time_enabled;
5487 *running += child->total_time_running;
5488 }
6f10581a 5489 mutex_unlock(&event->child_mutex);
e53c0994
PZ
5490
5491 return total;
5492}
ca0dd44c
PZ
5493
5494u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5495{
5496 struct perf_event_context *ctx;
5497 u64 count;
5498
5499 ctx = perf_event_ctx_lock(event);
5500 count = __perf_event_read_value(event, enabled, running);
5501 perf_event_ctx_unlock(event, ctx);
5502
5503 return count;
5504}
fb0459d7 5505EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 5506
7d88962e 5507static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 5508 u64 read_format, u64 *values)
3dab77fb 5509{
2aeb1883 5510 struct perf_event_context *ctx = leader->ctx;
32671e37 5511 struct perf_event *sub, *parent;
2aeb1883 5512 unsigned long flags;
fa8c2693 5513 int n = 1; /* skip @nr */
7d88962e 5514 int ret;
f63a8daa 5515
7d88962e
SB
5516 ret = perf_event_read(leader, true);
5517 if (ret)
5518 return ret;
abf4868b 5519
a9cd8194 5520 raw_spin_lock_irqsave(&ctx->lock, flags);
32671e37
PZ
5521 /*
5522 * Verify the grouping between the parent and child (inherited)
5523 * events is still in tact.
5524 *
5525 * Specifically:
5526 * - leader->ctx->lock pins leader->sibling_list
5527 * - parent->child_mutex pins parent->child_list
5528 * - parent->ctx->mutex pins parent->sibling_list
5529 *
5530 * Because parent->ctx != leader->ctx (and child_list nests inside
5531 * ctx->mutex), group destruction is not atomic between children, also
5532 * see perf_event_release_kernel(). Additionally, parent can grow the
5533 * group.
5534 *
5535 * Therefore it is possible to have parent and child groups in a
5536 * different configuration and summing over such a beast makes no sense
5537 * what so ever.
5538 *
5539 * Reject this.
5540 */
5541 parent = leader->parent;
5542 if (parent &&
5543 (parent->group_generation != leader->group_generation ||
5544 parent->nr_siblings != leader->nr_siblings)) {
5545 ret = -ECHILD;
5546 goto unlock;
5547 }
a9cd8194 5548
fa8c2693
PZ
5549 /*
5550 * Since we co-schedule groups, {enabled,running} times of siblings
5551 * will be identical to those of the leader, so we only publish one
5552 * set.
5553 */
5554 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5555 values[n++] += leader->total_time_enabled +
5556 atomic64_read(&leader->child_total_time_enabled);
5557 }
3dab77fb 5558
fa8c2693
PZ
5559 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5560 values[n++] += leader->total_time_running +
5561 atomic64_read(&leader->child_total_time_running);
5562 }
5563
5564 /*
5565 * Write {count,id} tuples for every sibling.
5566 */
5567 values[n++] += perf_event_count(leader);
abf4868b
PZ
5568 if (read_format & PERF_FORMAT_ID)
5569 values[n++] = primary_event_id(leader);
119a784c
NK
5570 if (read_format & PERF_FORMAT_LOST)
5571 values[n++] = atomic64_read(&leader->lost_samples);
3dab77fb 5572
edb39592 5573 for_each_sibling_event(sub, leader) {
fa8c2693
PZ
5574 values[n++] += perf_event_count(sub);
5575 if (read_format & PERF_FORMAT_ID)
5576 values[n++] = primary_event_id(sub);
119a784c
NK
5577 if (read_format & PERF_FORMAT_LOST)
5578 values[n++] = atomic64_read(&sub->lost_samples);
fa8c2693 5579 }
7d88962e 5580
32671e37 5581unlock:
2aeb1883 5582 raw_spin_unlock_irqrestore(&ctx->lock, flags);
32671e37 5583 return ret;
fa8c2693 5584}
3dab77fb 5585
fa8c2693
PZ
5586static int perf_read_group(struct perf_event *event,
5587 u64 read_format, char __user *buf)
5588{
5589 struct perf_event *leader = event->group_leader, *child;
5590 struct perf_event_context *ctx = leader->ctx;
7d88962e 5591 int ret;
fa8c2693 5592 u64 *values;
3dab77fb 5593
fa8c2693 5594 lockdep_assert_held(&ctx->mutex);
3dab77fb 5595
fa8c2693
PZ
5596 values = kzalloc(event->read_size, GFP_KERNEL);
5597 if (!values)
5598 return -ENOMEM;
3dab77fb 5599
fa8c2693
PZ
5600 values[0] = 1 + leader->nr_siblings;
5601
fa8c2693 5602 mutex_lock(&leader->child_mutex);
abf4868b 5603
7d88962e
SB
5604 ret = __perf_read_group_add(leader, read_format, values);
5605 if (ret)
5606 goto unlock;
5607
5608 list_for_each_entry(child, &leader->child_list, child_list) {
5609 ret = __perf_read_group_add(child, read_format, values);
5610 if (ret)
5611 goto unlock;
5612 }
abf4868b 5613
fa8c2693 5614 mutex_unlock(&leader->child_mutex);
abf4868b 5615
7d88962e 5616 ret = event->read_size;
fa8c2693
PZ
5617 if (copy_to_user(buf, values, event->read_size))
5618 ret = -EFAULT;
7d88962e 5619 goto out;
fa8c2693 5620
7d88962e
SB
5621unlock:
5622 mutex_unlock(&leader->child_mutex);
5623out:
fa8c2693 5624 kfree(values);
abf4868b 5625 return ret;
3dab77fb
PZ
5626}
5627
b15f495b 5628static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
5629 u64 read_format, char __user *buf)
5630{
59ed446f 5631 u64 enabled, running;
119a784c 5632 u64 values[5];
3dab77fb
PZ
5633 int n = 0;
5634
ca0dd44c 5635 values[n++] = __perf_event_read_value(event, &enabled, &running);
59ed446f
PZ
5636 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5637 values[n++] = enabled;
5638 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5639 values[n++] = running;
3dab77fb 5640 if (read_format & PERF_FORMAT_ID)
cdd6c482 5641 values[n++] = primary_event_id(event);
119a784c
NK
5642 if (read_format & PERF_FORMAT_LOST)
5643 values[n++] = atomic64_read(&event->lost_samples);
3dab77fb
PZ
5644
5645 if (copy_to_user(buf, values, n * sizeof(u64)))
5646 return -EFAULT;
5647
5648 return n * sizeof(u64);
5649}
5650
dc633982
JO
5651static bool is_event_hup(struct perf_event *event)
5652{
5653 bool no_children;
5654
a69b0ca4 5655 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
5656 return false;
5657
5658 mutex_lock(&event->child_mutex);
5659 no_children = list_empty(&event->child_list);
5660 mutex_unlock(&event->child_mutex);
5661 return no_children;
5662}
5663
0793a61d 5664/*
cdd6c482 5665 * Read the performance event - simple non blocking version for now
0793a61d
TG
5666 */
5667static ssize_t
b15f495b 5668__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 5669{
cdd6c482 5670 u64 read_format = event->attr.read_format;
3dab77fb 5671 int ret;
0793a61d 5672
3b6f9e5c 5673 /*
788faab7 5674 * Return end-of-file for a read on an event that is in
3b6f9e5c
PM
5675 * error state (i.e. because it was pinned but it couldn't be
5676 * scheduled on to the CPU at some point).
5677 */
cdd6c482 5678 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
5679 return 0;
5680
c320c7b7 5681 if (count < event->read_size)
3dab77fb
PZ
5682 return -ENOSPC;
5683
cdd6c482 5684 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 5685 if (read_format & PERF_FORMAT_GROUP)
b15f495b 5686 ret = perf_read_group(event, read_format, buf);
3dab77fb 5687 else
b15f495b 5688 ret = perf_read_one(event, read_format, buf);
0793a61d 5689
3dab77fb 5690 return ret;
0793a61d
TG
5691}
5692
0793a61d
TG
5693static ssize_t
5694perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5695{
cdd6c482 5696 struct perf_event *event = file->private_data;
f63a8daa
PZ
5697 struct perf_event_context *ctx;
5698 int ret;
0793a61d 5699
da97e184
JFG
5700 ret = security_perf_event_read(event);
5701 if (ret)
5702 return ret;
5703
f63a8daa 5704 ctx = perf_event_ctx_lock(event);
b15f495b 5705 ret = __perf_read(event, buf, count);
f63a8daa
PZ
5706 perf_event_ctx_unlock(event, ctx);
5707
5708 return ret;
0793a61d
TG
5709}
5710
9dd95748 5711static __poll_t perf_poll(struct file *file, poll_table *wait)
0793a61d 5712{
cdd6c482 5713 struct perf_event *event = file->private_data;
56de4e8f 5714 struct perf_buffer *rb;
a9a08845 5715 __poll_t events = EPOLLHUP;
c7138f37 5716
e708d7ad 5717 poll_wait(file, &event->waitq, wait);
179033b3 5718
dc633982 5719 if (is_event_hup(event))
179033b3 5720 return events;
c7138f37 5721
10c6db11 5722 /*
9bb5d40c
PZ
5723 * Pin the event->rb by taking event->mmap_mutex; otherwise
5724 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
5725 */
5726 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
5727 rb = event->rb;
5728 if (rb)
76369139 5729 events = atomic_xchg(&rb->poll, 0);
10c6db11 5730 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
5731 return events;
5732}
5733
f63a8daa 5734static void _perf_event_reset(struct perf_event *event)
6de6a7b9 5735{
7d88962e 5736 (void)perf_event_read(event, false);
e7850595 5737 local64_set(&event->count, 0);
cdd6c482 5738 perf_event_update_userpage(event);
3df5edad
PZ
5739}
5740
52ba4b0b
LX
5741/* Assume it's not an event with inherit set. */
5742u64 perf_event_pause(struct perf_event *event, bool reset)
5743{
5744 struct perf_event_context *ctx;
5745 u64 count;
5746
5747 ctx = perf_event_ctx_lock(event);
5748 WARN_ON_ONCE(event->attr.inherit);
5749 _perf_event_disable(event);
5750 count = local64_read(&event->count);
5751 if (reset)
5752 local64_set(&event->count, 0);
5753 perf_event_ctx_unlock(event, ctx);
5754
5755 return count;
5756}
5757EXPORT_SYMBOL_GPL(perf_event_pause);
5758
c93f7669 5759/*
cdd6c482
IM
5760 * Holding the top-level event's child_mutex means that any
5761 * descendant process that has inherited this event will block
8ba289b8 5762 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 5763 * task existence requirements of perf_event_enable/disable.
c93f7669 5764 */
cdd6c482
IM
5765static void perf_event_for_each_child(struct perf_event *event,
5766 void (*func)(struct perf_event *))
3df5edad 5767{
cdd6c482 5768 struct perf_event *child;
3df5edad 5769
cdd6c482 5770 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 5771
cdd6c482
IM
5772 mutex_lock(&event->child_mutex);
5773 func(event);
5774 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 5775 func(child);
cdd6c482 5776 mutex_unlock(&event->child_mutex);
3df5edad
PZ
5777}
5778
cdd6c482
IM
5779static void perf_event_for_each(struct perf_event *event,
5780 void (*func)(struct perf_event *))
3df5edad 5781{
cdd6c482
IM
5782 struct perf_event_context *ctx = event->ctx;
5783 struct perf_event *sibling;
3df5edad 5784
f63a8daa
PZ
5785 lockdep_assert_held(&ctx->mutex);
5786
cdd6c482 5787 event = event->group_leader;
75f937f2 5788
cdd6c482 5789 perf_event_for_each_child(event, func);
edb39592 5790 for_each_sibling_event(sibling, event)
724b6daa 5791 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
5792}
5793
fae3fde6
PZ
5794static void __perf_event_period(struct perf_event *event,
5795 struct perf_cpu_context *cpuctx,
5796 struct perf_event_context *ctx,
5797 void *info)
c7999c6f 5798{
fae3fde6 5799 u64 value = *((u64 *)info);
c7999c6f 5800 bool active;
08247e31 5801
cdd6c482 5802 if (event->attr.freq) {
cdd6c482 5803 event->attr.sample_freq = value;
08247e31 5804 } else {
cdd6c482
IM
5805 event->attr.sample_period = value;
5806 event->hw.sample_period = value;
08247e31 5807 }
bad7192b
PZ
5808
5809 active = (event->state == PERF_EVENT_STATE_ACTIVE);
5810 if (active) {
bd275681 5811 perf_pmu_disable(event->pmu);
1e02cd40
PZ
5812 /*
5813 * We could be throttled; unthrottle now to avoid the tick
5814 * trying to unthrottle while we already re-started the event.
5815 */
5816 if (event->hw.interrupts == MAX_INTERRUPTS) {
5817 event->hw.interrupts = 0;
5818 perf_log_throttle(event, 1);
5819 }
bad7192b
PZ
5820 event->pmu->stop(event, PERF_EF_UPDATE);
5821 }
5822
5823 local64_set(&event->hw.period_left, 0);
5824
5825 if (active) {
5826 event->pmu->start(event, PERF_EF_RELOAD);
bd275681 5827 perf_pmu_enable(event->pmu);
bad7192b 5828 }
c7999c6f
PZ
5829}
5830
81ec3f3c
JO
5831static int perf_event_check_period(struct perf_event *event, u64 value)
5832{
5833 return event->pmu->check_period(event, value);
5834}
5835
3ca270fc 5836static int _perf_event_period(struct perf_event *event, u64 value)
c7999c6f 5837{
c7999c6f
PZ
5838 if (!is_sampling_event(event))
5839 return -EINVAL;
5840
c7999c6f
PZ
5841 if (!value)
5842 return -EINVAL;
5843
5844 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5845 return -EINVAL;
5846
81ec3f3c
JO
5847 if (perf_event_check_period(event, value))
5848 return -EINVAL;
5849
913a90bc
RB
5850 if (!event->attr.freq && (value & (1ULL << 63)))
5851 return -EINVAL;
5852
fae3fde6 5853 event_function_call(event, __perf_event_period, &value);
08247e31 5854
c7999c6f 5855 return 0;
08247e31
PZ
5856}
5857
3ca270fc
LX
5858int perf_event_period(struct perf_event *event, u64 value)
5859{
5860 struct perf_event_context *ctx;
5861 int ret;
5862
5863 ctx = perf_event_ctx_lock(event);
5864 ret = _perf_event_period(event, value);
5865 perf_event_ctx_unlock(event, ctx);
5866
5867 return ret;
5868}
5869EXPORT_SYMBOL_GPL(perf_event_period);
5870
ac9721f3
PZ
5871static const struct file_operations perf_fops;
5872
2903ff01 5873static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 5874{
2903ff01
AV
5875 struct fd f = fdget(fd);
5876 if (!f.file)
5877 return -EBADF;
ac9721f3 5878
2903ff01
AV
5879 if (f.file->f_op != &perf_fops) {
5880 fdput(f);
5881 return -EBADF;
ac9721f3 5882 }
2903ff01
AV
5883 *p = f;
5884 return 0;
ac9721f3
PZ
5885}
5886
5887static int perf_event_set_output(struct perf_event *event,
5888 struct perf_event *output_event);
6fb2915d 5889static int perf_event_set_filter(struct perf_event *event, void __user *arg);
32ff77e8
MC
5890static int perf_copy_attr(struct perf_event_attr __user *uattr,
5891 struct perf_event_attr *attr);
a4be7c27 5892
f63a8daa 5893static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 5894{
cdd6c482 5895 void (*func)(struct perf_event *);
3df5edad 5896 u32 flags = arg;
d859e29f
PM
5897
5898 switch (cmd) {
cdd6c482 5899 case PERF_EVENT_IOC_ENABLE:
f63a8daa 5900 func = _perf_event_enable;
d859e29f 5901 break;
cdd6c482 5902 case PERF_EVENT_IOC_DISABLE:
f63a8daa 5903 func = _perf_event_disable;
79f14641 5904 break;
cdd6c482 5905 case PERF_EVENT_IOC_RESET:
f63a8daa 5906 func = _perf_event_reset;
6de6a7b9 5907 break;
3df5edad 5908
cdd6c482 5909 case PERF_EVENT_IOC_REFRESH:
f63a8daa 5910 return _perf_event_refresh(event, arg);
08247e31 5911
cdd6c482 5912 case PERF_EVENT_IOC_PERIOD:
3ca270fc
LX
5913 {
5914 u64 value;
08247e31 5915
3ca270fc
LX
5916 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5917 return -EFAULT;
08247e31 5918
3ca270fc
LX
5919 return _perf_event_period(event, value);
5920 }
cf4957f1
JO
5921 case PERF_EVENT_IOC_ID:
5922 {
5923 u64 id = primary_event_id(event);
5924
5925 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5926 return -EFAULT;
5927 return 0;
5928 }
5929
cdd6c482 5930 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 5931 {
ac9721f3 5932 int ret;
ac9721f3 5933 if (arg != -1) {
2903ff01
AV
5934 struct perf_event *output_event;
5935 struct fd output;
5936 ret = perf_fget_light(arg, &output);
5937 if (ret)
5938 return ret;
5939 output_event = output.file->private_data;
5940 ret = perf_event_set_output(event, output_event);
5941 fdput(output);
5942 } else {
5943 ret = perf_event_set_output(event, NULL);
ac9721f3 5944 }
ac9721f3
PZ
5945 return ret;
5946 }
a4be7c27 5947
6fb2915d
LZ
5948 case PERF_EVENT_IOC_SET_FILTER:
5949 return perf_event_set_filter(event, (void __user *)arg);
5950
2541517c 5951 case PERF_EVENT_IOC_SET_BPF:
652c1b17
AN
5952 {
5953 struct bpf_prog *prog;
5954 int err;
5955
5956 prog = bpf_prog_get(arg);
5957 if (IS_ERR(prog))
5958 return PTR_ERR(prog);
5959
82e6b1ee 5960 err = perf_event_set_bpf_prog(event, prog, 0);
652c1b17
AN
5961 if (err) {
5962 bpf_prog_put(prog);
5963 return err;
5964 }
5965
5966 return 0;
5967 }
2541517c 5968
86e7972f 5969 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
56de4e8f 5970 struct perf_buffer *rb;
86e7972f
WN
5971
5972 rcu_read_lock();
5973 rb = rcu_dereference(event->rb);
5974 if (!rb || !rb->nr_pages) {
5975 rcu_read_unlock();
5976 return -EINVAL;
5977 }
5978 rb_toggle_paused(rb, !!arg);
5979 rcu_read_unlock();
5980 return 0;
5981 }
f371b304
YS
5982
5983 case PERF_EVENT_IOC_QUERY_BPF:
f4e2298e 5984 return perf_event_query_prog_array(event, (void __user *)arg);
32ff77e8
MC
5985
5986 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5987 struct perf_event_attr new_attr;
5988 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5989 &new_attr);
5990
5991 if (err)
5992 return err;
5993
5994 return perf_event_modify_attr(event, &new_attr);
5995 }
d859e29f 5996 default:
3df5edad 5997 return -ENOTTY;
d859e29f 5998 }
3df5edad
PZ
5999
6000 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 6001 perf_event_for_each(event, func);
3df5edad 6002 else
cdd6c482 6003 perf_event_for_each_child(event, func);
3df5edad
PZ
6004
6005 return 0;
d859e29f
PM
6006}
6007
f63a8daa
PZ
6008static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6009{
6010 struct perf_event *event = file->private_data;
6011 struct perf_event_context *ctx;
6012 long ret;
6013
da97e184
JFG
6014 /* Treat ioctl like writes as it is likely a mutating operation. */
6015 ret = security_perf_event_write(event);
6016 if (ret)
6017 return ret;
6018
f63a8daa
PZ
6019 ctx = perf_event_ctx_lock(event);
6020 ret = _perf_ioctl(event, cmd, arg);
6021 perf_event_ctx_unlock(event, ctx);
6022
6023 return ret;
6024}
6025
b3f20785
PM
6026#ifdef CONFIG_COMPAT
6027static long perf_compat_ioctl(struct file *file, unsigned int cmd,
6028 unsigned long arg)
6029{
6030 switch (_IOC_NR(cmd)) {
6031 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6032 case _IOC_NR(PERF_EVENT_IOC_ID):
82489c5f
ES
6033 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6034 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
b3f20785
PM
6035 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6036 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6037 cmd &= ~IOCSIZE_MASK;
6038 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6039 }
6040 break;
6041 }
6042 return perf_ioctl(file, cmd, arg);
6043}
6044#else
6045# define perf_compat_ioctl NULL
6046#endif
6047
cdd6c482 6048int perf_event_task_enable(void)
771d7cde 6049{
f63a8daa 6050 struct perf_event_context *ctx;
cdd6c482 6051 struct perf_event *event;
771d7cde 6052
cdd6c482 6053 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
6054 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6055 ctx = perf_event_ctx_lock(event);
6056 perf_event_for_each_child(event, _perf_event_enable);
6057 perf_event_ctx_unlock(event, ctx);
6058 }
cdd6c482 6059 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
6060
6061 return 0;
6062}
6063
cdd6c482 6064int perf_event_task_disable(void)
771d7cde 6065{
f63a8daa 6066 struct perf_event_context *ctx;
cdd6c482 6067 struct perf_event *event;
771d7cde 6068
cdd6c482 6069 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
6070 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6071 ctx = perf_event_ctx_lock(event);
6072 perf_event_for_each_child(event, _perf_event_disable);
6073 perf_event_ctx_unlock(event, ctx);
6074 }
cdd6c482 6075 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
6076
6077 return 0;
6078}
6079
cdd6c482 6080static int perf_event_index(struct perf_event *event)
194002b2 6081{
a4eaf7f1
PZ
6082 if (event->hw.state & PERF_HES_STOPPED)
6083 return 0;
6084
cdd6c482 6085 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
6086 return 0;
6087
35edc2a5 6088 return event->pmu->event_idx(event);
194002b2
PZ
6089}
6090
fa731587
PZ
6091static void perf_event_init_userpage(struct perf_event *event)
6092{
6093 struct perf_event_mmap_page *userpg;
56de4e8f 6094 struct perf_buffer *rb;
fa731587
PZ
6095
6096 rcu_read_lock();
6097 rb = rcu_dereference(event->rb);
6098 if (!rb)
6099 goto unlock;
6100
6101 userpg = rb->user_page;
6102
6103 /* Allow new userspace to detect that bit 0 is deprecated */
6104 userpg->cap_bit0_is_deprecated = 1;
6105 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
6106 userpg->data_offset = PAGE_SIZE;
6107 userpg->data_size = perf_data_size(rb);
fa731587
PZ
6108
6109unlock:
6110 rcu_read_unlock();
6111}
6112
c1317ec2
AL
6113void __weak arch_perf_update_userpage(
6114 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
6115{
6116}
6117
38ff667b
PZ
6118/*
6119 * Callers need to ensure there can be no nesting of this function, otherwise
6120 * the seqlock logic goes bad. We can not serialize this because the arch
6121 * code calls this from NMI context.
6122 */
cdd6c482 6123void perf_event_update_userpage(struct perf_event *event)
37d81828 6124{
cdd6c482 6125 struct perf_event_mmap_page *userpg;
56de4e8f 6126 struct perf_buffer *rb;
e3f3541c 6127 u64 enabled, running, now;
38ff667b
PZ
6128
6129 rcu_read_lock();
5ec4c599
PZ
6130 rb = rcu_dereference(event->rb);
6131 if (!rb)
6132 goto unlock;
6133
0d641208
EM
6134 /*
6135 * compute total_time_enabled, total_time_running
6136 * based on snapshot values taken when the event
6137 * was last scheduled in.
6138 *
6139 * we cannot simply called update_context_time()
6140 * because of locking issue as we can be called in
6141 * NMI context
6142 */
e3f3541c 6143 calc_timer_values(event, &now, &enabled, &running);
38ff667b 6144
76369139 6145 userpg = rb->user_page;
7b732a75 6146 /*
9d2dcc8f
MF
6147 * Disable preemption to guarantee consistent time stamps are stored to
6148 * the user page.
7b732a75
PZ
6149 */
6150 preempt_disable();
37d81828 6151 ++userpg->lock;
92f22a38 6152 barrier();
cdd6c482 6153 userpg->index = perf_event_index(event);
b5e58793 6154 userpg->offset = perf_event_count(event);
365a4038 6155 if (userpg->index)
e7850595 6156 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 6157
0d641208 6158 userpg->time_enabled = enabled +
cdd6c482 6159 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 6160
0d641208 6161 userpg->time_running = running +
cdd6c482 6162 atomic64_read(&event->child_total_time_running);
7f8b4e4e 6163
c1317ec2 6164 arch_perf_update_userpage(event, userpg, now);
e3f3541c 6165
92f22a38 6166 barrier();
37d81828 6167 ++userpg->lock;
7b732a75 6168 preempt_enable();
38ff667b 6169unlock:
7b732a75 6170 rcu_read_unlock();
37d81828 6171}
82975c46 6172EXPORT_SYMBOL_GPL(perf_event_update_userpage);
37d81828 6173
9e3ed2d7 6174static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
906010b2 6175{
11bac800 6176 struct perf_event *event = vmf->vma->vm_file->private_data;
56de4e8f 6177 struct perf_buffer *rb;
9e3ed2d7 6178 vm_fault_t ret = VM_FAULT_SIGBUS;
906010b2
PZ
6179
6180 if (vmf->flags & FAULT_FLAG_MKWRITE) {
6181 if (vmf->pgoff == 0)
6182 ret = 0;
6183 return ret;
6184 }
6185
6186 rcu_read_lock();
76369139
FW
6187 rb = rcu_dereference(event->rb);
6188 if (!rb)
906010b2
PZ
6189 goto unlock;
6190
6191 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
6192 goto unlock;
6193
76369139 6194 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
6195 if (!vmf->page)
6196 goto unlock;
6197
6198 get_page(vmf->page);
11bac800 6199 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
906010b2
PZ
6200 vmf->page->index = vmf->pgoff;
6201
6202 ret = 0;
6203unlock:
6204 rcu_read_unlock();
6205
6206 return ret;
6207}
6208
10c6db11 6209static void ring_buffer_attach(struct perf_event *event,
56de4e8f 6210 struct perf_buffer *rb)
10c6db11 6211{
56de4e8f 6212 struct perf_buffer *old_rb = NULL;
10c6db11
PZ
6213 unsigned long flags;
6214
961c3912
JC
6215 WARN_ON_ONCE(event->parent);
6216
b69cf536
PZ
6217 if (event->rb) {
6218 /*
6219 * Should be impossible, we set this when removing
6220 * event->rb_entry and wait/clear when adding event->rb_entry.
6221 */
6222 WARN_ON_ONCE(event->rcu_pending);
10c6db11 6223
b69cf536 6224 old_rb = event->rb;
b69cf536
PZ
6225 spin_lock_irqsave(&old_rb->event_lock, flags);
6226 list_del_rcu(&event->rb_entry);
6227 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 6228
2f993cf0
ON
6229 event->rcu_batches = get_state_synchronize_rcu();
6230 event->rcu_pending = 1;
b69cf536 6231 }
10c6db11 6232
b69cf536 6233 if (rb) {
2f993cf0
ON
6234 if (event->rcu_pending) {
6235 cond_synchronize_rcu(event->rcu_batches);
6236 event->rcu_pending = 0;
6237 }
6238
b69cf536
PZ
6239 spin_lock_irqsave(&rb->event_lock, flags);
6240 list_add_rcu(&event->rb_entry, &rb->event_list);
6241 spin_unlock_irqrestore(&rb->event_lock, flags);
6242 }
6243
767ae086
AS
6244 /*
6245 * Avoid racing with perf_mmap_close(AUX): stop the event
6246 * before swizzling the event::rb pointer; if it's getting
6247 * unmapped, its aux_mmap_count will be 0 and it won't
6248 * restart. See the comment in __perf_pmu_output_stop().
6249 *
6250 * Data will inevitably be lost when set_output is done in
6251 * mid-air, but then again, whoever does it like this is
6252 * not in for the data anyway.
6253 */
6254 if (has_aux(event))
6255 perf_event_stop(event, 0);
6256
b69cf536
PZ
6257 rcu_assign_pointer(event->rb, rb);
6258
6259 if (old_rb) {
6260 ring_buffer_put(old_rb);
6261 /*
6262 * Since we detached before setting the new rb, so that we
6263 * could attach the new rb, we could have missed a wakeup.
6264 * Provide it now.
6265 */
6266 wake_up_all(&event->waitq);
6267 }
10c6db11
PZ
6268}
6269
6270static void ring_buffer_wakeup(struct perf_event *event)
6271{
56de4e8f 6272 struct perf_buffer *rb;
10c6db11 6273
961c3912
JC
6274 if (event->parent)
6275 event = event->parent;
6276
10c6db11
PZ
6277 rcu_read_lock();
6278 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
6279 if (rb) {
6280 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6281 wake_up_all(&event->waitq);
6282 }
10c6db11
PZ
6283 rcu_read_unlock();
6284}
6285
56de4e8f 6286struct perf_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 6287{
56de4e8f 6288 struct perf_buffer *rb;
7b732a75 6289
961c3912
JC
6290 if (event->parent)
6291 event = event->parent;
6292
ac9721f3 6293 rcu_read_lock();
76369139
FW
6294 rb = rcu_dereference(event->rb);
6295 if (rb) {
fecb8ed2 6296 if (!refcount_inc_not_zero(&rb->refcount))
76369139 6297 rb = NULL;
ac9721f3
PZ
6298 }
6299 rcu_read_unlock();
6300
76369139 6301 return rb;
ac9721f3
PZ
6302}
6303
56de4e8f 6304void ring_buffer_put(struct perf_buffer *rb)
ac9721f3 6305{
fecb8ed2 6306 if (!refcount_dec_and_test(&rb->refcount))
ac9721f3 6307 return;
7b732a75 6308
9bb5d40c 6309 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 6310
76369139 6311 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
6312}
6313
6314static void perf_mmap_open(struct vm_area_struct *vma)
6315{
cdd6c482 6316 struct perf_event *event = vma->vm_file->private_data;
7b732a75 6317
cdd6c482 6318 atomic_inc(&event->mmap_count);
9bb5d40c 6319 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 6320
45bfb2e5
PZ
6321 if (vma->vm_pgoff)
6322 atomic_inc(&event->rb->aux_mmap_count);
6323
1e0fb9ec 6324 if (event->pmu->event_mapped)
bfe33492 6325 event->pmu->event_mapped(event, vma->vm_mm);
7b732a75
PZ
6326}
6327
95ff4ca2
AS
6328static void perf_pmu_output_stop(struct perf_event *event);
6329
9bb5d40c
PZ
6330/*
6331 * A buffer can be mmap()ed multiple times; either directly through the same
6332 * event, or through other events by use of perf_event_set_output().
6333 *
6334 * In order to undo the VM accounting done by perf_mmap() we need to destroy
6335 * the buffer here, where we still have a VM context. This means we need
6336 * to detach all events redirecting to us.
6337 */
7b732a75
PZ
6338static void perf_mmap_close(struct vm_area_struct *vma)
6339{
cdd6c482 6340 struct perf_event *event = vma->vm_file->private_data;
56de4e8f 6341 struct perf_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
6342 struct user_struct *mmap_user = rb->mmap_user;
6343 int mmap_locked = rb->mmap_locked;
6344 unsigned long size = perf_data_size(rb);
f91072ed 6345 bool detach_rest = false;
789f90fc 6346
1e0fb9ec 6347 if (event->pmu->event_unmapped)
bfe33492 6348 event->pmu->event_unmapped(event, vma->vm_mm);
1e0fb9ec 6349
45bfb2e5
PZ
6350 /*
6351 * rb->aux_mmap_count will always drop before rb->mmap_count and
6352 * event->mmap_count, so it is ok to use event->mmap_mutex to
6353 * serialize with perf_mmap here.
6354 */
6355 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6356 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
6357 /*
6358 * Stop all AUX events that are writing to this buffer,
6359 * so that we can free its AUX pages and corresponding PMU
6360 * data. Note that after rb::aux_mmap_count dropped to zero,
6361 * they won't start any more (see perf_aux_output_begin()).
6362 */
6363 perf_pmu_output_stop(event);
6364
6365 /* now it's safe to free the pages */
36b3db03
AS
6366 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6367 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
45bfb2e5 6368
95ff4ca2 6369 /* this has to be the last one */
45bfb2e5 6370 rb_free_aux(rb);
ca3bb3d0 6371 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
95ff4ca2 6372
45bfb2e5
PZ
6373 mutex_unlock(&event->mmap_mutex);
6374 }
6375
f91072ed
JO
6376 if (atomic_dec_and_test(&rb->mmap_count))
6377 detach_rest = true;
9bb5d40c
PZ
6378
6379 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 6380 goto out_put;
9bb5d40c 6381
b69cf536 6382 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
6383 mutex_unlock(&event->mmap_mutex);
6384
6385 /* If there's still other mmap()s of this buffer, we're done. */
f91072ed 6386 if (!detach_rest)
b69cf536 6387 goto out_put;
ac9721f3 6388
9bb5d40c
PZ
6389 /*
6390 * No other mmap()s, detach from all other events that might redirect
6391 * into the now unreachable buffer. Somewhat complicated by the
6392 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6393 */
6394again:
6395 rcu_read_lock();
6396 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6397 if (!atomic_long_inc_not_zero(&event->refcount)) {
6398 /*
6399 * This event is en-route to free_event() which will
6400 * detach it and remove it from the list.
6401 */
6402 continue;
6403 }
6404 rcu_read_unlock();
789f90fc 6405
9bb5d40c
PZ
6406 mutex_lock(&event->mmap_mutex);
6407 /*
6408 * Check we didn't race with perf_event_set_output() which can
6409 * swizzle the rb from under us while we were waiting to
6410 * acquire mmap_mutex.
6411 *
6412 * If we find a different rb; ignore this event, a next
6413 * iteration will no longer find it on the list. We have to
6414 * still restart the iteration to make sure we're not now
6415 * iterating the wrong list.
6416 */
b69cf536
PZ
6417 if (event->rb == rb)
6418 ring_buffer_attach(event, NULL);
6419
cdd6c482 6420 mutex_unlock(&event->mmap_mutex);
9bb5d40c 6421 put_event(event);
ac9721f3 6422
9bb5d40c
PZ
6423 /*
6424 * Restart the iteration; either we're on the wrong list or
6425 * destroyed its integrity by doing a deletion.
6426 */
6427 goto again;
7b732a75 6428 }
9bb5d40c
PZ
6429 rcu_read_unlock();
6430
6431 /*
6432 * It could be there's still a few 0-ref events on the list; they'll
6433 * get cleaned up by free_event() -- they'll also still have their
6434 * ref on the rb and will free it whenever they are done with it.
6435 *
6436 * Aside from that, this buffer is 'fully' detached and unmapped,
6437 * undo the VM accounting.
6438 */
6439
d44248a4
SL
6440 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6441 &mmap_user->locked_vm);
70f8a3ca 6442 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
9bb5d40c
PZ
6443 free_uid(mmap_user);
6444
b69cf536 6445out_put:
9bb5d40c 6446 ring_buffer_put(rb); /* could be last */
37d81828
PM
6447}
6448
f0f37e2f 6449static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 6450 .open = perf_mmap_open,
fca0c116 6451 .close = perf_mmap_close, /* non mergeable */
43a21ea8
PZ
6452 .fault = perf_mmap_fault,
6453 .page_mkwrite = perf_mmap_fault,
37d81828
PM
6454};
6455
6456static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6457{
cdd6c482 6458 struct perf_event *event = file->private_data;
22a4f650 6459 unsigned long user_locked, user_lock_limit;
789f90fc 6460 struct user_struct *user = current_user();
56de4e8f 6461 struct perf_buffer *rb = NULL;
22a4f650 6462 unsigned long locked, lock_limit;
7b732a75
PZ
6463 unsigned long vma_size;
6464 unsigned long nr_pages;
45bfb2e5 6465 long user_extra = 0, extra = 0;
d57e34fd 6466 int ret = 0, flags = 0;
37d81828 6467
c7920614
PZ
6468 /*
6469 * Don't allow mmap() of inherited per-task counters. This would
6470 * create a performance issue due to all children writing to the
76369139 6471 * same rb.
c7920614
PZ
6472 */
6473 if (event->cpu == -1 && event->attr.inherit)
6474 return -EINVAL;
6475
43a21ea8 6476 if (!(vma->vm_flags & VM_SHARED))
37d81828 6477 return -EINVAL;
7b732a75 6478
da97e184
JFG
6479 ret = security_perf_event_read(event);
6480 if (ret)
6481 return ret;
6482
7b732a75 6483 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
6484
6485 if (vma->vm_pgoff == 0) {
6486 nr_pages = (vma_size / PAGE_SIZE) - 1;
6487 } else {
6488 /*
6489 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6490 * mapped, all subsequent mappings should have the same size
6491 * and offset. Must be above the normal perf buffer.
6492 */
6493 u64 aux_offset, aux_size;
6494
6495 if (!event->rb)
6496 return -EINVAL;
6497
6498 nr_pages = vma_size / PAGE_SIZE;
6499
6500 mutex_lock(&event->mmap_mutex);
6501 ret = -EINVAL;
6502
6503 rb = event->rb;
6504 if (!rb)
6505 goto aux_unlock;
6506
6aa7de05
MR
6507 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6508 aux_size = READ_ONCE(rb->user_page->aux_size);
45bfb2e5
PZ
6509
6510 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6511 goto aux_unlock;
6512
6513 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6514 goto aux_unlock;
6515
6516 /* already mapped with a different offset */
6517 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6518 goto aux_unlock;
6519
6520 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6521 goto aux_unlock;
6522
6523 /* already mapped with a different size */
6524 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6525 goto aux_unlock;
6526
6527 if (!is_power_of_2(nr_pages))
6528 goto aux_unlock;
6529
6530 if (!atomic_inc_not_zero(&rb->mmap_count))
6531 goto aux_unlock;
6532
6533 if (rb_has_aux(rb)) {
6534 atomic_inc(&rb->aux_mmap_count);
6535 ret = 0;
6536 goto unlock;
6537 }
6538
6539 atomic_set(&rb->aux_mmap_count, 1);
6540 user_extra = nr_pages;
6541
6542 goto accounting;
6543 }
7b732a75 6544
7730d865 6545 /*
76369139 6546 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
6547 * can do bitmasks instead of modulo.
6548 */
2ed11312 6549 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
6550 return -EINVAL;
6551
7b732a75 6552 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
6553 return -EINVAL;
6554
cdd6c482 6555 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 6556again:
cdd6c482 6557 mutex_lock(&event->mmap_mutex);
76369139 6558 if (event->rb) {
60490e79 6559 if (data_page_nr(event->rb) != nr_pages) {
ebb3c4c4 6560 ret = -EINVAL;
9bb5d40c
PZ
6561 goto unlock;
6562 }
6563
6564 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6565 /*
68e3c698
PZ
6566 * Raced against perf_mmap_close(); remove the
6567 * event and try again.
9bb5d40c 6568 */
68e3c698 6569 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
6570 mutex_unlock(&event->mmap_mutex);
6571 goto again;
6572 }
6573
ebb3c4c4
PZ
6574 goto unlock;
6575 }
6576
789f90fc 6577 user_extra = nr_pages + 1;
45bfb2e5
PZ
6578
6579accounting:
cdd6c482 6580 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
6581
6582 /*
6583 * Increase the limit linearly with more CPUs:
6584 */
6585 user_lock_limit *= num_online_cpus();
6586
00346155
SL
6587 user_locked = atomic_long_read(&user->locked_vm);
6588
6589 /*
6590 * sysctl_perf_event_mlock may have changed, so that
6591 * user->locked_vm > user_lock_limit
6592 */
6593 if (user_locked > user_lock_limit)
6594 user_locked = user_lock_limit;
6595 user_locked += user_extra;
c5078f78 6596
c4b75479 6597 if (user_locked > user_lock_limit) {
d44248a4
SL
6598 /*
6599 * charge locked_vm until it hits user_lock_limit;
6600 * charge the rest from pinned_vm
6601 */
789f90fc 6602 extra = user_locked - user_lock_limit;
d44248a4
SL
6603 user_extra -= extra;
6604 }
7b732a75 6605
78d7d407 6606 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 6607 lock_limit >>= PAGE_SHIFT;
70f8a3ca 6608 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
7b732a75 6609
da97e184 6610 if ((locked > lock_limit) && perf_is_paranoid() &&
459ec28a 6611 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
6612 ret = -EPERM;
6613 goto unlock;
6614 }
7b732a75 6615
45bfb2e5 6616 WARN_ON(!rb && event->rb);
906010b2 6617
d57e34fd 6618 if (vma->vm_flags & VM_WRITE)
76369139 6619 flags |= RING_BUFFER_WRITABLE;
d57e34fd 6620
76369139 6621 if (!rb) {
45bfb2e5
PZ
6622 rb = rb_alloc(nr_pages,
6623 event->attr.watermark ? event->attr.wakeup_watermark : 0,
6624 event->cpu, flags);
26cb63ad 6625
45bfb2e5
PZ
6626 if (!rb) {
6627 ret = -ENOMEM;
6628 goto unlock;
6629 }
43a21ea8 6630
45bfb2e5
PZ
6631 atomic_set(&rb->mmap_count, 1);
6632 rb->mmap_user = get_current_user();
6633 rb->mmap_locked = extra;
26cb63ad 6634
45bfb2e5 6635 ring_buffer_attach(event, rb);
ac9721f3 6636
f7925653 6637 perf_event_update_time(event);
45bfb2e5
PZ
6638 perf_event_init_userpage(event);
6639 perf_event_update_userpage(event);
6640 } else {
1a594131
AS
6641 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6642 event->attr.aux_watermark, flags);
45bfb2e5
PZ
6643 if (!ret)
6644 rb->aux_mmap_locked = extra;
6645 }
9a0f05cb 6646
ebb3c4c4 6647unlock:
45bfb2e5
PZ
6648 if (!ret) {
6649 atomic_long_add(user_extra, &user->locked_vm);
70f8a3ca 6650 atomic64_add(extra, &vma->vm_mm->pinned_vm);
45bfb2e5 6651
ac9721f3 6652 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
6653 } else if (rb) {
6654 atomic_dec(&rb->mmap_count);
6655 }
6656aux_unlock:
cdd6c482 6657 mutex_unlock(&event->mmap_mutex);
37d81828 6658
9bb5d40c
PZ
6659 /*
6660 * Since pinned accounting is per vm we cannot allow fork() to copy our
6661 * vma.
6662 */
1c71222e 6663 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
37d81828 6664 vma->vm_ops = &perf_mmap_vmops;
7b732a75 6665
1e0fb9ec 6666 if (event->pmu->event_mapped)
bfe33492 6667 event->pmu->event_mapped(event, vma->vm_mm);
1e0fb9ec 6668
7b732a75 6669 return ret;
37d81828
PM
6670}
6671
3c446b3d
PZ
6672static int perf_fasync(int fd, struct file *filp, int on)
6673{
496ad9aa 6674 struct inode *inode = file_inode(filp);
cdd6c482 6675 struct perf_event *event = filp->private_data;
3c446b3d
PZ
6676 int retval;
6677
5955102c 6678 inode_lock(inode);
cdd6c482 6679 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 6680 inode_unlock(inode);
3c446b3d
PZ
6681
6682 if (retval < 0)
6683 return retval;
6684
6685 return 0;
6686}
6687
0793a61d 6688static const struct file_operations perf_fops = {
3326c1ce 6689 .llseek = no_llseek,
0793a61d
TG
6690 .release = perf_release,
6691 .read = perf_read,
6692 .poll = perf_poll,
d859e29f 6693 .unlocked_ioctl = perf_ioctl,
b3f20785 6694 .compat_ioctl = perf_compat_ioctl,
37d81828 6695 .mmap = perf_mmap,
3c446b3d 6696 .fasync = perf_fasync,
0793a61d
TG
6697};
6698
925d519a 6699/*
cdd6c482 6700 * Perf event wakeup
925d519a
PZ
6701 *
6702 * If there's data, ensure we set the poll() state and publish everything
6703 * to user-space before waking everybody up.
6704 */
6705
cdd6c482 6706void perf_event_wakeup(struct perf_event *event)
925d519a 6707{
10c6db11 6708 ring_buffer_wakeup(event);
4c9e2542 6709
cdd6c482 6710 if (event->pending_kill) {
fed66e2c 6711 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 6712 event->pending_kill = 0;
4c9e2542 6713 }
925d519a
PZ
6714}
6715
97ba62b2
ME
6716static void perf_sigtrap(struct perf_event *event)
6717{
97ba62b2
ME
6718 /*
6719 * We'd expect this to only occur if the irq_work is delayed and either
6720 * ctx->task or current has changed in the meantime. This can be the
6721 * case on architectures that do not implement arch_irq_work_raise().
6722 */
6723 if (WARN_ON_ONCE(event->ctx->task != current))
6724 return;
6725
6726 /*
ca6c2132
PZ
6727 * Both perf_pending_task() and perf_pending_irq() can race with the
6728 * task exiting.
97ba62b2
ME
6729 */
6730 if (current->flags & PF_EXITING)
6731 return;
6732
78ed93d7 6733 send_sig_perf((void __user *)event->pending_addr,
0d6d062c 6734 event->orig_type, event->attr.sig_data);
97ba62b2
ME
6735}
6736
ca6c2132
PZ
6737/*
6738 * Deliver the pending work in-event-context or follow the context.
6739 */
6740static void __perf_pending_irq(struct perf_event *event)
1d54ad94 6741{
ca6c2132 6742 int cpu = READ_ONCE(event->oncpu);
1d54ad94 6743
ca6c2132
PZ
6744 /*
6745 * If the event isn't running; we done. event_sched_out() will have
6746 * taken care of things.
6747 */
1d54ad94
PZ
6748 if (cpu < 0)
6749 return;
6750
ca6c2132
PZ
6751 /*
6752 * Yay, we hit home and are in the context of the event.
6753 */
1d54ad94 6754 if (cpu == smp_processor_id()) {
ca6c2132
PZ
6755 if (event->pending_sigtrap) {
6756 event->pending_sigtrap = 0;
97ba62b2 6757 perf_sigtrap(event);
ca6c2132
PZ
6758 local_dec(&event->ctx->nr_pending);
6759 }
6760 if (event->pending_disable) {
6761 event->pending_disable = 0;
6762 perf_event_disable_local(event);
97ba62b2 6763 }
1d54ad94
PZ
6764 return;
6765 }
6766
6767 /*
6768 * CPU-A CPU-B
6769 *
6770 * perf_event_disable_inatomic()
6771 * @pending_disable = CPU-A;
6772 * irq_work_queue();
6773 *
6774 * sched-out
6775 * @pending_disable = -1;
6776 *
6777 * sched-in
6778 * perf_event_disable_inatomic()
6779 * @pending_disable = CPU-B;
6780 * irq_work_queue(); // FAILS
6781 *
6782 * irq_work_run()
ca6c2132 6783 * perf_pending_irq()
1d54ad94
PZ
6784 *
6785 * But the event runs on CPU-B and wants disabling there.
6786 */
ca6c2132 6787 irq_work_queue_on(&event->pending_irq, cpu);
1d54ad94
PZ
6788}
6789
ca6c2132 6790static void perf_pending_irq(struct irq_work *entry)
79f14641 6791{
ca6c2132 6792 struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
d525211f
PZ
6793 int rctx;
6794
d525211f
PZ
6795 /*
6796 * If we 'fail' here, that's OK, it means recursion is already disabled
6797 * and we won't recurse 'further'.
6798 */
ca6c2132 6799 rctx = perf_swevent_get_recursion_context();
79f14641 6800
ca6c2132
PZ
6801 /*
6802 * The wakeup isn't bound to the context of the event -- it can happen
6803 * irrespective of where the event is.
6804 */
cdd6c482
IM
6805 if (event->pending_wakeup) {
6806 event->pending_wakeup = 0;
6807 perf_event_wakeup(event);
79f14641 6808 }
d525211f 6809
ca6c2132
PZ
6810 __perf_pending_irq(event);
6811
d525211f
PZ
6812 if (rctx >= 0)
6813 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
6814}
6815
ca6c2132
PZ
6816static void perf_pending_task(struct callback_head *head)
6817{
6818 struct perf_event *event = container_of(head, struct perf_event, pending_task);
6819 int rctx;
6820
6821 /*
6822 * If we 'fail' here, that's OK, it means recursion is already disabled
6823 * and we won't recurse 'further'.
6824 */
6825 preempt_disable_notrace();
6826 rctx = perf_swevent_get_recursion_context();
6827
6828 if (event->pending_work) {
6829 event->pending_work = 0;
6830 perf_sigtrap(event);
6831 local_dec(&event->ctx->nr_pending);
6832 }
6833
6834 if (rctx >= 0)
6835 perf_swevent_put_recursion_context(rctx);
6836 preempt_enable_notrace();
517e6a30
PZ
6837
6838 put_event(event);
ca6c2132
PZ
6839}
6840
2aef6f30 6841#ifdef CONFIG_GUEST_PERF_EVENTS
ff083a2d 6842struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
39447b38 6843
87b940a0
SC
6844DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6845DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6846DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
39447b38 6847
2934e3d0 6848void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
39447b38 6849{
ff083a2d 6850 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
2934e3d0 6851 return;
ff083a2d
SC
6852
6853 rcu_assign_pointer(perf_guest_cbs, cbs);
87b940a0
SC
6854 static_call_update(__perf_guest_state, cbs->state);
6855 static_call_update(__perf_guest_get_ip, cbs->get_ip);
6856
6857 /* Implementing ->handle_intel_pt_intr is optional. */
6858 if (cbs->handle_intel_pt_intr)
6859 static_call_update(__perf_guest_handle_intel_pt_intr,
6860 cbs->handle_intel_pt_intr);
39447b38
ZY
6861}
6862EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6863
2934e3d0 6864void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
39447b38 6865{
ff083a2d 6866 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
2934e3d0 6867 return;
ff083a2d
SC
6868
6869 rcu_assign_pointer(perf_guest_cbs, NULL);
87b940a0
SC
6870 static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6871 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6872 static_call_update(__perf_guest_handle_intel_pt_intr,
6873 (void *)&__static_call_return0);
ff083a2d 6874 synchronize_rcu();
39447b38
ZY
6875}
6876EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
2aef6f30 6877#endif
39447b38 6878
4018994f
JO
6879static void
6880perf_output_sample_regs(struct perf_output_handle *handle,
6881 struct pt_regs *regs, u64 mask)
6882{
6883 int bit;
29dd3288 6884 DECLARE_BITMAP(_mask, 64);
4018994f 6885
29dd3288
MS
6886 bitmap_from_u64(_mask, mask);
6887 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
6888 u64 val;
6889
6890 val = perf_reg_value(regs, bit);
6891 perf_output_put(handle, val);
6892 }
6893}
6894
60e2364e 6895static void perf_sample_regs_user(struct perf_regs *regs_user,
76a4efa8 6896 struct pt_regs *regs)
4018994f 6897{
88a7c26a
AL
6898 if (user_mode(regs)) {
6899 regs_user->abi = perf_reg_abi(current);
2565711f 6900 regs_user->regs = regs;
085ebfe9 6901 } else if (!(current->flags & PF_KTHREAD)) {
76a4efa8 6902 perf_get_regs_user(regs_user, regs);
2565711f
PZ
6903 } else {
6904 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6905 regs_user->regs = NULL;
4018994f
JO
6906 }
6907}
6908
60e2364e
SE
6909static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6910 struct pt_regs *regs)
6911{
6912 regs_intr->regs = regs;
6913 regs_intr->abi = perf_reg_abi(current);
6914}
6915
6916
c5ebcedb
JO
6917/*
6918 * Get remaining task size from user stack pointer.
6919 *
6920 * It'd be better to take stack vma map and limit this more
9f014e3a 6921 * precisely, but there's no way to get it safely under interrupt,
c5ebcedb
JO
6922 * so using TASK_SIZE as limit.
6923 */
6924static u64 perf_ustack_task_size(struct pt_regs *regs)
6925{
6926 unsigned long addr = perf_user_stack_pointer(regs);
6927
6928 if (!addr || addr >= TASK_SIZE)
6929 return 0;
6930
6931 return TASK_SIZE - addr;
6932}
6933
6934static u16
6935perf_sample_ustack_size(u16 stack_size, u16 header_size,
6936 struct pt_regs *regs)
6937{
6938 u64 task_size;
6939
6940 /* No regs, no stack pointer, no dump. */
6941 if (!regs)
6942 return 0;
6943
6944 /*
6945 * Check if we fit in with the requested stack size into the:
6946 * - TASK_SIZE
6947 * If we don't, we limit the size to the TASK_SIZE.
6948 *
6949 * - remaining sample size
6950 * If we don't, we customize the stack size to
6951 * fit in to the remaining sample size.
6952 */
6953
6954 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6955 stack_size = min(stack_size, (u16) task_size);
6956
6957 /* Current header size plus static size and dynamic size. */
6958 header_size += 2 * sizeof(u64);
6959
6960 /* Do we fit in with the current stack dump size? */
6961 if ((u16) (header_size + stack_size) < header_size) {
6962 /*
6963 * If we overflow the maximum size for the sample,
6964 * we customize the stack dump size to fit in.
6965 */
6966 stack_size = USHRT_MAX - header_size - sizeof(u64);
6967 stack_size = round_up(stack_size, sizeof(u64));
6968 }
6969
6970 return stack_size;
6971}
6972
6973static void
6974perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6975 struct pt_regs *regs)
6976{
6977 /* Case of a kernel thread, nothing to dump */
6978 if (!regs) {
6979 u64 size = 0;
6980 perf_output_put(handle, size);
6981 } else {
6982 unsigned long sp;
6983 unsigned int rem;
6984 u64 dyn_size;
6985
6986 /*
6987 * We dump:
6988 * static size
6989 * - the size requested by user or the best one we can fit
6990 * in to the sample max size
6991 * data
6992 * - user stack dump data
6993 * dynamic size
6994 * - the actual dumped size
6995 */
6996
6997 /* Static size. */
6998 perf_output_put(handle, dump_size);
6999
7000 /* Data. */
7001 sp = perf_user_stack_pointer(regs);
7002 rem = __output_copy_user(handle, (void *) sp, dump_size);
7003 dyn_size = dump_size - rem;
7004
7005 perf_output_skip(handle, rem);
7006
7007 /* Dynamic size. */
7008 perf_output_put(handle, dyn_size);
7009 }
7010}
7011
a4faf00d
AS
7012static unsigned long perf_prepare_sample_aux(struct perf_event *event,
7013 struct perf_sample_data *data,
7014 size_t size)
7015{
7016 struct perf_event *sampler = event->aux_event;
56de4e8f 7017 struct perf_buffer *rb;
a4faf00d
AS
7018
7019 data->aux_size = 0;
7020
7021 if (!sampler)
7022 goto out;
7023
7024 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7025 goto out;
7026
7027 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7028 goto out;
7029
961c3912 7030 rb = ring_buffer_get(sampler);
a4faf00d
AS
7031 if (!rb)
7032 goto out;
7033
7034 /*
7035 * If this is an NMI hit inside sampling code, don't take
7036 * the sample. See also perf_aux_sample_output().
7037 */
7038 if (READ_ONCE(rb->aux_in_sampling)) {
7039 data->aux_size = 0;
7040 } else {
7041 size = min_t(size_t, size, perf_aux_size(rb));
7042 data->aux_size = ALIGN(size, sizeof(u64));
7043 }
7044 ring_buffer_put(rb);
7045
7046out:
7047 return data->aux_size;
7048}
7049
32961aec
HX
7050static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7051 struct perf_event *event,
7052 struct perf_output_handle *handle,
7053 unsigned long size)
a4faf00d
AS
7054{
7055 unsigned long flags;
7056 long ret;
7057
7058 /*
7059 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7060 * paths. If we start calling them in NMI context, they may race with
7061 * the IRQ ones, that is, for example, re-starting an event that's just
7062 * been stopped, which is why we're using a separate callback that
7063 * doesn't change the event state.
7064 *
7065 * IRQs need to be disabled to prevent IPIs from racing with us.
7066 */
7067 local_irq_save(flags);
7068 /*
7069 * Guard against NMI hits inside the critical section;
7070 * see also perf_prepare_sample_aux().
7071 */
7072 WRITE_ONCE(rb->aux_in_sampling, 1);
7073 barrier();
7074
7075 ret = event->pmu->snapshot_aux(event, handle, size);
7076
7077 barrier();
7078 WRITE_ONCE(rb->aux_in_sampling, 0);
7079 local_irq_restore(flags);
7080
7081 return ret;
7082}
7083
7084static void perf_aux_sample_output(struct perf_event *event,
7085 struct perf_output_handle *handle,
7086 struct perf_sample_data *data)
7087{
7088 struct perf_event *sampler = event->aux_event;
56de4e8f 7089 struct perf_buffer *rb;
a4faf00d 7090 unsigned long pad;
a4faf00d
AS
7091 long size;
7092
7093 if (WARN_ON_ONCE(!sampler || !data->aux_size))
7094 return;
7095
961c3912 7096 rb = ring_buffer_get(sampler);
a4faf00d
AS
7097 if (!rb)
7098 return;
7099
7100 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7101
7102 /*
7103 * An error here means that perf_output_copy() failed (returned a
7104 * non-zero surplus that it didn't copy), which in its current
7105 * enlightened implementation is not possible. If that changes, we'd
7106 * like to know.
7107 */
7108 if (WARN_ON_ONCE(size < 0))
7109 goto out_put;
7110
7111 /*
7112 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7113 * perf_prepare_sample_aux(), so should not be more than that.
7114 */
7115 pad = data->aux_size - size;
7116 if (WARN_ON_ONCE(pad >= sizeof(u64)))
7117 pad = 8;
7118
7119 if (pad) {
7120 u64 zero = 0;
7121 perf_output_copy(handle, &zero, pad);
7122 }
7123
7124out_put:
7125 ring_buffer_put(rb);
7126}
7127
bb447c27
NK
7128/*
7129 * A set of common sample data types saved even for non-sample records
7130 * when event->attr.sample_id_all is set.
7131 */
7132#define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \
7133 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \
7134 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7135
a7c8d0da 7136static void __perf_event_header__init_id(struct perf_sample_data *data,
3aac580d
KL
7137 struct perf_event *event,
7138 u64 sample_type)
6844c09d 7139{
3aac580d 7140 data->type = event->attr.sample_type;
bb447c27 7141 data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
6844c09d
ACM
7142
7143 if (sample_type & PERF_SAMPLE_TID) {
7144 /* namespace issues */
7145 data->tid_entry.pid = perf_event_pid(event, current);
7146 data->tid_entry.tid = perf_event_tid(event, current);
7147 }
7148
7149 if (sample_type & PERF_SAMPLE_TIME)
34f43927 7150 data->time = perf_event_clock(event);
6844c09d 7151
ff3d527c 7152 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
7153 data->id = primary_event_id(event);
7154
7155 if (sample_type & PERF_SAMPLE_STREAM_ID)
7156 data->stream_id = event->id;
7157
7158 if (sample_type & PERF_SAMPLE_CPU) {
7159 data->cpu_entry.cpu = raw_smp_processor_id();
7160 data->cpu_entry.reserved = 0;
7161 }
7162}
7163
76369139
FW
7164void perf_event_header__init_id(struct perf_event_header *header,
7165 struct perf_sample_data *data,
7166 struct perf_event *event)
c980d109 7167{
a7c8d0da
NK
7168 if (event->attr.sample_id_all) {
7169 header->size += event->id_header_size;
7170 __perf_event_header__init_id(data, event, event->attr.sample_type);
7171 }
c980d109
ACM
7172}
7173
7174static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7175 struct perf_sample_data *data)
7176{
7177 u64 sample_type = data->type;
7178
7179 if (sample_type & PERF_SAMPLE_TID)
7180 perf_output_put(handle, data->tid_entry);
7181
7182 if (sample_type & PERF_SAMPLE_TIME)
7183 perf_output_put(handle, data->time);
7184
7185 if (sample_type & PERF_SAMPLE_ID)
7186 perf_output_put(handle, data->id);
7187
7188 if (sample_type & PERF_SAMPLE_STREAM_ID)
7189 perf_output_put(handle, data->stream_id);
7190
7191 if (sample_type & PERF_SAMPLE_CPU)
7192 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
7193
7194 if (sample_type & PERF_SAMPLE_IDENTIFIER)
7195 perf_output_put(handle, data->id);
c980d109
ACM
7196}
7197
76369139
FW
7198void perf_event__output_id_sample(struct perf_event *event,
7199 struct perf_output_handle *handle,
7200 struct perf_sample_data *sample)
c980d109
ACM
7201{
7202 if (event->attr.sample_id_all)
7203 __perf_event__output_id_sample(handle, sample);
7204}
7205
3dab77fb 7206static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
7207 struct perf_event *event,
7208 u64 enabled, u64 running)
3dab77fb 7209{
cdd6c482 7210 u64 read_format = event->attr.read_format;
119a784c 7211 u64 values[5];
3dab77fb
PZ
7212 int n = 0;
7213
b5e58793 7214 values[n++] = perf_event_count(event);
3dab77fb 7215 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 7216 values[n++] = enabled +
cdd6c482 7217 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
7218 }
7219 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 7220 values[n++] = running +
cdd6c482 7221 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
7222 }
7223 if (read_format & PERF_FORMAT_ID)
cdd6c482 7224 values[n++] = primary_event_id(event);
119a784c
NK
7225 if (read_format & PERF_FORMAT_LOST)
7226 values[n++] = atomic64_read(&event->lost_samples);
3dab77fb 7227
76369139 7228 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
7229}
7230
3dab77fb 7231static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
7232 struct perf_event *event,
7233 u64 enabled, u64 running)
3dab77fb 7234{
cdd6c482
IM
7235 struct perf_event *leader = event->group_leader, *sub;
7236 u64 read_format = event->attr.read_format;
6b959ba2 7237 unsigned long flags;
119a784c 7238 u64 values[6];
3dab77fb
PZ
7239 int n = 0;
7240
6b959ba2
YJ
7241 /*
7242 * Disabling interrupts avoids all counter scheduling
7243 * (context switches, timer based rotation and IPIs).
7244 */
7245 local_irq_save(flags);
7246
3dab77fb
PZ
7247 values[n++] = 1 + leader->nr_siblings;
7248
7249 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 7250 values[n++] = enabled;
3dab77fb
PZ
7251
7252 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 7253 values[n++] = running;
3dab77fb 7254
9e5b127d
PZ
7255 if ((leader != event) &&
7256 (leader->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
7257 leader->pmu->read(leader);
7258
b5e58793 7259 values[n++] = perf_event_count(leader);
3dab77fb 7260 if (read_format & PERF_FORMAT_ID)
cdd6c482 7261 values[n++] = primary_event_id(leader);
119a784c
NK
7262 if (read_format & PERF_FORMAT_LOST)
7263 values[n++] = atomic64_read(&leader->lost_samples);
3dab77fb 7264
76369139 7265 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 7266
edb39592 7267 for_each_sibling_event(sub, leader) {
3dab77fb
PZ
7268 n = 0;
7269
6f5ab001
JO
7270 if ((sub != event) &&
7271 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
7272 sub->pmu->read(sub);
7273
b5e58793 7274 values[n++] = perf_event_count(sub);
3dab77fb 7275 if (read_format & PERF_FORMAT_ID)
cdd6c482 7276 values[n++] = primary_event_id(sub);
119a784c
NK
7277 if (read_format & PERF_FORMAT_LOST)
7278 values[n++] = atomic64_read(&sub->lost_samples);
3dab77fb 7279
76369139 7280 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 7281 }
6b959ba2
YJ
7282
7283 local_irq_restore(flags);
3dab77fb
PZ
7284}
7285
eed01528
SE
7286#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7287 PERF_FORMAT_TOTAL_TIME_RUNNING)
7288
ba5213ae
PZ
7289/*
7290 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7291 *
7292 * The problem is that its both hard and excessively expensive to iterate the
7293 * child list, not to mention that its impossible to IPI the children running
7294 * on another CPU, from interrupt/NMI context.
7295 */
3dab77fb 7296static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 7297 struct perf_event *event)
3dab77fb 7298{
e3f3541c 7299 u64 enabled = 0, running = 0, now;
eed01528
SE
7300 u64 read_format = event->attr.read_format;
7301
7302 /*
7303 * compute total_time_enabled, total_time_running
7304 * based on snapshot values taken when the event
7305 * was last scheduled in.
7306 *
7307 * we cannot simply called update_context_time()
7308 * because of locking issue as we are called in
7309 * NMI context
7310 */
c4794295 7311 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 7312 calc_timer_values(event, &now, &enabled, &running);
eed01528 7313
cdd6c482 7314 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 7315 perf_output_read_group(handle, event, enabled, running);
3dab77fb 7316 else
eed01528 7317 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
7318}
7319
5622f295
MM
7320void perf_output_sample(struct perf_output_handle *handle,
7321 struct perf_event_header *header,
7322 struct perf_sample_data *data,
cdd6c482 7323 struct perf_event *event)
5622f295
MM
7324{
7325 u64 sample_type = data->type;
7326
7327 perf_output_put(handle, *header);
7328
ff3d527c
AH
7329 if (sample_type & PERF_SAMPLE_IDENTIFIER)
7330 perf_output_put(handle, data->id);
7331
5622f295
MM
7332 if (sample_type & PERF_SAMPLE_IP)
7333 perf_output_put(handle, data->ip);
7334
7335 if (sample_type & PERF_SAMPLE_TID)
7336 perf_output_put(handle, data->tid_entry);
7337
7338 if (sample_type & PERF_SAMPLE_TIME)
7339 perf_output_put(handle, data->time);
7340
7341 if (sample_type & PERF_SAMPLE_ADDR)
7342 perf_output_put(handle, data->addr);
7343
7344 if (sample_type & PERF_SAMPLE_ID)
7345 perf_output_put(handle, data->id);
7346
7347 if (sample_type & PERF_SAMPLE_STREAM_ID)
7348 perf_output_put(handle, data->stream_id);
7349
7350 if (sample_type & PERF_SAMPLE_CPU)
7351 perf_output_put(handle, data->cpu_entry);
7352
7353 if (sample_type & PERF_SAMPLE_PERIOD)
7354 perf_output_put(handle, data->period);
7355
7356 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 7357 perf_output_read(handle, event);
5622f295
MM
7358
7359 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
99e818cc 7360 int size = 1;
5622f295 7361
99e818cc
JO
7362 size += data->callchain->nr;
7363 size *= sizeof(u64);
7364 __output_copy(handle, data->callchain, size);
5622f295
MM
7365 }
7366
7367 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
7368 struct perf_raw_record *raw = data->raw;
7369
7370 if (raw) {
7371 struct perf_raw_frag *frag = &raw->frag;
7372
7373 perf_output_put(handle, raw->size);
7374 do {
7375 if (frag->copy) {
7376 __output_custom(handle, frag->copy,
7377 frag->data, frag->size);
7378 } else {
7379 __output_copy(handle, frag->data,
7380 frag->size);
7381 }
7382 if (perf_raw_frag_last(frag))
7383 break;
7384 frag = frag->next;
7385 } while (1);
7386 if (frag->pad)
7387 __output_skip(handle, NULL, frag->pad);
5622f295
MM
7388 } else {
7389 struct {
7390 u32 size;
7391 u32 data;
7392 } raw = {
7393 .size = sizeof(u32),
7394 .data = 0,
7395 };
7396 perf_output_put(handle, raw);
7397 }
7398 }
a7ac67ea 7399
bce38cd5 7400 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
eb55b455 7401 if (data->br_stack) {
bce38cd5
SE
7402 size_t size;
7403
7404 size = data->br_stack->nr
7405 * sizeof(struct perf_branch_entry);
7406
7407 perf_output_put(handle, data->br_stack->nr);
03b02db9 7408 if (branch_sample_hw_index(event))
bbfd5e4f 7409 perf_output_put(handle, data->br_stack->hw_idx);
bce38cd5 7410 perf_output_copy(handle, data->br_stack->entries, size);
571d91dc
KL
7411 /*
7412 * Add the extension space which is appended
7413 * right after the struct perf_branch_stack.
7414 */
7415 if (data->br_stack_cntr) {
7416 size = data->br_stack->nr * sizeof(u64);
7417 perf_output_copy(handle, data->br_stack_cntr, size);
7418 }
bce38cd5
SE
7419 } else {
7420 /*
7421 * we always store at least the value of nr
7422 */
7423 u64 nr = 0;
7424 perf_output_put(handle, nr);
7425 }
7426 }
4018994f
JO
7427
7428 if (sample_type & PERF_SAMPLE_REGS_USER) {
7429 u64 abi = data->regs_user.abi;
7430
7431 /*
7432 * If there are no regs to dump, notice it through
7433 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7434 */
7435 perf_output_put(handle, abi);
7436
7437 if (abi) {
7438 u64 mask = event->attr.sample_regs_user;
7439 perf_output_sample_regs(handle,
7440 data->regs_user.regs,
7441 mask);
7442 }
7443 }
c5ebcedb 7444
a5cdd40c 7445 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
7446 perf_output_sample_ustack(handle,
7447 data->stack_user_size,
7448 data->regs_user.regs);
a5cdd40c 7449 }
c3feedf2 7450
2a6c6b7d
KL
7451 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7452 perf_output_put(handle, data->weight.full);
d6be9ad6
SE
7453
7454 if (sample_type & PERF_SAMPLE_DATA_SRC)
7455 perf_output_put(handle, data->data_src.val);
a5cdd40c 7456
fdfbbd07
AK
7457 if (sample_type & PERF_SAMPLE_TRANSACTION)
7458 perf_output_put(handle, data->txn);
7459
60e2364e
SE
7460 if (sample_type & PERF_SAMPLE_REGS_INTR) {
7461 u64 abi = data->regs_intr.abi;
7462 /*
7463 * If there are no regs to dump, notice it through
7464 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7465 */
7466 perf_output_put(handle, abi);
7467
7468 if (abi) {
7469 u64 mask = event->attr.sample_regs_intr;
7470
7471 perf_output_sample_regs(handle,
7472 data->regs_intr.regs,
7473 mask);
7474 }
7475 }
7476
fc7ce9c7
KL
7477 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7478 perf_output_put(handle, data->phys_addr);
7479
6546b19f
NK
7480 if (sample_type & PERF_SAMPLE_CGROUP)
7481 perf_output_put(handle, data->cgroup);
7482
8d97e718
KL
7483 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7484 perf_output_put(handle, data->data_page_size);
7485
995f088e
SE
7486 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7487 perf_output_put(handle, data->code_page_size);
7488
a4faf00d
AS
7489 if (sample_type & PERF_SAMPLE_AUX) {
7490 perf_output_put(handle, data->aux_size);
7491
7492 if (data->aux_size)
7493 perf_aux_sample_output(event, handle, data);
7494 }
7495
a5cdd40c
PZ
7496 if (!event->attr.watermark) {
7497 int wakeup_events = event->attr.wakeup_events;
7498
7499 if (wakeup_events) {
56de4e8f 7500 struct perf_buffer *rb = handle->rb;
a5cdd40c
PZ
7501 int events = local_inc_return(&rb->events);
7502
7503 if (events >= wakeup_events) {
7504 local_sub(wakeup_events, &rb->events);
7505 local_inc(&rb->wakeup);
7506 }
7507 }
7508 }
5622f295
MM
7509}
7510
fc7ce9c7
KL
7511static u64 perf_virt_to_phys(u64 virt)
7512{
7513 u64 phys_addr = 0;
fc7ce9c7
KL
7514
7515 if (!virt)
7516 return 0;
7517
7518 if (virt >= TASK_SIZE) {
7519 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7520 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7521 !(virt >= VMALLOC_START && virt < VMALLOC_END))
7522 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7523 } else {
7524 /*
7525 * Walking the pages tables for user address.
7526 * Interrupts are disabled, so it prevents any tear down
7527 * of the page tables.
dadbb612 7528 * Try IRQ-safe get_user_page_fast_only first.
fc7ce9c7
KL
7529 * If failed, leave phys_addr as 0.
7530 */
d3296fb3 7531 if (current->mm != NULL) {
4716023a
GT
7532 struct page *p;
7533
d3296fb3 7534 pagefault_disable();
4716023a 7535 if (get_user_page_fast_only(virt, 0, &p)) {
d3296fb3 7536 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
4716023a
GT
7537 put_page(p);
7538 }
d3296fb3
JO
7539 pagefault_enable();
7540 }
fc7ce9c7
KL
7541 }
7542
7543 return phys_addr;
7544}
7545
8d97e718 7546/*
8af26be0 7547 * Return the pagetable size of a given virtual address.
8d97e718 7548 */
8af26be0 7549static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
8d97e718 7550{
8af26be0 7551 u64 size = 0;
8d97e718 7552
8af26be0
PZ
7553#ifdef CONFIG_HAVE_FAST_GUP
7554 pgd_t *pgdp, pgd;
7555 p4d_t *p4dp, p4d;
7556 pud_t *pudp, pud;
7557 pmd_t *pmdp, pmd;
7558 pte_t *ptep, pte;
8d97e718 7559
8af26be0
PZ
7560 pgdp = pgd_offset(mm, addr);
7561 pgd = READ_ONCE(*pgdp);
7562 if (pgd_none(pgd))
8d97e718
KL
7563 return 0;
7564
8af26be0
PZ
7565 if (pgd_leaf(pgd))
7566 return pgd_leaf_size(pgd);
8d97e718 7567
8af26be0
PZ
7568 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7569 p4d = READ_ONCE(*p4dp);
7570 if (!p4d_present(p4d))
8d97e718
KL
7571 return 0;
7572
8af26be0
PZ
7573 if (p4d_leaf(p4d))
7574 return p4d_leaf_size(p4d);
8d97e718 7575
8af26be0
PZ
7576 pudp = pud_offset_lockless(p4dp, p4d, addr);
7577 pud = READ_ONCE(*pudp);
7578 if (!pud_present(pud))
8d97e718
KL
7579 return 0;
7580
8af26be0
PZ
7581 if (pud_leaf(pud))
7582 return pud_leaf_size(pud);
8d97e718 7583
8af26be0 7584 pmdp = pmd_offset_lockless(pudp, pud, addr);
a92cbb82 7585again:
1180e732 7586 pmd = pmdp_get_lockless(pmdp);
8af26be0 7587 if (!pmd_present(pmd))
8d97e718 7588 return 0;
8d97e718 7589
8af26be0
PZ
7590 if (pmd_leaf(pmd))
7591 return pmd_leaf_size(pmd);
51b646b2 7592
8af26be0 7593 ptep = pte_offset_map(&pmd, addr);
a92cbb82
HD
7594 if (!ptep)
7595 goto again;
7596
8af26be0
PZ
7597 pte = ptep_get_lockless(ptep);
7598 if (pte_present(pte))
7599 size = pte_leaf_size(pte);
7600 pte_unmap(ptep);
7601#endif /* CONFIG_HAVE_FAST_GUP */
8d97e718 7602
8af26be0 7603 return size;
8d97e718
KL
7604}
7605
8d97e718
KL
7606static u64 perf_get_page_size(unsigned long addr)
7607{
7608 struct mm_struct *mm;
7609 unsigned long flags;
7610 u64 size;
7611
7612 if (!addr)
7613 return 0;
7614
7615 /*
7616 * Software page-table walkers must disable IRQs,
7617 * which prevents any tear down of the page tables.
7618 */
7619 local_irq_save(flags);
7620
7621 mm = current->mm;
7622 if (!mm) {
7623 /*
7624 * For kernel threads and the like, use init_mm so that
7625 * we can find kernel memory.
7626 */
7627 mm = &init_mm;
7628 }
7629
8af26be0 7630 size = perf_get_pgtable_size(mm, addr);
8d97e718
KL
7631
7632 local_irq_restore(flags);
7633
7634 return size;
7635}
7636
99e818cc
JO
7637static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7638
6cbc304f 7639struct perf_callchain_entry *
8cf7e0e2
JO
7640perf_callchain(struct perf_event *event, struct pt_regs *regs)
7641{
7642 bool kernel = !event->attr.exclude_callchain_kernel;
7643 bool user = !event->attr.exclude_callchain_user;
7644 /* Disallow cross-task user callchains. */
7645 bool crosstask = event->ctx->task && event->ctx->task != current;
7646 const u32 max_stack = event->attr.sample_max_stack;
99e818cc 7647 struct perf_callchain_entry *callchain;
8cf7e0e2
JO
7648
7649 if (!kernel && !user)
99e818cc 7650 return &__empty_callchain;
8cf7e0e2 7651
99e818cc
JO
7652 callchain = get_perf_callchain(regs, 0, kernel, user,
7653 max_stack, crosstask, true);
7654 return callchain ?: &__empty_callchain;
8cf7e0e2
JO
7655}
7656
bb447c27
NK
7657static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7658{
7659 return d * !!(flags & s);
7660}
7661
f6e70715 7662void perf_prepare_sample(struct perf_sample_data *data,
cdd6c482 7663 struct perf_event *event,
5622f295 7664 struct pt_regs *regs)
7b732a75 7665{
cdd6c482 7666 u64 sample_type = event->attr.sample_type;
3aac580d 7667 u64 filtered_sample_type;
7b732a75 7668
3aac580d 7669 /*
bb447c27
NK
7670 * Add the sample flags that are dependent to others. And clear the
7671 * sample flags that have already been done by the PMU driver.
3aac580d 7672 */
bb447c27
NK
7673 filtered_sample_type = sample_type;
7674 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7675 PERF_SAMPLE_IP);
7676 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7677 PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7678 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7679 PERF_SAMPLE_REGS_USER);
7680 filtered_sample_type &= ~data->sample_flags;
6844c09d 7681
f6e70715
NK
7682 if (filtered_sample_type == 0) {
7683 /* Make sure it has the correct data->type for output */
7684 data->type = event->attr.sample_type;
7685 return;
394ee076
PZ
7686 }
7687
a7c8d0da 7688 __perf_event_header__init_id(data, event, filtered_sample_type);
7e3f977e 7689
bb447c27 7690 if (filtered_sample_type & PERF_SAMPLE_IP) {
5622f295 7691 data->ip = perf_instruction_pointer(regs);
bb447c27
NK
7692 data->sample_flags |= PERF_SAMPLE_IP;
7693 }
7e3f977e 7694
31046500
NK
7695 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7696 perf_sample_save_callchain(data, event, regs);
a044560c 7697
0a9081cf
NK
7698 if (filtered_sample_type & PERF_SAMPLE_RAW) {
7699 data->raw = NULL;
7700 data->dyn_size += sizeof(u64);
7701 data->sample_flags |= PERF_SAMPLE_RAW;
7f453c24 7702 }
bce38cd5 7703
eb55b455
NK
7704 if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7705 data->br_stack = NULL;
7706 data->dyn_size += sizeof(u64);
7707 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
bce38cd5 7708 }
4018994f 7709
bb447c27 7710 if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
76a4efa8 7711 perf_sample_regs_user(&data->regs_user, regs);
2565711f 7712
bb447c27
NK
7713 /*
7714 * It cannot use the filtered_sample_type here as REGS_USER can be set
7715 * by STACK_USER (using __cond_set() above) and we don't want to update
7716 * the dyn_size if it's not requested by users.
7717 */
7718 if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
4018994f
JO
7719 /* regs dump ABI info */
7720 int size = sizeof(u64);
7721
4018994f
JO
7722 if (data->regs_user.regs) {
7723 u64 mask = event->attr.sample_regs_user;
7724 size += hweight64(mask) * sizeof(u64);
7725 }
7726
4cf7a136 7727 data->dyn_size += size;
bb447c27 7728 data->sample_flags |= PERF_SAMPLE_REGS_USER;
4018994f 7729 }
c5ebcedb 7730
bb447c27 7731 if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb 7732 /*
9f014e3a 7733 * Either we need PERF_SAMPLE_STACK_USER bit to be always
c5ebcedb
JO
7734 * processed as the last one or have additional check added
7735 * in case new sample type is added, because we could eat
7736 * up the rest of the sample size.
7737 */
c5ebcedb 7738 u16 stack_size = event->attr.sample_stack_user;
f6e70715 7739 u16 header_size = perf_sample_data_size(data, event);
c5ebcedb
JO
7740 u16 size = sizeof(u64);
7741
f6e70715 7742 stack_size = perf_sample_ustack_size(stack_size, header_size,
2565711f 7743 data->regs_user.regs);
c5ebcedb
JO
7744
7745 /*
7746 * If there is something to dump, add space for the dump
7747 * itself and for the field that tells the dynamic size,
7748 * which is how many have been actually dumped.
7749 */
7750 if (stack_size)
7751 size += sizeof(u64) + stack_size;
7752
7753 data->stack_user_size = stack_size;
4cf7a136 7754 data->dyn_size += size;
bb447c27 7755 data->sample_flags |= PERF_SAMPLE_STACK_USER;
c5ebcedb 7756 }
60e2364e 7757
bb447c27 7758 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
2abe681d 7759 data->weight.full = 0;
bb447c27
NK
7760 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7761 }
2abe681d 7762
bb447c27 7763 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
e16fd7f2 7764 data->data_src.val = PERF_MEM_NA;
bb447c27
NK
7765 data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7766 }
e16fd7f2 7767
bb447c27 7768 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
ee9db0e1 7769 data->txn = 0;
bb447c27
NK
7770 data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7771 }
ee9db0e1 7772
bb447c27
NK
7773 if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7774 data->addr = 0;
7775 data->sample_flags |= PERF_SAMPLE_ADDR;
7b084630
NK
7776 }
7777
bb447c27 7778 if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
60e2364e
SE
7779 /* regs dump ABI info */
7780 int size = sizeof(u64);
7781
7782 perf_sample_regs_intr(&data->regs_intr, regs);
7783
7784 if (data->regs_intr.regs) {
7785 u64 mask = event->attr.sample_regs_intr;
7786
7787 size += hweight64(mask) * sizeof(u64);
7788 }
7789
4cf7a136 7790 data->dyn_size += size;
bb447c27 7791 data->sample_flags |= PERF_SAMPLE_REGS_INTR;
60e2364e 7792 }
fc7ce9c7 7793
bb447c27 7794 if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
fc7ce9c7 7795 data->phys_addr = perf_virt_to_phys(data->addr);
bb447c27
NK
7796 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
7797 }
a4faf00d 7798
6546b19f 7799#ifdef CONFIG_CGROUP_PERF
bb447c27 7800 if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
6546b19f
NK
7801 struct cgroup *cgrp;
7802
7803 /* protected by RCU */
7804 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7805 data->cgroup = cgroup_id(cgrp);
bb447c27 7806 data->sample_flags |= PERF_SAMPLE_CGROUP;
6546b19f
NK
7807 }
7808#endif
7809
8d97e718
KL
7810 /*
7811 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7812 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7813 * but the value will not dump to the userspace.
7814 */
bb447c27 7815 if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
8d97e718 7816 data->data_page_size = perf_get_page_size(data->addr);
bb447c27
NK
7817 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
7818 }
8d97e718 7819
bb447c27 7820 if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
995f088e 7821 data->code_page_size = perf_get_page_size(data->ip);
bb447c27
NK
7822 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
7823 }
995f088e 7824
bb447c27 7825 if (filtered_sample_type & PERF_SAMPLE_AUX) {
a4faf00d 7826 u64 size;
f6e70715 7827 u16 header_size = perf_sample_data_size(data, event);
a4faf00d 7828
f6e70715 7829 header_size += sizeof(u64); /* size */
a4faf00d
AS
7830
7831 /*
7832 * Given the 16bit nature of header::size, an AUX sample can
7833 * easily overflow it, what with all the preceding sample bits.
7834 * Make sure this doesn't happen by using up to U16_MAX bytes
7835 * per sample in total (rounded down to 8 byte boundary).
7836 */
f6e70715 7837 size = min_t(size_t, U16_MAX - header_size,
a4faf00d
AS
7838 event->attr.aux_sample_size);
7839 size = rounddown(size, 8);
7840 size = perf_prepare_sample_aux(event, data, size);
7841
f6e70715 7842 WARN_ON_ONCE(size + header_size > U16_MAX);
4cf7a136 7843 data->dyn_size += size + sizeof(u64); /* size above */
bb447c27 7844 data->sample_flags |= PERF_SAMPLE_AUX;
a4faf00d 7845 }
f6e70715 7846}
4cf7a136 7847
f6e70715
NK
7848void perf_prepare_header(struct perf_event_header *header,
7849 struct perf_sample_data *data,
7850 struct perf_event *event,
7851 struct pt_regs *regs)
7852{
7853 header->type = PERF_RECORD_SAMPLE;
7854 header->size = perf_sample_data_size(data, event);
7855 header->misc = perf_misc_flags(regs);
4cf7a136 7856
a4faf00d
AS
7857 /*
7858 * If you're adding more sample types here, you likely need to do
7859 * something about the overflowing header::size, like repurpose the
7860 * lowest 3 bits of size, which should be always zero at the moment.
7861 * This raises a more important question, do we really need 512k sized
7862 * samples and why, so good argumentation is in order for whatever you
7863 * do here next.
7864 */
7865 WARN_ON_ONCE(header->size & 7);
5622f295 7866}
7f453c24 7867
56201969 7868static __always_inline int
9ecda41a
WN
7869__perf_event_output(struct perf_event *event,
7870 struct perf_sample_data *data,
7871 struct pt_regs *regs,
7872 int (*output_begin)(struct perf_output_handle *,
267fb273 7873 struct perf_sample_data *,
9ecda41a
WN
7874 struct perf_event *,
7875 unsigned int))
5622f295
MM
7876{
7877 struct perf_output_handle handle;
7878 struct perf_event_header header;
56201969 7879 int err;
689802b2 7880
927c7a9e
FW
7881 /* protect the callchain buffers */
7882 rcu_read_lock();
7883
f6e70715
NK
7884 perf_prepare_sample(data, event, regs);
7885 perf_prepare_header(&header, data, event, regs);
5c148194 7886
267fb273 7887 err = output_begin(&handle, data, event, header.size);
56201969 7888 if (err)
927c7a9e 7889 goto exit;
0322cd6e 7890
cdd6c482 7891 perf_output_sample(&handle, &header, data, event);
f413cdb8 7892
8a057d84 7893 perf_output_end(&handle);
927c7a9e
FW
7894
7895exit:
7896 rcu_read_unlock();
56201969 7897 return err;
0322cd6e
PZ
7898}
7899
9ecda41a
WN
7900void
7901perf_event_output_forward(struct perf_event *event,
7902 struct perf_sample_data *data,
7903 struct pt_regs *regs)
7904{
7905 __perf_event_output(event, data, regs, perf_output_begin_forward);
7906}
7907
7908void
7909perf_event_output_backward(struct perf_event *event,
7910 struct perf_sample_data *data,
7911 struct pt_regs *regs)
7912{
7913 __perf_event_output(event, data, regs, perf_output_begin_backward);
7914}
7915
56201969 7916int
9ecda41a
WN
7917perf_event_output(struct perf_event *event,
7918 struct perf_sample_data *data,
7919 struct pt_regs *regs)
7920{
56201969 7921 return __perf_event_output(event, data, regs, perf_output_begin);
9ecda41a
WN
7922}
7923
38b200d6 7924/*
cdd6c482 7925 * read event_id
38b200d6
PZ
7926 */
7927
7928struct perf_read_event {
7929 struct perf_event_header header;
7930
7931 u32 pid;
7932 u32 tid;
38b200d6
PZ
7933};
7934
7935static void
cdd6c482 7936perf_event_read_event(struct perf_event *event,
38b200d6
PZ
7937 struct task_struct *task)
7938{
7939 struct perf_output_handle handle;
c980d109 7940 struct perf_sample_data sample;
dfc65094 7941 struct perf_read_event read_event = {
38b200d6 7942 .header = {
cdd6c482 7943 .type = PERF_RECORD_READ,
38b200d6 7944 .misc = 0,
c320c7b7 7945 .size = sizeof(read_event) + event->read_size,
38b200d6 7946 },
cdd6c482
IM
7947 .pid = perf_event_pid(event, task),
7948 .tid = perf_event_tid(event, task),
38b200d6 7949 };
3dab77fb 7950 int ret;
38b200d6 7951
c980d109 7952 perf_event_header__init_id(&read_event.header, &sample, event);
267fb273 7953 ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
38b200d6
PZ
7954 if (ret)
7955 return;
7956
dfc65094 7957 perf_output_put(&handle, read_event);
cdd6c482 7958 perf_output_read(&handle, event);
c980d109 7959 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 7960
38b200d6
PZ
7961 perf_output_end(&handle);
7962}
7963
aab5b71e 7964typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
7965
7966static void
aab5b71e
PZ
7967perf_iterate_ctx(struct perf_event_context *ctx,
7968 perf_iterate_f output,
b73e4fef 7969 void *data, bool all)
52d857a8
JO
7970{
7971 struct perf_event *event;
7972
7973 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
7974 if (!all) {
7975 if (event->state < PERF_EVENT_STATE_INACTIVE)
7976 continue;
7977 if (!event_filter_match(event))
7978 continue;
7979 }
7980
67516844 7981 output(event, data);
52d857a8
JO
7982 }
7983}
7984
aab5b71e 7985static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
7986{
7987 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7988 struct perf_event *event;
7989
7990 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
7991 /*
7992 * Skip events that are not fully formed yet; ensure that
7993 * if we observe event->ctx, both event and ctx will be
7994 * complete enough. See perf_install_in_context().
7995 */
7996 if (!smp_load_acquire(&event->ctx))
7997 continue;
7998
f2fb6bef
KL
7999 if (event->state < PERF_EVENT_STATE_INACTIVE)
8000 continue;
8001 if (!event_filter_match(event))
8002 continue;
8003 output(event, data);
8004 }
8005}
8006
aab5b71e
PZ
8007/*
8008 * Iterate all events that need to receive side-band events.
8009 *
8010 * For new callers; ensure that account_pmu_sb_event() includes
8011 * your event, otherwise it might not get delivered.
8012 */
52d857a8 8013static void
aab5b71e 8014perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
8015 struct perf_event_context *task_ctx)
8016{
52d857a8 8017 struct perf_event_context *ctx;
52d857a8 8018
aab5b71e
PZ
8019 rcu_read_lock();
8020 preempt_disable();
8021
4e93ad60 8022 /*
aab5b71e
PZ
8023 * If we have task_ctx != NULL we only notify the task context itself.
8024 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
8025 * context.
8026 */
8027 if (task_ctx) {
aab5b71e
PZ
8028 perf_iterate_ctx(task_ctx, output, data, false);
8029 goto done;
4e93ad60
JO
8030 }
8031
aab5b71e 8032 perf_iterate_sb_cpu(output, data);
f2fb6bef 8033
bd275681
PZ
8034 ctx = rcu_dereference(current->perf_event_ctxp);
8035 if (ctx)
8036 perf_iterate_ctx(ctx, output, data, false);
aab5b71e 8037done:
f2fb6bef 8038 preempt_enable();
52d857a8 8039 rcu_read_unlock();
95ff4ca2
AS
8040}
8041
375637bc
AS
8042/*
8043 * Clear all file-based filters at exec, they'll have to be
8044 * re-instated when/if these objects are mmapped again.
8045 */
8046static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8047{
8048 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8049 struct perf_addr_filter *filter;
8050 unsigned int restart = 0, count = 0;
8051 unsigned long flags;
8052
8053 if (!has_addr_filter(event))
8054 return;
8055
8056 raw_spin_lock_irqsave(&ifh->lock, flags);
8057 list_for_each_entry(filter, &ifh->list, entry) {
9511bce9 8058 if (filter->path.dentry) {
c60f83b8
AS
8059 event->addr_filter_ranges[count].start = 0;
8060 event->addr_filter_ranges[count].size = 0;
375637bc
AS
8061 restart++;
8062 }
8063
8064 count++;
8065 }
8066
8067 if (restart)
8068 event->addr_filters_gen++;
8069 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8070
8071 if (restart)
767ae086 8072 perf_event_stop(event, 1);
375637bc
AS
8073}
8074
8075void perf_event_exec(void)
8076{
8077 struct perf_event_context *ctx;
375637bc 8078
bd275681
PZ
8079 ctx = perf_pin_task_context(current);
8080 if (!ctx)
8081 return;
375637bc 8082
bd275681
PZ
8083 perf_event_enable_on_exec(ctx);
8084 perf_event_remove_on_exec(ctx);
8085 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
375637bc 8086
bd275681
PZ
8087 perf_unpin_context(ctx);
8088 put_ctx(ctx);
375637bc
AS
8089}
8090
95ff4ca2 8091struct remote_output {
56de4e8f 8092 struct perf_buffer *rb;
95ff4ca2
AS
8093 int err;
8094};
8095
8096static void __perf_event_output_stop(struct perf_event *event, void *data)
8097{
8098 struct perf_event *parent = event->parent;
8099 struct remote_output *ro = data;
56de4e8f 8100 struct perf_buffer *rb = ro->rb;
375637bc
AS
8101 struct stop_event_data sd = {
8102 .event = event,
8103 };
95ff4ca2
AS
8104
8105 if (!has_aux(event))
8106 return;
8107
8108 if (!parent)
8109 parent = event;
8110
8111 /*
8112 * In case of inheritance, it will be the parent that links to the
767ae086
AS
8113 * ring-buffer, but it will be the child that's actually using it.
8114 *
8115 * We are using event::rb to determine if the event should be stopped,
8116 * however this may race with ring_buffer_attach() (through set_output),
8117 * which will make us skip the event that actually needs to be stopped.
8118 * So ring_buffer_attach() has to stop an aux event before re-assigning
8119 * its rb pointer.
95ff4ca2
AS
8120 */
8121 if (rcu_dereference(parent->rb) == rb)
375637bc 8122 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
8123}
8124
8125static int __perf_pmu_output_stop(void *info)
8126{
8127 struct perf_event *event = info;
bd275681 8128 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
95ff4ca2
AS
8129 struct remote_output ro = {
8130 .rb = event->rb,
8131 };
8132
8133 rcu_read_lock();
aab5b71e 8134 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 8135 if (cpuctx->task_ctx)
aab5b71e 8136 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 8137 &ro, false);
95ff4ca2
AS
8138 rcu_read_unlock();
8139
8140 return ro.err;
8141}
8142
8143static void perf_pmu_output_stop(struct perf_event *event)
8144{
8145 struct perf_event *iter;
8146 int err, cpu;
8147
8148restart:
8149 rcu_read_lock();
8150 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8151 /*
8152 * For per-CPU events, we need to make sure that neither they
8153 * nor their children are running; for cpu==-1 events it's
8154 * sufficient to stop the event itself if it's active, since
8155 * it can't have children.
8156 */
8157 cpu = iter->cpu;
8158 if (cpu == -1)
8159 cpu = READ_ONCE(iter->oncpu);
8160
8161 if (cpu == -1)
8162 continue;
8163
8164 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8165 if (err == -EAGAIN) {
8166 rcu_read_unlock();
8167 goto restart;
8168 }
8169 }
8170 rcu_read_unlock();
52d857a8
JO
8171}
8172
60313ebe 8173/*
9f498cc5
PZ
8174 * task tracking -- fork/exit
8175 *
13d7a241 8176 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
8177 */
8178
9f498cc5 8179struct perf_task_event {
3a80b4a3 8180 struct task_struct *task;
cdd6c482 8181 struct perf_event_context *task_ctx;
60313ebe
PZ
8182
8183 struct {
8184 struct perf_event_header header;
8185
8186 u32 pid;
8187 u32 ppid;
9f498cc5
PZ
8188 u32 tid;
8189 u32 ptid;
393b2ad8 8190 u64 time;
cdd6c482 8191 } event_id;
60313ebe
PZ
8192};
8193
67516844
JO
8194static int perf_event_task_match(struct perf_event *event)
8195{
13d7a241
SE
8196 return event->attr.comm || event->attr.mmap ||
8197 event->attr.mmap2 || event->attr.mmap_data ||
8198 event->attr.task;
67516844
JO
8199}
8200
cdd6c482 8201static void perf_event_task_output(struct perf_event *event,
52d857a8 8202 void *data)
60313ebe 8203{
52d857a8 8204 struct perf_task_event *task_event = data;
60313ebe 8205 struct perf_output_handle handle;
c980d109 8206 struct perf_sample_data sample;
9f498cc5 8207 struct task_struct *task = task_event->task;
c980d109 8208 int ret, size = task_event->event_id.header.size;
8bb39f9a 8209
67516844
JO
8210 if (!perf_event_task_match(event))
8211 return;
8212
c980d109 8213 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 8214
267fb273 8215 ret = perf_output_begin(&handle, &sample, event,
a7ac67ea 8216 task_event->event_id.header.size);
ef60777c 8217 if (ret)
c980d109 8218 goto out;
60313ebe 8219
cdd6c482 8220 task_event->event_id.pid = perf_event_pid(event, task);
cdd6c482 8221 task_event->event_id.tid = perf_event_tid(event, task);
f3bed55e
IR
8222
8223 if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8224 task_event->event_id.ppid = perf_event_pid(event,
8225 task->real_parent);
8226 task_event->event_id.ptid = perf_event_pid(event,
8227 task->real_parent);
8228 } else { /* PERF_RECORD_FORK */
8229 task_event->event_id.ppid = perf_event_pid(event, current);
8230 task_event->event_id.ptid = perf_event_tid(event, current);
8231 }
9f498cc5 8232
34f43927
PZ
8233 task_event->event_id.time = perf_event_clock(event);
8234
cdd6c482 8235 perf_output_put(&handle, task_event->event_id);
393b2ad8 8236
c980d109
ACM
8237 perf_event__output_id_sample(event, &handle, &sample);
8238
60313ebe 8239 perf_output_end(&handle);
c980d109
ACM
8240out:
8241 task_event->event_id.header.size = size;
60313ebe
PZ
8242}
8243
cdd6c482
IM
8244static void perf_event_task(struct task_struct *task,
8245 struct perf_event_context *task_ctx,
3a80b4a3 8246 int new)
60313ebe 8247{
9f498cc5 8248 struct perf_task_event task_event;
60313ebe 8249
cdd6c482
IM
8250 if (!atomic_read(&nr_comm_events) &&
8251 !atomic_read(&nr_mmap_events) &&
8252 !atomic_read(&nr_task_events))
60313ebe
PZ
8253 return;
8254
9f498cc5 8255 task_event = (struct perf_task_event){
3a80b4a3
PZ
8256 .task = task,
8257 .task_ctx = task_ctx,
cdd6c482 8258 .event_id = {
60313ebe 8259 .header = {
cdd6c482 8260 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 8261 .misc = 0,
cdd6c482 8262 .size = sizeof(task_event.event_id),
60313ebe 8263 },
573402db
PZ
8264 /* .pid */
8265 /* .ppid */
9f498cc5
PZ
8266 /* .tid */
8267 /* .ptid */
34f43927 8268 /* .time */
60313ebe
PZ
8269 },
8270 };
8271
aab5b71e 8272 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
8273 &task_event,
8274 task_ctx);
9f498cc5
PZ
8275}
8276
cdd6c482 8277void perf_event_fork(struct task_struct *task)
9f498cc5 8278{
cdd6c482 8279 perf_event_task(task, NULL, 1);
e4222673 8280 perf_event_namespaces(task);
60313ebe
PZ
8281}
8282
8d1b2d93
PZ
8283/*
8284 * comm tracking
8285 */
8286
8287struct perf_comm_event {
22a4f650
IM
8288 struct task_struct *task;
8289 char *comm;
8d1b2d93
PZ
8290 int comm_size;
8291
8292 struct {
8293 struct perf_event_header header;
8294
8295 u32 pid;
8296 u32 tid;
cdd6c482 8297 } event_id;
8d1b2d93
PZ
8298};
8299
67516844
JO
8300static int perf_event_comm_match(struct perf_event *event)
8301{
8302 return event->attr.comm;
8303}
8304
cdd6c482 8305static void perf_event_comm_output(struct perf_event *event,
52d857a8 8306 void *data)
8d1b2d93 8307{
52d857a8 8308 struct perf_comm_event *comm_event = data;
8d1b2d93 8309 struct perf_output_handle handle;
c980d109 8310 struct perf_sample_data sample;
cdd6c482 8311 int size = comm_event->event_id.header.size;
c980d109
ACM
8312 int ret;
8313
67516844
JO
8314 if (!perf_event_comm_match(event))
8315 return;
8316
c980d109 8317 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
267fb273 8318 ret = perf_output_begin(&handle, &sample, event,
a7ac67ea 8319 comm_event->event_id.header.size);
8d1b2d93
PZ
8320
8321 if (ret)
c980d109 8322 goto out;
8d1b2d93 8323
cdd6c482
IM
8324 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8325 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 8326
cdd6c482 8327 perf_output_put(&handle, comm_event->event_id);
76369139 8328 __output_copy(&handle, comm_event->comm,
8d1b2d93 8329 comm_event->comm_size);
c980d109
ACM
8330
8331 perf_event__output_id_sample(event, &handle, &sample);
8332
8d1b2d93 8333 perf_output_end(&handle);
c980d109
ACM
8334out:
8335 comm_event->event_id.header.size = size;
8d1b2d93
PZ
8336}
8337
cdd6c482 8338static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 8339{
413ee3b4 8340 char comm[TASK_COMM_LEN];
8d1b2d93 8341 unsigned int size;
8d1b2d93 8342
413ee3b4 8343 memset(comm, 0, sizeof(comm));
c9732f14 8344 strscpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 8345 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
8346
8347 comm_event->comm = comm;
8348 comm_event->comm_size = size;
8349
cdd6c482 8350 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 8351
aab5b71e 8352 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
8353 comm_event,
8354 NULL);
8d1b2d93
PZ
8355}
8356
82b89778 8357void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 8358{
9ee318a7
PZ
8359 struct perf_comm_event comm_event;
8360
cdd6c482 8361 if (!atomic_read(&nr_comm_events))
9ee318a7 8362 return;
a63eaf34 8363
9ee318a7 8364 comm_event = (struct perf_comm_event){
8d1b2d93 8365 .task = task,
573402db
PZ
8366 /* .comm */
8367 /* .comm_size */
cdd6c482 8368 .event_id = {
573402db 8369 .header = {
cdd6c482 8370 .type = PERF_RECORD_COMM,
82b89778 8371 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
8372 /* .size */
8373 },
8374 /* .pid */
8375 /* .tid */
8d1b2d93
PZ
8376 },
8377 };
8378
cdd6c482 8379 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
8380}
8381
e4222673
HB
8382/*
8383 * namespaces tracking
8384 */
8385
8386struct perf_namespaces_event {
8387 struct task_struct *task;
8388
8389 struct {
8390 struct perf_event_header header;
8391
8392 u32 pid;
8393 u32 tid;
8394 u64 nr_namespaces;
8395 struct perf_ns_link_info link_info[NR_NAMESPACES];
8396 } event_id;
8397};
8398
8399static int perf_event_namespaces_match(struct perf_event *event)
8400{
8401 return event->attr.namespaces;
8402}
8403
8404static void perf_event_namespaces_output(struct perf_event *event,
8405 void *data)
8406{
8407 struct perf_namespaces_event *namespaces_event = data;
8408 struct perf_output_handle handle;
8409 struct perf_sample_data sample;
34900ec5 8410 u16 header_size = namespaces_event->event_id.header.size;
e4222673
HB
8411 int ret;
8412
8413 if (!perf_event_namespaces_match(event))
8414 return;
8415
8416 perf_event_header__init_id(&namespaces_event->event_id.header,
8417 &sample, event);
267fb273 8418 ret = perf_output_begin(&handle, &sample, event,
e4222673
HB
8419 namespaces_event->event_id.header.size);
8420 if (ret)
34900ec5 8421 goto out;
e4222673
HB
8422
8423 namespaces_event->event_id.pid = perf_event_pid(event,
8424 namespaces_event->task);
8425 namespaces_event->event_id.tid = perf_event_tid(event,
8426 namespaces_event->task);
8427
8428 perf_output_put(&handle, namespaces_event->event_id);
8429
8430 perf_event__output_id_sample(event, &handle, &sample);
8431
8432 perf_output_end(&handle);
34900ec5
JO
8433out:
8434 namespaces_event->event_id.header.size = header_size;
e4222673
HB
8435}
8436
8437static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8438 struct task_struct *task,
8439 const struct proc_ns_operations *ns_ops)
8440{
8441 struct path ns_path;
8442 struct inode *ns_inode;
ce623f89 8443 int error;
e4222673
HB
8444
8445 error = ns_get_path(&ns_path, task, ns_ops);
8446 if (!error) {
8447 ns_inode = ns_path.dentry->d_inode;
8448 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8449 ns_link_info->ino = ns_inode->i_ino;
0e18dd12 8450 path_put(&ns_path);
e4222673
HB
8451 }
8452}
8453
8454void perf_event_namespaces(struct task_struct *task)
8455{
8456 struct perf_namespaces_event namespaces_event;
8457 struct perf_ns_link_info *ns_link_info;
8458
8459 if (!atomic_read(&nr_namespaces_events))
8460 return;
8461
8462 namespaces_event = (struct perf_namespaces_event){
8463 .task = task,
8464 .event_id = {
8465 .header = {
8466 .type = PERF_RECORD_NAMESPACES,
8467 .misc = 0,
8468 .size = sizeof(namespaces_event.event_id),
8469 },
8470 /* .pid */
8471 /* .tid */
8472 .nr_namespaces = NR_NAMESPACES,
8473 /* .link_info[NR_NAMESPACES] */
8474 },
8475 };
8476
8477 ns_link_info = namespaces_event.event_id.link_info;
8478
8479 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8480 task, &mntns_operations);
8481
8482#ifdef CONFIG_USER_NS
8483 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8484 task, &userns_operations);
8485#endif
8486#ifdef CONFIG_NET_NS
8487 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8488 task, &netns_operations);
8489#endif
8490#ifdef CONFIG_UTS_NS
8491 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8492 task, &utsns_operations);
8493#endif
8494#ifdef CONFIG_IPC_NS
8495 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8496 task, &ipcns_operations);
8497#endif
8498#ifdef CONFIG_PID_NS
8499 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8500 task, &pidns_operations);
8501#endif
8502#ifdef CONFIG_CGROUPS
8503 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8504 task, &cgroupns_operations);
8505#endif
8506
8507 perf_iterate_sb(perf_event_namespaces_output,
8508 &namespaces_event,
8509 NULL);
8510}
8511
96aaab68
NK
8512/*
8513 * cgroup tracking
8514 */
8515#ifdef CONFIG_CGROUP_PERF
8516
8517struct perf_cgroup_event {
8518 char *path;
8519 int path_size;
8520 struct {
8521 struct perf_event_header header;
8522 u64 id;
8523 char path[];
8524 } event_id;
8525};
8526
8527static int perf_event_cgroup_match(struct perf_event *event)
8528{
8529 return event->attr.cgroup;
8530}
8531
8532static void perf_event_cgroup_output(struct perf_event *event, void *data)
8533{
8534 struct perf_cgroup_event *cgroup_event = data;
8535 struct perf_output_handle handle;
8536 struct perf_sample_data sample;
8537 u16 header_size = cgroup_event->event_id.header.size;
8538 int ret;
8539
8540 if (!perf_event_cgroup_match(event))
8541 return;
8542
8543 perf_event_header__init_id(&cgroup_event->event_id.header,
8544 &sample, event);
267fb273 8545 ret = perf_output_begin(&handle, &sample, event,
96aaab68
NK
8546 cgroup_event->event_id.header.size);
8547 if (ret)
8548 goto out;
8549
8550 perf_output_put(&handle, cgroup_event->event_id);
8551 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8552
8553 perf_event__output_id_sample(event, &handle, &sample);
8554
8555 perf_output_end(&handle);
8556out:
8557 cgroup_event->event_id.header.size = header_size;
8558}
8559
8560static void perf_event_cgroup(struct cgroup *cgrp)
8561{
8562 struct perf_cgroup_event cgroup_event;
8563 char path_enomem[16] = "//enomem";
8564 char *pathname;
8565 size_t size;
8566
8567 if (!atomic_read(&nr_cgroup_events))
8568 return;
8569
8570 cgroup_event = (struct perf_cgroup_event){
8571 .event_id = {
8572 .header = {
8573 .type = PERF_RECORD_CGROUP,
8574 .misc = 0,
8575 .size = sizeof(cgroup_event.event_id),
8576 },
8577 .id = cgroup_id(cgrp),
8578 },
8579 };
8580
8581 pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8582 if (pathname == NULL) {
8583 cgroup_event.path = path_enomem;
8584 } else {
8585 /* just to be sure to have enough space for alignment */
8586 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8587 cgroup_event.path = pathname;
8588 }
8589
8590 /*
8591 * Since our buffer works in 8 byte units we need to align our string
8592 * size to a multiple of 8. However, we must guarantee the tail end is
8593 * zero'd out to avoid leaking random bits to userspace.
8594 */
8595 size = strlen(cgroup_event.path) + 1;
8596 while (!IS_ALIGNED(size, sizeof(u64)))
8597 cgroup_event.path[size++] = '\0';
8598
8599 cgroup_event.event_id.header.size += size;
8600 cgroup_event.path_size = size;
8601
8602 perf_iterate_sb(perf_event_cgroup_output,
8603 &cgroup_event,
8604 NULL);
8605
8606 kfree(pathname);
8607}
8608
8609#endif
8610
0a4a9391
PZ
8611/*
8612 * mmap tracking
8613 */
8614
8615struct perf_mmap_event {
089dd79d
PZ
8616 struct vm_area_struct *vma;
8617
8618 const char *file_name;
8619 int file_size;
13d7a241
SE
8620 int maj, min;
8621 u64 ino;
8622 u64 ino_generation;
f972eb63 8623 u32 prot, flags;
88a16a13
JO
8624 u8 build_id[BUILD_ID_SIZE_MAX];
8625 u32 build_id_size;
0a4a9391
PZ
8626
8627 struct {
8628 struct perf_event_header header;
8629
8630 u32 pid;
8631 u32 tid;
8632 u64 start;
8633 u64 len;
8634 u64 pgoff;
cdd6c482 8635 } event_id;
0a4a9391
PZ
8636};
8637
67516844
JO
8638static int perf_event_mmap_match(struct perf_event *event,
8639 void *data)
8640{
8641 struct perf_mmap_event *mmap_event = data;
8642 struct vm_area_struct *vma = mmap_event->vma;
8643 int executable = vma->vm_flags & VM_EXEC;
8644
8645 return (!executable && event->attr.mmap_data) ||
13d7a241 8646 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
8647}
8648
cdd6c482 8649static void perf_event_mmap_output(struct perf_event *event,
52d857a8 8650 void *data)
0a4a9391 8651{
52d857a8 8652 struct perf_mmap_event *mmap_event = data;
0a4a9391 8653 struct perf_output_handle handle;
c980d109 8654 struct perf_sample_data sample;
cdd6c482 8655 int size = mmap_event->event_id.header.size;
d9c1bb2f 8656 u32 type = mmap_event->event_id.header.type;
88a16a13 8657 bool use_build_id;
c980d109 8658 int ret;
0a4a9391 8659
67516844
JO
8660 if (!perf_event_mmap_match(event, data))
8661 return;
8662
13d7a241
SE
8663 if (event->attr.mmap2) {
8664 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8665 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8666 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8667 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 8668 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
8669 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8670 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
8671 }
8672
c980d109 8673 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
267fb273 8674 ret = perf_output_begin(&handle, &sample, event,
a7ac67ea 8675 mmap_event->event_id.header.size);
0a4a9391 8676 if (ret)
c980d109 8677 goto out;
0a4a9391 8678
cdd6c482
IM
8679 mmap_event->event_id.pid = perf_event_pid(event, current);
8680 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 8681
88a16a13
JO
8682 use_build_id = event->attr.build_id && mmap_event->build_id_size;
8683
8684 if (event->attr.mmap2 && use_build_id)
8685 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8686
cdd6c482 8687 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
8688
8689 if (event->attr.mmap2) {
88a16a13
JO
8690 if (use_build_id) {
8691 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8692
8693 __output_copy(&handle, size, 4);
8694 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8695 } else {
8696 perf_output_put(&handle, mmap_event->maj);
8697 perf_output_put(&handle, mmap_event->min);
8698 perf_output_put(&handle, mmap_event->ino);
8699 perf_output_put(&handle, mmap_event->ino_generation);
8700 }
f972eb63
PZ
8701 perf_output_put(&handle, mmap_event->prot);
8702 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
8703 }
8704
76369139 8705 __output_copy(&handle, mmap_event->file_name,
0a4a9391 8706 mmap_event->file_size);
c980d109
ACM
8707
8708 perf_event__output_id_sample(event, &handle, &sample);
8709
78d613eb 8710 perf_output_end(&handle);
c980d109
ACM
8711out:
8712 mmap_event->event_id.header.size = size;
d9c1bb2f 8713 mmap_event->event_id.header.type = type;
0a4a9391
PZ
8714}
8715
cdd6c482 8716static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 8717{
089dd79d
PZ
8718 struct vm_area_struct *vma = mmap_event->vma;
8719 struct file *file = vma->vm_file;
13d7a241
SE
8720 int maj = 0, min = 0;
8721 u64 ino = 0, gen = 0;
f972eb63 8722 u32 prot = 0, flags = 0;
0a4a9391
PZ
8723 unsigned int size;
8724 char tmp[16];
8725 char *buf = NULL;
549f5c77 8726 char *name = NULL;
413ee3b4 8727
0b3589be
PZ
8728 if (vma->vm_flags & VM_READ)
8729 prot |= PROT_READ;
8730 if (vma->vm_flags & VM_WRITE)
8731 prot |= PROT_WRITE;
8732 if (vma->vm_flags & VM_EXEC)
8733 prot |= PROT_EXEC;
8734
8735 if (vma->vm_flags & VM_MAYSHARE)
8736 flags = MAP_SHARED;
8737 else
8738 flags = MAP_PRIVATE;
8739
0b3589be
PZ
8740 if (vma->vm_flags & VM_LOCKED)
8741 flags |= MAP_LOCKED;
03911132 8742 if (is_vm_hugetlb_page(vma))
0b3589be
PZ
8743 flags |= MAP_HUGETLB;
8744
0a4a9391 8745 if (file) {
13d7a241
SE
8746 struct inode *inode;
8747 dev_t dev;
3ea2f2b9 8748
2c42cfbf 8749 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 8750 if (!buf) {
c7e548b4
ON
8751 name = "//enomem";
8752 goto cpy_name;
0a4a9391 8753 }
413ee3b4 8754 /*
3ea2f2b9 8755 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
8756 * need to add enough zero bytes after the string to handle
8757 * the 64bit alignment we do later.
8758 */
9bf39ab2 8759 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 8760 if (IS_ERR(name)) {
c7e548b4
ON
8761 name = "//toolong";
8762 goto cpy_name;
0a4a9391 8763 }
13d7a241
SE
8764 inode = file_inode(vma->vm_file);
8765 dev = inode->i_sb->s_dev;
8766 ino = inode->i_ino;
8767 gen = inode->i_generation;
8768 maj = MAJOR(dev);
8769 min = MINOR(dev);
f972eb63 8770
c7e548b4 8771 goto got_name;
0a4a9391 8772 } else {
549f5c77 8773 if (vma->vm_ops && vma->vm_ops->name)
fbe26abe 8774 name = (char *) vma->vm_ops->name(vma);
549f5c77
KW
8775 if (!name)
8776 name = (char *)arch_vma_name(vma);
8777 if (!name) {
8778 if (vma_is_initial_heap(vma))
8779 name = "[heap]";
8780 else if (vma_is_initial_stack(vma))
8781 name = "[stack]";
8782 else
8783 name = "//anon";
fbe26abe 8784 }
0a4a9391
PZ
8785 }
8786
c7e548b4 8787cpy_name:
c9732f14 8788 strscpy(tmp, name, sizeof(tmp));
c7e548b4 8789 name = tmp;
0a4a9391 8790got_name:
2c42cfbf
PZ
8791 /*
8792 * Since our buffer works in 8 byte units we need to align our string
8793 * size to a multiple of 8. However, we must guarantee the tail end is
8794 * zero'd out to avoid leaking random bits to userspace.
8795 */
8796 size = strlen(name)+1;
8797 while (!IS_ALIGNED(size, sizeof(u64)))
8798 name[size++] = '\0';
0a4a9391
PZ
8799
8800 mmap_event->file_name = name;
8801 mmap_event->file_size = size;
13d7a241
SE
8802 mmap_event->maj = maj;
8803 mmap_event->min = min;
8804 mmap_event->ino = ino;
8805 mmap_event->ino_generation = gen;
f972eb63
PZ
8806 mmap_event->prot = prot;
8807 mmap_event->flags = flags;
0a4a9391 8808
2fe85427
SE
8809 if (!(vma->vm_flags & VM_EXEC))
8810 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8811
cdd6c482 8812 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 8813
88a16a13
JO
8814 if (atomic_read(&nr_build_id_events))
8815 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8816
aab5b71e 8817 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
8818 mmap_event,
8819 NULL);
665c2142 8820
0a4a9391
PZ
8821 kfree(buf);
8822}
8823
375637bc
AS
8824/*
8825 * Check whether inode and address range match filter criteria.
8826 */
8827static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8828 struct file *file, unsigned long offset,
8829 unsigned long size)
8830{
7f635ff1
MP
8831 /* d_inode(NULL) won't be equal to any mapped user-space file */
8832 if (!filter->path.dentry)
8833 return false;
8834
9511bce9 8835 if (d_inode(filter->path.dentry) != file_inode(file))
375637bc
AS
8836 return false;
8837
8838 if (filter->offset > offset + size)
8839 return false;
8840
8841 if (filter->offset + filter->size < offset)
8842 return false;
8843
8844 return true;
8845}
8846
c60f83b8
AS
8847static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8848 struct vm_area_struct *vma,
8849 struct perf_addr_filter_range *fr)
8850{
8851 unsigned long vma_size = vma->vm_end - vma->vm_start;
8852 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8853 struct file *file = vma->vm_file;
8854
8855 if (!perf_addr_filter_match(filter, file, off, vma_size))
8856 return false;
8857
8858 if (filter->offset < off) {
8859 fr->start = vma->vm_start;
8860 fr->size = min(vma_size, filter->size - (off - filter->offset));
8861 } else {
8862 fr->start = vma->vm_start + filter->offset - off;
8863 fr->size = min(vma->vm_end - fr->start, filter->size);
8864 }
8865
8866 return true;
8867}
8868
375637bc
AS
8869static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8870{
8871 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8872 struct vm_area_struct *vma = data;
375637bc
AS
8873 struct perf_addr_filter *filter;
8874 unsigned int restart = 0, count = 0;
c60f83b8 8875 unsigned long flags;
375637bc
AS
8876
8877 if (!has_addr_filter(event))
8878 return;
8879
c60f83b8 8880 if (!vma->vm_file)
375637bc
AS
8881 return;
8882
8883 raw_spin_lock_irqsave(&ifh->lock, flags);
8884 list_for_each_entry(filter, &ifh->list, entry) {
c60f83b8
AS
8885 if (perf_addr_filter_vma_adjust(filter, vma,
8886 &event->addr_filter_ranges[count]))
375637bc 8887 restart++;
375637bc
AS
8888
8889 count++;
8890 }
8891
8892 if (restart)
8893 event->addr_filters_gen++;
8894 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8895
8896 if (restart)
767ae086 8897 perf_event_stop(event, 1);
375637bc
AS
8898}
8899
8900/*
8901 * Adjust all task's events' filters to the new vma
8902 */
8903static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8904{
8905 struct perf_event_context *ctx;
375637bc 8906
12b40a23
MP
8907 /*
8908 * Data tracing isn't supported yet and as such there is no need
8909 * to keep track of anything that isn't related to executable code:
8910 */
8911 if (!(vma->vm_flags & VM_EXEC))
8912 return;
8913
375637bc 8914 rcu_read_lock();
bd275681
PZ
8915 ctx = rcu_dereference(current->perf_event_ctxp);
8916 if (ctx)
aab5b71e 8917 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
8918 rcu_read_unlock();
8919}
8920
3af9e859 8921void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 8922{
9ee318a7
PZ
8923 struct perf_mmap_event mmap_event;
8924
cdd6c482 8925 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
8926 return;
8927
8928 mmap_event = (struct perf_mmap_event){
089dd79d 8929 .vma = vma,
573402db
PZ
8930 /* .file_name */
8931 /* .file_size */
cdd6c482 8932 .event_id = {
573402db 8933 .header = {
cdd6c482 8934 .type = PERF_RECORD_MMAP,
39447b38 8935 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
8936 /* .size */
8937 },
8938 /* .pid */
8939 /* .tid */
089dd79d
PZ
8940 .start = vma->vm_start,
8941 .len = vma->vm_end - vma->vm_start,
3a0304e9 8942 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 8943 },
13d7a241
SE
8944 /* .maj (attr_mmap2 only) */
8945 /* .min (attr_mmap2 only) */
8946 /* .ino (attr_mmap2 only) */
8947 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
8948 /* .prot (attr_mmap2 only) */
8949 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
8950 };
8951
375637bc 8952 perf_addr_filters_adjust(vma);
cdd6c482 8953 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
8954}
8955
68db7e98
AS
8956void perf_event_aux_event(struct perf_event *event, unsigned long head,
8957 unsigned long size, u64 flags)
8958{
8959 struct perf_output_handle handle;
8960 struct perf_sample_data sample;
8961 struct perf_aux_event {
8962 struct perf_event_header header;
8963 u64 offset;
8964 u64 size;
8965 u64 flags;
8966 } rec = {
8967 .header = {
8968 .type = PERF_RECORD_AUX,
8969 .misc = 0,
8970 .size = sizeof(rec),
8971 },
8972 .offset = head,
8973 .size = size,
8974 .flags = flags,
8975 };
8976 int ret;
8977
8978 perf_event_header__init_id(&rec.header, &sample, event);
267fb273 8979 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
68db7e98
AS
8980
8981 if (ret)
8982 return;
8983
8984 perf_output_put(&handle, rec);
8985 perf_event__output_id_sample(event, &handle, &sample);
8986
8987 perf_output_end(&handle);
8988}
8989
f38b0dbb
KL
8990/*
8991 * Lost/dropped samples logging
8992 */
8993void perf_log_lost_samples(struct perf_event *event, u64 lost)
8994{
8995 struct perf_output_handle handle;
8996 struct perf_sample_data sample;
8997 int ret;
8998
8999 struct {
9000 struct perf_event_header header;
9001 u64 lost;
9002 } lost_samples_event = {
9003 .header = {
9004 .type = PERF_RECORD_LOST_SAMPLES,
9005 .misc = 0,
9006 .size = sizeof(lost_samples_event),
9007 },
9008 .lost = lost,
9009 };
9010
9011 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
9012
267fb273 9013 ret = perf_output_begin(&handle, &sample, event,
f38b0dbb
KL
9014 lost_samples_event.header.size);
9015 if (ret)
9016 return;
9017
9018 perf_output_put(&handle, lost_samples_event);
9019 perf_event__output_id_sample(event, &handle, &sample);
9020 perf_output_end(&handle);
9021}
9022
45ac1403
AH
9023/*
9024 * context_switch tracking
9025 */
9026
9027struct perf_switch_event {
9028 struct task_struct *task;
9029 struct task_struct *next_prev;
9030
9031 struct {
9032 struct perf_event_header header;
9033 u32 next_prev_pid;
9034 u32 next_prev_tid;
9035 } event_id;
9036};
9037
9038static int perf_event_switch_match(struct perf_event *event)
9039{
9040 return event->attr.context_switch;
9041}
9042
9043static void perf_event_switch_output(struct perf_event *event, void *data)
9044{
9045 struct perf_switch_event *se = data;
9046 struct perf_output_handle handle;
9047 struct perf_sample_data sample;
9048 int ret;
9049
9050 if (!perf_event_switch_match(event))
9051 return;
9052
9053 /* Only CPU-wide events are allowed to see next/prev pid/tid */
9054 if (event->ctx->task) {
9055 se->event_id.header.type = PERF_RECORD_SWITCH;
9056 se->event_id.header.size = sizeof(se->event_id.header);
9057 } else {
9058 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9059 se->event_id.header.size = sizeof(se->event_id);
9060 se->event_id.next_prev_pid =
9061 perf_event_pid(event, se->next_prev);
9062 se->event_id.next_prev_tid =
9063 perf_event_tid(event, se->next_prev);
9064 }
9065
9066 perf_event_header__init_id(&se->event_id.header, &sample, event);
9067
267fb273 9068 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
45ac1403
AH
9069 if (ret)
9070 return;
9071
9072 if (event->ctx->task)
9073 perf_output_put(&handle, se->event_id.header);
9074 else
9075 perf_output_put(&handle, se->event_id);
9076
9077 perf_event__output_id_sample(event, &handle, &sample);
9078
9079 perf_output_end(&handle);
9080}
9081
9082static void perf_event_switch(struct task_struct *task,
9083 struct task_struct *next_prev, bool sched_in)
9084{
9085 struct perf_switch_event switch_event;
9086
9087 /* N.B. caller checks nr_switch_events != 0 */
9088
9089 switch_event = (struct perf_switch_event){
9090 .task = task,
9091 .next_prev = next_prev,
9092 .event_id = {
9093 .header = {
9094 /* .type */
9095 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9096 /* .size */
9097 },
9098 /* .next_prev_pid */
9099 /* .next_prev_tid */
9100 },
9101 };
9102
3ba9f93b 9103 if (!sched_in && task->on_rq) {
101592b4
AB
9104 switch_event.event_id.header.misc |=
9105 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
3ba9f93b 9106 }
101592b4 9107
3ba9f93b 9108 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
45ac1403
AH
9109}
9110
a78ac325
PZ
9111/*
9112 * IRQ throttle logging
9113 */
9114
cdd6c482 9115static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
9116{
9117 struct perf_output_handle handle;
c980d109 9118 struct perf_sample_data sample;
a78ac325
PZ
9119 int ret;
9120
9121 struct {
9122 struct perf_event_header header;
9123 u64 time;
cca3f454 9124 u64 id;
7f453c24 9125 u64 stream_id;
a78ac325
PZ
9126 } throttle_event = {
9127 .header = {
cdd6c482 9128 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
9129 .misc = 0,
9130 .size = sizeof(throttle_event),
9131 },
34f43927 9132 .time = perf_event_clock(event),
cdd6c482
IM
9133 .id = primary_event_id(event),
9134 .stream_id = event->id,
a78ac325
PZ
9135 };
9136
966ee4d6 9137 if (enable)
cdd6c482 9138 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 9139
c980d109
ACM
9140 perf_event_header__init_id(&throttle_event.header, &sample, event);
9141
267fb273 9142 ret = perf_output_begin(&handle, &sample, event,
a7ac67ea 9143 throttle_event.header.size);
a78ac325
PZ
9144 if (ret)
9145 return;
9146
9147 perf_output_put(&handle, throttle_event);
c980d109 9148 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
9149 perf_output_end(&handle);
9150}
9151
76193a94
SL
9152/*
9153 * ksymbol register/unregister tracking
9154 */
9155
9156struct perf_ksymbol_event {
9157 const char *name;
9158 int name_len;
9159 struct {
9160 struct perf_event_header header;
9161 u64 addr;
9162 u32 len;
9163 u16 ksym_type;
9164 u16 flags;
9165 } event_id;
9166};
9167
9168static int perf_event_ksymbol_match(struct perf_event *event)
9169{
9170 return event->attr.ksymbol;
9171}
9172
9173static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9174{
9175 struct perf_ksymbol_event *ksymbol_event = data;
9176 struct perf_output_handle handle;
9177 struct perf_sample_data sample;
9178 int ret;
9179
9180 if (!perf_event_ksymbol_match(event))
9181 return;
9182
9183 perf_event_header__init_id(&ksymbol_event->event_id.header,
9184 &sample, event);
267fb273 9185 ret = perf_output_begin(&handle, &sample, event,
76193a94
SL
9186 ksymbol_event->event_id.header.size);
9187 if (ret)
9188 return;
9189
9190 perf_output_put(&handle, ksymbol_event->event_id);
9191 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9192 perf_event__output_id_sample(event, &handle, &sample);
9193
9194 perf_output_end(&handle);
9195}
9196
9197void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9198 const char *sym)
9199{
9200 struct perf_ksymbol_event ksymbol_event;
9201 char name[KSYM_NAME_LEN];
9202 u16 flags = 0;
9203 int name_len;
9204
9205 if (!atomic_read(&nr_ksymbol_events))
9206 return;
9207
9208 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9209 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9210 goto err;
9211
c9732f14 9212 strscpy(name, sym, KSYM_NAME_LEN);
76193a94
SL
9213 name_len = strlen(name) + 1;
9214 while (!IS_ALIGNED(name_len, sizeof(u64)))
9215 name[name_len++] = '\0';
9216 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9217
9218 if (unregister)
9219 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9220
9221 ksymbol_event = (struct perf_ksymbol_event){
9222 .name = name,
9223 .name_len = name_len,
9224 .event_id = {
9225 .header = {
9226 .type = PERF_RECORD_KSYMBOL,
9227 .size = sizeof(ksymbol_event.event_id) +
9228 name_len,
9229 },
9230 .addr = addr,
9231 .len = len,
9232 .ksym_type = ksym_type,
9233 .flags = flags,
9234 },
9235 };
9236
9237 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9238 return;
9239err:
9240 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9241}
9242
6ee52e2a
SL
9243/*
9244 * bpf program load/unload tracking
9245 */
9246
9247struct perf_bpf_event {
9248 struct bpf_prog *prog;
9249 struct {
9250 struct perf_event_header header;
9251 u16 type;
9252 u16 flags;
9253 u32 id;
9254 u8 tag[BPF_TAG_SIZE];
9255 } event_id;
9256};
9257
9258static int perf_event_bpf_match(struct perf_event *event)
9259{
9260 return event->attr.bpf_event;
9261}
9262
9263static void perf_event_bpf_output(struct perf_event *event, void *data)
9264{
9265 struct perf_bpf_event *bpf_event = data;
9266 struct perf_output_handle handle;
9267 struct perf_sample_data sample;
9268 int ret;
9269
9270 if (!perf_event_bpf_match(event))
9271 return;
9272
9273 perf_event_header__init_id(&bpf_event->event_id.header,
9274 &sample, event);
eb81a2ed 9275 ret = perf_output_begin(&handle, &sample, event,
6ee52e2a
SL
9276 bpf_event->event_id.header.size);
9277 if (ret)
9278 return;
9279
9280 perf_output_put(&handle, bpf_event->event_id);
9281 perf_event__output_id_sample(event, &handle, &sample);
9282
9283 perf_output_end(&handle);
9284}
9285
9286static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9287 enum perf_bpf_event_type type)
9288{
9289 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
6ee52e2a
SL
9290 int i;
9291
9292 if (prog->aux->func_cnt == 0) {
6ee52e2a
SL
9293 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9294 (u64)(unsigned long)prog->bpf_func,
bfea9a85
JO
9295 prog->jited_len, unregister,
9296 prog->aux->ksym.name);
6ee52e2a
SL
9297 } else {
9298 for (i = 0; i < prog->aux->func_cnt; i++) {
9299 struct bpf_prog *subprog = prog->aux->func[i];
9300
6ee52e2a
SL
9301 perf_event_ksymbol(
9302 PERF_RECORD_KSYMBOL_TYPE_BPF,
9303 (u64)(unsigned long)subprog->bpf_func,
bfea9a85 9304 subprog->jited_len, unregister,
47df8a2f 9305 subprog->aux->ksym.name);
6ee52e2a
SL
9306 }
9307 }
9308}
9309
9310void perf_event_bpf_event(struct bpf_prog *prog,
9311 enum perf_bpf_event_type type,
9312 u16 flags)
9313{
9314 struct perf_bpf_event bpf_event;
9315
6ee52e2a
SL
9316 switch (type) {
9317 case PERF_BPF_EVENT_PROG_LOAD:
9318 case PERF_BPF_EVENT_PROG_UNLOAD:
9319 if (atomic_read(&nr_ksymbol_events))
9320 perf_event_bpf_emit_ksymbols(prog, type);
9321 break;
9322 default:
aecaa3ed 9323 return;
6ee52e2a
SL
9324 }
9325
9326 if (!atomic_read(&nr_bpf_events))
9327 return;
9328
9329 bpf_event = (struct perf_bpf_event){
9330 .prog = prog,
9331 .event_id = {
9332 .header = {
9333 .type = PERF_RECORD_BPF_EVENT,
9334 .size = sizeof(bpf_event.event_id),
9335 },
9336 .type = type,
9337 .flags = flags,
9338 .id = prog->aux->id,
9339 },
9340 };
9341
9342 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9343
9344 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9345 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9346}
9347
e17d43b9
AH
9348struct perf_text_poke_event {
9349 const void *old_bytes;
9350 const void *new_bytes;
9351 size_t pad;
9352 u16 old_len;
9353 u16 new_len;
9354
9355 struct {
9356 struct perf_event_header header;
9357
9358 u64 addr;
9359 } event_id;
9360};
9361
9362static int perf_event_text_poke_match(struct perf_event *event)
9363{
9364 return event->attr.text_poke;
9365}
9366
9367static void perf_event_text_poke_output(struct perf_event *event, void *data)
9368{
9369 struct perf_text_poke_event *text_poke_event = data;
9370 struct perf_output_handle handle;
9371 struct perf_sample_data sample;
9372 u64 padding = 0;
9373 int ret;
9374
9375 if (!perf_event_text_poke_match(event))
9376 return;
9377
9378 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9379
267fb273
PZ
9380 ret = perf_output_begin(&handle, &sample, event,
9381 text_poke_event->event_id.header.size);
e17d43b9
AH
9382 if (ret)
9383 return;
9384
9385 perf_output_put(&handle, text_poke_event->event_id);
9386 perf_output_put(&handle, text_poke_event->old_len);
9387 perf_output_put(&handle, text_poke_event->new_len);
9388
9389 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9390 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9391
9392 if (text_poke_event->pad)
9393 __output_copy(&handle, &padding, text_poke_event->pad);
9394
9395 perf_event__output_id_sample(event, &handle, &sample);
9396
9397 perf_output_end(&handle);
9398}
9399
9400void perf_event_text_poke(const void *addr, const void *old_bytes,
9401 size_t old_len, const void *new_bytes, size_t new_len)
9402{
9403 struct perf_text_poke_event text_poke_event;
9404 size_t tot, pad;
9405
9406 if (!atomic_read(&nr_text_poke_events))
9407 return;
9408
9409 tot = sizeof(text_poke_event.old_len) + old_len;
9410 tot += sizeof(text_poke_event.new_len) + new_len;
9411 pad = ALIGN(tot, sizeof(u64)) - tot;
9412
9413 text_poke_event = (struct perf_text_poke_event){
9414 .old_bytes = old_bytes,
9415 .new_bytes = new_bytes,
9416 .pad = pad,
9417 .old_len = old_len,
9418 .new_len = new_len,
9419 .event_id = {
9420 .header = {
9421 .type = PERF_RECORD_TEXT_POKE,
9422 .misc = PERF_RECORD_MISC_KERNEL,
9423 .size = sizeof(text_poke_event.event_id) + tot + pad,
9424 },
9425 .addr = (unsigned long)addr,
9426 },
9427 };
9428
9429 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9430}
9431
8d4e6c4c
AS
9432void perf_event_itrace_started(struct perf_event *event)
9433{
9434 event->attach_state |= PERF_ATTACH_ITRACE;
9435}
9436
ec0d7729
AS
9437static void perf_log_itrace_start(struct perf_event *event)
9438{
9439 struct perf_output_handle handle;
9440 struct perf_sample_data sample;
9441 struct perf_aux_event {
9442 struct perf_event_header header;
9443 u32 pid;
9444 u32 tid;
9445 } rec;
9446 int ret;
9447
9448 if (event->parent)
9449 event = event->parent;
9450
9451 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8d4e6c4c 9452 event->attach_state & PERF_ATTACH_ITRACE)
ec0d7729
AS
9453 return;
9454
ec0d7729
AS
9455 rec.header.type = PERF_RECORD_ITRACE_START;
9456 rec.header.misc = 0;
9457 rec.header.size = sizeof(rec);
9458 rec.pid = perf_event_pid(event, current);
9459 rec.tid = perf_event_tid(event, current);
9460
9461 perf_event_header__init_id(&rec.header, &sample, event);
267fb273 9462 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
ec0d7729
AS
9463
9464 if (ret)
9465 return;
9466
9467 perf_output_put(&handle, rec);
9468 perf_event__output_id_sample(event, &handle, &sample);
9469
9470 perf_output_end(&handle);
9471}
9472
8b8ff8cc
AH
9473void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9474{
9475 struct perf_output_handle handle;
9476 struct perf_sample_data sample;
9477 struct perf_aux_event {
9478 struct perf_event_header header;
9479 u64 hw_id;
9480 } rec;
9481 int ret;
9482
9483 if (event->parent)
9484 event = event->parent;
9485
9486 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID;
9487 rec.header.misc = 0;
9488 rec.header.size = sizeof(rec);
9489 rec.hw_id = hw_id;
9490
9491 perf_event_header__init_id(&rec.header, &sample, event);
9492 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9493
9494 if (ret)
9495 return;
9496
9497 perf_output_put(&handle, rec);
9498 perf_event__output_id_sample(event, &handle, &sample);
9499
9500 perf_output_end(&handle);
9501}
7d30d480 9502EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
8b8ff8cc 9503
475113d9
JO
9504static int
9505__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 9506{
cdd6c482 9507 struct hw_perf_event *hwc = &event->hw;
79f14641 9508 int ret = 0;
475113d9 9509 u64 seq;
96398826 9510
e050e3f0
SE
9511 seq = __this_cpu_read(perf_throttled_seq);
9512 if (seq != hwc->interrupts_seq) {
9513 hwc->interrupts_seq = seq;
9514 hwc->interrupts = 1;
9515 } else {
9516 hwc->interrupts++;
15def34e
YJ
9517 if (unlikely(throttle &&
9518 hwc->interrupts > max_samples_per_tick)) {
e050e3f0 9519 __this_cpu_inc(perf_throttled_count);
555e0c1e 9520 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
9521 hwc->interrupts = MAX_INTERRUPTS;
9522 perf_log_throttle(event, 0);
a78ac325
PZ
9523 ret = 1;
9524 }
e050e3f0 9525 }
60db5e09 9526
cdd6c482 9527 if (event->attr.freq) {
def0a9b2 9528 u64 now = perf_clock();
abd50713 9529 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 9530
abd50713 9531 hwc->freq_time_stamp = now;
bd2b5b12 9532
abd50713 9533 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 9534 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
9535 }
9536
475113d9
JO
9537 return ret;
9538}
9539
9540int perf_event_account_interrupt(struct perf_event *event)
9541{
9542 return __perf_event_account_interrupt(event, 1);
9543}
9544
030a976e
PZ
9545static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9546{
9547 /*
9548 * Due to interrupt latency (AKA "skid"), we may enter the
9549 * kernel before taking an overflow, even if the PMU is only
9550 * counting user events.
9551 */
9552 if (event->attr.exclude_kernel && !user_mode(regs))
9553 return false;
9554
9555 return true;
9556}
9557
4c03fe11 9558#ifdef CONFIG_BPF_SYSCALL
f11f10bf
KH
9559static int bpf_overflow_handler(struct perf_event *event,
9560 struct perf_sample_data *data,
9561 struct pt_regs *regs)
4c03fe11
KH
9562{
9563 struct bpf_perf_event_data_kern ctx = {
9564 .data = data,
9565 .event = event,
9566 };
9567 struct bpf_prog *prog;
9568 int ret = 0;
9569
9570 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9571 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9572 goto out;
9573 rcu_read_lock();
9574 prog = READ_ONCE(event->prog);
9575 if (prog) {
9576 perf_prepare_sample(data, event, regs);
9577 ret = bpf_prog_run(prog, &ctx);
9578 }
9579 rcu_read_unlock();
9580out:
9581 __this_cpu_dec(bpf_prog_active);
4c03fe11 9582
f11f10bf 9583 return ret;
4c03fe11
KH
9584}
9585
854dd99b
IM
9586static inline int perf_event_set_bpf_handler(struct perf_event *event,
9587 struct bpf_prog *prog,
9588 u64 bpf_cookie)
4c03fe11
KH
9589{
9590 if (event->overflow_handler_context)
9591 /* hw breakpoint or kernel counter */
9592 return -EINVAL;
9593
9594 if (event->prog)
9595 return -EEXIST;
9596
9597 if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
9598 return -EINVAL;
9599
9600 if (event->attr.precise_ip &&
9601 prog->call_get_stack &&
9602 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
9603 event->attr.exclude_callchain_kernel ||
9604 event->attr.exclude_callchain_user)) {
9605 /*
9606 * On perf_event with precise_ip, calling bpf_get_stack()
9607 * may trigger unwinder warnings and occasional crashes.
9608 * bpf_get_[stack|stackid] works around this issue by using
9609 * callchain attached to perf_sample_data. If the
9610 * perf_event does not full (kernel and user) callchain
9611 * attached to perf_sample_data, do not allow attaching BPF
9612 * program that calls bpf_get_[stack|stackid].
9613 */
9614 return -EPROTO;
9615 }
9616
9617 event->prog = prog;
9618 event->bpf_cookie = bpf_cookie;
4c03fe11
KH
9619 return 0;
9620}
9621
854dd99b 9622static inline void perf_event_free_bpf_handler(struct perf_event *event)
4c03fe11
KH
9623{
9624 struct bpf_prog *prog = event->prog;
9625
9626 if (!prog)
9627 return;
9628
4c03fe11
KH
9629 event->prog = NULL;
9630 bpf_prog_put(prog);
9631}
9632#else
93d3fde7
IM
9633static inline int bpf_overflow_handler(struct perf_event *event,
9634 struct perf_sample_data *data,
9635 struct pt_regs *regs)
924d9343 9636{
f11f10bf 9637 return 1;
924d9343
KH
9638}
9639
93d3fde7
IM
9640static inline int perf_event_set_bpf_handler(struct perf_event *event,
9641 struct bpf_prog *prog,
9642 u64 bpf_cookie)
4c03fe11
KH
9643{
9644 return -EOPNOTSUPP;
9645}
9646
93d3fde7 9647static inline void perf_event_free_bpf_handler(struct perf_event *event)
4c03fe11
KH
9648{
9649}
9650#endif
9651
475113d9
JO
9652/*
9653 * Generic event overflow handling, sampling.
9654 */
9655
9656static int __perf_event_overflow(struct perf_event *event,
ca6c2132
PZ
9657 int throttle, struct perf_sample_data *data,
9658 struct pt_regs *regs)
475113d9
JO
9659{
9660 int events = atomic_read(&event->event_limit);
9661 int ret = 0;
9662
9663 /*
9664 * Non-sampling counters might still use the PMI to fold short
9665 * hardware counters, ignore those.
9666 */
9667 if (unlikely(!is_sampling_event(event)))
9668 return 0;
9669
9670 ret = __perf_event_account_interrupt(event, throttle);
cc1582c2 9671
c4fcc7d1
KH
9672 if (event->prog && !bpf_overflow_handler(event, data, regs))
9673 return ret;
9674
2023b359
PZ
9675 /*
9676 * XXX event_limit might not quite work as expected on inherited
cdd6c482 9677 * events
2023b359
PZ
9678 */
9679
cdd6c482
IM
9680 event->pending_kill = POLL_IN;
9681 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 9682 ret = 1;
cdd6c482 9683 event->pending_kill = POLL_HUP;
5aab90ce 9684 perf_event_disable_inatomic(event);
79f14641
PZ
9685 }
9686
ca6c2132 9687 if (event->attr.sigtrap) {
030a976e
PZ
9688 /*
9689 * The desired behaviour of sigtrap vs invalid samples is a bit
9690 * tricky; on the one hand, one should not loose the SIGTRAP if
9691 * it is the first event, on the other hand, we should also not
9692 * trigger the WARN or override the data address.
9693 */
9694 bool valid_sample = sample_is_allowed(event, regs);
bb88f969
ME
9695 unsigned int pending_id = 1;
9696
9697 if (regs)
9698 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
ca6c2132 9699 if (!event->pending_sigtrap) {
bb88f969 9700 event->pending_sigtrap = pending_id;
ca6c2132 9701 local_inc(&event->ctx->nr_pending);
030a976e 9702 } else if (event->attr.exclude_kernel && valid_sample) {
bb88f969
ME
9703 /*
9704 * Should not be able to return to user space without
9705 * consuming pending_sigtrap; with exceptions:
9706 *
9707 * 1. Where !exclude_kernel, events can overflow again
9708 * in the kernel without returning to user space.
9709 *
9710 * 2. Events that can overflow again before the IRQ-
9711 * work without user space progress (e.g. hrtimer).
9712 * To approximate progress (with false negatives),
9713 * check 32-bit hash of the current IP.
9714 */
9715 WARN_ON_ONCE(event->pending_sigtrap != pending_id);
ca6c2132 9716 }
af169b77
PZ
9717
9718 event->pending_addr = 0;
030a976e 9719 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
af169b77 9720 event->pending_addr = data->addr;
ca6c2132
PZ
9721 irq_work_queue(&event->pending_irq);
9722 }
9723
c4fcc7d1 9724 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 9725
fed66e2c 9726 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17 9727 event->pending_wakeup = 1;
ca6c2132 9728 irq_work_queue(&event->pending_irq);
f506b3dc
PZ
9729 }
9730
79f14641 9731 return ret;
f6c7d5fe
PZ
9732}
9733
a8b0ca17 9734int perf_event_overflow(struct perf_event *event,
ca6c2132
PZ
9735 struct perf_sample_data *data,
9736 struct pt_regs *regs)
850bc73f 9737{
a8b0ca17 9738 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
9739}
9740
15dbf27c 9741/*
cdd6c482 9742 * Generic software event infrastructure
15dbf27c
PZ
9743 */
9744
b28ab83c
PZ
9745struct swevent_htable {
9746 struct swevent_hlist *swevent_hlist;
9747 struct mutex hlist_mutex;
9748 int hlist_refcount;
9749
9750 /* Recursion avoidance in each contexts */
9751 int recursion[PERF_NR_CONTEXTS];
9752};
9753
9754static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9755
7b4b6658 9756/*
cdd6c482
IM
9757 * We directly increment event->count and keep a second value in
9758 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
9759 * is kept in the range [-sample_period, 0] so that we can use the
9760 * sign as trigger.
9761 */
9762
ab573844 9763u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 9764{
cdd6c482 9765 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
9766 u64 period = hwc->last_period;
9767 u64 nr, offset;
9768 s64 old, val;
9769
9770 hwc->last_period = hwc->sample_period;
15dbf27c 9771
28fd85a1
UB
9772 old = local64_read(&hwc->period_left);
9773 do {
9774 val = old;
9775 if (val < 0)
9776 return 0;
15dbf27c 9777
28fd85a1
UB
9778 nr = div64_u64(period + val, period);
9779 offset = nr * period;
9780 val -= offset;
9781 } while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
15dbf27c 9782
7b4b6658 9783 return nr;
15dbf27c
PZ
9784}
9785
0cff784a 9786static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 9787 struct perf_sample_data *data,
5622f295 9788 struct pt_regs *regs)
15dbf27c 9789{
cdd6c482 9790 struct hw_perf_event *hwc = &event->hw;
850bc73f 9791 int throttle = 0;
15dbf27c 9792
0cff784a
PZ
9793 if (!overflow)
9794 overflow = perf_swevent_set_period(event);
15dbf27c 9795
7b4b6658
PZ
9796 if (hwc->interrupts == MAX_INTERRUPTS)
9797 return;
15dbf27c 9798
7b4b6658 9799 for (; overflow; overflow--) {
a8b0ca17 9800 if (__perf_event_overflow(event, throttle,
5622f295 9801 data, regs)) {
7b4b6658
PZ
9802 /*
9803 * We inhibit the overflow from happening when
9804 * hwc->interrupts == MAX_INTERRUPTS.
9805 */
9806 break;
9807 }
cf450a73 9808 throttle = 1;
7b4b6658 9809 }
15dbf27c
PZ
9810}
9811
a4eaf7f1 9812static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 9813 struct perf_sample_data *data,
5622f295 9814 struct pt_regs *regs)
7b4b6658 9815{
cdd6c482 9816 struct hw_perf_event *hwc = &event->hw;
d6d020e9 9817
e7850595 9818 local64_add(nr, &event->count);
d6d020e9 9819
0cff784a
PZ
9820 if (!regs)
9821 return;
9822
6c7e550f 9823 if (!is_sampling_event(event))
7b4b6658 9824 return;
d6d020e9 9825
5d81e5cf
AV
9826 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9827 data->period = nr;
9828 return perf_swevent_overflow(event, 1, data, regs);
9829 } else
9830 data->period = event->hw.last_period;
9831
0cff784a 9832 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 9833 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 9834
e7850595 9835 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 9836 return;
df1a132b 9837
a8b0ca17 9838 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
9839}
9840
f5ffe02e
FW
9841static int perf_exclude_event(struct perf_event *event,
9842 struct pt_regs *regs)
9843{
a4eaf7f1 9844 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 9845 return 1;
a4eaf7f1 9846
f5ffe02e
FW
9847 if (regs) {
9848 if (event->attr.exclude_user && user_mode(regs))
9849 return 1;
9850
9851 if (event->attr.exclude_kernel && !user_mode(regs))
9852 return 1;
9853 }
9854
9855 return 0;
9856}
9857
cdd6c482 9858static int perf_swevent_match(struct perf_event *event,
1c432d89 9859 enum perf_type_id type,
6fb2915d
LZ
9860 u32 event_id,
9861 struct perf_sample_data *data,
9862 struct pt_regs *regs)
15dbf27c 9863{
cdd6c482 9864 if (event->attr.type != type)
a21ca2ca 9865 return 0;
f5ffe02e 9866
cdd6c482 9867 if (event->attr.config != event_id)
15dbf27c
PZ
9868 return 0;
9869
f5ffe02e
FW
9870 if (perf_exclude_event(event, regs))
9871 return 0;
15dbf27c
PZ
9872
9873 return 1;
9874}
9875
76e1d904
FW
9876static inline u64 swevent_hash(u64 type, u32 event_id)
9877{
9878 u64 val = event_id | (type << 32);
9879
9880 return hash_64(val, SWEVENT_HLIST_BITS);
9881}
9882
49f135ed
FW
9883static inline struct hlist_head *
9884__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 9885{
49f135ed
FW
9886 u64 hash = swevent_hash(type, event_id);
9887
9888 return &hlist->heads[hash];
9889}
76e1d904 9890
49f135ed
FW
9891/* For the read side: events when they trigger */
9892static inline struct hlist_head *
b28ab83c 9893find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
9894{
9895 struct swevent_hlist *hlist;
76e1d904 9896
b28ab83c 9897 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
9898 if (!hlist)
9899 return NULL;
9900
49f135ed
FW
9901 return __find_swevent_head(hlist, type, event_id);
9902}
9903
9904/* For the event head insertion and removal in the hlist */
9905static inline struct hlist_head *
b28ab83c 9906find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
9907{
9908 struct swevent_hlist *hlist;
9909 u32 event_id = event->attr.config;
9910 u64 type = event->attr.type;
9911
9912 /*
9913 * Event scheduling is always serialized against hlist allocation
9914 * and release. Which makes the protected version suitable here.
9915 * The context lock guarantees that.
9916 */
b28ab83c 9917 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
9918 lockdep_is_held(&event->ctx->lock));
9919 if (!hlist)
9920 return NULL;
9921
9922 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
9923}
9924
9925static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 9926 u64 nr,
76e1d904
FW
9927 struct perf_sample_data *data,
9928 struct pt_regs *regs)
15dbf27c 9929{
4a32fea9 9930 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 9931 struct perf_event *event;
76e1d904 9932 struct hlist_head *head;
15dbf27c 9933
76e1d904 9934 rcu_read_lock();
b28ab83c 9935 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
9936 if (!head)
9937 goto end;
9938
b67bfe0d 9939 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 9940 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 9941 perf_swevent_event(event, nr, data, regs);
15dbf27c 9942 }
76e1d904
FW
9943end:
9944 rcu_read_unlock();
15dbf27c
PZ
9945}
9946
86038c5e
PZI
9947DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9948
4ed7c92d 9949int perf_swevent_get_recursion_context(void)
96f6d444 9950{
4a32fea9 9951 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 9952
b28ab83c 9953 return get_recursion_context(swhash->recursion);
96f6d444 9954}
645e8cc0 9955EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 9956
98b5c2c6 9957void perf_swevent_put_recursion_context(int rctx)
15dbf27c 9958{
4a32fea9 9959 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 9960
b28ab83c 9961 put_recursion_context(swhash->recursion, rctx);
ce71b9df 9962}
15dbf27c 9963
86038c5e 9964void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 9965{
a4234bfc 9966 struct perf_sample_data data;
4ed7c92d 9967
86038c5e 9968 if (WARN_ON_ONCE(!regs))
4ed7c92d 9969 return;
a4234bfc 9970
fd0d000b 9971 perf_sample_data_init(&data, addr, 0);
a8b0ca17 9972 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
9973}
9974
9975void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9976{
9977 int rctx;
9978
9979 preempt_disable_notrace();
9980 rctx = perf_swevent_get_recursion_context();
9981 if (unlikely(rctx < 0))
9982 goto fail;
9983
9984 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
9985
9986 perf_swevent_put_recursion_context(rctx);
86038c5e 9987fail:
1c024eca 9988 preempt_enable_notrace();
b8e83514
PZ
9989}
9990
cdd6c482 9991static void perf_swevent_read(struct perf_event *event)
15dbf27c 9992{
15dbf27c
PZ
9993}
9994
a4eaf7f1 9995static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 9996{
4a32fea9 9997 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 9998 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
9999 struct hlist_head *head;
10000
6c7e550f 10001 if (is_sampling_event(event)) {
7b4b6658 10002 hwc->last_period = hwc->sample_period;
cdd6c482 10003 perf_swevent_set_period(event);
7b4b6658 10004 }
76e1d904 10005
a4eaf7f1
PZ
10006 hwc->state = !(flags & PERF_EF_START);
10007
b28ab83c 10008 head = find_swevent_head(swhash, event);
12ca6ad2 10009 if (WARN_ON_ONCE(!head))
76e1d904
FW
10010 return -EINVAL;
10011
10012 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 10013 perf_event_update_userpage(event);
76e1d904 10014
15dbf27c
PZ
10015 return 0;
10016}
10017
a4eaf7f1 10018static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 10019{
76e1d904 10020 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
10021}
10022
a4eaf7f1 10023static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 10024{
a4eaf7f1 10025 event->hw.state = 0;
d6d020e9 10026}
aa9c4c0f 10027
a4eaf7f1 10028static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 10029{
a4eaf7f1 10030 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
10031}
10032
49f135ed
FW
10033/* Deref the hlist from the update side */
10034static inline struct swevent_hlist *
b28ab83c 10035swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 10036{
b28ab83c
PZ
10037 return rcu_dereference_protected(swhash->swevent_hlist,
10038 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
10039}
10040
b28ab83c 10041static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 10042{
b28ab83c 10043 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 10044
49f135ed 10045 if (!hlist)
76e1d904
FW
10046 return;
10047
70691d4a 10048 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 10049 kfree_rcu(hlist, rcu_head);
76e1d904
FW
10050}
10051
3b364d7b 10052static void swevent_hlist_put_cpu(int cpu)
76e1d904 10053{
b28ab83c 10054 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 10055
b28ab83c 10056 mutex_lock(&swhash->hlist_mutex);
76e1d904 10057
b28ab83c
PZ
10058 if (!--swhash->hlist_refcount)
10059 swevent_hlist_release(swhash);
76e1d904 10060
b28ab83c 10061 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
10062}
10063
3b364d7b 10064static void swevent_hlist_put(void)
76e1d904
FW
10065{
10066 int cpu;
10067
76e1d904 10068 for_each_possible_cpu(cpu)
3b364d7b 10069 swevent_hlist_put_cpu(cpu);
76e1d904
FW
10070}
10071
3b364d7b 10072static int swevent_hlist_get_cpu(int cpu)
76e1d904 10073{
b28ab83c 10074 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
10075 int err = 0;
10076
b28ab83c 10077 mutex_lock(&swhash->hlist_mutex);
a63fbed7
TG
10078 if (!swevent_hlist_deref(swhash) &&
10079 cpumask_test_cpu(cpu, perf_online_mask)) {
76e1d904
FW
10080 struct swevent_hlist *hlist;
10081
10082 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
10083 if (!hlist) {
10084 err = -ENOMEM;
10085 goto exit;
10086 }
b28ab83c 10087 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 10088 }
b28ab83c 10089 swhash->hlist_refcount++;
9ed6060d 10090exit:
b28ab83c 10091 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
10092
10093 return err;
10094}
10095
3b364d7b 10096static int swevent_hlist_get(void)
76e1d904 10097{
3b364d7b 10098 int err, cpu, failed_cpu;
76e1d904 10099
a63fbed7 10100 mutex_lock(&pmus_lock);
76e1d904 10101 for_each_possible_cpu(cpu) {
3b364d7b 10102 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
10103 if (err) {
10104 failed_cpu = cpu;
10105 goto fail;
10106 }
10107 }
a63fbed7 10108 mutex_unlock(&pmus_lock);
76e1d904 10109 return 0;
9ed6060d 10110fail:
76e1d904
FW
10111 for_each_possible_cpu(cpu) {
10112 if (cpu == failed_cpu)
10113 break;
3b364d7b 10114 swevent_hlist_put_cpu(cpu);
76e1d904 10115 }
a63fbed7 10116 mutex_unlock(&pmus_lock);
76e1d904
FW
10117 return err;
10118}
10119
c5905afb 10120struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 10121
b0a873eb
PZ
10122static void sw_perf_event_destroy(struct perf_event *event)
10123{
10124 u64 event_id = event->attr.config;
95476b64 10125
b0a873eb
PZ
10126 WARN_ON(event->parent);
10127
c5905afb 10128 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 10129 swevent_hlist_put();
b0a873eb
PZ
10130}
10131
0d6d062c
RB
10132static struct pmu perf_cpu_clock; /* fwd declaration */
10133static struct pmu perf_task_clock;
10134
b0a873eb
PZ
10135static int perf_swevent_init(struct perf_event *event)
10136{
8176cced 10137 u64 event_id = event->attr.config;
b0a873eb
PZ
10138
10139 if (event->attr.type != PERF_TYPE_SOFTWARE)
10140 return -ENOENT;
10141
2481c5fa
SE
10142 /*
10143 * no branch sampling for software events
10144 */
10145 if (has_branch_stack(event))
10146 return -EOPNOTSUPP;
10147
b0a873eb
PZ
10148 switch (event_id) {
10149 case PERF_COUNT_SW_CPU_CLOCK:
0d6d062c
RB
10150 event->attr.type = perf_cpu_clock.type;
10151 return -ENOENT;
b0a873eb 10152 case PERF_COUNT_SW_TASK_CLOCK:
0d6d062c 10153 event->attr.type = perf_task_clock.type;
b0a873eb
PZ
10154 return -ENOENT;
10155
10156 default:
10157 break;
10158 }
10159
ce677831 10160 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
10161 return -ENOENT;
10162
10163 if (!event->parent) {
10164 int err;
10165
3b364d7b 10166 err = swevent_hlist_get();
b0a873eb
PZ
10167 if (err)
10168 return err;
10169
c5905afb 10170 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
10171 event->destroy = sw_perf_event_destroy;
10172 }
10173
10174 return 0;
10175}
10176
10177static struct pmu perf_swevent = {
89a1e187 10178 .task_ctx_nr = perf_sw_context,
95476b64 10179
34f43927
PZ
10180 .capabilities = PERF_PMU_CAP_NO_NMI,
10181
b0a873eb 10182 .event_init = perf_swevent_init,
a4eaf7f1
PZ
10183 .add = perf_swevent_add,
10184 .del = perf_swevent_del,
10185 .start = perf_swevent_start,
10186 .stop = perf_swevent_stop,
1c024eca 10187 .read = perf_swevent_read,
1c024eca
PZ
10188};
10189
b0a873eb
PZ
10190#ifdef CONFIG_EVENT_TRACING
10191
571f97f7
RB
10192static void tp_perf_event_destroy(struct perf_event *event)
10193{
10194 perf_trace_destroy(event);
10195}
10196
10197static int perf_tp_event_init(struct perf_event *event)
10198{
10199 int err;
10200
10201 if (event->attr.type != PERF_TYPE_TRACEPOINT)
10202 return -ENOENT;
10203
10204 /*
10205 * no branch sampling for tracepoint events
10206 */
10207 if (has_branch_stack(event))
10208 return -EOPNOTSUPP;
10209
10210 err = perf_trace_init(event);
10211 if (err)
10212 return err;
10213
10214 event->destroy = tp_perf_event_destroy;
10215
10216 return 0;
10217}
10218
10219static struct pmu perf_tracepoint = {
10220 .task_ctx_nr = perf_sw_context,
10221
10222 .event_init = perf_tp_event_init,
10223 .add = perf_trace_add,
10224 .del = perf_trace_del,
10225 .start = perf_swevent_start,
10226 .stop = perf_swevent_stop,
10227 .read = perf_swevent_read,
10228};
10229
1c024eca
PZ
10230static int perf_tp_filter_match(struct perf_event *event,
10231 struct perf_sample_data *data)
10232{
7e3f977e 10233 void *record = data->raw->frag.data;
1c024eca 10234
b71b437e
PZ
10235 /* only top level events have filters set */
10236 if (event->parent)
10237 event = event->parent;
10238
1c024eca
PZ
10239 if (likely(!event->filter) || filter_match_preds(event->filter, record))
10240 return 1;
10241 return 0;
10242}
10243
10244static int perf_tp_event_match(struct perf_event *event,
10245 struct perf_sample_data *data,
10246 struct pt_regs *regs)
10247{
a0f7d0f7
FW
10248 if (event->hw.state & PERF_HES_STOPPED)
10249 return 0;
580d607c 10250 /*
9fd2e48b 10251 * If exclude_kernel, only trace user-space tracepoints (uprobes)
580d607c 10252 */
9fd2e48b 10253 if (event->attr.exclude_kernel && !user_mode(regs))
1c024eca
PZ
10254 return 0;
10255
10256 if (!perf_tp_filter_match(event, data))
10257 return 0;
10258
10259 return 1;
10260}
10261
85b67bcb
AS
10262void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10263 struct trace_event_call *call, u64 count,
10264 struct pt_regs *regs, struct hlist_head *head,
10265 struct task_struct *task)
10266{
e87c6bc3 10267 if (bpf_prog_array_valid(call)) {
85b67bcb 10268 *(struct pt_regs **)raw_data = regs;
e87c6bc3 10269 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
85b67bcb
AS
10270 perf_swevent_put_recursion_context(rctx);
10271 return;
10272 }
10273 }
10274 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8fd0fbbe 10275 rctx, task);
85b67bcb
AS
10276}
10277EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10278
571f97f7
RB
10279static void __perf_tp_event_target_task(u64 count, void *record,
10280 struct pt_regs *regs,
10281 struct perf_sample_data *data,
10282 struct perf_event *event)
10283{
10284 struct trace_entry *entry = record;
10285
10286 if (event->attr.config != entry->type)
10287 return;
10288 /* Cannot deliver synchronous signal to other task. */
10289 if (event->attr.sigtrap)
10290 return;
10291 if (perf_tp_event_match(event, data, regs))
10292 perf_swevent_event(event, count, data, regs);
10293}
10294
10295static void perf_tp_event_target_task(u64 count, void *record,
10296 struct pt_regs *regs,
10297 struct perf_sample_data *data,
10298 struct perf_event_context *ctx)
10299{
10300 unsigned int cpu = smp_processor_id();
10301 struct pmu *pmu = &perf_tracepoint;
10302 struct perf_event *event, *sibling;
10303
10304 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10305 __perf_tp_event_target_task(count, record, regs, data, event);
10306 for_each_sibling_event(sibling, event)
10307 __perf_tp_event_target_task(count, record, regs, data, sibling);
10308 }
10309
10310 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10311 __perf_tp_event_target_task(count, record, regs, data, event);
10312 for_each_sibling_event(sibling, event)
10313 __perf_tp_event_target_task(count, record, regs, data, sibling);
10314 }
10315}
10316
1e1dcd93 10317void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff 10318 struct pt_regs *regs, struct hlist_head *head, int rctx,
8fd0fbbe 10319 struct task_struct *task)
95476b64
FW
10320{
10321 struct perf_sample_data data;
8fd0fbbe 10322 struct perf_event *event;
1c024eca 10323
95476b64 10324 struct perf_raw_record raw = {
7e3f977e
DB
10325 .frag = {
10326 .size = entry_size,
10327 .data = record,
10328 },
95476b64
FW
10329 };
10330
1e1dcd93 10331 perf_sample_data_init(&data, 0, 0);
0a9081cf 10332 perf_sample_save_raw_data(&data, &raw);
95476b64 10333
1e1dcd93
AS
10334 perf_trace_buf_update(record, event_type);
10335
8fd0fbbe 10336 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1d1bfe30 10337 if (perf_tp_event_match(event, &data, regs)) {
a8b0ca17 10338 perf_swevent_event(event, count, &data, regs);
1d1bfe30
YJ
10339
10340 /*
10341 * Here use the same on-stack perf_sample_data,
10342 * some members in data are event-specific and
10343 * need to be re-computed for different sweveents.
10344 * Re-initialize data->sample_flags safely to avoid
10345 * the problem that next event skips preparing data
10346 * because data->sample_flags is set.
10347 */
10348 perf_sample_data_init(&data, 0, 0);
10349 perf_sample_save_raw_data(&data, &raw);
10350 }
4f41c013 10351 }
ecc55f84 10352
e6dab5ff
AV
10353 /*
10354 * If we got specified a target task, also iterate its context and
10355 * deliver this event there too.
10356 */
10357 if (task && task != current) {
10358 struct perf_event_context *ctx;
e6dab5ff
AV
10359
10360 rcu_read_lock();
bd275681 10361 ctx = rcu_dereference(task->perf_event_ctxp);
e6dab5ff
AV
10362 if (!ctx)
10363 goto unlock;
10364
571f97f7
RB
10365 raw_spin_lock(&ctx->lock);
10366 perf_tp_event_target_task(count, record, regs, &data, ctx);
10367 raw_spin_unlock(&ctx->lock);
e6dab5ff
AV
10368unlock:
10369 rcu_read_unlock();
10370 }
10371
ecc55f84 10372 perf_swevent_put_recursion_context(rctx);
95476b64
FW
10373}
10374EXPORT_SYMBOL_GPL(perf_tp_event);
10375
33ea4b24 10376#if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
e12f03d7
SL
10377/*
10378 * Flags in config, used by dynamic PMU kprobe and uprobe
10379 * The flags should match following PMU_FORMAT_ATTR().
10380 *
10381 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10382 * if not set, create kprobe/uprobe
a6ca88b2
SL
10383 *
10384 * The following values specify a reference counter (or semaphore in the
10385 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10386 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10387 *
10388 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
10389 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
e12f03d7
SL
10390 */
10391enum perf_probe_config {
10392 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
a6ca88b2
SL
10393 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10394 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
e12f03d7
SL
10395};
10396
10397PMU_FORMAT_ATTR(retprobe, "config:0");
a6ca88b2 10398#endif
e12f03d7 10399
a6ca88b2
SL
10400#ifdef CONFIG_KPROBE_EVENTS
10401static struct attribute *kprobe_attrs[] = {
e12f03d7
SL
10402 &format_attr_retprobe.attr,
10403 NULL,
10404};
10405
a6ca88b2 10406static struct attribute_group kprobe_format_group = {
e12f03d7 10407 .name = "format",
a6ca88b2 10408 .attrs = kprobe_attrs,
e12f03d7
SL
10409};
10410
a6ca88b2
SL
10411static const struct attribute_group *kprobe_attr_groups[] = {
10412 &kprobe_format_group,
e12f03d7
SL
10413 NULL,
10414};
10415
10416static int perf_kprobe_event_init(struct perf_event *event);
10417static struct pmu perf_kprobe = {
10418 .task_ctx_nr = perf_sw_context,
10419 .event_init = perf_kprobe_event_init,
10420 .add = perf_trace_add,
10421 .del = perf_trace_del,
10422 .start = perf_swevent_start,
10423 .stop = perf_swevent_stop,
10424 .read = perf_swevent_read,
a6ca88b2 10425 .attr_groups = kprobe_attr_groups,
e12f03d7
SL
10426};
10427
10428static int perf_kprobe_event_init(struct perf_event *event)
10429{
10430 int err;
10431 bool is_retprobe;
10432
10433 if (event->attr.type != perf_kprobe.type)
10434 return -ENOENT;
32e6e967 10435
c9e0924e 10436 if (!perfmon_capable())
32e6e967
SL
10437 return -EACCES;
10438
e12f03d7
SL
10439 /*
10440 * no branch sampling for probe events
10441 */
10442 if (has_branch_stack(event))
10443 return -EOPNOTSUPP;
10444
10445 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10446 err = perf_kprobe_init(event, is_retprobe);
10447 if (err)
10448 return err;
10449
10450 event->destroy = perf_kprobe_destroy;
10451
10452 return 0;
10453}
10454#endif /* CONFIG_KPROBE_EVENTS */
10455
33ea4b24 10456#ifdef CONFIG_UPROBE_EVENTS
a6ca88b2
SL
10457PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10458
10459static struct attribute *uprobe_attrs[] = {
10460 &format_attr_retprobe.attr,
10461 &format_attr_ref_ctr_offset.attr,
10462 NULL,
10463};
10464
10465static struct attribute_group uprobe_format_group = {
10466 .name = "format",
10467 .attrs = uprobe_attrs,
10468};
10469
10470static const struct attribute_group *uprobe_attr_groups[] = {
10471 &uprobe_format_group,
10472 NULL,
10473};
10474
33ea4b24
SL
10475static int perf_uprobe_event_init(struct perf_event *event);
10476static struct pmu perf_uprobe = {
10477 .task_ctx_nr = perf_sw_context,
10478 .event_init = perf_uprobe_event_init,
10479 .add = perf_trace_add,
10480 .del = perf_trace_del,
10481 .start = perf_swevent_start,
10482 .stop = perf_swevent_stop,
10483 .read = perf_swevent_read,
a6ca88b2 10484 .attr_groups = uprobe_attr_groups,
33ea4b24
SL
10485};
10486
10487static int perf_uprobe_event_init(struct perf_event *event)
10488{
10489 int err;
a6ca88b2 10490 unsigned long ref_ctr_offset;
33ea4b24
SL
10491 bool is_retprobe;
10492
10493 if (event->attr.type != perf_uprobe.type)
10494 return -ENOENT;
32e6e967 10495
c9e0924e 10496 if (!perfmon_capable())
32e6e967
SL
10497 return -EACCES;
10498
33ea4b24
SL
10499 /*
10500 * no branch sampling for probe events
10501 */
10502 if (has_branch_stack(event))
10503 return -EOPNOTSUPP;
10504
10505 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
a6ca88b2
SL
10506 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10507 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
33ea4b24
SL
10508 if (err)
10509 return err;
10510
10511 event->destroy = perf_uprobe_destroy;
10512
10513 return 0;
10514}
10515#endif /* CONFIG_UPROBE_EVENTS */
10516
b0a873eb
PZ
10517static inline void perf_tp_register(void)
10518{
2e80a82a 10519 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e12f03d7
SL
10520#ifdef CONFIG_KPROBE_EVENTS
10521 perf_pmu_register(&perf_kprobe, "kprobe", -1);
10522#endif
33ea4b24
SL
10523#ifdef CONFIG_UPROBE_EVENTS
10524 perf_pmu_register(&perf_uprobe, "uprobe", -1);
10525#endif
e077df4f 10526}
6fb2915d 10527
6fb2915d
LZ
10528static void perf_event_free_filter(struct perf_event *event)
10529{
10530 ftrace_profile_free_filter(event);
10531}
10532
e12f03d7
SL
10533/*
10534 * returns true if the event is a tracepoint, or a kprobe/upprobe created
10535 * with perf_event_open()
10536 */
10537static inline bool perf_event_is_tracing(struct perf_event *event)
10538{
10539 if (event->pmu == &perf_tracepoint)
10540 return true;
10541#ifdef CONFIG_KPROBE_EVENTS
10542 if (event->pmu == &perf_kprobe)
10543 return true;
33ea4b24
SL
10544#endif
10545#ifdef CONFIG_UPROBE_EVENTS
10546 if (event->pmu == &perf_uprobe)
10547 return true;
e12f03d7
SL
10548#endif
10549 return false;
10550}
10551
82e6b1ee
AN
10552int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10553 u64 bpf_cookie)
2541517c 10554{
64ad7556 10555 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
2541517c 10556
e12f03d7 10557 if (!perf_event_is_tracing(event))
82e6b1ee 10558 return perf_event_set_bpf_handler(event, prog, bpf_cookie);
2541517c 10559
64ad7556
DK
10560 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10561 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
98b5c2c6 10562 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
cf5f5cea 10563 is_syscall_tp = is_syscall_trace_event(event->tp_event);
64ad7556 10564 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
98b5c2c6 10565 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
10566 return -EINVAL;
10567
64ad7556 10568 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
cf5f5cea 10569 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
652c1b17 10570 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
2541517c 10571 return -EINVAL;
2541517c 10572
66c84731 10573 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe)
64ad7556
DK
10574 /* only uprobe programs are allowed to be sleepable */
10575 return -EINVAL;
10576
9802d865 10577 /* Kprobe override only works for kprobes, not uprobes. */
64ad7556 10578 if (prog->kprobe_override && !is_kprobe)
9802d865 10579 return -EINVAL;
9802d865 10580
cf5f5cea 10581 if (is_tracepoint || is_syscall_tp) {
32bbe007
AS
10582 int off = trace_event_get_offsets(event->tp_event);
10583
652c1b17 10584 if (prog->aux->max_ctx_offset > off)
32bbe007 10585 return -EACCES;
32bbe007 10586 }
2541517c 10587
82e6b1ee 10588 return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
2541517c
AS
10589}
10590
b89fbfbb 10591void perf_event_free_bpf_prog(struct perf_event *event)
2541517c 10592{
e12f03d7 10593 if (!perf_event_is_tracing(event)) {
0b4c6841 10594 perf_event_free_bpf_handler(event);
2541517c 10595 return;
2541517c 10596 }
e87c6bc3 10597 perf_event_detach_bpf_prog(event);
2541517c
AS
10598}
10599
e077df4f 10600#else
6fb2915d 10601
b0a873eb 10602static inline void perf_tp_register(void)
e077df4f 10603{
e077df4f 10604}
6fb2915d 10605
6fb2915d
LZ
10606static void perf_event_free_filter(struct perf_event *event)
10607{
10608}
10609
82e6b1ee
AN
10610int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10611 u64 bpf_cookie)
2541517c
AS
10612{
10613 return -ENOENT;
10614}
10615
b89fbfbb 10616void perf_event_free_bpf_prog(struct perf_event *event)
2541517c
AS
10617{
10618}
07b139c8 10619#endif /* CONFIG_EVENT_TRACING */
e077df4f 10620
24f1e32c 10621#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 10622void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 10623{
f5ffe02e
FW
10624 struct perf_sample_data sample;
10625 struct pt_regs *regs = data;
10626
fd0d000b 10627 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 10628
a4eaf7f1 10629 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 10630 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
10631}
10632#endif
10633
375637bc
AS
10634/*
10635 * Allocate a new address filter
10636 */
10637static struct perf_addr_filter *
10638perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10639{
10640 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10641 struct perf_addr_filter *filter;
10642
10643 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10644 if (!filter)
10645 return NULL;
10646
10647 INIT_LIST_HEAD(&filter->entry);
10648 list_add_tail(&filter->entry, filters);
10649
10650 return filter;
10651}
10652
10653static void free_filters_list(struct list_head *filters)
10654{
10655 struct perf_addr_filter *filter, *iter;
10656
10657 list_for_each_entry_safe(filter, iter, filters, entry) {
9511bce9 10658 path_put(&filter->path);
375637bc
AS
10659 list_del(&filter->entry);
10660 kfree(filter);
10661 }
10662}
10663
10664/*
10665 * Free existing address filters and optionally install new ones
10666 */
10667static void perf_addr_filters_splice(struct perf_event *event,
10668 struct list_head *head)
10669{
10670 unsigned long flags;
10671 LIST_HEAD(list);
10672
10673 if (!has_addr_filter(event))
10674 return;
10675
10676 /* don't bother with children, they don't have their own filters */
10677 if (event->parent)
10678 return;
10679
10680 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10681
10682 list_splice_init(&event->addr_filters.list, &list);
10683 if (head)
10684 list_splice(head, &event->addr_filters.list);
10685
10686 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10687
10688 free_filters_list(&list);
10689}
10690
10691/*
10692 * Scan through mm's vmas and see if one of them matches the
10693 * @filter; if so, adjust filter's address range.
c1e8d7c6 10694 * Called with mm::mmap_lock down for reading.
375637bc 10695 */
c60f83b8
AS
10696static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10697 struct mm_struct *mm,
10698 struct perf_addr_filter_range *fr)
375637bc
AS
10699{
10700 struct vm_area_struct *vma;
fcb72a58 10701 VMA_ITERATOR(vmi, mm, 0);
375637bc 10702
fcb72a58 10703 for_each_vma(vmi, vma) {
c60f83b8 10704 if (!vma->vm_file)
375637bc
AS
10705 continue;
10706
c60f83b8
AS
10707 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10708 return;
375637bc 10709 }
375637bc
AS
10710}
10711
10712/*
10713 * Update event's address range filters based on the
10714 * task's existing mappings, if any.
10715 */
10716static void perf_event_addr_filters_apply(struct perf_event *event)
10717{
10718 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10719 struct task_struct *task = READ_ONCE(event->ctx->task);
10720 struct perf_addr_filter *filter;
10721 struct mm_struct *mm = NULL;
10722 unsigned int count = 0;
10723 unsigned long flags;
10724
10725 /*
10726 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10727 * will stop on the parent's child_mutex that our caller is also holding
10728 */
10729 if (task == TASK_TOMBSTONE)
10730 return;
10731
52a44f83 10732 if (ifh->nr_file_filters) {
b89a05b2 10733 mm = get_task_mm(task);
52a44f83
AS
10734 if (!mm)
10735 goto restart;
375637bc 10736
d8ed45c5 10737 mmap_read_lock(mm);
52a44f83 10738 }
375637bc
AS
10739
10740 raw_spin_lock_irqsave(&ifh->lock, flags);
10741 list_for_each_entry(filter, &ifh->list, entry) {
52a44f83
AS
10742 if (filter->path.dentry) {
10743 /*
10744 * Adjust base offset if the filter is associated to a
10745 * binary that needs to be mapped:
10746 */
10747 event->addr_filter_ranges[count].start = 0;
10748 event->addr_filter_ranges[count].size = 0;
375637bc 10749
c60f83b8 10750 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
52a44f83
AS
10751 } else {
10752 event->addr_filter_ranges[count].start = filter->offset;
10753 event->addr_filter_ranges[count].size = filter->size;
10754 }
375637bc
AS
10755
10756 count++;
10757 }
10758
10759 event->addr_filters_gen++;
10760 raw_spin_unlock_irqrestore(&ifh->lock, flags);
10761
52a44f83 10762 if (ifh->nr_file_filters) {
d8ed45c5 10763 mmap_read_unlock(mm);
375637bc 10764
52a44f83
AS
10765 mmput(mm);
10766 }
375637bc
AS
10767
10768restart:
767ae086 10769 perf_event_stop(event, 1);
375637bc
AS
10770}
10771
10772/*
10773 * Address range filtering: limiting the data to certain
10774 * instruction address ranges. Filters are ioctl()ed to us from
10775 * userspace as ascii strings.
10776 *
10777 * Filter string format:
10778 *
10779 * ACTION RANGE_SPEC
10780 * where ACTION is one of the
10781 * * "filter": limit the trace to this region
10782 * * "start": start tracing from this address
10783 * * "stop": stop tracing at this address/region;
10784 * RANGE_SPEC is
10785 * * for kernel addresses: <start address>[/<size>]
10786 * * for object files: <start address>[/<size>]@</path/to/object/file>
10787 *
6ed70cf3
AS
10788 * if <size> is not specified or is zero, the range is treated as a single
10789 * address; not valid for ACTION=="filter".
375637bc
AS
10790 */
10791enum {
e96271f3 10792 IF_ACT_NONE = -1,
375637bc
AS
10793 IF_ACT_FILTER,
10794 IF_ACT_START,
10795 IF_ACT_STOP,
10796 IF_SRC_FILE,
10797 IF_SRC_KERNEL,
10798 IF_SRC_FILEADDR,
10799 IF_SRC_KERNELADDR,
10800};
10801
10802enum {
10803 IF_STATE_ACTION = 0,
10804 IF_STATE_SOURCE,
10805 IF_STATE_END,
10806};
10807
10808static const match_table_t if_tokens = {
10809 { IF_ACT_FILTER, "filter" },
10810 { IF_ACT_START, "start" },
10811 { IF_ACT_STOP, "stop" },
10812 { IF_SRC_FILE, "%u/%u@%s" },
10813 { IF_SRC_KERNEL, "%u/%u" },
10814 { IF_SRC_FILEADDR, "%u@%s" },
10815 { IF_SRC_KERNELADDR, "%u" },
e96271f3 10816 { IF_ACT_NONE, NULL },
375637bc
AS
10817};
10818
10819/*
10820 * Address filter string parser
10821 */
10822static int
10823perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10824 struct list_head *filters)
10825{
10826 struct perf_addr_filter *filter = NULL;
10827 char *start, *orig, *filename = NULL;
375637bc
AS
10828 substring_t args[MAX_OPT_ARGS];
10829 int state = IF_STATE_ACTION, token;
10830 unsigned int kernel = 0;
10831 int ret = -EINVAL;
10832
10833 orig = fstr = kstrdup(fstr, GFP_KERNEL);
10834 if (!fstr)
10835 return -ENOMEM;
10836
10837 while ((start = strsep(&fstr, " ,\n")) != NULL) {
6ed70cf3
AS
10838 static const enum perf_addr_filter_action_t actions[] = {
10839 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10840 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
10841 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
10842 };
375637bc
AS
10843 ret = -EINVAL;
10844
10845 if (!*start)
10846 continue;
10847
10848 /* filter definition begins */
10849 if (state == IF_STATE_ACTION) {
10850 filter = perf_addr_filter_new(event, filters);
10851 if (!filter)
10852 goto fail;
10853 }
10854
10855 token = match_token(start, if_tokens, args);
10856 switch (token) {
10857 case IF_ACT_FILTER:
10858 case IF_ACT_START:
375637bc
AS
10859 case IF_ACT_STOP:
10860 if (state != IF_STATE_ACTION)
10861 goto fail;
10862
6ed70cf3 10863 filter->action = actions[token];
375637bc
AS
10864 state = IF_STATE_SOURCE;
10865 break;
10866
10867 case IF_SRC_KERNELADDR:
10868 case IF_SRC_KERNEL:
10869 kernel = 1;
df561f66 10870 fallthrough;
375637bc
AS
10871
10872 case IF_SRC_FILEADDR:
10873 case IF_SRC_FILE:
10874 if (state != IF_STATE_SOURCE)
10875 goto fail;
10876
375637bc
AS
10877 *args[0].to = 0;
10878 ret = kstrtoul(args[0].from, 0, &filter->offset);
10879 if (ret)
10880 goto fail;
10881
6ed70cf3 10882 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
375637bc
AS
10883 *args[1].to = 0;
10884 ret = kstrtoul(args[1].from, 0, &filter->size);
10885 if (ret)
10886 goto fail;
10887 }
10888
4059ffd0 10889 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
6ed70cf3 10890 int fpos = token == IF_SRC_FILE ? 2 : 1;
4059ffd0 10891
7bdb157c 10892 kfree(filename);
4059ffd0 10893 filename = match_strdup(&args[fpos]);
375637bc
AS
10894 if (!filename) {
10895 ret = -ENOMEM;
10896 goto fail;
10897 }
10898 }
10899
10900 state = IF_STATE_END;
10901 break;
10902
10903 default:
10904 goto fail;
10905 }
10906
10907 /*
10908 * Filter definition is fully parsed, validate and install it.
10909 * Make sure that it doesn't contradict itself or the event's
10910 * attribute.
10911 */
10912 if (state == IF_STATE_END) {
9ccbfbb1 10913 ret = -EINVAL;
375637bc 10914
6ed70cf3
AS
10915 /*
10916 * ACTION "filter" must have a non-zero length region
10917 * specified.
10918 */
10919 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10920 !filter->size)
10921 goto fail;
10922
375637bc
AS
10923 if (!kernel) {
10924 if (!filename)
10925 goto fail;
10926
6ce77bfd
AS
10927 /*
10928 * For now, we only support file-based filters
10929 * in per-task events; doing so for CPU-wide
10930 * events requires additional context switching
10931 * trickery, since same object code will be
10932 * mapped at different virtual addresses in
10933 * different processes.
10934 */
10935 ret = -EOPNOTSUPP;
10936 if (!event->ctx->task)
7bdb157c 10937 goto fail;
6ce77bfd 10938
375637bc 10939 /* look up the path and grab its inode */
9511bce9
SL
10940 ret = kern_path(filename, LOOKUP_FOLLOW,
10941 &filter->path);
375637bc 10942 if (ret)
7bdb157c 10943 goto fail;
375637bc
AS
10944
10945 ret = -EINVAL;
9511bce9
SL
10946 if (!filter->path.dentry ||
10947 !S_ISREG(d_inode(filter->path.dentry)
10948 ->i_mode))
375637bc 10949 goto fail;
6ce77bfd
AS
10950
10951 event->addr_filters.nr_file_filters++;
375637bc
AS
10952 }
10953
10954 /* ready to consume more filters */
d680ff24
AH
10955 kfree(filename);
10956 filename = NULL;
375637bc
AS
10957 state = IF_STATE_ACTION;
10958 filter = NULL;
d680ff24 10959 kernel = 0;
375637bc
AS
10960 }
10961 }
10962
10963 if (state != IF_STATE_ACTION)
10964 goto fail;
10965
7bdb157c 10966 kfree(filename);
375637bc
AS
10967 kfree(orig);
10968
10969 return 0;
10970
375637bc 10971fail:
7bdb157c 10972 kfree(filename);
375637bc
AS
10973 free_filters_list(filters);
10974 kfree(orig);
10975
10976 return ret;
10977}
10978
10979static int
10980perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10981{
10982 LIST_HEAD(filters);
10983 int ret;
10984
10985 /*
10986 * Since this is called in perf_ioctl() path, we're already holding
10987 * ctx::mutex.
10988 */
10989 lockdep_assert_held(&event->ctx->mutex);
10990
10991 if (WARN_ON_ONCE(event->parent))
10992 return -EINVAL;
10993
375637bc
AS
10994 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10995 if (ret)
6ce77bfd 10996 goto fail_clear_files;
375637bc
AS
10997
10998 ret = event->pmu->addr_filters_validate(&filters);
6ce77bfd
AS
10999 if (ret)
11000 goto fail_free_filters;
375637bc
AS
11001
11002 /* remove existing filters, if any */
11003 perf_addr_filters_splice(event, &filters);
11004
11005 /* install new filters */
11006 perf_event_for_each_child(event, perf_event_addr_filters_apply);
11007
6ce77bfd
AS
11008 return ret;
11009
11010fail_free_filters:
11011 free_filters_list(&filters);
11012
11013fail_clear_files:
11014 event->addr_filters.nr_file_filters = 0;
11015
375637bc
AS
11016 return ret;
11017}
11018
c796bbbe
AS
11019static int perf_event_set_filter(struct perf_event *event, void __user *arg)
11020{
c796bbbe 11021 int ret = -EINVAL;
e12f03d7 11022 char *filter_str;
c796bbbe
AS
11023
11024 filter_str = strndup_user(arg, PAGE_SIZE);
11025 if (IS_ERR(filter_str))
11026 return PTR_ERR(filter_str);
11027
e12f03d7
SL
11028#ifdef CONFIG_EVENT_TRACING
11029 if (perf_event_is_tracing(event)) {
11030 struct perf_event_context *ctx = event->ctx;
11031
11032 /*
11033 * Beware, here be dragons!!
11034 *
11035 * the tracepoint muck will deadlock against ctx->mutex, but
11036 * the tracepoint stuff does not actually need it. So
11037 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11038 * already have a reference on ctx.
11039 *
11040 * This can result in event getting moved to a different ctx,
11041 * but that does not affect the tracepoint state.
11042 */
11043 mutex_unlock(&ctx->mutex);
11044 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11045 mutex_lock(&ctx->mutex);
11046 } else
11047#endif
11048 if (has_addr_filter(event))
375637bc 11049 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
11050
11051 kfree(filter_str);
11052 return ret;
11053}
11054
b0a873eb
PZ
11055/*
11056 * hrtimer based swevent callback
11057 */
f29ac756 11058
b0a873eb 11059static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 11060{
b0a873eb
PZ
11061 enum hrtimer_restart ret = HRTIMER_RESTART;
11062 struct perf_sample_data data;
11063 struct pt_regs *regs;
11064 struct perf_event *event;
11065 u64 period;
f29ac756 11066
b0a873eb 11067 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
11068
11069 if (event->state != PERF_EVENT_STATE_ACTIVE)
11070 return HRTIMER_NORESTART;
11071
b0a873eb 11072 event->pmu->read(event);
f344011c 11073
fd0d000b 11074 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
11075 regs = get_irq_regs();
11076
11077 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 11078 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 11079 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
11080 ret = HRTIMER_NORESTART;
11081 }
24f1e32c 11082
b0a873eb
PZ
11083 period = max_t(u64, 10000, event->hw.sample_period);
11084 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 11085
b0a873eb 11086 return ret;
f29ac756
PZ
11087}
11088
b0a873eb 11089static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 11090{
b0a873eb 11091 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
11092 s64 period;
11093
11094 if (!is_sampling_event(event))
11095 return;
f5ffe02e 11096
5d508e82
FBH
11097 period = local64_read(&hwc->period_left);
11098 if (period) {
11099 if (period < 0)
11100 period = 10000;
fa407f35 11101
5d508e82
FBH
11102 local64_set(&hwc->period_left, 0);
11103 } else {
11104 period = max_t(u64, 10000, hwc->sample_period);
11105 }
3497d206 11106 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
30f9028b 11107 HRTIMER_MODE_REL_PINNED_HARD);
24f1e32c 11108}
b0a873eb
PZ
11109
11110static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 11111{
b0a873eb
PZ
11112 struct hw_perf_event *hwc = &event->hw;
11113
6c7e550f 11114 if (is_sampling_event(event)) {
b0a873eb 11115 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 11116 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
11117
11118 hrtimer_cancel(&hwc->hrtimer);
11119 }
24f1e32c
FW
11120}
11121
ba3dd36c
PZ
11122static void perf_swevent_init_hrtimer(struct perf_event *event)
11123{
11124 struct hw_perf_event *hwc = &event->hw;
11125
11126 if (!is_sampling_event(event))
11127 return;
11128
30f9028b 11129 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
ba3dd36c
PZ
11130 hwc->hrtimer.function = perf_swevent_hrtimer;
11131
11132 /*
11133 * Since hrtimers have a fixed rate, we can do a static freq->period
11134 * mapping and avoid the whole period adjust feedback stuff.
11135 */
11136 if (event->attr.freq) {
11137 long freq = event->attr.sample_freq;
11138
11139 event->attr.sample_period = NSEC_PER_SEC / freq;
11140 hwc->sample_period = event->attr.sample_period;
11141 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 11142 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
11143 event->attr.freq = 0;
11144 }
11145}
11146
b0a873eb
PZ
11147/*
11148 * Software event: cpu wall time clock
11149 */
11150
11151static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 11152{
b0a873eb
PZ
11153 s64 prev;
11154 u64 now;
11155
a4eaf7f1 11156 now = local_clock();
b0a873eb
PZ
11157 prev = local64_xchg(&event->hw.prev_count, now);
11158 local64_add(now - prev, &event->count);
24f1e32c 11159}
24f1e32c 11160
a4eaf7f1 11161static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 11162{
a4eaf7f1 11163 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 11164 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
11165}
11166
a4eaf7f1 11167static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 11168{
b0a873eb
PZ
11169 perf_swevent_cancel_hrtimer(event);
11170 cpu_clock_event_update(event);
11171}
f29ac756 11172
a4eaf7f1
PZ
11173static int cpu_clock_event_add(struct perf_event *event, int flags)
11174{
11175 if (flags & PERF_EF_START)
11176 cpu_clock_event_start(event, flags);
6a694a60 11177 perf_event_update_userpage(event);
a4eaf7f1
PZ
11178
11179 return 0;
11180}
11181
11182static void cpu_clock_event_del(struct perf_event *event, int flags)
11183{
11184 cpu_clock_event_stop(event, flags);
11185}
11186
b0a873eb
PZ
11187static void cpu_clock_event_read(struct perf_event *event)
11188{
11189 cpu_clock_event_update(event);
11190}
f344011c 11191
b0a873eb
PZ
11192static int cpu_clock_event_init(struct perf_event *event)
11193{
0d6d062c 11194 if (event->attr.type != perf_cpu_clock.type)
b0a873eb
PZ
11195 return -ENOENT;
11196
11197 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11198 return -ENOENT;
11199
2481c5fa
SE
11200 /*
11201 * no branch sampling for software events
11202 */
11203 if (has_branch_stack(event))
11204 return -EOPNOTSUPP;
11205
ba3dd36c
PZ
11206 perf_swevent_init_hrtimer(event);
11207
b0a873eb 11208 return 0;
f29ac756
PZ
11209}
11210
b0a873eb 11211static struct pmu perf_cpu_clock = {
89a1e187
PZ
11212 .task_ctx_nr = perf_sw_context,
11213
34f43927 11214 .capabilities = PERF_PMU_CAP_NO_NMI,
0d6d062c 11215 .dev = PMU_NULL_DEV,
34f43927 11216
b0a873eb 11217 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
11218 .add = cpu_clock_event_add,
11219 .del = cpu_clock_event_del,
11220 .start = cpu_clock_event_start,
11221 .stop = cpu_clock_event_stop,
b0a873eb
PZ
11222 .read = cpu_clock_event_read,
11223};
11224
11225/*
11226 * Software event: task time clock
11227 */
11228
11229static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 11230{
b0a873eb
PZ
11231 u64 prev;
11232 s64 delta;
5c92d124 11233
b0a873eb
PZ
11234 prev = local64_xchg(&event->hw.prev_count, now);
11235 delta = now - prev;
11236 local64_add(delta, &event->count);
11237}
5c92d124 11238
a4eaf7f1 11239static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 11240{
a4eaf7f1 11241 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 11242 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
11243}
11244
a4eaf7f1 11245static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
11246{
11247 perf_swevent_cancel_hrtimer(event);
11248 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
11249}
11250
11251static int task_clock_event_add(struct perf_event *event, int flags)
11252{
11253 if (flags & PERF_EF_START)
11254 task_clock_event_start(event, flags);
6a694a60 11255 perf_event_update_userpage(event);
b0a873eb 11256
a4eaf7f1
PZ
11257 return 0;
11258}
11259
11260static void task_clock_event_del(struct perf_event *event, int flags)
11261{
11262 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
11263}
11264
11265static void task_clock_event_read(struct perf_event *event)
11266{
768a06e2
PZ
11267 u64 now = perf_clock();
11268 u64 delta = now - event->ctx->timestamp;
11269 u64 time = event->ctx->time + delta;
b0a873eb
PZ
11270
11271 task_clock_event_update(event, time);
11272}
11273
11274static int task_clock_event_init(struct perf_event *event)
6fb2915d 11275{
0d6d062c 11276 if (event->attr.type != perf_task_clock.type)
b0a873eb
PZ
11277 return -ENOENT;
11278
11279 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11280 return -ENOENT;
11281
2481c5fa
SE
11282 /*
11283 * no branch sampling for software events
11284 */
11285 if (has_branch_stack(event))
11286 return -EOPNOTSUPP;
11287
ba3dd36c
PZ
11288 perf_swevent_init_hrtimer(event);
11289
b0a873eb 11290 return 0;
6fb2915d
LZ
11291}
11292
b0a873eb 11293static struct pmu perf_task_clock = {
89a1e187
PZ
11294 .task_ctx_nr = perf_sw_context,
11295
34f43927 11296 .capabilities = PERF_PMU_CAP_NO_NMI,
0d6d062c 11297 .dev = PMU_NULL_DEV,
34f43927 11298
b0a873eb 11299 .event_init = task_clock_event_init,
a4eaf7f1
PZ
11300 .add = task_clock_event_add,
11301 .del = task_clock_event_del,
11302 .start = task_clock_event_start,
11303 .stop = task_clock_event_stop,
b0a873eb
PZ
11304 .read = task_clock_event_read,
11305};
6fb2915d 11306
ad5133b7 11307static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 11308{
e077df4f 11309}
6fb2915d 11310
fbbe0701
SB
11311static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11312{
11313}
11314
ad5133b7 11315static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 11316{
ad5133b7 11317 return 0;
6fb2915d
LZ
11318}
11319
81ec3f3c
JO
11320static int perf_event_nop_int(struct perf_event *event, u64 value)
11321{
11322 return 0;
11323}
11324
18ab2cd3 11325static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
11326
11327static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 11328{
fbbe0701
SB
11329 __this_cpu_write(nop_txn_flags, flags);
11330
11331 if (flags & ~PERF_PMU_TXN_ADD)
11332 return;
11333
ad5133b7 11334 perf_pmu_disable(pmu);
6fb2915d
LZ
11335}
11336
ad5133b7
PZ
11337static int perf_pmu_commit_txn(struct pmu *pmu)
11338{
fbbe0701
SB
11339 unsigned int flags = __this_cpu_read(nop_txn_flags);
11340
11341 __this_cpu_write(nop_txn_flags, 0);
11342
11343 if (flags & ~PERF_PMU_TXN_ADD)
11344 return 0;
11345
ad5133b7
PZ
11346 perf_pmu_enable(pmu);
11347 return 0;
11348}
e077df4f 11349
ad5133b7 11350static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 11351{
fbbe0701
SB
11352 unsigned int flags = __this_cpu_read(nop_txn_flags);
11353
11354 __this_cpu_write(nop_txn_flags, 0);
11355
11356 if (flags & ~PERF_PMU_TXN_ADD)
11357 return;
11358
ad5133b7 11359 perf_pmu_enable(pmu);
24f1e32c
FW
11360}
11361
35edc2a5
PZ
11362static int perf_event_idx_default(struct perf_event *event)
11363{
c719f560 11364 return 0;
35edc2a5
PZ
11365}
11366
51676957
PZ
11367static void free_pmu_context(struct pmu *pmu)
11368{
bd275681 11369 free_percpu(pmu->cpu_pmu_context);
24f1e32c 11370}
6e855cd4 11371
8dc85d54 11372/*
6e855cd4 11373 * Let userspace know that this PMU supports address range filtering:
8dc85d54 11374 */
6e855cd4
AS
11375static ssize_t nr_addr_filters_show(struct device *dev,
11376 struct device_attribute *attr,
11377 char *page)
24f1e32c 11378{
6e855cd4
AS
11379 struct pmu *pmu = dev_get_drvdata(dev);
11380
dca6344d 11381 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
6e855cd4
AS
11382}
11383DEVICE_ATTR_RO(nr_addr_filters);
11384
2e80a82a 11385static struct idr pmu_idr;
d6d020e9 11386
abe43400
PZ
11387static ssize_t
11388type_show(struct device *dev, struct device_attribute *attr, char *page)
11389{
11390 struct pmu *pmu = dev_get_drvdata(dev);
11391
dca6344d 11392 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
abe43400 11393}
90826ca7 11394static DEVICE_ATTR_RO(type);
abe43400 11395
62b85639
SE
11396static ssize_t
11397perf_event_mux_interval_ms_show(struct device *dev,
11398 struct device_attribute *attr,
11399 char *page)
11400{
11401 struct pmu *pmu = dev_get_drvdata(dev);
11402
dca6344d 11403 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
62b85639
SE
11404}
11405
272325c4
PZ
11406static DEFINE_MUTEX(mux_interval_mutex);
11407
62b85639
SE
11408static ssize_t
11409perf_event_mux_interval_ms_store(struct device *dev,
11410 struct device_attribute *attr,
11411 const char *buf, size_t count)
11412{
11413 struct pmu *pmu = dev_get_drvdata(dev);
11414 int timer, cpu, ret;
11415
11416 ret = kstrtoint(buf, 0, &timer);
11417 if (ret)
11418 return ret;
11419
11420 if (timer < 1)
11421 return -EINVAL;
11422
11423 /* same value, noting to do */
11424 if (timer == pmu->hrtimer_interval_ms)
11425 return count;
11426
272325c4 11427 mutex_lock(&mux_interval_mutex);
62b85639
SE
11428 pmu->hrtimer_interval_ms = timer;
11429
11430 /* update all cpuctx for this PMU */
a63fbed7 11431 cpus_read_lock();
272325c4 11432 for_each_online_cpu(cpu) {
bd275681
PZ
11433 struct perf_cpu_pmu_context *cpc;
11434 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11435 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
62b85639 11436
1af6239d 11437 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
62b85639 11438 }
a63fbed7 11439 cpus_read_unlock();
272325c4 11440 mutex_unlock(&mux_interval_mutex);
62b85639
SE
11441
11442 return count;
11443}
90826ca7 11444static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 11445
90826ca7
GKH
11446static struct attribute *pmu_dev_attrs[] = {
11447 &dev_attr_type.attr,
11448 &dev_attr_perf_event_mux_interval_ms.attr,
652ffc21
GK
11449 &dev_attr_nr_addr_filters.attr,
11450 NULL,
11451};
11452
11453static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
11454{
11455 struct device *dev = kobj_to_dev(kobj);
11456 struct pmu *pmu = dev_get_drvdata(dev);
11457
388a1fb7 11458 if (n == 2 && !pmu->nr_addr_filters)
652ffc21
GK
11459 return 0;
11460
11461 return a->mode;
652ffc21
GK
11462}
11463
11464static struct attribute_group pmu_dev_attr_group = {
11465 .is_visible = pmu_dev_is_visible,
11466 .attrs = pmu_dev_attrs,
11467};
11468
11469static const struct attribute_group *pmu_dev_groups[] = {
11470 &pmu_dev_attr_group,
90826ca7 11471 NULL,
abe43400
PZ
11472};
11473
11474static int pmu_bus_running;
11475static struct bus_type pmu_bus = {
11476 .name = "event_source",
90826ca7 11477 .dev_groups = pmu_dev_groups,
abe43400
PZ
11478};
11479
11480static void pmu_dev_release(struct device *dev)
11481{
11482 kfree(dev);
11483}
11484
11485static int pmu_dev_alloc(struct pmu *pmu)
11486{
11487 int ret = -ENOMEM;
11488
11489 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11490 if (!pmu->dev)
11491 goto out;
11492
0c9d42ed 11493 pmu->dev->groups = pmu->attr_groups;
abe43400 11494 device_initialize(pmu->dev);
abe43400
PZ
11495
11496 dev_set_drvdata(pmu->dev, pmu);
11497 pmu->dev->bus = &pmu_bus;
143f83e2 11498 pmu->dev->parent = pmu->parent;
abe43400 11499 pmu->dev->release = pmu_dev_release;
e8d7a90c
CZ
11500
11501 ret = dev_set_name(pmu->dev, "%s", pmu->name);
11502 if (ret)
11503 goto free_dev;
11504
abe43400
PZ
11505 ret = device_add(pmu->dev);
11506 if (ret)
11507 goto free_dev;
11508
652ffc21 11509 if (pmu->attr_update) {
f3a3a825 11510 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
652ffc21
GK
11511 if (ret)
11512 goto del_dev;
11513 }
f3a3a825 11514
abe43400
PZ
11515out:
11516 return ret;
11517
6e855cd4
AS
11518del_dev:
11519 device_del(pmu->dev);
11520
abe43400
PZ
11521free_dev:
11522 put_device(pmu->dev);
11523 goto out;
11524}
11525
547e9fd7 11526static struct lock_class_key cpuctx_mutex;
facc4307 11527static struct lock_class_key cpuctx_lock;
547e9fd7 11528
03d8e80b 11529int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 11530{
66d258c5 11531 int cpu, ret, max = PERF_TYPE_MAX;
24f1e32c 11532
b0a873eb 11533 mutex_lock(&pmus_lock);
33696fc0
PZ
11534 ret = -ENOMEM;
11535 pmu->pmu_disable_count = alloc_percpu(int);
11536 if (!pmu->pmu_disable_count)
11537 goto unlock;
f29ac756 11538
2e80a82a 11539 pmu->type = -1;
0d6d062c
RB
11540 if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11541 ret = -EINVAL;
11542 goto free_pdc;
11543 }
11544
2e80a82a
PZ
11545 pmu->name = name;
11546
0d6d062c
RB
11547 if (type >= 0)
11548 max = type;
66d258c5 11549
0d6d062c
RB
11550 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11551 if (ret < 0)
11552 goto free_pdc;
66d258c5 11553
0d6d062c 11554 WARN_ON(type >= 0 && ret != type);
66d258c5 11555
0d6d062c 11556 type = ret;
2e80a82a
PZ
11557 pmu->type = type;
11558
0d6d062c 11559 if (pmu_bus_running && !pmu->dev) {
abe43400
PZ
11560 ret = pmu_dev_alloc(pmu);
11561 if (ret)
11562 goto free_idr;
11563 }
11564
c4814202 11565 ret = -ENOMEM;
bd275681
PZ
11566 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11567 if (!pmu->cpu_pmu_context)
abe43400 11568 goto free_dev;
f344011c 11569
108b02cf 11570 for_each_possible_cpu(cpu) {
bd275681 11571 struct perf_cpu_pmu_context *cpc;
9e630205 11572
bd275681
PZ
11573 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11574 __perf_init_event_pmu_context(&cpc->epc, pmu);
11575 __perf_mux_hrtimer_init(cpc, cpu);
108b02cf 11576 }
76e1d904 11577
ad5133b7
PZ
11578 if (!pmu->start_txn) {
11579 if (pmu->pmu_enable) {
11580 /*
11581 * If we have pmu_enable/pmu_disable calls, install
11582 * transaction stubs that use that to try and batch
11583 * hardware accesses.
11584 */
11585 pmu->start_txn = perf_pmu_start_txn;
11586 pmu->commit_txn = perf_pmu_commit_txn;
11587 pmu->cancel_txn = perf_pmu_cancel_txn;
11588 } else {
fbbe0701 11589 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
11590 pmu->commit_txn = perf_pmu_nop_int;
11591 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 11592 }
5c92d124 11593 }
15dbf27c 11594
ad5133b7
PZ
11595 if (!pmu->pmu_enable) {
11596 pmu->pmu_enable = perf_pmu_nop_void;
11597 pmu->pmu_disable = perf_pmu_nop_void;
11598 }
11599
81ec3f3c
JO
11600 if (!pmu->check_period)
11601 pmu->check_period = perf_event_nop_int;
11602
35edc2a5
PZ
11603 if (!pmu->event_idx)
11604 pmu->event_idx = perf_event_idx_default;
11605
0d6d062c 11606 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 11607 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
11608 ret = 0;
11609unlock:
b0a873eb
PZ
11610 mutex_unlock(&pmus_lock);
11611
33696fc0 11612 return ret;
108b02cf 11613
abe43400 11614free_dev:
0d6d062c
RB
11615 if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11616 device_del(pmu->dev);
11617 put_device(pmu->dev);
11618 }
abe43400 11619
2e80a82a 11620free_idr:
0d6d062c 11621 idr_remove(&pmu_idr, pmu->type);
2e80a82a 11622
108b02cf
PZ
11623free_pdc:
11624 free_percpu(pmu->pmu_disable_count);
11625 goto unlock;
f29ac756 11626}
c464c76e 11627EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 11628
b0a873eb 11629void perf_pmu_unregister(struct pmu *pmu)
5c92d124 11630{
b0a873eb
PZ
11631 mutex_lock(&pmus_lock);
11632 list_del_rcu(&pmu->entry);
5c92d124 11633
0475f9ea 11634 /*
cde8e884
PZ
11635 * We dereference the pmu list under both SRCU and regular RCU, so
11636 * synchronize against both of those.
0475f9ea 11637 */
b0a873eb 11638 synchronize_srcu(&pmus_srcu);
cde8e884 11639 synchronize_rcu();
d6d020e9 11640
33696fc0 11641 free_percpu(pmu->pmu_disable_count);
0d6d062c
RB
11642 idr_remove(&pmu_idr, pmu->type);
11643 if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
0933840a
JO
11644 if (pmu->nr_addr_filters)
11645 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11646 device_del(pmu->dev);
11647 put_device(pmu->dev);
11648 }
51676957 11649 free_pmu_context(pmu);
a9f97721 11650 mutex_unlock(&pmus_lock);
b0a873eb 11651}
c464c76e 11652EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 11653
e321d02d
KL
11654static inline bool has_extended_regs(struct perf_event *event)
11655{
11656 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11657 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11658}
11659
cc34b98b
MR
11660static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11661{
ccd41c86 11662 struct perf_event_context *ctx = NULL;
cc34b98b
MR
11663 int ret;
11664
11665 if (!try_module_get(pmu->module))
11666 return -ENODEV;
ccd41c86 11667
0c7296ca
PZ
11668 /*
11669 * A number of pmu->event_init() methods iterate the sibling_list to,
11670 * for example, validate if the group fits on the PMU. Therefore,
11671 * if this is a sibling event, acquire the ctx->mutex to protect
11672 * the sibling_list.
11673 */
11674 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
8b10c5e2
PZ
11675 /*
11676 * This ctx->mutex can nest when we're called through
11677 * inheritance. See the perf_event_ctx_lock_nested() comment.
11678 */
11679 ctx = perf_event_ctx_lock_nested(event->group_leader,
11680 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
11681 BUG_ON(!ctx);
11682 }
11683
cc34b98b
MR
11684 event->pmu = pmu;
11685 ret = pmu->event_init(event);
ccd41c86
PZ
11686
11687 if (ctx)
11688 perf_event_ctx_unlock(event->group_leader, ctx);
11689
cc6795ae 11690 if (!ret) {
e321d02d
KL
11691 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11692 has_extended_regs(event))
11693 ret = -EOPNOTSUPP;
11694
cc6795ae 11695 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
e321d02d 11696 event_has_any_exclude_flag(event))
cc6795ae 11697 ret = -EINVAL;
e321d02d
KL
11698
11699 if (ret && event->destroy)
11700 event->destroy(event);
cc6795ae
AM
11701 }
11702
cc34b98b
MR
11703 if (ret)
11704 module_put(pmu->module);
11705
11706 return ret;
11707}
11708
18ab2cd3 11709static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb 11710{
55bcf6ef 11711 bool extended_type = false;
66d258c5 11712 int idx, type, ret;
85c617ab 11713 struct pmu *pmu;
b0a873eb
PZ
11714
11715 idx = srcu_read_lock(&pmus_srcu);
2e80a82a 11716
0d6d062c
RB
11717 /*
11718 * Save original type before calling pmu->event_init() since certain
11719 * pmus overwrites event->attr.type to forward event to another pmu.
11720 */
11721 event->orig_type = event->attr.type;
11722
40999312
KL
11723 /* Try parent's PMU first: */
11724 if (event->parent && event->parent->pmu) {
11725 pmu = event->parent->pmu;
11726 ret = perf_try_init_event(pmu, event);
11727 if (!ret)
11728 goto unlock;
11729 }
11730
66d258c5
PZ
11731 /*
11732 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11733 * are often aliases for PERF_TYPE_RAW.
11734 */
11735 type = event->attr.type;
55bcf6ef
KL
11736 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11737 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11738 if (!type) {
11739 type = PERF_TYPE_RAW;
11740 } else {
11741 extended_type = true;
11742 event->attr.config &= PERF_HW_EVENT_MASK;
11743 }
11744 }
66d258c5
PZ
11745
11746again:
2e80a82a 11747 rcu_read_lock();
66d258c5 11748 pmu = idr_find(&pmu_idr, type);
2e80a82a 11749 rcu_read_unlock();
940c5b29 11750 if (pmu) {
55bcf6ef
KL
11751 if (event->attr.type != type && type != PERF_TYPE_RAW &&
11752 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11753 goto fail;
11754
cc34b98b 11755 ret = perf_try_init_event(pmu, event);
55bcf6ef 11756 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
66d258c5
PZ
11757 type = event->attr.type;
11758 goto again;
11759 }
11760
940c5b29
LM
11761 if (ret)
11762 pmu = ERR_PTR(ret);
66d258c5 11763
2e80a82a 11764 goto unlock;
940c5b29 11765 }
2e80a82a 11766
9f0bff11 11767 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
cc34b98b 11768 ret = perf_try_init_event(pmu, event);
b0a873eb 11769 if (!ret)
e5f4d339 11770 goto unlock;
76e1d904 11771
b0a873eb
PZ
11772 if (ret != -ENOENT) {
11773 pmu = ERR_PTR(ret);
e5f4d339 11774 goto unlock;
f344011c 11775 }
5c92d124 11776 }
55bcf6ef 11777fail:
e5f4d339
PZ
11778 pmu = ERR_PTR(-ENOENT);
11779unlock:
b0a873eb 11780 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 11781
4aeb0b42 11782 return pmu;
5c92d124
IM
11783}
11784
f2fb6bef
KL
11785static void attach_sb_event(struct perf_event *event)
11786{
11787 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11788
11789 raw_spin_lock(&pel->lock);
11790 list_add_rcu(&event->sb_list, &pel->list);
11791 raw_spin_unlock(&pel->lock);
11792}
11793
aab5b71e
PZ
11794/*
11795 * We keep a list of all !task (and therefore per-cpu) events
11796 * that need to receive side-band records.
11797 *
11798 * This avoids having to scan all the various PMU per-cpu contexts
11799 * looking for them.
11800 */
f2fb6bef
KL
11801static void account_pmu_sb_event(struct perf_event *event)
11802{
a4f144eb 11803 if (is_sb_event(event))
f2fb6bef
KL
11804 attach_sb_event(event);
11805}
11806
555e0c1e
FW
11807/* Freq events need the tick to stay alive (see perf_event_task_tick). */
11808static void account_freq_event_nohz(void)
11809{
11810#ifdef CONFIG_NO_HZ_FULL
11811 /* Lock so we don't race with concurrent unaccount */
11812 spin_lock(&nr_freq_lock);
11813 if (atomic_inc_return(&nr_freq_events) == 1)
11814 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11815 spin_unlock(&nr_freq_lock);
11816#endif
11817}
11818
11819static void account_freq_event(void)
11820{
11821 if (tick_nohz_full_enabled())
11822 account_freq_event_nohz();
11823 else
11824 atomic_inc(&nr_freq_events);
11825}
11826
11827
766d6c07
FW
11828static void account_event(struct perf_event *event)
11829{
25432ae9
PZ
11830 bool inc = false;
11831
4beb31f3
FW
11832 if (event->parent)
11833 return;
11834
a5398bff 11835 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
25432ae9 11836 inc = true;
766d6c07
FW
11837 if (event->attr.mmap || event->attr.mmap_data)
11838 atomic_inc(&nr_mmap_events);
88a16a13
JO
11839 if (event->attr.build_id)
11840 atomic_inc(&nr_build_id_events);
766d6c07
FW
11841 if (event->attr.comm)
11842 atomic_inc(&nr_comm_events);
e4222673
HB
11843 if (event->attr.namespaces)
11844 atomic_inc(&nr_namespaces_events);
96aaab68
NK
11845 if (event->attr.cgroup)
11846 atomic_inc(&nr_cgroup_events);
766d6c07
FW
11847 if (event->attr.task)
11848 atomic_inc(&nr_task_events);
555e0c1e
FW
11849 if (event->attr.freq)
11850 account_freq_event();
45ac1403
AH
11851 if (event->attr.context_switch) {
11852 atomic_inc(&nr_switch_events);
25432ae9 11853 inc = true;
45ac1403 11854 }
4beb31f3 11855 if (has_branch_stack(event))
25432ae9 11856 inc = true;
4beb31f3 11857 if (is_cgroup_event(event))
25432ae9 11858 inc = true;
76193a94
SL
11859 if (event->attr.ksymbol)
11860 atomic_inc(&nr_ksymbol_events);
6ee52e2a
SL
11861 if (event->attr.bpf_event)
11862 atomic_inc(&nr_bpf_events);
e17d43b9
AH
11863 if (event->attr.text_poke)
11864 atomic_inc(&nr_text_poke_events);
25432ae9 11865
9107c89e 11866 if (inc) {
5bce9db1
AS
11867 /*
11868 * We need the mutex here because static_branch_enable()
11869 * must complete *before* the perf_sched_count increment
11870 * becomes visible.
11871 */
9107c89e
PZ
11872 if (atomic_inc_not_zero(&perf_sched_count))
11873 goto enabled;
11874
11875 mutex_lock(&perf_sched_mutex);
11876 if (!atomic_read(&perf_sched_count)) {
11877 static_branch_enable(&perf_sched_events);
11878 /*
11879 * Guarantee that all CPUs observe they key change and
11880 * call the perf scheduling hooks before proceeding to
11881 * install events that need them.
11882 */
0809d954 11883 synchronize_rcu();
9107c89e
PZ
11884 }
11885 /*
11886 * Now that we have waited for the sync_sched(), allow further
11887 * increments to by-pass the mutex.
11888 */
11889 atomic_inc(&perf_sched_count);
11890 mutex_unlock(&perf_sched_mutex);
11891 }
11892enabled:
4beb31f3 11893
f2fb6bef 11894 account_pmu_sb_event(event);
766d6c07
FW
11895}
11896
0793a61d 11897/*
788faab7 11898 * Allocate and initialize an event structure
0793a61d 11899 */
cdd6c482 11900static struct perf_event *
c3f00c70 11901perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
11902 struct task_struct *task,
11903 struct perf_event *group_leader,
11904 struct perf_event *parent_event,
4dc0da86 11905 perf_overflow_handler_t overflow_handler,
79dff51e 11906 void *context, int cgroup_fd)
0793a61d 11907{
51b0fe39 11908 struct pmu *pmu;
cdd6c482
IM
11909 struct perf_event *event;
11910 struct hw_perf_event *hwc;
90983b16 11911 long err = -EINVAL;
ff65338e 11912 int node;
0793a61d 11913
66832eb4
ON
11914 if ((unsigned)cpu >= nr_cpu_ids) {
11915 if (!task || cpu != -1)
11916 return ERR_PTR(-EINVAL);
11917 }
97ba62b2
ME
11918 if (attr->sigtrap && !task) {
11919 /* Requires a task: avoid signalling random tasks. */
11920 return ERR_PTR(-EINVAL);
11921 }
66832eb4 11922
ff65338e
NK
11923 node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11924 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11925 node);
cdd6c482 11926 if (!event)
d5d2bc0d 11927 return ERR_PTR(-ENOMEM);
0793a61d 11928
04289bb9 11929 /*
cdd6c482 11930 * Single events are their own group leaders, with an
04289bb9
IM
11931 * empty sibling list:
11932 */
11933 if (!group_leader)
cdd6c482 11934 group_leader = event;
04289bb9 11935
cdd6c482
IM
11936 mutex_init(&event->child_mutex);
11937 INIT_LIST_HEAD(&event->child_list);
fccc714b 11938
cdd6c482
IM
11939 INIT_LIST_HEAD(&event->event_entry);
11940 INIT_LIST_HEAD(&event->sibling_list);
6668128a 11941 INIT_LIST_HEAD(&event->active_list);
8e1a2031 11942 init_event_group(event);
10c6db11 11943 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 11944 INIT_LIST_HEAD(&event->active_entry);
375637bc 11945 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
11946 INIT_HLIST_NODE(&event->hlist_entry);
11947
10c6db11 11948
cdd6c482 11949 init_waitqueue_head(&event->waitq);
ca6c2132
PZ
11950 init_irq_work(&event->pending_irq, perf_pending_irq);
11951 init_task_work(&event->pending_task, perf_pending_task);
0793a61d 11952
cdd6c482 11953 mutex_init(&event->mmap_mutex);
375637bc 11954 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 11955
a6fa941d 11956 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
11957 event->cpu = cpu;
11958 event->attr = *attr;
11959 event->group_leader = group_leader;
11960 event->pmu = NULL;
cdd6c482 11961 event->oncpu = -1;
a96bbc16 11962
cdd6c482 11963 event->parent = parent_event;
b84fbc9f 11964
17cf22c3 11965 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 11966 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 11967
cdd6c482 11968 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 11969
e3265a43
NK
11970 if (parent_event)
11971 event->event_caps = parent_event->event_caps;
11972
d580ff86
PZ
11973 if (task) {
11974 event->attach_state = PERF_ATTACH_TASK;
d580ff86 11975 /*
50f16a8b
PZ
11976 * XXX pmu::event_init needs to know what task to account to
11977 * and we cannot use the ctx information because we need the
11978 * pmu before we get a ctx.
d580ff86 11979 */
7b3c92b8 11980 event->hw.target = get_task_struct(task);
d580ff86
PZ
11981 }
11982
34f43927
PZ
11983 event->clock = &local_clock;
11984 if (parent_event)
11985 event->clock = parent_event->clock;
11986
4dc0da86 11987 if (!overflow_handler && parent_event) {
b326e956 11988 overflow_handler = parent_event->overflow_handler;
4dc0da86 11989 context = parent_event->overflow_handler_context;
f1e4ba5b 11990#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
f11f10bf 11991 if (parent_event->prog) {
85192dbf 11992 struct bpf_prog *prog = parent_event->prog;
aa6a5f3c 11993
85192dbf 11994 bpf_prog_inc(prog);
aa6a5f3c 11995 event->prog = prog;
aa6a5f3c
AS
11996 }
11997#endif
4dc0da86 11998 }
66832eb4 11999
1879445d
WN
12000 if (overflow_handler) {
12001 event->overflow_handler = overflow_handler;
12002 event->overflow_handler_context = context;
9ecda41a
WN
12003 } else if (is_write_backward(event)){
12004 event->overflow_handler = perf_event_output_backward;
12005 event->overflow_handler_context = NULL;
1879445d 12006 } else {
9ecda41a 12007 event->overflow_handler = perf_event_output_forward;
1879445d
WN
12008 event->overflow_handler_context = NULL;
12009 }
97eaf530 12010
0231bb53 12011 perf_event__state_init(event);
a86ed508 12012
4aeb0b42 12013 pmu = NULL;
b8e83514 12014
cdd6c482 12015 hwc = &event->hw;
bd2b5b12 12016 hwc->sample_period = attr->sample_period;
0d48696f 12017 if (attr->freq && attr->sample_freq)
bd2b5b12 12018 hwc->sample_period = 1;
eced1dfc 12019 hwc->last_period = hwc->sample_period;
bd2b5b12 12020
e7850595 12021 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 12022
2023b359 12023 /*
ba5213ae
PZ
12024 * We currently do not support PERF_SAMPLE_READ on inherited events.
12025 * See perf_output_read().
2023b359 12026 */
ba5213ae 12027 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
90983b16 12028 goto err_ns;
a46a2300
YZ
12029
12030 if (!has_branch_stack(event))
12031 event->attr.branch_sample_type = 0;
2023b359 12032
b0a873eb 12033 pmu = perf_init_event(event);
85c617ab 12034 if (IS_ERR(pmu)) {
4aeb0b42 12035 err = PTR_ERR(pmu);
90983b16 12036 goto err_ns;
621a01ea 12037 }
d5d2bc0d 12038
09f4e8f0 12039 /*
bd275681
PZ
12040 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
12041 * events (they don't make sense as the cgroup will be different
12042 * on other CPUs in the uncore mask).
09f4e8f0 12043 */
bd275681 12044 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
09f4e8f0
PZ
12045 err = -EINVAL;
12046 goto err_pmu;
12047 }
12048
ab43762e
AS
12049 if (event->attr.aux_output &&
12050 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
12051 err = -EOPNOTSUPP;
12052 goto err_pmu;
12053 }
12054
98add2af
PZ
12055 if (cgroup_fd != -1) {
12056 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
12057 if (err)
12058 goto err_pmu;
12059 }
12060
bed5b25a
AS
12061 err = exclusive_event_init(event);
12062 if (err)
12063 goto err_pmu;
12064
375637bc 12065 if (has_addr_filter(event)) {
c60f83b8
AS
12066 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12067 sizeof(struct perf_addr_filter_range),
12068 GFP_KERNEL);
12069 if (!event->addr_filter_ranges) {
36cc2b92 12070 err = -ENOMEM;
375637bc 12071 goto err_per_task;
36cc2b92 12072 }
375637bc 12073
18736eef
AS
12074 /*
12075 * Clone the parent's vma offsets: they are valid until exec()
12076 * even if the mm is not shared with the parent.
12077 */
12078 if (event->parent) {
12079 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12080
12081 raw_spin_lock_irq(&ifh->lock);
c60f83b8
AS
12082 memcpy(event->addr_filter_ranges,
12083 event->parent->addr_filter_ranges,
12084 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
18736eef
AS
12085 raw_spin_unlock_irq(&ifh->lock);
12086 }
12087
375637bc
AS
12088 /* force hw sync on the address filters */
12089 event->addr_filters_gen = 1;
12090 }
12091
cdd6c482 12092 if (!event->parent) {
927c7a9e 12093 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 12094 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 12095 if (err)
375637bc 12096 goto err_addr_filters;
d010b332 12097 }
f344011c 12098 }
9ee318a7 12099
da97e184
JFG
12100 err = security_perf_event_alloc(event);
12101 if (err)
12102 goto err_callchain_buffer;
12103
927a5570
AS
12104 /* symmetric to unaccount_event() in _free_event() */
12105 account_event(event);
12106
cdd6c482 12107 return event;
90983b16 12108
da97e184
JFG
12109err_callchain_buffer:
12110 if (!event->parent) {
12111 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
12112 put_callchain_buffers();
12113 }
375637bc 12114err_addr_filters:
c60f83b8 12115 kfree(event->addr_filter_ranges);
375637bc 12116
bed5b25a
AS
12117err_per_task:
12118 exclusive_event_destroy(event);
12119
90983b16 12120err_pmu:
98add2af
PZ
12121 if (is_cgroup_event(event))
12122 perf_detach_cgroup(event);
90983b16
FW
12123 if (event->destroy)
12124 event->destroy(event);
c464c76e 12125 module_put(pmu->module);
90983b16 12126err_ns:
621b6d2e
PB
12127 if (event->hw.target)
12128 put_task_struct(event->hw.target);
4674ffe2 12129 call_rcu(&event->rcu_head, free_event_rcu);
90983b16
FW
12130
12131 return ERR_PTR(err);
0793a61d
TG
12132}
12133
cdd6c482
IM
12134static int perf_copy_attr(struct perf_event_attr __user *uattr,
12135 struct perf_event_attr *attr)
974802ea 12136{
974802ea 12137 u32 size;
cdf8073d 12138 int ret;
974802ea 12139
c2ba8f41 12140 /* Zero the full structure, so that a short copy will be nice. */
974802ea
PZ
12141 memset(attr, 0, sizeof(*attr));
12142
12143 ret = get_user(size, &uattr->size);
12144 if (ret)
12145 return ret;
12146
c2ba8f41
AS
12147 /* ABI compatibility quirk: */
12148 if (!size)
974802ea 12149 size = PERF_ATTR_SIZE_VER0;
c2ba8f41 12150 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
974802ea
PZ
12151 goto err_size;
12152
c2ba8f41
AS
12153 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12154 if (ret) {
12155 if (ret == -E2BIG)
12156 goto err_size;
12157 return ret;
974802ea
PZ
12158 }
12159
f12f42ac
MX
12160 attr->size = size;
12161
a4faf00d 12162 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
974802ea
PZ
12163 return -EINVAL;
12164
12165 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12166 return -EINVAL;
12167
12168 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12169 return -EINVAL;
12170
bce38cd5
SE
12171 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12172 u64 mask = attr->branch_sample_type;
12173
12174 /* only using defined bits */
12175 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12176 return -EINVAL;
12177
12178 /* at least one branch bit must be set */
12179 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12180 return -EINVAL;
12181
bce38cd5
SE
12182 /* propagate priv level, when not set for branch */
12183 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12184
12185 /* exclude_kernel checked on syscall entry */
12186 if (!attr->exclude_kernel)
12187 mask |= PERF_SAMPLE_BRANCH_KERNEL;
12188
12189 if (!attr->exclude_user)
12190 mask |= PERF_SAMPLE_BRANCH_USER;
12191
12192 if (!attr->exclude_hv)
12193 mask |= PERF_SAMPLE_BRANCH_HV;
12194 /*
12195 * adjust user setting (for HW filter setup)
12196 */
12197 attr->branch_sample_type = mask;
12198 }
e712209a 12199 /* privileged levels capture (kernel, hv): check permissions */
da97e184
JFG
12200 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12201 ret = perf_allow_kernel(attr);
12202 if (ret)
12203 return ret;
12204 }
bce38cd5 12205 }
4018994f 12206
c5ebcedb 12207 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 12208 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
12209 if (ret)
12210 return ret;
12211 }
12212
12213 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12214 if (!arch_perf_have_user_stack_dump())
12215 return -ENOSYS;
12216
12217 /*
12218 * We have __u32 type for the size, but so far
12219 * we can only use __u16 as maximum due to the
12220 * __u16 sample size limit.
12221 */
12222 if (attr->sample_stack_user >= USHRT_MAX)
78b562fb 12223 return -EINVAL;
c5ebcedb 12224 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
78b562fb 12225 return -EINVAL;
c5ebcedb 12226 }
4018994f 12227
5f970521
JO
12228 if (!attr->sample_max_stack)
12229 attr->sample_max_stack = sysctl_perf_event_max_stack;
12230
60e2364e
SE
12231 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12232 ret = perf_reg_validate(attr->sample_regs_intr);
6546b19f
NK
12233
12234#ifndef CONFIG_CGROUP_PERF
12235 if (attr->sample_type & PERF_SAMPLE_CGROUP)
12236 return -EINVAL;
12237#endif
2a6c6b7d
KL
12238 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12239 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12240 return -EINVAL;
6546b19f 12241
2b26f0aa
ME
12242 if (!attr->inherit && attr->inherit_thread)
12243 return -EINVAL;
12244
2e498d0a
ME
12245 if (attr->remove_on_exec && attr->enable_on_exec)
12246 return -EINVAL;
12247
97ba62b2
ME
12248 if (attr->sigtrap && !attr->remove_on_exec)
12249 return -EINVAL;
12250
974802ea
PZ
12251out:
12252 return ret;
12253
12254err_size:
12255 put_user(sizeof(*attr), &uattr->size);
12256 ret = -E2BIG;
12257 goto out;
12258}
12259
68e3c698
PZ
12260static void mutex_lock_double(struct mutex *a, struct mutex *b)
12261{
12262 if (b < a)
12263 swap(a, b);
12264
12265 mutex_lock(a);
12266 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12267}
12268
ac9721f3
PZ
12269static int
12270perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 12271{
56de4e8f 12272 struct perf_buffer *rb = NULL;
a4be7c27
PZ
12273 int ret = -EINVAL;
12274
68e3c698
PZ
12275 if (!output_event) {
12276 mutex_lock(&event->mmap_mutex);
a4be7c27 12277 goto set;
68e3c698 12278 }
a4be7c27 12279
ac9721f3
PZ
12280 /* don't allow circular references */
12281 if (event == output_event)
a4be7c27
PZ
12282 goto out;
12283
0f139300
PZ
12284 /*
12285 * Don't allow cross-cpu buffers
12286 */
12287 if (output_event->cpu != event->cpu)
12288 goto out;
12289
12290 /*
76369139 12291 * If its not a per-cpu rb, it must be the same task.
0f139300 12292 */
24d3ae2f 12293 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
0f139300
PZ
12294 goto out;
12295
34f43927
PZ
12296 /*
12297 * Mixing clocks in the same buffer is trouble you don't need.
12298 */
12299 if (output_event->clock != event->clock)
12300 goto out;
12301
9ecda41a
WN
12302 /*
12303 * Either writing ring buffer from beginning or from end.
12304 * Mixing is not allowed.
12305 */
12306 if (is_write_backward(output_event) != is_write_backward(event))
12307 goto out;
12308
45bfb2e5
PZ
12309 /*
12310 * If both events generate aux data, they must be on the same PMU
12311 */
12312 if (has_aux(event) && has_aux(output_event) &&
12313 event->pmu != output_event->pmu)
12314 goto out;
12315
68e3c698
PZ
12316 /*
12317 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since
12318 * output_event is already on rb->event_list, and the list iteration
12319 * restarts after every removal, it is guaranteed this new event is
12320 * observed *OR* if output_event is already removed, it's guaranteed we
12321 * observe !rb->mmap_count.
12322 */
12323 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
a4be7c27 12324set:
ac9721f3
PZ
12325 /* Can't redirect output if we've got an active mmap() */
12326 if (atomic_read(&event->mmap_count))
12327 goto unlock;
a4be7c27 12328
ac9721f3 12329 if (output_event) {
76369139
FW
12330 /* get the rb we want to redirect to */
12331 rb = ring_buffer_get(output_event);
12332 if (!rb)
ac9721f3 12333 goto unlock;
68e3c698
PZ
12334
12335 /* did we race against perf_mmap_close() */
12336 if (!atomic_read(&rb->mmap_count)) {
12337 ring_buffer_put(rb);
12338 goto unlock;
12339 }
a4be7c27
PZ
12340 }
12341
b69cf536 12342 ring_buffer_attach(event, rb);
9bb5d40c 12343
a4be7c27 12344 ret = 0;
ac9721f3
PZ
12345unlock:
12346 mutex_unlock(&event->mmap_mutex);
68e3c698
PZ
12347 if (output_event)
12348 mutex_unlock(&output_event->mmap_mutex);
ac9721f3 12349
a4be7c27 12350out:
a4be7c27
PZ
12351 return ret;
12352}
12353
34f43927
PZ
12354static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12355{
12356 bool nmi_safe = false;
12357
12358 switch (clk_id) {
12359 case CLOCK_MONOTONIC:
12360 event->clock = &ktime_get_mono_fast_ns;
12361 nmi_safe = true;
12362 break;
12363
12364 case CLOCK_MONOTONIC_RAW:
12365 event->clock = &ktime_get_raw_fast_ns;
12366 nmi_safe = true;
12367 break;
12368
12369 case CLOCK_REALTIME:
12370 event->clock = &ktime_get_real_ns;
12371 break;
12372
12373 case CLOCK_BOOTTIME:
9285ec4c 12374 event->clock = &ktime_get_boottime_ns;
34f43927
PZ
12375 break;
12376
12377 case CLOCK_TAI:
9285ec4c 12378 event->clock = &ktime_get_clocktai_ns;
34f43927
PZ
12379 break;
12380
12381 default:
12382 return -EINVAL;
12383 }
12384
12385 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12386 return -EINVAL;
12387
12388 return 0;
12389}
12390
b068fc04
ME
12391static bool
12392perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12393{
12394 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12395 bool is_capable = perfmon_capable();
12396
12397 if (attr->sigtrap) {
12398 /*
12399 * perf_event_attr::sigtrap sends signals to the other task.
12400 * Require the current task to also have CAP_KILL.
12401 */
12402 rcu_read_lock();
12403 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12404 rcu_read_unlock();
12405
12406 /*
12407 * If the required capabilities aren't available, checks for
12408 * ptrace permissions: upgrade to ATTACH, since sending signals
12409 * can effectively change the target task.
12410 */
12411 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12412 }
12413
12414 /*
12415 * Preserve ptrace permission check for backwards compatibility. The
12416 * ptrace check also includes checks that the current task and other
12417 * task have matching uids, and is therefore not done here explicitly.
12418 */
12419 return is_capable || ptrace_may_access(task, ptrace_mode);
12420}
12421
0793a61d 12422/**
cdd6c482 12423 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 12424 *
cdd6c482 12425 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 12426 * @pid: target pid
9f66a381 12427 * @cpu: target cpu
cdd6c482 12428 * @group_fd: group leader event fd
a1ddf524 12429 * @flags: perf event open flags
0793a61d 12430 */
cdd6c482
IM
12431SYSCALL_DEFINE5(perf_event_open,
12432 struct perf_event_attr __user *, attr_uptr,
2743a5b0 12433 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 12434{
b04243ef 12435 struct perf_event *group_leader = NULL, *output_event = NULL;
bd275681 12436 struct perf_event_pmu_context *pmu_ctx;
b04243ef 12437 struct perf_event *event, *sibling;
cdd6c482 12438 struct perf_event_attr attr;
bd275681 12439 struct perf_event_context *ctx;
cdd6c482 12440 struct file *event_file = NULL;
2903ff01 12441 struct fd group = {NULL, 0};
38a81da2 12442 struct task_struct *task = NULL;
89a1e187 12443 struct pmu *pmu;
ea635c64 12444 int event_fd;
b04243ef 12445 int move_group = 0;
dc86cabe 12446 int err;
a21b0b35 12447 int f_flags = O_RDWR;
79dff51e 12448 int cgroup_fd = -1;
0793a61d 12449
2743a5b0 12450 /* for future expandability... */
e5d1367f 12451 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
12452 return -EINVAL;
12453
0a041ebc 12454 err = perf_copy_attr(attr_uptr, &attr);
da97e184
JFG
12455 if (err)
12456 return err;
12457
0a041ebc
NK
12458 /* Do we allow access to perf_event_open(2) ? */
12459 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
dc86cabe
IM
12460 if (err)
12461 return err;
eab656ae 12462
0764771d 12463 if (!attr.exclude_kernel) {
da97e184
JFG
12464 err = perf_allow_kernel(&attr);
12465 if (err)
12466 return err;
0764771d
PZ
12467 }
12468
e4222673 12469 if (attr.namespaces) {
18aa1856 12470 if (!perfmon_capable())
e4222673
HB
12471 return -EACCES;
12472 }
12473
df58ab24 12474 if (attr.freq) {
cdd6c482 12475 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 12476 return -EINVAL;
0819b2e3
PZ
12477 } else {
12478 if (attr.sample_period & (1ULL << 63))
12479 return -EINVAL;
df58ab24
PZ
12480 }
12481
fc7ce9c7 12482 /* Only privileged users can get physical addresses */
da97e184
JFG
12483 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12484 err = perf_allow_kernel(&attr);
12485 if (err)
12486 return err;
12487 }
fc7ce9c7 12488
08ef1af4
OM
12489 /* REGS_INTR can leak data, lockdown must prevent this */
12490 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12491 err = security_locked_down(LOCKDOWN_PERF);
12492 if (err)
12493 return err;
12494 }
b0c8fdc7 12495
e5d1367f
SE
12496 /*
12497 * In cgroup mode, the pid argument is used to pass the fd
12498 * opened to the cgroup directory in cgroupfs. The cpu argument
12499 * designates the cpu on which to monitor threads from that
12500 * cgroup.
12501 */
12502 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12503 return -EINVAL;
12504
a21b0b35
YD
12505 if (flags & PERF_FLAG_FD_CLOEXEC)
12506 f_flags |= O_CLOEXEC;
12507
12508 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
12509 if (event_fd < 0)
12510 return event_fd;
12511
ac9721f3 12512 if (group_fd != -1) {
2903ff01
AV
12513 err = perf_fget_light(group_fd, &group);
12514 if (err)
d14b12d7 12515 goto err_fd;
2903ff01 12516 group_leader = group.file->private_data;
ac9721f3
PZ
12517 if (flags & PERF_FLAG_FD_OUTPUT)
12518 output_event = group_leader;
12519 if (flags & PERF_FLAG_FD_NO_GROUP)
12520 group_leader = NULL;
12521 }
12522
e5d1367f 12523 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
12524 task = find_lively_task_by_vpid(pid);
12525 if (IS_ERR(task)) {
12526 err = PTR_ERR(task);
12527 goto err_group_fd;
12528 }
12529 }
12530
1f4ee503
PZ
12531 if (task && group_leader &&
12532 group_leader->attr.inherit != attr.inherit) {
12533 err = -EINVAL;
12534 goto err_task;
12535 }
12536
79dff51e
MF
12537 if (flags & PERF_FLAG_PID_CGROUP)
12538 cgroup_fd = pid;
12539
4dc0da86 12540 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 12541 NULL, NULL, cgroup_fd);
d14b12d7
SE
12542 if (IS_ERR(event)) {
12543 err = PTR_ERR(event);
78af4dc9 12544 goto err_task;
d14b12d7
SE
12545 }
12546
53b25335
VW
12547 if (is_sampling_event(event)) {
12548 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 12549 err = -EOPNOTSUPP;
53b25335
VW
12550 goto err_alloc;
12551 }
12552 }
12553
89a1e187
PZ
12554 /*
12555 * Special case software events and allow them to be part of
12556 * any hardware group.
12557 */
12558 pmu = event->pmu;
b04243ef 12559
34f43927
PZ
12560 if (attr.use_clockid) {
12561 err = perf_event_set_clock(event, attr.clockid);
12562 if (err)
12563 goto err_alloc;
12564 }
12565
4ff6a8de
DCC
12566 if (pmu->task_ctx_nr == perf_sw_context)
12567 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12568
bd275681
PZ
12569 if (task) {
12570 err = down_read_interruptible(&task->signal->exec_update_lock);
12571 if (err)
12572 goto err_alloc;
12573
12574 /*
12575 * We must hold exec_update_lock across this and any potential
12576 * perf_install_in_context() call for this new event to
12577 * serialize against exec() altering our credentials (and the
12578 * perf_event_exit_task() that could imply).
12579 */
12580 err = -EACCES;
12581 if (!perf_check_permission(&attr, task))
12582 goto err_cred;
b04243ef 12583 }
89a1e187
PZ
12584
12585 /*
12586 * Get the target context (task or percpu):
12587 */
bd275681 12588 ctx = find_get_context(task, event);
89a1e187
PZ
12589 if (IS_ERR(ctx)) {
12590 err = PTR_ERR(ctx);
bd275681
PZ
12591 goto err_cred;
12592 }
12593
12594 mutex_lock(&ctx->mutex);
12595
12596 if (ctx->task == TASK_TOMBSTONE) {
12597 err = -ESRCH;
12598 goto err_locked;
12599 }
12600
12601 if (!task) {
12602 /*
12603 * Check if the @cpu we're creating an event for is online.
12604 *
12605 * We use the perf_cpu_context::ctx::mutex to serialize against
12606 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12607 */
12608 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12609
12610 if (!cpuctx->online) {
12611 err = -ENODEV;
12612 goto err_locked;
12613 }
89a1e187
PZ
12614 }
12615
ac9721f3 12616 if (group_leader) {
dc86cabe 12617 err = -EINVAL;
04289bb9 12618
04289bb9 12619 /*
ccff286d
IM
12620 * Do not allow a recursive hierarchy (this new sibling
12621 * becoming part of another group-sibling):
12622 */
12623 if (group_leader->group_leader != group_leader)
bd275681 12624 goto err_locked;
34f43927
PZ
12625
12626 /* All events in a group should have the same clock */
12627 if (group_leader->clock != event->clock)
bd275681 12628 goto err_locked;
34f43927 12629
ccff286d 12630 /*
64aee2a9
MR
12631 * Make sure we're both events for the same CPU;
12632 * grouping events for different CPUs is broken; since
12633 * you can never concurrently schedule them anyhow.
04289bb9 12634 */
64aee2a9 12635 if (group_leader->cpu != event->cpu)
bd275681 12636 goto err_locked;
64aee2a9
MR
12637
12638 /*
bd275681 12639 * Make sure we're both on the same context; either task or cpu.
64aee2a9 12640 */
bd275681
PZ
12641 if (group_leader->ctx != ctx)
12642 goto err_locked;
b04243ef 12643
3b6f9e5c
PM
12644 /*
12645 * Only a group leader can be exclusive or pinned
12646 */
0d48696f 12647 if (attr.exclusive || attr.pinned)
84c4e620 12648 goto err_locked;
321027c1 12649
bd275681
PZ
12650 if (is_software_event(event) &&
12651 !in_software_context(group_leader)) {
321027c1 12652 /*
bd275681
PZ
12653 * If the event is a sw event, but the group_leader
12654 * is on hw context.
12655 *
12656 * Allow the addition of software events to hw
12657 * groups, this is safe because software events
12658 * never fail to schedule.
12659 *
12660 * Note the comment that goes with struct
12661 * perf_event_pmu_context.
321027c1 12662 */
bd275681 12663 pmu = group_leader->pmu_ctx->pmu;
bf480f93
RB
12664 } else if (!is_software_event(event)) {
12665 if (is_software_event(group_leader) &&
12666 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12667 /*
12668 * In case the group is a pure software group, and we
12669 * try to add a hardware event, move the whole group to
12670 * the hardware context.
12671 */
12672 move_group = 1;
321027c1 12673 }
8a58ddae 12674
bf480f93
RB
12675 /* Don't allow group of multiple hw events from different pmus */
12676 if (!in_software_context(group_leader) &&
12677 group_leader->pmu_ctx->pmu != pmu)
8a58ddae
AS
12678 goto err_locked;
12679 }
f55fc2a5
PZ
12680 }
12681
bd275681
PZ
12682 /*
12683 * Now that we're certain of the pmu; find the pmu_ctx.
12684 */
12685 pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12686 if (IS_ERR(pmu_ctx)) {
12687 err = PTR_ERR(pmu_ctx);
84c4e620
PZ
12688 goto err_locked;
12689 }
bd275681 12690 event->pmu_ctx = pmu_ctx;
84c4e620 12691
bd275681
PZ
12692 if (output_event) {
12693 err = perf_event_set_output(event, output_event);
12694 if (err)
12695 goto err_context;
a723968c
PZ
12696 }
12697
bd275681
PZ
12698 if (!perf_event_validate_size(event)) {
12699 err = -E2BIG;
12700 goto err_context;
a63fbed7
TG
12701 }
12702
da9ec3d3
MR
12703 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12704 err = -EINVAL;
bd275681 12705 goto err_context;
da9ec3d3 12706 }
a63fbed7 12707
f55fc2a5
PZ
12708 /*
12709 * Must be under the same ctx::mutex as perf_install_in_context(),
12710 * because we need to serialize with concurrent event creation.
12711 */
12712 if (!exclusive_event_installable(event, ctx)) {
f55fc2a5 12713 err = -EBUSY;
bd275681 12714 goto err_context;
f55fc2a5 12715 }
f63a8daa 12716
f55fc2a5
PZ
12717 WARN_ON_ONCE(ctx->parent_ctx);
12718
bd275681
PZ
12719 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
12720 if (IS_ERR(event_file)) {
12721 err = PTR_ERR(event_file);
12722 event_file = NULL;
12723 goto err_context;
12724 }
12725
79c9ce57
PZ
12726 /*
12727 * This is the point on no return; we cannot fail hereafter. This is
12728 * where we start modifying current state.
12729 */
12730
f55fc2a5 12731 if (move_group) {
45a0e07a 12732 perf_remove_from_context(group_leader, 0);
bd275681 12733 put_pmu_ctx(group_leader->pmu_ctx);
0231bb53 12734
edb39592 12735 for_each_sibling_event(sibling, group_leader) {
45a0e07a 12736 perf_remove_from_context(sibling, 0);
bd275681 12737 put_pmu_ctx(sibling->pmu_ctx);
b04243ef 12738 }
b04243ef 12739
8f95b435
PZI
12740 /*
12741 * Install the group siblings before the group leader.
12742 *
12743 * Because a group leader will try and install the entire group
12744 * (through the sibling list, which is still in-tact), we can
12745 * end up with siblings installed in the wrong context.
12746 *
12747 * By installing siblings first we NO-OP because they're not
12748 * reachable through the group lists.
12749 */
edb39592 12750 for_each_sibling_event(sibling, group_leader) {
bd275681
PZ
12751 sibling->pmu_ctx = pmu_ctx;
12752 get_pmu_ctx(pmu_ctx);
8f95b435 12753 perf_event__state_init(sibling);
9fc81d87 12754 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef 12755 }
8f95b435
PZI
12756
12757 /*
12758 * Removing from the context ends up with disabled
12759 * event. What we want here is event in the initial
12760 * startup state, ready to be add into new context.
12761 */
bd275681
PZ
12762 group_leader->pmu_ctx = pmu_ctx;
12763 get_pmu_ctx(pmu_ctx);
8f95b435
PZI
12764 perf_event__state_init(group_leader);
12765 perf_install_in_context(ctx, group_leader, group_leader->cpu);
bed5b25a
AS
12766 }
12767
f73e22ab
PZ
12768 /*
12769 * Precalculate sample_data sizes; do while holding ctx::mutex such
12770 * that we're serialized against further additions and before
12771 * perf_install_in_context() which is the point the event is active and
12772 * can use these values.
12773 */
12774 perf_event__header_size(event);
12775 perf_event__id_header_size(event);
12776
78cd2c74
PZ
12777 event->owner = current;
12778
e2d37cd2 12779 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 12780 perf_unpin_context(ctx);
f63a8daa 12781
d859e29f 12782 mutex_unlock(&ctx->mutex);
9b51f66d 12783
79c9ce57 12784 if (task) {
f7cfd871 12785 up_read(&task->signal->exec_update_lock);
79c9ce57
PZ
12786 put_task_struct(task);
12787 }
12788
cdd6c482
IM
12789 mutex_lock(&current->perf_event_mutex);
12790 list_add_tail(&event->owner_entry, &current->perf_event_list);
12791 mutex_unlock(&current->perf_event_mutex);
082ff5a2 12792
8a49542c
PZ
12793 /*
12794 * Drop the reference on the group_event after placing the
12795 * new event on the sibling_list. This ensures destruction
12796 * of the group leader will find the pointer to itself in
12797 * perf_group_detach().
12798 */
2903ff01 12799 fdput(group);
ea635c64
AV
12800 fd_install(event_fd, event_file);
12801 return event_fd;
0793a61d 12802
bd275681 12803err_context:
a551844e
PZ
12804 put_pmu_ctx(event->pmu_ctx);
12805 event->pmu_ctx = NULL; /* _free_event() */
f55fc2a5 12806err_locked:
f55fc2a5 12807 mutex_unlock(&ctx->mutex);
bd275681
PZ
12808 perf_unpin_context(ctx);
12809 put_ctx(ctx);
78af4dc9 12810err_cred:
12811 if (task)
d01e7f10 12812 up_read(&task->signal->exec_update_lock);
c6be5a5c 12813err_alloc:
bd275681 12814 free_event(event);
1f4ee503 12815err_task:
e7d0bc04
PZ
12816 if (task)
12817 put_task_struct(task);
89a1e187 12818err_group_fd:
2903ff01 12819 fdput(group);
ea635c64
AV
12820err_fd:
12821 put_unused_fd(event_fd);
dc86cabe 12822 return err;
0793a61d
TG
12823}
12824
fb0459d7
AV
12825/**
12826 * perf_event_create_kernel_counter
12827 *
12828 * @attr: attributes of the counter to create
12829 * @cpu: cpu in which the counter is bound
38a81da2 12830 * @task: task to profile (NULL for percpu)
a1ddf524
HX
12831 * @overflow_handler: callback to trigger when we hit the event
12832 * @context: context data could be used in overflow_handler callback
fb0459d7
AV
12833 */
12834struct perf_event *
12835perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 12836 struct task_struct *task,
4dc0da86
AK
12837 perf_overflow_handler_t overflow_handler,
12838 void *context)
fb0459d7 12839{
bd275681 12840 struct perf_event_pmu_context *pmu_ctx;
fb0459d7 12841 struct perf_event_context *ctx;
c3f00c70 12842 struct perf_event *event;
bd275681 12843 struct pmu *pmu;
fb0459d7 12844 int err;
d859e29f 12845
dce5affb
AS
12846 /*
12847 * Grouping is not supported for kernel events, neither is 'AUX',
12848 * make sure the caller's intentions are adjusted.
12849 */
12850 if (attr->aux_output)
12851 return ERR_PTR(-EINVAL);
12852
4dc0da86 12853 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 12854 overflow_handler, context, -1);
c3f00c70
PZ
12855 if (IS_ERR(event)) {
12856 err = PTR_ERR(event);
12857 goto err;
12858 }
d859e29f 12859
f8697762 12860 /* Mark owner so we could distinguish it from user events. */
63b6da39 12861 event->owner = TASK_TOMBSTONE;
bd275681
PZ
12862 pmu = event->pmu;
12863
12864 if (pmu->task_ctx_nr == perf_sw_context)
12865 event->event_caps |= PERF_EV_CAP_SOFTWARE;
f8697762 12866
f25d8ba9
AS
12867 /*
12868 * Get the target context (task or percpu):
12869 */
bd275681 12870 ctx = find_get_context(task, event);
c6567f64
FW
12871 if (IS_ERR(ctx)) {
12872 err = PTR_ERR(ctx);
bd275681 12873 goto err_alloc;
d859e29f 12874 }
fb0459d7 12875
fb0459d7
AV
12876 WARN_ON_ONCE(ctx->parent_ctx);
12877 mutex_lock(&ctx->mutex);
84c4e620
PZ
12878 if (ctx->task == TASK_TOMBSTONE) {
12879 err = -ESRCH;
12880 goto err_unlock;
12881 }
12882
bd275681
PZ
12883 pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12884 if (IS_ERR(pmu_ctx)) {
12885 err = PTR_ERR(pmu_ctx);
12886 goto err_unlock;
12887 }
12888 event->pmu_ctx = pmu_ctx;
12889
a63fbed7
TG
12890 if (!task) {
12891 /*
12892 * Check if the @cpu we're creating an event for is online.
12893 *
12894 * We use the perf_cpu_context::ctx::mutex to serialize against
12895 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12896 */
12897 struct perf_cpu_context *cpuctx =
12898 container_of(ctx, struct perf_cpu_context, ctx);
12899 if (!cpuctx->online) {
12900 err = -ENODEV;
bd275681 12901 goto err_pmu_ctx;
a63fbed7
TG
12902 }
12903 }
12904
bed5b25a 12905 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 12906 err = -EBUSY;
bd275681 12907 goto err_pmu_ctx;
bed5b25a
AS
12908 }
12909
4ce54af8 12910 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 12911 perf_unpin_context(ctx);
fb0459d7
AV
12912 mutex_unlock(&ctx->mutex);
12913
fb0459d7
AV
12914 return event;
12915
bd275681
PZ
12916err_pmu_ctx:
12917 put_pmu_ctx(pmu_ctx);
a551844e 12918 event->pmu_ctx = NULL; /* _free_event() */
84c4e620
PZ
12919err_unlock:
12920 mutex_unlock(&ctx->mutex);
12921 perf_unpin_context(ctx);
12922 put_ctx(ctx);
bd275681 12923err_alloc:
c3f00c70
PZ
12924 free_event(event);
12925err:
c6567f64 12926 return ERR_PTR(err);
9b51f66d 12927}
fb0459d7 12928EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 12929
bd275681
PZ
12930static void __perf_pmu_remove(struct perf_event_context *ctx,
12931 int cpu, struct pmu *pmu,
12932 struct perf_event_groups *groups,
12933 struct list_head *events)
0cda4c02 12934{
bd275681 12935 struct perf_event *event, *sibling;
0cda4c02 12936
bd275681 12937 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
45a0e07a 12938 perf_remove_from_context(event, 0);
bd275681
PZ
12939 put_pmu_ctx(event->pmu_ctx);
12940 list_add(&event->migrate_entry, events);
12941
12942 for_each_sibling_event(sibling, event) {
12943 perf_remove_from_context(sibling, 0);
bd275681
PZ
12944 put_pmu_ctx(sibling->pmu_ctx);
12945 list_add(&sibling->migrate_entry, events);
12946 }
0cda4c02 12947 }
bd275681 12948}
0cda4c02 12949
bd275681
PZ
12950static void __perf_pmu_install_event(struct pmu *pmu,
12951 struct perf_event_context *ctx,
12952 int cpu, struct perf_event *event)
12953{
12954 struct perf_event_pmu_context *epc;
889c58b3
PZ
12955 struct perf_event_context *old_ctx = event->ctx;
12956
12957 get_ctx(ctx); /* normally find_get_context() */
bd275681
PZ
12958
12959 event->cpu = cpu;
12960 epc = find_get_pmu_context(pmu, ctx, event);
12961 event->pmu_ctx = epc;
12962
12963 if (event->state >= PERF_EVENT_STATE_OFF)
12964 event->state = PERF_EVENT_STATE_INACTIVE;
bd275681 12965 perf_install_in_context(ctx, event, cpu);
889c58b3
PZ
12966
12967 /*
12968 * Now that event->ctx is updated and visible, put the old ctx.
12969 */
12970 put_ctx(old_ctx);
bd275681
PZ
12971}
12972
12973static void __perf_pmu_install(struct perf_event_context *ctx,
12974 int cpu, struct pmu *pmu, struct list_head *events)
12975{
12976 struct perf_event *event, *tmp;
0cda4c02 12977
8f95b435
PZI
12978 /*
12979 * Re-instate events in 2 passes.
12980 *
12981 * Skip over group leaders and only install siblings on this first
12982 * pass, siblings will not get enabled without a leader, however a
12983 * leader will enable its siblings, even if those are still on the old
12984 * context.
12985 */
bd275681 12986 list_for_each_entry_safe(event, tmp, events, migrate_entry) {
8f95b435
PZI
12987 if (event->group_leader == event)
12988 continue;
12989
12990 list_del(&event->migrate_entry);
bd275681 12991 __perf_pmu_install_event(pmu, ctx, cpu, event);
8f95b435
PZI
12992 }
12993
12994 /*
12995 * Once all the siblings are setup properly, install the group leaders
12996 * to make it go.
12997 */
bd275681 12998 list_for_each_entry_safe(event, tmp, events, migrate_entry) {
9886167d 12999 list_del(&event->migrate_entry);
bd275681 13000 __perf_pmu_install_event(pmu, ctx, cpu, event);
0cda4c02 13001 }
bd275681
PZ
13002}
13003
13004void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
13005{
13006 struct perf_event_context *src_ctx, *dst_ctx;
13007 LIST_HEAD(events);
13008
889c58b3
PZ
13009 /*
13010 * Since per-cpu context is persistent, no need to grab an extra
13011 * reference.
13012 */
bd275681
PZ
13013 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
13014 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
13015
13016 /*
13017 * See perf_event_ctx_lock() for comments on the details
13018 * of swizzling perf_event::ctx.
13019 */
13020 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
13021
13022 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
13023 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
13024
b1680989
PZ
13025 if (!list_empty(&events)) {
13026 /*
13027 * Wait for the events to quiesce before re-instating them.
13028 */
13029 synchronize_rcu();
bd275681 13030
b1680989
PZ
13031 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
13032 }
bd275681 13033
0cda4c02 13034 mutex_unlock(&dst_ctx->mutex);
f63a8daa 13035 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
13036}
13037EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
13038
ef54c1a4 13039static void sync_child_event(struct perf_event *child_event)
d859e29f 13040{
cdd6c482 13041 struct perf_event *parent_event = child_event->parent;
8bc20959 13042 u64 child_val;
d859e29f 13043
ef54c1a4
PZ
13044 if (child_event->attr.inherit_stat) {
13045 struct task_struct *task = child_event->ctx->task;
13046
13047 if (task && task != TASK_TOMBSTONE)
13048 perf_event_read_event(child_event, task);
13049 }
38b200d6 13050
b5e58793 13051 child_val = perf_event_count(child_event);
d859e29f
PM
13052
13053 /*
13054 * Add back the child's count to the parent's count:
13055 */
a6e6dea6 13056 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
13057 atomic64_add(child_event->total_time_enabled,
13058 &parent_event->child_total_time_enabled);
13059 atomic64_add(child_event->total_time_running,
13060 &parent_event->child_total_time_running);
d859e29f
PM
13061}
13062
9b51f66d 13063static void
ef54c1a4 13064perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
9b51f66d 13065{
ef54c1a4
PZ
13066 struct perf_event *parent_event = event->parent;
13067 unsigned long detach_flags = 0;
8ba289b8 13068
ef54c1a4
PZ
13069 if (parent_event) {
13070 /*
13071 * Do not destroy the 'original' grouping; because of the
13072 * context switch optimization the original events could've
13073 * ended up in a random child task.
13074 *
13075 * If we were to destroy the original group, all group related
13076 * operations would cease to function properly after this
13077 * random child dies.
13078 *
13079 * Do destroy all inherited groups, we don't care about those
13080 * and being thorough is better.
13081 */
13082 detach_flags = DETACH_GROUP | DETACH_CHILD;
13083 mutex_lock(&parent_event->child_mutex);
13084 }
32132a3d 13085
ef54c1a4
PZ
13086 perf_remove_from_context(event, detach_flags);
13087
13088 raw_spin_lock_irq(&ctx->lock);
13089 if (event->state > PERF_EVENT_STATE_EXIT)
13090 perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
13091 raw_spin_unlock_irq(&ctx->lock);
0cc0c027 13092
9b51f66d 13093 /*
ef54c1a4 13094 * Child events can be freed.
9b51f66d 13095 */
ef54c1a4
PZ
13096 if (parent_event) {
13097 mutex_unlock(&parent_event->child_mutex);
13098 /*
13099 * Kick perf_poll() for is_event_hup();
13100 */
13101 perf_event_wakeup(parent_event);
13102 free_event(event);
13103 put_event(parent_event);
8ba289b8 13104 return;
4bcf349a 13105 }
8ba289b8
PZ
13106
13107 /*
ef54c1a4 13108 * Parent events are governed by their filedesc, retain them.
8ba289b8 13109 */
ef54c1a4 13110 perf_event_wakeup(event);
9b51f66d
IM
13111}
13112
bd275681 13113static void perf_event_exit_task_context(struct task_struct *child)
9b51f66d 13114{
211de6eb 13115 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 13116 struct perf_event *child_event, *next;
63b6da39
PZ
13117
13118 WARN_ON_ONCE(child != current);
9b51f66d 13119
bd275681 13120 child_ctx = perf_pin_task_context(child);
63b6da39 13121 if (!child_ctx)
9b51f66d
IM
13122 return;
13123
ad3a37de 13124 /*
6a3351b6
PZ
13125 * In order to reduce the amount of tricky in ctx tear-down, we hold
13126 * ctx::mutex over the entire thing. This serializes against almost
13127 * everything that wants to access the ctx.
13128 *
13129 * The exception is sys_perf_event_open() /
13130 * perf_event_create_kernel_count() which does find_get_context()
13131 * without ctx::mutex (it cannot because of the move_group double mutex
13132 * lock thing). See the comments in perf_install_in_context().
ad3a37de 13133 */
6a3351b6 13134 mutex_lock(&child_ctx->mutex);
c93f7669
PM
13135
13136 /*
6a3351b6
PZ
13137 * In a single ctx::lock section, de-schedule the events and detach the
13138 * context from the task such that we cannot ever get it scheduled back
13139 * in.
c93f7669 13140 */
6a3351b6 13141 raw_spin_lock_irq(&child_ctx->lock);
bd275681 13142 task_ctx_sched_out(child_ctx, EVENT_ALL);
4a1c0f26 13143
71a851b4 13144 /*
63b6da39
PZ
13145 * Now that the context is inactive, destroy the task <-> ctx relation
13146 * and mark the context dead.
71a851b4 13147 */
bd275681 13148 RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
63b6da39
PZ
13149 put_ctx(child_ctx); /* cannot be last */
13150 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13151 put_task_struct(current); /* cannot be last */
4a1c0f26 13152
211de6eb 13153 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 13154 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 13155
211de6eb
PZ
13156 if (clone_ctx)
13157 put_ctx(clone_ctx);
4a1c0f26 13158
9f498cc5 13159 /*
cdd6c482
IM
13160 * Report the task dead after unscheduling the events so that we
13161 * won't get any samples after PERF_RECORD_EXIT. We can however still
13162 * get a few PERF_RECORD_READ events.
9f498cc5 13163 */
cdd6c482 13164 perf_event_task(child, child_ctx, 0);
a63eaf34 13165
ebf905fc 13166 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
ef54c1a4 13167 perf_event_exit_event(child_event, child_ctx);
8bc20959 13168
a63eaf34
PM
13169 mutex_unlock(&child_ctx->mutex);
13170
13171 put_ctx(child_ctx);
9b51f66d
IM
13172}
13173
8dc85d54
PZ
13174/*
13175 * When a child task exits, feed back event values to parent events.
79c9ce57 13176 *
f7cfd871 13177 * Can be called with exec_update_lock held when called from
96ecee29 13178 * setup_new_exec().
8dc85d54
PZ
13179 */
13180void perf_event_exit_task(struct task_struct *child)
13181{
8882135b 13182 struct perf_event *event, *tmp;
8dc85d54 13183
8882135b
PZ
13184 mutex_lock(&child->perf_event_mutex);
13185 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13186 owner_entry) {
13187 list_del_init(&event->owner_entry);
13188
13189 /*
13190 * Ensure the list deletion is visible before we clear
13191 * the owner, closes a race against perf_release() where
13192 * we need to serialize on the owner->perf_event_mutex.
13193 */
f47c02c0 13194 smp_store_release(&event->owner, NULL);
8882135b
PZ
13195 }
13196 mutex_unlock(&child->perf_event_mutex);
13197
bd275681 13198 perf_event_exit_task_context(child);
4e93ad60
JO
13199
13200 /*
13201 * The perf_event_exit_task_context calls perf_event_task
13202 * with child's task_ctx, which generates EXIT events for
13203 * child contexts and sets child->perf_event_ctxp[] to NULL.
13204 * At this point we need to send EXIT events to cpu contexts.
13205 */
13206 perf_event_task(child, NULL, 0);
8dc85d54
PZ
13207}
13208
889ff015
FW
13209static void perf_free_event(struct perf_event *event,
13210 struct perf_event_context *ctx)
13211{
13212 struct perf_event *parent = event->parent;
13213
13214 if (WARN_ON_ONCE(!parent))
13215 return;
13216
13217 mutex_lock(&parent->child_mutex);
13218 list_del_init(&event->child_list);
13219 mutex_unlock(&parent->child_mutex);
13220
a6fa941d 13221 put_event(parent);
889ff015 13222
652884fe 13223 raw_spin_lock_irq(&ctx->lock);
8a49542c 13224 perf_group_detach(event);
889ff015 13225 list_del_event(event, ctx);
652884fe 13226 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
13227 free_event(event);
13228}
13229
bbbee908 13230/*
1cf8dfe8
PZ
13231 * Free a context as created by inheritance by perf_event_init_task() below,
13232 * used by fork() in case of fail.
652884fe 13233 *
1cf8dfe8
PZ
13234 * Even though the task has never lived, the context and events have been
13235 * exposed through the child_list, so we must take care tearing it all down.
bbbee908 13236 */
cdd6c482 13237void perf_event_free_task(struct task_struct *task)
bbbee908 13238{
8dc85d54 13239 struct perf_event_context *ctx;
cdd6c482 13240 struct perf_event *event, *tmp;
bbbee908 13241
bd275681
PZ
13242 ctx = rcu_access_pointer(task->perf_event_ctxp);
13243 if (!ctx)
13244 return;
bbbee908 13245
bd275681
PZ
13246 mutex_lock(&ctx->mutex);
13247 raw_spin_lock_irq(&ctx->lock);
13248 /*
13249 * Destroy the task <-> ctx relation and mark the context dead.
13250 *
13251 * This is important because even though the task hasn't been
13252 * exposed yet the context has been (through child_list).
13253 */
13254 RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13255 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13256 put_task_struct(task); /* cannot be last */
13257 raw_spin_unlock_irq(&ctx->lock);
bbbee908 13258
bbbee908 13259
bd275681
PZ
13260 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13261 perf_free_event(event, ctx);
1cf8dfe8 13262
bd275681
PZ
13263 mutex_unlock(&ctx->mutex);
13264
13265 /*
13266 * perf_event_release_kernel() could've stolen some of our
13267 * child events and still have them on its free_list. In that
13268 * case we must wait for these events to have been freed (in
13269 * particular all their references to this task must've been
13270 * dropped).
13271 *
13272 * Without this copy_process() will unconditionally free this
13273 * task (irrespective of its reference count) and
13274 * _free_event()'s put_task_struct(event->hw.target) will be a
13275 * use-after-free.
13276 *
13277 * Wait for all events to drop their context reference.
13278 */
13279 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13280 put_ctx(ctx); /* must be last */
889ff015
FW
13281}
13282
4e231c79
PZ
13283void perf_event_delayed_put(struct task_struct *task)
13284{
bd275681 13285 WARN_ON_ONCE(task->perf_event_ctxp);
4e231c79
PZ
13286}
13287
e03e7ee3 13288struct file *perf_event_get(unsigned int fd)
ffe8690c 13289{
02e5ad97 13290 struct file *file = fget(fd);
e03e7ee3
AS
13291 if (!file)
13292 return ERR_PTR(-EBADF);
ffe8690c 13293
e03e7ee3
AS
13294 if (file->f_op != &perf_fops) {
13295 fput(file);
13296 return ERR_PTR(-EBADF);
13297 }
ffe8690c 13298
e03e7ee3 13299 return file;
ffe8690c
KX
13300}
13301
f8d959a5
YS
13302const struct perf_event *perf_get_event(struct file *file)
13303{
13304 if (file->f_op != &perf_fops)
13305 return ERR_PTR(-EINVAL);
13306
13307 return file->private_data;
13308}
13309
ffe8690c
KX
13310const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13311{
13312 if (!event)
13313 return ERR_PTR(-EINVAL);
13314
13315 return &event->attr;
13316}
13317
97dee4f3 13318/*
788faab7 13319 * Inherit an event from parent task to child task.
d8a8cfc7
PZ
13320 *
13321 * Returns:
13322 * - valid pointer on success
13323 * - NULL for orphaned events
13324 * - IS_ERR() on error
97dee4f3
PZ
13325 */
13326static struct perf_event *
13327inherit_event(struct perf_event *parent_event,
13328 struct task_struct *parent,
13329 struct perf_event_context *parent_ctx,
13330 struct task_struct *child,
13331 struct perf_event *group_leader,
13332 struct perf_event_context *child_ctx)
13333{
8ca2bd41 13334 enum perf_event_state parent_state = parent_event->state;
bd275681 13335 struct perf_event_pmu_context *pmu_ctx;
97dee4f3 13336 struct perf_event *child_event;
cee010ec 13337 unsigned long flags;
97dee4f3
PZ
13338
13339 /*
13340 * Instead of creating recursive hierarchies of events,
13341 * we link inherited events back to the original parent,
13342 * which has a filp for sure, which we use as the reference
13343 * count:
13344 */
13345 if (parent_event->parent)
13346 parent_event = parent_event->parent;
13347
13348 child_event = perf_event_alloc(&parent_event->attr,
13349 parent_event->cpu,
d580ff86 13350 child,
97dee4f3 13351 group_leader, parent_event,
79dff51e 13352 NULL, NULL, -1);
97dee4f3
PZ
13353 if (IS_ERR(child_event))
13354 return child_event;
a6fa941d 13355
bd275681 13356 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
c55bfbb3 13357 if (IS_ERR(pmu_ctx)) {
bd275681 13358 free_event(child_event);
e2d37148 13359 return ERR_CAST(pmu_ctx);
313ccb96 13360 }
bd275681 13361 child_event->pmu_ctx = pmu_ctx;
313ccb96 13362
c6e5b732
PZ
13363 /*
13364 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13365 * must be under the same lock in order to serialize against
13366 * perf_event_release_kernel(), such that either we must observe
13367 * is_orphaned_event() or they will observe us on the child_list.
13368 */
13369 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
13370 if (is_orphaned_event(parent_event) ||
13371 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 13372 mutex_unlock(&parent_event->child_mutex);
313ccb96 13373 /* task_ctx_data is freed with child_ctx */
a6fa941d
AV
13374 free_event(child_event);
13375 return NULL;
13376 }
13377
97dee4f3
PZ
13378 get_ctx(child_ctx);
13379
13380 /*
13381 * Make the child state follow the state of the parent event,
13382 * not its attr.disabled bit. We hold the parent's mutex,
13383 * so we won't race with perf_event_{en, dis}able_family.
13384 */
1929def9 13385 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
13386 child_event->state = PERF_EVENT_STATE_INACTIVE;
13387 else
13388 child_event->state = PERF_EVENT_STATE_OFF;
13389
13390 if (parent_event->attr.freq) {
13391 u64 sample_period = parent_event->hw.sample_period;
13392 struct hw_perf_event *hwc = &child_event->hw;
13393
13394 hwc->sample_period = sample_period;
13395 hwc->last_period = sample_period;
13396
13397 local64_set(&hwc->period_left, sample_period);
13398 }
13399
13400 child_event->ctx = child_ctx;
13401 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
13402 child_event->overflow_handler_context
13403 = parent_event->overflow_handler_context;
97dee4f3 13404
614b6780
TG
13405 /*
13406 * Precalculate sample_data sizes
13407 */
13408 perf_event__header_size(child_event);
6844c09d 13409 perf_event__id_header_size(child_event);
614b6780 13410
97dee4f3
PZ
13411 /*
13412 * Link it up in the child's context:
13413 */
cee010ec 13414 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 13415 add_event_to_ctx(child_event, child_ctx);
ef54c1a4 13416 child_event->attach_state |= PERF_ATTACH_CHILD;
cee010ec 13417 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 13418
97dee4f3
PZ
13419 /*
13420 * Link this into the parent event's child list
13421 */
97dee4f3
PZ
13422 list_add_tail(&child_event->child_list, &parent_event->child_list);
13423 mutex_unlock(&parent_event->child_mutex);
13424
13425 return child_event;
13426}
13427
d8a8cfc7
PZ
13428/*
13429 * Inherits an event group.
13430 *
13431 * This will quietly suppress orphaned events; !inherit_event() is not an error.
13432 * This matches with perf_event_release_kernel() removing all child events.
13433 *
13434 * Returns:
13435 * - 0 on success
13436 * - <0 on error
13437 */
97dee4f3
PZ
13438static int inherit_group(struct perf_event *parent_event,
13439 struct task_struct *parent,
13440 struct perf_event_context *parent_ctx,
13441 struct task_struct *child,
13442 struct perf_event_context *child_ctx)
13443{
13444 struct perf_event *leader;
13445 struct perf_event *sub;
13446 struct perf_event *child_ctr;
13447
13448 leader = inherit_event(parent_event, parent, parent_ctx,
13449 child, NULL, child_ctx);
13450 if (IS_ERR(leader))
13451 return PTR_ERR(leader);
d8a8cfc7
PZ
13452 /*
13453 * @leader can be NULL here because of is_orphaned_event(). In this
13454 * case inherit_event() will create individual events, similar to what
13455 * perf_group_detach() would do anyway.
13456 */
edb39592 13457 for_each_sibling_event(sub, parent_event) {
97dee4f3
PZ
13458 child_ctr = inherit_event(sub, parent, parent_ctx,
13459 child, leader, child_ctx);
13460 if (IS_ERR(child_ctr))
13461 return PTR_ERR(child_ctr);
f733c6b5 13462
00496fe5 13463 if (sub->aux_event == parent_event && child_ctr &&
f733c6b5
AS
13464 !perf_get_aux_event(child_ctr, leader))
13465 return -EINVAL;
97dee4f3 13466 }
a71ef314
PZ
13467 if (leader)
13468 leader->group_generation = parent_event->group_generation;
97dee4f3 13469 return 0;
889ff015
FW
13470}
13471
d8a8cfc7
PZ
13472/*
13473 * Creates the child task context and tries to inherit the event-group.
13474 *
13475 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13476 * inherited_all set when we 'fail' to inherit an orphaned event; this is
13477 * consistent with perf_event_release_kernel() removing all child events.
13478 *
13479 * Returns:
13480 * - 0 on success
13481 * - <0 on error
13482 */
889ff015
FW
13483static int
13484inherit_task_group(struct perf_event *event, struct task_struct *parent,
13485 struct perf_event_context *parent_ctx,
bd275681 13486 struct task_struct *child,
2b26f0aa 13487 u64 clone_flags, int *inherited_all)
889ff015 13488{
8dc85d54 13489 struct perf_event_context *child_ctx;
bd275681 13490 int ret;
889ff015 13491
2b26f0aa 13492 if (!event->attr.inherit ||
97ba62b2
ME
13493 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13494 /* Do not inherit if sigtrap and signal handlers were cleared. */
13495 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
889ff015
FW
13496 *inherited_all = 0;
13497 return 0;
bbbee908
PZ
13498 }
13499
bd275681 13500 child_ctx = child->perf_event_ctxp;
889ff015
FW
13501 if (!child_ctx) {
13502 /*
13503 * This is executed from the parent task context, so
13504 * inherit events that have been marked for cloning.
13505 * First allocate and initialize a context for the
13506 * child.
13507 */
bd275681 13508 child_ctx = alloc_perf_context(child);
889ff015
FW
13509 if (!child_ctx)
13510 return -ENOMEM;
bbbee908 13511
bd275681 13512 child->perf_event_ctxp = child_ctx;
889ff015
FW
13513 }
13514
bd275681 13515 ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
889ff015
FW
13516 if (ret)
13517 *inherited_all = 0;
13518
13519 return ret;
bbbee908
PZ
13520}
13521
9b51f66d 13522/*
cdd6c482 13523 * Initialize the perf_event context in task_struct
9b51f66d 13524 */
bd275681 13525static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
9b51f66d 13526{
889ff015 13527 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
13528 struct perf_event_context *cloned_ctx;
13529 struct perf_event *event;
9b51f66d 13530 struct task_struct *parent = current;
564c2b21 13531 int inherited_all = 1;
dddd3379 13532 unsigned long flags;
6ab423e0 13533 int ret = 0;
9b51f66d 13534
bd275681 13535 if (likely(!parent->perf_event_ctxp))
6ab423e0
PZ
13536 return 0;
13537
ad3a37de 13538 /*
25346b93
PM
13539 * If the parent's context is a clone, pin it so it won't get
13540 * swapped under us.
ad3a37de 13541 */
bd275681 13542 parent_ctx = perf_pin_task_context(parent);
ffb4ef21
PZ
13543 if (!parent_ctx)
13544 return 0;
25346b93 13545
ad3a37de
PM
13546 /*
13547 * No need to check if parent_ctx != NULL here; since we saw
13548 * it non-NULL earlier, the only reason for it to become NULL
13549 * is if we exit, and since we're currently in the middle of
13550 * a fork we can't be exiting at the same time.
13551 */
ad3a37de 13552
9b51f66d
IM
13553 /*
13554 * Lock the parent list. No need to lock the child - not PID
13555 * hashed yet and not running, so nobody can access it.
13556 */
d859e29f 13557 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
13558
13559 /*
13560 * We dont have to disable NMIs - we are only looking at
13561 * the list, not manipulating it:
13562 */
6e6804d2 13563 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
8dc85d54 13564 ret = inherit_task_group(event, parent, parent_ctx,
bd275681 13565 child, clone_flags, &inherited_all);
889ff015 13566 if (ret)
e7cc4865 13567 goto out_unlock;
889ff015 13568 }
b93f7978 13569
dddd3379
TG
13570 /*
13571 * We can't hold ctx->lock when iterating the ->flexible_group list due
13572 * to allocations, but we need to prevent rotation because
13573 * rotate_ctx() will change the list from interrupt context.
13574 */
13575 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13576 parent_ctx->rotate_disable = 1;
13577 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13578
6e6804d2 13579 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
8dc85d54 13580 ret = inherit_task_group(event, parent, parent_ctx,
bd275681 13581 child, clone_flags, &inherited_all);
889ff015 13582 if (ret)
e7cc4865 13583 goto out_unlock;
564c2b21
PM
13584 }
13585
dddd3379
TG
13586 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13587 parent_ctx->rotate_disable = 0;
dddd3379 13588
bd275681 13589 child_ctx = child->perf_event_ctxp;
889ff015 13590
05cbaa28 13591 if (child_ctx && inherited_all) {
564c2b21
PM
13592 /*
13593 * Mark the child context as a clone of the parent
13594 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
13595 *
13596 * Note that if the parent is a clone, the holding of
13597 * parent_ctx->lock avoids it from being uncloned.
564c2b21 13598 */
c5ed5145 13599 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
13600 if (cloned_ctx) {
13601 child_ctx->parent_ctx = cloned_ctx;
25346b93 13602 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
13603 } else {
13604 child_ctx->parent_ctx = parent_ctx;
13605 child_ctx->parent_gen = parent_ctx->generation;
13606 }
13607 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
13608 }
13609
c5ed5145 13610 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
e7cc4865 13611out_unlock:
d859e29f 13612 mutex_unlock(&parent_ctx->mutex);
6ab423e0 13613
25346b93 13614 perf_unpin_context(parent_ctx);
fe4b04fa 13615 put_ctx(parent_ctx);
ad3a37de 13616
6ab423e0 13617 return ret;
9b51f66d
IM
13618}
13619
8dc85d54
PZ
13620/*
13621 * Initialize the perf_event context in task_struct
13622 */
2b26f0aa 13623int perf_event_init_task(struct task_struct *child, u64 clone_flags)
8dc85d54 13624{
bd275681 13625 int ret;
8dc85d54 13626
bd275681 13627 child->perf_event_ctxp = NULL;
8550d7cb
ON
13628 mutex_init(&child->perf_event_mutex);
13629 INIT_LIST_HEAD(&child->perf_event_list);
13630
bd275681
PZ
13631 ret = perf_event_init_context(child, clone_flags);
13632 if (ret) {
13633 perf_event_free_task(child);
13634 return ret;
8dc85d54
PZ
13635 }
13636
13637 return 0;
13638}
13639
220b140b
PM
13640static void __init perf_event_init_all_cpus(void)
13641{
b28ab83c 13642 struct swevent_htable *swhash;
bd275681 13643 struct perf_cpu_context *cpuctx;
220b140b 13644 int cpu;
220b140b 13645
a63fbed7
TG
13646 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13647
220b140b 13648 for_each_possible_cpu(cpu) {
b28ab83c
PZ
13649 swhash = &per_cpu(swevent_htable, cpu);
13650 mutex_init(&swhash->hlist_mutex);
f2fb6bef
KL
13651
13652 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13653 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788 13654
a5398bff 13655 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
bd275681
PZ
13656
13657 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13658 __perf_event_init_context(&cpuctx->ctx);
13659 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
13660 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
13661 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
13662 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
13663 cpuctx->heap = cpuctx->heap_default;
220b140b
PM
13664 }
13665}
13666
d18bf422 13667static void perf_swevent_init_cpu(unsigned int cpu)
0793a61d 13668{
108b02cf 13669 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 13670
b28ab83c 13671 mutex_lock(&swhash->hlist_mutex);
059fcd8c 13672 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
13673 struct swevent_hlist *hlist;
13674
b28ab83c
PZ
13675 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13676 WARN_ON(!hlist);
13677 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 13678 }
b28ab83c 13679 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
13680}
13681
2965faa5 13682#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 13683static void __perf_event_exit_context(void *__info)
0793a61d 13684{
bd275681 13685 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
108b02cf 13686 struct perf_event_context *ctx = __info;
fae3fde6 13687 struct perf_event *event;
0793a61d 13688
fae3fde6 13689 raw_spin_lock(&ctx->lock);
bd275681 13690 ctx_sched_out(ctx, EVENT_TIME);
fae3fde6 13691 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 13692 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 13693 raw_spin_unlock(&ctx->lock);
0793a61d 13694}
108b02cf
PZ
13695
13696static void perf_event_exit_cpu_context(int cpu)
13697{
a63fbed7 13698 struct perf_cpu_context *cpuctx;
108b02cf 13699 struct perf_event_context *ctx;
108b02cf 13700
bd275681 13701 // XXX simplify cpuctx->online
a63fbed7 13702 mutex_lock(&pmus_lock);
bd275681
PZ
13703 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13704 ctx = &cpuctx->ctx;
108b02cf 13705
bd275681
PZ
13706 mutex_lock(&ctx->mutex);
13707 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13708 cpuctx->online = 0;
13709 mutex_unlock(&ctx->mutex);
a63fbed7
TG
13710 cpumask_clear_cpu(cpu, perf_online_mask);
13711 mutex_unlock(&pmus_lock);
108b02cf 13712}
00e16c3d
TG
13713#else
13714
13715static void perf_event_exit_cpu_context(int cpu) { }
13716
13717#endif
108b02cf 13718
a63fbed7
TG
13719int perf_event_init_cpu(unsigned int cpu)
13720{
13721 struct perf_cpu_context *cpuctx;
13722 struct perf_event_context *ctx;
a63fbed7
TG
13723
13724 perf_swevent_init_cpu(cpu);
13725
13726 mutex_lock(&pmus_lock);
13727 cpumask_set_cpu(cpu, perf_online_mask);
bd275681
PZ
13728 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13729 ctx = &cpuctx->ctx;
a63fbed7 13730
bd275681
PZ
13731 mutex_lock(&ctx->mutex);
13732 cpuctx->online = 1;
13733 mutex_unlock(&ctx->mutex);
a63fbed7
TG
13734 mutex_unlock(&pmus_lock);
13735
13736 return 0;
13737}
13738
00e16c3d 13739int perf_event_exit_cpu(unsigned int cpu)
0793a61d 13740{
e3703f8c 13741 perf_event_exit_cpu_context(cpu);
00e16c3d 13742 return 0;
0793a61d 13743}
0793a61d 13744
c277443c
PZ
13745static int
13746perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13747{
13748 int cpu;
13749
13750 for_each_online_cpu(cpu)
13751 perf_event_exit_cpu(cpu);
13752
13753 return NOTIFY_OK;
13754}
13755
13756/*
13757 * Run the perf reboot notifier at the very last possible moment so that
13758 * the generic watchdog code runs as long as possible.
13759 */
13760static struct notifier_block perf_reboot_notifier = {
13761 .notifier_call = perf_reboot,
13762 .priority = INT_MIN,
13763};
13764
cdd6c482 13765void __init perf_event_init(void)
0793a61d 13766{
3c502e7a
JW
13767 int ret;
13768
2e80a82a
PZ
13769 idr_init(&pmu_idr);
13770
220b140b 13771 perf_event_init_all_cpus();
b0a873eb 13772 init_srcu_struct(&pmus_srcu);
2e80a82a 13773 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
0d6d062c
RB
13774 perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
13775 perf_pmu_register(&perf_task_clock, "task_clock", -1);
b0a873eb 13776 perf_tp_register();
00e16c3d 13777 perf_event_init_cpu(smp_processor_id());
c277443c 13778 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
13779
13780 ret = init_hw_breakpoint();
13781 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 13782
bdacfaf2
NK
13783 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13784
b01c3a00
JO
13785 /*
13786 * Build time assertion that we keep the data_head at the intended
13787 * location. IOW, validation we got the __reserved[] size right.
13788 */
13789 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13790 != 1024);
0793a61d 13791}
abe43400 13792
fd979c01
CS
13793ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13794 char *page)
13795{
13796 struct perf_pmu_events_attr *pmu_attr =
13797 container_of(attr, struct perf_pmu_events_attr, attr);
13798
13799 if (pmu_attr->event_str)
13800 return sprintf(page, "%s\n", pmu_attr->event_str);
13801
13802 return 0;
13803}
675965b0 13804EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 13805
abe43400
PZ
13806static int __init perf_event_sysfs_init(void)
13807{
13808 struct pmu *pmu;
13809 int ret;
13810
13811 mutex_lock(&pmus_lock);
13812
13813 ret = bus_register(&pmu_bus);
13814 if (ret)
13815 goto unlock;
13816
13817 list_for_each_entry(pmu, &pmus, entry) {
0d6d062c 13818 if (pmu->dev)
abe43400
PZ
13819 continue;
13820
13821 ret = pmu_dev_alloc(pmu);
13822 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13823 }
13824 pmu_bus_running = 1;
13825 ret = 0;
13826
13827unlock:
13828 mutex_unlock(&pmus_lock);
13829
13830 return ret;
13831}
13832device_initcall(perf_event_sysfs_init);
e5d1367f
SE
13833
13834#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
13835static struct cgroup_subsys_state *
13836perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
13837{
13838 struct perf_cgroup *jc;
e5d1367f 13839
1b15d055 13840 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
13841 if (!jc)
13842 return ERR_PTR(-ENOMEM);
13843
e5d1367f
SE
13844 jc->info = alloc_percpu(struct perf_cgroup_info);
13845 if (!jc->info) {
13846 kfree(jc);
13847 return ERR_PTR(-ENOMEM);
13848 }
13849
e5d1367f
SE
13850 return &jc->css;
13851}
13852
eb95419b 13853static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 13854{
eb95419b
TH
13855 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13856
e5d1367f
SE
13857 free_percpu(jc->info);
13858 kfree(jc);
13859}
13860
96aaab68
NK
13861static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13862{
13863 perf_event_cgroup(css->cgroup);
13864 return 0;
13865}
13866
e5d1367f
SE
13867static int __perf_cgroup_move(void *info)
13868{
13869 struct task_struct *task = info;
bd275681
PZ
13870
13871 preempt_disable();
f841b682 13872 perf_cgroup_switch(task);
bd275681
PZ
13873 preempt_enable();
13874
e5d1367f
SE
13875 return 0;
13876}
13877
1f7dd3e5 13878static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 13879{
bb9d97b6 13880 struct task_struct *task;
1f7dd3e5 13881 struct cgroup_subsys_state *css;
bb9d97b6 13882
1f7dd3e5 13883 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 13884 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
13885}
13886
073219e9 13887struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
13888 .css_alloc = perf_cgroup_css_alloc,
13889 .css_free = perf_cgroup_css_free,
96aaab68 13890 .css_online = perf_cgroup_css_online,
bb9d97b6 13891 .attach = perf_cgroup_attach,
968ebff1
TH
13892 /*
13893 * Implicitly enable on dfl hierarchy so that perf events can
13894 * always be filtered by cgroup2 path as long as perf_event
13895 * controller is not mounted on a legacy hierarchy.
13896 */
13897 .implicit_on_dfl = true,
8cfd8147 13898 .threaded = true,
e5d1367f
SE
13899};
13900#endif /* CONFIG_CGROUP_PERF */
c22ac2a3
SL
13901
13902DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);