perf/core: Consistently fail fork on allocation failures
[linux-block.git] / kernel / events / core.c
CommitLineData
8e86e015 1// SPDX-License-Identifier: GPL-2.0
0793a61d 2/*
57c0c15b 3 * Performance events core code:
0793a61d 4 *
98144511 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
0793a61d
TG
9 */
10
11#include <linux/fs.h>
b9cacc7b 12#include <linux/mm.h>
0793a61d
TG
13#include <linux/cpu.h>
14#include <linux/smp.h>
2e80a82a 15#include <linux/idr.h>
04289bb9 16#include <linux/file.h>
0793a61d 17#include <linux/poll.h>
5a0e3ad6 18#include <linux/slab.h>
76e1d904 19#include <linux/hash.h>
12351ef8 20#include <linux/tick.h>
0793a61d 21#include <linux/sysfs.h>
22a4f650 22#include <linux/dcache.h>
0793a61d 23#include <linux/percpu.h>
22a4f650 24#include <linux/ptrace.h>
c277443c 25#include <linux/reboot.h>
b9cacc7b 26#include <linux/vmstat.h>
abe43400 27#include <linux/device.h>
6e5fdeed 28#include <linux/export.h>
906010b2 29#include <linux/vmalloc.h>
b9cacc7b
PZ
30#include <linux/hardirq.h>
31#include <linux/rculist.h>
0793a61d
TG
32#include <linux/uaccess.h>
33#include <linux/syscalls.h>
34#include <linux/anon_inodes.h>
aa9c4c0f 35#include <linux/kernel_stat.h>
39bed6cb 36#include <linux/cgroup.h>
cdd6c482 37#include <linux/perf_event.h>
af658dca 38#include <linux/trace_events.h>
3c502e7a 39#include <linux/hw_breakpoint.h>
c5ebcedb 40#include <linux/mm_types.h>
c464c76e 41#include <linux/module.h>
f972eb63 42#include <linux/mman.h>
b3f20785 43#include <linux/compat.h>
2541517c
AS
44#include <linux/bpf.h>
45#include <linux/filter.h>
375637bc
AS
46#include <linux/namei.h>
47#include <linux/parser.h>
e6017571 48#include <linux/sched/clock.h>
6e84f315 49#include <linux/sched/mm.h>
e4222673
HB
50#include <linux/proc_ns.h>
51#include <linux/mount.h>
0793a61d 52
76369139
FW
53#include "internal.h"
54
4e193bd4
TB
55#include <asm/irq_regs.h>
56
272325c4
PZ
57typedef int (*remote_function_f)(void *);
58
fe4b04fa 59struct remote_function_call {
e7e7ee2e 60 struct task_struct *p;
272325c4 61 remote_function_f func;
e7e7ee2e
IM
62 void *info;
63 int ret;
fe4b04fa
PZ
64};
65
66static void remote_function(void *data)
67{
68 struct remote_function_call *tfc = data;
69 struct task_struct *p = tfc->p;
70
71 if (p) {
0da4cf3e
PZ
72 /* -EAGAIN */
73 if (task_cpu(p) != smp_processor_id())
74 return;
75
76 /*
77 * Now that we're on right CPU with IRQs disabled, we can test
78 * if we hit the right task without races.
79 */
80
81 tfc->ret = -ESRCH; /* No such (running) process */
82 if (p != current)
fe4b04fa
PZ
83 return;
84 }
85
86 tfc->ret = tfc->func(tfc->info);
87}
88
89/**
90 * task_function_call - call a function on the cpu on which a task runs
91 * @p: the task to evaluate
92 * @func: the function to be called
93 * @info: the function call argument
94 *
95 * Calls the function @func when the task is currently running. This might
96 * be on the current CPU, which just calls the function directly
97 *
98 * returns: @func return value, or
99 * -ESRCH - when the process isn't running
100 * -EAGAIN - when the process moved away
101 */
102static int
272325c4 103task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
104{
105 struct remote_function_call data = {
e7e7ee2e
IM
106 .p = p,
107 .func = func,
108 .info = info,
0da4cf3e 109 .ret = -EAGAIN,
fe4b04fa 110 };
0da4cf3e 111 int ret;
fe4b04fa 112
0da4cf3e
PZ
113 do {
114 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
115 if (!ret)
116 ret = data.ret;
117 } while (ret == -EAGAIN);
fe4b04fa 118
0da4cf3e 119 return ret;
fe4b04fa
PZ
120}
121
122/**
123 * cpu_function_call - call a function on the cpu
124 * @func: the function to be called
125 * @info: the function call argument
126 *
127 * Calls the function @func on the remote cpu.
128 *
129 * returns: @func return value or -ENXIO when the cpu is offline
130 */
272325c4 131static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
132{
133 struct remote_function_call data = {
e7e7ee2e
IM
134 .p = NULL,
135 .func = func,
136 .info = info,
137 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
138 };
139
140 smp_call_function_single(cpu, remote_function, &data, 1);
141
142 return data.ret;
143}
144
fae3fde6
PZ
145static inline struct perf_cpu_context *
146__get_cpu_context(struct perf_event_context *ctx)
147{
148 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
149}
150
151static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
152 struct perf_event_context *ctx)
0017960f 153{
fae3fde6
PZ
154 raw_spin_lock(&cpuctx->ctx.lock);
155 if (ctx)
156 raw_spin_lock(&ctx->lock);
157}
158
159static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
160 struct perf_event_context *ctx)
161{
162 if (ctx)
163 raw_spin_unlock(&ctx->lock);
164 raw_spin_unlock(&cpuctx->ctx.lock);
165}
166
63b6da39
PZ
167#define TASK_TOMBSTONE ((void *)-1L)
168
169static bool is_kernel_event(struct perf_event *event)
170{
f47c02c0 171 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
172}
173
39a43640
PZ
174/*
175 * On task ctx scheduling...
176 *
177 * When !ctx->nr_events a task context will not be scheduled. This means
178 * we can disable the scheduler hooks (for performance) without leaving
179 * pending task ctx state.
180 *
181 * This however results in two special cases:
182 *
183 * - removing the last event from a task ctx; this is relatively straight
184 * forward and is done in __perf_remove_from_context.
185 *
186 * - adding the first event to a task ctx; this is tricky because we cannot
187 * rely on ctx->is_active and therefore cannot use event_function_call().
188 * See perf_install_in_context().
189 *
39a43640
PZ
190 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
191 */
192
fae3fde6
PZ
193typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
194 struct perf_event_context *, void *);
195
196struct event_function_struct {
197 struct perf_event *event;
198 event_f func;
199 void *data;
200};
201
202static int event_function(void *info)
203{
204 struct event_function_struct *efs = info;
205 struct perf_event *event = efs->event;
0017960f 206 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
207 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
208 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 209 int ret = 0;
fae3fde6 210
16444645 211 lockdep_assert_irqs_disabled();
fae3fde6 212
63b6da39 213 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
214 /*
215 * Since we do the IPI call without holding ctx->lock things can have
216 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
217 */
218 if (ctx->task) {
63b6da39 219 if (ctx->task != current) {
0da4cf3e 220 ret = -ESRCH;
63b6da39
PZ
221 goto unlock;
222 }
fae3fde6 223
fae3fde6
PZ
224 /*
225 * We only use event_function_call() on established contexts,
226 * and event_function() is only ever called when active (or
227 * rather, we'll have bailed in task_function_call() or the
228 * above ctx->task != current test), therefore we must have
229 * ctx->is_active here.
230 */
231 WARN_ON_ONCE(!ctx->is_active);
232 /*
233 * And since we have ctx->is_active, cpuctx->task_ctx must
234 * match.
235 */
63b6da39
PZ
236 WARN_ON_ONCE(task_ctx != ctx);
237 } else {
238 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 239 }
63b6da39 240
fae3fde6 241 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 242unlock:
fae3fde6
PZ
243 perf_ctx_unlock(cpuctx, task_ctx);
244
63b6da39 245 return ret;
fae3fde6
PZ
246}
247
fae3fde6 248static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
249{
250 struct perf_event_context *ctx = event->ctx;
63b6da39 251 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
252 struct event_function_struct efs = {
253 .event = event,
254 .func = func,
255 .data = data,
256 };
0017960f 257
c97f4736
PZ
258 if (!event->parent) {
259 /*
260 * If this is a !child event, we must hold ctx::mutex to
261 * stabilize the the event->ctx relation. See
262 * perf_event_ctx_lock().
263 */
264 lockdep_assert_held(&ctx->mutex);
265 }
0017960f
PZ
266
267 if (!task) {
fae3fde6 268 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
269 return;
270 }
271
63b6da39
PZ
272 if (task == TASK_TOMBSTONE)
273 return;
274
a096309b 275again:
fae3fde6 276 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
277 return;
278
279 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
280 /*
281 * Reload the task pointer, it might have been changed by
282 * a concurrent perf_event_context_sched_out().
283 */
284 task = ctx->task;
a096309b
PZ
285 if (task == TASK_TOMBSTONE) {
286 raw_spin_unlock_irq(&ctx->lock);
287 return;
0017960f 288 }
a096309b
PZ
289 if (ctx->is_active) {
290 raw_spin_unlock_irq(&ctx->lock);
291 goto again;
292 }
293 func(event, NULL, ctx, data);
0017960f
PZ
294 raw_spin_unlock_irq(&ctx->lock);
295}
296
cca20946
PZ
297/*
298 * Similar to event_function_call() + event_function(), but hard assumes IRQs
299 * are already disabled and we're on the right CPU.
300 */
301static void event_function_local(struct perf_event *event, event_f func, void *data)
302{
303 struct perf_event_context *ctx = event->ctx;
304 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
305 struct task_struct *task = READ_ONCE(ctx->task);
306 struct perf_event_context *task_ctx = NULL;
307
16444645 308 lockdep_assert_irqs_disabled();
cca20946
PZ
309
310 if (task) {
311 if (task == TASK_TOMBSTONE)
312 return;
313
314 task_ctx = ctx;
315 }
316
317 perf_ctx_lock(cpuctx, task_ctx);
318
319 task = ctx->task;
320 if (task == TASK_TOMBSTONE)
321 goto unlock;
322
323 if (task) {
324 /*
325 * We must be either inactive or active and the right task,
326 * otherwise we're screwed, since we cannot IPI to somewhere
327 * else.
328 */
329 if (ctx->is_active) {
330 if (WARN_ON_ONCE(task != current))
331 goto unlock;
332
333 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
334 goto unlock;
335 }
336 } else {
337 WARN_ON_ONCE(&cpuctx->ctx != ctx);
338 }
339
340 func(event, cpuctx, ctx, data);
341unlock:
342 perf_ctx_unlock(cpuctx, task_ctx);
343}
344
e5d1367f
SE
345#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
346 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
347 PERF_FLAG_PID_CGROUP |\
348 PERF_FLAG_FD_CLOEXEC)
e5d1367f 349
bce38cd5
SE
350/*
351 * branch priv levels that need permission checks
352 */
353#define PERF_SAMPLE_BRANCH_PERM_PLM \
354 (PERF_SAMPLE_BRANCH_KERNEL |\
355 PERF_SAMPLE_BRANCH_HV)
356
0b3fcf17
SE
357enum event_type_t {
358 EVENT_FLEXIBLE = 0x1,
359 EVENT_PINNED = 0x2,
3cbaa590 360 EVENT_TIME = 0x4,
487f05e1
AS
361 /* see ctx_resched() for details */
362 EVENT_CPU = 0x8,
0b3fcf17
SE
363 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
364};
365
e5d1367f
SE
366/*
367 * perf_sched_events : >0 events exist
368 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
369 */
9107c89e
PZ
370
371static void perf_sched_delayed(struct work_struct *work);
372DEFINE_STATIC_KEY_FALSE(perf_sched_events);
373static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
374static DEFINE_MUTEX(perf_sched_mutex);
375static atomic_t perf_sched_count;
376
e5d1367f 377static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 378static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 379static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 380
cdd6c482
IM
381static atomic_t nr_mmap_events __read_mostly;
382static atomic_t nr_comm_events __read_mostly;
e4222673 383static atomic_t nr_namespaces_events __read_mostly;
cdd6c482 384static atomic_t nr_task_events __read_mostly;
948b26b6 385static atomic_t nr_freq_events __read_mostly;
45ac1403 386static atomic_t nr_switch_events __read_mostly;
76193a94 387static atomic_t nr_ksymbol_events __read_mostly;
6ee52e2a 388static atomic_t nr_bpf_events __read_mostly;
9ee318a7 389
108b02cf
PZ
390static LIST_HEAD(pmus);
391static DEFINE_MUTEX(pmus_lock);
392static struct srcu_struct pmus_srcu;
a63fbed7 393static cpumask_var_t perf_online_mask;
108b02cf 394
0764771d 395/*
cdd6c482 396 * perf event paranoia level:
0fbdea19
IM
397 * -1 - not paranoid at all
398 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 399 * 1 - disallow cpu events for unpriv
0fbdea19 400 * 2 - disallow kernel profiling for unpriv
0764771d 401 */
0161028b 402int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 403
20443384
FW
404/* Minimum for 512 kiB + 1 user control page */
405int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
406
407/*
cdd6c482 408 * max perf event sample rate
df58ab24 409 */
14c63f17
DH
410#define DEFAULT_MAX_SAMPLE_RATE 100000
411#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
412#define DEFAULT_CPU_TIME_MAX_PERCENT 25
413
414int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
415
416static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
417static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
418
d9494cb4
PZ
419static int perf_sample_allowed_ns __read_mostly =
420 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 421
18ab2cd3 422static void update_perf_cpu_limits(void)
14c63f17
DH
423{
424 u64 tmp = perf_sample_period_ns;
425
426 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
427 tmp = div_u64(tmp, 100);
428 if (!tmp)
429 tmp = 1;
430
431 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 432}
163ec435 433
8d5bce0c 434static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
9e630205 435
163ec435
PZ
436int perf_proc_update_handler(struct ctl_table *table, int write,
437 void __user *buffer, size_t *lenp,
438 loff_t *ppos)
439{
1a51c5da
SE
440 int ret;
441 int perf_cpu = sysctl_perf_cpu_time_max_percent;
ab7fdefb
KL
442 /*
443 * If throttling is disabled don't allow the write:
444 */
1a51c5da 445 if (write && (perf_cpu == 100 || perf_cpu == 0))
ab7fdefb
KL
446 return -EINVAL;
447
1a51c5da
SE
448 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
449 if (ret || !write)
450 return ret;
451
163ec435 452 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
453 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
454 update_perf_cpu_limits();
455
456 return 0;
457}
458
459int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
460
461int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
462 void __user *buffer, size_t *lenp,
463 loff_t *ppos)
464{
1572e45a 465 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
14c63f17
DH
466
467 if (ret || !write)
468 return ret;
469
b303e7c1
PZ
470 if (sysctl_perf_cpu_time_max_percent == 100 ||
471 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
472 printk(KERN_WARNING
473 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
474 WRITE_ONCE(perf_sample_allowed_ns, 0);
475 } else {
476 update_perf_cpu_limits();
477 }
163ec435
PZ
478
479 return 0;
480}
1ccd1549 481
14c63f17
DH
482/*
483 * perf samples are done in some very critical code paths (NMIs).
484 * If they take too much CPU time, the system can lock up and not
485 * get any real work done. This will drop the sample rate when
486 * we detect that events are taking too long.
487 */
488#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 489static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 490
91a612ee
PZ
491static u64 __report_avg;
492static u64 __report_allowed;
493
6a02ad66 494static void perf_duration_warn(struct irq_work *w)
14c63f17 495{
0d87d7ec 496 printk_ratelimited(KERN_INFO
91a612ee
PZ
497 "perf: interrupt took too long (%lld > %lld), lowering "
498 "kernel.perf_event_max_sample_rate to %d\n",
499 __report_avg, __report_allowed,
500 sysctl_perf_event_sample_rate);
6a02ad66
PZ
501}
502
503static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
504
505void perf_sample_event_took(u64 sample_len_ns)
506{
91a612ee
PZ
507 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
508 u64 running_len;
509 u64 avg_len;
510 u32 max;
14c63f17 511
91a612ee 512 if (max_len == 0)
14c63f17
DH
513 return;
514
91a612ee
PZ
515 /* Decay the counter by 1 average sample. */
516 running_len = __this_cpu_read(running_sample_length);
517 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
518 running_len += sample_len_ns;
519 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
520
521 /*
91a612ee
PZ
522 * Note: this will be biased artifically low until we have
523 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
524 * from having to maintain a count.
525 */
91a612ee
PZ
526 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
527 if (avg_len <= max_len)
14c63f17
DH
528 return;
529
91a612ee
PZ
530 __report_avg = avg_len;
531 __report_allowed = max_len;
14c63f17 532
91a612ee
PZ
533 /*
534 * Compute a throttle threshold 25% below the current duration.
535 */
536 avg_len += avg_len / 4;
537 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
538 if (avg_len < max)
539 max /= (u32)avg_len;
540 else
541 max = 1;
14c63f17 542
91a612ee
PZ
543 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
544 WRITE_ONCE(max_samples_per_tick, max);
545
546 sysctl_perf_event_sample_rate = max * HZ;
547 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 548
cd578abb 549 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 550 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 551 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 552 __report_avg, __report_allowed,
cd578abb
PZ
553 sysctl_perf_event_sample_rate);
554 }
14c63f17
DH
555}
556
cdd6c482 557static atomic64_t perf_event_id;
a96bbc16 558
0b3fcf17
SE
559static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
560 enum event_type_t event_type);
561
562static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
563 enum event_type_t event_type,
564 struct task_struct *task);
565
566static void update_context_time(struct perf_event_context *ctx);
567static u64 perf_event_time(struct perf_event *event);
0b3fcf17 568
cdd6c482 569void __weak perf_event_print_debug(void) { }
0793a61d 570
84c79910 571extern __weak const char *perf_pmu_name(void)
0793a61d 572{
84c79910 573 return "pmu";
0793a61d
TG
574}
575
0b3fcf17
SE
576static inline u64 perf_clock(void)
577{
578 return local_clock();
579}
580
34f43927
PZ
581static inline u64 perf_event_clock(struct perf_event *event)
582{
583 return event->clock();
584}
585
0d3d73aa
PZ
586/*
587 * State based event timekeeping...
588 *
589 * The basic idea is to use event->state to determine which (if any) time
590 * fields to increment with the current delta. This means we only need to
591 * update timestamps when we change state or when they are explicitly requested
592 * (read).
593 *
594 * Event groups make things a little more complicated, but not terribly so. The
595 * rules for a group are that if the group leader is OFF the entire group is
596 * OFF, irrespecive of what the group member states are. This results in
597 * __perf_effective_state().
598 *
599 * A futher ramification is that when a group leader flips between OFF and
600 * !OFF, we need to update all group member times.
601 *
602 *
603 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
604 * need to make sure the relevant context time is updated before we try and
605 * update our timestamps.
606 */
607
608static __always_inline enum perf_event_state
609__perf_effective_state(struct perf_event *event)
610{
611 struct perf_event *leader = event->group_leader;
612
613 if (leader->state <= PERF_EVENT_STATE_OFF)
614 return leader->state;
615
616 return event->state;
617}
618
619static __always_inline void
620__perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
621{
622 enum perf_event_state state = __perf_effective_state(event);
623 u64 delta = now - event->tstamp;
624
625 *enabled = event->total_time_enabled;
626 if (state >= PERF_EVENT_STATE_INACTIVE)
627 *enabled += delta;
628
629 *running = event->total_time_running;
630 if (state >= PERF_EVENT_STATE_ACTIVE)
631 *running += delta;
632}
633
634static void perf_event_update_time(struct perf_event *event)
635{
636 u64 now = perf_event_time(event);
637
638 __perf_update_times(event, now, &event->total_time_enabled,
639 &event->total_time_running);
640 event->tstamp = now;
641}
642
643static void perf_event_update_sibling_time(struct perf_event *leader)
644{
645 struct perf_event *sibling;
646
edb39592 647 for_each_sibling_event(sibling, leader)
0d3d73aa
PZ
648 perf_event_update_time(sibling);
649}
650
651static void
652perf_event_set_state(struct perf_event *event, enum perf_event_state state)
653{
654 if (event->state == state)
655 return;
656
657 perf_event_update_time(event);
658 /*
659 * If a group leader gets enabled/disabled all its siblings
660 * are affected too.
661 */
662 if ((event->state < 0) ^ (state < 0))
663 perf_event_update_sibling_time(event);
664
665 WRITE_ONCE(event->state, state);
666}
667
e5d1367f
SE
668#ifdef CONFIG_CGROUP_PERF
669
e5d1367f
SE
670static inline bool
671perf_cgroup_match(struct perf_event *event)
672{
673 struct perf_event_context *ctx = event->ctx;
674 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
675
ef824fa1
TH
676 /* @event doesn't care about cgroup */
677 if (!event->cgrp)
678 return true;
679
680 /* wants specific cgroup scope but @cpuctx isn't associated with any */
681 if (!cpuctx->cgrp)
682 return false;
683
684 /*
685 * Cgroup scoping is recursive. An event enabled for a cgroup is
686 * also enabled for all its descendant cgroups. If @cpuctx's
687 * cgroup is a descendant of @event's (the test covers identity
688 * case), it's a match.
689 */
690 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
691 event->cgrp->css.cgroup);
e5d1367f
SE
692}
693
e5d1367f
SE
694static inline void perf_detach_cgroup(struct perf_event *event)
695{
4e2ba650 696 css_put(&event->cgrp->css);
e5d1367f
SE
697 event->cgrp = NULL;
698}
699
700static inline int is_cgroup_event(struct perf_event *event)
701{
702 return event->cgrp != NULL;
703}
704
705static inline u64 perf_cgroup_event_time(struct perf_event *event)
706{
707 struct perf_cgroup_info *t;
708
709 t = per_cpu_ptr(event->cgrp->info, event->cpu);
710 return t->time;
711}
712
713static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
714{
715 struct perf_cgroup_info *info;
716 u64 now;
717
718 now = perf_clock();
719
720 info = this_cpu_ptr(cgrp->info);
721
722 info->time += now - info->timestamp;
723 info->timestamp = now;
724}
725
726static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
727{
c917e0f2
SL
728 struct perf_cgroup *cgrp = cpuctx->cgrp;
729 struct cgroup_subsys_state *css;
730
731 if (cgrp) {
732 for (css = &cgrp->css; css; css = css->parent) {
733 cgrp = container_of(css, struct perf_cgroup, css);
734 __update_cgrp_time(cgrp);
735 }
736 }
e5d1367f
SE
737}
738
739static inline void update_cgrp_time_from_event(struct perf_event *event)
740{
3f7cce3c
SE
741 struct perf_cgroup *cgrp;
742
e5d1367f 743 /*
3f7cce3c
SE
744 * ensure we access cgroup data only when needed and
745 * when we know the cgroup is pinned (css_get)
e5d1367f 746 */
3f7cce3c 747 if (!is_cgroup_event(event))
e5d1367f
SE
748 return;
749
614e4c4e 750 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
751 /*
752 * Do not update time when cgroup is not active
753 */
28fa741c 754 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
3f7cce3c 755 __update_cgrp_time(event->cgrp);
e5d1367f
SE
756}
757
758static inline void
3f7cce3c
SE
759perf_cgroup_set_timestamp(struct task_struct *task,
760 struct perf_event_context *ctx)
e5d1367f
SE
761{
762 struct perf_cgroup *cgrp;
763 struct perf_cgroup_info *info;
c917e0f2 764 struct cgroup_subsys_state *css;
e5d1367f 765
3f7cce3c
SE
766 /*
767 * ctx->lock held by caller
768 * ensure we do not access cgroup data
769 * unless we have the cgroup pinned (css_get)
770 */
771 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
772 return;
773
614e4c4e 774 cgrp = perf_cgroup_from_task(task, ctx);
c917e0f2
SL
775
776 for (css = &cgrp->css; css; css = css->parent) {
777 cgrp = container_of(css, struct perf_cgroup, css);
778 info = this_cpu_ptr(cgrp->info);
779 info->timestamp = ctx->timestamp;
780 }
e5d1367f
SE
781}
782
058fe1c0
DCC
783static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
784
e5d1367f
SE
785#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
786#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
787
788/*
789 * reschedule events based on the cgroup constraint of task.
790 *
791 * mode SWOUT : schedule out everything
792 * mode SWIN : schedule in based on cgroup for next
793 */
18ab2cd3 794static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
795{
796 struct perf_cpu_context *cpuctx;
058fe1c0 797 struct list_head *list;
e5d1367f
SE
798 unsigned long flags;
799
800 /*
058fe1c0
DCC
801 * Disable interrupts and preemption to avoid this CPU's
802 * cgrp_cpuctx_entry to change under us.
e5d1367f
SE
803 */
804 local_irq_save(flags);
805
058fe1c0
DCC
806 list = this_cpu_ptr(&cgrp_cpuctx_list);
807 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
808 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
e5d1367f 809
058fe1c0
DCC
810 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
811 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f 812
058fe1c0
DCC
813 if (mode & PERF_CGROUP_SWOUT) {
814 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
815 /*
816 * must not be done before ctxswout due
817 * to event_filter_match() in event_sched_out()
818 */
819 cpuctx->cgrp = NULL;
820 }
e5d1367f 821
058fe1c0
DCC
822 if (mode & PERF_CGROUP_SWIN) {
823 WARN_ON_ONCE(cpuctx->cgrp);
824 /*
825 * set cgrp before ctxsw in to allow
826 * event_filter_match() to not have to pass
827 * task around
828 * we pass the cpuctx->ctx to perf_cgroup_from_task()
829 * because cgorup events are only per-cpu
830 */
831 cpuctx->cgrp = perf_cgroup_from_task(task,
832 &cpuctx->ctx);
833 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
e5d1367f 834 }
058fe1c0
DCC
835 perf_pmu_enable(cpuctx->ctx.pmu);
836 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f
SE
837 }
838
e5d1367f
SE
839 local_irq_restore(flags);
840}
841
a8d757ef
SE
842static inline void perf_cgroup_sched_out(struct task_struct *task,
843 struct task_struct *next)
e5d1367f 844{
a8d757ef
SE
845 struct perf_cgroup *cgrp1;
846 struct perf_cgroup *cgrp2 = NULL;
847
ddaaf4e2 848 rcu_read_lock();
a8d757ef
SE
849 /*
850 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
851 * we do not need to pass the ctx here because we know
852 * we are holding the rcu lock
a8d757ef 853 */
614e4c4e 854 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 855 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
856
857 /*
858 * only schedule out current cgroup events if we know
859 * that we are switching to a different cgroup. Otherwise,
860 * do no touch the cgroup events.
861 */
862 if (cgrp1 != cgrp2)
863 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
864
865 rcu_read_unlock();
e5d1367f
SE
866}
867
a8d757ef
SE
868static inline void perf_cgroup_sched_in(struct task_struct *prev,
869 struct task_struct *task)
e5d1367f 870{
a8d757ef
SE
871 struct perf_cgroup *cgrp1;
872 struct perf_cgroup *cgrp2 = NULL;
873
ddaaf4e2 874 rcu_read_lock();
a8d757ef
SE
875 /*
876 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
877 * we do not need to pass the ctx here because we know
878 * we are holding the rcu lock
a8d757ef 879 */
614e4c4e 880 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 881 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
882
883 /*
884 * only need to schedule in cgroup events if we are changing
885 * cgroup during ctxsw. Cgroup events were not scheduled
886 * out of ctxsw out if that was not the case.
887 */
888 if (cgrp1 != cgrp2)
889 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
890
891 rcu_read_unlock();
e5d1367f
SE
892}
893
894static inline int perf_cgroup_connect(int fd, struct perf_event *event,
895 struct perf_event_attr *attr,
896 struct perf_event *group_leader)
897{
898 struct perf_cgroup *cgrp;
899 struct cgroup_subsys_state *css;
2903ff01
AV
900 struct fd f = fdget(fd);
901 int ret = 0;
e5d1367f 902
2903ff01 903 if (!f.file)
e5d1367f
SE
904 return -EBADF;
905
b583043e 906 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 907 &perf_event_cgrp_subsys);
3db272c0
LZ
908 if (IS_ERR(css)) {
909 ret = PTR_ERR(css);
910 goto out;
911 }
e5d1367f
SE
912
913 cgrp = container_of(css, struct perf_cgroup, css);
914 event->cgrp = cgrp;
915
916 /*
917 * all events in a group must monitor
918 * the same cgroup because a task belongs
919 * to only one perf cgroup at a time
920 */
921 if (group_leader && group_leader->cgrp != cgrp) {
922 perf_detach_cgroup(event);
923 ret = -EINVAL;
e5d1367f 924 }
3db272c0 925out:
2903ff01 926 fdput(f);
e5d1367f
SE
927 return ret;
928}
929
930static inline void
931perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
932{
933 struct perf_cgroup_info *t;
934 t = per_cpu_ptr(event->cgrp->info, event->cpu);
935 event->shadow_ctx_time = now - t->timestamp;
936}
937
db4a8356
DCC
938/*
939 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
940 * cleared when last cgroup event is removed.
941 */
942static inline void
943list_update_cgroup_event(struct perf_event *event,
944 struct perf_event_context *ctx, bool add)
945{
946 struct perf_cpu_context *cpuctx;
058fe1c0 947 struct list_head *cpuctx_entry;
db4a8356
DCC
948
949 if (!is_cgroup_event(event))
950 return;
951
db4a8356
DCC
952 /*
953 * Because cgroup events are always per-cpu events,
954 * this will always be called from the right CPU.
955 */
956 cpuctx = __get_cpu_context(ctx);
33801b94 957
958 /*
959 * Since setting cpuctx->cgrp is conditional on the current @cgrp
960 * matching the event's cgroup, we must do this for every new event,
961 * because if the first would mismatch, the second would not try again
962 * and we would leave cpuctx->cgrp unset.
963 */
964 if (add && !cpuctx->cgrp) {
be96b316
TH
965 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
966
be96b316
TH
967 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
968 cpuctx->cgrp = cgrp;
058fe1c0 969 }
33801b94 970
971 if (add && ctx->nr_cgroups++)
972 return;
973 else if (!add && --ctx->nr_cgroups)
974 return;
975
976 /* no cgroup running */
977 if (!add)
978 cpuctx->cgrp = NULL;
979
980 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
981 if (add)
982 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
983 else
984 list_del(cpuctx_entry);
db4a8356
DCC
985}
986
e5d1367f
SE
987#else /* !CONFIG_CGROUP_PERF */
988
989static inline bool
990perf_cgroup_match(struct perf_event *event)
991{
992 return true;
993}
994
995static inline void perf_detach_cgroup(struct perf_event *event)
996{}
997
998static inline int is_cgroup_event(struct perf_event *event)
999{
1000 return 0;
1001}
1002
e5d1367f
SE
1003static inline void update_cgrp_time_from_event(struct perf_event *event)
1004{
1005}
1006
1007static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1008{
1009}
1010
a8d757ef
SE
1011static inline void perf_cgroup_sched_out(struct task_struct *task,
1012 struct task_struct *next)
e5d1367f
SE
1013{
1014}
1015
a8d757ef
SE
1016static inline void perf_cgroup_sched_in(struct task_struct *prev,
1017 struct task_struct *task)
e5d1367f
SE
1018{
1019}
1020
1021static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1022 struct perf_event_attr *attr,
1023 struct perf_event *group_leader)
1024{
1025 return -EINVAL;
1026}
1027
1028static inline void
3f7cce3c
SE
1029perf_cgroup_set_timestamp(struct task_struct *task,
1030 struct perf_event_context *ctx)
e5d1367f
SE
1031{
1032}
1033
1034void
1035perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1036{
1037}
1038
1039static inline void
1040perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1041{
1042}
1043
1044static inline u64 perf_cgroup_event_time(struct perf_event *event)
1045{
1046 return 0;
1047}
1048
db4a8356
DCC
1049static inline void
1050list_update_cgroup_event(struct perf_event *event,
1051 struct perf_event_context *ctx, bool add)
1052{
1053}
1054
e5d1367f
SE
1055#endif
1056
9e630205
SE
1057/*
1058 * set default to be dependent on timer tick just
1059 * like original code
1060 */
1061#define PERF_CPU_HRTIMER (1000 / HZ)
1062/*
8a1115ff 1063 * function must be called with interrupts disabled
9e630205 1064 */
272325c4 1065static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1066{
1067 struct perf_cpu_context *cpuctx;
8d5bce0c 1068 bool rotations;
9e630205 1069
16444645 1070 lockdep_assert_irqs_disabled();
9e630205
SE
1071
1072 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1073 rotations = perf_rotate_context(cpuctx);
1074
4cfafd30
PZ
1075 raw_spin_lock(&cpuctx->hrtimer_lock);
1076 if (rotations)
9e630205 1077 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1078 else
1079 cpuctx->hrtimer_active = 0;
1080 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1081
4cfafd30 1082 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1083}
1084
272325c4 1085static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1086{
272325c4 1087 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1088 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1089 u64 interval;
9e630205
SE
1090
1091 /* no multiplexing needed for SW PMU */
1092 if (pmu->task_ctx_nr == perf_sw_context)
1093 return;
1094
62b85639
SE
1095 /*
1096 * check default is sane, if not set then force to
1097 * default interval (1/tick)
1098 */
272325c4
PZ
1099 interval = pmu->hrtimer_interval_ms;
1100 if (interval < 1)
1101 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1102
272325c4 1103 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1104
4cfafd30 1105 raw_spin_lock_init(&cpuctx->hrtimer_lock);
30f9028b 1106 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
272325c4 1107 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1108}
1109
272325c4 1110static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1111{
272325c4 1112 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1113 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1114 unsigned long flags;
9e630205
SE
1115
1116 /* not for SW PMU */
1117 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1118 return 0;
9e630205 1119
4cfafd30
PZ
1120 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1121 if (!cpuctx->hrtimer_active) {
1122 cpuctx->hrtimer_active = 1;
1123 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
30f9028b 1124 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
4cfafd30
PZ
1125 }
1126 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1127
272325c4 1128 return 0;
9e630205
SE
1129}
1130
33696fc0 1131void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1132{
33696fc0
PZ
1133 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1134 if (!(*count)++)
1135 pmu->pmu_disable(pmu);
9e35ad38 1136}
9e35ad38 1137
33696fc0 1138void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1139{
33696fc0
PZ
1140 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1141 if (!--(*count))
1142 pmu->pmu_enable(pmu);
9e35ad38 1143}
9e35ad38 1144
2fde4f94 1145static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1146
1147/*
2fde4f94
MR
1148 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1149 * perf_event_task_tick() are fully serialized because they're strictly cpu
1150 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1151 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1152 */
2fde4f94 1153static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1154{
2fde4f94 1155 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1156
16444645 1157 lockdep_assert_irqs_disabled();
b5ab4cd5 1158
2fde4f94
MR
1159 WARN_ON(!list_empty(&ctx->active_ctx_list));
1160
1161 list_add(&ctx->active_ctx_list, head);
1162}
1163
1164static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1165{
16444645 1166 lockdep_assert_irqs_disabled();
2fde4f94
MR
1167
1168 WARN_ON(list_empty(&ctx->active_ctx_list));
1169
1170 list_del_init(&ctx->active_ctx_list);
9e35ad38 1171}
9e35ad38 1172
cdd6c482 1173static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1174{
8c94abbb 1175 refcount_inc(&ctx->refcount);
a63eaf34
PM
1176}
1177
4af57ef2
YZ
1178static void free_ctx(struct rcu_head *head)
1179{
1180 struct perf_event_context *ctx;
1181
1182 ctx = container_of(head, struct perf_event_context, rcu_head);
1183 kfree(ctx->task_ctx_data);
1184 kfree(ctx);
1185}
1186
cdd6c482 1187static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1188{
8c94abbb 1189 if (refcount_dec_and_test(&ctx->refcount)) {
564c2b21
PM
1190 if (ctx->parent_ctx)
1191 put_ctx(ctx->parent_ctx);
63b6da39 1192 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1193 put_task_struct(ctx->task);
4af57ef2 1194 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1195 }
a63eaf34
PM
1196}
1197
f63a8daa
PZ
1198/*
1199 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1200 * perf_pmu_migrate_context() we need some magic.
1201 *
1202 * Those places that change perf_event::ctx will hold both
1203 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1204 *
8b10c5e2
PZ
1205 * Lock ordering is by mutex address. There are two other sites where
1206 * perf_event_context::mutex nests and those are:
1207 *
1208 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1209 * perf_event_exit_event()
1210 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1211 *
1212 * - perf_event_init_context() [ parent, 0 ]
1213 * inherit_task_group()
1214 * inherit_group()
1215 * inherit_event()
1216 * perf_event_alloc()
1217 * perf_init_event()
1218 * perf_try_init_event() [ child , 1 ]
1219 *
1220 * While it appears there is an obvious deadlock here -- the parent and child
1221 * nesting levels are inverted between the two. This is in fact safe because
1222 * life-time rules separate them. That is an exiting task cannot fork, and a
1223 * spawning task cannot (yet) exit.
1224 *
1225 * But remember that that these are parent<->child context relations, and
1226 * migration does not affect children, therefore these two orderings should not
1227 * interact.
f63a8daa
PZ
1228 *
1229 * The change in perf_event::ctx does not affect children (as claimed above)
1230 * because the sys_perf_event_open() case will install a new event and break
1231 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1232 * concerned with cpuctx and that doesn't have children.
1233 *
1234 * The places that change perf_event::ctx will issue:
1235 *
1236 * perf_remove_from_context();
1237 * synchronize_rcu();
1238 * perf_install_in_context();
1239 *
1240 * to affect the change. The remove_from_context() + synchronize_rcu() should
1241 * quiesce the event, after which we can install it in the new location. This
1242 * means that only external vectors (perf_fops, prctl) can perturb the event
1243 * while in transit. Therefore all such accessors should also acquire
1244 * perf_event_context::mutex to serialize against this.
1245 *
1246 * However; because event->ctx can change while we're waiting to acquire
1247 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1248 * function.
1249 *
1250 * Lock order:
79c9ce57 1251 * cred_guard_mutex
f63a8daa
PZ
1252 * task_struct::perf_event_mutex
1253 * perf_event_context::mutex
f63a8daa 1254 * perf_event::child_mutex;
07c4a776 1255 * perf_event_context::lock
f63a8daa
PZ
1256 * perf_event::mmap_mutex
1257 * mmap_sem
18736eef 1258 * perf_addr_filters_head::lock
82d94856
PZ
1259 *
1260 * cpu_hotplug_lock
1261 * pmus_lock
1262 * cpuctx->mutex / perf_event_context::mutex
f63a8daa 1263 */
a83fe28e
PZ
1264static struct perf_event_context *
1265perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1266{
1267 struct perf_event_context *ctx;
1268
1269again:
1270 rcu_read_lock();
6aa7de05 1271 ctx = READ_ONCE(event->ctx);
8c94abbb 1272 if (!refcount_inc_not_zero(&ctx->refcount)) {
f63a8daa
PZ
1273 rcu_read_unlock();
1274 goto again;
1275 }
1276 rcu_read_unlock();
1277
a83fe28e 1278 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1279 if (event->ctx != ctx) {
1280 mutex_unlock(&ctx->mutex);
1281 put_ctx(ctx);
1282 goto again;
1283 }
1284
1285 return ctx;
1286}
1287
a83fe28e
PZ
1288static inline struct perf_event_context *
1289perf_event_ctx_lock(struct perf_event *event)
1290{
1291 return perf_event_ctx_lock_nested(event, 0);
1292}
1293
f63a8daa
PZ
1294static void perf_event_ctx_unlock(struct perf_event *event,
1295 struct perf_event_context *ctx)
1296{
1297 mutex_unlock(&ctx->mutex);
1298 put_ctx(ctx);
1299}
1300
211de6eb
PZ
1301/*
1302 * This must be done under the ctx->lock, such as to serialize against
1303 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1304 * calling scheduler related locks and ctx->lock nests inside those.
1305 */
1306static __must_check struct perf_event_context *
1307unclone_ctx(struct perf_event_context *ctx)
71a851b4 1308{
211de6eb
PZ
1309 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1310
1311 lockdep_assert_held(&ctx->lock);
1312
1313 if (parent_ctx)
71a851b4 1314 ctx->parent_ctx = NULL;
5a3126d4 1315 ctx->generation++;
211de6eb
PZ
1316
1317 return parent_ctx;
71a851b4
PZ
1318}
1319
1d953111
ON
1320static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1321 enum pid_type type)
6844c09d 1322{
1d953111 1323 u32 nr;
6844c09d
ACM
1324 /*
1325 * only top level events have the pid namespace they were created in
1326 */
1327 if (event->parent)
1328 event = event->parent;
1329
1d953111
ON
1330 nr = __task_pid_nr_ns(p, type, event->ns);
1331 /* avoid -1 if it is idle thread or runs in another ns */
1332 if (!nr && !pid_alive(p))
1333 nr = -1;
1334 return nr;
6844c09d
ACM
1335}
1336
1d953111 1337static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
6844c09d 1338{
6883f81a 1339 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1d953111 1340}
6844c09d 1341
1d953111
ON
1342static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1343{
1344 return perf_event_pid_type(event, p, PIDTYPE_PID);
6844c09d
ACM
1345}
1346
7f453c24 1347/*
cdd6c482 1348 * If we inherit events we want to return the parent event id
7f453c24
PZ
1349 * to userspace.
1350 */
cdd6c482 1351static u64 primary_event_id(struct perf_event *event)
7f453c24 1352{
cdd6c482 1353 u64 id = event->id;
7f453c24 1354
cdd6c482
IM
1355 if (event->parent)
1356 id = event->parent->id;
7f453c24
PZ
1357
1358 return id;
1359}
1360
25346b93 1361/*
cdd6c482 1362 * Get the perf_event_context for a task and lock it.
63b6da39 1363 *
25346b93
PM
1364 * This has to cope with with the fact that until it is locked,
1365 * the context could get moved to another task.
1366 */
cdd6c482 1367static struct perf_event_context *
8dc85d54 1368perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1369{
cdd6c482 1370 struct perf_event_context *ctx;
25346b93 1371
9ed6060d 1372retry:
058ebd0e
PZ
1373 /*
1374 * One of the few rules of preemptible RCU is that one cannot do
1375 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1376 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1377 * rcu_read_unlock_special().
1378 *
1379 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1380 * side critical section has interrupts disabled.
058ebd0e 1381 */
2fd59077 1382 local_irq_save(*flags);
058ebd0e 1383 rcu_read_lock();
8dc85d54 1384 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1385 if (ctx) {
1386 /*
1387 * If this context is a clone of another, it might
1388 * get swapped for another underneath us by
cdd6c482 1389 * perf_event_task_sched_out, though the
25346b93
PM
1390 * rcu_read_lock() protects us from any context
1391 * getting freed. Lock the context and check if it
1392 * got swapped before we could get the lock, and retry
1393 * if so. If we locked the right context, then it
1394 * can't get swapped on us any more.
1395 */
2fd59077 1396 raw_spin_lock(&ctx->lock);
8dc85d54 1397 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1398 raw_spin_unlock(&ctx->lock);
058ebd0e 1399 rcu_read_unlock();
2fd59077 1400 local_irq_restore(*flags);
25346b93
PM
1401 goto retry;
1402 }
b49a9e7e 1403
63b6da39 1404 if (ctx->task == TASK_TOMBSTONE ||
8c94abbb 1405 !refcount_inc_not_zero(&ctx->refcount)) {
2fd59077 1406 raw_spin_unlock(&ctx->lock);
b49a9e7e 1407 ctx = NULL;
828b6f0e
PZ
1408 } else {
1409 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1410 }
25346b93
PM
1411 }
1412 rcu_read_unlock();
2fd59077
PM
1413 if (!ctx)
1414 local_irq_restore(*flags);
25346b93
PM
1415 return ctx;
1416}
1417
1418/*
1419 * Get the context for a task and increment its pin_count so it
1420 * can't get swapped to another task. This also increments its
1421 * reference count so that the context can't get freed.
1422 */
8dc85d54
PZ
1423static struct perf_event_context *
1424perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1425{
cdd6c482 1426 struct perf_event_context *ctx;
25346b93
PM
1427 unsigned long flags;
1428
8dc85d54 1429 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1430 if (ctx) {
1431 ++ctx->pin_count;
e625cce1 1432 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1433 }
1434 return ctx;
1435}
1436
cdd6c482 1437static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1438{
1439 unsigned long flags;
1440
e625cce1 1441 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1442 --ctx->pin_count;
e625cce1 1443 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1444}
1445
f67218c3
PZ
1446/*
1447 * Update the record of the current time in a context.
1448 */
1449static void update_context_time(struct perf_event_context *ctx)
1450{
1451 u64 now = perf_clock();
1452
1453 ctx->time += now - ctx->timestamp;
1454 ctx->timestamp = now;
1455}
1456
4158755d
SE
1457static u64 perf_event_time(struct perf_event *event)
1458{
1459 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1460
1461 if (is_cgroup_event(event))
1462 return perf_cgroup_event_time(event);
1463
4158755d
SE
1464 return ctx ? ctx->time : 0;
1465}
1466
487f05e1
AS
1467static enum event_type_t get_event_type(struct perf_event *event)
1468{
1469 struct perf_event_context *ctx = event->ctx;
1470 enum event_type_t event_type;
1471
1472 lockdep_assert_held(&ctx->lock);
1473
3bda69c1
AS
1474 /*
1475 * It's 'group type', really, because if our group leader is
1476 * pinned, so are we.
1477 */
1478 if (event->group_leader != event)
1479 event = event->group_leader;
1480
487f05e1
AS
1481 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1482 if (!ctx->task)
1483 event_type |= EVENT_CPU;
1484
1485 return event_type;
1486}
1487
8e1a2031 1488/*
161c85fa 1489 * Helper function to initialize event group nodes.
8e1a2031 1490 */
161c85fa 1491static void init_event_group(struct perf_event *event)
8e1a2031
AB
1492{
1493 RB_CLEAR_NODE(&event->group_node);
1494 event->group_index = 0;
1495}
1496
1497/*
1498 * Extract pinned or flexible groups from the context
161c85fa 1499 * based on event attrs bits.
8e1a2031
AB
1500 */
1501static struct perf_event_groups *
1502get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
889ff015
FW
1503{
1504 if (event->attr.pinned)
1505 return &ctx->pinned_groups;
1506 else
1507 return &ctx->flexible_groups;
1508}
1509
8e1a2031 1510/*
161c85fa 1511 * Helper function to initializes perf_event_group trees.
8e1a2031 1512 */
161c85fa 1513static void perf_event_groups_init(struct perf_event_groups *groups)
8e1a2031
AB
1514{
1515 groups->tree = RB_ROOT;
1516 groups->index = 0;
1517}
1518
1519/*
1520 * Compare function for event groups;
161c85fa
PZ
1521 *
1522 * Implements complex key that first sorts by CPU and then by virtual index
1523 * which provides ordering when rotating groups for the same CPU.
8e1a2031 1524 */
161c85fa
PZ
1525static bool
1526perf_event_groups_less(struct perf_event *left, struct perf_event *right)
8e1a2031 1527{
161c85fa
PZ
1528 if (left->cpu < right->cpu)
1529 return true;
1530 if (left->cpu > right->cpu)
1531 return false;
1532
1533 if (left->group_index < right->group_index)
1534 return true;
1535 if (left->group_index > right->group_index)
1536 return false;
1537
1538 return false;
8e1a2031
AB
1539}
1540
1541/*
161c85fa
PZ
1542 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1543 * key (see perf_event_groups_less). This places it last inside the CPU
1544 * subtree.
8e1a2031
AB
1545 */
1546static void
1547perf_event_groups_insert(struct perf_event_groups *groups,
161c85fa 1548 struct perf_event *event)
8e1a2031
AB
1549{
1550 struct perf_event *node_event;
1551 struct rb_node *parent;
1552 struct rb_node **node;
1553
1554 event->group_index = ++groups->index;
1555
1556 node = &groups->tree.rb_node;
1557 parent = *node;
1558
1559 while (*node) {
1560 parent = *node;
161c85fa 1561 node_event = container_of(*node, struct perf_event, group_node);
8e1a2031
AB
1562
1563 if (perf_event_groups_less(event, node_event))
1564 node = &parent->rb_left;
1565 else
1566 node = &parent->rb_right;
1567 }
1568
1569 rb_link_node(&event->group_node, parent, node);
1570 rb_insert_color(&event->group_node, &groups->tree);
1571}
1572
1573/*
161c85fa 1574 * Helper function to insert event into the pinned or flexible groups.
8e1a2031
AB
1575 */
1576static void
1577add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1578{
1579 struct perf_event_groups *groups;
1580
1581 groups = get_event_groups(event, ctx);
1582 perf_event_groups_insert(groups, event);
1583}
1584
1585/*
161c85fa 1586 * Delete a group from a tree.
8e1a2031
AB
1587 */
1588static void
1589perf_event_groups_delete(struct perf_event_groups *groups,
161c85fa 1590 struct perf_event *event)
8e1a2031 1591{
161c85fa
PZ
1592 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1593 RB_EMPTY_ROOT(&groups->tree));
8e1a2031 1594
161c85fa 1595 rb_erase(&event->group_node, &groups->tree);
8e1a2031
AB
1596 init_event_group(event);
1597}
1598
1599/*
161c85fa 1600 * Helper function to delete event from its groups.
8e1a2031
AB
1601 */
1602static void
1603del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1604{
1605 struct perf_event_groups *groups;
1606
1607 groups = get_event_groups(event, ctx);
1608 perf_event_groups_delete(groups, event);
1609}
1610
1611/*
161c85fa 1612 * Get the leftmost event in the @cpu subtree.
8e1a2031
AB
1613 */
1614static struct perf_event *
1615perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1616{
1617 struct perf_event *node_event = NULL, *match = NULL;
1618 struct rb_node *node = groups->tree.rb_node;
1619
1620 while (node) {
161c85fa 1621 node_event = container_of(node, struct perf_event, group_node);
8e1a2031
AB
1622
1623 if (cpu < node_event->cpu) {
1624 node = node->rb_left;
1625 } else if (cpu > node_event->cpu) {
1626 node = node->rb_right;
1627 } else {
1628 match = node_event;
1629 node = node->rb_left;
1630 }
1631 }
1632
1633 return match;
1634}
1635
1cac7b1a
PZ
1636/*
1637 * Like rb_entry_next_safe() for the @cpu subtree.
1638 */
1639static struct perf_event *
1640perf_event_groups_next(struct perf_event *event)
1641{
1642 struct perf_event *next;
1643
1644 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1645 if (next && next->cpu == event->cpu)
1646 return next;
1647
1648 return NULL;
1649}
1650
8e1a2031 1651/*
161c85fa 1652 * Iterate through the whole groups tree.
8e1a2031 1653 */
6e6804d2
PZ
1654#define perf_event_groups_for_each(event, groups) \
1655 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1656 typeof(*event), group_node); event; \
1657 event = rb_entry_safe(rb_next(&event->group_node), \
1658 typeof(*event), group_node))
8e1a2031 1659
fccc714b 1660/*
788faab7 1661 * Add an event from the lists for its context.
fccc714b
PZ
1662 * Must be called with ctx->mutex and ctx->lock held.
1663 */
04289bb9 1664static void
cdd6c482 1665list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1666{
c994d613
PZ
1667 lockdep_assert_held(&ctx->lock);
1668
8a49542c
PZ
1669 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1670 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9 1671
0d3d73aa
PZ
1672 event->tstamp = perf_event_time(event);
1673
04289bb9 1674 /*
8a49542c
PZ
1675 * If we're a stand alone event or group leader, we go to the context
1676 * list, group events are kept attached to the group so that
1677 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1678 */
8a49542c 1679 if (event->group_leader == event) {
4ff6a8de 1680 event->group_caps = event->event_caps;
8e1a2031 1681 add_event_to_groups(event, ctx);
5c148194 1682 }
592903cd 1683
db4a8356 1684 list_update_cgroup_event(event, ctx, true);
e5d1367f 1685
cdd6c482
IM
1686 list_add_rcu(&event->event_entry, &ctx->event_list);
1687 ctx->nr_events++;
1688 if (event->attr.inherit_stat)
bfbd3381 1689 ctx->nr_stat++;
5a3126d4
PZ
1690
1691 ctx->generation++;
04289bb9
IM
1692}
1693
0231bb53
JO
1694/*
1695 * Initialize event state based on the perf_event_attr::disabled.
1696 */
1697static inline void perf_event__state_init(struct perf_event *event)
1698{
1699 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1700 PERF_EVENT_STATE_INACTIVE;
1701}
1702
a723968c 1703static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1704{
1705 int entry = sizeof(u64); /* value */
1706 int size = 0;
1707 int nr = 1;
1708
1709 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1710 size += sizeof(u64);
1711
1712 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1713 size += sizeof(u64);
1714
1715 if (event->attr.read_format & PERF_FORMAT_ID)
1716 entry += sizeof(u64);
1717
1718 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1719 nr += nr_siblings;
c320c7b7
ACM
1720 size += sizeof(u64);
1721 }
1722
1723 size += entry * nr;
1724 event->read_size = size;
1725}
1726
a723968c 1727static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1728{
1729 struct perf_sample_data *data;
c320c7b7
ACM
1730 u16 size = 0;
1731
c320c7b7
ACM
1732 if (sample_type & PERF_SAMPLE_IP)
1733 size += sizeof(data->ip);
1734
6844c09d
ACM
1735 if (sample_type & PERF_SAMPLE_ADDR)
1736 size += sizeof(data->addr);
1737
1738 if (sample_type & PERF_SAMPLE_PERIOD)
1739 size += sizeof(data->period);
1740
c3feedf2
AK
1741 if (sample_type & PERF_SAMPLE_WEIGHT)
1742 size += sizeof(data->weight);
1743
6844c09d
ACM
1744 if (sample_type & PERF_SAMPLE_READ)
1745 size += event->read_size;
1746
d6be9ad6
SE
1747 if (sample_type & PERF_SAMPLE_DATA_SRC)
1748 size += sizeof(data->data_src.val);
1749
fdfbbd07
AK
1750 if (sample_type & PERF_SAMPLE_TRANSACTION)
1751 size += sizeof(data->txn);
1752
fc7ce9c7
KL
1753 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1754 size += sizeof(data->phys_addr);
1755
6844c09d
ACM
1756 event->header_size = size;
1757}
1758
a723968c
PZ
1759/*
1760 * Called at perf_event creation and when events are attached/detached from a
1761 * group.
1762 */
1763static void perf_event__header_size(struct perf_event *event)
1764{
1765 __perf_event_read_size(event,
1766 event->group_leader->nr_siblings);
1767 __perf_event_header_size(event, event->attr.sample_type);
1768}
1769
6844c09d
ACM
1770static void perf_event__id_header_size(struct perf_event *event)
1771{
1772 struct perf_sample_data *data;
1773 u64 sample_type = event->attr.sample_type;
1774 u16 size = 0;
1775
c320c7b7
ACM
1776 if (sample_type & PERF_SAMPLE_TID)
1777 size += sizeof(data->tid_entry);
1778
1779 if (sample_type & PERF_SAMPLE_TIME)
1780 size += sizeof(data->time);
1781
ff3d527c
AH
1782 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1783 size += sizeof(data->id);
1784
c320c7b7
ACM
1785 if (sample_type & PERF_SAMPLE_ID)
1786 size += sizeof(data->id);
1787
1788 if (sample_type & PERF_SAMPLE_STREAM_ID)
1789 size += sizeof(data->stream_id);
1790
1791 if (sample_type & PERF_SAMPLE_CPU)
1792 size += sizeof(data->cpu_entry);
1793
6844c09d 1794 event->id_header_size = size;
c320c7b7
ACM
1795}
1796
a723968c
PZ
1797static bool perf_event_validate_size(struct perf_event *event)
1798{
1799 /*
1800 * The values computed here will be over-written when we actually
1801 * attach the event.
1802 */
1803 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1804 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1805 perf_event__id_header_size(event);
1806
1807 /*
1808 * Sum the lot; should not exceed the 64k limit we have on records.
1809 * Conservative limit to allow for callchains and other variable fields.
1810 */
1811 if (event->read_size + event->header_size +
1812 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1813 return false;
1814
1815 return true;
1816}
1817
8a49542c
PZ
1818static void perf_group_attach(struct perf_event *event)
1819{
c320c7b7 1820 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1821
a76a82a3
PZ
1822 lockdep_assert_held(&event->ctx->lock);
1823
74c3337c
PZ
1824 /*
1825 * We can have double attach due to group movement in perf_event_open.
1826 */
1827 if (event->attach_state & PERF_ATTACH_GROUP)
1828 return;
1829
8a49542c
PZ
1830 event->attach_state |= PERF_ATTACH_GROUP;
1831
1832 if (group_leader == event)
1833 return;
1834
652884fe
PZ
1835 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1836
4ff6a8de 1837 group_leader->group_caps &= event->event_caps;
8a49542c 1838
8343aae6 1839 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
8a49542c 1840 group_leader->nr_siblings++;
c320c7b7
ACM
1841
1842 perf_event__header_size(group_leader);
1843
edb39592 1844 for_each_sibling_event(pos, group_leader)
c320c7b7 1845 perf_event__header_size(pos);
8a49542c
PZ
1846}
1847
a63eaf34 1848/*
788faab7 1849 * Remove an event from the lists for its context.
fccc714b 1850 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1851 */
04289bb9 1852static void
cdd6c482 1853list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1854{
652884fe
PZ
1855 WARN_ON_ONCE(event->ctx != ctx);
1856 lockdep_assert_held(&ctx->lock);
1857
8a49542c
PZ
1858 /*
1859 * We can have double detach due to exit/hot-unplug + close.
1860 */
1861 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1862 return;
8a49542c
PZ
1863
1864 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1865
db4a8356 1866 list_update_cgroup_event(event, ctx, false);
e5d1367f 1867
cdd6c482
IM
1868 ctx->nr_events--;
1869 if (event->attr.inherit_stat)
bfbd3381 1870 ctx->nr_stat--;
8bc20959 1871
cdd6c482 1872 list_del_rcu(&event->event_entry);
04289bb9 1873
8a49542c 1874 if (event->group_leader == event)
8e1a2031 1875 del_event_from_groups(event, ctx);
5c148194 1876
b2e74a26
SE
1877 /*
1878 * If event was in error state, then keep it
1879 * that way, otherwise bogus counts will be
1880 * returned on read(). The only way to get out
1881 * of error state is by explicit re-enabling
1882 * of the event
1883 */
1884 if (event->state > PERF_EVENT_STATE_OFF)
0d3d73aa 1885 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
5a3126d4
PZ
1886
1887 ctx->generation++;
050735b0
PZ
1888}
1889
ab43762e
AS
1890static int
1891perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
1892{
1893 if (!has_aux(aux_event))
1894 return 0;
1895
1896 if (!event->pmu->aux_output_match)
1897 return 0;
1898
1899 return event->pmu->aux_output_match(aux_event);
1900}
1901
1902static void put_event(struct perf_event *event);
1903static void event_sched_out(struct perf_event *event,
1904 struct perf_cpu_context *cpuctx,
1905 struct perf_event_context *ctx);
1906
1907static void perf_put_aux_event(struct perf_event *event)
1908{
1909 struct perf_event_context *ctx = event->ctx;
1910 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1911 struct perf_event *iter;
1912
1913 /*
1914 * If event uses aux_event tear down the link
1915 */
1916 if (event->aux_event) {
1917 iter = event->aux_event;
1918 event->aux_event = NULL;
1919 put_event(iter);
1920 return;
1921 }
1922
1923 /*
1924 * If the event is an aux_event, tear down all links to
1925 * it from other events.
1926 */
1927 for_each_sibling_event(iter, event->group_leader) {
1928 if (iter->aux_event != event)
1929 continue;
1930
1931 iter->aux_event = NULL;
1932 put_event(event);
1933
1934 /*
1935 * If it's ACTIVE, schedule it out and put it into ERROR
1936 * state so that we don't try to schedule it again. Note
1937 * that perf_event_enable() will clear the ERROR status.
1938 */
1939 event_sched_out(iter, cpuctx, ctx);
1940 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
1941 }
1942}
1943
1944static int perf_get_aux_event(struct perf_event *event,
1945 struct perf_event *group_leader)
1946{
1947 /*
1948 * Our group leader must be an aux event if we want to be
1949 * an aux_output. This way, the aux event will precede its
1950 * aux_output events in the group, and therefore will always
1951 * schedule first.
1952 */
1953 if (!group_leader)
1954 return 0;
1955
1956 if (!perf_aux_output_match(event, group_leader))
1957 return 0;
1958
1959 if (!atomic_long_inc_not_zero(&group_leader->refcount))
1960 return 0;
1961
1962 /*
1963 * Link aux_outputs to their aux event; this is undone in
1964 * perf_group_detach() by perf_put_aux_event(). When the
1965 * group in torn down, the aux_output events loose their
1966 * link to the aux_event and can't schedule any more.
1967 */
1968 event->aux_event = group_leader;
1969
1970 return 1;
1971}
1972
8a49542c 1973static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1974{
1975 struct perf_event *sibling, *tmp;
6668128a 1976 struct perf_event_context *ctx = event->ctx;
8a49542c 1977
6668128a 1978 lockdep_assert_held(&ctx->lock);
a76a82a3 1979
8a49542c
PZ
1980 /*
1981 * We can have double detach due to exit/hot-unplug + close.
1982 */
1983 if (!(event->attach_state & PERF_ATTACH_GROUP))
1984 return;
1985
1986 event->attach_state &= ~PERF_ATTACH_GROUP;
1987
ab43762e
AS
1988 perf_put_aux_event(event);
1989
8a49542c
PZ
1990 /*
1991 * If this is a sibling, remove it from its group.
1992 */
1993 if (event->group_leader != event) {
8343aae6 1994 list_del_init(&event->sibling_list);
8a49542c 1995 event->group_leader->nr_siblings--;
c320c7b7 1996 goto out;
8a49542c
PZ
1997 }
1998
04289bb9 1999 /*
cdd6c482
IM
2000 * If this was a group event with sibling events then
2001 * upgrade the siblings to singleton events by adding them
8a49542c 2002 * to whatever list we are on.
04289bb9 2003 */
8343aae6 2004 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
8e1a2031 2005
04289bb9 2006 sibling->group_leader = sibling;
24868367 2007 list_del_init(&sibling->sibling_list);
d6f962b5
FW
2008
2009 /* Inherit group flags from the previous leader */
4ff6a8de 2010 sibling->group_caps = event->group_caps;
652884fe 2011
8e1a2031 2012 if (!RB_EMPTY_NODE(&event->group_node)) {
8e1a2031 2013 add_event_to_groups(sibling, event->ctx);
6668128a
PZ
2014
2015 if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
2016 struct list_head *list = sibling->attr.pinned ?
2017 &ctx->pinned_active : &ctx->flexible_active;
2018
2019 list_add_tail(&sibling->active_list, list);
2020 }
8e1a2031
AB
2021 }
2022
652884fe 2023 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 2024 }
c320c7b7
ACM
2025
2026out:
2027 perf_event__header_size(event->group_leader);
2028
edb39592 2029 for_each_sibling_event(tmp, event->group_leader)
c320c7b7 2030 perf_event__header_size(tmp);
04289bb9
IM
2031}
2032
fadfe7be
JO
2033static bool is_orphaned_event(struct perf_event *event)
2034{
a69b0ca4 2035 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
2036}
2037
2c81a647 2038static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
2039{
2040 struct pmu *pmu = event->pmu;
2041 return pmu->filter_match ? pmu->filter_match(event) : 1;
2042}
2043
2c81a647
MR
2044/*
2045 * Check whether we should attempt to schedule an event group based on
2046 * PMU-specific filtering. An event group can consist of HW and SW events,
2047 * potentially with a SW leader, so we must check all the filters, to
2048 * determine whether a group is schedulable:
2049 */
2050static inline int pmu_filter_match(struct perf_event *event)
2051{
edb39592 2052 struct perf_event *sibling;
2c81a647
MR
2053
2054 if (!__pmu_filter_match(event))
2055 return 0;
2056
edb39592
PZ
2057 for_each_sibling_event(sibling, event) {
2058 if (!__pmu_filter_match(sibling))
2c81a647
MR
2059 return 0;
2060 }
2061
2062 return 1;
2063}
2064
fa66f07a
SE
2065static inline int
2066event_filter_match(struct perf_event *event)
2067{
0b8f1e2e
PZ
2068 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2069 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
2070}
2071
9ffcfa6f
SE
2072static void
2073event_sched_out(struct perf_event *event,
3b6f9e5c 2074 struct perf_cpu_context *cpuctx,
cdd6c482 2075 struct perf_event_context *ctx)
3b6f9e5c 2076{
0d3d73aa 2077 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
652884fe
PZ
2078
2079 WARN_ON_ONCE(event->ctx != ctx);
2080 lockdep_assert_held(&ctx->lock);
2081
cdd6c482 2082 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 2083 return;
3b6f9e5c 2084
6668128a
PZ
2085 /*
2086 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2087 * we can schedule events _OUT_ individually through things like
2088 * __perf_remove_from_context().
2089 */
2090 list_del_init(&event->active_list);
2091
44377277
AS
2092 perf_pmu_disable(event->pmu);
2093
28a967c3
PZ
2094 event->pmu->del(event, 0);
2095 event->oncpu = -1;
0d3d73aa 2096
1d54ad94
PZ
2097 if (READ_ONCE(event->pending_disable) >= 0) {
2098 WRITE_ONCE(event->pending_disable, -1);
0d3d73aa 2099 state = PERF_EVENT_STATE_OFF;
970892a9 2100 }
0d3d73aa 2101 perf_event_set_state(event, state);
3b6f9e5c 2102
cdd6c482 2103 if (!is_software_event(event))
3b6f9e5c 2104 cpuctx->active_oncpu--;
2fde4f94
MR
2105 if (!--ctx->nr_active)
2106 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
2107 if (event->attr.freq && event->attr.sample_freq)
2108 ctx->nr_freq--;
cdd6c482 2109 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 2110 cpuctx->exclusive = 0;
44377277
AS
2111
2112 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
2113}
2114
d859e29f 2115static void
cdd6c482 2116group_sched_out(struct perf_event *group_event,
d859e29f 2117 struct perf_cpu_context *cpuctx,
cdd6c482 2118 struct perf_event_context *ctx)
d859e29f 2119{
cdd6c482 2120 struct perf_event *event;
0d3d73aa
PZ
2121
2122 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2123 return;
d859e29f 2124
3f005e7d
MR
2125 perf_pmu_disable(ctx->pmu);
2126
cdd6c482 2127 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
2128
2129 /*
2130 * Schedule out siblings (if any):
2131 */
edb39592 2132 for_each_sibling_event(event, group_event)
cdd6c482 2133 event_sched_out(event, cpuctx, ctx);
d859e29f 2134
3f005e7d
MR
2135 perf_pmu_enable(ctx->pmu);
2136
0d3d73aa 2137 if (group_event->attr.exclusive)
d859e29f
PM
2138 cpuctx->exclusive = 0;
2139}
2140
45a0e07a 2141#define DETACH_GROUP 0x01UL
0017960f 2142
0793a61d 2143/*
cdd6c482 2144 * Cross CPU call to remove a performance event
0793a61d 2145 *
cdd6c482 2146 * We disable the event on the hardware level first. After that we
0793a61d
TG
2147 * remove it from the context list.
2148 */
fae3fde6
PZ
2149static void
2150__perf_remove_from_context(struct perf_event *event,
2151 struct perf_cpu_context *cpuctx,
2152 struct perf_event_context *ctx,
2153 void *info)
0793a61d 2154{
45a0e07a 2155 unsigned long flags = (unsigned long)info;
0793a61d 2156
3c5c8711
PZ
2157 if (ctx->is_active & EVENT_TIME) {
2158 update_context_time(ctx);
2159 update_cgrp_time_from_cpuctx(cpuctx);
2160 }
2161
cdd6c482 2162 event_sched_out(event, cpuctx, ctx);
45a0e07a 2163 if (flags & DETACH_GROUP)
46ce0fe9 2164 perf_group_detach(event);
cdd6c482 2165 list_del_event(event, ctx);
39a43640
PZ
2166
2167 if (!ctx->nr_events && ctx->is_active) {
64ce3126 2168 ctx->is_active = 0;
39a43640
PZ
2169 if (ctx->task) {
2170 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2171 cpuctx->task_ctx = NULL;
2172 }
64ce3126 2173 }
0793a61d
TG
2174}
2175
0793a61d 2176/*
cdd6c482 2177 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 2178 *
cdd6c482
IM
2179 * If event->ctx is a cloned context, callers must make sure that
2180 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
2181 * remains valid. This is OK when called from perf_release since
2182 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 2183 * When called from perf_event_exit_task, it's OK because the
c93f7669 2184 * context has been detached from its task.
0793a61d 2185 */
45a0e07a 2186static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 2187{
a76a82a3
PZ
2188 struct perf_event_context *ctx = event->ctx;
2189
2190 lockdep_assert_held(&ctx->mutex);
0793a61d 2191
45a0e07a 2192 event_function_call(event, __perf_remove_from_context, (void *)flags);
a76a82a3
PZ
2193
2194 /*
2195 * The above event_function_call() can NO-OP when it hits
2196 * TASK_TOMBSTONE. In that case we must already have been detached
2197 * from the context (by perf_event_exit_event()) but the grouping
2198 * might still be in-tact.
2199 */
2200 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2201 if ((flags & DETACH_GROUP) &&
2202 (event->attach_state & PERF_ATTACH_GROUP)) {
2203 /*
2204 * Since in that case we cannot possibly be scheduled, simply
2205 * detach now.
2206 */
2207 raw_spin_lock_irq(&ctx->lock);
2208 perf_group_detach(event);
2209 raw_spin_unlock_irq(&ctx->lock);
2210 }
0793a61d
TG
2211}
2212
d859e29f 2213/*
cdd6c482 2214 * Cross CPU call to disable a performance event
d859e29f 2215 */
fae3fde6
PZ
2216static void __perf_event_disable(struct perf_event *event,
2217 struct perf_cpu_context *cpuctx,
2218 struct perf_event_context *ctx,
2219 void *info)
7b648018 2220{
fae3fde6
PZ
2221 if (event->state < PERF_EVENT_STATE_INACTIVE)
2222 return;
7b648018 2223
3c5c8711
PZ
2224 if (ctx->is_active & EVENT_TIME) {
2225 update_context_time(ctx);
2226 update_cgrp_time_from_event(event);
2227 }
2228
fae3fde6
PZ
2229 if (event == event->group_leader)
2230 group_sched_out(event, cpuctx, ctx);
2231 else
2232 event_sched_out(event, cpuctx, ctx);
0d3d73aa
PZ
2233
2234 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
7b648018
PZ
2235}
2236
d859e29f 2237/*
788faab7 2238 * Disable an event.
c93f7669 2239 *
cdd6c482
IM
2240 * If event->ctx is a cloned context, callers must make sure that
2241 * every task struct that event->ctx->task could possibly point to
9f014e3a 2242 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2243 * perf_event_for_each_child or perf_event_for_each because they
2244 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
2245 * goes to exit will block in perf_event_exit_event().
2246 *
cdd6c482 2247 * When called from perf_pending_event it's OK because event->ctx
c93f7669 2248 * is the current context on this CPU and preemption is disabled,
cdd6c482 2249 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 2250 */
f63a8daa 2251static void _perf_event_disable(struct perf_event *event)
d859e29f 2252{
cdd6c482 2253 struct perf_event_context *ctx = event->ctx;
d859e29f 2254
e625cce1 2255 raw_spin_lock_irq(&ctx->lock);
7b648018 2256 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 2257 raw_spin_unlock_irq(&ctx->lock);
7b648018 2258 return;
53cfbf59 2259 }
e625cce1 2260 raw_spin_unlock_irq(&ctx->lock);
7b648018 2261
fae3fde6
PZ
2262 event_function_call(event, __perf_event_disable, NULL);
2263}
2264
2265void perf_event_disable_local(struct perf_event *event)
2266{
2267 event_function_local(event, __perf_event_disable, NULL);
d859e29f 2268}
f63a8daa
PZ
2269
2270/*
2271 * Strictly speaking kernel users cannot create groups and therefore this
2272 * interface does not need the perf_event_ctx_lock() magic.
2273 */
2274void perf_event_disable(struct perf_event *event)
2275{
2276 struct perf_event_context *ctx;
2277
2278 ctx = perf_event_ctx_lock(event);
2279 _perf_event_disable(event);
2280 perf_event_ctx_unlock(event, ctx);
2281}
dcfce4a0 2282EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 2283
5aab90ce
JO
2284void perf_event_disable_inatomic(struct perf_event *event)
2285{
1d54ad94
PZ
2286 WRITE_ONCE(event->pending_disable, smp_processor_id());
2287 /* can fail, see perf_pending_event_disable() */
5aab90ce
JO
2288 irq_work_queue(&event->pending);
2289}
2290
e5d1367f 2291static void perf_set_shadow_time(struct perf_event *event,
0d3d73aa 2292 struct perf_event_context *ctx)
e5d1367f
SE
2293{
2294 /*
2295 * use the correct time source for the time snapshot
2296 *
2297 * We could get by without this by leveraging the
2298 * fact that to get to this function, the caller
2299 * has most likely already called update_context_time()
2300 * and update_cgrp_time_xx() and thus both timestamp
2301 * are identical (or very close). Given that tstamp is,
2302 * already adjusted for cgroup, we could say that:
2303 * tstamp - ctx->timestamp
2304 * is equivalent to
2305 * tstamp - cgrp->timestamp.
2306 *
2307 * Then, in perf_output_read(), the calculation would
2308 * work with no changes because:
2309 * - event is guaranteed scheduled in
2310 * - no scheduled out in between
2311 * - thus the timestamp would be the same
2312 *
2313 * But this is a bit hairy.
2314 *
2315 * So instead, we have an explicit cgroup call to remain
2316 * within the time time source all along. We believe it
2317 * is cleaner and simpler to understand.
2318 */
2319 if (is_cgroup_event(event))
0d3d73aa 2320 perf_cgroup_set_shadow_time(event, event->tstamp);
e5d1367f 2321 else
0d3d73aa 2322 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
e5d1367f
SE
2323}
2324
4fe757dd
PZ
2325#define MAX_INTERRUPTS (~0ULL)
2326
2327static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2328static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2329
235c7fc7 2330static int
9ffcfa6f 2331event_sched_in(struct perf_event *event,
235c7fc7 2332 struct perf_cpu_context *cpuctx,
6e37738a 2333 struct perf_event_context *ctx)
235c7fc7 2334{
44377277 2335 int ret = 0;
4158755d 2336
63342411
PZ
2337 lockdep_assert_held(&ctx->lock);
2338
cdd6c482 2339 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2340 return 0;
2341
95ff4ca2
AS
2342 WRITE_ONCE(event->oncpu, smp_processor_id());
2343 /*
0c1cbc18
PZ
2344 * Order event::oncpu write to happen before the ACTIVE state is
2345 * visible. This allows perf_event_{stop,read}() to observe the correct
2346 * ->oncpu if it sees ACTIVE.
95ff4ca2
AS
2347 */
2348 smp_wmb();
0d3d73aa 2349 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2350
2351 /*
2352 * Unthrottle events, since we scheduled we might have missed several
2353 * ticks already, also for a heavily scheduling task there is little
2354 * guarantee it'll get a tick in a timely manner.
2355 */
2356 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2357 perf_log_throttle(event, 1);
2358 event->hw.interrupts = 0;
2359 }
2360
44377277
AS
2361 perf_pmu_disable(event->pmu);
2362
0d3d73aa 2363 perf_set_shadow_time(event, ctx);
72f669c0 2364
ec0d7729
AS
2365 perf_log_itrace_start(event);
2366
a4eaf7f1 2367 if (event->pmu->add(event, PERF_EF_START)) {
0d3d73aa 2368 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
cdd6c482 2369 event->oncpu = -1;
44377277
AS
2370 ret = -EAGAIN;
2371 goto out;
235c7fc7
IM
2372 }
2373
cdd6c482 2374 if (!is_software_event(event))
3b6f9e5c 2375 cpuctx->active_oncpu++;
2fde4f94
MR
2376 if (!ctx->nr_active++)
2377 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2378 if (event->attr.freq && event->attr.sample_freq)
2379 ctx->nr_freq++;
235c7fc7 2380
cdd6c482 2381 if (event->attr.exclusive)
3b6f9e5c
PM
2382 cpuctx->exclusive = 1;
2383
44377277
AS
2384out:
2385 perf_pmu_enable(event->pmu);
2386
2387 return ret;
235c7fc7
IM
2388}
2389
6751b71e 2390static int
cdd6c482 2391group_sched_in(struct perf_event *group_event,
6751b71e 2392 struct perf_cpu_context *cpuctx,
6e37738a 2393 struct perf_event_context *ctx)
6751b71e 2394{
6bde9b6c 2395 struct perf_event *event, *partial_group = NULL;
4a234593 2396 struct pmu *pmu = ctx->pmu;
6751b71e 2397
cdd6c482 2398 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2399 return 0;
2400
fbbe0701 2401 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2402
9ffcfa6f 2403 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2404 pmu->cancel_txn(pmu);
272325c4 2405 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2406 return -EAGAIN;
90151c35 2407 }
6751b71e
PM
2408
2409 /*
2410 * Schedule in siblings as one group (if any):
2411 */
edb39592 2412 for_each_sibling_event(event, group_event) {
9ffcfa6f 2413 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2414 partial_group = event;
6751b71e
PM
2415 goto group_error;
2416 }
2417 }
2418
9ffcfa6f 2419 if (!pmu->commit_txn(pmu))
6e85158c 2420 return 0;
9ffcfa6f 2421
6751b71e
PM
2422group_error:
2423 /*
2424 * Groups can be scheduled in as one unit only, so undo any
2425 * partial group before returning:
0d3d73aa 2426 * The events up to the failed event are scheduled out normally.
6751b71e 2427 */
edb39592 2428 for_each_sibling_event(event, group_event) {
cdd6c482 2429 if (event == partial_group)
0d3d73aa 2430 break;
d7842da4 2431
0d3d73aa 2432 event_sched_out(event, cpuctx, ctx);
6751b71e 2433 }
9ffcfa6f 2434 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2435
ad5133b7 2436 pmu->cancel_txn(pmu);
90151c35 2437
272325c4 2438 perf_mux_hrtimer_restart(cpuctx);
9e630205 2439
6751b71e
PM
2440 return -EAGAIN;
2441}
2442
3b6f9e5c 2443/*
cdd6c482 2444 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2445 */
cdd6c482 2446static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2447 struct perf_cpu_context *cpuctx,
2448 int can_add_hw)
2449{
2450 /*
cdd6c482 2451 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2452 */
4ff6a8de 2453 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2454 return 1;
2455 /*
2456 * If an exclusive group is already on, no other hardware
cdd6c482 2457 * events can go on.
3b6f9e5c
PM
2458 */
2459 if (cpuctx->exclusive)
2460 return 0;
2461 /*
2462 * If this group is exclusive and there are already
cdd6c482 2463 * events on the CPU, it can't go on.
3b6f9e5c 2464 */
cdd6c482 2465 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2466 return 0;
2467 /*
2468 * Otherwise, try to add it if all previous groups were able
2469 * to go on.
2470 */
2471 return can_add_hw;
2472}
2473
cdd6c482
IM
2474static void add_event_to_ctx(struct perf_event *event,
2475 struct perf_event_context *ctx)
53cfbf59 2476{
cdd6c482 2477 list_add_event(event, ctx);
8a49542c 2478 perf_group_attach(event);
53cfbf59
PM
2479}
2480
bd2afa49
PZ
2481static void ctx_sched_out(struct perf_event_context *ctx,
2482 struct perf_cpu_context *cpuctx,
2483 enum event_type_t event_type);
2c29ef0f
PZ
2484static void
2485ctx_sched_in(struct perf_event_context *ctx,
2486 struct perf_cpu_context *cpuctx,
2487 enum event_type_t event_type,
2488 struct task_struct *task);
fe4b04fa 2489
bd2afa49 2490static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
487f05e1
AS
2491 struct perf_event_context *ctx,
2492 enum event_type_t event_type)
bd2afa49
PZ
2493{
2494 if (!cpuctx->task_ctx)
2495 return;
2496
2497 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2498 return;
2499
487f05e1 2500 ctx_sched_out(ctx, cpuctx, event_type);
bd2afa49
PZ
2501}
2502
dce5855b
PZ
2503static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2504 struct perf_event_context *ctx,
2505 struct task_struct *task)
2506{
2507 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2508 if (ctx)
2509 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2510 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2511 if (ctx)
2512 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2513}
2514
487f05e1
AS
2515/*
2516 * We want to maintain the following priority of scheduling:
2517 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2518 * - task pinned (EVENT_PINNED)
2519 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2520 * - task flexible (EVENT_FLEXIBLE).
2521 *
2522 * In order to avoid unscheduling and scheduling back in everything every
2523 * time an event is added, only do it for the groups of equal priority and
2524 * below.
2525 *
2526 * This can be called after a batch operation on task events, in which case
2527 * event_type is a bit mask of the types of events involved. For CPU events,
2528 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2529 */
3e349507 2530static void ctx_resched(struct perf_cpu_context *cpuctx,
487f05e1
AS
2531 struct perf_event_context *task_ctx,
2532 enum event_type_t event_type)
0017960f 2533{
bd903afe 2534 enum event_type_t ctx_event_type;
487f05e1
AS
2535 bool cpu_event = !!(event_type & EVENT_CPU);
2536
2537 /*
2538 * If pinned groups are involved, flexible groups also need to be
2539 * scheduled out.
2540 */
2541 if (event_type & EVENT_PINNED)
2542 event_type |= EVENT_FLEXIBLE;
2543
bd903afe
SL
2544 ctx_event_type = event_type & EVENT_ALL;
2545
3e349507
PZ
2546 perf_pmu_disable(cpuctx->ctx.pmu);
2547 if (task_ctx)
487f05e1
AS
2548 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2549
2550 /*
2551 * Decide which cpu ctx groups to schedule out based on the types
2552 * of events that caused rescheduling:
2553 * - EVENT_CPU: schedule out corresponding groups;
2554 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2555 * - otherwise, do nothing more.
2556 */
2557 if (cpu_event)
2558 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2559 else if (ctx_event_type & EVENT_PINNED)
2560 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2561
3e349507
PZ
2562 perf_event_sched_in(cpuctx, task_ctx, current);
2563 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2564}
2565
c68d224e
SE
2566void perf_pmu_resched(struct pmu *pmu)
2567{
2568 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2569 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2570
2571 perf_ctx_lock(cpuctx, task_ctx);
2572 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2573 perf_ctx_unlock(cpuctx, task_ctx);
2574}
2575
0793a61d 2576/*
cdd6c482 2577 * Cross CPU call to install and enable a performance event
682076ae 2578 *
a096309b
PZ
2579 * Very similar to remote_function() + event_function() but cannot assume that
2580 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2581 */
fe4b04fa 2582static int __perf_install_in_context(void *info)
0793a61d 2583{
a096309b
PZ
2584 struct perf_event *event = info;
2585 struct perf_event_context *ctx = event->ctx;
108b02cf 2586 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2587 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2588 bool reprogram = true;
a096309b 2589 int ret = 0;
0793a61d 2590
63b6da39 2591 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2592 if (ctx->task) {
b58f6b0d
PZ
2593 raw_spin_lock(&ctx->lock);
2594 task_ctx = ctx;
a096309b 2595
63cae12b 2596 reprogram = (ctx->task == current);
b58f6b0d 2597
39a43640 2598 /*
63cae12b
PZ
2599 * If the task is running, it must be running on this CPU,
2600 * otherwise we cannot reprogram things.
2601 *
2602 * If its not running, we don't care, ctx->lock will
2603 * serialize against it becoming runnable.
39a43640 2604 */
63cae12b
PZ
2605 if (task_curr(ctx->task) && !reprogram) {
2606 ret = -ESRCH;
2607 goto unlock;
2608 }
a096309b 2609
63cae12b 2610 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2611 } else if (task_ctx) {
2612 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2613 }
b58f6b0d 2614
33801b94 2615#ifdef CONFIG_CGROUP_PERF
2616 if (is_cgroup_event(event)) {
2617 /*
2618 * If the current cgroup doesn't match the event's
2619 * cgroup, we should not try to schedule it.
2620 */
2621 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2622 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2623 event->cgrp->css.cgroup);
2624 }
2625#endif
2626
63cae12b 2627 if (reprogram) {
a096309b
PZ
2628 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2629 add_event_to_ctx(event, ctx);
487f05e1 2630 ctx_resched(cpuctx, task_ctx, get_event_type(event));
a096309b
PZ
2631 } else {
2632 add_event_to_ctx(event, ctx);
2633 }
2634
63b6da39 2635unlock:
2c29ef0f 2636 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2637
a096309b 2638 return ret;
0793a61d
TG
2639}
2640
8a58ddae
AS
2641static bool exclusive_event_installable(struct perf_event *event,
2642 struct perf_event_context *ctx);
2643
0793a61d 2644/*
a096309b
PZ
2645 * Attach a performance event to a context.
2646 *
2647 * Very similar to event_function_call, see comment there.
0793a61d
TG
2648 */
2649static void
cdd6c482
IM
2650perf_install_in_context(struct perf_event_context *ctx,
2651 struct perf_event *event,
0793a61d
TG
2652 int cpu)
2653{
a096309b 2654 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2655
fe4b04fa
PZ
2656 lockdep_assert_held(&ctx->mutex);
2657
8a58ddae
AS
2658 WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2659
0cda4c02
YZ
2660 if (event->cpu != -1)
2661 event->cpu = cpu;
c3f00c70 2662
0b8f1e2e
PZ
2663 /*
2664 * Ensures that if we can observe event->ctx, both the event and ctx
2665 * will be 'complete'. See perf_iterate_sb_cpu().
2666 */
2667 smp_store_release(&event->ctx, ctx);
2668
a096309b
PZ
2669 if (!task) {
2670 cpu_function_call(cpu, __perf_install_in_context, event);
2671 return;
2672 }
2673
2674 /*
2675 * Should not happen, we validate the ctx is still alive before calling.
2676 */
2677 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2678 return;
2679
39a43640
PZ
2680 /*
2681 * Installing events is tricky because we cannot rely on ctx->is_active
2682 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2683 *
2684 * Instead we use task_curr(), which tells us if the task is running.
2685 * However, since we use task_curr() outside of rq::lock, we can race
2686 * against the actual state. This means the result can be wrong.
2687 *
2688 * If we get a false positive, we retry, this is harmless.
2689 *
2690 * If we get a false negative, things are complicated. If we are after
2691 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2692 * value must be correct. If we're before, it doesn't matter since
2693 * perf_event_context_sched_in() will program the counter.
2694 *
2695 * However, this hinges on the remote context switch having observed
2696 * our task->perf_event_ctxp[] store, such that it will in fact take
2697 * ctx::lock in perf_event_context_sched_in().
2698 *
2699 * We do this by task_function_call(), if the IPI fails to hit the task
2700 * we know any future context switch of task must see the
2701 * perf_event_ctpx[] store.
39a43640 2702 */
63cae12b 2703
63b6da39 2704 /*
63cae12b
PZ
2705 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2706 * task_cpu() load, such that if the IPI then does not find the task
2707 * running, a future context switch of that task must observe the
2708 * store.
63b6da39 2709 */
63cae12b
PZ
2710 smp_mb();
2711again:
2712 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2713 return;
2714
2715 raw_spin_lock_irq(&ctx->lock);
2716 task = ctx->task;
84c4e620 2717 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2718 /*
2719 * Cannot happen because we already checked above (which also
2720 * cannot happen), and we hold ctx->mutex, which serializes us
2721 * against perf_event_exit_task_context().
2722 */
63b6da39
PZ
2723 raw_spin_unlock_irq(&ctx->lock);
2724 return;
2725 }
39a43640 2726 /*
63cae12b
PZ
2727 * If the task is not running, ctx->lock will avoid it becoming so,
2728 * thus we can safely install the event.
39a43640 2729 */
63cae12b
PZ
2730 if (task_curr(task)) {
2731 raw_spin_unlock_irq(&ctx->lock);
2732 goto again;
2733 }
2734 add_event_to_ctx(event, ctx);
2735 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2736}
2737
d859e29f 2738/*
cdd6c482 2739 * Cross CPU call to enable a performance event
d859e29f 2740 */
fae3fde6
PZ
2741static void __perf_event_enable(struct perf_event *event,
2742 struct perf_cpu_context *cpuctx,
2743 struct perf_event_context *ctx,
2744 void *info)
04289bb9 2745{
cdd6c482 2746 struct perf_event *leader = event->group_leader;
fae3fde6 2747 struct perf_event_context *task_ctx;
04289bb9 2748
6e801e01
PZ
2749 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2750 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2751 return;
3cbed429 2752
bd2afa49
PZ
2753 if (ctx->is_active)
2754 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2755
0d3d73aa 2756 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
04289bb9 2757
fae3fde6
PZ
2758 if (!ctx->is_active)
2759 return;
2760
e5d1367f 2761 if (!event_filter_match(event)) {
bd2afa49 2762 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2763 return;
e5d1367f 2764 }
f4c4176f 2765
04289bb9 2766 /*
cdd6c482 2767 * If the event is in a group and isn't the group leader,
d859e29f 2768 * then don't put it on unless the group is on.
04289bb9 2769 */
bd2afa49
PZ
2770 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2771 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2772 return;
bd2afa49 2773 }
fe4b04fa 2774
fae3fde6
PZ
2775 task_ctx = cpuctx->task_ctx;
2776 if (ctx->task)
2777 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2778
487f05e1 2779 ctx_resched(cpuctx, task_ctx, get_event_type(event));
7b648018
PZ
2780}
2781
d859e29f 2782/*
788faab7 2783 * Enable an event.
c93f7669 2784 *
cdd6c482
IM
2785 * If event->ctx is a cloned context, callers must make sure that
2786 * every task struct that event->ctx->task could possibly point to
c93f7669 2787 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2788 * perf_event_for_each_child or perf_event_for_each as described
2789 * for perf_event_disable.
d859e29f 2790 */
f63a8daa 2791static void _perf_event_enable(struct perf_event *event)
d859e29f 2792{
cdd6c482 2793 struct perf_event_context *ctx = event->ctx;
d859e29f 2794
7b648018 2795 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2796 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2797 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2798 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2799 return;
2800 }
2801
d859e29f 2802 /*
cdd6c482 2803 * If the event is in error state, clear that first.
7b648018
PZ
2804 *
2805 * That way, if we see the event in error state below, we know that it
2806 * has gone back into error state, as distinct from the task having
2807 * been scheduled away before the cross-call arrived.
d859e29f 2808 */
cdd6c482
IM
2809 if (event->state == PERF_EVENT_STATE_ERROR)
2810 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2811 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2812
fae3fde6 2813 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2814}
f63a8daa
PZ
2815
2816/*
2817 * See perf_event_disable();
2818 */
2819void perf_event_enable(struct perf_event *event)
2820{
2821 struct perf_event_context *ctx;
2822
2823 ctx = perf_event_ctx_lock(event);
2824 _perf_event_enable(event);
2825 perf_event_ctx_unlock(event, ctx);
2826}
dcfce4a0 2827EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2828
375637bc
AS
2829struct stop_event_data {
2830 struct perf_event *event;
2831 unsigned int restart;
2832};
2833
95ff4ca2
AS
2834static int __perf_event_stop(void *info)
2835{
375637bc
AS
2836 struct stop_event_data *sd = info;
2837 struct perf_event *event = sd->event;
95ff4ca2 2838
375637bc 2839 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2840 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2841 return 0;
2842
2843 /* matches smp_wmb() in event_sched_in() */
2844 smp_rmb();
2845
2846 /*
2847 * There is a window with interrupts enabled before we get here,
2848 * so we need to check again lest we try to stop another CPU's event.
2849 */
2850 if (READ_ONCE(event->oncpu) != smp_processor_id())
2851 return -EAGAIN;
2852
2853 event->pmu->stop(event, PERF_EF_UPDATE);
2854
375637bc
AS
2855 /*
2856 * May race with the actual stop (through perf_pmu_output_stop()),
2857 * but it is only used for events with AUX ring buffer, and such
2858 * events will refuse to restart because of rb::aux_mmap_count==0,
2859 * see comments in perf_aux_output_begin().
2860 *
788faab7 2861 * Since this is happening on an event-local CPU, no trace is lost
375637bc
AS
2862 * while restarting.
2863 */
2864 if (sd->restart)
c9bbdd48 2865 event->pmu->start(event, 0);
375637bc 2866
95ff4ca2
AS
2867 return 0;
2868}
2869
767ae086 2870static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
2871{
2872 struct stop_event_data sd = {
2873 .event = event,
767ae086 2874 .restart = restart,
375637bc
AS
2875 };
2876 int ret = 0;
2877
2878 do {
2879 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2880 return 0;
2881
2882 /* matches smp_wmb() in event_sched_in() */
2883 smp_rmb();
2884
2885 /*
2886 * We only want to restart ACTIVE events, so if the event goes
2887 * inactive here (event->oncpu==-1), there's nothing more to do;
2888 * fall through with ret==-ENXIO.
2889 */
2890 ret = cpu_function_call(READ_ONCE(event->oncpu),
2891 __perf_event_stop, &sd);
2892 } while (ret == -EAGAIN);
2893
2894 return ret;
2895}
2896
2897/*
2898 * In order to contain the amount of racy and tricky in the address filter
2899 * configuration management, it is a two part process:
2900 *
2901 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2902 * we update the addresses of corresponding vmas in
c60f83b8 2903 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
375637bc
AS
2904 * (p2) when an event is scheduled in (pmu::add), it calls
2905 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2906 * if the generation has changed since the previous call.
2907 *
2908 * If (p1) happens while the event is active, we restart it to force (p2).
2909 *
2910 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2911 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2912 * ioctl;
2913 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2914 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2915 * for reading;
2916 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2917 * of exec.
2918 */
2919void perf_event_addr_filters_sync(struct perf_event *event)
2920{
2921 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2922
2923 if (!has_addr_filter(event))
2924 return;
2925
2926 raw_spin_lock(&ifh->lock);
2927 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2928 event->pmu->addr_filters_sync(event);
2929 event->hw.addr_filters_gen = event->addr_filters_gen;
2930 }
2931 raw_spin_unlock(&ifh->lock);
2932}
2933EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2934
f63a8daa 2935static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2936{
2023b359 2937 /*
cdd6c482 2938 * not supported on inherited events
2023b359 2939 */
2e939d1d 2940 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2941 return -EINVAL;
2942
cdd6c482 2943 atomic_add(refresh, &event->event_limit);
f63a8daa 2944 _perf_event_enable(event);
2023b359
PZ
2945
2946 return 0;
79f14641 2947}
f63a8daa
PZ
2948
2949/*
2950 * See perf_event_disable()
2951 */
2952int perf_event_refresh(struct perf_event *event, int refresh)
2953{
2954 struct perf_event_context *ctx;
2955 int ret;
2956
2957 ctx = perf_event_ctx_lock(event);
2958 ret = _perf_event_refresh(event, refresh);
2959 perf_event_ctx_unlock(event, ctx);
2960
2961 return ret;
2962}
26ca5c11 2963EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2964
32ff77e8
MC
2965static int perf_event_modify_breakpoint(struct perf_event *bp,
2966 struct perf_event_attr *attr)
2967{
2968 int err;
2969
2970 _perf_event_disable(bp);
2971
2972 err = modify_user_hw_breakpoint_check(bp, attr, true);
32ff77e8 2973
bf06278c 2974 if (!bp->attr.disabled)
32ff77e8 2975 _perf_event_enable(bp);
bf06278c
JO
2976
2977 return err;
32ff77e8
MC
2978}
2979
2980static int perf_event_modify_attr(struct perf_event *event,
2981 struct perf_event_attr *attr)
2982{
2983 if (event->attr.type != attr->type)
2984 return -EINVAL;
2985
2986 switch (event->attr.type) {
2987 case PERF_TYPE_BREAKPOINT:
2988 return perf_event_modify_breakpoint(event, attr);
2989 default:
2990 /* Place holder for future additions. */
2991 return -EOPNOTSUPP;
2992 }
2993}
2994
5b0311e1
FW
2995static void ctx_sched_out(struct perf_event_context *ctx,
2996 struct perf_cpu_context *cpuctx,
2997 enum event_type_t event_type)
235c7fc7 2998{
6668128a 2999 struct perf_event *event, *tmp;
db24d33e 3000 int is_active = ctx->is_active;
235c7fc7 3001
c994d613 3002 lockdep_assert_held(&ctx->lock);
235c7fc7 3003
39a43640
PZ
3004 if (likely(!ctx->nr_events)) {
3005 /*
3006 * See __perf_remove_from_context().
3007 */
3008 WARN_ON_ONCE(ctx->is_active);
3009 if (ctx->task)
3010 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 3011 return;
39a43640
PZ
3012 }
3013
db24d33e 3014 ctx->is_active &= ~event_type;
3cbaa590
PZ
3015 if (!(ctx->is_active & EVENT_ALL))
3016 ctx->is_active = 0;
3017
63e30d3e
PZ
3018 if (ctx->task) {
3019 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3020 if (!ctx->is_active)
3021 cpuctx->task_ctx = NULL;
3022 }
facc4307 3023
8fdc6539
PZ
3024 /*
3025 * Always update time if it was set; not only when it changes.
3026 * Otherwise we can 'forget' to update time for any but the last
3027 * context we sched out. For example:
3028 *
3029 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3030 * ctx_sched_out(.event_type = EVENT_PINNED)
3031 *
3032 * would only update time for the pinned events.
3033 */
3cbaa590
PZ
3034 if (is_active & EVENT_TIME) {
3035 /* update (and stop) ctx time */
3036 update_context_time(ctx);
3037 update_cgrp_time_from_cpuctx(cpuctx);
3038 }
3039
8fdc6539
PZ
3040 is_active ^= ctx->is_active; /* changed bits */
3041
3cbaa590 3042 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 3043 return;
5b0311e1 3044
fd7d5517
IR
3045 /*
3046 * If we had been multiplexing, no rotations are necessary, now no events
3047 * are active.
3048 */
3049 ctx->rotate_necessary = 0;
3050
075e0b00 3051 perf_pmu_disable(ctx->pmu);
3cbaa590 3052 if (is_active & EVENT_PINNED) {
6668128a 3053 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
889ff015 3054 group_sched_out(event, cpuctx, ctx);
9ed6060d 3055 }
889ff015 3056
3cbaa590 3057 if (is_active & EVENT_FLEXIBLE) {
6668128a 3058 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
8c9ed8e1 3059 group_sched_out(event, cpuctx, ctx);
9ed6060d 3060 }
1b9a644f 3061 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
3062}
3063
564c2b21 3064/*
5a3126d4
PZ
3065 * Test whether two contexts are equivalent, i.e. whether they have both been
3066 * cloned from the same version of the same context.
3067 *
3068 * Equivalence is measured using a generation number in the context that is
3069 * incremented on each modification to it; see unclone_ctx(), list_add_event()
3070 * and list_del_event().
564c2b21 3071 */
cdd6c482
IM
3072static int context_equiv(struct perf_event_context *ctx1,
3073 struct perf_event_context *ctx2)
564c2b21 3074{
211de6eb
PZ
3075 lockdep_assert_held(&ctx1->lock);
3076 lockdep_assert_held(&ctx2->lock);
3077
5a3126d4
PZ
3078 /* Pinning disables the swap optimization */
3079 if (ctx1->pin_count || ctx2->pin_count)
3080 return 0;
3081
3082 /* If ctx1 is the parent of ctx2 */
3083 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3084 return 1;
3085
3086 /* If ctx2 is the parent of ctx1 */
3087 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3088 return 1;
3089
3090 /*
3091 * If ctx1 and ctx2 have the same parent; we flatten the parent
3092 * hierarchy, see perf_event_init_context().
3093 */
3094 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3095 ctx1->parent_gen == ctx2->parent_gen)
3096 return 1;
3097
3098 /* Unmatched */
3099 return 0;
564c2b21
PM
3100}
3101
cdd6c482
IM
3102static void __perf_event_sync_stat(struct perf_event *event,
3103 struct perf_event *next_event)
bfbd3381
PZ
3104{
3105 u64 value;
3106
cdd6c482 3107 if (!event->attr.inherit_stat)
bfbd3381
PZ
3108 return;
3109
3110 /*
cdd6c482 3111 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
3112 * because we're in the middle of a context switch and have IRQs
3113 * disabled, which upsets smp_call_function_single(), however
cdd6c482 3114 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
3115 * don't need to use it.
3116 */
0d3d73aa 3117 if (event->state == PERF_EVENT_STATE_ACTIVE)
3dbebf15 3118 event->pmu->read(event);
bfbd3381 3119
0d3d73aa 3120 perf_event_update_time(event);
bfbd3381
PZ
3121
3122 /*
cdd6c482 3123 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
3124 * values when we flip the contexts.
3125 */
e7850595
PZ
3126 value = local64_read(&next_event->count);
3127 value = local64_xchg(&event->count, value);
3128 local64_set(&next_event->count, value);
bfbd3381 3129
cdd6c482
IM
3130 swap(event->total_time_enabled, next_event->total_time_enabled);
3131 swap(event->total_time_running, next_event->total_time_running);
19d2e755 3132
bfbd3381 3133 /*
19d2e755 3134 * Since we swizzled the values, update the user visible data too.
bfbd3381 3135 */
cdd6c482
IM
3136 perf_event_update_userpage(event);
3137 perf_event_update_userpage(next_event);
bfbd3381
PZ
3138}
3139
cdd6c482
IM
3140static void perf_event_sync_stat(struct perf_event_context *ctx,
3141 struct perf_event_context *next_ctx)
bfbd3381 3142{
cdd6c482 3143 struct perf_event *event, *next_event;
bfbd3381
PZ
3144
3145 if (!ctx->nr_stat)
3146 return;
3147
02ffdbc8
PZ
3148 update_context_time(ctx);
3149
cdd6c482
IM
3150 event = list_first_entry(&ctx->event_list,
3151 struct perf_event, event_entry);
bfbd3381 3152
cdd6c482
IM
3153 next_event = list_first_entry(&next_ctx->event_list,
3154 struct perf_event, event_entry);
bfbd3381 3155
cdd6c482
IM
3156 while (&event->event_entry != &ctx->event_list &&
3157 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 3158
cdd6c482 3159 __perf_event_sync_stat(event, next_event);
bfbd3381 3160
cdd6c482
IM
3161 event = list_next_entry(event, event_entry);
3162 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
3163 }
3164}
3165
fe4b04fa
PZ
3166static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3167 struct task_struct *next)
0793a61d 3168{
8dc85d54 3169 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 3170 struct perf_event_context *next_ctx;
5a3126d4 3171 struct perf_event_context *parent, *next_parent;
108b02cf 3172 struct perf_cpu_context *cpuctx;
c93f7669 3173 int do_switch = 1;
0793a61d 3174
108b02cf
PZ
3175 if (likely(!ctx))
3176 return;
10989fb2 3177
108b02cf
PZ
3178 cpuctx = __get_cpu_context(ctx);
3179 if (!cpuctx->task_ctx)
0793a61d
TG
3180 return;
3181
c93f7669 3182 rcu_read_lock();
8dc85d54 3183 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
3184 if (!next_ctx)
3185 goto unlock;
3186
3187 parent = rcu_dereference(ctx->parent_ctx);
3188 next_parent = rcu_dereference(next_ctx->parent_ctx);
3189
3190 /* If neither context have a parent context; they cannot be clones. */
802c8a61 3191 if (!parent && !next_parent)
5a3126d4
PZ
3192 goto unlock;
3193
3194 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
3195 /*
3196 * Looks like the two contexts are clones, so we might be
3197 * able to optimize the context switch. We lock both
3198 * contexts and check that they are clones under the
3199 * lock (including re-checking that neither has been
3200 * uncloned in the meantime). It doesn't matter which
3201 * order we take the locks because no other cpu could
3202 * be trying to lock both of these tasks.
3203 */
e625cce1
TG
3204 raw_spin_lock(&ctx->lock);
3205 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 3206 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
3207 WRITE_ONCE(ctx->task, next);
3208 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
3209
3210 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3211
63b6da39
PZ
3212 /*
3213 * RCU_INIT_POINTER here is safe because we've not
3214 * modified the ctx and the above modification of
3215 * ctx->task and ctx->task_ctx_data are immaterial
3216 * since those values are always verified under
3217 * ctx->lock which we're now holding.
3218 */
3219 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3220 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3221
c93f7669 3222 do_switch = 0;
bfbd3381 3223
cdd6c482 3224 perf_event_sync_stat(ctx, next_ctx);
c93f7669 3225 }
e625cce1
TG
3226 raw_spin_unlock(&next_ctx->lock);
3227 raw_spin_unlock(&ctx->lock);
564c2b21 3228 }
5a3126d4 3229unlock:
c93f7669 3230 rcu_read_unlock();
564c2b21 3231
c93f7669 3232 if (do_switch) {
facc4307 3233 raw_spin_lock(&ctx->lock);
487f05e1 3234 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
facc4307 3235 raw_spin_unlock(&ctx->lock);
c93f7669 3236 }
0793a61d
TG
3237}
3238
e48c1788
PZ
3239static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3240
ba532500
YZ
3241void perf_sched_cb_dec(struct pmu *pmu)
3242{
e48c1788
PZ
3243 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3244
ba532500 3245 this_cpu_dec(perf_sched_cb_usages);
e48c1788
PZ
3246
3247 if (!--cpuctx->sched_cb_usage)
3248 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
3249}
3250
e48c1788 3251
ba532500
YZ
3252void perf_sched_cb_inc(struct pmu *pmu)
3253{
e48c1788
PZ
3254 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3255
3256 if (!cpuctx->sched_cb_usage++)
3257 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3258
ba532500
YZ
3259 this_cpu_inc(perf_sched_cb_usages);
3260}
3261
3262/*
3263 * This function provides the context switch callback to the lower code
3264 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
3265 *
3266 * This callback is relevant even to per-cpu events; for example multi event
3267 * PEBS requires this to provide PID/TID information. This requires we flush
3268 * all queued PEBS records before we context switch to a new task.
ba532500
YZ
3269 */
3270static void perf_pmu_sched_task(struct task_struct *prev,
3271 struct task_struct *next,
3272 bool sched_in)
3273{
3274 struct perf_cpu_context *cpuctx;
3275 struct pmu *pmu;
ba532500
YZ
3276
3277 if (prev == next)
3278 return;
3279
e48c1788 3280 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
1fd7e416 3281 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
ba532500 3282
e48c1788
PZ
3283 if (WARN_ON_ONCE(!pmu->sched_task))
3284 continue;
ba532500 3285
e48c1788
PZ
3286 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3287 perf_pmu_disable(pmu);
ba532500 3288
e48c1788 3289 pmu->sched_task(cpuctx->task_ctx, sched_in);
ba532500 3290
e48c1788
PZ
3291 perf_pmu_enable(pmu);
3292 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
ba532500 3293 }
ba532500
YZ
3294}
3295
45ac1403
AH
3296static void perf_event_switch(struct task_struct *task,
3297 struct task_struct *next_prev, bool sched_in);
3298
8dc85d54
PZ
3299#define for_each_task_context_nr(ctxn) \
3300 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3301
3302/*
3303 * Called from scheduler to remove the events of the current task,
3304 * with interrupts disabled.
3305 *
3306 * We stop each event and update the event value in event->count.
3307 *
3308 * This does not protect us against NMI, but disable()
3309 * sets the disabled bit in the control field of event _before_
3310 * accessing the event control register. If a NMI hits, then it will
3311 * not restart the event.
3312 */
ab0cce56
JO
3313void __perf_event_task_sched_out(struct task_struct *task,
3314 struct task_struct *next)
8dc85d54
PZ
3315{
3316 int ctxn;
3317
ba532500
YZ
3318 if (__this_cpu_read(perf_sched_cb_usages))
3319 perf_pmu_sched_task(task, next, false);
3320
45ac1403
AH
3321 if (atomic_read(&nr_switch_events))
3322 perf_event_switch(task, next, false);
3323
8dc85d54
PZ
3324 for_each_task_context_nr(ctxn)
3325 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
3326
3327 /*
3328 * if cgroup events exist on this CPU, then we need
3329 * to check if we have to switch out PMU state.
3330 * cgroup event are system-wide mode only
3331 */
4a32fea9 3332 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 3333 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
3334}
3335
5b0311e1
FW
3336/*
3337 * Called with IRQs disabled
3338 */
3339static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3340 enum event_type_t event_type)
3341{
3342 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
3343}
3344
1cac7b1a
PZ
3345static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3346 int (*func)(struct perf_event *, void *), void *data)
0793a61d 3347{
1cac7b1a
PZ
3348 struct perf_event **evt, *evt1, *evt2;
3349 int ret;
8e1a2031 3350
1cac7b1a
PZ
3351 evt1 = perf_event_groups_first(groups, -1);
3352 evt2 = perf_event_groups_first(groups, cpu);
3353
3354 while (evt1 || evt2) {
3355 if (evt1 && evt2) {
3356 if (evt1->group_index < evt2->group_index)
3357 evt = &evt1;
3358 else
3359 evt = &evt2;
3360 } else if (evt1) {
3361 evt = &evt1;
3362 } else {
3363 evt = &evt2;
8e1a2031 3364 }
1cac7b1a
PZ
3365
3366 ret = func(*evt, data);
3367 if (ret)
3368 return ret;
3369
3370 *evt = perf_event_groups_next(*evt);
8e1a2031 3371 }
0793a61d 3372
1cac7b1a
PZ
3373 return 0;
3374}
3375
3376struct sched_in_data {
3377 struct perf_event_context *ctx;
3378 struct perf_cpu_context *cpuctx;
3379 int can_add_hw;
3380};
3381
3382static int pinned_sched_in(struct perf_event *event, void *data)
3383{
3384 struct sched_in_data *sid = data;
3385
3386 if (event->state <= PERF_EVENT_STATE_OFF)
3387 return 0;
3388
3389 if (!event_filter_match(event))
3390 return 0;
3391
6668128a
PZ
3392 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3393 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3394 list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3395 }
1cac7b1a
PZ
3396
3397 /*
3398 * If this pinned group hasn't been scheduled,
3399 * put it in error state.
3400 */
3401 if (event->state == PERF_EVENT_STATE_INACTIVE)
3402 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3403
3404 return 0;
3405}
3406
3407static int flexible_sched_in(struct perf_event *event, void *data)
3408{
3409 struct sched_in_data *sid = data;
3410
3411 if (event->state <= PERF_EVENT_STATE_OFF)
3412 return 0;
3413
3414 if (!event_filter_match(event))
3415 return 0;
3416
3417 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
fd7d5517
IR
3418 int ret = group_sched_in(event, sid->cpuctx, sid->ctx);
3419 if (ret) {
1cac7b1a 3420 sid->can_add_hw = 0;
fd7d5517
IR
3421 sid->ctx->rotate_necessary = 1;
3422 return 0;
3423 }
3424 list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3b6f9e5c 3425 }
1cac7b1a
PZ
3426
3427 return 0;
5b0311e1
FW
3428}
3429
3430static void
1cac7b1a
PZ
3431ctx_pinned_sched_in(struct perf_event_context *ctx,
3432 struct perf_cpu_context *cpuctx)
5b0311e1 3433{
1cac7b1a
PZ
3434 struct sched_in_data sid = {
3435 .ctx = ctx,
3436 .cpuctx = cpuctx,
3437 .can_add_hw = 1,
3438 };
3b6f9e5c 3439
1cac7b1a
PZ
3440 visit_groups_merge(&ctx->pinned_groups,
3441 smp_processor_id(),
3442 pinned_sched_in, &sid);
3443}
8e1a2031 3444
1cac7b1a
PZ
3445static void
3446ctx_flexible_sched_in(struct perf_event_context *ctx,
3447 struct perf_cpu_context *cpuctx)
3448{
3449 struct sched_in_data sid = {
3450 .ctx = ctx,
3451 .cpuctx = cpuctx,
3452 .can_add_hw = 1,
3453 };
0793a61d 3454
1cac7b1a
PZ
3455 visit_groups_merge(&ctx->flexible_groups,
3456 smp_processor_id(),
3457 flexible_sched_in, &sid);
5b0311e1
FW
3458}
3459
3460static void
3461ctx_sched_in(struct perf_event_context *ctx,
3462 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3463 enum event_type_t event_type,
3464 struct task_struct *task)
5b0311e1 3465{
db24d33e 3466 int is_active = ctx->is_active;
c994d613
PZ
3467 u64 now;
3468
3469 lockdep_assert_held(&ctx->lock);
e5d1367f 3470
5b0311e1 3471 if (likely(!ctx->nr_events))
facc4307 3472 return;
5b0311e1 3473
3cbaa590 3474 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3475 if (ctx->task) {
3476 if (!is_active)
3477 cpuctx->task_ctx = ctx;
3478 else
3479 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3480 }
3481
3cbaa590
PZ
3482 is_active ^= ctx->is_active; /* changed bits */
3483
3484 if (is_active & EVENT_TIME) {
3485 /* start ctx time */
3486 now = perf_clock();
3487 ctx->timestamp = now;
3488 perf_cgroup_set_timestamp(task, ctx);
3489 }
3490
5b0311e1
FW
3491 /*
3492 * First go through the list and put on any pinned groups
3493 * in order to give them the best chance of going on.
3494 */
3cbaa590 3495 if (is_active & EVENT_PINNED)
6e37738a 3496 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3497
3498 /* Then walk through the lower prio flexible groups */
3cbaa590 3499 if (is_active & EVENT_FLEXIBLE)
6e37738a 3500 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3501}
3502
329c0e01 3503static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3504 enum event_type_t event_type,
3505 struct task_struct *task)
329c0e01
FW
3506{
3507 struct perf_event_context *ctx = &cpuctx->ctx;
3508
e5d1367f 3509 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3510}
3511
e5d1367f
SE
3512static void perf_event_context_sched_in(struct perf_event_context *ctx,
3513 struct task_struct *task)
235c7fc7 3514{
108b02cf 3515 struct perf_cpu_context *cpuctx;
235c7fc7 3516
108b02cf 3517 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3518 if (cpuctx->task_ctx == ctx)
3519 return;
3520
facc4307 3521 perf_ctx_lock(cpuctx, ctx);
fdccc3fb 3522 /*
3523 * We must check ctx->nr_events while holding ctx->lock, such
3524 * that we serialize against perf_install_in_context().
3525 */
3526 if (!ctx->nr_events)
3527 goto unlock;
3528
1b9a644f 3529 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3530 /*
3531 * We want to keep the following priority order:
3532 * cpu pinned (that don't need to move), task pinned,
3533 * cpu flexible, task flexible.
fe45bafb
AS
3534 *
3535 * However, if task's ctx is not carrying any pinned
3536 * events, no need to flip the cpuctx's events around.
329c0e01 3537 */
8e1a2031 3538 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
fe45bafb 3539 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3540 perf_event_sched_in(cpuctx, ctx, task);
facc4307 3541 perf_pmu_enable(ctx->pmu);
fdccc3fb 3542
3543unlock:
facc4307 3544 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3545}
3546
8dc85d54
PZ
3547/*
3548 * Called from scheduler to add the events of the current task
3549 * with interrupts disabled.
3550 *
3551 * We restore the event value and then enable it.
3552 *
3553 * This does not protect us against NMI, but enable()
3554 * sets the enabled bit in the control field of event _before_
3555 * accessing the event control register. If a NMI hits, then it will
3556 * keep the event running.
3557 */
ab0cce56
JO
3558void __perf_event_task_sched_in(struct task_struct *prev,
3559 struct task_struct *task)
8dc85d54
PZ
3560{
3561 struct perf_event_context *ctx;
3562 int ctxn;
3563
7e41d177
PZ
3564 /*
3565 * If cgroup events exist on this CPU, then we need to check if we have
3566 * to switch in PMU state; cgroup event are system-wide mode only.
3567 *
3568 * Since cgroup events are CPU events, we must schedule these in before
3569 * we schedule in the task events.
3570 */
3571 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3572 perf_cgroup_sched_in(prev, task);
3573
8dc85d54
PZ
3574 for_each_task_context_nr(ctxn) {
3575 ctx = task->perf_event_ctxp[ctxn];
3576 if (likely(!ctx))
3577 continue;
3578
e5d1367f 3579 perf_event_context_sched_in(ctx, task);
8dc85d54 3580 }
d010b332 3581
45ac1403
AH
3582 if (atomic_read(&nr_switch_events))
3583 perf_event_switch(task, prev, true);
3584
ba532500
YZ
3585 if (__this_cpu_read(perf_sched_cb_usages))
3586 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3587}
3588
abd50713
PZ
3589static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3590{
3591 u64 frequency = event->attr.sample_freq;
3592 u64 sec = NSEC_PER_SEC;
3593 u64 divisor, dividend;
3594
3595 int count_fls, nsec_fls, frequency_fls, sec_fls;
3596
3597 count_fls = fls64(count);
3598 nsec_fls = fls64(nsec);
3599 frequency_fls = fls64(frequency);
3600 sec_fls = 30;
3601
3602 /*
3603 * We got @count in @nsec, with a target of sample_freq HZ
3604 * the target period becomes:
3605 *
3606 * @count * 10^9
3607 * period = -------------------
3608 * @nsec * sample_freq
3609 *
3610 */
3611
3612 /*
3613 * Reduce accuracy by one bit such that @a and @b converge
3614 * to a similar magnitude.
3615 */
fe4b04fa 3616#define REDUCE_FLS(a, b) \
abd50713
PZ
3617do { \
3618 if (a##_fls > b##_fls) { \
3619 a >>= 1; \
3620 a##_fls--; \
3621 } else { \
3622 b >>= 1; \
3623 b##_fls--; \
3624 } \
3625} while (0)
3626
3627 /*
3628 * Reduce accuracy until either term fits in a u64, then proceed with
3629 * the other, so that finally we can do a u64/u64 division.
3630 */
3631 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3632 REDUCE_FLS(nsec, frequency);
3633 REDUCE_FLS(sec, count);
3634 }
3635
3636 if (count_fls + sec_fls > 64) {
3637 divisor = nsec * frequency;
3638
3639 while (count_fls + sec_fls > 64) {
3640 REDUCE_FLS(count, sec);
3641 divisor >>= 1;
3642 }
3643
3644 dividend = count * sec;
3645 } else {
3646 dividend = count * sec;
3647
3648 while (nsec_fls + frequency_fls > 64) {
3649 REDUCE_FLS(nsec, frequency);
3650 dividend >>= 1;
3651 }
3652
3653 divisor = nsec * frequency;
3654 }
3655
f6ab91ad
PZ
3656 if (!divisor)
3657 return dividend;
3658
abd50713
PZ
3659 return div64_u64(dividend, divisor);
3660}
3661
e050e3f0
SE
3662static DEFINE_PER_CPU(int, perf_throttled_count);
3663static DEFINE_PER_CPU(u64, perf_throttled_seq);
3664
f39d47ff 3665static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3666{
cdd6c482 3667 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3668 s64 period, sample_period;
bd2b5b12
PZ
3669 s64 delta;
3670
abd50713 3671 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3672
3673 delta = (s64)(period - hwc->sample_period);
3674 delta = (delta + 7) / 8; /* low pass filter */
3675
3676 sample_period = hwc->sample_period + delta;
3677
3678 if (!sample_period)
3679 sample_period = 1;
3680
bd2b5b12 3681 hwc->sample_period = sample_period;
abd50713 3682
e7850595 3683 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3684 if (disable)
3685 event->pmu->stop(event, PERF_EF_UPDATE);
3686
e7850595 3687 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3688
3689 if (disable)
3690 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3691 }
bd2b5b12
PZ
3692}
3693
e050e3f0
SE
3694/*
3695 * combine freq adjustment with unthrottling to avoid two passes over the
3696 * events. At the same time, make sure, having freq events does not change
3697 * the rate of unthrottling as that would introduce bias.
3698 */
3699static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3700 int needs_unthr)
60db5e09 3701{
cdd6c482
IM
3702 struct perf_event *event;
3703 struct hw_perf_event *hwc;
e050e3f0 3704 u64 now, period = TICK_NSEC;
abd50713 3705 s64 delta;
60db5e09 3706
e050e3f0
SE
3707 /*
3708 * only need to iterate over all events iff:
3709 * - context have events in frequency mode (needs freq adjust)
3710 * - there are events to unthrottle on this cpu
3711 */
3712 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3713 return;
3714
e050e3f0 3715 raw_spin_lock(&ctx->lock);
f39d47ff 3716 perf_pmu_disable(ctx->pmu);
e050e3f0 3717
03541f8b 3718 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3719 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3720 continue;
3721
5632ab12 3722 if (!event_filter_match(event))
5d27c23d
PZ
3723 continue;
3724
44377277
AS
3725 perf_pmu_disable(event->pmu);
3726
cdd6c482 3727 hwc = &event->hw;
6a24ed6c 3728
ae23bff1 3729 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3730 hwc->interrupts = 0;
cdd6c482 3731 perf_log_throttle(event, 1);
a4eaf7f1 3732 event->pmu->start(event, 0);
a78ac325
PZ
3733 }
3734
cdd6c482 3735 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3736 goto next;
60db5e09 3737
e050e3f0
SE
3738 /*
3739 * stop the event and update event->count
3740 */
3741 event->pmu->stop(event, PERF_EF_UPDATE);
3742
e7850595 3743 now = local64_read(&event->count);
abd50713
PZ
3744 delta = now - hwc->freq_count_stamp;
3745 hwc->freq_count_stamp = now;
60db5e09 3746
e050e3f0
SE
3747 /*
3748 * restart the event
3749 * reload only if value has changed
f39d47ff
SE
3750 * we have stopped the event so tell that
3751 * to perf_adjust_period() to avoid stopping it
3752 * twice.
e050e3f0 3753 */
abd50713 3754 if (delta > 0)
f39d47ff 3755 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3756
3757 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3758 next:
3759 perf_pmu_enable(event->pmu);
60db5e09 3760 }
e050e3f0 3761
f39d47ff 3762 perf_pmu_enable(ctx->pmu);
e050e3f0 3763 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3764}
3765
235c7fc7 3766/*
8703a7cf 3767 * Move @event to the tail of the @ctx's elegible events.
235c7fc7 3768 */
8703a7cf 3769static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
0793a61d 3770{
dddd3379
TG
3771 /*
3772 * Rotate the first entry last of non-pinned groups. Rotation might be
3773 * disabled by the inheritance code.
3774 */
8703a7cf
PZ
3775 if (ctx->rotate_disable)
3776 return;
8e1a2031 3777
8703a7cf
PZ
3778 perf_event_groups_delete(&ctx->flexible_groups, event);
3779 perf_event_groups_insert(&ctx->flexible_groups, event);
235c7fc7
IM
3780}
3781
7fa343b7 3782/* pick an event from the flexible_groups to rotate */
8d5bce0c 3783static inline struct perf_event *
7fa343b7 3784ctx_event_to_rotate(struct perf_event_context *ctx)
235c7fc7 3785{
7fa343b7
SL
3786 struct perf_event *event;
3787
3788 /* pick the first active flexible event */
3789 event = list_first_entry_or_null(&ctx->flexible_active,
3790 struct perf_event, active_list);
3791
3792 /* if no active flexible event, pick the first event */
3793 if (!event) {
3794 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
3795 typeof(*event), group_node);
3796 }
3797
3798 return event;
8d5bce0c
PZ
3799}
3800
3801static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3802{
3803 struct perf_event *cpu_event = NULL, *task_event = NULL;
fd7d5517
IR
3804 struct perf_event_context *task_ctx = NULL;
3805 int cpu_rotate, task_rotate;
8d5bce0c
PZ
3806
3807 /*
3808 * Since we run this from IRQ context, nobody can install new
3809 * events, thus the event count values are stable.
3810 */
7fc23a53 3811
fd7d5517
IR
3812 cpu_rotate = cpuctx->ctx.rotate_necessary;
3813 task_ctx = cpuctx->task_ctx;
3814 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
9717e6cd 3815
8d5bce0c
PZ
3816 if (!(cpu_rotate || task_rotate))
3817 return false;
0f5a2601 3818
facc4307 3819 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3820 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3821
8d5bce0c 3822 if (task_rotate)
7fa343b7 3823 task_event = ctx_event_to_rotate(task_ctx);
8d5bce0c 3824 if (cpu_rotate)
7fa343b7 3825 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
8703a7cf 3826
8d5bce0c
PZ
3827 /*
3828 * As per the order given at ctx_resched() first 'pop' task flexible
3829 * and then, if needed CPU flexible.
3830 */
fd7d5517
IR
3831 if (task_event || (task_ctx && cpu_event))
3832 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
8d5bce0c
PZ
3833 if (cpu_event)
3834 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
0793a61d 3835
8d5bce0c 3836 if (task_event)
fd7d5517 3837 rotate_ctx(task_ctx, task_event);
8d5bce0c
PZ
3838 if (cpu_event)
3839 rotate_ctx(&cpuctx->ctx, cpu_event);
235c7fc7 3840
fd7d5517 3841 perf_event_sched_in(cpuctx, task_ctx, current);
235c7fc7 3842
0f5a2601
PZ
3843 perf_pmu_enable(cpuctx->ctx.pmu);
3844 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
9e630205 3845
8d5bce0c 3846 return true;
e9d2b064
PZ
3847}
3848
3849void perf_event_task_tick(void)
3850{
2fde4f94
MR
3851 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3852 struct perf_event_context *ctx, *tmp;
e050e3f0 3853 int throttled;
b5ab4cd5 3854
16444645 3855 lockdep_assert_irqs_disabled();
e9d2b064 3856
e050e3f0
SE
3857 __this_cpu_inc(perf_throttled_seq);
3858 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3859 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3860
2fde4f94 3861 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3862 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3863}
3864
889ff015
FW
3865static int event_enable_on_exec(struct perf_event *event,
3866 struct perf_event_context *ctx)
3867{
3868 if (!event->attr.enable_on_exec)
3869 return 0;
3870
3871 event->attr.enable_on_exec = 0;
3872 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3873 return 0;
3874
0d3d73aa 3875 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
889ff015
FW
3876
3877 return 1;
3878}
3879
57e7986e 3880/*
cdd6c482 3881 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3882 * This expects task == current.
3883 */
c1274499 3884static void perf_event_enable_on_exec(int ctxn)
57e7986e 3885{
c1274499 3886 struct perf_event_context *ctx, *clone_ctx = NULL;
487f05e1 3887 enum event_type_t event_type = 0;
3e349507 3888 struct perf_cpu_context *cpuctx;
cdd6c482 3889 struct perf_event *event;
57e7986e
PM
3890 unsigned long flags;
3891 int enabled = 0;
3892
3893 local_irq_save(flags);
c1274499 3894 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3895 if (!ctx || !ctx->nr_events)
57e7986e
PM
3896 goto out;
3897
3e349507
PZ
3898 cpuctx = __get_cpu_context(ctx);
3899 perf_ctx_lock(cpuctx, ctx);
7fce2509 3900 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
487f05e1 3901 list_for_each_entry(event, &ctx->event_list, event_entry) {
3e349507 3902 enabled |= event_enable_on_exec(event, ctx);
487f05e1
AS
3903 event_type |= get_event_type(event);
3904 }
57e7986e
PM
3905
3906 /*
3e349507 3907 * Unclone and reschedule this context if we enabled any event.
57e7986e 3908 */
3e349507 3909 if (enabled) {
211de6eb 3910 clone_ctx = unclone_ctx(ctx);
487f05e1 3911 ctx_resched(cpuctx, ctx, event_type);
7bbba0eb
PZ
3912 } else {
3913 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3e349507
PZ
3914 }
3915 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3916
9ed6060d 3917out:
57e7986e 3918 local_irq_restore(flags);
211de6eb
PZ
3919
3920 if (clone_ctx)
3921 put_ctx(clone_ctx);
57e7986e
PM
3922}
3923
0492d4c5
PZ
3924struct perf_read_data {
3925 struct perf_event *event;
3926 bool group;
7d88962e 3927 int ret;
0492d4c5
PZ
3928};
3929
451d24d1 3930static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
d6a2f903 3931{
d6a2f903
DCC
3932 u16 local_pkg, event_pkg;
3933
3934 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
451d24d1
PZ
3935 int local_cpu = smp_processor_id();
3936
3937 event_pkg = topology_physical_package_id(event_cpu);
3938 local_pkg = topology_physical_package_id(local_cpu);
d6a2f903
DCC
3939
3940 if (event_pkg == local_pkg)
3941 return local_cpu;
3942 }
3943
3944 return event_cpu;
3945}
3946
0793a61d 3947/*
cdd6c482 3948 * Cross CPU call to read the hardware event
0793a61d 3949 */
cdd6c482 3950static void __perf_event_read(void *info)
0793a61d 3951{
0492d4c5
PZ
3952 struct perf_read_data *data = info;
3953 struct perf_event *sub, *event = data->event;
cdd6c482 3954 struct perf_event_context *ctx = event->ctx;
108b02cf 3955 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3956 struct pmu *pmu = event->pmu;
621a01ea 3957
e1ac3614
PM
3958 /*
3959 * If this is a task context, we need to check whether it is
3960 * the current task context of this cpu. If not it has been
3961 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3962 * event->count would have been updated to a recent sample
3963 * when the event was scheduled out.
e1ac3614
PM
3964 */
3965 if (ctx->task && cpuctx->task_ctx != ctx)
3966 return;
3967
e625cce1 3968 raw_spin_lock(&ctx->lock);
0c1cbc18 3969 if (ctx->is_active & EVENT_TIME) {
542e72fc 3970 update_context_time(ctx);
e5d1367f
SE
3971 update_cgrp_time_from_event(event);
3972 }
0492d4c5 3973
0d3d73aa
PZ
3974 perf_event_update_time(event);
3975 if (data->group)
3976 perf_event_update_sibling_time(event);
0c1cbc18 3977
4a00c16e
SB
3978 if (event->state != PERF_EVENT_STATE_ACTIVE)
3979 goto unlock;
0492d4c5 3980
4a00c16e
SB
3981 if (!data->group) {
3982 pmu->read(event);
3983 data->ret = 0;
0492d4c5 3984 goto unlock;
4a00c16e
SB
3985 }
3986
3987 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3988
3989 pmu->read(event);
0492d4c5 3990
edb39592 3991 for_each_sibling_event(sub, event) {
4a00c16e
SB
3992 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3993 /*
3994 * Use sibling's PMU rather than @event's since
3995 * sibling could be on different (eg: software) PMU.
3996 */
0492d4c5 3997 sub->pmu->read(sub);
4a00c16e 3998 }
0492d4c5 3999 }
4a00c16e
SB
4000
4001 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
4002
4003unlock:
e625cce1 4004 raw_spin_unlock(&ctx->lock);
0793a61d
TG
4005}
4006
b5e58793
PZ
4007static inline u64 perf_event_count(struct perf_event *event)
4008{
c39a0e2c 4009 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
4010}
4011
ffe8690c
KX
4012/*
4013 * NMI-safe method to read a local event, that is an event that
4014 * is:
4015 * - either for the current task, or for this CPU
4016 * - does not have inherit set, for inherited task events
4017 * will not be local and we cannot read them atomically
4018 * - must not have a pmu::count method
4019 */
7d9285e8
YS
4020int perf_event_read_local(struct perf_event *event, u64 *value,
4021 u64 *enabled, u64 *running)
ffe8690c
KX
4022{
4023 unsigned long flags;
f91840a3 4024 int ret = 0;
ffe8690c
KX
4025
4026 /*
4027 * Disabling interrupts avoids all counter scheduling (context
4028 * switches, timer based rotation and IPIs).
4029 */
4030 local_irq_save(flags);
4031
ffe8690c
KX
4032 /*
4033 * It must not be an event with inherit set, we cannot read
4034 * all child counters from atomic context.
4035 */
f91840a3
AS
4036 if (event->attr.inherit) {
4037 ret = -EOPNOTSUPP;
4038 goto out;
4039 }
ffe8690c 4040
f91840a3
AS
4041 /* If this is a per-task event, it must be for current */
4042 if ((event->attach_state & PERF_ATTACH_TASK) &&
4043 event->hw.target != current) {
4044 ret = -EINVAL;
4045 goto out;
4046 }
4047
4048 /* If this is a per-CPU event, it must be for this CPU */
4049 if (!(event->attach_state & PERF_ATTACH_TASK) &&
4050 event->cpu != smp_processor_id()) {
4051 ret = -EINVAL;
4052 goto out;
4053 }
ffe8690c 4054
befb1b3c
RC
4055 /* If this is a pinned event it must be running on this CPU */
4056 if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4057 ret = -EBUSY;
4058 goto out;
4059 }
4060
ffe8690c
KX
4061 /*
4062 * If the event is currently on this CPU, its either a per-task event,
4063 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4064 * oncpu == -1).
4065 */
4066 if (event->oncpu == smp_processor_id())
4067 event->pmu->read(event);
4068
f91840a3 4069 *value = local64_read(&event->count);
0d3d73aa
PZ
4070 if (enabled || running) {
4071 u64 now = event->shadow_ctx_time + perf_clock();
4072 u64 __enabled, __running;
4073
4074 __perf_update_times(event, now, &__enabled, &__running);
4075 if (enabled)
4076 *enabled = __enabled;
4077 if (running)
4078 *running = __running;
4079 }
f91840a3 4080out:
ffe8690c
KX
4081 local_irq_restore(flags);
4082
f91840a3 4083 return ret;
ffe8690c
KX
4084}
4085
7d88962e 4086static int perf_event_read(struct perf_event *event, bool group)
0793a61d 4087{
0c1cbc18 4088 enum perf_event_state state = READ_ONCE(event->state);
451d24d1 4089 int event_cpu, ret = 0;
7d88962e 4090
0793a61d 4091 /*
cdd6c482
IM
4092 * If event is enabled and currently active on a CPU, update the
4093 * value in the event structure:
0793a61d 4094 */
0c1cbc18
PZ
4095again:
4096 if (state == PERF_EVENT_STATE_ACTIVE) {
4097 struct perf_read_data data;
4098
4099 /*
4100 * Orders the ->state and ->oncpu loads such that if we see
4101 * ACTIVE we must also see the right ->oncpu.
4102 *
4103 * Matches the smp_wmb() from event_sched_in().
4104 */
4105 smp_rmb();
d6a2f903 4106
451d24d1
PZ
4107 event_cpu = READ_ONCE(event->oncpu);
4108 if ((unsigned)event_cpu >= nr_cpu_ids)
4109 return 0;
4110
0c1cbc18
PZ
4111 data = (struct perf_read_data){
4112 .event = event,
4113 .group = group,
4114 .ret = 0,
4115 };
4116
451d24d1
PZ
4117 preempt_disable();
4118 event_cpu = __perf_event_read_cpu(event, event_cpu);
d6a2f903 4119
58763148
PZ
4120 /*
4121 * Purposely ignore the smp_call_function_single() return
4122 * value.
4123 *
451d24d1 4124 * If event_cpu isn't a valid CPU it means the event got
58763148
PZ
4125 * scheduled out and that will have updated the event count.
4126 *
4127 * Therefore, either way, we'll have an up-to-date event count
4128 * after this.
4129 */
451d24d1
PZ
4130 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4131 preempt_enable();
58763148 4132 ret = data.ret;
0c1cbc18
PZ
4133
4134 } else if (state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
4135 struct perf_event_context *ctx = event->ctx;
4136 unsigned long flags;
4137
e625cce1 4138 raw_spin_lock_irqsave(&ctx->lock, flags);
0c1cbc18
PZ
4139 state = event->state;
4140 if (state != PERF_EVENT_STATE_INACTIVE) {
4141 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4142 goto again;
4143 }
4144
c530ccd9 4145 /*
0c1cbc18
PZ
4146 * May read while context is not active (e.g., thread is
4147 * blocked), in that case we cannot update context time
c530ccd9 4148 */
0c1cbc18 4149 if (ctx->is_active & EVENT_TIME) {
c530ccd9 4150 update_context_time(ctx);
e5d1367f
SE
4151 update_cgrp_time_from_event(event);
4152 }
0c1cbc18 4153
0d3d73aa 4154 perf_event_update_time(event);
0492d4c5 4155 if (group)
0d3d73aa 4156 perf_event_update_sibling_time(event);
e625cce1 4157 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 4158 }
7d88962e
SB
4159
4160 return ret;
0793a61d
TG
4161}
4162
a63eaf34 4163/*
cdd6c482 4164 * Initialize the perf_event context in a task_struct:
a63eaf34 4165 */
eb184479 4166static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 4167{
e625cce1 4168 raw_spin_lock_init(&ctx->lock);
a63eaf34 4169 mutex_init(&ctx->mutex);
2fde4f94 4170 INIT_LIST_HEAD(&ctx->active_ctx_list);
8e1a2031
AB
4171 perf_event_groups_init(&ctx->pinned_groups);
4172 perf_event_groups_init(&ctx->flexible_groups);
a63eaf34 4173 INIT_LIST_HEAD(&ctx->event_list);
6668128a
PZ
4174 INIT_LIST_HEAD(&ctx->pinned_active);
4175 INIT_LIST_HEAD(&ctx->flexible_active);
8c94abbb 4176 refcount_set(&ctx->refcount, 1);
eb184479
PZ
4177}
4178
4179static struct perf_event_context *
4180alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4181{
4182 struct perf_event_context *ctx;
4183
4184 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4185 if (!ctx)
4186 return NULL;
4187
4188 __perf_event_init_context(ctx);
7b3c92b8
MWO
4189 if (task)
4190 ctx->task = get_task_struct(task);
eb184479
PZ
4191 ctx->pmu = pmu;
4192
4193 return ctx;
a63eaf34
PM
4194}
4195
2ebd4ffb
MH
4196static struct task_struct *
4197find_lively_task_by_vpid(pid_t vpid)
4198{
4199 struct task_struct *task;
0793a61d
TG
4200
4201 rcu_read_lock();
2ebd4ffb 4202 if (!vpid)
0793a61d
TG
4203 task = current;
4204 else
2ebd4ffb 4205 task = find_task_by_vpid(vpid);
0793a61d
TG
4206 if (task)
4207 get_task_struct(task);
4208 rcu_read_unlock();
4209
4210 if (!task)
4211 return ERR_PTR(-ESRCH);
4212
2ebd4ffb 4213 return task;
2ebd4ffb
MH
4214}
4215
fe4b04fa
PZ
4216/*
4217 * Returns a matching context with refcount and pincount.
4218 */
108b02cf 4219static struct perf_event_context *
4af57ef2
YZ
4220find_get_context(struct pmu *pmu, struct task_struct *task,
4221 struct perf_event *event)
0793a61d 4222{
211de6eb 4223 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 4224 struct perf_cpu_context *cpuctx;
4af57ef2 4225 void *task_ctx_data = NULL;
25346b93 4226 unsigned long flags;
8dc85d54 4227 int ctxn, err;
4af57ef2 4228 int cpu = event->cpu;
0793a61d 4229
22a4ec72 4230 if (!task) {
cdd6c482 4231 /* Must be root to operate on a CPU event: */
0764771d 4232 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
4233 return ERR_PTR(-EACCES);
4234
108b02cf 4235 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 4236 ctx = &cpuctx->ctx;
c93f7669 4237 get_ctx(ctx);
fe4b04fa 4238 ++ctx->pin_count;
0793a61d 4239
0793a61d
TG
4240 return ctx;
4241 }
4242
8dc85d54
PZ
4243 err = -EINVAL;
4244 ctxn = pmu->task_ctx_nr;
4245 if (ctxn < 0)
4246 goto errout;
4247
4af57ef2
YZ
4248 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4249 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4250 if (!task_ctx_data) {
4251 err = -ENOMEM;
4252 goto errout;
4253 }
4254 }
4255
9ed6060d 4256retry:
8dc85d54 4257 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 4258 if (ctx) {
211de6eb 4259 clone_ctx = unclone_ctx(ctx);
fe4b04fa 4260 ++ctx->pin_count;
4af57ef2
YZ
4261
4262 if (task_ctx_data && !ctx->task_ctx_data) {
4263 ctx->task_ctx_data = task_ctx_data;
4264 task_ctx_data = NULL;
4265 }
e625cce1 4266 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
4267
4268 if (clone_ctx)
4269 put_ctx(clone_ctx);
9137fb28 4270 } else {
eb184479 4271 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
4272 err = -ENOMEM;
4273 if (!ctx)
4274 goto errout;
eb184479 4275
4af57ef2
YZ
4276 if (task_ctx_data) {
4277 ctx->task_ctx_data = task_ctx_data;
4278 task_ctx_data = NULL;
4279 }
4280
dbe08d82
ON
4281 err = 0;
4282 mutex_lock(&task->perf_event_mutex);
4283 /*
4284 * If it has already passed perf_event_exit_task().
4285 * we must see PF_EXITING, it takes this mutex too.
4286 */
4287 if (task->flags & PF_EXITING)
4288 err = -ESRCH;
4289 else if (task->perf_event_ctxp[ctxn])
4290 err = -EAGAIN;
fe4b04fa 4291 else {
9137fb28 4292 get_ctx(ctx);
fe4b04fa 4293 ++ctx->pin_count;
dbe08d82 4294 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 4295 }
dbe08d82
ON
4296 mutex_unlock(&task->perf_event_mutex);
4297
4298 if (unlikely(err)) {
9137fb28 4299 put_ctx(ctx);
dbe08d82
ON
4300
4301 if (err == -EAGAIN)
4302 goto retry;
4303 goto errout;
a63eaf34
PM
4304 }
4305 }
4306
4af57ef2 4307 kfree(task_ctx_data);
0793a61d 4308 return ctx;
c93f7669 4309
9ed6060d 4310errout:
4af57ef2 4311 kfree(task_ctx_data);
c93f7669 4312 return ERR_PTR(err);
0793a61d
TG
4313}
4314
6fb2915d 4315static void perf_event_free_filter(struct perf_event *event);
2541517c 4316static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 4317
cdd6c482 4318static void free_event_rcu(struct rcu_head *head)
592903cd 4319{
cdd6c482 4320 struct perf_event *event;
592903cd 4321
cdd6c482
IM
4322 event = container_of(head, struct perf_event, rcu_head);
4323 if (event->ns)
4324 put_pid_ns(event->ns);
6fb2915d 4325 perf_event_free_filter(event);
cdd6c482 4326 kfree(event);
592903cd
PZ
4327}
4328
b69cf536
PZ
4329static void ring_buffer_attach(struct perf_event *event,
4330 struct ring_buffer *rb);
925d519a 4331
f2fb6bef
KL
4332static void detach_sb_event(struct perf_event *event)
4333{
4334 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4335
4336 raw_spin_lock(&pel->lock);
4337 list_del_rcu(&event->sb_list);
4338 raw_spin_unlock(&pel->lock);
4339}
4340
a4f144eb 4341static bool is_sb_event(struct perf_event *event)
f2fb6bef 4342{
a4f144eb
DCC
4343 struct perf_event_attr *attr = &event->attr;
4344
f2fb6bef 4345 if (event->parent)
a4f144eb 4346 return false;
f2fb6bef
KL
4347
4348 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 4349 return false;
f2fb6bef 4350
a4f144eb
DCC
4351 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4352 attr->comm || attr->comm_exec ||
76193a94 4353 attr->task || attr->ksymbol ||
21038f2b
SL
4354 attr->context_switch ||
4355 attr->bpf_event)
a4f144eb
DCC
4356 return true;
4357 return false;
4358}
4359
4360static void unaccount_pmu_sb_event(struct perf_event *event)
4361{
4362 if (is_sb_event(event))
4363 detach_sb_event(event);
f2fb6bef
KL
4364}
4365
4beb31f3 4366static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 4367{
4beb31f3
FW
4368 if (event->parent)
4369 return;
4370
4beb31f3
FW
4371 if (is_cgroup_event(event))
4372 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4373}
925d519a 4374
555e0c1e
FW
4375#ifdef CONFIG_NO_HZ_FULL
4376static DEFINE_SPINLOCK(nr_freq_lock);
4377#endif
4378
4379static void unaccount_freq_event_nohz(void)
4380{
4381#ifdef CONFIG_NO_HZ_FULL
4382 spin_lock(&nr_freq_lock);
4383 if (atomic_dec_and_test(&nr_freq_events))
4384 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4385 spin_unlock(&nr_freq_lock);
4386#endif
4387}
4388
4389static void unaccount_freq_event(void)
4390{
4391 if (tick_nohz_full_enabled())
4392 unaccount_freq_event_nohz();
4393 else
4394 atomic_dec(&nr_freq_events);
4395}
4396
4beb31f3
FW
4397static void unaccount_event(struct perf_event *event)
4398{
25432ae9
PZ
4399 bool dec = false;
4400
4beb31f3
FW
4401 if (event->parent)
4402 return;
4403
4404 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 4405 dec = true;
4beb31f3
FW
4406 if (event->attr.mmap || event->attr.mmap_data)
4407 atomic_dec(&nr_mmap_events);
4408 if (event->attr.comm)
4409 atomic_dec(&nr_comm_events);
e4222673
HB
4410 if (event->attr.namespaces)
4411 atomic_dec(&nr_namespaces_events);
4beb31f3
FW
4412 if (event->attr.task)
4413 atomic_dec(&nr_task_events);
948b26b6 4414 if (event->attr.freq)
555e0c1e 4415 unaccount_freq_event();
45ac1403 4416 if (event->attr.context_switch) {
25432ae9 4417 dec = true;
45ac1403
AH
4418 atomic_dec(&nr_switch_events);
4419 }
4beb31f3 4420 if (is_cgroup_event(event))
25432ae9 4421 dec = true;
4beb31f3 4422 if (has_branch_stack(event))
25432ae9 4423 dec = true;
76193a94
SL
4424 if (event->attr.ksymbol)
4425 atomic_dec(&nr_ksymbol_events);
6ee52e2a
SL
4426 if (event->attr.bpf_event)
4427 atomic_dec(&nr_bpf_events);
25432ae9 4428
9107c89e
PZ
4429 if (dec) {
4430 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4431 schedule_delayed_work(&perf_sched_work, HZ);
4432 }
4beb31f3
FW
4433
4434 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
4435
4436 unaccount_pmu_sb_event(event);
4beb31f3 4437}
925d519a 4438
9107c89e
PZ
4439static void perf_sched_delayed(struct work_struct *work)
4440{
4441 mutex_lock(&perf_sched_mutex);
4442 if (atomic_dec_and_test(&perf_sched_count))
4443 static_branch_disable(&perf_sched_events);
4444 mutex_unlock(&perf_sched_mutex);
4445}
4446
bed5b25a
AS
4447/*
4448 * The following implement mutual exclusion of events on "exclusive" pmus
4449 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4450 * at a time, so we disallow creating events that might conflict, namely:
4451 *
4452 * 1) cpu-wide events in the presence of per-task events,
4453 * 2) per-task events in the presence of cpu-wide events,
4454 * 3) two matching events on the same context.
4455 *
4456 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 4457 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
4458 */
4459static int exclusive_event_init(struct perf_event *event)
4460{
4461 struct pmu *pmu = event->pmu;
4462
8a58ddae 4463 if (!is_exclusive_pmu(pmu))
bed5b25a
AS
4464 return 0;
4465
4466 /*
4467 * Prevent co-existence of per-task and cpu-wide events on the
4468 * same exclusive pmu.
4469 *
4470 * Negative pmu::exclusive_cnt means there are cpu-wide
4471 * events on this "exclusive" pmu, positive means there are
4472 * per-task events.
4473 *
4474 * Since this is called in perf_event_alloc() path, event::ctx
4475 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4476 * to mean "per-task event", because unlike other attach states it
4477 * never gets cleared.
4478 */
4479 if (event->attach_state & PERF_ATTACH_TASK) {
4480 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4481 return -EBUSY;
4482 } else {
4483 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4484 return -EBUSY;
4485 }
4486
4487 return 0;
4488}
4489
4490static void exclusive_event_destroy(struct perf_event *event)
4491{
4492 struct pmu *pmu = event->pmu;
4493
8a58ddae 4494 if (!is_exclusive_pmu(pmu))
bed5b25a
AS
4495 return;
4496
4497 /* see comment in exclusive_event_init() */
4498 if (event->attach_state & PERF_ATTACH_TASK)
4499 atomic_dec(&pmu->exclusive_cnt);
4500 else
4501 atomic_inc(&pmu->exclusive_cnt);
4502}
4503
4504static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4505{
3bf6215a 4506 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
4507 (e1->cpu == e2->cpu ||
4508 e1->cpu == -1 ||
4509 e2->cpu == -1))
4510 return true;
4511 return false;
4512}
4513
bed5b25a
AS
4514static bool exclusive_event_installable(struct perf_event *event,
4515 struct perf_event_context *ctx)
4516{
4517 struct perf_event *iter_event;
4518 struct pmu *pmu = event->pmu;
4519
8a58ddae
AS
4520 lockdep_assert_held(&ctx->mutex);
4521
4522 if (!is_exclusive_pmu(pmu))
bed5b25a
AS
4523 return true;
4524
4525 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4526 if (exclusive_event_match(iter_event, event))
4527 return false;
4528 }
4529
4530 return true;
4531}
4532
375637bc
AS
4533static void perf_addr_filters_splice(struct perf_event *event,
4534 struct list_head *head);
4535
683ede43 4536static void _free_event(struct perf_event *event)
f1600952 4537{
e360adbe 4538 irq_work_sync(&event->pending);
925d519a 4539
4beb31f3 4540 unaccount_event(event);
9ee318a7 4541
76369139 4542 if (event->rb) {
9bb5d40c
PZ
4543 /*
4544 * Can happen when we close an event with re-directed output.
4545 *
4546 * Since we have a 0 refcount, perf_mmap_close() will skip
4547 * over us; possibly making our ring_buffer_put() the last.
4548 */
4549 mutex_lock(&event->mmap_mutex);
b69cf536 4550 ring_buffer_attach(event, NULL);
9bb5d40c 4551 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4552 }
4553
e5d1367f
SE
4554 if (is_cgroup_event(event))
4555 perf_detach_cgroup(event);
4556
a0733e69
PZ
4557 if (!event->parent) {
4558 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4559 put_callchain_buffers();
4560 }
4561
4562 perf_event_free_bpf_prog(event);
375637bc 4563 perf_addr_filters_splice(event, NULL);
c60f83b8 4564 kfree(event->addr_filter_ranges);
a0733e69
PZ
4565
4566 if (event->destroy)
4567 event->destroy(event);
4568
1cf8dfe8
PZ
4569 /*
4570 * Must be after ->destroy(), due to uprobe_perf_close() using
4571 * hw.target.
4572 */
621b6d2e
PB
4573 if (event->hw.target)
4574 put_task_struct(event->hw.target);
4575
1cf8dfe8
PZ
4576 /*
4577 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4578 * all task references must be cleaned up.
4579 */
4580 if (event->ctx)
4581 put_ctx(event->ctx);
4582
62a92c8f
AS
4583 exclusive_event_destroy(event);
4584 module_put(event->pmu->module);
a0733e69
PZ
4585
4586 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4587}
4588
683ede43
PZ
4589/*
4590 * Used to free events which have a known refcount of 1, such as in error paths
4591 * where the event isn't exposed yet and inherited events.
4592 */
4593static void free_event(struct perf_event *event)
0793a61d 4594{
683ede43
PZ
4595 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4596 "unexpected event refcount: %ld; ptr=%p\n",
4597 atomic_long_read(&event->refcount), event)) {
4598 /* leak to avoid use-after-free */
4599 return;
4600 }
0793a61d 4601
683ede43 4602 _free_event(event);
0793a61d
TG
4603}
4604
a66a3052 4605/*
f8697762 4606 * Remove user event from the owner task.
a66a3052 4607 */
f8697762 4608static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4609{
8882135b 4610 struct task_struct *owner;
fb0459d7 4611
8882135b 4612 rcu_read_lock();
8882135b 4613 /*
f47c02c0
PZ
4614 * Matches the smp_store_release() in perf_event_exit_task(). If we
4615 * observe !owner it means the list deletion is complete and we can
4616 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4617 * owner->perf_event_mutex.
4618 */
506458ef 4619 owner = READ_ONCE(event->owner);
8882135b
PZ
4620 if (owner) {
4621 /*
4622 * Since delayed_put_task_struct() also drops the last
4623 * task reference we can safely take a new reference
4624 * while holding the rcu_read_lock().
4625 */
4626 get_task_struct(owner);
4627 }
4628 rcu_read_unlock();
4629
4630 if (owner) {
f63a8daa
PZ
4631 /*
4632 * If we're here through perf_event_exit_task() we're already
4633 * holding ctx->mutex which would be an inversion wrt. the
4634 * normal lock order.
4635 *
4636 * However we can safely take this lock because its the child
4637 * ctx->mutex.
4638 */
4639 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4640
8882135b
PZ
4641 /*
4642 * We have to re-check the event->owner field, if it is cleared
4643 * we raced with perf_event_exit_task(), acquiring the mutex
4644 * ensured they're done, and we can proceed with freeing the
4645 * event.
4646 */
f47c02c0 4647 if (event->owner) {
8882135b 4648 list_del_init(&event->owner_entry);
f47c02c0
PZ
4649 smp_store_release(&event->owner, NULL);
4650 }
8882135b
PZ
4651 mutex_unlock(&owner->perf_event_mutex);
4652 put_task_struct(owner);
4653 }
f8697762
JO
4654}
4655
f8697762
JO
4656static void put_event(struct perf_event *event)
4657{
f8697762
JO
4658 if (!atomic_long_dec_and_test(&event->refcount))
4659 return;
4660
c6e5b732
PZ
4661 _free_event(event);
4662}
4663
4664/*
4665 * Kill an event dead; while event:refcount will preserve the event
4666 * object, it will not preserve its functionality. Once the last 'user'
4667 * gives up the object, we'll destroy the thing.
4668 */
4669int perf_event_release_kernel(struct perf_event *event)
4670{
a4f4bb6d 4671 struct perf_event_context *ctx = event->ctx;
c6e5b732 4672 struct perf_event *child, *tmp;
82d94856 4673 LIST_HEAD(free_list);
c6e5b732 4674
a4f4bb6d
PZ
4675 /*
4676 * If we got here through err_file: fput(event_file); we will not have
4677 * attached to a context yet.
4678 */
4679 if (!ctx) {
4680 WARN_ON_ONCE(event->attach_state &
4681 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4682 goto no_ctx;
4683 }
4684
f8697762
JO
4685 if (!is_kernel_event(event))
4686 perf_remove_from_owner(event);
8882135b 4687
5fa7c8ec 4688 ctx = perf_event_ctx_lock(event);
a83fe28e 4689 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4690 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4691
a69b0ca4 4692 raw_spin_lock_irq(&ctx->lock);
683ede43 4693 /*
d8a8cfc7 4694 * Mark this event as STATE_DEAD, there is no external reference to it
a69b0ca4 4695 * anymore.
683ede43 4696 *
a69b0ca4
PZ
4697 * Anybody acquiring event->child_mutex after the below loop _must_
4698 * also see this, most importantly inherit_event() which will avoid
4699 * placing more children on the list.
683ede43 4700 *
c6e5b732
PZ
4701 * Thus this guarantees that we will in fact observe and kill _ALL_
4702 * child events.
683ede43 4703 */
a69b0ca4
PZ
4704 event->state = PERF_EVENT_STATE_DEAD;
4705 raw_spin_unlock_irq(&ctx->lock);
4706
4707 perf_event_ctx_unlock(event, ctx);
683ede43 4708
c6e5b732
PZ
4709again:
4710 mutex_lock(&event->child_mutex);
4711 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4712
c6e5b732
PZ
4713 /*
4714 * Cannot change, child events are not migrated, see the
4715 * comment with perf_event_ctx_lock_nested().
4716 */
506458ef 4717 ctx = READ_ONCE(child->ctx);
c6e5b732
PZ
4718 /*
4719 * Since child_mutex nests inside ctx::mutex, we must jump
4720 * through hoops. We start by grabbing a reference on the ctx.
4721 *
4722 * Since the event cannot get freed while we hold the
4723 * child_mutex, the context must also exist and have a !0
4724 * reference count.
4725 */
4726 get_ctx(ctx);
4727
4728 /*
4729 * Now that we have a ctx ref, we can drop child_mutex, and
4730 * acquire ctx::mutex without fear of it going away. Then we
4731 * can re-acquire child_mutex.
4732 */
4733 mutex_unlock(&event->child_mutex);
4734 mutex_lock(&ctx->mutex);
4735 mutex_lock(&event->child_mutex);
4736
4737 /*
4738 * Now that we hold ctx::mutex and child_mutex, revalidate our
4739 * state, if child is still the first entry, it didn't get freed
4740 * and we can continue doing so.
4741 */
4742 tmp = list_first_entry_or_null(&event->child_list,
4743 struct perf_event, child_list);
4744 if (tmp == child) {
4745 perf_remove_from_context(child, DETACH_GROUP);
82d94856 4746 list_move(&child->child_list, &free_list);
c6e5b732
PZ
4747 /*
4748 * This matches the refcount bump in inherit_event();
4749 * this can't be the last reference.
4750 */
4751 put_event(event);
4752 }
4753
4754 mutex_unlock(&event->child_mutex);
4755 mutex_unlock(&ctx->mutex);
4756 put_ctx(ctx);
4757 goto again;
4758 }
4759 mutex_unlock(&event->child_mutex);
4760
82d94856 4761 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
1cf8dfe8
PZ
4762 void *var = &child->ctx->refcount;
4763
82d94856
PZ
4764 list_del(&child->child_list);
4765 free_event(child);
1cf8dfe8
PZ
4766
4767 /*
4768 * Wake any perf_event_free_task() waiting for this event to be
4769 * freed.
4770 */
4771 smp_mb(); /* pairs with wait_var_event() */
4772 wake_up_var(var);
82d94856
PZ
4773 }
4774
a4f4bb6d
PZ
4775no_ctx:
4776 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4777 return 0;
4778}
4779EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4780
8b10c5e2
PZ
4781/*
4782 * Called when the last reference to the file is gone.
4783 */
a6fa941d
AV
4784static int perf_release(struct inode *inode, struct file *file)
4785{
c6e5b732 4786 perf_event_release_kernel(file->private_data);
a6fa941d 4787 return 0;
fb0459d7 4788}
fb0459d7 4789
ca0dd44c 4790static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4791{
cdd6c482 4792 struct perf_event *child;
e53c0994
PZ
4793 u64 total = 0;
4794
59ed446f
PZ
4795 *enabled = 0;
4796 *running = 0;
4797
6f10581a 4798 mutex_lock(&event->child_mutex);
01add3ea 4799
7d88962e 4800 (void)perf_event_read(event, false);
01add3ea
SB
4801 total += perf_event_count(event);
4802
59ed446f
PZ
4803 *enabled += event->total_time_enabled +
4804 atomic64_read(&event->child_total_time_enabled);
4805 *running += event->total_time_running +
4806 atomic64_read(&event->child_total_time_running);
4807
4808 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4809 (void)perf_event_read(child, false);
01add3ea 4810 total += perf_event_count(child);
59ed446f
PZ
4811 *enabled += child->total_time_enabled;
4812 *running += child->total_time_running;
4813 }
6f10581a 4814 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4815
4816 return total;
4817}
ca0dd44c
PZ
4818
4819u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4820{
4821 struct perf_event_context *ctx;
4822 u64 count;
4823
4824 ctx = perf_event_ctx_lock(event);
4825 count = __perf_event_read_value(event, enabled, running);
4826 perf_event_ctx_unlock(event, ctx);
4827
4828 return count;
4829}
fb0459d7 4830EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4831
7d88962e 4832static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4833 u64 read_format, u64 *values)
3dab77fb 4834{
2aeb1883 4835 struct perf_event_context *ctx = leader->ctx;
fa8c2693 4836 struct perf_event *sub;
2aeb1883 4837 unsigned long flags;
fa8c2693 4838 int n = 1; /* skip @nr */
7d88962e 4839 int ret;
f63a8daa 4840
7d88962e
SB
4841 ret = perf_event_read(leader, true);
4842 if (ret)
4843 return ret;
abf4868b 4844
a9cd8194
PZ
4845 raw_spin_lock_irqsave(&ctx->lock, flags);
4846
fa8c2693
PZ
4847 /*
4848 * Since we co-schedule groups, {enabled,running} times of siblings
4849 * will be identical to those of the leader, so we only publish one
4850 * set.
4851 */
4852 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4853 values[n++] += leader->total_time_enabled +
4854 atomic64_read(&leader->child_total_time_enabled);
4855 }
3dab77fb 4856
fa8c2693
PZ
4857 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4858 values[n++] += leader->total_time_running +
4859 atomic64_read(&leader->child_total_time_running);
4860 }
4861
4862 /*
4863 * Write {count,id} tuples for every sibling.
4864 */
4865 values[n++] += perf_event_count(leader);
abf4868b
PZ
4866 if (read_format & PERF_FORMAT_ID)
4867 values[n++] = primary_event_id(leader);
3dab77fb 4868
edb39592 4869 for_each_sibling_event(sub, leader) {
fa8c2693
PZ
4870 values[n++] += perf_event_count(sub);
4871 if (read_format & PERF_FORMAT_ID)
4872 values[n++] = primary_event_id(sub);
4873 }
7d88962e 4874
2aeb1883 4875 raw_spin_unlock_irqrestore(&ctx->lock, flags);
7d88962e 4876 return 0;
fa8c2693 4877}
3dab77fb 4878
fa8c2693
PZ
4879static int perf_read_group(struct perf_event *event,
4880 u64 read_format, char __user *buf)
4881{
4882 struct perf_event *leader = event->group_leader, *child;
4883 struct perf_event_context *ctx = leader->ctx;
7d88962e 4884 int ret;
fa8c2693 4885 u64 *values;
3dab77fb 4886
fa8c2693 4887 lockdep_assert_held(&ctx->mutex);
3dab77fb 4888
fa8c2693
PZ
4889 values = kzalloc(event->read_size, GFP_KERNEL);
4890 if (!values)
4891 return -ENOMEM;
3dab77fb 4892
fa8c2693
PZ
4893 values[0] = 1 + leader->nr_siblings;
4894
4895 /*
4896 * By locking the child_mutex of the leader we effectively
4897 * lock the child list of all siblings.. XXX explain how.
4898 */
4899 mutex_lock(&leader->child_mutex);
abf4868b 4900
7d88962e
SB
4901 ret = __perf_read_group_add(leader, read_format, values);
4902 if (ret)
4903 goto unlock;
4904
4905 list_for_each_entry(child, &leader->child_list, child_list) {
4906 ret = __perf_read_group_add(child, read_format, values);
4907 if (ret)
4908 goto unlock;
4909 }
abf4868b 4910
fa8c2693 4911 mutex_unlock(&leader->child_mutex);
abf4868b 4912
7d88962e 4913 ret = event->read_size;
fa8c2693
PZ
4914 if (copy_to_user(buf, values, event->read_size))
4915 ret = -EFAULT;
7d88962e 4916 goto out;
fa8c2693 4917
7d88962e
SB
4918unlock:
4919 mutex_unlock(&leader->child_mutex);
4920out:
fa8c2693 4921 kfree(values);
abf4868b 4922 return ret;
3dab77fb
PZ
4923}
4924
b15f495b 4925static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4926 u64 read_format, char __user *buf)
4927{
59ed446f 4928 u64 enabled, running;
3dab77fb
PZ
4929 u64 values[4];
4930 int n = 0;
4931
ca0dd44c 4932 values[n++] = __perf_event_read_value(event, &enabled, &running);
59ed446f
PZ
4933 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4934 values[n++] = enabled;
4935 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4936 values[n++] = running;
3dab77fb 4937 if (read_format & PERF_FORMAT_ID)
cdd6c482 4938 values[n++] = primary_event_id(event);
3dab77fb
PZ
4939
4940 if (copy_to_user(buf, values, n * sizeof(u64)))
4941 return -EFAULT;
4942
4943 return n * sizeof(u64);
4944}
4945
dc633982
JO
4946static bool is_event_hup(struct perf_event *event)
4947{
4948 bool no_children;
4949
a69b0ca4 4950 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4951 return false;
4952
4953 mutex_lock(&event->child_mutex);
4954 no_children = list_empty(&event->child_list);
4955 mutex_unlock(&event->child_mutex);
4956 return no_children;
4957}
4958
0793a61d 4959/*
cdd6c482 4960 * Read the performance event - simple non blocking version for now
0793a61d
TG
4961 */
4962static ssize_t
b15f495b 4963__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4964{
cdd6c482 4965 u64 read_format = event->attr.read_format;
3dab77fb 4966 int ret;
0793a61d 4967
3b6f9e5c 4968 /*
788faab7 4969 * Return end-of-file for a read on an event that is in
3b6f9e5c
PM
4970 * error state (i.e. because it was pinned but it couldn't be
4971 * scheduled on to the CPU at some point).
4972 */
cdd6c482 4973 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4974 return 0;
4975
c320c7b7 4976 if (count < event->read_size)
3dab77fb
PZ
4977 return -ENOSPC;
4978
cdd6c482 4979 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4980 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4981 ret = perf_read_group(event, read_format, buf);
3dab77fb 4982 else
b15f495b 4983 ret = perf_read_one(event, read_format, buf);
0793a61d 4984
3dab77fb 4985 return ret;
0793a61d
TG
4986}
4987
0793a61d
TG
4988static ssize_t
4989perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4990{
cdd6c482 4991 struct perf_event *event = file->private_data;
f63a8daa
PZ
4992 struct perf_event_context *ctx;
4993 int ret;
0793a61d 4994
f63a8daa 4995 ctx = perf_event_ctx_lock(event);
b15f495b 4996 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4997 perf_event_ctx_unlock(event, ctx);
4998
4999 return ret;
0793a61d
TG
5000}
5001
9dd95748 5002static __poll_t perf_poll(struct file *file, poll_table *wait)
0793a61d 5003{
cdd6c482 5004 struct perf_event *event = file->private_data;
76369139 5005 struct ring_buffer *rb;
a9a08845 5006 __poll_t events = EPOLLHUP;
c7138f37 5007
e708d7ad 5008 poll_wait(file, &event->waitq, wait);
179033b3 5009
dc633982 5010 if (is_event_hup(event))
179033b3 5011 return events;
c7138f37 5012
10c6db11 5013 /*
9bb5d40c
PZ
5014 * Pin the event->rb by taking event->mmap_mutex; otherwise
5015 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
5016 */
5017 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
5018 rb = event->rb;
5019 if (rb)
76369139 5020 events = atomic_xchg(&rb->poll, 0);
10c6db11 5021 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
5022 return events;
5023}
5024
f63a8daa 5025static void _perf_event_reset(struct perf_event *event)
6de6a7b9 5026{
7d88962e 5027 (void)perf_event_read(event, false);
e7850595 5028 local64_set(&event->count, 0);
cdd6c482 5029 perf_event_update_userpage(event);
3df5edad
PZ
5030}
5031
c93f7669 5032/*
cdd6c482
IM
5033 * Holding the top-level event's child_mutex means that any
5034 * descendant process that has inherited this event will block
8ba289b8 5035 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 5036 * task existence requirements of perf_event_enable/disable.
c93f7669 5037 */
cdd6c482
IM
5038static void perf_event_for_each_child(struct perf_event *event,
5039 void (*func)(struct perf_event *))
3df5edad 5040{
cdd6c482 5041 struct perf_event *child;
3df5edad 5042
cdd6c482 5043 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 5044
cdd6c482
IM
5045 mutex_lock(&event->child_mutex);
5046 func(event);
5047 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 5048 func(child);
cdd6c482 5049 mutex_unlock(&event->child_mutex);
3df5edad
PZ
5050}
5051
cdd6c482
IM
5052static void perf_event_for_each(struct perf_event *event,
5053 void (*func)(struct perf_event *))
3df5edad 5054{
cdd6c482
IM
5055 struct perf_event_context *ctx = event->ctx;
5056 struct perf_event *sibling;
3df5edad 5057
f63a8daa
PZ
5058 lockdep_assert_held(&ctx->mutex);
5059
cdd6c482 5060 event = event->group_leader;
75f937f2 5061
cdd6c482 5062 perf_event_for_each_child(event, func);
edb39592 5063 for_each_sibling_event(sibling, event)
724b6daa 5064 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
5065}
5066
fae3fde6
PZ
5067static void __perf_event_period(struct perf_event *event,
5068 struct perf_cpu_context *cpuctx,
5069 struct perf_event_context *ctx,
5070 void *info)
c7999c6f 5071{
fae3fde6 5072 u64 value = *((u64 *)info);
c7999c6f 5073 bool active;
08247e31 5074
cdd6c482 5075 if (event->attr.freq) {
cdd6c482 5076 event->attr.sample_freq = value;
08247e31 5077 } else {
cdd6c482
IM
5078 event->attr.sample_period = value;
5079 event->hw.sample_period = value;
08247e31 5080 }
bad7192b
PZ
5081
5082 active = (event->state == PERF_EVENT_STATE_ACTIVE);
5083 if (active) {
5084 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
5085 /*
5086 * We could be throttled; unthrottle now to avoid the tick
5087 * trying to unthrottle while we already re-started the event.
5088 */
5089 if (event->hw.interrupts == MAX_INTERRUPTS) {
5090 event->hw.interrupts = 0;
5091 perf_log_throttle(event, 1);
5092 }
bad7192b
PZ
5093 event->pmu->stop(event, PERF_EF_UPDATE);
5094 }
5095
5096 local64_set(&event->hw.period_left, 0);
5097
5098 if (active) {
5099 event->pmu->start(event, PERF_EF_RELOAD);
5100 perf_pmu_enable(ctx->pmu);
5101 }
c7999c6f
PZ
5102}
5103
81ec3f3c
JO
5104static int perf_event_check_period(struct perf_event *event, u64 value)
5105{
5106 return event->pmu->check_period(event, value);
5107}
5108
c7999c6f
PZ
5109static int perf_event_period(struct perf_event *event, u64 __user *arg)
5110{
c7999c6f
PZ
5111 u64 value;
5112
5113 if (!is_sampling_event(event))
5114 return -EINVAL;
5115
5116 if (copy_from_user(&value, arg, sizeof(value)))
5117 return -EFAULT;
5118
5119 if (!value)
5120 return -EINVAL;
5121
5122 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5123 return -EINVAL;
5124
81ec3f3c
JO
5125 if (perf_event_check_period(event, value))
5126 return -EINVAL;
5127
913a90bc
RB
5128 if (!event->attr.freq && (value & (1ULL << 63)))
5129 return -EINVAL;
5130
fae3fde6 5131 event_function_call(event, __perf_event_period, &value);
08247e31 5132
c7999c6f 5133 return 0;
08247e31
PZ
5134}
5135
ac9721f3
PZ
5136static const struct file_operations perf_fops;
5137
2903ff01 5138static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 5139{
2903ff01
AV
5140 struct fd f = fdget(fd);
5141 if (!f.file)
5142 return -EBADF;
ac9721f3 5143
2903ff01
AV
5144 if (f.file->f_op != &perf_fops) {
5145 fdput(f);
5146 return -EBADF;
ac9721f3 5147 }
2903ff01
AV
5148 *p = f;
5149 return 0;
ac9721f3
PZ
5150}
5151
5152static int perf_event_set_output(struct perf_event *event,
5153 struct perf_event *output_event);
6fb2915d 5154static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 5155static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
32ff77e8
MC
5156static int perf_copy_attr(struct perf_event_attr __user *uattr,
5157 struct perf_event_attr *attr);
a4be7c27 5158
f63a8daa 5159static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 5160{
cdd6c482 5161 void (*func)(struct perf_event *);
3df5edad 5162 u32 flags = arg;
d859e29f
PM
5163
5164 switch (cmd) {
cdd6c482 5165 case PERF_EVENT_IOC_ENABLE:
f63a8daa 5166 func = _perf_event_enable;
d859e29f 5167 break;
cdd6c482 5168 case PERF_EVENT_IOC_DISABLE:
f63a8daa 5169 func = _perf_event_disable;
79f14641 5170 break;
cdd6c482 5171 case PERF_EVENT_IOC_RESET:
f63a8daa 5172 func = _perf_event_reset;
6de6a7b9 5173 break;
3df5edad 5174
cdd6c482 5175 case PERF_EVENT_IOC_REFRESH:
f63a8daa 5176 return _perf_event_refresh(event, arg);
08247e31 5177
cdd6c482
IM
5178 case PERF_EVENT_IOC_PERIOD:
5179 return perf_event_period(event, (u64 __user *)arg);
08247e31 5180
cf4957f1
JO
5181 case PERF_EVENT_IOC_ID:
5182 {
5183 u64 id = primary_event_id(event);
5184
5185 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5186 return -EFAULT;
5187 return 0;
5188 }
5189
cdd6c482 5190 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 5191 {
ac9721f3 5192 int ret;
ac9721f3 5193 if (arg != -1) {
2903ff01
AV
5194 struct perf_event *output_event;
5195 struct fd output;
5196 ret = perf_fget_light(arg, &output);
5197 if (ret)
5198 return ret;
5199 output_event = output.file->private_data;
5200 ret = perf_event_set_output(event, output_event);
5201 fdput(output);
5202 } else {
5203 ret = perf_event_set_output(event, NULL);
ac9721f3 5204 }
ac9721f3
PZ
5205 return ret;
5206 }
a4be7c27 5207
6fb2915d
LZ
5208 case PERF_EVENT_IOC_SET_FILTER:
5209 return perf_event_set_filter(event, (void __user *)arg);
5210
2541517c
AS
5211 case PERF_EVENT_IOC_SET_BPF:
5212 return perf_event_set_bpf_prog(event, arg);
5213
86e7972f
WN
5214 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5215 struct ring_buffer *rb;
5216
5217 rcu_read_lock();
5218 rb = rcu_dereference(event->rb);
5219 if (!rb || !rb->nr_pages) {
5220 rcu_read_unlock();
5221 return -EINVAL;
5222 }
5223 rb_toggle_paused(rb, !!arg);
5224 rcu_read_unlock();
5225 return 0;
5226 }
f371b304
YS
5227
5228 case PERF_EVENT_IOC_QUERY_BPF:
f4e2298e 5229 return perf_event_query_prog_array(event, (void __user *)arg);
32ff77e8
MC
5230
5231 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5232 struct perf_event_attr new_attr;
5233 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5234 &new_attr);
5235
5236 if (err)
5237 return err;
5238
5239 return perf_event_modify_attr(event, &new_attr);
5240 }
d859e29f 5241 default:
3df5edad 5242 return -ENOTTY;
d859e29f 5243 }
3df5edad
PZ
5244
5245 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 5246 perf_event_for_each(event, func);
3df5edad 5247 else
cdd6c482 5248 perf_event_for_each_child(event, func);
3df5edad
PZ
5249
5250 return 0;
d859e29f
PM
5251}
5252
f63a8daa
PZ
5253static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5254{
5255 struct perf_event *event = file->private_data;
5256 struct perf_event_context *ctx;
5257 long ret;
5258
5259 ctx = perf_event_ctx_lock(event);
5260 ret = _perf_ioctl(event, cmd, arg);
5261 perf_event_ctx_unlock(event, ctx);
5262
5263 return ret;
5264}
5265
b3f20785
PM
5266#ifdef CONFIG_COMPAT
5267static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5268 unsigned long arg)
5269{
5270 switch (_IOC_NR(cmd)) {
5271 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5272 case _IOC_NR(PERF_EVENT_IOC_ID):
82489c5f
ES
5273 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5274 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
b3f20785
PM
5275 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5276 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5277 cmd &= ~IOCSIZE_MASK;
5278 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5279 }
5280 break;
5281 }
5282 return perf_ioctl(file, cmd, arg);
5283}
5284#else
5285# define perf_compat_ioctl NULL
5286#endif
5287
cdd6c482 5288int perf_event_task_enable(void)
771d7cde 5289{
f63a8daa 5290 struct perf_event_context *ctx;
cdd6c482 5291 struct perf_event *event;
771d7cde 5292
cdd6c482 5293 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
5294 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5295 ctx = perf_event_ctx_lock(event);
5296 perf_event_for_each_child(event, _perf_event_enable);
5297 perf_event_ctx_unlock(event, ctx);
5298 }
cdd6c482 5299 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
5300
5301 return 0;
5302}
5303
cdd6c482 5304int perf_event_task_disable(void)
771d7cde 5305{
f63a8daa 5306 struct perf_event_context *ctx;
cdd6c482 5307 struct perf_event *event;
771d7cde 5308
cdd6c482 5309 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
5310 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5311 ctx = perf_event_ctx_lock(event);
5312 perf_event_for_each_child(event, _perf_event_disable);
5313 perf_event_ctx_unlock(event, ctx);
5314 }
cdd6c482 5315 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
5316
5317 return 0;
5318}
5319
cdd6c482 5320static int perf_event_index(struct perf_event *event)
194002b2 5321{
a4eaf7f1
PZ
5322 if (event->hw.state & PERF_HES_STOPPED)
5323 return 0;
5324
cdd6c482 5325 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
5326 return 0;
5327
35edc2a5 5328 return event->pmu->event_idx(event);
194002b2
PZ
5329}
5330
c4794295 5331static void calc_timer_values(struct perf_event *event,
e3f3541c 5332 u64 *now,
7f310a5d
EM
5333 u64 *enabled,
5334 u64 *running)
c4794295 5335{
e3f3541c 5336 u64 ctx_time;
c4794295 5337
e3f3541c
PZ
5338 *now = perf_clock();
5339 ctx_time = event->shadow_ctx_time + *now;
0d3d73aa 5340 __perf_update_times(event, ctx_time, enabled, running);
c4794295
EM
5341}
5342
fa731587
PZ
5343static void perf_event_init_userpage(struct perf_event *event)
5344{
5345 struct perf_event_mmap_page *userpg;
5346 struct ring_buffer *rb;
5347
5348 rcu_read_lock();
5349 rb = rcu_dereference(event->rb);
5350 if (!rb)
5351 goto unlock;
5352
5353 userpg = rb->user_page;
5354
5355 /* Allow new userspace to detect that bit 0 is deprecated */
5356 userpg->cap_bit0_is_deprecated = 1;
5357 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
5358 userpg->data_offset = PAGE_SIZE;
5359 userpg->data_size = perf_data_size(rb);
fa731587
PZ
5360
5361unlock:
5362 rcu_read_unlock();
5363}
5364
c1317ec2
AL
5365void __weak arch_perf_update_userpage(
5366 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
5367{
5368}
5369
38ff667b
PZ
5370/*
5371 * Callers need to ensure there can be no nesting of this function, otherwise
5372 * the seqlock logic goes bad. We can not serialize this because the arch
5373 * code calls this from NMI context.
5374 */
cdd6c482 5375void perf_event_update_userpage(struct perf_event *event)
37d81828 5376{
cdd6c482 5377 struct perf_event_mmap_page *userpg;
76369139 5378 struct ring_buffer *rb;
e3f3541c 5379 u64 enabled, running, now;
38ff667b
PZ
5380
5381 rcu_read_lock();
5ec4c599
PZ
5382 rb = rcu_dereference(event->rb);
5383 if (!rb)
5384 goto unlock;
5385
0d641208
EM
5386 /*
5387 * compute total_time_enabled, total_time_running
5388 * based on snapshot values taken when the event
5389 * was last scheduled in.
5390 *
5391 * we cannot simply called update_context_time()
5392 * because of locking issue as we can be called in
5393 * NMI context
5394 */
e3f3541c 5395 calc_timer_values(event, &now, &enabled, &running);
38ff667b 5396
76369139 5397 userpg = rb->user_page;
7b732a75 5398 /*
9d2dcc8f
MF
5399 * Disable preemption to guarantee consistent time stamps are stored to
5400 * the user page.
7b732a75
PZ
5401 */
5402 preempt_disable();
37d81828 5403 ++userpg->lock;
92f22a38 5404 barrier();
cdd6c482 5405 userpg->index = perf_event_index(event);
b5e58793 5406 userpg->offset = perf_event_count(event);
365a4038 5407 if (userpg->index)
e7850595 5408 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 5409
0d641208 5410 userpg->time_enabled = enabled +
cdd6c482 5411 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 5412
0d641208 5413 userpg->time_running = running +
cdd6c482 5414 atomic64_read(&event->child_total_time_running);
7f8b4e4e 5415
c1317ec2 5416 arch_perf_update_userpage(event, userpg, now);
e3f3541c 5417
92f22a38 5418 barrier();
37d81828 5419 ++userpg->lock;
7b732a75 5420 preempt_enable();
38ff667b 5421unlock:
7b732a75 5422 rcu_read_unlock();
37d81828 5423}
82975c46 5424EXPORT_SYMBOL_GPL(perf_event_update_userpage);
37d81828 5425
9e3ed2d7 5426static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
906010b2 5427{
11bac800 5428 struct perf_event *event = vmf->vma->vm_file->private_data;
76369139 5429 struct ring_buffer *rb;
9e3ed2d7 5430 vm_fault_t ret = VM_FAULT_SIGBUS;
906010b2
PZ
5431
5432 if (vmf->flags & FAULT_FLAG_MKWRITE) {
5433 if (vmf->pgoff == 0)
5434 ret = 0;
5435 return ret;
5436 }
5437
5438 rcu_read_lock();
76369139
FW
5439 rb = rcu_dereference(event->rb);
5440 if (!rb)
906010b2
PZ
5441 goto unlock;
5442
5443 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5444 goto unlock;
5445
76369139 5446 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
5447 if (!vmf->page)
5448 goto unlock;
5449
5450 get_page(vmf->page);
11bac800 5451 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
906010b2
PZ
5452 vmf->page->index = vmf->pgoff;
5453
5454 ret = 0;
5455unlock:
5456 rcu_read_unlock();
5457
5458 return ret;
5459}
5460
10c6db11
PZ
5461static void ring_buffer_attach(struct perf_event *event,
5462 struct ring_buffer *rb)
5463{
b69cf536 5464 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
5465 unsigned long flags;
5466
b69cf536
PZ
5467 if (event->rb) {
5468 /*
5469 * Should be impossible, we set this when removing
5470 * event->rb_entry and wait/clear when adding event->rb_entry.
5471 */
5472 WARN_ON_ONCE(event->rcu_pending);
10c6db11 5473
b69cf536 5474 old_rb = event->rb;
b69cf536
PZ
5475 spin_lock_irqsave(&old_rb->event_lock, flags);
5476 list_del_rcu(&event->rb_entry);
5477 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 5478
2f993cf0
ON
5479 event->rcu_batches = get_state_synchronize_rcu();
5480 event->rcu_pending = 1;
b69cf536 5481 }
10c6db11 5482
b69cf536 5483 if (rb) {
2f993cf0
ON
5484 if (event->rcu_pending) {
5485 cond_synchronize_rcu(event->rcu_batches);
5486 event->rcu_pending = 0;
5487 }
5488
b69cf536
PZ
5489 spin_lock_irqsave(&rb->event_lock, flags);
5490 list_add_rcu(&event->rb_entry, &rb->event_list);
5491 spin_unlock_irqrestore(&rb->event_lock, flags);
5492 }
5493
767ae086
AS
5494 /*
5495 * Avoid racing with perf_mmap_close(AUX): stop the event
5496 * before swizzling the event::rb pointer; if it's getting
5497 * unmapped, its aux_mmap_count will be 0 and it won't
5498 * restart. See the comment in __perf_pmu_output_stop().
5499 *
5500 * Data will inevitably be lost when set_output is done in
5501 * mid-air, but then again, whoever does it like this is
5502 * not in for the data anyway.
5503 */
5504 if (has_aux(event))
5505 perf_event_stop(event, 0);
5506
b69cf536
PZ
5507 rcu_assign_pointer(event->rb, rb);
5508
5509 if (old_rb) {
5510 ring_buffer_put(old_rb);
5511 /*
5512 * Since we detached before setting the new rb, so that we
5513 * could attach the new rb, we could have missed a wakeup.
5514 * Provide it now.
5515 */
5516 wake_up_all(&event->waitq);
5517 }
10c6db11
PZ
5518}
5519
5520static void ring_buffer_wakeup(struct perf_event *event)
5521{
5522 struct ring_buffer *rb;
5523
5524 rcu_read_lock();
5525 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
5526 if (rb) {
5527 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5528 wake_up_all(&event->waitq);
5529 }
10c6db11
PZ
5530 rcu_read_unlock();
5531}
5532
fdc26706 5533struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 5534{
76369139 5535 struct ring_buffer *rb;
7b732a75 5536
ac9721f3 5537 rcu_read_lock();
76369139
FW
5538 rb = rcu_dereference(event->rb);
5539 if (rb) {
fecb8ed2 5540 if (!refcount_inc_not_zero(&rb->refcount))
76369139 5541 rb = NULL;
ac9721f3
PZ
5542 }
5543 rcu_read_unlock();
5544
76369139 5545 return rb;
ac9721f3
PZ
5546}
5547
fdc26706 5548void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 5549{
fecb8ed2 5550 if (!refcount_dec_and_test(&rb->refcount))
ac9721f3 5551 return;
7b732a75 5552
9bb5d40c 5553 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 5554
76369139 5555 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
5556}
5557
5558static void perf_mmap_open(struct vm_area_struct *vma)
5559{
cdd6c482 5560 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5561
cdd6c482 5562 atomic_inc(&event->mmap_count);
9bb5d40c 5563 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 5564
45bfb2e5
PZ
5565 if (vma->vm_pgoff)
5566 atomic_inc(&event->rb->aux_mmap_count);
5567
1e0fb9ec 5568 if (event->pmu->event_mapped)
bfe33492 5569 event->pmu->event_mapped(event, vma->vm_mm);
7b732a75
PZ
5570}
5571
95ff4ca2
AS
5572static void perf_pmu_output_stop(struct perf_event *event);
5573
9bb5d40c
PZ
5574/*
5575 * A buffer can be mmap()ed multiple times; either directly through the same
5576 * event, or through other events by use of perf_event_set_output().
5577 *
5578 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5579 * the buffer here, where we still have a VM context. This means we need
5580 * to detach all events redirecting to us.
5581 */
7b732a75
PZ
5582static void perf_mmap_close(struct vm_area_struct *vma)
5583{
cdd6c482 5584 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5585
b69cf536 5586 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
5587 struct user_struct *mmap_user = rb->mmap_user;
5588 int mmap_locked = rb->mmap_locked;
5589 unsigned long size = perf_data_size(rb);
789f90fc 5590
1e0fb9ec 5591 if (event->pmu->event_unmapped)
bfe33492 5592 event->pmu->event_unmapped(event, vma->vm_mm);
1e0fb9ec 5593
45bfb2e5
PZ
5594 /*
5595 * rb->aux_mmap_count will always drop before rb->mmap_count and
5596 * event->mmap_count, so it is ok to use event->mmap_mutex to
5597 * serialize with perf_mmap here.
5598 */
5599 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5600 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
5601 /*
5602 * Stop all AUX events that are writing to this buffer,
5603 * so that we can free its AUX pages and corresponding PMU
5604 * data. Note that after rb::aux_mmap_count dropped to zero,
5605 * they won't start any more (see perf_aux_output_begin()).
5606 */
5607 perf_pmu_output_stop(event);
5608
5609 /* now it's safe to free the pages */
5e6c3c7b
TR
5610 if (!rb->aux_mmap_locked)
5611 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5612 else
5613 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
45bfb2e5 5614
95ff4ca2 5615 /* this has to be the last one */
45bfb2e5 5616 rb_free_aux(rb);
ca3bb3d0 5617 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
95ff4ca2 5618
45bfb2e5
PZ
5619 mutex_unlock(&event->mmap_mutex);
5620 }
5621
9bb5d40c
PZ
5622 atomic_dec(&rb->mmap_count);
5623
5624 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 5625 goto out_put;
9bb5d40c 5626
b69cf536 5627 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
5628 mutex_unlock(&event->mmap_mutex);
5629
5630 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
5631 if (atomic_read(&rb->mmap_count))
5632 goto out_put;
ac9721f3 5633
9bb5d40c
PZ
5634 /*
5635 * No other mmap()s, detach from all other events that might redirect
5636 * into the now unreachable buffer. Somewhat complicated by the
5637 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5638 */
5639again:
5640 rcu_read_lock();
5641 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5642 if (!atomic_long_inc_not_zero(&event->refcount)) {
5643 /*
5644 * This event is en-route to free_event() which will
5645 * detach it and remove it from the list.
5646 */
5647 continue;
5648 }
5649 rcu_read_unlock();
789f90fc 5650
9bb5d40c
PZ
5651 mutex_lock(&event->mmap_mutex);
5652 /*
5653 * Check we didn't race with perf_event_set_output() which can
5654 * swizzle the rb from under us while we were waiting to
5655 * acquire mmap_mutex.
5656 *
5657 * If we find a different rb; ignore this event, a next
5658 * iteration will no longer find it on the list. We have to
5659 * still restart the iteration to make sure we're not now
5660 * iterating the wrong list.
5661 */
b69cf536
PZ
5662 if (event->rb == rb)
5663 ring_buffer_attach(event, NULL);
5664
cdd6c482 5665 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5666 put_event(event);
ac9721f3 5667
9bb5d40c
PZ
5668 /*
5669 * Restart the iteration; either we're on the wrong list or
5670 * destroyed its integrity by doing a deletion.
5671 */
5672 goto again;
7b732a75 5673 }
9bb5d40c
PZ
5674 rcu_read_unlock();
5675
5676 /*
5677 * It could be there's still a few 0-ref events on the list; they'll
5678 * get cleaned up by free_event() -- they'll also still have their
5679 * ref on the rb and will free it whenever they are done with it.
5680 *
5681 * Aside from that, this buffer is 'fully' detached and unmapped,
5682 * undo the VM accounting.
5683 */
5684
d44248a4
SL
5685 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
5686 &mmap_user->locked_vm);
70f8a3ca 5687 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
9bb5d40c
PZ
5688 free_uid(mmap_user);
5689
b69cf536 5690out_put:
9bb5d40c 5691 ring_buffer_put(rb); /* could be last */
37d81828
PM
5692}
5693
f0f37e2f 5694static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5695 .open = perf_mmap_open,
fca0c116 5696 .close = perf_mmap_close, /* non mergeable */
43a21ea8
PZ
5697 .fault = perf_mmap_fault,
5698 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5699};
5700
5701static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5702{
cdd6c482 5703 struct perf_event *event = file->private_data;
22a4f650 5704 unsigned long user_locked, user_lock_limit;
789f90fc 5705 struct user_struct *user = current_user();
22a4f650 5706 unsigned long locked, lock_limit;
45bfb2e5 5707 struct ring_buffer *rb = NULL;
7b732a75
PZ
5708 unsigned long vma_size;
5709 unsigned long nr_pages;
45bfb2e5 5710 long user_extra = 0, extra = 0;
d57e34fd 5711 int ret = 0, flags = 0;
37d81828 5712
c7920614
PZ
5713 /*
5714 * Don't allow mmap() of inherited per-task counters. This would
5715 * create a performance issue due to all children writing to the
76369139 5716 * same rb.
c7920614
PZ
5717 */
5718 if (event->cpu == -1 && event->attr.inherit)
5719 return -EINVAL;
5720
43a21ea8 5721 if (!(vma->vm_flags & VM_SHARED))
37d81828 5722 return -EINVAL;
7b732a75
PZ
5723
5724 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
5725
5726 if (vma->vm_pgoff == 0) {
5727 nr_pages = (vma_size / PAGE_SIZE) - 1;
5728 } else {
5729 /*
5730 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5731 * mapped, all subsequent mappings should have the same size
5732 * and offset. Must be above the normal perf buffer.
5733 */
5734 u64 aux_offset, aux_size;
5735
5736 if (!event->rb)
5737 return -EINVAL;
5738
5739 nr_pages = vma_size / PAGE_SIZE;
5740
5741 mutex_lock(&event->mmap_mutex);
5742 ret = -EINVAL;
5743
5744 rb = event->rb;
5745 if (!rb)
5746 goto aux_unlock;
5747
6aa7de05
MR
5748 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5749 aux_size = READ_ONCE(rb->user_page->aux_size);
45bfb2e5
PZ
5750
5751 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5752 goto aux_unlock;
5753
5754 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5755 goto aux_unlock;
5756
5757 /* already mapped with a different offset */
5758 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5759 goto aux_unlock;
5760
5761 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5762 goto aux_unlock;
5763
5764 /* already mapped with a different size */
5765 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5766 goto aux_unlock;
5767
5768 if (!is_power_of_2(nr_pages))
5769 goto aux_unlock;
5770
5771 if (!atomic_inc_not_zero(&rb->mmap_count))
5772 goto aux_unlock;
5773
5774 if (rb_has_aux(rb)) {
5775 atomic_inc(&rb->aux_mmap_count);
5776 ret = 0;
5777 goto unlock;
5778 }
5779
5780 atomic_set(&rb->aux_mmap_count, 1);
5781 user_extra = nr_pages;
5782
5783 goto accounting;
5784 }
7b732a75 5785
7730d865 5786 /*
76369139 5787 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
5788 * can do bitmasks instead of modulo.
5789 */
2ed11312 5790 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
5791 return -EINVAL;
5792
7b732a75 5793 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
5794 return -EINVAL;
5795
cdd6c482 5796 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 5797again:
cdd6c482 5798 mutex_lock(&event->mmap_mutex);
76369139 5799 if (event->rb) {
9bb5d40c 5800 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 5801 ret = -EINVAL;
9bb5d40c
PZ
5802 goto unlock;
5803 }
5804
5805 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5806 /*
5807 * Raced against perf_mmap_close() through
5808 * perf_event_set_output(). Try again, hope for better
5809 * luck.
5810 */
5811 mutex_unlock(&event->mmap_mutex);
5812 goto again;
5813 }
5814
ebb3c4c4
PZ
5815 goto unlock;
5816 }
5817
789f90fc 5818 user_extra = nr_pages + 1;
45bfb2e5
PZ
5819
5820accounting:
cdd6c482 5821 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
5822
5823 /*
5824 * Increase the limit linearly with more CPUs:
5825 */
5826 user_lock_limit *= num_online_cpus();
5827
789f90fc 5828 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 5829
d44248a4
SL
5830 if (user_locked <= user_lock_limit) {
5831 /* charge all to locked_vm */
5832 } else if (atomic_long_read(&user->locked_vm) >= user_lock_limit) {
5833 /* charge all to pinned_vm */
5834 extra = user_extra;
5835 user_extra = 0;
5836 } else {
5837 /*
5838 * charge locked_vm until it hits user_lock_limit;
5839 * charge the rest from pinned_vm
5840 */
789f90fc 5841 extra = user_locked - user_lock_limit;
d44248a4
SL
5842 user_extra -= extra;
5843 }
7b732a75 5844
78d7d407 5845 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 5846 lock_limit >>= PAGE_SHIFT;
70f8a3ca 5847 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
7b732a75 5848
459ec28a
IM
5849 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5850 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
5851 ret = -EPERM;
5852 goto unlock;
5853 }
7b732a75 5854
45bfb2e5 5855 WARN_ON(!rb && event->rb);
906010b2 5856
d57e34fd 5857 if (vma->vm_flags & VM_WRITE)
76369139 5858 flags |= RING_BUFFER_WRITABLE;
d57e34fd 5859
76369139 5860 if (!rb) {
45bfb2e5
PZ
5861 rb = rb_alloc(nr_pages,
5862 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5863 event->cpu, flags);
26cb63ad 5864
45bfb2e5
PZ
5865 if (!rb) {
5866 ret = -ENOMEM;
5867 goto unlock;
5868 }
43a21ea8 5869
45bfb2e5
PZ
5870 atomic_set(&rb->mmap_count, 1);
5871 rb->mmap_user = get_current_user();
5872 rb->mmap_locked = extra;
26cb63ad 5873
45bfb2e5 5874 ring_buffer_attach(event, rb);
ac9721f3 5875
45bfb2e5
PZ
5876 perf_event_init_userpage(event);
5877 perf_event_update_userpage(event);
5878 } else {
1a594131
AS
5879 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5880 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5881 if (!ret)
5882 rb->aux_mmap_locked = extra;
5883 }
9a0f05cb 5884
ebb3c4c4 5885unlock:
45bfb2e5
PZ
5886 if (!ret) {
5887 atomic_long_add(user_extra, &user->locked_vm);
70f8a3ca 5888 atomic64_add(extra, &vma->vm_mm->pinned_vm);
45bfb2e5 5889
ac9721f3 5890 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5891 } else if (rb) {
5892 atomic_dec(&rb->mmap_count);
5893 }
5894aux_unlock:
cdd6c482 5895 mutex_unlock(&event->mmap_mutex);
37d81828 5896
9bb5d40c
PZ
5897 /*
5898 * Since pinned accounting is per vm we cannot allow fork() to copy our
5899 * vma.
5900 */
26cb63ad 5901 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5902 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5903
1e0fb9ec 5904 if (event->pmu->event_mapped)
bfe33492 5905 event->pmu->event_mapped(event, vma->vm_mm);
1e0fb9ec 5906
7b732a75 5907 return ret;
37d81828
PM
5908}
5909
3c446b3d
PZ
5910static int perf_fasync(int fd, struct file *filp, int on)
5911{
496ad9aa 5912 struct inode *inode = file_inode(filp);
cdd6c482 5913 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5914 int retval;
5915
5955102c 5916 inode_lock(inode);
cdd6c482 5917 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5918 inode_unlock(inode);
3c446b3d
PZ
5919
5920 if (retval < 0)
5921 return retval;
5922
5923 return 0;
5924}
5925
0793a61d 5926static const struct file_operations perf_fops = {
3326c1ce 5927 .llseek = no_llseek,
0793a61d
TG
5928 .release = perf_release,
5929 .read = perf_read,
5930 .poll = perf_poll,
d859e29f 5931 .unlocked_ioctl = perf_ioctl,
b3f20785 5932 .compat_ioctl = perf_compat_ioctl,
37d81828 5933 .mmap = perf_mmap,
3c446b3d 5934 .fasync = perf_fasync,
0793a61d
TG
5935};
5936
925d519a 5937/*
cdd6c482 5938 * Perf event wakeup
925d519a
PZ
5939 *
5940 * If there's data, ensure we set the poll() state and publish everything
5941 * to user-space before waking everybody up.
5942 */
5943
fed66e2c
PZ
5944static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5945{
5946 /* only the parent has fasync state */
5947 if (event->parent)
5948 event = event->parent;
5949 return &event->fasync;
5950}
5951
cdd6c482 5952void perf_event_wakeup(struct perf_event *event)
925d519a 5953{
10c6db11 5954 ring_buffer_wakeup(event);
4c9e2542 5955
cdd6c482 5956 if (event->pending_kill) {
fed66e2c 5957 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5958 event->pending_kill = 0;
4c9e2542 5959 }
925d519a
PZ
5960}
5961
1d54ad94
PZ
5962static void perf_pending_event_disable(struct perf_event *event)
5963{
5964 int cpu = READ_ONCE(event->pending_disable);
5965
5966 if (cpu < 0)
5967 return;
5968
5969 if (cpu == smp_processor_id()) {
5970 WRITE_ONCE(event->pending_disable, -1);
5971 perf_event_disable_local(event);
5972 return;
5973 }
5974
5975 /*
5976 * CPU-A CPU-B
5977 *
5978 * perf_event_disable_inatomic()
5979 * @pending_disable = CPU-A;
5980 * irq_work_queue();
5981 *
5982 * sched-out
5983 * @pending_disable = -1;
5984 *
5985 * sched-in
5986 * perf_event_disable_inatomic()
5987 * @pending_disable = CPU-B;
5988 * irq_work_queue(); // FAILS
5989 *
5990 * irq_work_run()
5991 * perf_pending_event()
5992 *
5993 * But the event runs on CPU-B and wants disabling there.
5994 */
5995 irq_work_queue_on(&event->pending, cpu);
5996}
5997
e360adbe 5998static void perf_pending_event(struct irq_work *entry)
79f14641 5999{
1d54ad94 6000 struct perf_event *event = container_of(entry, struct perf_event, pending);
d525211f
PZ
6001 int rctx;
6002
6003 rctx = perf_swevent_get_recursion_context();
6004 /*
6005 * If we 'fail' here, that's OK, it means recursion is already disabled
6006 * and we won't recurse 'further'.
6007 */
79f14641 6008
1d54ad94 6009 perf_pending_event_disable(event);
79f14641 6010
cdd6c482
IM
6011 if (event->pending_wakeup) {
6012 event->pending_wakeup = 0;
6013 perf_event_wakeup(event);
79f14641 6014 }
d525211f
PZ
6015
6016 if (rctx >= 0)
6017 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
6018}
6019
39447b38
ZY
6020/*
6021 * We assume there is only KVM supporting the callbacks.
6022 * Later on, we might change it to a list if there is
6023 * another virtualization implementation supporting the callbacks.
6024 */
6025struct perf_guest_info_callbacks *perf_guest_cbs;
6026
6027int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6028{
6029 perf_guest_cbs = cbs;
6030 return 0;
6031}
6032EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6033
6034int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6035{
6036 perf_guest_cbs = NULL;
6037 return 0;
6038}
6039EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6040
4018994f
JO
6041static void
6042perf_output_sample_regs(struct perf_output_handle *handle,
6043 struct pt_regs *regs, u64 mask)
6044{
6045 int bit;
29dd3288 6046 DECLARE_BITMAP(_mask, 64);
4018994f 6047
29dd3288
MS
6048 bitmap_from_u64(_mask, mask);
6049 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
6050 u64 val;
6051
6052 val = perf_reg_value(regs, bit);
6053 perf_output_put(handle, val);
6054 }
6055}
6056
60e2364e 6057static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
6058 struct pt_regs *regs,
6059 struct pt_regs *regs_user_copy)
4018994f 6060{
88a7c26a
AL
6061 if (user_mode(regs)) {
6062 regs_user->abi = perf_reg_abi(current);
2565711f 6063 regs_user->regs = regs;
085ebfe9 6064 } else if (!(current->flags & PF_KTHREAD)) {
88a7c26a 6065 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
6066 } else {
6067 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6068 regs_user->regs = NULL;
4018994f
JO
6069 }
6070}
6071
60e2364e
SE
6072static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6073 struct pt_regs *regs)
6074{
6075 regs_intr->regs = regs;
6076 regs_intr->abi = perf_reg_abi(current);
6077}
6078
6079
c5ebcedb
JO
6080/*
6081 * Get remaining task size from user stack pointer.
6082 *
6083 * It'd be better to take stack vma map and limit this more
9f014e3a 6084 * precisely, but there's no way to get it safely under interrupt,
c5ebcedb
JO
6085 * so using TASK_SIZE as limit.
6086 */
6087static u64 perf_ustack_task_size(struct pt_regs *regs)
6088{
6089 unsigned long addr = perf_user_stack_pointer(regs);
6090
6091 if (!addr || addr >= TASK_SIZE)
6092 return 0;
6093
6094 return TASK_SIZE - addr;
6095}
6096
6097static u16
6098perf_sample_ustack_size(u16 stack_size, u16 header_size,
6099 struct pt_regs *regs)
6100{
6101 u64 task_size;
6102
6103 /* No regs, no stack pointer, no dump. */
6104 if (!regs)
6105 return 0;
6106
6107 /*
6108 * Check if we fit in with the requested stack size into the:
6109 * - TASK_SIZE
6110 * If we don't, we limit the size to the TASK_SIZE.
6111 *
6112 * - remaining sample size
6113 * If we don't, we customize the stack size to
6114 * fit in to the remaining sample size.
6115 */
6116
6117 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6118 stack_size = min(stack_size, (u16) task_size);
6119
6120 /* Current header size plus static size and dynamic size. */
6121 header_size += 2 * sizeof(u64);
6122
6123 /* Do we fit in with the current stack dump size? */
6124 if ((u16) (header_size + stack_size) < header_size) {
6125 /*
6126 * If we overflow the maximum size for the sample,
6127 * we customize the stack dump size to fit in.
6128 */
6129 stack_size = USHRT_MAX - header_size - sizeof(u64);
6130 stack_size = round_up(stack_size, sizeof(u64));
6131 }
6132
6133 return stack_size;
6134}
6135
6136static void
6137perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6138 struct pt_regs *regs)
6139{
6140 /* Case of a kernel thread, nothing to dump */
6141 if (!regs) {
6142 u64 size = 0;
6143 perf_output_put(handle, size);
6144 } else {
6145 unsigned long sp;
6146 unsigned int rem;
6147 u64 dyn_size;
02e18447 6148 mm_segment_t fs;
c5ebcedb
JO
6149
6150 /*
6151 * We dump:
6152 * static size
6153 * - the size requested by user or the best one we can fit
6154 * in to the sample max size
6155 * data
6156 * - user stack dump data
6157 * dynamic size
6158 * - the actual dumped size
6159 */
6160
6161 /* Static size. */
6162 perf_output_put(handle, dump_size);
6163
6164 /* Data. */
6165 sp = perf_user_stack_pointer(regs);
02e18447
YC
6166 fs = get_fs();
6167 set_fs(USER_DS);
c5ebcedb 6168 rem = __output_copy_user(handle, (void *) sp, dump_size);
02e18447 6169 set_fs(fs);
c5ebcedb
JO
6170 dyn_size = dump_size - rem;
6171
6172 perf_output_skip(handle, rem);
6173
6174 /* Dynamic size. */
6175 perf_output_put(handle, dyn_size);
6176 }
6177}
6178
c980d109
ACM
6179static void __perf_event_header__init_id(struct perf_event_header *header,
6180 struct perf_sample_data *data,
6181 struct perf_event *event)
6844c09d
ACM
6182{
6183 u64 sample_type = event->attr.sample_type;
6184
6185 data->type = sample_type;
6186 header->size += event->id_header_size;
6187
6188 if (sample_type & PERF_SAMPLE_TID) {
6189 /* namespace issues */
6190 data->tid_entry.pid = perf_event_pid(event, current);
6191 data->tid_entry.tid = perf_event_tid(event, current);
6192 }
6193
6194 if (sample_type & PERF_SAMPLE_TIME)
34f43927 6195 data->time = perf_event_clock(event);
6844c09d 6196
ff3d527c 6197 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
6198 data->id = primary_event_id(event);
6199
6200 if (sample_type & PERF_SAMPLE_STREAM_ID)
6201 data->stream_id = event->id;
6202
6203 if (sample_type & PERF_SAMPLE_CPU) {
6204 data->cpu_entry.cpu = raw_smp_processor_id();
6205 data->cpu_entry.reserved = 0;
6206 }
6207}
6208
76369139
FW
6209void perf_event_header__init_id(struct perf_event_header *header,
6210 struct perf_sample_data *data,
6211 struct perf_event *event)
c980d109
ACM
6212{
6213 if (event->attr.sample_id_all)
6214 __perf_event_header__init_id(header, data, event);
6215}
6216
6217static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6218 struct perf_sample_data *data)
6219{
6220 u64 sample_type = data->type;
6221
6222 if (sample_type & PERF_SAMPLE_TID)
6223 perf_output_put(handle, data->tid_entry);
6224
6225 if (sample_type & PERF_SAMPLE_TIME)
6226 perf_output_put(handle, data->time);
6227
6228 if (sample_type & PERF_SAMPLE_ID)
6229 perf_output_put(handle, data->id);
6230
6231 if (sample_type & PERF_SAMPLE_STREAM_ID)
6232 perf_output_put(handle, data->stream_id);
6233
6234 if (sample_type & PERF_SAMPLE_CPU)
6235 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
6236
6237 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6238 perf_output_put(handle, data->id);
c980d109
ACM
6239}
6240
76369139
FW
6241void perf_event__output_id_sample(struct perf_event *event,
6242 struct perf_output_handle *handle,
6243 struct perf_sample_data *sample)
c980d109
ACM
6244{
6245 if (event->attr.sample_id_all)
6246 __perf_event__output_id_sample(handle, sample);
6247}
6248
3dab77fb 6249static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
6250 struct perf_event *event,
6251 u64 enabled, u64 running)
3dab77fb 6252{
cdd6c482 6253 u64 read_format = event->attr.read_format;
3dab77fb
PZ
6254 u64 values[4];
6255 int n = 0;
6256
b5e58793 6257 values[n++] = perf_event_count(event);
3dab77fb 6258 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 6259 values[n++] = enabled +
cdd6c482 6260 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
6261 }
6262 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 6263 values[n++] = running +
cdd6c482 6264 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
6265 }
6266 if (read_format & PERF_FORMAT_ID)
cdd6c482 6267 values[n++] = primary_event_id(event);
3dab77fb 6268
76369139 6269 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
6270}
6271
3dab77fb 6272static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
6273 struct perf_event *event,
6274 u64 enabled, u64 running)
3dab77fb 6275{
cdd6c482
IM
6276 struct perf_event *leader = event->group_leader, *sub;
6277 u64 read_format = event->attr.read_format;
3dab77fb
PZ
6278 u64 values[5];
6279 int n = 0;
6280
6281 values[n++] = 1 + leader->nr_siblings;
6282
6283 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 6284 values[n++] = enabled;
3dab77fb
PZ
6285
6286 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 6287 values[n++] = running;
3dab77fb 6288
9e5b127d
PZ
6289 if ((leader != event) &&
6290 (leader->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
6291 leader->pmu->read(leader);
6292
b5e58793 6293 values[n++] = perf_event_count(leader);
3dab77fb 6294 if (read_format & PERF_FORMAT_ID)
cdd6c482 6295 values[n++] = primary_event_id(leader);
3dab77fb 6296
76369139 6297 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 6298
edb39592 6299 for_each_sibling_event(sub, leader) {
3dab77fb
PZ
6300 n = 0;
6301
6f5ab001
JO
6302 if ((sub != event) &&
6303 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
6304 sub->pmu->read(sub);
6305
b5e58793 6306 values[n++] = perf_event_count(sub);
3dab77fb 6307 if (read_format & PERF_FORMAT_ID)
cdd6c482 6308 values[n++] = primary_event_id(sub);
3dab77fb 6309
76369139 6310 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
6311 }
6312}
6313
eed01528
SE
6314#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6315 PERF_FORMAT_TOTAL_TIME_RUNNING)
6316
ba5213ae
PZ
6317/*
6318 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6319 *
6320 * The problem is that its both hard and excessively expensive to iterate the
6321 * child list, not to mention that its impossible to IPI the children running
6322 * on another CPU, from interrupt/NMI context.
6323 */
3dab77fb 6324static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 6325 struct perf_event *event)
3dab77fb 6326{
e3f3541c 6327 u64 enabled = 0, running = 0, now;
eed01528
SE
6328 u64 read_format = event->attr.read_format;
6329
6330 /*
6331 * compute total_time_enabled, total_time_running
6332 * based on snapshot values taken when the event
6333 * was last scheduled in.
6334 *
6335 * we cannot simply called update_context_time()
6336 * because of locking issue as we are called in
6337 * NMI context
6338 */
c4794295 6339 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 6340 calc_timer_values(event, &now, &enabled, &running);
eed01528 6341
cdd6c482 6342 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 6343 perf_output_read_group(handle, event, enabled, running);
3dab77fb 6344 else
eed01528 6345 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
6346}
6347
5622f295
MM
6348void perf_output_sample(struct perf_output_handle *handle,
6349 struct perf_event_header *header,
6350 struct perf_sample_data *data,
cdd6c482 6351 struct perf_event *event)
5622f295
MM
6352{
6353 u64 sample_type = data->type;
6354
6355 perf_output_put(handle, *header);
6356
ff3d527c
AH
6357 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6358 perf_output_put(handle, data->id);
6359
5622f295
MM
6360 if (sample_type & PERF_SAMPLE_IP)
6361 perf_output_put(handle, data->ip);
6362
6363 if (sample_type & PERF_SAMPLE_TID)
6364 perf_output_put(handle, data->tid_entry);
6365
6366 if (sample_type & PERF_SAMPLE_TIME)
6367 perf_output_put(handle, data->time);
6368
6369 if (sample_type & PERF_SAMPLE_ADDR)
6370 perf_output_put(handle, data->addr);
6371
6372 if (sample_type & PERF_SAMPLE_ID)
6373 perf_output_put(handle, data->id);
6374
6375 if (sample_type & PERF_SAMPLE_STREAM_ID)
6376 perf_output_put(handle, data->stream_id);
6377
6378 if (sample_type & PERF_SAMPLE_CPU)
6379 perf_output_put(handle, data->cpu_entry);
6380
6381 if (sample_type & PERF_SAMPLE_PERIOD)
6382 perf_output_put(handle, data->period);
6383
6384 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 6385 perf_output_read(handle, event);
5622f295
MM
6386
6387 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
99e818cc 6388 int size = 1;
5622f295 6389
99e818cc
JO
6390 size += data->callchain->nr;
6391 size *= sizeof(u64);
6392 __output_copy(handle, data->callchain, size);
5622f295
MM
6393 }
6394
6395 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6396 struct perf_raw_record *raw = data->raw;
6397
6398 if (raw) {
6399 struct perf_raw_frag *frag = &raw->frag;
6400
6401 perf_output_put(handle, raw->size);
6402 do {
6403 if (frag->copy) {
6404 __output_custom(handle, frag->copy,
6405 frag->data, frag->size);
6406 } else {
6407 __output_copy(handle, frag->data,
6408 frag->size);
6409 }
6410 if (perf_raw_frag_last(frag))
6411 break;
6412 frag = frag->next;
6413 } while (1);
6414 if (frag->pad)
6415 __output_skip(handle, NULL, frag->pad);
5622f295
MM
6416 } else {
6417 struct {
6418 u32 size;
6419 u32 data;
6420 } raw = {
6421 .size = sizeof(u32),
6422 .data = 0,
6423 };
6424 perf_output_put(handle, raw);
6425 }
6426 }
a7ac67ea 6427
bce38cd5
SE
6428 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6429 if (data->br_stack) {
6430 size_t size;
6431
6432 size = data->br_stack->nr
6433 * sizeof(struct perf_branch_entry);
6434
6435 perf_output_put(handle, data->br_stack->nr);
6436 perf_output_copy(handle, data->br_stack->entries, size);
6437 } else {
6438 /*
6439 * we always store at least the value of nr
6440 */
6441 u64 nr = 0;
6442 perf_output_put(handle, nr);
6443 }
6444 }
4018994f
JO
6445
6446 if (sample_type & PERF_SAMPLE_REGS_USER) {
6447 u64 abi = data->regs_user.abi;
6448
6449 /*
6450 * If there are no regs to dump, notice it through
6451 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6452 */
6453 perf_output_put(handle, abi);
6454
6455 if (abi) {
6456 u64 mask = event->attr.sample_regs_user;
6457 perf_output_sample_regs(handle,
6458 data->regs_user.regs,
6459 mask);
6460 }
6461 }
c5ebcedb 6462
a5cdd40c 6463 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
6464 perf_output_sample_ustack(handle,
6465 data->stack_user_size,
6466 data->regs_user.regs);
a5cdd40c 6467 }
c3feedf2
AK
6468
6469 if (sample_type & PERF_SAMPLE_WEIGHT)
6470 perf_output_put(handle, data->weight);
d6be9ad6
SE
6471
6472 if (sample_type & PERF_SAMPLE_DATA_SRC)
6473 perf_output_put(handle, data->data_src.val);
a5cdd40c 6474
fdfbbd07
AK
6475 if (sample_type & PERF_SAMPLE_TRANSACTION)
6476 perf_output_put(handle, data->txn);
6477
60e2364e
SE
6478 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6479 u64 abi = data->regs_intr.abi;
6480 /*
6481 * If there are no regs to dump, notice it through
6482 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6483 */
6484 perf_output_put(handle, abi);
6485
6486 if (abi) {
6487 u64 mask = event->attr.sample_regs_intr;
6488
6489 perf_output_sample_regs(handle,
6490 data->regs_intr.regs,
6491 mask);
6492 }
6493 }
6494
fc7ce9c7
KL
6495 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6496 perf_output_put(handle, data->phys_addr);
6497
a5cdd40c
PZ
6498 if (!event->attr.watermark) {
6499 int wakeup_events = event->attr.wakeup_events;
6500
6501 if (wakeup_events) {
6502 struct ring_buffer *rb = handle->rb;
6503 int events = local_inc_return(&rb->events);
6504
6505 if (events >= wakeup_events) {
6506 local_sub(wakeup_events, &rb->events);
6507 local_inc(&rb->wakeup);
6508 }
6509 }
6510 }
5622f295
MM
6511}
6512
fc7ce9c7
KL
6513static u64 perf_virt_to_phys(u64 virt)
6514{
6515 u64 phys_addr = 0;
6516 struct page *p = NULL;
6517
6518 if (!virt)
6519 return 0;
6520
6521 if (virt >= TASK_SIZE) {
6522 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6523 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6524 !(virt >= VMALLOC_START && virt < VMALLOC_END))
6525 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6526 } else {
6527 /*
6528 * Walking the pages tables for user address.
6529 * Interrupts are disabled, so it prevents any tear down
6530 * of the page tables.
6531 * Try IRQ-safe __get_user_pages_fast first.
6532 * If failed, leave phys_addr as 0.
6533 */
6534 if ((current->mm != NULL) &&
6535 (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6536 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6537
6538 if (p)
6539 put_page(p);
6540 }
6541
6542 return phys_addr;
6543}
6544
99e818cc
JO
6545static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6546
6cbc304f 6547struct perf_callchain_entry *
8cf7e0e2
JO
6548perf_callchain(struct perf_event *event, struct pt_regs *regs)
6549{
6550 bool kernel = !event->attr.exclude_callchain_kernel;
6551 bool user = !event->attr.exclude_callchain_user;
6552 /* Disallow cross-task user callchains. */
6553 bool crosstask = event->ctx->task && event->ctx->task != current;
6554 const u32 max_stack = event->attr.sample_max_stack;
99e818cc 6555 struct perf_callchain_entry *callchain;
8cf7e0e2
JO
6556
6557 if (!kernel && !user)
99e818cc 6558 return &__empty_callchain;
8cf7e0e2 6559
99e818cc
JO
6560 callchain = get_perf_callchain(regs, 0, kernel, user,
6561 max_stack, crosstask, true);
6562 return callchain ?: &__empty_callchain;
8cf7e0e2
JO
6563}
6564
5622f295
MM
6565void perf_prepare_sample(struct perf_event_header *header,
6566 struct perf_sample_data *data,
cdd6c482 6567 struct perf_event *event,
5622f295 6568 struct pt_regs *regs)
7b732a75 6569{
cdd6c482 6570 u64 sample_type = event->attr.sample_type;
7b732a75 6571
cdd6c482 6572 header->type = PERF_RECORD_SAMPLE;
c320c7b7 6573 header->size = sizeof(*header) + event->header_size;
5622f295
MM
6574
6575 header->misc = 0;
6576 header->misc |= perf_misc_flags(regs);
6fab0192 6577
c980d109 6578 __perf_event_header__init_id(header, data, event);
6844c09d 6579
c320c7b7 6580 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
6581 data->ip = perf_instruction_pointer(regs);
6582
b23f3325 6583 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 6584 int size = 1;
394ee076 6585
6cbc304f
PZ
6586 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6587 data->callchain = perf_callchain(event, regs);
6588
99e818cc 6589 size += data->callchain->nr;
5622f295
MM
6590
6591 header->size += size * sizeof(u64);
394ee076
PZ
6592 }
6593
3a43ce68 6594 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6595 struct perf_raw_record *raw = data->raw;
6596 int size;
6597
6598 if (raw) {
6599 struct perf_raw_frag *frag = &raw->frag;
6600 u32 sum = 0;
6601
6602 do {
6603 sum += frag->size;
6604 if (perf_raw_frag_last(frag))
6605 break;
6606 frag = frag->next;
6607 } while (1);
6608
6609 size = round_up(sum + sizeof(u32), sizeof(u64));
6610 raw->size = size - sizeof(u32);
6611 frag->pad = raw->size - sum;
6612 } else {
6613 size = sizeof(u64);
6614 }
a044560c 6615
7e3f977e 6616 header->size += size;
7f453c24 6617 }
bce38cd5
SE
6618
6619 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6620 int size = sizeof(u64); /* nr */
6621 if (data->br_stack) {
6622 size += data->br_stack->nr
6623 * sizeof(struct perf_branch_entry);
6624 }
6625 header->size += size;
6626 }
4018994f 6627
2565711f 6628 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
6629 perf_sample_regs_user(&data->regs_user, regs,
6630 &data->regs_user_copy);
2565711f 6631
4018994f
JO
6632 if (sample_type & PERF_SAMPLE_REGS_USER) {
6633 /* regs dump ABI info */
6634 int size = sizeof(u64);
6635
4018994f
JO
6636 if (data->regs_user.regs) {
6637 u64 mask = event->attr.sample_regs_user;
6638 size += hweight64(mask) * sizeof(u64);
6639 }
6640
6641 header->size += size;
6642 }
c5ebcedb
JO
6643
6644 if (sample_type & PERF_SAMPLE_STACK_USER) {
6645 /*
9f014e3a 6646 * Either we need PERF_SAMPLE_STACK_USER bit to be always
c5ebcedb
JO
6647 * processed as the last one or have additional check added
6648 * in case new sample type is added, because we could eat
6649 * up the rest of the sample size.
6650 */
c5ebcedb
JO
6651 u16 stack_size = event->attr.sample_stack_user;
6652 u16 size = sizeof(u64);
6653
c5ebcedb 6654 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 6655 data->regs_user.regs);
c5ebcedb
JO
6656
6657 /*
6658 * If there is something to dump, add space for the dump
6659 * itself and for the field that tells the dynamic size,
6660 * which is how many have been actually dumped.
6661 */
6662 if (stack_size)
6663 size += sizeof(u64) + stack_size;
6664
6665 data->stack_user_size = stack_size;
6666 header->size += size;
6667 }
60e2364e
SE
6668
6669 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6670 /* regs dump ABI info */
6671 int size = sizeof(u64);
6672
6673 perf_sample_regs_intr(&data->regs_intr, regs);
6674
6675 if (data->regs_intr.regs) {
6676 u64 mask = event->attr.sample_regs_intr;
6677
6678 size += hweight64(mask) * sizeof(u64);
6679 }
6680
6681 header->size += size;
6682 }
fc7ce9c7
KL
6683
6684 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6685 data->phys_addr = perf_virt_to_phys(data->addr);
5622f295 6686}
7f453c24 6687
56201969 6688static __always_inline int
9ecda41a
WN
6689__perf_event_output(struct perf_event *event,
6690 struct perf_sample_data *data,
6691 struct pt_regs *regs,
6692 int (*output_begin)(struct perf_output_handle *,
6693 struct perf_event *,
6694 unsigned int))
5622f295
MM
6695{
6696 struct perf_output_handle handle;
6697 struct perf_event_header header;
56201969 6698 int err;
689802b2 6699
927c7a9e
FW
6700 /* protect the callchain buffers */
6701 rcu_read_lock();
6702
cdd6c482 6703 perf_prepare_sample(&header, data, event, regs);
5c148194 6704
56201969
ACM
6705 err = output_begin(&handle, event, header.size);
6706 if (err)
927c7a9e 6707 goto exit;
0322cd6e 6708
cdd6c482 6709 perf_output_sample(&handle, &header, data, event);
f413cdb8 6710
8a057d84 6711 perf_output_end(&handle);
927c7a9e
FW
6712
6713exit:
6714 rcu_read_unlock();
56201969 6715 return err;
0322cd6e
PZ
6716}
6717
9ecda41a
WN
6718void
6719perf_event_output_forward(struct perf_event *event,
6720 struct perf_sample_data *data,
6721 struct pt_regs *regs)
6722{
6723 __perf_event_output(event, data, regs, perf_output_begin_forward);
6724}
6725
6726void
6727perf_event_output_backward(struct perf_event *event,
6728 struct perf_sample_data *data,
6729 struct pt_regs *regs)
6730{
6731 __perf_event_output(event, data, regs, perf_output_begin_backward);
6732}
6733
56201969 6734int
9ecda41a
WN
6735perf_event_output(struct perf_event *event,
6736 struct perf_sample_data *data,
6737 struct pt_regs *regs)
6738{
56201969 6739 return __perf_event_output(event, data, regs, perf_output_begin);
9ecda41a
WN
6740}
6741
38b200d6 6742/*
cdd6c482 6743 * read event_id
38b200d6
PZ
6744 */
6745
6746struct perf_read_event {
6747 struct perf_event_header header;
6748
6749 u32 pid;
6750 u32 tid;
38b200d6
PZ
6751};
6752
6753static void
cdd6c482 6754perf_event_read_event(struct perf_event *event,
38b200d6
PZ
6755 struct task_struct *task)
6756{
6757 struct perf_output_handle handle;
c980d109 6758 struct perf_sample_data sample;
dfc65094 6759 struct perf_read_event read_event = {
38b200d6 6760 .header = {
cdd6c482 6761 .type = PERF_RECORD_READ,
38b200d6 6762 .misc = 0,
c320c7b7 6763 .size = sizeof(read_event) + event->read_size,
38b200d6 6764 },
cdd6c482
IM
6765 .pid = perf_event_pid(event, task),
6766 .tid = perf_event_tid(event, task),
38b200d6 6767 };
3dab77fb 6768 int ret;
38b200d6 6769
c980d109 6770 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 6771 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
6772 if (ret)
6773 return;
6774
dfc65094 6775 perf_output_put(&handle, read_event);
cdd6c482 6776 perf_output_read(&handle, event);
c980d109 6777 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 6778
38b200d6
PZ
6779 perf_output_end(&handle);
6780}
6781
aab5b71e 6782typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
6783
6784static void
aab5b71e
PZ
6785perf_iterate_ctx(struct perf_event_context *ctx,
6786 perf_iterate_f output,
b73e4fef 6787 void *data, bool all)
52d857a8
JO
6788{
6789 struct perf_event *event;
6790
6791 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
6792 if (!all) {
6793 if (event->state < PERF_EVENT_STATE_INACTIVE)
6794 continue;
6795 if (!event_filter_match(event))
6796 continue;
6797 }
6798
67516844 6799 output(event, data);
52d857a8
JO
6800 }
6801}
6802
aab5b71e 6803static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
6804{
6805 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6806 struct perf_event *event;
6807
6808 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
6809 /*
6810 * Skip events that are not fully formed yet; ensure that
6811 * if we observe event->ctx, both event and ctx will be
6812 * complete enough. See perf_install_in_context().
6813 */
6814 if (!smp_load_acquire(&event->ctx))
6815 continue;
6816
f2fb6bef
KL
6817 if (event->state < PERF_EVENT_STATE_INACTIVE)
6818 continue;
6819 if (!event_filter_match(event))
6820 continue;
6821 output(event, data);
6822 }
6823}
6824
aab5b71e
PZ
6825/*
6826 * Iterate all events that need to receive side-band events.
6827 *
6828 * For new callers; ensure that account_pmu_sb_event() includes
6829 * your event, otherwise it might not get delivered.
6830 */
52d857a8 6831static void
aab5b71e 6832perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
6833 struct perf_event_context *task_ctx)
6834{
52d857a8 6835 struct perf_event_context *ctx;
52d857a8
JO
6836 int ctxn;
6837
aab5b71e
PZ
6838 rcu_read_lock();
6839 preempt_disable();
6840
4e93ad60 6841 /*
aab5b71e
PZ
6842 * If we have task_ctx != NULL we only notify the task context itself.
6843 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
6844 * context.
6845 */
6846 if (task_ctx) {
aab5b71e
PZ
6847 perf_iterate_ctx(task_ctx, output, data, false);
6848 goto done;
4e93ad60
JO
6849 }
6850
aab5b71e 6851 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
6852
6853 for_each_task_context_nr(ctxn) {
52d857a8
JO
6854 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6855 if (ctx)
aab5b71e 6856 perf_iterate_ctx(ctx, output, data, false);
52d857a8 6857 }
aab5b71e 6858done:
f2fb6bef 6859 preempt_enable();
52d857a8 6860 rcu_read_unlock();
95ff4ca2
AS
6861}
6862
375637bc
AS
6863/*
6864 * Clear all file-based filters at exec, they'll have to be
6865 * re-instated when/if these objects are mmapped again.
6866 */
6867static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6868{
6869 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6870 struct perf_addr_filter *filter;
6871 unsigned int restart = 0, count = 0;
6872 unsigned long flags;
6873
6874 if (!has_addr_filter(event))
6875 return;
6876
6877 raw_spin_lock_irqsave(&ifh->lock, flags);
6878 list_for_each_entry(filter, &ifh->list, entry) {
9511bce9 6879 if (filter->path.dentry) {
c60f83b8
AS
6880 event->addr_filter_ranges[count].start = 0;
6881 event->addr_filter_ranges[count].size = 0;
375637bc
AS
6882 restart++;
6883 }
6884
6885 count++;
6886 }
6887
6888 if (restart)
6889 event->addr_filters_gen++;
6890 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6891
6892 if (restart)
767ae086 6893 perf_event_stop(event, 1);
375637bc
AS
6894}
6895
6896void perf_event_exec(void)
6897{
6898 struct perf_event_context *ctx;
6899 int ctxn;
6900
6901 rcu_read_lock();
6902 for_each_task_context_nr(ctxn) {
6903 ctx = current->perf_event_ctxp[ctxn];
6904 if (!ctx)
6905 continue;
6906
6907 perf_event_enable_on_exec(ctxn);
6908
aab5b71e 6909 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
6910 true);
6911 }
6912 rcu_read_unlock();
6913}
6914
95ff4ca2
AS
6915struct remote_output {
6916 struct ring_buffer *rb;
6917 int err;
6918};
6919
6920static void __perf_event_output_stop(struct perf_event *event, void *data)
6921{
6922 struct perf_event *parent = event->parent;
6923 struct remote_output *ro = data;
6924 struct ring_buffer *rb = ro->rb;
375637bc
AS
6925 struct stop_event_data sd = {
6926 .event = event,
6927 };
95ff4ca2
AS
6928
6929 if (!has_aux(event))
6930 return;
6931
6932 if (!parent)
6933 parent = event;
6934
6935 /*
6936 * In case of inheritance, it will be the parent that links to the
767ae086
AS
6937 * ring-buffer, but it will be the child that's actually using it.
6938 *
6939 * We are using event::rb to determine if the event should be stopped,
6940 * however this may race with ring_buffer_attach() (through set_output),
6941 * which will make us skip the event that actually needs to be stopped.
6942 * So ring_buffer_attach() has to stop an aux event before re-assigning
6943 * its rb pointer.
95ff4ca2
AS
6944 */
6945 if (rcu_dereference(parent->rb) == rb)
375637bc 6946 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
6947}
6948
6949static int __perf_pmu_output_stop(void *info)
6950{
6951 struct perf_event *event = info;
f3a519e4 6952 struct pmu *pmu = event->ctx->pmu;
8b6a3fe8 6953 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
6954 struct remote_output ro = {
6955 .rb = event->rb,
6956 };
6957
6958 rcu_read_lock();
aab5b71e 6959 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 6960 if (cpuctx->task_ctx)
aab5b71e 6961 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 6962 &ro, false);
95ff4ca2
AS
6963 rcu_read_unlock();
6964
6965 return ro.err;
6966}
6967
6968static void perf_pmu_output_stop(struct perf_event *event)
6969{
6970 struct perf_event *iter;
6971 int err, cpu;
6972
6973restart:
6974 rcu_read_lock();
6975 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6976 /*
6977 * For per-CPU events, we need to make sure that neither they
6978 * nor their children are running; for cpu==-1 events it's
6979 * sufficient to stop the event itself if it's active, since
6980 * it can't have children.
6981 */
6982 cpu = iter->cpu;
6983 if (cpu == -1)
6984 cpu = READ_ONCE(iter->oncpu);
6985
6986 if (cpu == -1)
6987 continue;
6988
6989 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6990 if (err == -EAGAIN) {
6991 rcu_read_unlock();
6992 goto restart;
6993 }
6994 }
6995 rcu_read_unlock();
52d857a8
JO
6996}
6997
60313ebe 6998/*
9f498cc5
PZ
6999 * task tracking -- fork/exit
7000 *
13d7a241 7001 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
7002 */
7003
9f498cc5 7004struct perf_task_event {
3a80b4a3 7005 struct task_struct *task;
cdd6c482 7006 struct perf_event_context *task_ctx;
60313ebe
PZ
7007
7008 struct {
7009 struct perf_event_header header;
7010
7011 u32 pid;
7012 u32 ppid;
9f498cc5
PZ
7013 u32 tid;
7014 u32 ptid;
393b2ad8 7015 u64 time;
cdd6c482 7016 } event_id;
60313ebe
PZ
7017};
7018
67516844
JO
7019static int perf_event_task_match(struct perf_event *event)
7020{
13d7a241
SE
7021 return event->attr.comm || event->attr.mmap ||
7022 event->attr.mmap2 || event->attr.mmap_data ||
7023 event->attr.task;
67516844
JO
7024}
7025
cdd6c482 7026static void perf_event_task_output(struct perf_event *event,
52d857a8 7027 void *data)
60313ebe 7028{
52d857a8 7029 struct perf_task_event *task_event = data;
60313ebe 7030 struct perf_output_handle handle;
c980d109 7031 struct perf_sample_data sample;
9f498cc5 7032 struct task_struct *task = task_event->task;
c980d109 7033 int ret, size = task_event->event_id.header.size;
8bb39f9a 7034
67516844
JO
7035 if (!perf_event_task_match(event))
7036 return;
7037
c980d109 7038 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 7039
c980d109 7040 ret = perf_output_begin(&handle, event,
a7ac67ea 7041 task_event->event_id.header.size);
ef60777c 7042 if (ret)
c980d109 7043 goto out;
60313ebe 7044
cdd6c482
IM
7045 task_event->event_id.pid = perf_event_pid(event, task);
7046 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 7047
cdd6c482
IM
7048 task_event->event_id.tid = perf_event_tid(event, task);
7049 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 7050
34f43927
PZ
7051 task_event->event_id.time = perf_event_clock(event);
7052
cdd6c482 7053 perf_output_put(&handle, task_event->event_id);
393b2ad8 7054
c980d109
ACM
7055 perf_event__output_id_sample(event, &handle, &sample);
7056
60313ebe 7057 perf_output_end(&handle);
c980d109
ACM
7058out:
7059 task_event->event_id.header.size = size;
60313ebe
PZ
7060}
7061
cdd6c482
IM
7062static void perf_event_task(struct task_struct *task,
7063 struct perf_event_context *task_ctx,
3a80b4a3 7064 int new)
60313ebe 7065{
9f498cc5 7066 struct perf_task_event task_event;
60313ebe 7067
cdd6c482
IM
7068 if (!atomic_read(&nr_comm_events) &&
7069 !atomic_read(&nr_mmap_events) &&
7070 !atomic_read(&nr_task_events))
60313ebe
PZ
7071 return;
7072
9f498cc5 7073 task_event = (struct perf_task_event){
3a80b4a3
PZ
7074 .task = task,
7075 .task_ctx = task_ctx,
cdd6c482 7076 .event_id = {
60313ebe 7077 .header = {
cdd6c482 7078 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 7079 .misc = 0,
cdd6c482 7080 .size = sizeof(task_event.event_id),
60313ebe 7081 },
573402db
PZ
7082 /* .pid */
7083 /* .ppid */
9f498cc5
PZ
7084 /* .tid */
7085 /* .ptid */
34f43927 7086 /* .time */
60313ebe
PZ
7087 },
7088 };
7089
aab5b71e 7090 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
7091 &task_event,
7092 task_ctx);
9f498cc5
PZ
7093}
7094
cdd6c482 7095void perf_event_fork(struct task_struct *task)
9f498cc5 7096{
cdd6c482 7097 perf_event_task(task, NULL, 1);
e4222673 7098 perf_event_namespaces(task);
60313ebe
PZ
7099}
7100
8d1b2d93
PZ
7101/*
7102 * comm tracking
7103 */
7104
7105struct perf_comm_event {
22a4f650
IM
7106 struct task_struct *task;
7107 char *comm;
8d1b2d93
PZ
7108 int comm_size;
7109
7110 struct {
7111 struct perf_event_header header;
7112
7113 u32 pid;
7114 u32 tid;
cdd6c482 7115 } event_id;
8d1b2d93
PZ
7116};
7117
67516844
JO
7118static int perf_event_comm_match(struct perf_event *event)
7119{
7120 return event->attr.comm;
7121}
7122
cdd6c482 7123static void perf_event_comm_output(struct perf_event *event,
52d857a8 7124 void *data)
8d1b2d93 7125{
52d857a8 7126 struct perf_comm_event *comm_event = data;
8d1b2d93 7127 struct perf_output_handle handle;
c980d109 7128 struct perf_sample_data sample;
cdd6c482 7129 int size = comm_event->event_id.header.size;
c980d109
ACM
7130 int ret;
7131
67516844
JO
7132 if (!perf_event_comm_match(event))
7133 return;
7134
c980d109
ACM
7135 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7136 ret = perf_output_begin(&handle, event,
a7ac67ea 7137 comm_event->event_id.header.size);
8d1b2d93
PZ
7138
7139 if (ret)
c980d109 7140 goto out;
8d1b2d93 7141
cdd6c482
IM
7142 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7143 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 7144
cdd6c482 7145 perf_output_put(&handle, comm_event->event_id);
76369139 7146 __output_copy(&handle, comm_event->comm,
8d1b2d93 7147 comm_event->comm_size);
c980d109
ACM
7148
7149 perf_event__output_id_sample(event, &handle, &sample);
7150
8d1b2d93 7151 perf_output_end(&handle);
c980d109
ACM
7152out:
7153 comm_event->event_id.header.size = size;
8d1b2d93
PZ
7154}
7155
cdd6c482 7156static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 7157{
413ee3b4 7158 char comm[TASK_COMM_LEN];
8d1b2d93 7159 unsigned int size;
8d1b2d93 7160
413ee3b4 7161 memset(comm, 0, sizeof(comm));
96b02d78 7162 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 7163 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
7164
7165 comm_event->comm = comm;
7166 comm_event->comm_size = size;
7167
cdd6c482 7168 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 7169
aab5b71e 7170 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
7171 comm_event,
7172 NULL);
8d1b2d93
PZ
7173}
7174
82b89778 7175void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 7176{
9ee318a7
PZ
7177 struct perf_comm_event comm_event;
7178
cdd6c482 7179 if (!atomic_read(&nr_comm_events))
9ee318a7 7180 return;
a63eaf34 7181
9ee318a7 7182 comm_event = (struct perf_comm_event){
8d1b2d93 7183 .task = task,
573402db
PZ
7184 /* .comm */
7185 /* .comm_size */
cdd6c482 7186 .event_id = {
573402db 7187 .header = {
cdd6c482 7188 .type = PERF_RECORD_COMM,
82b89778 7189 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
7190 /* .size */
7191 },
7192 /* .pid */
7193 /* .tid */
8d1b2d93
PZ
7194 },
7195 };
7196
cdd6c482 7197 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
7198}
7199
e4222673
HB
7200/*
7201 * namespaces tracking
7202 */
7203
7204struct perf_namespaces_event {
7205 struct task_struct *task;
7206
7207 struct {
7208 struct perf_event_header header;
7209
7210 u32 pid;
7211 u32 tid;
7212 u64 nr_namespaces;
7213 struct perf_ns_link_info link_info[NR_NAMESPACES];
7214 } event_id;
7215};
7216
7217static int perf_event_namespaces_match(struct perf_event *event)
7218{
7219 return event->attr.namespaces;
7220}
7221
7222static void perf_event_namespaces_output(struct perf_event *event,
7223 void *data)
7224{
7225 struct perf_namespaces_event *namespaces_event = data;
7226 struct perf_output_handle handle;
7227 struct perf_sample_data sample;
34900ec5 7228 u16 header_size = namespaces_event->event_id.header.size;
e4222673
HB
7229 int ret;
7230
7231 if (!perf_event_namespaces_match(event))
7232 return;
7233
7234 perf_event_header__init_id(&namespaces_event->event_id.header,
7235 &sample, event);
7236 ret = perf_output_begin(&handle, event,
7237 namespaces_event->event_id.header.size);
7238 if (ret)
34900ec5 7239 goto out;
e4222673
HB
7240
7241 namespaces_event->event_id.pid = perf_event_pid(event,
7242 namespaces_event->task);
7243 namespaces_event->event_id.tid = perf_event_tid(event,
7244 namespaces_event->task);
7245
7246 perf_output_put(&handle, namespaces_event->event_id);
7247
7248 perf_event__output_id_sample(event, &handle, &sample);
7249
7250 perf_output_end(&handle);
34900ec5
JO
7251out:
7252 namespaces_event->event_id.header.size = header_size;
e4222673
HB
7253}
7254
7255static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7256 struct task_struct *task,
7257 const struct proc_ns_operations *ns_ops)
7258{
7259 struct path ns_path;
7260 struct inode *ns_inode;
7261 void *error;
7262
7263 error = ns_get_path(&ns_path, task, ns_ops);
7264 if (!error) {
7265 ns_inode = ns_path.dentry->d_inode;
7266 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7267 ns_link_info->ino = ns_inode->i_ino;
0e18dd12 7268 path_put(&ns_path);
e4222673
HB
7269 }
7270}
7271
7272void perf_event_namespaces(struct task_struct *task)
7273{
7274 struct perf_namespaces_event namespaces_event;
7275 struct perf_ns_link_info *ns_link_info;
7276
7277 if (!atomic_read(&nr_namespaces_events))
7278 return;
7279
7280 namespaces_event = (struct perf_namespaces_event){
7281 .task = task,
7282 .event_id = {
7283 .header = {
7284 .type = PERF_RECORD_NAMESPACES,
7285 .misc = 0,
7286 .size = sizeof(namespaces_event.event_id),
7287 },
7288 /* .pid */
7289 /* .tid */
7290 .nr_namespaces = NR_NAMESPACES,
7291 /* .link_info[NR_NAMESPACES] */
7292 },
7293 };
7294
7295 ns_link_info = namespaces_event.event_id.link_info;
7296
7297 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7298 task, &mntns_operations);
7299
7300#ifdef CONFIG_USER_NS
7301 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7302 task, &userns_operations);
7303#endif
7304#ifdef CONFIG_NET_NS
7305 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7306 task, &netns_operations);
7307#endif
7308#ifdef CONFIG_UTS_NS
7309 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7310 task, &utsns_operations);
7311#endif
7312#ifdef CONFIG_IPC_NS
7313 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7314 task, &ipcns_operations);
7315#endif
7316#ifdef CONFIG_PID_NS
7317 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7318 task, &pidns_operations);
7319#endif
7320#ifdef CONFIG_CGROUPS
7321 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7322 task, &cgroupns_operations);
7323#endif
7324
7325 perf_iterate_sb(perf_event_namespaces_output,
7326 &namespaces_event,
7327 NULL);
7328}
7329
0a4a9391
PZ
7330/*
7331 * mmap tracking
7332 */
7333
7334struct perf_mmap_event {
089dd79d
PZ
7335 struct vm_area_struct *vma;
7336
7337 const char *file_name;
7338 int file_size;
13d7a241
SE
7339 int maj, min;
7340 u64 ino;
7341 u64 ino_generation;
f972eb63 7342 u32 prot, flags;
0a4a9391
PZ
7343
7344 struct {
7345 struct perf_event_header header;
7346
7347 u32 pid;
7348 u32 tid;
7349 u64 start;
7350 u64 len;
7351 u64 pgoff;
cdd6c482 7352 } event_id;
0a4a9391
PZ
7353};
7354
67516844
JO
7355static int perf_event_mmap_match(struct perf_event *event,
7356 void *data)
7357{
7358 struct perf_mmap_event *mmap_event = data;
7359 struct vm_area_struct *vma = mmap_event->vma;
7360 int executable = vma->vm_flags & VM_EXEC;
7361
7362 return (!executable && event->attr.mmap_data) ||
13d7a241 7363 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
7364}
7365
cdd6c482 7366static void perf_event_mmap_output(struct perf_event *event,
52d857a8 7367 void *data)
0a4a9391 7368{
52d857a8 7369 struct perf_mmap_event *mmap_event = data;
0a4a9391 7370 struct perf_output_handle handle;
c980d109 7371 struct perf_sample_data sample;
cdd6c482 7372 int size = mmap_event->event_id.header.size;
d9c1bb2f 7373 u32 type = mmap_event->event_id.header.type;
c980d109 7374 int ret;
0a4a9391 7375
67516844
JO
7376 if (!perf_event_mmap_match(event, data))
7377 return;
7378
13d7a241
SE
7379 if (event->attr.mmap2) {
7380 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7381 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7382 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7383 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 7384 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
7385 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7386 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
7387 }
7388
c980d109
ACM
7389 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7390 ret = perf_output_begin(&handle, event,
a7ac67ea 7391 mmap_event->event_id.header.size);
0a4a9391 7392 if (ret)
c980d109 7393 goto out;
0a4a9391 7394
cdd6c482
IM
7395 mmap_event->event_id.pid = perf_event_pid(event, current);
7396 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 7397
cdd6c482 7398 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
7399
7400 if (event->attr.mmap2) {
7401 perf_output_put(&handle, mmap_event->maj);
7402 perf_output_put(&handle, mmap_event->min);
7403 perf_output_put(&handle, mmap_event->ino);
7404 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
7405 perf_output_put(&handle, mmap_event->prot);
7406 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
7407 }
7408
76369139 7409 __output_copy(&handle, mmap_event->file_name,
0a4a9391 7410 mmap_event->file_size);
c980d109
ACM
7411
7412 perf_event__output_id_sample(event, &handle, &sample);
7413
78d613eb 7414 perf_output_end(&handle);
c980d109
ACM
7415out:
7416 mmap_event->event_id.header.size = size;
d9c1bb2f 7417 mmap_event->event_id.header.type = type;
0a4a9391
PZ
7418}
7419
cdd6c482 7420static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 7421{
089dd79d
PZ
7422 struct vm_area_struct *vma = mmap_event->vma;
7423 struct file *file = vma->vm_file;
13d7a241
SE
7424 int maj = 0, min = 0;
7425 u64 ino = 0, gen = 0;
f972eb63 7426 u32 prot = 0, flags = 0;
0a4a9391
PZ
7427 unsigned int size;
7428 char tmp[16];
7429 char *buf = NULL;
2c42cfbf 7430 char *name;
413ee3b4 7431
0b3589be
PZ
7432 if (vma->vm_flags & VM_READ)
7433 prot |= PROT_READ;
7434 if (vma->vm_flags & VM_WRITE)
7435 prot |= PROT_WRITE;
7436 if (vma->vm_flags & VM_EXEC)
7437 prot |= PROT_EXEC;
7438
7439 if (vma->vm_flags & VM_MAYSHARE)
7440 flags = MAP_SHARED;
7441 else
7442 flags = MAP_PRIVATE;
7443
7444 if (vma->vm_flags & VM_DENYWRITE)
7445 flags |= MAP_DENYWRITE;
7446 if (vma->vm_flags & VM_MAYEXEC)
7447 flags |= MAP_EXECUTABLE;
7448 if (vma->vm_flags & VM_LOCKED)
7449 flags |= MAP_LOCKED;
7450 if (vma->vm_flags & VM_HUGETLB)
7451 flags |= MAP_HUGETLB;
7452
0a4a9391 7453 if (file) {
13d7a241
SE
7454 struct inode *inode;
7455 dev_t dev;
3ea2f2b9 7456
2c42cfbf 7457 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 7458 if (!buf) {
c7e548b4
ON
7459 name = "//enomem";
7460 goto cpy_name;
0a4a9391 7461 }
413ee3b4 7462 /*
3ea2f2b9 7463 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
7464 * need to add enough zero bytes after the string to handle
7465 * the 64bit alignment we do later.
7466 */
9bf39ab2 7467 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 7468 if (IS_ERR(name)) {
c7e548b4
ON
7469 name = "//toolong";
7470 goto cpy_name;
0a4a9391 7471 }
13d7a241
SE
7472 inode = file_inode(vma->vm_file);
7473 dev = inode->i_sb->s_dev;
7474 ino = inode->i_ino;
7475 gen = inode->i_generation;
7476 maj = MAJOR(dev);
7477 min = MINOR(dev);
f972eb63 7478
c7e548b4 7479 goto got_name;
0a4a9391 7480 } else {
fbe26abe
JO
7481 if (vma->vm_ops && vma->vm_ops->name) {
7482 name = (char *) vma->vm_ops->name(vma);
7483 if (name)
7484 goto cpy_name;
7485 }
7486
2c42cfbf 7487 name = (char *)arch_vma_name(vma);
c7e548b4
ON
7488 if (name)
7489 goto cpy_name;
089dd79d 7490
32c5fb7e 7491 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 7492 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
7493 name = "[heap]";
7494 goto cpy_name;
32c5fb7e
ON
7495 }
7496 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 7497 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
7498 name = "[stack]";
7499 goto cpy_name;
089dd79d
PZ
7500 }
7501
c7e548b4
ON
7502 name = "//anon";
7503 goto cpy_name;
0a4a9391
PZ
7504 }
7505
c7e548b4
ON
7506cpy_name:
7507 strlcpy(tmp, name, sizeof(tmp));
7508 name = tmp;
0a4a9391 7509got_name:
2c42cfbf
PZ
7510 /*
7511 * Since our buffer works in 8 byte units we need to align our string
7512 * size to a multiple of 8. However, we must guarantee the tail end is
7513 * zero'd out to avoid leaking random bits to userspace.
7514 */
7515 size = strlen(name)+1;
7516 while (!IS_ALIGNED(size, sizeof(u64)))
7517 name[size++] = '\0';
0a4a9391
PZ
7518
7519 mmap_event->file_name = name;
7520 mmap_event->file_size = size;
13d7a241
SE
7521 mmap_event->maj = maj;
7522 mmap_event->min = min;
7523 mmap_event->ino = ino;
7524 mmap_event->ino_generation = gen;
f972eb63
PZ
7525 mmap_event->prot = prot;
7526 mmap_event->flags = flags;
0a4a9391 7527
2fe85427
SE
7528 if (!(vma->vm_flags & VM_EXEC))
7529 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7530
cdd6c482 7531 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 7532
aab5b71e 7533 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
7534 mmap_event,
7535 NULL);
665c2142 7536
0a4a9391
PZ
7537 kfree(buf);
7538}
7539
375637bc
AS
7540/*
7541 * Check whether inode and address range match filter criteria.
7542 */
7543static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7544 struct file *file, unsigned long offset,
7545 unsigned long size)
7546{
7f635ff1
MP
7547 /* d_inode(NULL) won't be equal to any mapped user-space file */
7548 if (!filter->path.dentry)
7549 return false;
7550
9511bce9 7551 if (d_inode(filter->path.dentry) != file_inode(file))
375637bc
AS
7552 return false;
7553
7554 if (filter->offset > offset + size)
7555 return false;
7556
7557 if (filter->offset + filter->size < offset)
7558 return false;
7559
7560 return true;
7561}
7562
c60f83b8
AS
7563static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7564 struct vm_area_struct *vma,
7565 struct perf_addr_filter_range *fr)
7566{
7567 unsigned long vma_size = vma->vm_end - vma->vm_start;
7568 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7569 struct file *file = vma->vm_file;
7570
7571 if (!perf_addr_filter_match(filter, file, off, vma_size))
7572 return false;
7573
7574 if (filter->offset < off) {
7575 fr->start = vma->vm_start;
7576 fr->size = min(vma_size, filter->size - (off - filter->offset));
7577 } else {
7578 fr->start = vma->vm_start + filter->offset - off;
7579 fr->size = min(vma->vm_end - fr->start, filter->size);
7580 }
7581
7582 return true;
7583}
7584
375637bc
AS
7585static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7586{
7587 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7588 struct vm_area_struct *vma = data;
375637bc
AS
7589 struct perf_addr_filter *filter;
7590 unsigned int restart = 0, count = 0;
c60f83b8 7591 unsigned long flags;
375637bc
AS
7592
7593 if (!has_addr_filter(event))
7594 return;
7595
c60f83b8 7596 if (!vma->vm_file)
375637bc
AS
7597 return;
7598
7599 raw_spin_lock_irqsave(&ifh->lock, flags);
7600 list_for_each_entry(filter, &ifh->list, entry) {
c60f83b8
AS
7601 if (perf_addr_filter_vma_adjust(filter, vma,
7602 &event->addr_filter_ranges[count]))
375637bc 7603 restart++;
375637bc
AS
7604
7605 count++;
7606 }
7607
7608 if (restart)
7609 event->addr_filters_gen++;
7610 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7611
7612 if (restart)
767ae086 7613 perf_event_stop(event, 1);
375637bc
AS
7614}
7615
7616/*
7617 * Adjust all task's events' filters to the new vma
7618 */
7619static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7620{
7621 struct perf_event_context *ctx;
7622 int ctxn;
7623
12b40a23
MP
7624 /*
7625 * Data tracing isn't supported yet and as such there is no need
7626 * to keep track of anything that isn't related to executable code:
7627 */
7628 if (!(vma->vm_flags & VM_EXEC))
7629 return;
7630
375637bc
AS
7631 rcu_read_lock();
7632 for_each_task_context_nr(ctxn) {
7633 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7634 if (!ctx)
7635 continue;
7636
aab5b71e 7637 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
7638 }
7639 rcu_read_unlock();
7640}
7641
3af9e859 7642void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 7643{
9ee318a7
PZ
7644 struct perf_mmap_event mmap_event;
7645
cdd6c482 7646 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
7647 return;
7648
7649 mmap_event = (struct perf_mmap_event){
089dd79d 7650 .vma = vma,
573402db
PZ
7651 /* .file_name */
7652 /* .file_size */
cdd6c482 7653 .event_id = {
573402db 7654 .header = {
cdd6c482 7655 .type = PERF_RECORD_MMAP,
39447b38 7656 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
7657 /* .size */
7658 },
7659 /* .pid */
7660 /* .tid */
089dd79d
PZ
7661 .start = vma->vm_start,
7662 .len = vma->vm_end - vma->vm_start,
3a0304e9 7663 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 7664 },
13d7a241
SE
7665 /* .maj (attr_mmap2 only) */
7666 /* .min (attr_mmap2 only) */
7667 /* .ino (attr_mmap2 only) */
7668 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
7669 /* .prot (attr_mmap2 only) */
7670 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
7671 };
7672
375637bc 7673 perf_addr_filters_adjust(vma);
cdd6c482 7674 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
7675}
7676
68db7e98
AS
7677void perf_event_aux_event(struct perf_event *event, unsigned long head,
7678 unsigned long size, u64 flags)
7679{
7680 struct perf_output_handle handle;
7681 struct perf_sample_data sample;
7682 struct perf_aux_event {
7683 struct perf_event_header header;
7684 u64 offset;
7685 u64 size;
7686 u64 flags;
7687 } rec = {
7688 .header = {
7689 .type = PERF_RECORD_AUX,
7690 .misc = 0,
7691 .size = sizeof(rec),
7692 },
7693 .offset = head,
7694 .size = size,
7695 .flags = flags,
7696 };
7697 int ret;
7698
7699 perf_event_header__init_id(&rec.header, &sample, event);
7700 ret = perf_output_begin(&handle, event, rec.header.size);
7701
7702 if (ret)
7703 return;
7704
7705 perf_output_put(&handle, rec);
7706 perf_event__output_id_sample(event, &handle, &sample);
7707
7708 perf_output_end(&handle);
7709}
7710
f38b0dbb
KL
7711/*
7712 * Lost/dropped samples logging
7713 */
7714void perf_log_lost_samples(struct perf_event *event, u64 lost)
7715{
7716 struct perf_output_handle handle;
7717 struct perf_sample_data sample;
7718 int ret;
7719
7720 struct {
7721 struct perf_event_header header;
7722 u64 lost;
7723 } lost_samples_event = {
7724 .header = {
7725 .type = PERF_RECORD_LOST_SAMPLES,
7726 .misc = 0,
7727 .size = sizeof(lost_samples_event),
7728 },
7729 .lost = lost,
7730 };
7731
7732 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7733
7734 ret = perf_output_begin(&handle, event,
7735 lost_samples_event.header.size);
7736 if (ret)
7737 return;
7738
7739 perf_output_put(&handle, lost_samples_event);
7740 perf_event__output_id_sample(event, &handle, &sample);
7741 perf_output_end(&handle);
7742}
7743
45ac1403
AH
7744/*
7745 * context_switch tracking
7746 */
7747
7748struct perf_switch_event {
7749 struct task_struct *task;
7750 struct task_struct *next_prev;
7751
7752 struct {
7753 struct perf_event_header header;
7754 u32 next_prev_pid;
7755 u32 next_prev_tid;
7756 } event_id;
7757};
7758
7759static int perf_event_switch_match(struct perf_event *event)
7760{
7761 return event->attr.context_switch;
7762}
7763
7764static void perf_event_switch_output(struct perf_event *event, void *data)
7765{
7766 struct perf_switch_event *se = data;
7767 struct perf_output_handle handle;
7768 struct perf_sample_data sample;
7769 int ret;
7770
7771 if (!perf_event_switch_match(event))
7772 return;
7773
7774 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7775 if (event->ctx->task) {
7776 se->event_id.header.type = PERF_RECORD_SWITCH;
7777 se->event_id.header.size = sizeof(se->event_id.header);
7778 } else {
7779 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7780 se->event_id.header.size = sizeof(se->event_id);
7781 se->event_id.next_prev_pid =
7782 perf_event_pid(event, se->next_prev);
7783 se->event_id.next_prev_tid =
7784 perf_event_tid(event, se->next_prev);
7785 }
7786
7787 perf_event_header__init_id(&se->event_id.header, &sample, event);
7788
7789 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7790 if (ret)
7791 return;
7792
7793 if (event->ctx->task)
7794 perf_output_put(&handle, se->event_id.header);
7795 else
7796 perf_output_put(&handle, se->event_id);
7797
7798 perf_event__output_id_sample(event, &handle, &sample);
7799
7800 perf_output_end(&handle);
7801}
7802
7803static void perf_event_switch(struct task_struct *task,
7804 struct task_struct *next_prev, bool sched_in)
7805{
7806 struct perf_switch_event switch_event;
7807
7808 /* N.B. caller checks nr_switch_events != 0 */
7809
7810 switch_event = (struct perf_switch_event){
7811 .task = task,
7812 .next_prev = next_prev,
7813 .event_id = {
7814 .header = {
7815 /* .type */
7816 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7817 /* .size */
7818 },
7819 /* .next_prev_pid */
7820 /* .next_prev_tid */
7821 },
7822 };
7823
101592b4
AB
7824 if (!sched_in && task->state == TASK_RUNNING)
7825 switch_event.event_id.header.misc |=
7826 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7827
aab5b71e 7828 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
7829 &switch_event,
7830 NULL);
7831}
7832
a78ac325
PZ
7833/*
7834 * IRQ throttle logging
7835 */
7836
cdd6c482 7837static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
7838{
7839 struct perf_output_handle handle;
c980d109 7840 struct perf_sample_data sample;
a78ac325
PZ
7841 int ret;
7842
7843 struct {
7844 struct perf_event_header header;
7845 u64 time;
cca3f454 7846 u64 id;
7f453c24 7847 u64 stream_id;
a78ac325
PZ
7848 } throttle_event = {
7849 .header = {
cdd6c482 7850 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
7851 .misc = 0,
7852 .size = sizeof(throttle_event),
7853 },
34f43927 7854 .time = perf_event_clock(event),
cdd6c482
IM
7855 .id = primary_event_id(event),
7856 .stream_id = event->id,
a78ac325
PZ
7857 };
7858
966ee4d6 7859 if (enable)
cdd6c482 7860 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 7861
c980d109
ACM
7862 perf_event_header__init_id(&throttle_event.header, &sample, event);
7863
7864 ret = perf_output_begin(&handle, event,
a7ac67ea 7865 throttle_event.header.size);
a78ac325
PZ
7866 if (ret)
7867 return;
7868
7869 perf_output_put(&handle, throttle_event);
c980d109 7870 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
7871 perf_output_end(&handle);
7872}
7873
76193a94
SL
7874/*
7875 * ksymbol register/unregister tracking
7876 */
7877
7878struct perf_ksymbol_event {
7879 const char *name;
7880 int name_len;
7881 struct {
7882 struct perf_event_header header;
7883 u64 addr;
7884 u32 len;
7885 u16 ksym_type;
7886 u16 flags;
7887 } event_id;
7888};
7889
7890static int perf_event_ksymbol_match(struct perf_event *event)
7891{
7892 return event->attr.ksymbol;
7893}
7894
7895static void perf_event_ksymbol_output(struct perf_event *event, void *data)
7896{
7897 struct perf_ksymbol_event *ksymbol_event = data;
7898 struct perf_output_handle handle;
7899 struct perf_sample_data sample;
7900 int ret;
7901
7902 if (!perf_event_ksymbol_match(event))
7903 return;
7904
7905 perf_event_header__init_id(&ksymbol_event->event_id.header,
7906 &sample, event);
7907 ret = perf_output_begin(&handle, event,
7908 ksymbol_event->event_id.header.size);
7909 if (ret)
7910 return;
7911
7912 perf_output_put(&handle, ksymbol_event->event_id);
7913 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
7914 perf_event__output_id_sample(event, &handle, &sample);
7915
7916 perf_output_end(&handle);
7917}
7918
7919void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
7920 const char *sym)
7921{
7922 struct perf_ksymbol_event ksymbol_event;
7923 char name[KSYM_NAME_LEN];
7924 u16 flags = 0;
7925 int name_len;
7926
7927 if (!atomic_read(&nr_ksymbol_events))
7928 return;
7929
7930 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
7931 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
7932 goto err;
7933
7934 strlcpy(name, sym, KSYM_NAME_LEN);
7935 name_len = strlen(name) + 1;
7936 while (!IS_ALIGNED(name_len, sizeof(u64)))
7937 name[name_len++] = '\0';
7938 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
7939
7940 if (unregister)
7941 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
7942
7943 ksymbol_event = (struct perf_ksymbol_event){
7944 .name = name,
7945 .name_len = name_len,
7946 .event_id = {
7947 .header = {
7948 .type = PERF_RECORD_KSYMBOL,
7949 .size = sizeof(ksymbol_event.event_id) +
7950 name_len,
7951 },
7952 .addr = addr,
7953 .len = len,
7954 .ksym_type = ksym_type,
7955 .flags = flags,
7956 },
7957 };
7958
7959 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
7960 return;
7961err:
7962 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
7963}
7964
6ee52e2a
SL
7965/*
7966 * bpf program load/unload tracking
7967 */
7968
7969struct perf_bpf_event {
7970 struct bpf_prog *prog;
7971 struct {
7972 struct perf_event_header header;
7973 u16 type;
7974 u16 flags;
7975 u32 id;
7976 u8 tag[BPF_TAG_SIZE];
7977 } event_id;
7978};
7979
7980static int perf_event_bpf_match(struct perf_event *event)
7981{
7982 return event->attr.bpf_event;
7983}
7984
7985static void perf_event_bpf_output(struct perf_event *event, void *data)
7986{
7987 struct perf_bpf_event *bpf_event = data;
7988 struct perf_output_handle handle;
7989 struct perf_sample_data sample;
7990 int ret;
7991
7992 if (!perf_event_bpf_match(event))
7993 return;
7994
7995 perf_event_header__init_id(&bpf_event->event_id.header,
7996 &sample, event);
7997 ret = perf_output_begin(&handle, event,
7998 bpf_event->event_id.header.size);
7999 if (ret)
8000 return;
8001
8002 perf_output_put(&handle, bpf_event->event_id);
8003 perf_event__output_id_sample(event, &handle, &sample);
8004
8005 perf_output_end(&handle);
8006}
8007
8008static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8009 enum perf_bpf_event_type type)
8010{
8011 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8012 char sym[KSYM_NAME_LEN];
8013 int i;
8014
8015 if (prog->aux->func_cnt == 0) {
8016 bpf_get_prog_name(prog, sym);
8017 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8018 (u64)(unsigned long)prog->bpf_func,
8019 prog->jited_len, unregister, sym);
8020 } else {
8021 for (i = 0; i < prog->aux->func_cnt; i++) {
8022 struct bpf_prog *subprog = prog->aux->func[i];
8023
8024 bpf_get_prog_name(subprog, sym);
8025 perf_event_ksymbol(
8026 PERF_RECORD_KSYMBOL_TYPE_BPF,
8027 (u64)(unsigned long)subprog->bpf_func,
8028 subprog->jited_len, unregister, sym);
8029 }
8030 }
8031}
8032
8033void perf_event_bpf_event(struct bpf_prog *prog,
8034 enum perf_bpf_event_type type,
8035 u16 flags)
8036{
8037 struct perf_bpf_event bpf_event;
8038
8039 if (type <= PERF_BPF_EVENT_UNKNOWN ||
8040 type >= PERF_BPF_EVENT_MAX)
8041 return;
8042
8043 switch (type) {
8044 case PERF_BPF_EVENT_PROG_LOAD:
8045 case PERF_BPF_EVENT_PROG_UNLOAD:
8046 if (atomic_read(&nr_ksymbol_events))
8047 perf_event_bpf_emit_ksymbols(prog, type);
8048 break;
8049 default:
8050 break;
8051 }
8052
8053 if (!atomic_read(&nr_bpf_events))
8054 return;
8055
8056 bpf_event = (struct perf_bpf_event){
8057 .prog = prog,
8058 .event_id = {
8059 .header = {
8060 .type = PERF_RECORD_BPF_EVENT,
8061 .size = sizeof(bpf_event.event_id),
8062 },
8063 .type = type,
8064 .flags = flags,
8065 .id = prog->aux->id,
8066 },
8067 };
8068
8069 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8070
8071 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8072 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8073}
8074
8d4e6c4c
AS
8075void perf_event_itrace_started(struct perf_event *event)
8076{
8077 event->attach_state |= PERF_ATTACH_ITRACE;
8078}
8079
ec0d7729
AS
8080static void perf_log_itrace_start(struct perf_event *event)
8081{
8082 struct perf_output_handle handle;
8083 struct perf_sample_data sample;
8084 struct perf_aux_event {
8085 struct perf_event_header header;
8086 u32 pid;
8087 u32 tid;
8088 } rec;
8089 int ret;
8090
8091 if (event->parent)
8092 event = event->parent;
8093
8094 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8d4e6c4c 8095 event->attach_state & PERF_ATTACH_ITRACE)
ec0d7729
AS
8096 return;
8097
ec0d7729
AS
8098 rec.header.type = PERF_RECORD_ITRACE_START;
8099 rec.header.misc = 0;
8100 rec.header.size = sizeof(rec);
8101 rec.pid = perf_event_pid(event, current);
8102 rec.tid = perf_event_tid(event, current);
8103
8104 perf_event_header__init_id(&rec.header, &sample, event);
8105 ret = perf_output_begin(&handle, event, rec.header.size);
8106
8107 if (ret)
8108 return;
8109
8110 perf_output_put(&handle, rec);
8111 perf_event__output_id_sample(event, &handle, &sample);
8112
8113 perf_output_end(&handle);
8114}
8115
475113d9
JO
8116static int
8117__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 8118{
cdd6c482 8119 struct hw_perf_event *hwc = &event->hw;
79f14641 8120 int ret = 0;
475113d9 8121 u64 seq;
96398826 8122
e050e3f0
SE
8123 seq = __this_cpu_read(perf_throttled_seq);
8124 if (seq != hwc->interrupts_seq) {
8125 hwc->interrupts_seq = seq;
8126 hwc->interrupts = 1;
8127 } else {
8128 hwc->interrupts++;
8129 if (unlikely(throttle
8130 && hwc->interrupts >= max_samples_per_tick)) {
8131 __this_cpu_inc(perf_throttled_count);
555e0c1e 8132 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
8133 hwc->interrupts = MAX_INTERRUPTS;
8134 perf_log_throttle(event, 0);
a78ac325
PZ
8135 ret = 1;
8136 }
e050e3f0 8137 }
60db5e09 8138
cdd6c482 8139 if (event->attr.freq) {
def0a9b2 8140 u64 now = perf_clock();
abd50713 8141 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 8142
abd50713 8143 hwc->freq_time_stamp = now;
bd2b5b12 8144
abd50713 8145 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 8146 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
8147 }
8148
475113d9
JO
8149 return ret;
8150}
8151
8152int perf_event_account_interrupt(struct perf_event *event)
8153{
8154 return __perf_event_account_interrupt(event, 1);
8155}
8156
8157/*
8158 * Generic event overflow handling, sampling.
8159 */
8160
8161static int __perf_event_overflow(struct perf_event *event,
8162 int throttle, struct perf_sample_data *data,
8163 struct pt_regs *regs)
8164{
8165 int events = atomic_read(&event->event_limit);
8166 int ret = 0;
8167
8168 /*
8169 * Non-sampling counters might still use the PMI to fold short
8170 * hardware counters, ignore those.
8171 */
8172 if (unlikely(!is_sampling_event(event)))
8173 return 0;
8174
8175 ret = __perf_event_account_interrupt(event, throttle);
cc1582c2 8176
2023b359
PZ
8177 /*
8178 * XXX event_limit might not quite work as expected on inherited
cdd6c482 8179 * events
2023b359
PZ
8180 */
8181
cdd6c482
IM
8182 event->pending_kill = POLL_IN;
8183 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 8184 ret = 1;
cdd6c482 8185 event->pending_kill = POLL_HUP;
5aab90ce
JO
8186
8187 perf_event_disable_inatomic(event);
79f14641
PZ
8188 }
8189
aa6a5f3c 8190 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 8191
fed66e2c 8192 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
8193 event->pending_wakeup = 1;
8194 irq_work_queue(&event->pending);
f506b3dc
PZ
8195 }
8196
79f14641 8197 return ret;
f6c7d5fe
PZ
8198}
8199
a8b0ca17 8200int perf_event_overflow(struct perf_event *event,
5622f295
MM
8201 struct perf_sample_data *data,
8202 struct pt_regs *regs)
850bc73f 8203{
a8b0ca17 8204 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
8205}
8206
15dbf27c 8207/*
cdd6c482 8208 * Generic software event infrastructure
15dbf27c
PZ
8209 */
8210
b28ab83c
PZ
8211struct swevent_htable {
8212 struct swevent_hlist *swevent_hlist;
8213 struct mutex hlist_mutex;
8214 int hlist_refcount;
8215
8216 /* Recursion avoidance in each contexts */
8217 int recursion[PERF_NR_CONTEXTS];
8218};
8219
8220static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8221
7b4b6658 8222/*
cdd6c482
IM
8223 * We directly increment event->count and keep a second value in
8224 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
8225 * is kept in the range [-sample_period, 0] so that we can use the
8226 * sign as trigger.
8227 */
8228
ab573844 8229u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 8230{
cdd6c482 8231 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
8232 u64 period = hwc->last_period;
8233 u64 nr, offset;
8234 s64 old, val;
8235
8236 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
8237
8238again:
e7850595 8239 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
8240 if (val < 0)
8241 return 0;
15dbf27c 8242
7b4b6658
PZ
8243 nr = div64_u64(period + val, period);
8244 offset = nr * period;
8245 val -= offset;
e7850595 8246 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 8247 goto again;
15dbf27c 8248
7b4b6658 8249 return nr;
15dbf27c
PZ
8250}
8251
0cff784a 8252static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 8253 struct perf_sample_data *data,
5622f295 8254 struct pt_regs *regs)
15dbf27c 8255{
cdd6c482 8256 struct hw_perf_event *hwc = &event->hw;
850bc73f 8257 int throttle = 0;
15dbf27c 8258
0cff784a
PZ
8259 if (!overflow)
8260 overflow = perf_swevent_set_period(event);
15dbf27c 8261
7b4b6658
PZ
8262 if (hwc->interrupts == MAX_INTERRUPTS)
8263 return;
15dbf27c 8264
7b4b6658 8265 for (; overflow; overflow--) {
a8b0ca17 8266 if (__perf_event_overflow(event, throttle,
5622f295 8267 data, regs)) {
7b4b6658
PZ
8268 /*
8269 * We inhibit the overflow from happening when
8270 * hwc->interrupts == MAX_INTERRUPTS.
8271 */
8272 break;
8273 }
cf450a73 8274 throttle = 1;
7b4b6658 8275 }
15dbf27c
PZ
8276}
8277
a4eaf7f1 8278static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 8279 struct perf_sample_data *data,
5622f295 8280 struct pt_regs *regs)
7b4b6658 8281{
cdd6c482 8282 struct hw_perf_event *hwc = &event->hw;
d6d020e9 8283
e7850595 8284 local64_add(nr, &event->count);
d6d020e9 8285
0cff784a
PZ
8286 if (!regs)
8287 return;
8288
6c7e550f 8289 if (!is_sampling_event(event))
7b4b6658 8290 return;
d6d020e9 8291
5d81e5cf
AV
8292 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8293 data->period = nr;
8294 return perf_swevent_overflow(event, 1, data, regs);
8295 } else
8296 data->period = event->hw.last_period;
8297
0cff784a 8298 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 8299 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 8300
e7850595 8301 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 8302 return;
df1a132b 8303
a8b0ca17 8304 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
8305}
8306
f5ffe02e
FW
8307static int perf_exclude_event(struct perf_event *event,
8308 struct pt_regs *regs)
8309{
a4eaf7f1 8310 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 8311 return 1;
a4eaf7f1 8312
f5ffe02e
FW
8313 if (regs) {
8314 if (event->attr.exclude_user && user_mode(regs))
8315 return 1;
8316
8317 if (event->attr.exclude_kernel && !user_mode(regs))
8318 return 1;
8319 }
8320
8321 return 0;
8322}
8323
cdd6c482 8324static int perf_swevent_match(struct perf_event *event,
1c432d89 8325 enum perf_type_id type,
6fb2915d
LZ
8326 u32 event_id,
8327 struct perf_sample_data *data,
8328 struct pt_regs *regs)
15dbf27c 8329{
cdd6c482 8330 if (event->attr.type != type)
a21ca2ca 8331 return 0;
f5ffe02e 8332
cdd6c482 8333 if (event->attr.config != event_id)
15dbf27c
PZ
8334 return 0;
8335
f5ffe02e
FW
8336 if (perf_exclude_event(event, regs))
8337 return 0;
15dbf27c
PZ
8338
8339 return 1;
8340}
8341
76e1d904
FW
8342static inline u64 swevent_hash(u64 type, u32 event_id)
8343{
8344 u64 val = event_id | (type << 32);
8345
8346 return hash_64(val, SWEVENT_HLIST_BITS);
8347}
8348
49f135ed
FW
8349static inline struct hlist_head *
8350__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 8351{
49f135ed
FW
8352 u64 hash = swevent_hash(type, event_id);
8353
8354 return &hlist->heads[hash];
8355}
76e1d904 8356
49f135ed
FW
8357/* For the read side: events when they trigger */
8358static inline struct hlist_head *
b28ab83c 8359find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
8360{
8361 struct swevent_hlist *hlist;
76e1d904 8362
b28ab83c 8363 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
8364 if (!hlist)
8365 return NULL;
8366
49f135ed
FW
8367 return __find_swevent_head(hlist, type, event_id);
8368}
8369
8370/* For the event head insertion and removal in the hlist */
8371static inline struct hlist_head *
b28ab83c 8372find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
8373{
8374 struct swevent_hlist *hlist;
8375 u32 event_id = event->attr.config;
8376 u64 type = event->attr.type;
8377
8378 /*
8379 * Event scheduling is always serialized against hlist allocation
8380 * and release. Which makes the protected version suitable here.
8381 * The context lock guarantees that.
8382 */
b28ab83c 8383 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
8384 lockdep_is_held(&event->ctx->lock));
8385 if (!hlist)
8386 return NULL;
8387
8388 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
8389}
8390
8391static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 8392 u64 nr,
76e1d904
FW
8393 struct perf_sample_data *data,
8394 struct pt_regs *regs)
15dbf27c 8395{
4a32fea9 8396 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 8397 struct perf_event *event;
76e1d904 8398 struct hlist_head *head;
15dbf27c 8399
76e1d904 8400 rcu_read_lock();
b28ab83c 8401 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
8402 if (!head)
8403 goto end;
8404
b67bfe0d 8405 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 8406 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 8407 perf_swevent_event(event, nr, data, regs);
15dbf27c 8408 }
76e1d904
FW
8409end:
8410 rcu_read_unlock();
15dbf27c
PZ
8411}
8412
86038c5e
PZI
8413DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8414
4ed7c92d 8415int perf_swevent_get_recursion_context(void)
96f6d444 8416{
4a32fea9 8417 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 8418
b28ab83c 8419 return get_recursion_context(swhash->recursion);
96f6d444 8420}
645e8cc0 8421EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 8422
98b5c2c6 8423void perf_swevent_put_recursion_context(int rctx)
15dbf27c 8424{
4a32fea9 8425 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 8426
b28ab83c 8427 put_recursion_context(swhash->recursion, rctx);
ce71b9df 8428}
15dbf27c 8429
86038c5e 8430void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 8431{
a4234bfc 8432 struct perf_sample_data data;
4ed7c92d 8433
86038c5e 8434 if (WARN_ON_ONCE(!regs))
4ed7c92d 8435 return;
a4234bfc 8436
fd0d000b 8437 perf_sample_data_init(&data, addr, 0);
a8b0ca17 8438 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
8439}
8440
8441void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8442{
8443 int rctx;
8444
8445 preempt_disable_notrace();
8446 rctx = perf_swevent_get_recursion_context();
8447 if (unlikely(rctx < 0))
8448 goto fail;
8449
8450 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
8451
8452 perf_swevent_put_recursion_context(rctx);
86038c5e 8453fail:
1c024eca 8454 preempt_enable_notrace();
b8e83514
PZ
8455}
8456
cdd6c482 8457static void perf_swevent_read(struct perf_event *event)
15dbf27c 8458{
15dbf27c
PZ
8459}
8460
a4eaf7f1 8461static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 8462{
4a32fea9 8463 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 8464 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
8465 struct hlist_head *head;
8466
6c7e550f 8467 if (is_sampling_event(event)) {
7b4b6658 8468 hwc->last_period = hwc->sample_period;
cdd6c482 8469 perf_swevent_set_period(event);
7b4b6658 8470 }
76e1d904 8471
a4eaf7f1
PZ
8472 hwc->state = !(flags & PERF_EF_START);
8473
b28ab83c 8474 head = find_swevent_head(swhash, event);
12ca6ad2 8475 if (WARN_ON_ONCE(!head))
76e1d904
FW
8476 return -EINVAL;
8477
8478 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 8479 perf_event_update_userpage(event);
76e1d904 8480
15dbf27c
PZ
8481 return 0;
8482}
8483
a4eaf7f1 8484static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 8485{
76e1d904 8486 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
8487}
8488
a4eaf7f1 8489static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 8490{
a4eaf7f1 8491 event->hw.state = 0;
d6d020e9 8492}
aa9c4c0f 8493
a4eaf7f1 8494static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 8495{
a4eaf7f1 8496 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
8497}
8498
49f135ed
FW
8499/* Deref the hlist from the update side */
8500static inline struct swevent_hlist *
b28ab83c 8501swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 8502{
b28ab83c
PZ
8503 return rcu_dereference_protected(swhash->swevent_hlist,
8504 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
8505}
8506
b28ab83c 8507static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 8508{
b28ab83c 8509 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 8510
49f135ed 8511 if (!hlist)
76e1d904
FW
8512 return;
8513
70691d4a 8514 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 8515 kfree_rcu(hlist, rcu_head);
76e1d904
FW
8516}
8517
3b364d7b 8518static void swevent_hlist_put_cpu(int cpu)
76e1d904 8519{
b28ab83c 8520 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 8521
b28ab83c 8522 mutex_lock(&swhash->hlist_mutex);
76e1d904 8523
b28ab83c
PZ
8524 if (!--swhash->hlist_refcount)
8525 swevent_hlist_release(swhash);
76e1d904 8526
b28ab83c 8527 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
8528}
8529
3b364d7b 8530static void swevent_hlist_put(void)
76e1d904
FW
8531{
8532 int cpu;
8533
76e1d904 8534 for_each_possible_cpu(cpu)
3b364d7b 8535 swevent_hlist_put_cpu(cpu);
76e1d904
FW
8536}
8537
3b364d7b 8538static int swevent_hlist_get_cpu(int cpu)
76e1d904 8539{
b28ab83c 8540 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
8541 int err = 0;
8542
b28ab83c 8543 mutex_lock(&swhash->hlist_mutex);
a63fbed7
TG
8544 if (!swevent_hlist_deref(swhash) &&
8545 cpumask_test_cpu(cpu, perf_online_mask)) {
76e1d904
FW
8546 struct swevent_hlist *hlist;
8547
8548 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8549 if (!hlist) {
8550 err = -ENOMEM;
8551 goto exit;
8552 }
b28ab83c 8553 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 8554 }
b28ab83c 8555 swhash->hlist_refcount++;
9ed6060d 8556exit:
b28ab83c 8557 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
8558
8559 return err;
8560}
8561
3b364d7b 8562static int swevent_hlist_get(void)
76e1d904 8563{
3b364d7b 8564 int err, cpu, failed_cpu;
76e1d904 8565
a63fbed7 8566 mutex_lock(&pmus_lock);
76e1d904 8567 for_each_possible_cpu(cpu) {
3b364d7b 8568 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
8569 if (err) {
8570 failed_cpu = cpu;
8571 goto fail;
8572 }
8573 }
a63fbed7 8574 mutex_unlock(&pmus_lock);
76e1d904 8575 return 0;
9ed6060d 8576fail:
76e1d904
FW
8577 for_each_possible_cpu(cpu) {
8578 if (cpu == failed_cpu)
8579 break;
3b364d7b 8580 swevent_hlist_put_cpu(cpu);
76e1d904 8581 }
a63fbed7 8582 mutex_unlock(&pmus_lock);
76e1d904
FW
8583 return err;
8584}
8585
c5905afb 8586struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 8587
b0a873eb
PZ
8588static void sw_perf_event_destroy(struct perf_event *event)
8589{
8590 u64 event_id = event->attr.config;
95476b64 8591
b0a873eb
PZ
8592 WARN_ON(event->parent);
8593
c5905afb 8594 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 8595 swevent_hlist_put();
b0a873eb
PZ
8596}
8597
8598static int perf_swevent_init(struct perf_event *event)
8599{
8176cced 8600 u64 event_id = event->attr.config;
b0a873eb
PZ
8601
8602 if (event->attr.type != PERF_TYPE_SOFTWARE)
8603 return -ENOENT;
8604
2481c5fa
SE
8605 /*
8606 * no branch sampling for software events
8607 */
8608 if (has_branch_stack(event))
8609 return -EOPNOTSUPP;
8610
b0a873eb
PZ
8611 switch (event_id) {
8612 case PERF_COUNT_SW_CPU_CLOCK:
8613 case PERF_COUNT_SW_TASK_CLOCK:
8614 return -ENOENT;
8615
8616 default:
8617 break;
8618 }
8619
ce677831 8620 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
8621 return -ENOENT;
8622
8623 if (!event->parent) {
8624 int err;
8625
3b364d7b 8626 err = swevent_hlist_get();
b0a873eb
PZ
8627 if (err)
8628 return err;
8629
c5905afb 8630 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
8631 event->destroy = sw_perf_event_destroy;
8632 }
8633
8634 return 0;
8635}
8636
8637static struct pmu perf_swevent = {
89a1e187 8638 .task_ctx_nr = perf_sw_context,
95476b64 8639
34f43927
PZ
8640 .capabilities = PERF_PMU_CAP_NO_NMI,
8641
b0a873eb 8642 .event_init = perf_swevent_init,
a4eaf7f1
PZ
8643 .add = perf_swevent_add,
8644 .del = perf_swevent_del,
8645 .start = perf_swevent_start,
8646 .stop = perf_swevent_stop,
1c024eca 8647 .read = perf_swevent_read,
1c024eca
PZ
8648};
8649
b0a873eb
PZ
8650#ifdef CONFIG_EVENT_TRACING
8651
1c024eca
PZ
8652static int perf_tp_filter_match(struct perf_event *event,
8653 struct perf_sample_data *data)
8654{
7e3f977e 8655 void *record = data->raw->frag.data;
1c024eca 8656
b71b437e
PZ
8657 /* only top level events have filters set */
8658 if (event->parent)
8659 event = event->parent;
8660
1c024eca
PZ
8661 if (likely(!event->filter) || filter_match_preds(event->filter, record))
8662 return 1;
8663 return 0;
8664}
8665
8666static int perf_tp_event_match(struct perf_event *event,
8667 struct perf_sample_data *data,
8668 struct pt_regs *regs)
8669{
a0f7d0f7
FW
8670 if (event->hw.state & PERF_HES_STOPPED)
8671 return 0;
580d607c 8672 /*
9fd2e48b 8673 * If exclude_kernel, only trace user-space tracepoints (uprobes)
580d607c 8674 */
9fd2e48b 8675 if (event->attr.exclude_kernel && !user_mode(regs))
1c024eca
PZ
8676 return 0;
8677
8678 if (!perf_tp_filter_match(event, data))
8679 return 0;
8680
8681 return 1;
8682}
8683
85b67bcb
AS
8684void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8685 struct trace_event_call *call, u64 count,
8686 struct pt_regs *regs, struct hlist_head *head,
8687 struct task_struct *task)
8688{
e87c6bc3 8689 if (bpf_prog_array_valid(call)) {
85b67bcb 8690 *(struct pt_regs **)raw_data = regs;
e87c6bc3 8691 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
85b67bcb
AS
8692 perf_swevent_put_recursion_context(rctx);
8693 return;
8694 }
8695 }
8696 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8fd0fbbe 8697 rctx, task);
85b67bcb
AS
8698}
8699EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8700
1e1dcd93 8701void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff 8702 struct pt_regs *regs, struct hlist_head *head, int rctx,
8fd0fbbe 8703 struct task_struct *task)
95476b64
FW
8704{
8705 struct perf_sample_data data;
8fd0fbbe 8706 struct perf_event *event;
1c024eca 8707
95476b64 8708 struct perf_raw_record raw = {
7e3f977e
DB
8709 .frag = {
8710 .size = entry_size,
8711 .data = record,
8712 },
95476b64
FW
8713 };
8714
1e1dcd93 8715 perf_sample_data_init(&data, 0, 0);
95476b64
FW
8716 data.raw = &raw;
8717
1e1dcd93
AS
8718 perf_trace_buf_update(record, event_type);
8719
8fd0fbbe 8720 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 8721 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 8722 perf_swevent_event(event, count, &data, regs);
4f41c013 8723 }
ecc55f84 8724
e6dab5ff
AV
8725 /*
8726 * If we got specified a target task, also iterate its context and
8727 * deliver this event there too.
8728 */
8729 if (task && task != current) {
8730 struct perf_event_context *ctx;
8731 struct trace_entry *entry = record;
8732
8733 rcu_read_lock();
8734 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8735 if (!ctx)
8736 goto unlock;
8737
8738 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cd6fb677
JO
8739 if (event->cpu != smp_processor_id())
8740 continue;
e6dab5ff
AV
8741 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8742 continue;
8743 if (event->attr.config != entry->type)
8744 continue;
8745 if (perf_tp_event_match(event, &data, regs))
8746 perf_swevent_event(event, count, &data, regs);
8747 }
8748unlock:
8749 rcu_read_unlock();
8750 }
8751
ecc55f84 8752 perf_swevent_put_recursion_context(rctx);
95476b64
FW
8753}
8754EXPORT_SYMBOL_GPL(perf_tp_event);
8755
cdd6c482 8756static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 8757{
1c024eca 8758 perf_trace_destroy(event);
e077df4f
PZ
8759}
8760
b0a873eb 8761static int perf_tp_event_init(struct perf_event *event)
e077df4f 8762{
76e1d904
FW
8763 int err;
8764
b0a873eb
PZ
8765 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8766 return -ENOENT;
8767
2481c5fa
SE
8768 /*
8769 * no branch sampling for tracepoint events
8770 */
8771 if (has_branch_stack(event))
8772 return -EOPNOTSUPP;
8773
1c024eca
PZ
8774 err = perf_trace_init(event);
8775 if (err)
b0a873eb 8776 return err;
e077df4f 8777
cdd6c482 8778 event->destroy = tp_perf_event_destroy;
e077df4f 8779
b0a873eb
PZ
8780 return 0;
8781}
8782
8783static struct pmu perf_tracepoint = {
89a1e187
PZ
8784 .task_ctx_nr = perf_sw_context,
8785
b0a873eb 8786 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
8787 .add = perf_trace_add,
8788 .del = perf_trace_del,
8789 .start = perf_swevent_start,
8790 .stop = perf_swevent_stop,
b0a873eb 8791 .read = perf_swevent_read,
b0a873eb
PZ
8792};
8793
33ea4b24 8794#if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
e12f03d7
SL
8795/*
8796 * Flags in config, used by dynamic PMU kprobe and uprobe
8797 * The flags should match following PMU_FORMAT_ATTR().
8798 *
8799 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8800 * if not set, create kprobe/uprobe
a6ca88b2
SL
8801 *
8802 * The following values specify a reference counter (or semaphore in the
8803 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
8804 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
8805 *
8806 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
8807 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
e12f03d7
SL
8808 */
8809enum perf_probe_config {
8810 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
a6ca88b2
SL
8811 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
8812 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
e12f03d7
SL
8813};
8814
8815PMU_FORMAT_ATTR(retprobe, "config:0");
a6ca88b2 8816#endif
e12f03d7 8817
a6ca88b2
SL
8818#ifdef CONFIG_KPROBE_EVENTS
8819static struct attribute *kprobe_attrs[] = {
e12f03d7
SL
8820 &format_attr_retprobe.attr,
8821 NULL,
8822};
8823
a6ca88b2 8824static struct attribute_group kprobe_format_group = {
e12f03d7 8825 .name = "format",
a6ca88b2 8826 .attrs = kprobe_attrs,
e12f03d7
SL
8827};
8828
a6ca88b2
SL
8829static const struct attribute_group *kprobe_attr_groups[] = {
8830 &kprobe_format_group,
e12f03d7
SL
8831 NULL,
8832};
8833
8834static int perf_kprobe_event_init(struct perf_event *event);
8835static struct pmu perf_kprobe = {
8836 .task_ctx_nr = perf_sw_context,
8837 .event_init = perf_kprobe_event_init,
8838 .add = perf_trace_add,
8839 .del = perf_trace_del,
8840 .start = perf_swevent_start,
8841 .stop = perf_swevent_stop,
8842 .read = perf_swevent_read,
a6ca88b2 8843 .attr_groups = kprobe_attr_groups,
e12f03d7
SL
8844};
8845
8846static int perf_kprobe_event_init(struct perf_event *event)
8847{
8848 int err;
8849 bool is_retprobe;
8850
8851 if (event->attr.type != perf_kprobe.type)
8852 return -ENOENT;
32e6e967
SL
8853
8854 if (!capable(CAP_SYS_ADMIN))
8855 return -EACCES;
8856
e12f03d7
SL
8857 /*
8858 * no branch sampling for probe events
8859 */
8860 if (has_branch_stack(event))
8861 return -EOPNOTSUPP;
8862
8863 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8864 err = perf_kprobe_init(event, is_retprobe);
8865 if (err)
8866 return err;
8867
8868 event->destroy = perf_kprobe_destroy;
8869
8870 return 0;
8871}
8872#endif /* CONFIG_KPROBE_EVENTS */
8873
33ea4b24 8874#ifdef CONFIG_UPROBE_EVENTS
a6ca88b2
SL
8875PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
8876
8877static struct attribute *uprobe_attrs[] = {
8878 &format_attr_retprobe.attr,
8879 &format_attr_ref_ctr_offset.attr,
8880 NULL,
8881};
8882
8883static struct attribute_group uprobe_format_group = {
8884 .name = "format",
8885 .attrs = uprobe_attrs,
8886};
8887
8888static const struct attribute_group *uprobe_attr_groups[] = {
8889 &uprobe_format_group,
8890 NULL,
8891};
8892
33ea4b24
SL
8893static int perf_uprobe_event_init(struct perf_event *event);
8894static struct pmu perf_uprobe = {
8895 .task_ctx_nr = perf_sw_context,
8896 .event_init = perf_uprobe_event_init,
8897 .add = perf_trace_add,
8898 .del = perf_trace_del,
8899 .start = perf_swevent_start,
8900 .stop = perf_swevent_stop,
8901 .read = perf_swevent_read,
a6ca88b2 8902 .attr_groups = uprobe_attr_groups,
33ea4b24
SL
8903};
8904
8905static int perf_uprobe_event_init(struct perf_event *event)
8906{
8907 int err;
a6ca88b2 8908 unsigned long ref_ctr_offset;
33ea4b24
SL
8909 bool is_retprobe;
8910
8911 if (event->attr.type != perf_uprobe.type)
8912 return -ENOENT;
32e6e967
SL
8913
8914 if (!capable(CAP_SYS_ADMIN))
8915 return -EACCES;
8916
33ea4b24
SL
8917 /*
8918 * no branch sampling for probe events
8919 */
8920 if (has_branch_stack(event))
8921 return -EOPNOTSUPP;
8922
8923 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
a6ca88b2
SL
8924 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
8925 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
33ea4b24
SL
8926 if (err)
8927 return err;
8928
8929 event->destroy = perf_uprobe_destroy;
8930
8931 return 0;
8932}
8933#endif /* CONFIG_UPROBE_EVENTS */
8934
b0a873eb
PZ
8935static inline void perf_tp_register(void)
8936{
2e80a82a 8937 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e12f03d7
SL
8938#ifdef CONFIG_KPROBE_EVENTS
8939 perf_pmu_register(&perf_kprobe, "kprobe", -1);
8940#endif
33ea4b24
SL
8941#ifdef CONFIG_UPROBE_EVENTS
8942 perf_pmu_register(&perf_uprobe, "uprobe", -1);
8943#endif
e077df4f 8944}
6fb2915d 8945
6fb2915d
LZ
8946static void perf_event_free_filter(struct perf_event *event)
8947{
8948 ftrace_profile_free_filter(event);
8949}
8950
aa6a5f3c
AS
8951#ifdef CONFIG_BPF_SYSCALL
8952static void bpf_overflow_handler(struct perf_event *event,
8953 struct perf_sample_data *data,
8954 struct pt_regs *regs)
8955{
8956 struct bpf_perf_event_data_kern ctx = {
8957 .data = data,
7d9285e8 8958 .event = event,
aa6a5f3c
AS
8959 };
8960 int ret = 0;
8961
c895f6f7 8962 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
aa6a5f3c
AS
8963 preempt_disable();
8964 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8965 goto out;
8966 rcu_read_lock();
88575199 8967 ret = BPF_PROG_RUN(event->prog, &ctx);
aa6a5f3c
AS
8968 rcu_read_unlock();
8969out:
8970 __this_cpu_dec(bpf_prog_active);
8971 preempt_enable();
8972 if (!ret)
8973 return;
8974
8975 event->orig_overflow_handler(event, data, regs);
8976}
8977
8978static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8979{
8980 struct bpf_prog *prog;
8981
8982 if (event->overflow_handler_context)
8983 /* hw breakpoint or kernel counter */
8984 return -EINVAL;
8985
8986 if (event->prog)
8987 return -EEXIST;
8988
8989 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8990 if (IS_ERR(prog))
8991 return PTR_ERR(prog);
8992
8993 event->prog = prog;
8994 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8995 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8996 return 0;
8997}
8998
8999static void perf_event_free_bpf_handler(struct perf_event *event)
9000{
9001 struct bpf_prog *prog = event->prog;
9002
9003 if (!prog)
9004 return;
9005
9006 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9007 event->prog = NULL;
9008 bpf_prog_put(prog);
9009}
9010#else
9011static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9012{
9013 return -EOPNOTSUPP;
9014}
9015static void perf_event_free_bpf_handler(struct perf_event *event)
9016{
9017}
9018#endif
9019
e12f03d7
SL
9020/*
9021 * returns true if the event is a tracepoint, or a kprobe/upprobe created
9022 * with perf_event_open()
9023 */
9024static inline bool perf_event_is_tracing(struct perf_event *event)
9025{
9026 if (event->pmu == &perf_tracepoint)
9027 return true;
9028#ifdef CONFIG_KPROBE_EVENTS
9029 if (event->pmu == &perf_kprobe)
9030 return true;
33ea4b24
SL
9031#endif
9032#ifdef CONFIG_UPROBE_EVENTS
9033 if (event->pmu == &perf_uprobe)
9034 return true;
e12f03d7
SL
9035#endif
9036 return false;
9037}
9038
2541517c
AS
9039static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9040{
cf5f5cea 9041 bool is_kprobe, is_tracepoint, is_syscall_tp;
2541517c 9042 struct bpf_prog *prog;
e87c6bc3 9043 int ret;
2541517c 9044
e12f03d7 9045 if (!perf_event_is_tracing(event))
f91840a3 9046 return perf_event_set_bpf_handler(event, prog_fd);
2541517c 9047
98b5c2c6
AS
9048 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9049 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
cf5f5cea
YS
9050 is_syscall_tp = is_syscall_trace_event(event->tp_event);
9051 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
98b5c2c6 9052 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
9053 return -EINVAL;
9054
9055 prog = bpf_prog_get(prog_fd);
9056 if (IS_ERR(prog))
9057 return PTR_ERR(prog);
9058
98b5c2c6 9059 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
cf5f5cea
YS
9060 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9061 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
9062 /* valid fd, but invalid bpf program type */
9063 bpf_prog_put(prog);
9064 return -EINVAL;
9065 }
9066
9802d865
JB
9067 /* Kprobe override only works for kprobes, not uprobes. */
9068 if (prog->kprobe_override &&
9069 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9070 bpf_prog_put(prog);
9071 return -EINVAL;
9072 }
9073
cf5f5cea 9074 if (is_tracepoint || is_syscall_tp) {
32bbe007
AS
9075 int off = trace_event_get_offsets(event->tp_event);
9076
9077 if (prog->aux->max_ctx_offset > off) {
9078 bpf_prog_put(prog);
9079 return -EACCES;
9080 }
9081 }
2541517c 9082
e87c6bc3
YS
9083 ret = perf_event_attach_bpf_prog(event, prog);
9084 if (ret)
9085 bpf_prog_put(prog);
9086 return ret;
2541517c
AS
9087}
9088
9089static void perf_event_free_bpf_prog(struct perf_event *event)
9090{
e12f03d7 9091 if (!perf_event_is_tracing(event)) {
0b4c6841 9092 perf_event_free_bpf_handler(event);
2541517c 9093 return;
2541517c 9094 }
e87c6bc3 9095 perf_event_detach_bpf_prog(event);
2541517c
AS
9096}
9097
e077df4f 9098#else
6fb2915d 9099
b0a873eb 9100static inline void perf_tp_register(void)
e077df4f 9101{
e077df4f 9102}
6fb2915d 9103
6fb2915d
LZ
9104static void perf_event_free_filter(struct perf_event *event)
9105{
9106}
9107
2541517c
AS
9108static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9109{
9110 return -ENOENT;
9111}
9112
9113static void perf_event_free_bpf_prog(struct perf_event *event)
9114{
9115}
07b139c8 9116#endif /* CONFIG_EVENT_TRACING */
e077df4f 9117
24f1e32c 9118#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 9119void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 9120{
f5ffe02e
FW
9121 struct perf_sample_data sample;
9122 struct pt_regs *regs = data;
9123
fd0d000b 9124 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 9125
a4eaf7f1 9126 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 9127 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
9128}
9129#endif
9130
375637bc
AS
9131/*
9132 * Allocate a new address filter
9133 */
9134static struct perf_addr_filter *
9135perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9136{
9137 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9138 struct perf_addr_filter *filter;
9139
9140 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9141 if (!filter)
9142 return NULL;
9143
9144 INIT_LIST_HEAD(&filter->entry);
9145 list_add_tail(&filter->entry, filters);
9146
9147 return filter;
9148}
9149
9150static void free_filters_list(struct list_head *filters)
9151{
9152 struct perf_addr_filter *filter, *iter;
9153
9154 list_for_each_entry_safe(filter, iter, filters, entry) {
9511bce9 9155 path_put(&filter->path);
375637bc
AS
9156 list_del(&filter->entry);
9157 kfree(filter);
9158 }
9159}
9160
9161/*
9162 * Free existing address filters and optionally install new ones
9163 */
9164static void perf_addr_filters_splice(struct perf_event *event,
9165 struct list_head *head)
9166{
9167 unsigned long flags;
9168 LIST_HEAD(list);
9169
9170 if (!has_addr_filter(event))
9171 return;
9172
9173 /* don't bother with children, they don't have their own filters */
9174 if (event->parent)
9175 return;
9176
9177 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9178
9179 list_splice_init(&event->addr_filters.list, &list);
9180 if (head)
9181 list_splice(head, &event->addr_filters.list);
9182
9183 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9184
9185 free_filters_list(&list);
9186}
9187
9188/*
9189 * Scan through mm's vmas and see if one of them matches the
9190 * @filter; if so, adjust filter's address range.
9191 * Called with mm::mmap_sem down for reading.
9192 */
c60f83b8
AS
9193static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9194 struct mm_struct *mm,
9195 struct perf_addr_filter_range *fr)
375637bc
AS
9196{
9197 struct vm_area_struct *vma;
9198
9199 for (vma = mm->mmap; vma; vma = vma->vm_next) {
c60f83b8 9200 if (!vma->vm_file)
375637bc
AS
9201 continue;
9202
c60f83b8
AS
9203 if (perf_addr_filter_vma_adjust(filter, vma, fr))
9204 return;
375637bc 9205 }
375637bc
AS
9206}
9207
9208/*
9209 * Update event's address range filters based on the
9210 * task's existing mappings, if any.
9211 */
9212static void perf_event_addr_filters_apply(struct perf_event *event)
9213{
9214 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9215 struct task_struct *task = READ_ONCE(event->ctx->task);
9216 struct perf_addr_filter *filter;
9217 struct mm_struct *mm = NULL;
9218 unsigned int count = 0;
9219 unsigned long flags;
9220
9221 /*
9222 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9223 * will stop on the parent's child_mutex that our caller is also holding
9224 */
9225 if (task == TASK_TOMBSTONE)
9226 return;
9227
52a44f83
AS
9228 if (ifh->nr_file_filters) {
9229 mm = get_task_mm(event->ctx->task);
9230 if (!mm)
9231 goto restart;
375637bc 9232
52a44f83
AS
9233 down_read(&mm->mmap_sem);
9234 }
375637bc
AS
9235
9236 raw_spin_lock_irqsave(&ifh->lock, flags);
9237 list_for_each_entry(filter, &ifh->list, entry) {
52a44f83
AS
9238 if (filter->path.dentry) {
9239 /*
9240 * Adjust base offset if the filter is associated to a
9241 * binary that needs to be mapped:
9242 */
9243 event->addr_filter_ranges[count].start = 0;
9244 event->addr_filter_ranges[count].size = 0;
375637bc 9245
c60f83b8 9246 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
52a44f83
AS
9247 } else {
9248 event->addr_filter_ranges[count].start = filter->offset;
9249 event->addr_filter_ranges[count].size = filter->size;
9250 }
375637bc
AS
9251
9252 count++;
9253 }
9254
9255 event->addr_filters_gen++;
9256 raw_spin_unlock_irqrestore(&ifh->lock, flags);
9257
52a44f83
AS
9258 if (ifh->nr_file_filters) {
9259 up_read(&mm->mmap_sem);
375637bc 9260
52a44f83
AS
9261 mmput(mm);
9262 }
375637bc
AS
9263
9264restart:
767ae086 9265 perf_event_stop(event, 1);
375637bc
AS
9266}
9267
9268/*
9269 * Address range filtering: limiting the data to certain
9270 * instruction address ranges. Filters are ioctl()ed to us from
9271 * userspace as ascii strings.
9272 *
9273 * Filter string format:
9274 *
9275 * ACTION RANGE_SPEC
9276 * where ACTION is one of the
9277 * * "filter": limit the trace to this region
9278 * * "start": start tracing from this address
9279 * * "stop": stop tracing at this address/region;
9280 * RANGE_SPEC is
9281 * * for kernel addresses: <start address>[/<size>]
9282 * * for object files: <start address>[/<size>]@</path/to/object/file>
9283 *
6ed70cf3
AS
9284 * if <size> is not specified or is zero, the range is treated as a single
9285 * address; not valid for ACTION=="filter".
375637bc
AS
9286 */
9287enum {
e96271f3 9288 IF_ACT_NONE = -1,
375637bc
AS
9289 IF_ACT_FILTER,
9290 IF_ACT_START,
9291 IF_ACT_STOP,
9292 IF_SRC_FILE,
9293 IF_SRC_KERNEL,
9294 IF_SRC_FILEADDR,
9295 IF_SRC_KERNELADDR,
9296};
9297
9298enum {
9299 IF_STATE_ACTION = 0,
9300 IF_STATE_SOURCE,
9301 IF_STATE_END,
9302};
9303
9304static const match_table_t if_tokens = {
9305 { IF_ACT_FILTER, "filter" },
9306 { IF_ACT_START, "start" },
9307 { IF_ACT_STOP, "stop" },
9308 { IF_SRC_FILE, "%u/%u@%s" },
9309 { IF_SRC_KERNEL, "%u/%u" },
9310 { IF_SRC_FILEADDR, "%u@%s" },
9311 { IF_SRC_KERNELADDR, "%u" },
e96271f3 9312 { IF_ACT_NONE, NULL },
375637bc
AS
9313};
9314
9315/*
9316 * Address filter string parser
9317 */
9318static int
9319perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9320 struct list_head *filters)
9321{
9322 struct perf_addr_filter *filter = NULL;
9323 char *start, *orig, *filename = NULL;
375637bc
AS
9324 substring_t args[MAX_OPT_ARGS];
9325 int state = IF_STATE_ACTION, token;
9326 unsigned int kernel = 0;
9327 int ret = -EINVAL;
9328
9329 orig = fstr = kstrdup(fstr, GFP_KERNEL);
9330 if (!fstr)
9331 return -ENOMEM;
9332
9333 while ((start = strsep(&fstr, " ,\n")) != NULL) {
6ed70cf3
AS
9334 static const enum perf_addr_filter_action_t actions[] = {
9335 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
9336 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
9337 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
9338 };
375637bc
AS
9339 ret = -EINVAL;
9340
9341 if (!*start)
9342 continue;
9343
9344 /* filter definition begins */
9345 if (state == IF_STATE_ACTION) {
9346 filter = perf_addr_filter_new(event, filters);
9347 if (!filter)
9348 goto fail;
9349 }
9350
9351 token = match_token(start, if_tokens, args);
9352 switch (token) {
9353 case IF_ACT_FILTER:
9354 case IF_ACT_START:
375637bc
AS
9355 case IF_ACT_STOP:
9356 if (state != IF_STATE_ACTION)
9357 goto fail;
9358
6ed70cf3 9359 filter->action = actions[token];
375637bc
AS
9360 state = IF_STATE_SOURCE;
9361 break;
9362
9363 case IF_SRC_KERNELADDR:
9364 case IF_SRC_KERNEL:
9365 kernel = 1;
10c3405f 9366 /* fall through */
375637bc
AS
9367
9368 case IF_SRC_FILEADDR:
9369 case IF_SRC_FILE:
9370 if (state != IF_STATE_SOURCE)
9371 goto fail;
9372
375637bc
AS
9373 *args[0].to = 0;
9374 ret = kstrtoul(args[0].from, 0, &filter->offset);
9375 if (ret)
9376 goto fail;
9377
6ed70cf3 9378 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
375637bc
AS
9379 *args[1].to = 0;
9380 ret = kstrtoul(args[1].from, 0, &filter->size);
9381 if (ret)
9382 goto fail;
9383 }
9384
4059ffd0 9385 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
6ed70cf3 9386 int fpos = token == IF_SRC_FILE ? 2 : 1;
4059ffd0
MP
9387
9388 filename = match_strdup(&args[fpos]);
375637bc
AS
9389 if (!filename) {
9390 ret = -ENOMEM;
9391 goto fail;
9392 }
9393 }
9394
9395 state = IF_STATE_END;
9396 break;
9397
9398 default:
9399 goto fail;
9400 }
9401
9402 /*
9403 * Filter definition is fully parsed, validate and install it.
9404 * Make sure that it doesn't contradict itself or the event's
9405 * attribute.
9406 */
9407 if (state == IF_STATE_END) {
9ccbfbb1 9408 ret = -EINVAL;
375637bc
AS
9409 if (kernel && event->attr.exclude_kernel)
9410 goto fail;
9411
6ed70cf3
AS
9412 /*
9413 * ACTION "filter" must have a non-zero length region
9414 * specified.
9415 */
9416 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9417 !filter->size)
9418 goto fail;
9419
375637bc
AS
9420 if (!kernel) {
9421 if (!filename)
9422 goto fail;
9423
6ce77bfd
AS
9424 /*
9425 * For now, we only support file-based filters
9426 * in per-task events; doing so for CPU-wide
9427 * events requires additional context switching
9428 * trickery, since same object code will be
9429 * mapped at different virtual addresses in
9430 * different processes.
9431 */
9432 ret = -EOPNOTSUPP;
9433 if (!event->ctx->task)
9434 goto fail_free_name;
9435
375637bc 9436 /* look up the path and grab its inode */
9511bce9
SL
9437 ret = kern_path(filename, LOOKUP_FOLLOW,
9438 &filter->path);
375637bc
AS
9439 if (ret)
9440 goto fail_free_name;
9441
375637bc
AS
9442 kfree(filename);
9443 filename = NULL;
9444
9445 ret = -EINVAL;
9511bce9
SL
9446 if (!filter->path.dentry ||
9447 !S_ISREG(d_inode(filter->path.dentry)
9448 ->i_mode))
375637bc 9449 goto fail;
6ce77bfd
AS
9450
9451 event->addr_filters.nr_file_filters++;
375637bc
AS
9452 }
9453
9454 /* ready to consume more filters */
9455 state = IF_STATE_ACTION;
9456 filter = NULL;
9457 }
9458 }
9459
9460 if (state != IF_STATE_ACTION)
9461 goto fail;
9462
9463 kfree(orig);
9464
9465 return 0;
9466
9467fail_free_name:
9468 kfree(filename);
9469fail:
9470 free_filters_list(filters);
9471 kfree(orig);
9472
9473 return ret;
9474}
9475
9476static int
9477perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9478{
9479 LIST_HEAD(filters);
9480 int ret;
9481
9482 /*
9483 * Since this is called in perf_ioctl() path, we're already holding
9484 * ctx::mutex.
9485 */
9486 lockdep_assert_held(&event->ctx->mutex);
9487
9488 if (WARN_ON_ONCE(event->parent))
9489 return -EINVAL;
9490
375637bc
AS
9491 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9492 if (ret)
6ce77bfd 9493 goto fail_clear_files;
375637bc
AS
9494
9495 ret = event->pmu->addr_filters_validate(&filters);
6ce77bfd
AS
9496 if (ret)
9497 goto fail_free_filters;
375637bc
AS
9498
9499 /* remove existing filters, if any */
9500 perf_addr_filters_splice(event, &filters);
9501
9502 /* install new filters */
9503 perf_event_for_each_child(event, perf_event_addr_filters_apply);
9504
6ce77bfd
AS
9505 return ret;
9506
9507fail_free_filters:
9508 free_filters_list(&filters);
9509
9510fail_clear_files:
9511 event->addr_filters.nr_file_filters = 0;
9512
375637bc
AS
9513 return ret;
9514}
9515
c796bbbe
AS
9516static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9517{
c796bbbe 9518 int ret = -EINVAL;
e12f03d7 9519 char *filter_str;
c796bbbe
AS
9520
9521 filter_str = strndup_user(arg, PAGE_SIZE);
9522 if (IS_ERR(filter_str))
9523 return PTR_ERR(filter_str);
9524
e12f03d7
SL
9525#ifdef CONFIG_EVENT_TRACING
9526 if (perf_event_is_tracing(event)) {
9527 struct perf_event_context *ctx = event->ctx;
9528
9529 /*
9530 * Beware, here be dragons!!
9531 *
9532 * the tracepoint muck will deadlock against ctx->mutex, but
9533 * the tracepoint stuff does not actually need it. So
9534 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9535 * already have a reference on ctx.
9536 *
9537 * This can result in event getting moved to a different ctx,
9538 * but that does not affect the tracepoint state.
9539 */
9540 mutex_unlock(&ctx->mutex);
9541 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9542 mutex_lock(&ctx->mutex);
9543 } else
9544#endif
9545 if (has_addr_filter(event))
375637bc 9546 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
9547
9548 kfree(filter_str);
9549 return ret;
9550}
9551
b0a873eb
PZ
9552/*
9553 * hrtimer based swevent callback
9554 */
f29ac756 9555
b0a873eb 9556static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 9557{
b0a873eb
PZ
9558 enum hrtimer_restart ret = HRTIMER_RESTART;
9559 struct perf_sample_data data;
9560 struct pt_regs *regs;
9561 struct perf_event *event;
9562 u64 period;
f29ac756 9563
b0a873eb 9564 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
9565
9566 if (event->state != PERF_EVENT_STATE_ACTIVE)
9567 return HRTIMER_NORESTART;
9568
b0a873eb 9569 event->pmu->read(event);
f344011c 9570
fd0d000b 9571 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
9572 regs = get_irq_regs();
9573
9574 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 9575 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 9576 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
9577 ret = HRTIMER_NORESTART;
9578 }
24f1e32c 9579
b0a873eb
PZ
9580 period = max_t(u64, 10000, event->hw.sample_period);
9581 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 9582
b0a873eb 9583 return ret;
f29ac756
PZ
9584}
9585
b0a873eb 9586static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 9587{
b0a873eb 9588 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
9589 s64 period;
9590
9591 if (!is_sampling_event(event))
9592 return;
f5ffe02e 9593
5d508e82
FBH
9594 period = local64_read(&hwc->period_left);
9595 if (period) {
9596 if (period < 0)
9597 period = 10000;
fa407f35 9598
5d508e82
FBH
9599 local64_set(&hwc->period_left, 0);
9600 } else {
9601 period = max_t(u64, 10000, hwc->sample_period);
9602 }
3497d206 9603 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
30f9028b 9604 HRTIMER_MODE_REL_PINNED_HARD);
24f1e32c 9605}
b0a873eb
PZ
9606
9607static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 9608{
b0a873eb
PZ
9609 struct hw_perf_event *hwc = &event->hw;
9610
6c7e550f 9611 if (is_sampling_event(event)) {
b0a873eb 9612 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 9613 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
9614
9615 hrtimer_cancel(&hwc->hrtimer);
9616 }
24f1e32c
FW
9617}
9618
ba3dd36c
PZ
9619static void perf_swevent_init_hrtimer(struct perf_event *event)
9620{
9621 struct hw_perf_event *hwc = &event->hw;
9622
9623 if (!is_sampling_event(event))
9624 return;
9625
30f9028b 9626 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
ba3dd36c
PZ
9627 hwc->hrtimer.function = perf_swevent_hrtimer;
9628
9629 /*
9630 * Since hrtimers have a fixed rate, we can do a static freq->period
9631 * mapping and avoid the whole period adjust feedback stuff.
9632 */
9633 if (event->attr.freq) {
9634 long freq = event->attr.sample_freq;
9635
9636 event->attr.sample_period = NSEC_PER_SEC / freq;
9637 hwc->sample_period = event->attr.sample_period;
9638 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 9639 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
9640 event->attr.freq = 0;
9641 }
9642}
9643
b0a873eb
PZ
9644/*
9645 * Software event: cpu wall time clock
9646 */
9647
9648static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 9649{
b0a873eb
PZ
9650 s64 prev;
9651 u64 now;
9652
a4eaf7f1 9653 now = local_clock();
b0a873eb
PZ
9654 prev = local64_xchg(&event->hw.prev_count, now);
9655 local64_add(now - prev, &event->count);
24f1e32c 9656}
24f1e32c 9657
a4eaf7f1 9658static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 9659{
a4eaf7f1 9660 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 9661 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
9662}
9663
a4eaf7f1 9664static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 9665{
b0a873eb
PZ
9666 perf_swevent_cancel_hrtimer(event);
9667 cpu_clock_event_update(event);
9668}
f29ac756 9669
a4eaf7f1
PZ
9670static int cpu_clock_event_add(struct perf_event *event, int flags)
9671{
9672 if (flags & PERF_EF_START)
9673 cpu_clock_event_start(event, flags);
6a694a60 9674 perf_event_update_userpage(event);
a4eaf7f1
PZ
9675
9676 return 0;
9677}
9678
9679static void cpu_clock_event_del(struct perf_event *event, int flags)
9680{
9681 cpu_clock_event_stop(event, flags);
9682}
9683
b0a873eb
PZ
9684static void cpu_clock_event_read(struct perf_event *event)
9685{
9686 cpu_clock_event_update(event);
9687}
f344011c 9688
b0a873eb
PZ
9689static int cpu_clock_event_init(struct perf_event *event)
9690{
9691 if (event->attr.type != PERF_TYPE_SOFTWARE)
9692 return -ENOENT;
9693
9694 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9695 return -ENOENT;
9696
2481c5fa
SE
9697 /*
9698 * no branch sampling for software events
9699 */
9700 if (has_branch_stack(event))
9701 return -EOPNOTSUPP;
9702
ba3dd36c
PZ
9703 perf_swevent_init_hrtimer(event);
9704
b0a873eb 9705 return 0;
f29ac756
PZ
9706}
9707
b0a873eb 9708static struct pmu perf_cpu_clock = {
89a1e187
PZ
9709 .task_ctx_nr = perf_sw_context,
9710
34f43927
PZ
9711 .capabilities = PERF_PMU_CAP_NO_NMI,
9712
b0a873eb 9713 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
9714 .add = cpu_clock_event_add,
9715 .del = cpu_clock_event_del,
9716 .start = cpu_clock_event_start,
9717 .stop = cpu_clock_event_stop,
b0a873eb
PZ
9718 .read = cpu_clock_event_read,
9719};
9720
9721/*
9722 * Software event: task time clock
9723 */
9724
9725static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 9726{
b0a873eb
PZ
9727 u64 prev;
9728 s64 delta;
5c92d124 9729
b0a873eb
PZ
9730 prev = local64_xchg(&event->hw.prev_count, now);
9731 delta = now - prev;
9732 local64_add(delta, &event->count);
9733}
5c92d124 9734
a4eaf7f1 9735static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 9736{
a4eaf7f1 9737 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 9738 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
9739}
9740
a4eaf7f1 9741static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
9742{
9743 perf_swevent_cancel_hrtimer(event);
9744 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
9745}
9746
9747static int task_clock_event_add(struct perf_event *event, int flags)
9748{
9749 if (flags & PERF_EF_START)
9750 task_clock_event_start(event, flags);
6a694a60 9751 perf_event_update_userpage(event);
b0a873eb 9752
a4eaf7f1
PZ
9753 return 0;
9754}
9755
9756static void task_clock_event_del(struct perf_event *event, int flags)
9757{
9758 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
9759}
9760
9761static void task_clock_event_read(struct perf_event *event)
9762{
768a06e2
PZ
9763 u64 now = perf_clock();
9764 u64 delta = now - event->ctx->timestamp;
9765 u64 time = event->ctx->time + delta;
b0a873eb
PZ
9766
9767 task_clock_event_update(event, time);
9768}
9769
9770static int task_clock_event_init(struct perf_event *event)
6fb2915d 9771{
b0a873eb
PZ
9772 if (event->attr.type != PERF_TYPE_SOFTWARE)
9773 return -ENOENT;
9774
9775 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9776 return -ENOENT;
9777
2481c5fa
SE
9778 /*
9779 * no branch sampling for software events
9780 */
9781 if (has_branch_stack(event))
9782 return -EOPNOTSUPP;
9783
ba3dd36c
PZ
9784 perf_swevent_init_hrtimer(event);
9785
b0a873eb 9786 return 0;
6fb2915d
LZ
9787}
9788
b0a873eb 9789static struct pmu perf_task_clock = {
89a1e187
PZ
9790 .task_ctx_nr = perf_sw_context,
9791
34f43927
PZ
9792 .capabilities = PERF_PMU_CAP_NO_NMI,
9793
b0a873eb 9794 .event_init = task_clock_event_init,
a4eaf7f1
PZ
9795 .add = task_clock_event_add,
9796 .del = task_clock_event_del,
9797 .start = task_clock_event_start,
9798 .stop = task_clock_event_stop,
b0a873eb
PZ
9799 .read = task_clock_event_read,
9800};
6fb2915d 9801
ad5133b7 9802static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 9803{
e077df4f 9804}
6fb2915d 9805
fbbe0701
SB
9806static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9807{
9808}
9809
ad5133b7 9810static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 9811{
ad5133b7 9812 return 0;
6fb2915d
LZ
9813}
9814
81ec3f3c
JO
9815static int perf_event_nop_int(struct perf_event *event, u64 value)
9816{
9817 return 0;
9818}
9819
18ab2cd3 9820static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
9821
9822static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 9823{
fbbe0701
SB
9824 __this_cpu_write(nop_txn_flags, flags);
9825
9826 if (flags & ~PERF_PMU_TXN_ADD)
9827 return;
9828
ad5133b7 9829 perf_pmu_disable(pmu);
6fb2915d
LZ
9830}
9831
ad5133b7
PZ
9832static int perf_pmu_commit_txn(struct pmu *pmu)
9833{
fbbe0701
SB
9834 unsigned int flags = __this_cpu_read(nop_txn_flags);
9835
9836 __this_cpu_write(nop_txn_flags, 0);
9837
9838 if (flags & ~PERF_PMU_TXN_ADD)
9839 return 0;
9840
ad5133b7
PZ
9841 perf_pmu_enable(pmu);
9842 return 0;
9843}
e077df4f 9844
ad5133b7 9845static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 9846{
fbbe0701
SB
9847 unsigned int flags = __this_cpu_read(nop_txn_flags);
9848
9849 __this_cpu_write(nop_txn_flags, 0);
9850
9851 if (flags & ~PERF_PMU_TXN_ADD)
9852 return;
9853
ad5133b7 9854 perf_pmu_enable(pmu);
24f1e32c
FW
9855}
9856
35edc2a5
PZ
9857static int perf_event_idx_default(struct perf_event *event)
9858{
c719f560 9859 return 0;
35edc2a5
PZ
9860}
9861
8dc85d54
PZ
9862/*
9863 * Ensures all contexts with the same task_ctx_nr have the same
9864 * pmu_cpu_context too.
9865 */
9e317041 9866static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 9867{
8dc85d54 9868 struct pmu *pmu;
b326e956 9869
8dc85d54
PZ
9870 if (ctxn < 0)
9871 return NULL;
24f1e32c 9872
8dc85d54
PZ
9873 list_for_each_entry(pmu, &pmus, entry) {
9874 if (pmu->task_ctx_nr == ctxn)
9875 return pmu->pmu_cpu_context;
9876 }
24f1e32c 9877
8dc85d54 9878 return NULL;
24f1e32c
FW
9879}
9880
51676957
PZ
9881static void free_pmu_context(struct pmu *pmu)
9882{
df0062b2
WD
9883 /*
9884 * Static contexts such as perf_sw_context have a global lifetime
9885 * and may be shared between different PMUs. Avoid freeing them
9886 * when a single PMU is going away.
9887 */
9888 if (pmu->task_ctx_nr > perf_invalid_context)
9889 return;
9890
51676957 9891 free_percpu(pmu->pmu_cpu_context);
24f1e32c 9892}
6e855cd4
AS
9893
9894/*
9895 * Let userspace know that this PMU supports address range filtering:
9896 */
9897static ssize_t nr_addr_filters_show(struct device *dev,
9898 struct device_attribute *attr,
9899 char *page)
9900{
9901 struct pmu *pmu = dev_get_drvdata(dev);
9902
9903 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9904}
9905DEVICE_ATTR_RO(nr_addr_filters);
9906
2e80a82a 9907static struct idr pmu_idr;
d6d020e9 9908
abe43400
PZ
9909static ssize_t
9910type_show(struct device *dev, struct device_attribute *attr, char *page)
9911{
9912 struct pmu *pmu = dev_get_drvdata(dev);
9913
9914 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9915}
90826ca7 9916static DEVICE_ATTR_RO(type);
abe43400 9917
62b85639
SE
9918static ssize_t
9919perf_event_mux_interval_ms_show(struct device *dev,
9920 struct device_attribute *attr,
9921 char *page)
9922{
9923 struct pmu *pmu = dev_get_drvdata(dev);
9924
9925 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9926}
9927
272325c4
PZ
9928static DEFINE_MUTEX(mux_interval_mutex);
9929
62b85639
SE
9930static ssize_t
9931perf_event_mux_interval_ms_store(struct device *dev,
9932 struct device_attribute *attr,
9933 const char *buf, size_t count)
9934{
9935 struct pmu *pmu = dev_get_drvdata(dev);
9936 int timer, cpu, ret;
9937
9938 ret = kstrtoint(buf, 0, &timer);
9939 if (ret)
9940 return ret;
9941
9942 if (timer < 1)
9943 return -EINVAL;
9944
9945 /* same value, noting to do */
9946 if (timer == pmu->hrtimer_interval_ms)
9947 return count;
9948
272325c4 9949 mutex_lock(&mux_interval_mutex);
62b85639
SE
9950 pmu->hrtimer_interval_ms = timer;
9951
9952 /* update all cpuctx for this PMU */
a63fbed7 9953 cpus_read_lock();
272325c4 9954 for_each_online_cpu(cpu) {
62b85639
SE
9955 struct perf_cpu_context *cpuctx;
9956 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9957 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9958
272325c4
PZ
9959 cpu_function_call(cpu,
9960 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 9961 }
a63fbed7 9962 cpus_read_unlock();
272325c4 9963 mutex_unlock(&mux_interval_mutex);
62b85639
SE
9964
9965 return count;
9966}
90826ca7 9967static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 9968
90826ca7
GKH
9969static struct attribute *pmu_dev_attrs[] = {
9970 &dev_attr_type.attr,
9971 &dev_attr_perf_event_mux_interval_ms.attr,
9972 NULL,
abe43400 9973};
90826ca7 9974ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
9975
9976static int pmu_bus_running;
9977static struct bus_type pmu_bus = {
9978 .name = "event_source",
90826ca7 9979 .dev_groups = pmu_dev_groups,
abe43400
PZ
9980};
9981
9982static void pmu_dev_release(struct device *dev)
9983{
9984 kfree(dev);
9985}
9986
9987static int pmu_dev_alloc(struct pmu *pmu)
9988{
9989 int ret = -ENOMEM;
9990
9991 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9992 if (!pmu->dev)
9993 goto out;
9994
0c9d42ed 9995 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
9996 device_initialize(pmu->dev);
9997 ret = dev_set_name(pmu->dev, "%s", pmu->name);
9998 if (ret)
9999 goto free_dev;
10000
10001 dev_set_drvdata(pmu->dev, pmu);
10002 pmu->dev->bus = &pmu_bus;
10003 pmu->dev->release = pmu_dev_release;
10004 ret = device_add(pmu->dev);
10005 if (ret)
10006 goto free_dev;
10007
6e855cd4
AS
10008 /* For PMUs with address filters, throw in an extra attribute: */
10009 if (pmu->nr_addr_filters)
10010 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10011
10012 if (ret)
10013 goto del_dev;
10014
f3a3a825
JO
10015 if (pmu->attr_update)
10016 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10017
10018 if (ret)
10019 goto del_dev;
10020
abe43400
PZ
10021out:
10022 return ret;
10023
6e855cd4
AS
10024del_dev:
10025 device_del(pmu->dev);
10026
abe43400
PZ
10027free_dev:
10028 put_device(pmu->dev);
10029 goto out;
10030}
10031
547e9fd7 10032static struct lock_class_key cpuctx_mutex;
facc4307 10033static struct lock_class_key cpuctx_lock;
547e9fd7 10034
03d8e80b 10035int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 10036{
108b02cf 10037 int cpu, ret;
24f1e32c 10038
b0a873eb 10039 mutex_lock(&pmus_lock);
33696fc0
PZ
10040 ret = -ENOMEM;
10041 pmu->pmu_disable_count = alloc_percpu(int);
10042 if (!pmu->pmu_disable_count)
10043 goto unlock;
f29ac756 10044
2e80a82a
PZ
10045 pmu->type = -1;
10046 if (!name)
10047 goto skip_type;
10048 pmu->name = name;
10049
10050 if (type < 0) {
0e9c3be2
TH
10051 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
10052 if (type < 0) {
10053 ret = type;
2e80a82a
PZ
10054 goto free_pdc;
10055 }
10056 }
10057 pmu->type = type;
10058
abe43400
PZ
10059 if (pmu_bus_running) {
10060 ret = pmu_dev_alloc(pmu);
10061 if (ret)
10062 goto free_idr;
10063 }
10064
2e80a82a 10065skip_type:
26657848
PZ
10066 if (pmu->task_ctx_nr == perf_hw_context) {
10067 static int hw_context_taken = 0;
10068
5101ef20
MR
10069 /*
10070 * Other than systems with heterogeneous CPUs, it never makes
10071 * sense for two PMUs to share perf_hw_context. PMUs which are
10072 * uncore must use perf_invalid_context.
10073 */
10074 if (WARN_ON_ONCE(hw_context_taken &&
10075 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
10076 pmu->task_ctx_nr = perf_invalid_context;
10077
10078 hw_context_taken = 1;
10079 }
10080
8dc85d54
PZ
10081 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10082 if (pmu->pmu_cpu_context)
10083 goto got_cpu_context;
f29ac756 10084
c4814202 10085 ret = -ENOMEM;
108b02cf
PZ
10086 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10087 if (!pmu->pmu_cpu_context)
abe43400 10088 goto free_dev;
f344011c 10089
108b02cf
PZ
10090 for_each_possible_cpu(cpu) {
10091 struct perf_cpu_context *cpuctx;
10092
10093 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 10094 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 10095 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 10096 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 10097 cpuctx->ctx.pmu = pmu;
a63fbed7 10098 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9e630205 10099
272325c4 10100 __perf_mux_hrtimer_init(cpuctx, cpu);
108b02cf 10101 }
76e1d904 10102
8dc85d54 10103got_cpu_context:
ad5133b7
PZ
10104 if (!pmu->start_txn) {
10105 if (pmu->pmu_enable) {
10106 /*
10107 * If we have pmu_enable/pmu_disable calls, install
10108 * transaction stubs that use that to try and batch
10109 * hardware accesses.
10110 */
10111 pmu->start_txn = perf_pmu_start_txn;
10112 pmu->commit_txn = perf_pmu_commit_txn;
10113 pmu->cancel_txn = perf_pmu_cancel_txn;
10114 } else {
fbbe0701 10115 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
10116 pmu->commit_txn = perf_pmu_nop_int;
10117 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 10118 }
5c92d124 10119 }
15dbf27c 10120
ad5133b7
PZ
10121 if (!pmu->pmu_enable) {
10122 pmu->pmu_enable = perf_pmu_nop_void;
10123 pmu->pmu_disable = perf_pmu_nop_void;
10124 }
10125
81ec3f3c
JO
10126 if (!pmu->check_period)
10127 pmu->check_period = perf_event_nop_int;
10128
35edc2a5
PZ
10129 if (!pmu->event_idx)
10130 pmu->event_idx = perf_event_idx_default;
10131
b0a873eb 10132 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 10133 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
10134 ret = 0;
10135unlock:
b0a873eb
PZ
10136 mutex_unlock(&pmus_lock);
10137
33696fc0 10138 return ret;
108b02cf 10139
abe43400
PZ
10140free_dev:
10141 device_del(pmu->dev);
10142 put_device(pmu->dev);
10143
2e80a82a
PZ
10144free_idr:
10145 if (pmu->type >= PERF_TYPE_MAX)
10146 idr_remove(&pmu_idr, pmu->type);
10147
108b02cf
PZ
10148free_pdc:
10149 free_percpu(pmu->pmu_disable_count);
10150 goto unlock;
f29ac756 10151}
c464c76e 10152EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 10153
b0a873eb 10154void perf_pmu_unregister(struct pmu *pmu)
5c92d124 10155{
b0a873eb
PZ
10156 mutex_lock(&pmus_lock);
10157 list_del_rcu(&pmu->entry);
5c92d124 10158
0475f9ea 10159 /*
cde8e884
PZ
10160 * We dereference the pmu list under both SRCU and regular RCU, so
10161 * synchronize against both of those.
0475f9ea 10162 */
b0a873eb 10163 synchronize_srcu(&pmus_srcu);
cde8e884 10164 synchronize_rcu();
d6d020e9 10165
33696fc0 10166 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
10167 if (pmu->type >= PERF_TYPE_MAX)
10168 idr_remove(&pmu_idr, pmu->type);
a9f97721 10169 if (pmu_bus_running) {
0933840a
JO
10170 if (pmu->nr_addr_filters)
10171 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10172 device_del(pmu->dev);
10173 put_device(pmu->dev);
10174 }
51676957 10175 free_pmu_context(pmu);
a9f97721 10176 mutex_unlock(&pmus_lock);
b0a873eb 10177}
c464c76e 10178EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 10179
e321d02d
KL
10180static inline bool has_extended_regs(struct perf_event *event)
10181{
10182 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10183 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10184}
10185
cc34b98b
MR
10186static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10187{
ccd41c86 10188 struct perf_event_context *ctx = NULL;
cc34b98b
MR
10189 int ret;
10190
10191 if (!try_module_get(pmu->module))
10192 return -ENODEV;
ccd41c86 10193
0c7296ca
PZ
10194 /*
10195 * A number of pmu->event_init() methods iterate the sibling_list to,
10196 * for example, validate if the group fits on the PMU. Therefore,
10197 * if this is a sibling event, acquire the ctx->mutex to protect
10198 * the sibling_list.
10199 */
10200 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
8b10c5e2
PZ
10201 /*
10202 * This ctx->mutex can nest when we're called through
10203 * inheritance. See the perf_event_ctx_lock_nested() comment.
10204 */
10205 ctx = perf_event_ctx_lock_nested(event->group_leader,
10206 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
10207 BUG_ON(!ctx);
10208 }
10209
cc34b98b
MR
10210 event->pmu = pmu;
10211 ret = pmu->event_init(event);
ccd41c86
PZ
10212
10213 if (ctx)
10214 perf_event_ctx_unlock(event->group_leader, ctx);
10215
cc6795ae 10216 if (!ret) {
e321d02d
KL
10217 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10218 has_extended_regs(event))
10219 ret = -EOPNOTSUPP;
10220
cc6795ae 10221 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
e321d02d 10222 event_has_any_exclude_flag(event))
cc6795ae 10223 ret = -EINVAL;
e321d02d
KL
10224
10225 if (ret && event->destroy)
10226 event->destroy(event);
cc6795ae
AM
10227 }
10228
cc34b98b
MR
10229 if (ret)
10230 module_put(pmu->module);
10231
10232 return ret;
10233}
10234
18ab2cd3 10235static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb 10236{
85c617ab 10237 struct pmu *pmu;
b0a873eb 10238 int idx;
940c5b29 10239 int ret;
b0a873eb
PZ
10240
10241 idx = srcu_read_lock(&pmus_srcu);
2e80a82a 10242
40999312
KL
10243 /* Try parent's PMU first: */
10244 if (event->parent && event->parent->pmu) {
10245 pmu = event->parent->pmu;
10246 ret = perf_try_init_event(pmu, event);
10247 if (!ret)
10248 goto unlock;
10249 }
10250
2e80a82a
PZ
10251 rcu_read_lock();
10252 pmu = idr_find(&pmu_idr, event->attr.type);
10253 rcu_read_unlock();
940c5b29 10254 if (pmu) {
cc34b98b 10255 ret = perf_try_init_event(pmu, event);
940c5b29
LM
10256 if (ret)
10257 pmu = ERR_PTR(ret);
2e80a82a 10258 goto unlock;
940c5b29 10259 }
2e80a82a 10260
b0a873eb 10261 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 10262 ret = perf_try_init_event(pmu, event);
b0a873eb 10263 if (!ret)
e5f4d339 10264 goto unlock;
76e1d904 10265
b0a873eb
PZ
10266 if (ret != -ENOENT) {
10267 pmu = ERR_PTR(ret);
e5f4d339 10268 goto unlock;
f344011c 10269 }
5c92d124 10270 }
e5f4d339
PZ
10271 pmu = ERR_PTR(-ENOENT);
10272unlock:
b0a873eb 10273 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 10274
4aeb0b42 10275 return pmu;
5c92d124
IM
10276}
10277
f2fb6bef
KL
10278static void attach_sb_event(struct perf_event *event)
10279{
10280 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10281
10282 raw_spin_lock(&pel->lock);
10283 list_add_rcu(&event->sb_list, &pel->list);
10284 raw_spin_unlock(&pel->lock);
10285}
10286
aab5b71e
PZ
10287/*
10288 * We keep a list of all !task (and therefore per-cpu) events
10289 * that need to receive side-band records.
10290 *
10291 * This avoids having to scan all the various PMU per-cpu contexts
10292 * looking for them.
10293 */
f2fb6bef
KL
10294static void account_pmu_sb_event(struct perf_event *event)
10295{
a4f144eb 10296 if (is_sb_event(event))
f2fb6bef
KL
10297 attach_sb_event(event);
10298}
10299
4beb31f3
FW
10300static void account_event_cpu(struct perf_event *event, int cpu)
10301{
10302 if (event->parent)
10303 return;
10304
4beb31f3
FW
10305 if (is_cgroup_event(event))
10306 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10307}
10308
555e0c1e
FW
10309/* Freq events need the tick to stay alive (see perf_event_task_tick). */
10310static void account_freq_event_nohz(void)
10311{
10312#ifdef CONFIG_NO_HZ_FULL
10313 /* Lock so we don't race with concurrent unaccount */
10314 spin_lock(&nr_freq_lock);
10315 if (atomic_inc_return(&nr_freq_events) == 1)
10316 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10317 spin_unlock(&nr_freq_lock);
10318#endif
10319}
10320
10321static void account_freq_event(void)
10322{
10323 if (tick_nohz_full_enabled())
10324 account_freq_event_nohz();
10325 else
10326 atomic_inc(&nr_freq_events);
10327}
10328
10329
766d6c07
FW
10330static void account_event(struct perf_event *event)
10331{
25432ae9
PZ
10332 bool inc = false;
10333
4beb31f3
FW
10334 if (event->parent)
10335 return;
10336
766d6c07 10337 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 10338 inc = true;
766d6c07
FW
10339 if (event->attr.mmap || event->attr.mmap_data)
10340 atomic_inc(&nr_mmap_events);
10341 if (event->attr.comm)
10342 atomic_inc(&nr_comm_events);
e4222673
HB
10343 if (event->attr.namespaces)
10344 atomic_inc(&nr_namespaces_events);
766d6c07
FW
10345 if (event->attr.task)
10346 atomic_inc(&nr_task_events);
555e0c1e
FW
10347 if (event->attr.freq)
10348 account_freq_event();
45ac1403
AH
10349 if (event->attr.context_switch) {
10350 atomic_inc(&nr_switch_events);
25432ae9 10351 inc = true;
45ac1403 10352 }
4beb31f3 10353 if (has_branch_stack(event))
25432ae9 10354 inc = true;
4beb31f3 10355 if (is_cgroup_event(event))
25432ae9 10356 inc = true;
76193a94
SL
10357 if (event->attr.ksymbol)
10358 atomic_inc(&nr_ksymbol_events);
6ee52e2a
SL
10359 if (event->attr.bpf_event)
10360 atomic_inc(&nr_bpf_events);
25432ae9 10361
9107c89e 10362 if (inc) {
5bce9db1
AS
10363 /*
10364 * We need the mutex here because static_branch_enable()
10365 * must complete *before* the perf_sched_count increment
10366 * becomes visible.
10367 */
9107c89e
PZ
10368 if (atomic_inc_not_zero(&perf_sched_count))
10369 goto enabled;
10370
10371 mutex_lock(&perf_sched_mutex);
10372 if (!atomic_read(&perf_sched_count)) {
10373 static_branch_enable(&perf_sched_events);
10374 /*
10375 * Guarantee that all CPUs observe they key change and
10376 * call the perf scheduling hooks before proceeding to
10377 * install events that need them.
10378 */
0809d954 10379 synchronize_rcu();
9107c89e
PZ
10380 }
10381 /*
10382 * Now that we have waited for the sync_sched(), allow further
10383 * increments to by-pass the mutex.
10384 */
10385 atomic_inc(&perf_sched_count);
10386 mutex_unlock(&perf_sched_mutex);
10387 }
10388enabled:
4beb31f3
FW
10389
10390 account_event_cpu(event, event->cpu);
f2fb6bef
KL
10391
10392 account_pmu_sb_event(event);
766d6c07
FW
10393}
10394
0793a61d 10395/*
788faab7 10396 * Allocate and initialize an event structure
0793a61d 10397 */
cdd6c482 10398static struct perf_event *
c3f00c70 10399perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
10400 struct task_struct *task,
10401 struct perf_event *group_leader,
10402 struct perf_event *parent_event,
4dc0da86 10403 perf_overflow_handler_t overflow_handler,
79dff51e 10404 void *context, int cgroup_fd)
0793a61d 10405{
51b0fe39 10406 struct pmu *pmu;
cdd6c482
IM
10407 struct perf_event *event;
10408 struct hw_perf_event *hwc;
90983b16 10409 long err = -EINVAL;
0793a61d 10410
66832eb4
ON
10411 if ((unsigned)cpu >= nr_cpu_ids) {
10412 if (!task || cpu != -1)
10413 return ERR_PTR(-EINVAL);
10414 }
10415
c3f00c70 10416 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 10417 if (!event)
d5d2bc0d 10418 return ERR_PTR(-ENOMEM);
0793a61d 10419
04289bb9 10420 /*
cdd6c482 10421 * Single events are their own group leaders, with an
04289bb9
IM
10422 * empty sibling list:
10423 */
10424 if (!group_leader)
cdd6c482 10425 group_leader = event;
04289bb9 10426
cdd6c482
IM
10427 mutex_init(&event->child_mutex);
10428 INIT_LIST_HEAD(&event->child_list);
fccc714b 10429
cdd6c482
IM
10430 INIT_LIST_HEAD(&event->event_entry);
10431 INIT_LIST_HEAD(&event->sibling_list);
6668128a 10432 INIT_LIST_HEAD(&event->active_list);
8e1a2031 10433 init_event_group(event);
10c6db11 10434 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 10435 INIT_LIST_HEAD(&event->active_entry);
375637bc 10436 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
10437 INIT_HLIST_NODE(&event->hlist_entry);
10438
10c6db11 10439
cdd6c482 10440 init_waitqueue_head(&event->waitq);
1d54ad94 10441 event->pending_disable = -1;
e360adbe 10442 init_irq_work(&event->pending, perf_pending_event);
0793a61d 10443
cdd6c482 10444 mutex_init(&event->mmap_mutex);
375637bc 10445 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 10446
a6fa941d 10447 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
10448 event->cpu = cpu;
10449 event->attr = *attr;
10450 event->group_leader = group_leader;
10451 event->pmu = NULL;
cdd6c482 10452 event->oncpu = -1;
a96bbc16 10453
cdd6c482 10454 event->parent = parent_event;
b84fbc9f 10455
17cf22c3 10456 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 10457 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 10458
cdd6c482 10459 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 10460
d580ff86
PZ
10461 if (task) {
10462 event->attach_state = PERF_ATTACH_TASK;
d580ff86 10463 /*
50f16a8b
PZ
10464 * XXX pmu::event_init needs to know what task to account to
10465 * and we cannot use the ctx information because we need the
10466 * pmu before we get a ctx.
d580ff86 10467 */
7b3c92b8 10468 event->hw.target = get_task_struct(task);
d580ff86
PZ
10469 }
10470
34f43927
PZ
10471 event->clock = &local_clock;
10472 if (parent_event)
10473 event->clock = parent_event->clock;
10474
4dc0da86 10475 if (!overflow_handler && parent_event) {
b326e956 10476 overflow_handler = parent_event->overflow_handler;
4dc0da86 10477 context = parent_event->overflow_handler_context;
f1e4ba5b 10478#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c
AS
10479 if (overflow_handler == bpf_overflow_handler) {
10480 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10481
10482 if (IS_ERR(prog)) {
10483 err = PTR_ERR(prog);
10484 goto err_ns;
10485 }
10486 event->prog = prog;
10487 event->orig_overflow_handler =
10488 parent_event->orig_overflow_handler;
10489 }
10490#endif
4dc0da86 10491 }
66832eb4 10492
1879445d
WN
10493 if (overflow_handler) {
10494 event->overflow_handler = overflow_handler;
10495 event->overflow_handler_context = context;
9ecda41a
WN
10496 } else if (is_write_backward(event)){
10497 event->overflow_handler = perf_event_output_backward;
10498 event->overflow_handler_context = NULL;
1879445d 10499 } else {
9ecda41a 10500 event->overflow_handler = perf_event_output_forward;
1879445d
WN
10501 event->overflow_handler_context = NULL;
10502 }
97eaf530 10503
0231bb53 10504 perf_event__state_init(event);
a86ed508 10505
4aeb0b42 10506 pmu = NULL;
b8e83514 10507
cdd6c482 10508 hwc = &event->hw;
bd2b5b12 10509 hwc->sample_period = attr->sample_period;
0d48696f 10510 if (attr->freq && attr->sample_freq)
bd2b5b12 10511 hwc->sample_period = 1;
eced1dfc 10512 hwc->last_period = hwc->sample_period;
bd2b5b12 10513
e7850595 10514 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 10515
2023b359 10516 /*
ba5213ae
PZ
10517 * We currently do not support PERF_SAMPLE_READ on inherited events.
10518 * See perf_output_read().
2023b359 10519 */
ba5213ae 10520 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
90983b16 10521 goto err_ns;
a46a2300
YZ
10522
10523 if (!has_branch_stack(event))
10524 event->attr.branch_sample_type = 0;
2023b359 10525
79dff51e
MF
10526 if (cgroup_fd != -1) {
10527 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10528 if (err)
10529 goto err_ns;
10530 }
10531
b0a873eb 10532 pmu = perf_init_event(event);
85c617ab 10533 if (IS_ERR(pmu)) {
4aeb0b42 10534 err = PTR_ERR(pmu);
90983b16 10535 goto err_ns;
621a01ea 10536 }
d5d2bc0d 10537
09f4e8f0
PZ
10538 /*
10539 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
10540 * be different on other CPUs in the uncore mask.
10541 */
10542 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
10543 err = -EINVAL;
10544 goto err_pmu;
10545 }
10546
ab43762e
AS
10547 if (event->attr.aux_output &&
10548 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
10549 err = -EOPNOTSUPP;
10550 goto err_pmu;
10551 }
10552
bed5b25a
AS
10553 err = exclusive_event_init(event);
10554 if (err)
10555 goto err_pmu;
10556
375637bc 10557 if (has_addr_filter(event)) {
c60f83b8
AS
10558 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10559 sizeof(struct perf_addr_filter_range),
10560 GFP_KERNEL);
10561 if (!event->addr_filter_ranges) {
36cc2b92 10562 err = -ENOMEM;
375637bc 10563 goto err_per_task;
36cc2b92 10564 }
375637bc 10565
18736eef
AS
10566 /*
10567 * Clone the parent's vma offsets: they are valid until exec()
10568 * even if the mm is not shared with the parent.
10569 */
10570 if (event->parent) {
10571 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10572
10573 raw_spin_lock_irq(&ifh->lock);
c60f83b8
AS
10574 memcpy(event->addr_filter_ranges,
10575 event->parent->addr_filter_ranges,
10576 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
18736eef
AS
10577 raw_spin_unlock_irq(&ifh->lock);
10578 }
10579
375637bc
AS
10580 /* force hw sync on the address filters */
10581 event->addr_filters_gen = 1;
10582 }
10583
cdd6c482 10584 if (!event->parent) {
927c7a9e 10585 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 10586 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 10587 if (err)
375637bc 10588 goto err_addr_filters;
d010b332 10589 }
f344011c 10590 }
9ee318a7 10591
927a5570
AS
10592 /* symmetric to unaccount_event() in _free_event() */
10593 account_event(event);
10594
cdd6c482 10595 return event;
90983b16 10596
375637bc 10597err_addr_filters:
c60f83b8 10598 kfree(event->addr_filter_ranges);
375637bc 10599
bed5b25a
AS
10600err_per_task:
10601 exclusive_event_destroy(event);
10602
90983b16
FW
10603err_pmu:
10604 if (event->destroy)
10605 event->destroy(event);
c464c76e 10606 module_put(pmu->module);
90983b16 10607err_ns:
79dff51e
MF
10608 if (is_cgroup_event(event))
10609 perf_detach_cgroup(event);
90983b16
FW
10610 if (event->ns)
10611 put_pid_ns(event->ns);
621b6d2e
PB
10612 if (event->hw.target)
10613 put_task_struct(event->hw.target);
90983b16
FW
10614 kfree(event);
10615
10616 return ERR_PTR(err);
0793a61d
TG
10617}
10618
cdd6c482
IM
10619static int perf_copy_attr(struct perf_event_attr __user *uattr,
10620 struct perf_event_attr *attr)
974802ea 10621{
974802ea 10622 u32 size;
cdf8073d 10623 int ret;
974802ea 10624
c2ba8f41 10625 /* Zero the full structure, so that a short copy will be nice. */
974802ea
PZ
10626 memset(attr, 0, sizeof(*attr));
10627
10628 ret = get_user(size, &uattr->size);
10629 if (ret)
10630 return ret;
10631
c2ba8f41
AS
10632 /* ABI compatibility quirk: */
10633 if (!size)
974802ea 10634 size = PERF_ATTR_SIZE_VER0;
c2ba8f41 10635 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
974802ea
PZ
10636 goto err_size;
10637
c2ba8f41
AS
10638 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
10639 if (ret) {
10640 if (ret == -E2BIG)
10641 goto err_size;
10642 return ret;
974802ea
PZ
10643 }
10644
f12f42ac
MX
10645 attr->size = size;
10646
8c7e9756 10647 if (attr->__reserved_1 || attr->__reserved_2)
974802ea
PZ
10648 return -EINVAL;
10649
10650 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10651 return -EINVAL;
10652
10653 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10654 return -EINVAL;
10655
bce38cd5
SE
10656 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10657 u64 mask = attr->branch_sample_type;
10658
10659 /* only using defined bits */
10660 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10661 return -EINVAL;
10662
10663 /* at least one branch bit must be set */
10664 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10665 return -EINVAL;
10666
bce38cd5
SE
10667 /* propagate priv level, when not set for branch */
10668 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10669
10670 /* exclude_kernel checked on syscall entry */
10671 if (!attr->exclude_kernel)
10672 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10673
10674 if (!attr->exclude_user)
10675 mask |= PERF_SAMPLE_BRANCH_USER;
10676
10677 if (!attr->exclude_hv)
10678 mask |= PERF_SAMPLE_BRANCH_HV;
10679 /*
10680 * adjust user setting (for HW filter setup)
10681 */
10682 attr->branch_sample_type = mask;
10683 }
e712209a
SE
10684 /* privileged levels capture (kernel, hv): check permissions */
10685 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
10686 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10687 return -EACCES;
bce38cd5 10688 }
4018994f 10689
c5ebcedb 10690 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 10691 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
10692 if (ret)
10693 return ret;
10694 }
10695
10696 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10697 if (!arch_perf_have_user_stack_dump())
10698 return -ENOSYS;
10699
10700 /*
10701 * We have __u32 type for the size, but so far
10702 * we can only use __u16 as maximum due to the
10703 * __u16 sample size limit.
10704 */
10705 if (attr->sample_stack_user >= USHRT_MAX)
78b562fb 10706 return -EINVAL;
c5ebcedb 10707 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
78b562fb 10708 return -EINVAL;
c5ebcedb 10709 }
4018994f 10710
5f970521
JO
10711 if (!attr->sample_max_stack)
10712 attr->sample_max_stack = sysctl_perf_event_max_stack;
10713
60e2364e
SE
10714 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10715 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
10716out:
10717 return ret;
10718
10719err_size:
10720 put_user(sizeof(*attr), &uattr->size);
10721 ret = -E2BIG;
10722 goto out;
10723}
10724
ac9721f3
PZ
10725static int
10726perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 10727{
b69cf536 10728 struct ring_buffer *rb = NULL;
a4be7c27
PZ
10729 int ret = -EINVAL;
10730
ac9721f3 10731 if (!output_event)
a4be7c27
PZ
10732 goto set;
10733
ac9721f3
PZ
10734 /* don't allow circular references */
10735 if (event == output_event)
a4be7c27
PZ
10736 goto out;
10737
0f139300
PZ
10738 /*
10739 * Don't allow cross-cpu buffers
10740 */
10741 if (output_event->cpu != event->cpu)
10742 goto out;
10743
10744 /*
76369139 10745 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
10746 */
10747 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10748 goto out;
10749
34f43927
PZ
10750 /*
10751 * Mixing clocks in the same buffer is trouble you don't need.
10752 */
10753 if (output_event->clock != event->clock)
10754 goto out;
10755
9ecda41a
WN
10756 /*
10757 * Either writing ring buffer from beginning or from end.
10758 * Mixing is not allowed.
10759 */
10760 if (is_write_backward(output_event) != is_write_backward(event))
10761 goto out;
10762
45bfb2e5
PZ
10763 /*
10764 * If both events generate aux data, they must be on the same PMU
10765 */
10766 if (has_aux(event) && has_aux(output_event) &&
10767 event->pmu != output_event->pmu)
10768 goto out;
10769
a4be7c27 10770set:
cdd6c482 10771 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
10772 /* Can't redirect output if we've got an active mmap() */
10773 if (atomic_read(&event->mmap_count))
10774 goto unlock;
a4be7c27 10775
ac9721f3 10776 if (output_event) {
76369139
FW
10777 /* get the rb we want to redirect to */
10778 rb = ring_buffer_get(output_event);
10779 if (!rb)
ac9721f3 10780 goto unlock;
a4be7c27
PZ
10781 }
10782
b69cf536 10783 ring_buffer_attach(event, rb);
9bb5d40c 10784
a4be7c27 10785 ret = 0;
ac9721f3
PZ
10786unlock:
10787 mutex_unlock(&event->mmap_mutex);
10788
a4be7c27 10789out:
a4be7c27
PZ
10790 return ret;
10791}
10792
f63a8daa
PZ
10793static void mutex_lock_double(struct mutex *a, struct mutex *b)
10794{
10795 if (b < a)
10796 swap(a, b);
10797
10798 mutex_lock(a);
10799 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10800}
10801
34f43927
PZ
10802static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10803{
10804 bool nmi_safe = false;
10805
10806 switch (clk_id) {
10807 case CLOCK_MONOTONIC:
10808 event->clock = &ktime_get_mono_fast_ns;
10809 nmi_safe = true;
10810 break;
10811
10812 case CLOCK_MONOTONIC_RAW:
10813 event->clock = &ktime_get_raw_fast_ns;
10814 nmi_safe = true;
10815 break;
10816
10817 case CLOCK_REALTIME:
10818 event->clock = &ktime_get_real_ns;
10819 break;
10820
10821 case CLOCK_BOOTTIME:
9285ec4c 10822 event->clock = &ktime_get_boottime_ns;
34f43927
PZ
10823 break;
10824
10825 case CLOCK_TAI:
9285ec4c 10826 event->clock = &ktime_get_clocktai_ns;
34f43927
PZ
10827 break;
10828
10829 default:
10830 return -EINVAL;
10831 }
10832
10833 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10834 return -EINVAL;
10835
10836 return 0;
10837}
10838
321027c1
PZ
10839/*
10840 * Variation on perf_event_ctx_lock_nested(), except we take two context
10841 * mutexes.
10842 */
10843static struct perf_event_context *
10844__perf_event_ctx_lock_double(struct perf_event *group_leader,
10845 struct perf_event_context *ctx)
10846{
10847 struct perf_event_context *gctx;
10848
10849again:
10850 rcu_read_lock();
10851 gctx = READ_ONCE(group_leader->ctx);
8c94abbb 10852 if (!refcount_inc_not_zero(&gctx->refcount)) {
321027c1
PZ
10853 rcu_read_unlock();
10854 goto again;
10855 }
10856 rcu_read_unlock();
10857
10858 mutex_lock_double(&gctx->mutex, &ctx->mutex);
10859
10860 if (group_leader->ctx != gctx) {
10861 mutex_unlock(&ctx->mutex);
10862 mutex_unlock(&gctx->mutex);
10863 put_ctx(gctx);
10864 goto again;
10865 }
10866
10867 return gctx;
10868}
10869
0793a61d 10870/**
cdd6c482 10871 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 10872 *
cdd6c482 10873 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 10874 * @pid: target pid
9f66a381 10875 * @cpu: target cpu
cdd6c482 10876 * @group_fd: group leader event fd
0793a61d 10877 */
cdd6c482
IM
10878SYSCALL_DEFINE5(perf_event_open,
10879 struct perf_event_attr __user *, attr_uptr,
2743a5b0 10880 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 10881{
b04243ef
PZ
10882 struct perf_event *group_leader = NULL, *output_event = NULL;
10883 struct perf_event *event, *sibling;
cdd6c482 10884 struct perf_event_attr attr;
f63a8daa 10885 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 10886 struct file *event_file = NULL;
2903ff01 10887 struct fd group = {NULL, 0};
38a81da2 10888 struct task_struct *task = NULL;
89a1e187 10889 struct pmu *pmu;
ea635c64 10890 int event_fd;
b04243ef 10891 int move_group = 0;
dc86cabe 10892 int err;
a21b0b35 10893 int f_flags = O_RDWR;
79dff51e 10894 int cgroup_fd = -1;
0793a61d 10895
2743a5b0 10896 /* for future expandability... */
e5d1367f 10897 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
10898 return -EINVAL;
10899
dc86cabe
IM
10900 err = perf_copy_attr(attr_uptr, &attr);
10901 if (err)
10902 return err;
eab656ae 10903
0764771d
PZ
10904 if (!attr.exclude_kernel) {
10905 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10906 return -EACCES;
10907 }
10908
e4222673
HB
10909 if (attr.namespaces) {
10910 if (!capable(CAP_SYS_ADMIN))
10911 return -EACCES;
10912 }
10913
df58ab24 10914 if (attr.freq) {
cdd6c482 10915 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 10916 return -EINVAL;
0819b2e3
PZ
10917 } else {
10918 if (attr.sample_period & (1ULL << 63))
10919 return -EINVAL;
df58ab24
PZ
10920 }
10921
fc7ce9c7
KL
10922 /* Only privileged users can get physical addresses */
10923 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10924 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10925 return -EACCES;
10926
b0c8fdc7
DH
10927 err = security_locked_down(LOCKDOWN_PERF);
10928 if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR))
10929 /* REGS_INTR can leak data, lockdown must prevent this */
10930 return err;
10931
10932 err = 0;
10933
e5d1367f
SE
10934 /*
10935 * In cgroup mode, the pid argument is used to pass the fd
10936 * opened to the cgroup directory in cgroupfs. The cpu argument
10937 * designates the cpu on which to monitor threads from that
10938 * cgroup.
10939 */
10940 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10941 return -EINVAL;
10942
a21b0b35
YD
10943 if (flags & PERF_FLAG_FD_CLOEXEC)
10944 f_flags |= O_CLOEXEC;
10945
10946 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
10947 if (event_fd < 0)
10948 return event_fd;
10949
ac9721f3 10950 if (group_fd != -1) {
2903ff01
AV
10951 err = perf_fget_light(group_fd, &group);
10952 if (err)
d14b12d7 10953 goto err_fd;
2903ff01 10954 group_leader = group.file->private_data;
ac9721f3
PZ
10955 if (flags & PERF_FLAG_FD_OUTPUT)
10956 output_event = group_leader;
10957 if (flags & PERF_FLAG_FD_NO_GROUP)
10958 group_leader = NULL;
10959 }
10960
e5d1367f 10961 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
10962 task = find_lively_task_by_vpid(pid);
10963 if (IS_ERR(task)) {
10964 err = PTR_ERR(task);
10965 goto err_group_fd;
10966 }
10967 }
10968
1f4ee503
PZ
10969 if (task && group_leader &&
10970 group_leader->attr.inherit != attr.inherit) {
10971 err = -EINVAL;
10972 goto err_task;
10973 }
10974
79c9ce57
PZ
10975 if (task) {
10976 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10977 if (err)
e5aeee51 10978 goto err_task;
79c9ce57
PZ
10979
10980 /*
10981 * Reuse ptrace permission checks for now.
10982 *
10983 * We must hold cred_guard_mutex across this and any potential
10984 * perf_install_in_context() call for this new event to
10985 * serialize against exec() altering our credentials (and the
10986 * perf_event_exit_task() that could imply).
10987 */
10988 err = -EACCES;
10989 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10990 goto err_cred;
10991 }
10992
79dff51e
MF
10993 if (flags & PERF_FLAG_PID_CGROUP)
10994 cgroup_fd = pid;
10995
4dc0da86 10996 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 10997 NULL, NULL, cgroup_fd);
d14b12d7
SE
10998 if (IS_ERR(event)) {
10999 err = PTR_ERR(event);
79c9ce57 11000 goto err_cred;
d14b12d7
SE
11001 }
11002
53b25335
VW
11003 if (is_sampling_event(event)) {
11004 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 11005 err = -EOPNOTSUPP;
53b25335
VW
11006 goto err_alloc;
11007 }
11008 }
11009
89a1e187
PZ
11010 /*
11011 * Special case software events and allow them to be part of
11012 * any hardware group.
11013 */
11014 pmu = event->pmu;
b04243ef 11015
34f43927
PZ
11016 if (attr.use_clockid) {
11017 err = perf_event_set_clock(event, attr.clockid);
11018 if (err)
11019 goto err_alloc;
11020 }
11021
4ff6a8de
DCC
11022 if (pmu->task_ctx_nr == perf_sw_context)
11023 event->event_caps |= PERF_EV_CAP_SOFTWARE;
11024
a1150c20
SL
11025 if (group_leader) {
11026 if (is_software_event(event) &&
11027 !in_software_context(group_leader)) {
b04243ef 11028 /*
a1150c20
SL
11029 * If the event is a sw event, but the group_leader
11030 * is on hw context.
b04243ef 11031 *
a1150c20
SL
11032 * Allow the addition of software events to hw
11033 * groups, this is safe because software events
11034 * never fail to schedule.
b04243ef 11035 */
a1150c20
SL
11036 pmu = group_leader->ctx->pmu;
11037 } else if (!is_software_event(event) &&
11038 is_software_event(group_leader) &&
4ff6a8de 11039 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
11040 /*
11041 * In case the group is a pure software group, and we
11042 * try to add a hardware event, move the whole group to
11043 * the hardware context.
11044 */
11045 move_group = 1;
11046 }
11047 }
89a1e187
PZ
11048
11049 /*
11050 * Get the target context (task or percpu):
11051 */
4af57ef2 11052 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
11053 if (IS_ERR(ctx)) {
11054 err = PTR_ERR(ctx);
c6be5a5c 11055 goto err_alloc;
89a1e187
PZ
11056 }
11057
ccff286d 11058 /*
cdd6c482 11059 * Look up the group leader (we will attach this event to it):
04289bb9 11060 */
ac9721f3 11061 if (group_leader) {
dc86cabe 11062 err = -EINVAL;
04289bb9 11063
04289bb9 11064 /*
ccff286d
IM
11065 * Do not allow a recursive hierarchy (this new sibling
11066 * becoming part of another group-sibling):
11067 */
11068 if (group_leader->group_leader != group_leader)
c3f00c70 11069 goto err_context;
34f43927
PZ
11070
11071 /* All events in a group should have the same clock */
11072 if (group_leader->clock != event->clock)
11073 goto err_context;
11074
ccff286d 11075 /*
64aee2a9
MR
11076 * Make sure we're both events for the same CPU;
11077 * grouping events for different CPUs is broken; since
11078 * you can never concurrently schedule them anyhow.
04289bb9 11079 */
64aee2a9
MR
11080 if (group_leader->cpu != event->cpu)
11081 goto err_context;
c3c87e77 11082
64aee2a9
MR
11083 /*
11084 * Make sure we're both on the same task, or both
11085 * per-CPU events.
11086 */
11087 if (group_leader->ctx->task != ctx->task)
11088 goto err_context;
11089
11090 /*
11091 * Do not allow to attach to a group in a different task
11092 * or CPU context. If we're moving SW events, we'll fix
11093 * this up later, so allow that.
11094 */
11095 if (!move_group && group_leader->ctx != ctx)
11096 goto err_context;
b04243ef 11097
3b6f9e5c
PM
11098 /*
11099 * Only a group leader can be exclusive or pinned
11100 */
0d48696f 11101 if (attr.exclusive || attr.pinned)
c3f00c70 11102 goto err_context;
ac9721f3
PZ
11103 }
11104
11105 if (output_event) {
11106 err = perf_event_set_output(event, output_event);
11107 if (err)
c3f00c70 11108 goto err_context;
ac9721f3 11109 }
0793a61d 11110
a21b0b35
YD
11111 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11112 f_flags);
ea635c64
AV
11113 if (IS_ERR(event_file)) {
11114 err = PTR_ERR(event_file);
201c2f85 11115 event_file = NULL;
c3f00c70 11116 goto err_context;
ea635c64 11117 }
9b51f66d 11118
b04243ef 11119 if (move_group) {
321027c1
PZ
11120 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11121
84c4e620
PZ
11122 if (gctx->task == TASK_TOMBSTONE) {
11123 err = -ESRCH;
11124 goto err_locked;
11125 }
321027c1
PZ
11126
11127 /*
11128 * Check if we raced against another sys_perf_event_open() call
11129 * moving the software group underneath us.
11130 */
11131 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11132 /*
11133 * If someone moved the group out from under us, check
11134 * if this new event wound up on the same ctx, if so
11135 * its the regular !move_group case, otherwise fail.
11136 */
11137 if (gctx != ctx) {
11138 err = -EINVAL;
11139 goto err_locked;
11140 } else {
11141 perf_event_ctx_unlock(group_leader, gctx);
11142 move_group = 0;
11143 }
11144 }
8a58ddae
AS
11145
11146 /*
11147 * Failure to create exclusive events returns -EBUSY.
11148 */
11149 err = -EBUSY;
11150 if (!exclusive_event_installable(group_leader, ctx))
11151 goto err_locked;
11152
11153 for_each_sibling_event(sibling, group_leader) {
11154 if (!exclusive_event_installable(sibling, ctx))
11155 goto err_locked;
11156 }
f55fc2a5
PZ
11157 } else {
11158 mutex_lock(&ctx->mutex);
11159 }
11160
84c4e620
PZ
11161 if (ctx->task == TASK_TOMBSTONE) {
11162 err = -ESRCH;
11163 goto err_locked;
11164 }
11165
a723968c
PZ
11166 if (!perf_event_validate_size(event)) {
11167 err = -E2BIG;
11168 goto err_locked;
11169 }
11170
a63fbed7
TG
11171 if (!task) {
11172 /*
11173 * Check if the @cpu we're creating an event for is online.
11174 *
11175 * We use the perf_cpu_context::ctx::mutex to serialize against
11176 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11177 */
11178 struct perf_cpu_context *cpuctx =
11179 container_of(ctx, struct perf_cpu_context, ctx);
11180
11181 if (!cpuctx->online) {
11182 err = -ENODEV;
11183 goto err_locked;
11184 }
11185 }
11186
ab43762e
AS
11187 if (event->attr.aux_output && !perf_get_aux_event(event, group_leader))
11188 goto err_locked;
a63fbed7 11189
f55fc2a5
PZ
11190 /*
11191 * Must be under the same ctx::mutex as perf_install_in_context(),
11192 * because we need to serialize with concurrent event creation.
11193 */
11194 if (!exclusive_event_installable(event, ctx)) {
f55fc2a5
PZ
11195 err = -EBUSY;
11196 goto err_locked;
11197 }
f63a8daa 11198
f55fc2a5
PZ
11199 WARN_ON_ONCE(ctx->parent_ctx);
11200
79c9ce57
PZ
11201 /*
11202 * This is the point on no return; we cannot fail hereafter. This is
11203 * where we start modifying current state.
11204 */
11205
f55fc2a5 11206 if (move_group) {
f63a8daa
PZ
11207 /*
11208 * See perf_event_ctx_lock() for comments on the details
11209 * of swizzling perf_event::ctx.
11210 */
45a0e07a 11211 perf_remove_from_context(group_leader, 0);
279b5165 11212 put_ctx(gctx);
0231bb53 11213
edb39592 11214 for_each_sibling_event(sibling, group_leader) {
45a0e07a 11215 perf_remove_from_context(sibling, 0);
b04243ef
PZ
11216 put_ctx(gctx);
11217 }
b04243ef 11218
f63a8daa
PZ
11219 /*
11220 * Wait for everybody to stop referencing the events through
11221 * the old lists, before installing it on new lists.
11222 */
0cda4c02 11223 synchronize_rcu();
f63a8daa 11224
8f95b435
PZI
11225 /*
11226 * Install the group siblings before the group leader.
11227 *
11228 * Because a group leader will try and install the entire group
11229 * (through the sibling list, which is still in-tact), we can
11230 * end up with siblings installed in the wrong context.
11231 *
11232 * By installing siblings first we NO-OP because they're not
11233 * reachable through the group lists.
11234 */
edb39592 11235 for_each_sibling_event(sibling, group_leader) {
8f95b435 11236 perf_event__state_init(sibling);
9fc81d87 11237 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
11238 get_ctx(ctx);
11239 }
8f95b435
PZI
11240
11241 /*
11242 * Removing from the context ends up with disabled
11243 * event. What we want here is event in the initial
11244 * startup state, ready to be add into new context.
11245 */
11246 perf_event__state_init(group_leader);
11247 perf_install_in_context(ctx, group_leader, group_leader->cpu);
11248 get_ctx(ctx);
bed5b25a
AS
11249 }
11250
f73e22ab
PZ
11251 /*
11252 * Precalculate sample_data sizes; do while holding ctx::mutex such
11253 * that we're serialized against further additions and before
11254 * perf_install_in_context() which is the point the event is active and
11255 * can use these values.
11256 */
11257 perf_event__header_size(event);
11258 perf_event__id_header_size(event);
11259
78cd2c74
PZ
11260 event->owner = current;
11261
e2d37cd2 11262 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 11263 perf_unpin_context(ctx);
f63a8daa 11264
f55fc2a5 11265 if (move_group)
321027c1 11266 perf_event_ctx_unlock(group_leader, gctx);
d859e29f 11267 mutex_unlock(&ctx->mutex);
9b51f66d 11268
79c9ce57
PZ
11269 if (task) {
11270 mutex_unlock(&task->signal->cred_guard_mutex);
11271 put_task_struct(task);
11272 }
11273
cdd6c482
IM
11274 mutex_lock(&current->perf_event_mutex);
11275 list_add_tail(&event->owner_entry, &current->perf_event_list);
11276 mutex_unlock(&current->perf_event_mutex);
082ff5a2 11277
8a49542c
PZ
11278 /*
11279 * Drop the reference on the group_event after placing the
11280 * new event on the sibling_list. This ensures destruction
11281 * of the group leader will find the pointer to itself in
11282 * perf_group_detach().
11283 */
2903ff01 11284 fdput(group);
ea635c64
AV
11285 fd_install(event_fd, event_file);
11286 return event_fd;
0793a61d 11287
f55fc2a5
PZ
11288err_locked:
11289 if (move_group)
321027c1 11290 perf_event_ctx_unlock(group_leader, gctx);
f55fc2a5
PZ
11291 mutex_unlock(&ctx->mutex);
11292/* err_file: */
11293 fput(event_file);
c3f00c70 11294err_context:
fe4b04fa 11295 perf_unpin_context(ctx);
ea635c64 11296 put_ctx(ctx);
c6be5a5c 11297err_alloc:
13005627
PZ
11298 /*
11299 * If event_file is set, the fput() above will have called ->release()
11300 * and that will take care of freeing the event.
11301 */
11302 if (!event_file)
11303 free_event(event);
79c9ce57
PZ
11304err_cred:
11305 if (task)
11306 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 11307err_task:
e7d0bc04
PZ
11308 if (task)
11309 put_task_struct(task);
89a1e187 11310err_group_fd:
2903ff01 11311 fdput(group);
ea635c64
AV
11312err_fd:
11313 put_unused_fd(event_fd);
dc86cabe 11314 return err;
0793a61d
TG
11315}
11316
fb0459d7
AV
11317/**
11318 * perf_event_create_kernel_counter
11319 *
11320 * @attr: attributes of the counter to create
11321 * @cpu: cpu in which the counter is bound
38a81da2 11322 * @task: task to profile (NULL for percpu)
fb0459d7
AV
11323 */
11324struct perf_event *
11325perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 11326 struct task_struct *task,
4dc0da86
AK
11327 perf_overflow_handler_t overflow_handler,
11328 void *context)
fb0459d7 11329{
fb0459d7 11330 struct perf_event_context *ctx;
c3f00c70 11331 struct perf_event *event;
fb0459d7 11332 int err;
d859e29f 11333
dce5affb
AS
11334 /*
11335 * Grouping is not supported for kernel events, neither is 'AUX',
11336 * make sure the caller's intentions are adjusted.
11337 */
11338 if (attr->aux_output)
11339 return ERR_PTR(-EINVAL);
11340
4dc0da86 11341 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 11342 overflow_handler, context, -1);
c3f00c70
PZ
11343 if (IS_ERR(event)) {
11344 err = PTR_ERR(event);
11345 goto err;
11346 }
d859e29f 11347
f8697762 11348 /* Mark owner so we could distinguish it from user events. */
63b6da39 11349 event->owner = TASK_TOMBSTONE;
f8697762 11350
f25d8ba9
AS
11351 /*
11352 * Get the target context (task or percpu):
11353 */
4af57ef2 11354 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
11355 if (IS_ERR(ctx)) {
11356 err = PTR_ERR(ctx);
c3f00c70 11357 goto err_free;
d859e29f 11358 }
fb0459d7 11359
fb0459d7
AV
11360 WARN_ON_ONCE(ctx->parent_ctx);
11361 mutex_lock(&ctx->mutex);
84c4e620
PZ
11362 if (ctx->task == TASK_TOMBSTONE) {
11363 err = -ESRCH;
11364 goto err_unlock;
11365 }
11366
a63fbed7
TG
11367 if (!task) {
11368 /*
11369 * Check if the @cpu we're creating an event for is online.
11370 *
11371 * We use the perf_cpu_context::ctx::mutex to serialize against
11372 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11373 */
11374 struct perf_cpu_context *cpuctx =
11375 container_of(ctx, struct perf_cpu_context, ctx);
11376 if (!cpuctx->online) {
11377 err = -ENODEV;
11378 goto err_unlock;
11379 }
11380 }
11381
bed5b25a 11382 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 11383 err = -EBUSY;
84c4e620 11384 goto err_unlock;
bed5b25a
AS
11385 }
11386
4ce54af8 11387 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 11388 perf_unpin_context(ctx);
fb0459d7
AV
11389 mutex_unlock(&ctx->mutex);
11390
fb0459d7
AV
11391 return event;
11392
84c4e620
PZ
11393err_unlock:
11394 mutex_unlock(&ctx->mutex);
11395 perf_unpin_context(ctx);
11396 put_ctx(ctx);
c3f00c70
PZ
11397err_free:
11398 free_event(event);
11399err:
c6567f64 11400 return ERR_PTR(err);
9b51f66d 11401}
fb0459d7 11402EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 11403
0cda4c02
YZ
11404void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11405{
11406 struct perf_event_context *src_ctx;
11407 struct perf_event_context *dst_ctx;
11408 struct perf_event *event, *tmp;
11409 LIST_HEAD(events);
11410
11411 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11412 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11413
f63a8daa
PZ
11414 /*
11415 * See perf_event_ctx_lock() for comments on the details
11416 * of swizzling perf_event::ctx.
11417 */
11418 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
11419 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11420 event_entry) {
45a0e07a 11421 perf_remove_from_context(event, 0);
9a545de0 11422 unaccount_event_cpu(event, src_cpu);
0cda4c02 11423 put_ctx(src_ctx);
9886167d 11424 list_add(&event->migrate_entry, &events);
0cda4c02 11425 }
0cda4c02 11426
8f95b435
PZI
11427 /*
11428 * Wait for the events to quiesce before re-instating them.
11429 */
0cda4c02
YZ
11430 synchronize_rcu();
11431
8f95b435
PZI
11432 /*
11433 * Re-instate events in 2 passes.
11434 *
11435 * Skip over group leaders and only install siblings on this first
11436 * pass, siblings will not get enabled without a leader, however a
11437 * leader will enable its siblings, even if those are still on the old
11438 * context.
11439 */
11440 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11441 if (event->group_leader == event)
11442 continue;
11443
11444 list_del(&event->migrate_entry);
11445 if (event->state >= PERF_EVENT_STATE_OFF)
11446 event->state = PERF_EVENT_STATE_INACTIVE;
11447 account_event_cpu(event, dst_cpu);
11448 perf_install_in_context(dst_ctx, event, dst_cpu);
11449 get_ctx(dst_ctx);
11450 }
11451
11452 /*
11453 * Once all the siblings are setup properly, install the group leaders
11454 * to make it go.
11455 */
9886167d
PZ
11456 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11457 list_del(&event->migrate_entry);
0cda4c02
YZ
11458 if (event->state >= PERF_EVENT_STATE_OFF)
11459 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 11460 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
11461 perf_install_in_context(dst_ctx, event, dst_cpu);
11462 get_ctx(dst_ctx);
11463 }
11464 mutex_unlock(&dst_ctx->mutex);
f63a8daa 11465 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
11466}
11467EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11468
cdd6c482 11469static void sync_child_event(struct perf_event *child_event,
38b200d6 11470 struct task_struct *child)
d859e29f 11471{
cdd6c482 11472 struct perf_event *parent_event = child_event->parent;
8bc20959 11473 u64 child_val;
d859e29f 11474
cdd6c482
IM
11475 if (child_event->attr.inherit_stat)
11476 perf_event_read_event(child_event, child);
38b200d6 11477
b5e58793 11478 child_val = perf_event_count(child_event);
d859e29f
PM
11479
11480 /*
11481 * Add back the child's count to the parent's count:
11482 */
a6e6dea6 11483 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
11484 atomic64_add(child_event->total_time_enabled,
11485 &parent_event->child_total_time_enabled);
11486 atomic64_add(child_event->total_time_running,
11487 &parent_event->child_total_time_running);
d859e29f
PM
11488}
11489
9b51f66d 11490static void
8ba289b8
PZ
11491perf_event_exit_event(struct perf_event *child_event,
11492 struct perf_event_context *child_ctx,
11493 struct task_struct *child)
9b51f66d 11494{
8ba289b8
PZ
11495 struct perf_event *parent_event = child_event->parent;
11496
1903d50c
PZ
11497 /*
11498 * Do not destroy the 'original' grouping; because of the context
11499 * switch optimization the original events could've ended up in a
11500 * random child task.
11501 *
11502 * If we were to destroy the original group, all group related
11503 * operations would cease to function properly after this random
11504 * child dies.
11505 *
11506 * Do destroy all inherited groups, we don't care about those
11507 * and being thorough is better.
11508 */
32132a3d
PZ
11509 raw_spin_lock_irq(&child_ctx->lock);
11510 WARN_ON_ONCE(child_ctx->is_active);
11511
8ba289b8 11512 if (parent_event)
32132a3d
PZ
11513 perf_group_detach(child_event);
11514 list_del_event(child_event, child_ctx);
0d3d73aa 11515 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
32132a3d 11516 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 11517
9b51f66d 11518 /*
8ba289b8 11519 * Parent events are governed by their filedesc, retain them.
9b51f66d 11520 */
8ba289b8 11521 if (!parent_event) {
179033b3 11522 perf_event_wakeup(child_event);
8ba289b8 11523 return;
4bcf349a 11524 }
8ba289b8
PZ
11525 /*
11526 * Child events can be cleaned up.
11527 */
11528
11529 sync_child_event(child_event, child);
11530
11531 /*
11532 * Remove this event from the parent's list
11533 */
11534 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11535 mutex_lock(&parent_event->child_mutex);
11536 list_del_init(&child_event->child_list);
11537 mutex_unlock(&parent_event->child_mutex);
11538
11539 /*
11540 * Kick perf_poll() for is_event_hup().
11541 */
11542 perf_event_wakeup(parent_event);
11543 free_event(child_event);
11544 put_event(parent_event);
9b51f66d
IM
11545}
11546
8dc85d54 11547static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 11548{
211de6eb 11549 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 11550 struct perf_event *child_event, *next;
63b6da39
PZ
11551
11552 WARN_ON_ONCE(child != current);
9b51f66d 11553
6a3351b6 11554 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 11555 if (!child_ctx)
9b51f66d
IM
11556 return;
11557
ad3a37de 11558 /*
6a3351b6
PZ
11559 * In order to reduce the amount of tricky in ctx tear-down, we hold
11560 * ctx::mutex over the entire thing. This serializes against almost
11561 * everything that wants to access the ctx.
11562 *
11563 * The exception is sys_perf_event_open() /
11564 * perf_event_create_kernel_count() which does find_get_context()
11565 * without ctx::mutex (it cannot because of the move_group double mutex
11566 * lock thing). See the comments in perf_install_in_context().
ad3a37de 11567 */
6a3351b6 11568 mutex_lock(&child_ctx->mutex);
c93f7669
PM
11569
11570 /*
6a3351b6
PZ
11571 * In a single ctx::lock section, de-schedule the events and detach the
11572 * context from the task such that we cannot ever get it scheduled back
11573 * in.
c93f7669 11574 */
6a3351b6 11575 raw_spin_lock_irq(&child_ctx->lock);
487f05e1 11576 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
4a1c0f26 11577
71a851b4 11578 /*
63b6da39
PZ
11579 * Now that the context is inactive, destroy the task <-> ctx relation
11580 * and mark the context dead.
71a851b4 11581 */
63b6da39
PZ
11582 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11583 put_ctx(child_ctx); /* cannot be last */
11584 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11585 put_task_struct(current); /* cannot be last */
4a1c0f26 11586
211de6eb 11587 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 11588 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 11589
211de6eb
PZ
11590 if (clone_ctx)
11591 put_ctx(clone_ctx);
4a1c0f26 11592
9f498cc5 11593 /*
cdd6c482
IM
11594 * Report the task dead after unscheduling the events so that we
11595 * won't get any samples after PERF_RECORD_EXIT. We can however still
11596 * get a few PERF_RECORD_READ events.
9f498cc5 11597 */
cdd6c482 11598 perf_event_task(child, child_ctx, 0);
a63eaf34 11599
ebf905fc 11600 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 11601 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 11602
a63eaf34
PM
11603 mutex_unlock(&child_ctx->mutex);
11604
11605 put_ctx(child_ctx);
9b51f66d
IM
11606}
11607
8dc85d54
PZ
11608/*
11609 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
11610 *
11611 * Can be called with cred_guard_mutex held when called from
11612 * install_exec_creds().
8dc85d54
PZ
11613 */
11614void perf_event_exit_task(struct task_struct *child)
11615{
8882135b 11616 struct perf_event *event, *tmp;
8dc85d54
PZ
11617 int ctxn;
11618
8882135b
PZ
11619 mutex_lock(&child->perf_event_mutex);
11620 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11621 owner_entry) {
11622 list_del_init(&event->owner_entry);
11623
11624 /*
11625 * Ensure the list deletion is visible before we clear
11626 * the owner, closes a race against perf_release() where
11627 * we need to serialize on the owner->perf_event_mutex.
11628 */
f47c02c0 11629 smp_store_release(&event->owner, NULL);
8882135b
PZ
11630 }
11631 mutex_unlock(&child->perf_event_mutex);
11632
8dc85d54
PZ
11633 for_each_task_context_nr(ctxn)
11634 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
11635
11636 /*
11637 * The perf_event_exit_task_context calls perf_event_task
11638 * with child's task_ctx, which generates EXIT events for
11639 * child contexts and sets child->perf_event_ctxp[] to NULL.
11640 * At this point we need to send EXIT events to cpu contexts.
11641 */
11642 perf_event_task(child, NULL, 0);
8dc85d54
PZ
11643}
11644
889ff015
FW
11645static void perf_free_event(struct perf_event *event,
11646 struct perf_event_context *ctx)
11647{
11648 struct perf_event *parent = event->parent;
11649
11650 if (WARN_ON_ONCE(!parent))
11651 return;
11652
11653 mutex_lock(&parent->child_mutex);
11654 list_del_init(&event->child_list);
11655 mutex_unlock(&parent->child_mutex);
11656
a6fa941d 11657 put_event(parent);
889ff015 11658
652884fe 11659 raw_spin_lock_irq(&ctx->lock);
8a49542c 11660 perf_group_detach(event);
889ff015 11661 list_del_event(event, ctx);
652884fe 11662 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
11663 free_event(event);
11664}
11665
bbbee908 11666/*
1cf8dfe8
PZ
11667 * Free a context as created by inheritance by perf_event_init_task() below,
11668 * used by fork() in case of fail.
652884fe 11669 *
1cf8dfe8
PZ
11670 * Even though the task has never lived, the context and events have been
11671 * exposed through the child_list, so we must take care tearing it all down.
bbbee908 11672 */
cdd6c482 11673void perf_event_free_task(struct task_struct *task)
bbbee908 11674{
8dc85d54 11675 struct perf_event_context *ctx;
cdd6c482 11676 struct perf_event *event, *tmp;
8dc85d54 11677 int ctxn;
bbbee908 11678
8dc85d54
PZ
11679 for_each_task_context_nr(ctxn) {
11680 ctx = task->perf_event_ctxp[ctxn];
11681 if (!ctx)
11682 continue;
bbbee908 11683
8dc85d54 11684 mutex_lock(&ctx->mutex);
e552a838
PZ
11685 raw_spin_lock_irq(&ctx->lock);
11686 /*
11687 * Destroy the task <-> ctx relation and mark the context dead.
11688 *
11689 * This is important because even though the task hasn't been
11690 * exposed yet the context has been (through child_list).
11691 */
11692 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11693 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11694 put_task_struct(task); /* cannot be last */
11695 raw_spin_unlock_irq(&ctx->lock);
bbbee908 11696
15121c78 11697 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
8dc85d54 11698 perf_free_event(event, ctx);
bbbee908 11699
8dc85d54 11700 mutex_unlock(&ctx->mutex);
1cf8dfe8
PZ
11701
11702 /*
11703 * perf_event_release_kernel() could've stolen some of our
11704 * child events and still have them on its free_list. In that
11705 * case we must wait for these events to have been freed (in
11706 * particular all their references to this task must've been
11707 * dropped).
11708 *
11709 * Without this copy_process() will unconditionally free this
11710 * task (irrespective of its reference count) and
11711 * _free_event()'s put_task_struct(event->hw.target) will be a
11712 * use-after-free.
11713 *
11714 * Wait for all events to drop their context reference.
11715 */
11716 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
11717 put_ctx(ctx); /* must be last */
8dc85d54 11718 }
889ff015
FW
11719}
11720
4e231c79
PZ
11721void perf_event_delayed_put(struct task_struct *task)
11722{
11723 int ctxn;
11724
11725 for_each_task_context_nr(ctxn)
11726 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11727}
11728
e03e7ee3 11729struct file *perf_event_get(unsigned int fd)
ffe8690c 11730{
02e5ad97 11731 struct file *file = fget(fd);
e03e7ee3
AS
11732 if (!file)
11733 return ERR_PTR(-EBADF);
ffe8690c 11734
e03e7ee3
AS
11735 if (file->f_op != &perf_fops) {
11736 fput(file);
11737 return ERR_PTR(-EBADF);
11738 }
ffe8690c 11739
e03e7ee3 11740 return file;
ffe8690c
KX
11741}
11742
f8d959a5
YS
11743const struct perf_event *perf_get_event(struct file *file)
11744{
11745 if (file->f_op != &perf_fops)
11746 return ERR_PTR(-EINVAL);
11747
11748 return file->private_data;
11749}
11750
ffe8690c
KX
11751const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11752{
11753 if (!event)
11754 return ERR_PTR(-EINVAL);
11755
11756 return &event->attr;
11757}
11758
97dee4f3 11759/*
788faab7 11760 * Inherit an event from parent task to child task.
d8a8cfc7
PZ
11761 *
11762 * Returns:
11763 * - valid pointer on success
11764 * - NULL for orphaned events
11765 * - IS_ERR() on error
97dee4f3
PZ
11766 */
11767static struct perf_event *
11768inherit_event(struct perf_event *parent_event,
11769 struct task_struct *parent,
11770 struct perf_event_context *parent_ctx,
11771 struct task_struct *child,
11772 struct perf_event *group_leader,
11773 struct perf_event_context *child_ctx)
11774{
8ca2bd41 11775 enum perf_event_state parent_state = parent_event->state;
97dee4f3 11776 struct perf_event *child_event;
cee010ec 11777 unsigned long flags;
97dee4f3
PZ
11778
11779 /*
11780 * Instead of creating recursive hierarchies of events,
11781 * we link inherited events back to the original parent,
11782 * which has a filp for sure, which we use as the reference
11783 * count:
11784 */
11785 if (parent_event->parent)
11786 parent_event = parent_event->parent;
11787
11788 child_event = perf_event_alloc(&parent_event->attr,
11789 parent_event->cpu,
d580ff86 11790 child,
97dee4f3 11791 group_leader, parent_event,
79dff51e 11792 NULL, NULL, -1);
97dee4f3
PZ
11793 if (IS_ERR(child_event))
11794 return child_event;
a6fa941d 11795
313ccb96
JO
11796
11797 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11798 !child_ctx->task_ctx_data) {
11799 struct pmu *pmu = child_event->pmu;
11800
11801 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11802 GFP_KERNEL);
11803 if (!child_ctx->task_ctx_data) {
11804 free_event(child_event);
697d8778 11805 return ERR_PTR(-ENOMEM);
313ccb96
JO
11806 }
11807 }
11808
c6e5b732
PZ
11809 /*
11810 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11811 * must be under the same lock in order to serialize against
11812 * perf_event_release_kernel(), such that either we must observe
11813 * is_orphaned_event() or they will observe us on the child_list.
11814 */
11815 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
11816 if (is_orphaned_event(parent_event) ||
11817 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 11818 mutex_unlock(&parent_event->child_mutex);
313ccb96 11819 /* task_ctx_data is freed with child_ctx */
a6fa941d
AV
11820 free_event(child_event);
11821 return NULL;
11822 }
11823
97dee4f3
PZ
11824 get_ctx(child_ctx);
11825
11826 /*
11827 * Make the child state follow the state of the parent event,
11828 * not its attr.disabled bit. We hold the parent's mutex,
11829 * so we won't race with perf_event_{en, dis}able_family.
11830 */
1929def9 11831 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
11832 child_event->state = PERF_EVENT_STATE_INACTIVE;
11833 else
11834 child_event->state = PERF_EVENT_STATE_OFF;
11835
11836 if (parent_event->attr.freq) {
11837 u64 sample_period = parent_event->hw.sample_period;
11838 struct hw_perf_event *hwc = &child_event->hw;
11839
11840 hwc->sample_period = sample_period;
11841 hwc->last_period = sample_period;
11842
11843 local64_set(&hwc->period_left, sample_period);
11844 }
11845
11846 child_event->ctx = child_ctx;
11847 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
11848 child_event->overflow_handler_context
11849 = parent_event->overflow_handler_context;
97dee4f3 11850
614b6780
TG
11851 /*
11852 * Precalculate sample_data sizes
11853 */
11854 perf_event__header_size(child_event);
6844c09d 11855 perf_event__id_header_size(child_event);
614b6780 11856
97dee4f3
PZ
11857 /*
11858 * Link it up in the child's context:
11859 */
cee010ec 11860 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 11861 add_event_to_ctx(child_event, child_ctx);
cee010ec 11862 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 11863
97dee4f3
PZ
11864 /*
11865 * Link this into the parent event's child list
11866 */
97dee4f3
PZ
11867 list_add_tail(&child_event->child_list, &parent_event->child_list);
11868 mutex_unlock(&parent_event->child_mutex);
11869
11870 return child_event;
11871}
11872
d8a8cfc7
PZ
11873/*
11874 * Inherits an event group.
11875 *
11876 * This will quietly suppress orphaned events; !inherit_event() is not an error.
11877 * This matches with perf_event_release_kernel() removing all child events.
11878 *
11879 * Returns:
11880 * - 0 on success
11881 * - <0 on error
11882 */
97dee4f3
PZ
11883static int inherit_group(struct perf_event *parent_event,
11884 struct task_struct *parent,
11885 struct perf_event_context *parent_ctx,
11886 struct task_struct *child,
11887 struct perf_event_context *child_ctx)
11888{
11889 struct perf_event *leader;
11890 struct perf_event *sub;
11891 struct perf_event *child_ctr;
11892
11893 leader = inherit_event(parent_event, parent, parent_ctx,
11894 child, NULL, child_ctx);
11895 if (IS_ERR(leader))
11896 return PTR_ERR(leader);
d8a8cfc7
PZ
11897 /*
11898 * @leader can be NULL here because of is_orphaned_event(). In this
11899 * case inherit_event() will create individual events, similar to what
11900 * perf_group_detach() would do anyway.
11901 */
edb39592 11902 for_each_sibling_event(sub, parent_event) {
97dee4f3
PZ
11903 child_ctr = inherit_event(sub, parent, parent_ctx,
11904 child, leader, child_ctx);
11905 if (IS_ERR(child_ctr))
11906 return PTR_ERR(child_ctr);
f733c6b5 11907
00496fe5 11908 if (sub->aux_event == parent_event && child_ctr &&
f733c6b5
AS
11909 !perf_get_aux_event(child_ctr, leader))
11910 return -EINVAL;
97dee4f3
PZ
11911 }
11912 return 0;
889ff015
FW
11913}
11914
d8a8cfc7
PZ
11915/*
11916 * Creates the child task context and tries to inherit the event-group.
11917 *
11918 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11919 * inherited_all set when we 'fail' to inherit an orphaned event; this is
11920 * consistent with perf_event_release_kernel() removing all child events.
11921 *
11922 * Returns:
11923 * - 0 on success
11924 * - <0 on error
11925 */
889ff015
FW
11926static int
11927inherit_task_group(struct perf_event *event, struct task_struct *parent,
11928 struct perf_event_context *parent_ctx,
8dc85d54 11929 struct task_struct *child, int ctxn,
889ff015
FW
11930 int *inherited_all)
11931{
11932 int ret;
8dc85d54 11933 struct perf_event_context *child_ctx;
889ff015
FW
11934
11935 if (!event->attr.inherit) {
11936 *inherited_all = 0;
11937 return 0;
bbbee908
PZ
11938 }
11939
fe4b04fa 11940 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
11941 if (!child_ctx) {
11942 /*
11943 * This is executed from the parent task context, so
11944 * inherit events that have been marked for cloning.
11945 * First allocate and initialize a context for the
11946 * child.
11947 */
734df5ab 11948 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
11949 if (!child_ctx)
11950 return -ENOMEM;
bbbee908 11951
8dc85d54 11952 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
11953 }
11954
11955 ret = inherit_group(event, parent, parent_ctx,
11956 child, child_ctx);
11957
11958 if (ret)
11959 *inherited_all = 0;
11960
11961 return ret;
bbbee908
PZ
11962}
11963
9b51f66d 11964/*
cdd6c482 11965 * Initialize the perf_event context in task_struct
9b51f66d 11966 */
985c8dcb 11967static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 11968{
889ff015 11969 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
11970 struct perf_event_context *cloned_ctx;
11971 struct perf_event *event;
9b51f66d 11972 struct task_struct *parent = current;
564c2b21 11973 int inherited_all = 1;
dddd3379 11974 unsigned long flags;
6ab423e0 11975 int ret = 0;
9b51f66d 11976
8dc85d54 11977 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
11978 return 0;
11979
ad3a37de 11980 /*
25346b93
PM
11981 * If the parent's context is a clone, pin it so it won't get
11982 * swapped under us.
ad3a37de 11983 */
8dc85d54 11984 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
11985 if (!parent_ctx)
11986 return 0;
25346b93 11987
ad3a37de
PM
11988 /*
11989 * No need to check if parent_ctx != NULL here; since we saw
11990 * it non-NULL earlier, the only reason for it to become NULL
11991 * is if we exit, and since we're currently in the middle of
11992 * a fork we can't be exiting at the same time.
11993 */
ad3a37de 11994
9b51f66d
IM
11995 /*
11996 * Lock the parent list. No need to lock the child - not PID
11997 * hashed yet and not running, so nobody can access it.
11998 */
d859e29f 11999 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
12000
12001 /*
12002 * We dont have to disable NMIs - we are only looking at
12003 * the list, not manipulating it:
12004 */
6e6804d2 12005 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
8dc85d54
PZ
12006 ret = inherit_task_group(event, parent, parent_ctx,
12007 child, ctxn, &inherited_all);
889ff015 12008 if (ret)
e7cc4865 12009 goto out_unlock;
889ff015 12010 }
b93f7978 12011
dddd3379
TG
12012 /*
12013 * We can't hold ctx->lock when iterating the ->flexible_group list due
12014 * to allocations, but we need to prevent rotation because
12015 * rotate_ctx() will change the list from interrupt context.
12016 */
12017 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12018 parent_ctx->rotate_disable = 1;
12019 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12020
6e6804d2 12021 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
8dc85d54
PZ
12022 ret = inherit_task_group(event, parent, parent_ctx,
12023 child, ctxn, &inherited_all);
889ff015 12024 if (ret)
e7cc4865 12025 goto out_unlock;
564c2b21
PM
12026 }
12027
dddd3379
TG
12028 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12029 parent_ctx->rotate_disable = 0;
dddd3379 12030
8dc85d54 12031 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 12032
05cbaa28 12033 if (child_ctx && inherited_all) {
564c2b21
PM
12034 /*
12035 * Mark the child context as a clone of the parent
12036 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
12037 *
12038 * Note that if the parent is a clone, the holding of
12039 * parent_ctx->lock avoids it from being uncloned.
564c2b21 12040 */
c5ed5145 12041 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
12042 if (cloned_ctx) {
12043 child_ctx->parent_ctx = cloned_ctx;
25346b93 12044 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
12045 } else {
12046 child_ctx->parent_ctx = parent_ctx;
12047 child_ctx->parent_gen = parent_ctx->generation;
12048 }
12049 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
12050 }
12051
c5ed5145 12052 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
e7cc4865 12053out_unlock:
d859e29f 12054 mutex_unlock(&parent_ctx->mutex);
6ab423e0 12055
25346b93 12056 perf_unpin_context(parent_ctx);
fe4b04fa 12057 put_ctx(parent_ctx);
ad3a37de 12058
6ab423e0 12059 return ret;
9b51f66d
IM
12060}
12061
8dc85d54
PZ
12062/*
12063 * Initialize the perf_event context in task_struct
12064 */
12065int perf_event_init_task(struct task_struct *child)
12066{
12067 int ctxn, ret;
12068
8550d7cb
ON
12069 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12070 mutex_init(&child->perf_event_mutex);
12071 INIT_LIST_HEAD(&child->perf_event_list);
12072
8dc85d54
PZ
12073 for_each_task_context_nr(ctxn) {
12074 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
12075 if (ret) {
12076 perf_event_free_task(child);
8dc85d54 12077 return ret;
6c72e350 12078 }
8dc85d54
PZ
12079 }
12080
12081 return 0;
12082}
12083
220b140b
PM
12084static void __init perf_event_init_all_cpus(void)
12085{
b28ab83c 12086 struct swevent_htable *swhash;
220b140b 12087 int cpu;
220b140b 12088
a63fbed7
TG
12089 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12090
220b140b 12091 for_each_possible_cpu(cpu) {
b28ab83c
PZ
12092 swhash = &per_cpu(swevent_htable, cpu);
12093 mutex_init(&swhash->hlist_mutex);
2fde4f94 12094 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
12095
12096 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12097 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788 12098
058fe1c0
DCC
12099#ifdef CONFIG_CGROUP_PERF
12100 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12101#endif
e48c1788 12102 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
12103 }
12104}
12105
d18bf422 12106static void perf_swevent_init_cpu(unsigned int cpu)
0793a61d 12107{
108b02cf 12108 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 12109
b28ab83c 12110 mutex_lock(&swhash->hlist_mutex);
059fcd8c 12111 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
12112 struct swevent_hlist *hlist;
12113
b28ab83c
PZ
12114 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12115 WARN_ON(!hlist);
12116 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 12117 }
b28ab83c 12118 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
12119}
12120
2965faa5 12121#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 12122static void __perf_event_exit_context(void *__info)
0793a61d 12123{
108b02cf 12124 struct perf_event_context *ctx = __info;
fae3fde6
PZ
12125 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12126 struct perf_event *event;
0793a61d 12127
fae3fde6 12128 raw_spin_lock(&ctx->lock);
0ee098c9 12129 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
fae3fde6 12130 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 12131 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 12132 raw_spin_unlock(&ctx->lock);
0793a61d 12133}
108b02cf
PZ
12134
12135static void perf_event_exit_cpu_context(int cpu)
12136{
a63fbed7 12137 struct perf_cpu_context *cpuctx;
108b02cf
PZ
12138 struct perf_event_context *ctx;
12139 struct pmu *pmu;
108b02cf 12140
a63fbed7
TG
12141 mutex_lock(&pmus_lock);
12142 list_for_each_entry(pmu, &pmus, entry) {
12143 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12144 ctx = &cpuctx->ctx;
108b02cf
PZ
12145
12146 mutex_lock(&ctx->mutex);
12147 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
a63fbed7 12148 cpuctx->online = 0;
108b02cf
PZ
12149 mutex_unlock(&ctx->mutex);
12150 }
a63fbed7
TG
12151 cpumask_clear_cpu(cpu, perf_online_mask);
12152 mutex_unlock(&pmus_lock);
108b02cf 12153}
00e16c3d
TG
12154#else
12155
12156static void perf_event_exit_cpu_context(int cpu) { }
12157
12158#endif
108b02cf 12159
a63fbed7
TG
12160int perf_event_init_cpu(unsigned int cpu)
12161{
12162 struct perf_cpu_context *cpuctx;
12163 struct perf_event_context *ctx;
12164 struct pmu *pmu;
12165
12166 perf_swevent_init_cpu(cpu);
12167
12168 mutex_lock(&pmus_lock);
12169 cpumask_set_cpu(cpu, perf_online_mask);
12170 list_for_each_entry(pmu, &pmus, entry) {
12171 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12172 ctx = &cpuctx->ctx;
12173
12174 mutex_lock(&ctx->mutex);
12175 cpuctx->online = 1;
12176 mutex_unlock(&ctx->mutex);
12177 }
12178 mutex_unlock(&pmus_lock);
12179
12180 return 0;
12181}
12182
00e16c3d 12183int perf_event_exit_cpu(unsigned int cpu)
0793a61d 12184{
e3703f8c 12185 perf_event_exit_cpu_context(cpu);
00e16c3d 12186 return 0;
0793a61d 12187}
0793a61d 12188
c277443c
PZ
12189static int
12190perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12191{
12192 int cpu;
12193
12194 for_each_online_cpu(cpu)
12195 perf_event_exit_cpu(cpu);
12196
12197 return NOTIFY_OK;
12198}
12199
12200/*
12201 * Run the perf reboot notifier at the very last possible moment so that
12202 * the generic watchdog code runs as long as possible.
12203 */
12204static struct notifier_block perf_reboot_notifier = {
12205 .notifier_call = perf_reboot,
12206 .priority = INT_MIN,
12207};
12208
cdd6c482 12209void __init perf_event_init(void)
0793a61d 12210{
3c502e7a
JW
12211 int ret;
12212
2e80a82a
PZ
12213 idr_init(&pmu_idr);
12214
220b140b 12215 perf_event_init_all_cpus();
b0a873eb 12216 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
12217 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12218 perf_pmu_register(&perf_cpu_clock, NULL, -1);
12219 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 12220 perf_tp_register();
00e16c3d 12221 perf_event_init_cpu(smp_processor_id());
c277443c 12222 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
12223
12224 ret = init_hw_breakpoint();
12225 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 12226
b01c3a00
JO
12227 /*
12228 * Build time assertion that we keep the data_head at the intended
12229 * location. IOW, validation we got the __reserved[] size right.
12230 */
12231 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12232 != 1024);
0793a61d 12233}
abe43400 12234
fd979c01
CS
12235ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12236 char *page)
12237{
12238 struct perf_pmu_events_attr *pmu_attr =
12239 container_of(attr, struct perf_pmu_events_attr, attr);
12240
12241 if (pmu_attr->event_str)
12242 return sprintf(page, "%s\n", pmu_attr->event_str);
12243
12244 return 0;
12245}
675965b0 12246EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 12247
abe43400
PZ
12248static int __init perf_event_sysfs_init(void)
12249{
12250 struct pmu *pmu;
12251 int ret;
12252
12253 mutex_lock(&pmus_lock);
12254
12255 ret = bus_register(&pmu_bus);
12256 if (ret)
12257 goto unlock;
12258
12259 list_for_each_entry(pmu, &pmus, entry) {
12260 if (!pmu->name || pmu->type < 0)
12261 continue;
12262
12263 ret = pmu_dev_alloc(pmu);
12264 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12265 }
12266 pmu_bus_running = 1;
12267 ret = 0;
12268
12269unlock:
12270 mutex_unlock(&pmus_lock);
12271
12272 return ret;
12273}
12274device_initcall(perf_event_sysfs_init);
e5d1367f
SE
12275
12276#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
12277static struct cgroup_subsys_state *
12278perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
12279{
12280 struct perf_cgroup *jc;
e5d1367f 12281
1b15d055 12282 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
12283 if (!jc)
12284 return ERR_PTR(-ENOMEM);
12285
e5d1367f
SE
12286 jc->info = alloc_percpu(struct perf_cgroup_info);
12287 if (!jc->info) {
12288 kfree(jc);
12289 return ERR_PTR(-ENOMEM);
12290 }
12291
e5d1367f
SE
12292 return &jc->css;
12293}
12294
eb95419b 12295static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 12296{
eb95419b
TH
12297 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12298
e5d1367f
SE
12299 free_percpu(jc->info);
12300 kfree(jc);
12301}
12302
12303static int __perf_cgroup_move(void *info)
12304{
12305 struct task_struct *task = info;
ddaaf4e2 12306 rcu_read_lock();
e5d1367f 12307 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 12308 rcu_read_unlock();
e5d1367f
SE
12309 return 0;
12310}
12311
1f7dd3e5 12312static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 12313{
bb9d97b6 12314 struct task_struct *task;
1f7dd3e5 12315 struct cgroup_subsys_state *css;
bb9d97b6 12316
1f7dd3e5 12317 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 12318 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
12319}
12320
073219e9 12321struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
12322 .css_alloc = perf_cgroup_css_alloc,
12323 .css_free = perf_cgroup_css_free,
bb9d97b6 12324 .attach = perf_cgroup_attach,
968ebff1
TH
12325 /*
12326 * Implicitly enable on dfl hierarchy so that perf events can
12327 * always be filtered by cgroup2 path as long as perf_event
12328 * controller is not mounted on a legacy hierarchy.
12329 */
12330 .implicit_on_dfl = true,
8cfd8147 12331 .threaded = true,
e5d1367f
SE
12332};
12333#endif /* CONFIG_CGROUP_PERF */